Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Short wavelength laser  

DOE Patents (OSTI)

A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

Hagelstein, P.L.

1984-06-25T23:59:59.000Z

2

Electricity and short wavelength radiation generator  

DOE Patents (OSTI)

Methods and associated apparati for use of collisions of high energy atoms and ions of He, Ne, or Ar with themselves or with high energy neutrons to produce short wavelength radiation (lambda approx. = 840-1300 A) that may be utilized to produce cathode-anode currents or photovoltaic currents.

George, E.V.

1985-08-26T23:59:59.000Z

3

Source of coherent short wavelength radiation  

DOE Patents (OSTI)

An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

Villa, Francesco (Alameda, CA)

1990-01-01T23:59:59.000Z

4

Dual wavelength laser damage testing for high energy lasers.  

Science Conference Proceedings (OSTI)

As high energy laser systems evolve towards higher energies, fundamental material properties such as the laser-induced damage threshold (LIDT) of the optics limit the overall system performance. The Z-Backlighter Laser Facility at Sandia National Laboratories uses a pair of such kiljoule-class Nd:Phosphate Glass lasers for x-ray radiography of high energy density physics events on the Z-Accelerator. These two systems, the Z-Beamlet system operating at 527nm/ 1ns and the Z-Petawatt system operating at 1054nm/ 0.5ps, can be combined for some experimental applications. In these scenarios, dichroic beam combining optics and subsequent dual wavelength high reflectors will see a high fluence from combined simultaneous laser exposure and may even see lingering effects when used for pump-probe configurations. Only recently have researchers begun to explore such concerns, looking at individual and simultaneous exposures of optics to 1064 and third harmonic 355nm light from Nd:YAG [1]. However, to our knowledge, measurements of simultaneous and delayed dual wavelength damage thresholds on such optics have not been performed for exposure to 1054nm and its second harmonic light, especially when the pulses are of disparate pulse duration. The Z-Backlighter Facility has an instrumented damage tester setup to examine the issues of laser-induced damage thresholds in a variety of such situations [2] . Using this damage tester, we have measured the LIDT of dual wavelength high reflectors at 1054nm/0.5ps and 532nm/7ns, separately and spatially combined, both co-temporal and delayed, with single and multiple exposures. We found that the LIDT of the sample at 1054nm/0.5ps can be significantly lowered, from 1.32J/cm{sup 2} damage fluence with 1054/0.5ps only to 1.05 J/cm{sup 2} with the simultaneous presence of 532nm/7ns laser light at a fluence of 8.1 J/cm{sup 2}. This reduction of LIDT of the sample at 1054nm/0.5ps continues as the fluence of 532nm/7ns laser light simultaneously present increases. The reduction of LIDT does not occur when the 2 pulses are temporally separated. This paper will also present dual wavelength LIDT results of commercial dichroic beam-combining optics simultaneously exposed with laser light at 1054nm/2.5ns and 532nm/7ns.

Atherton, Briggs W.; Rambo, Patrick K.; Schwarz, Jens; Kimmel, Mark W.

2010-05-01T23:59:59.000Z

5

Dual-band ultraviolet-short-wavelength infrared imaging via luminescent downshifting with colloidal quantum dots  

E-Print Network (OSTI)

The performance of short-wavelength infrared (SWIR) cameras in the visible and ultraviolet (UV) regions is limited by the absorption of high-energy photons in inactive regions of the imaging array. Dual-band UV-SWIR imaging ...

Geyer, Scott M.

6

Short wavelength ion temperature gradient turbulence  

Science Conference Proceedings (OSTI)

The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

2012-10-15T23:59:59.000Z

7

Fiber Laser Front Ends for High Energy, Short Pulse Lasers  

SciTech Connect

We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

2007-06-21T23:59:59.000Z

8

High energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti:sapphire wavelength  

E-Print Network (OSTI)

High energy terahertz pulses are produced by optical rectification (OR) in organic crystals DAST and DSTMS by a Ti:sapphire amplifier system centered at 0.8 microns. The simple scheme provides broadband spectra between 1 and 5 THz, when pumped by collimated 60 fs near-infrared pump pulse and it is scalable in energy. Fluence-dependent conversion efficiency and damage threshold are reported as well as optimized OR at visible wavelength.

Monoszlai, B; Jazbinsek, M; Hauri, C P

2013-01-01T23:59:59.000Z

9

Method for fabricating photovoltaic device having improved short wavelength photoresponse  

DOE Patents (OSTI)

Amorphous p-i-n silicon photovoltaic cells with improved short wavelength photoresponse are fabricated with reduced p-dopant contamination at the p/i interface. Residual p-dopants are removed by flushing the deposition chamber with a gaseous mixture capable of reacting with excess doping contaminants prior to the deposition of the i-layer and subsequent to the deposition of the p-layer.

Catalano, Anthony W. (P.O. Box 557, Rushland, PA 18956)

1989-07-04T23:59:59.000Z

10

MILAGRO CONSTRAINTS ON VERY HIGH ENERGY EMISSION FROM SHORT-DURATION GAMMA-RAY BURSTS  

E-Print Network (OSTI)

MILAGRO CONSTRAINTS ON VERY HIGH ENERGY EMISSION FROM SHORT-DURATION GAMMA-RAY BURSTS A. A. Abdo,1 localizations of short, hard gamma-ray bursts (GRBs) by the Swift and HETE satellites have led: bursts -- gamma rays: observations Gamma-ray bursts (GRBs) have long been classified by their durations

California at Santa Cruz, University of

11

Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare  

E-Print Network (OSTI)

A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.

J. Kasparova; M. Karlicky; E. P. Kontar; R. A. Schwartz; B. R. Dennis

2005-08-30T23:59:59.000Z

12

Title of Dissertation: A Search for Short Duration Very High Energy Emission from Gamma-Ray Bursts  

E-Print Network (OSTI)

of GRBs. #12;A Search for Short Duration Very High Energy Emission from Gamma-Ray Bursts by David Noyes Gamma-Ray Bursts 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3 The Gamma-Ray Burst Search 64 3.1 Introduction

California at Santa Cruz, University of

13

In-situ short-circuit protection system and method for high-energy electrochemical cells  

DOE Patents (OSTI)

An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

Gauthier, Michel (La Prairie, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Rouillard, Jean (Saint-Luc, CA); Rouillard, Roger (Beloeil, CA); Shiota, Toshimi (St. Bruno, CA); Trice, Jennifer L. (Eagan, MN)

2003-04-15T23:59:59.000Z

14

In-situ short circuit protection system and method for high-energy electrochemical cells  

DOE Patents (OSTI)

An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

Gauthier, Michel (La Prairie, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Rouillard, Jean (Saint-Luc, CA); Rouillard, Roger (Beloeil, CA); Shiota, Toshimi (St. Bruno, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

15

THE LONG AND THE SHORT OF THE HIGH-ENERGY EMISSION IN GRB090926A: AN EXTERNAL SHOCK  

Science Conference Proceedings (OSTI)

Synchrotron self-Compton (SSC) emission from a reverse shock has been suggested as the origin for the high-energy component lasting 2 s in the prompt phase of GRB98080923. The model describes spectral indices, fluxes, and the duration of the high-energy component as well as a long keV tail present in the prompt phase of GRB980923. Here, we present an extension of this model to describe the high-energy emission of GRB090926A. We argue that the emission consists of two components, one with a duration less than 1 s during the prompt phase, and a second, longer-lasting GeV phase lasting hundred of seconds after the prompt phase. The short high-energy phase can be described as SSC emission from a reverse shock similar to that observed in GRB980923, while the longer component arises from the forward shock. The main assumption is that the jet is magnetized and evolves in the thick-shell case, and the calculated fluxes and break energies are all consistent with the observed values. A comparison between the resulting parameters obtained for GRB980923 and GRB090926A suggests differences in burst tails that could be attributable to the circumburst medium, and this could account for previous analyses reported in the literature for other bursts. We find that the density of the surrounding medium inferred from the observed values associated with the forward shock agrees with standard values for host galaxies such as the one associated with GRB090926A.

Sacahui, J. R.; Fraija, N.; Gonzalez, M. M.; Lee, W. H., E-mail: jsacahui@astro.unam.mx, E-mail: nifraija@astro.unam.mx, E-mail: magda@astro.unam.mx, E-mail: wlee@astro.unam.mx [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, Cd. Universitaria, Mexico DF 04510 (Mexico)

2012-08-20T23:59:59.000Z

16

Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source  

SciTech Connect

Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d{sub max} is at 2.15 cm for a 10 Multiplication-Sign 10 cm{sup 2} field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

Baillie, Devin [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Aubin, J. St. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Steciw, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

2013-04-15T23:59:59.000Z

17

Paraconductivity of three-dimensional amorphous superconductors: evidence for a short-wavelength cutoff in the fluctuation spectrum  

SciTech Connect

Measurements of the temperature dependence and magnetic field dependence of the paraconductivity of a three dimensional amorphous superconductor are presented. The data are analyzed in terms of several current theories and are found to give good agreement for low fields and temperatures near T/sub c/. The paraconductivity falls well below predicted theoretical values in the high temperature and high field limits. This is attributed to the reduced role of high wavevector contributions to the paraconductivity. It is shown that the introduction of a short wavelength cutoff in the theoretical fluctuation spectrum provides a phenomelogical account of the discrepancy between theory and experiment.

Johnson, W.L.

1977-10-01T23:59:59.000Z

18

Short-Wavelength Technology and the Potential For Distributed Networks of Small Radar Systems  

Science Conference Proceedings (OSTI)

Dense networks of short-range radars capable of mapping storms and detecting atmospheric hazards are described. Composed of small X-band (9.4 GHz) radars spaced tens of kilometers apart, these networks defeat the Earth curvature blockage that ...

David McLaughlin; David Pepyne; Brenda Philips; James Kurose; Michael Zink; David Westbrook; Eric Lyons; Eric Knapp; Anthony Hopf; Alfred Defonzo; Robert Contreras; Theodore Djaferis; Edin Insanic; Stephen Frasier; V. Chandrasekar; Francesc Junyent; Nitin Bharadwaj; Yanting Wang; Yuxiang Liu; Brenda Dolan; Kelvin Droegemeier; Jerald Brotzge; Ming Xue; Kevin Kloesel; Keith Brewster; Frederick Carr; Sandra Cruz-Pol; Kurt Hondl; Pavlos Kollias

2009-12-01T23:59:59.000Z

19

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Untitled Document Argonne Logo DOE Logo High Energy Physics Division Home Division ES&H Personnel Publications HEP Awards HEP Computing HEP Committees Administration...

20

Brookhaven High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy Physics High-Energy Physics High-energy physicists probe the properties and behavior of the most elementary particles in the universe. At the Alternating Gradient Synchrotron (AGS), they perform experiments of unique sensitivity using high-intensity, intermediate-energy beams. The AGS currently provides the world's most intense high-energy proton beam. It is also the world's most versatile accelerator, accelerating protons, polarized protons, and heavy ions to near the speed of light. Magnet system at Brookhaven used to measure the magnetic moment of the muon. Important discoveries in high-energy physics were made at the AGS within the last decade. An international collaboration, including key physicists from Brookhaven, performed a very high-precision measurement of a property

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High-energy detector  

SciTech Connect

The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

Bolotnikov, Aleksey E. (South Setauket, NY); Camarda, Giuseppe (Farmingville, NY); Cui, Yonggang (Upton, NY); James, Ralph B. (Ridge, NY)

2011-11-22T23:59:59.000Z

22

Air Kerma - High Energy Xray  

Science Conference Proceedings (OSTI)

... such as high energy megavoltage x rays with peak voltages of at least 5 MV. Currently, air-kerma measurements at these high energies are not ...

2013-03-13T23:59:59.000Z

23

LANL | Physics | High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring high energy physics Physics Division scientists and engineers investigate the field of high energy physics through experiments that strengthen our fundamental...

24

High Energy Photoproduction  

E-Print Network (OSTI)

The experimental and phenomenological status of high energy photoproduction is reviewed. Topics covered include the structure of the photon, production of jets, heavy flavours and prompt photons, rapidity gaps, energy flow and underlying events. The results are placed in the context of the current understanding of QCD, with particular application to present and future hadron and lepton colliders.

J. M. Butterworth; M. Wing

2005-09-15T23:59:59.000Z

25

High-energy  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 22. High-energy collider parameters HIGH-ENERGY COLLIDER PARAMETERS: e + e - Colliders (I) The numbers here were received from representatives of the colliders in late 1999 (contact C.G. Wohl, LBNL). Many of the numbers of course change with time, and only the latest values (or estimates) are given here; those in brackets are for coming upgrades. Quantities are, where appropriate, r.m.s. H and V indicate horizontal and vertical directions. Parameters for the defunct SPEAR, DORIS, PETRA, PEP, and TRISTAN colliders may be found in our 1996 edition (Phys. Rev. D54, 1 July 1996, Part I). VEPP-2M (Novosibirsk) VEPP-2000 ∗ (Novosibirsk) VEPP-4M (Novosibirsk) BEPC (China) DAΦNE (Frascati) Physics start date 1974 2001 1994 1989 1999 Maximum beam energy (GeV) 0.7 1.0 6 2.2 0.510 (0.75 max.) Luminosity (10 30 cm -2 s -1 ) 5 100 50 10 at 2 GeV 5 at 1.55 GeV 50(→500) Time between collisions (µs)

26

High-Energy-Density Plasmas, Fluids  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy-Density Plasmas, Fluids High-Energy-Density Plasmas, Fluids /science-innovation/_assets/images/icon-science.jpg High-Energy-Density Plasmas, Fluids National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. TRIDENT target chamber Sasi Palaniyappan, right, and Rahul Shah left inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin diamond- foil target, a fraction of a micrometer thick. The laser delivers a power on target of 150 Terawatts focused into a 7 micrometer spot, yielding laser brilliance over 100 times more intense than needed to make the target electrons fully relativistic. These experiments test novel methods of producing intense

27

Gratings for High-Energy Petawatt Lasers  

Science Conference Proceedings (OSTI)

To enable high-energy petawatt laser operation we have developed the processing methods and tooling that produced both the world's largest multilayer dielectric reflection grating and the world's highest laser damage resistant gratings. We have successfully delivered the first ever 80 cm aperture multilayer dielectric grating to LLNL's Titan Intense Short Pulse Laser Facility. We report on the design, fabrication and characterization of multilayer dielectric diffraction gratings.

Nguyen, H T; Britten, J A; Carlson, T C; Nissen, J D; Summers, L J; Hoaglan, C R; Aasen, M D; Peterson, J E; Jovanovic, I

2005-11-08T23:59:59.000Z

28

High energy photon emission  

E-Print Network (OSTI)

The primary goal of this work was to initiate the use of BaF2 arrays for detection of high energy photon emission from nuclear reactions. A beam from the Texas A&M University K-500 Superconducting Cyclotron, and a variety of detectors for hard photons, neutrons, charged particles, and fission fragments were used to study the reaction 160 + 238 U at a projectile energy of 50 MeV/u. Inverse slope values of the photon spectra were extracted for inclusive data and data of higher multiplicities at angles of 90' and 135'. Two 19-element barium fluoride (BaF2) arrays, an array of liquid scintillation fast neutron detectors and plastic scintillation charged-particle veto detectors, together with a silicon-cesium iodide (Si-CsI) telescope and a silicon fission fragment detector allowed the possibility of impact parameter selection through neutron and charged particle multiplicities. The associated multiplicity distributions of photon and fast neutron triggers were compared at 30' and 90' angles. The hardware and electronics layout of the experimental set up are described. Fundamental properties of the various detectors are explained and typical spectra are shown as examples for each detector system. The data acquisition and data compression is described in Chap. III, and followed by the calibration methods used for the BaF2 and Nal(TI) detectors. A description of a dynamic pedestal (zero level) correction mechanism, is followed by a description of several cosmic ray background reduction methods, including the highly effective centrality condition. A summary is given to compare the various methods. After a description of the other types of detectors used in the experiment, an example is given how the final photon spectra were produced. In Chap. IV the measured results are presented and compared to those in the literature. The last chapter provides the conclusions of this work.

Jabs, Harry

1997-01-01T23:59:59.000Z

29

Problems in High Energy Astrophysics  

E-Print Network (OSTI)

This contribution discusses some of the main problems in high energy astrophysics, and the perspectives to solve them using different types of "messengers": cosmic rays, photons and neutrinos

Lipari, Paolo

2008-01-01T23:59:59.000Z

30

Problems in High Energy Astrophysics  

E-Print Network (OSTI)

This contribution discusses some of the main problems in high energy astrophysics, and the perspectives to solve them using different types of "messengers": cosmic rays, photons and neutrinos

Paolo Lipari

2008-08-04T23:59:59.000Z

31

Physics of short-wavelength-laser design  

Science Conference Proceedings (OSTI)

The physics and design of vuv and soft x-ray lasers pumped by ICF class high intensity infrared laser drivers are described (for example, the SHIVA laser facility at LLNL). Laser design and physics issues are discussed in the case of a photoionization pumping scheme involving Ne II and line pumping schemes involving H-like and He-like neon.

Hagelstein, P.L.

1981-01-01T23:59:59.000Z

32

Characteristics of Short Wavelength Compressional Alfven Eigenmodes  

SciTech Connect

Most Alfvenic activity in the frequency range between Toroidal Alfven Eigenmodes and roughly one half of the ion cyclotron frequency on NSTX [M. Ono, et al., Nucl. Fusion 40 (2000) 557], that is, approximately 0.3 MHz up to ? 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n=1 kink-like mode. In this paper we present measurements of the spectrum of these high frequency CAE (hfCAE), and their mode structure. We compare those measurements to a simple model of CAE and present evidence of a curious non-linear coupling of the hfCAE and the low frequency kink-like mode.

Fredrickson, E D; Podesta, M; Bortolon, A; Crocker, N A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M

2012-12-19T23:59:59.000Z

33

Channeling and dechanneling at high energy  

SciTech Connect

The possibility of using channeling as a tool for high energy particle physics has now been extensively investigated. Bent crystals have been used as an accelerator extraction element and for particle deflection. Applications as accelerating devices have been discussed but appear remote. The major advantage in using a bent crystal rather than a magnet is the large deflection that can be achieved in a short length. The major disadvantage is the low transmission. A good understanding of dechanneling is important for applications. 43 refs., 1 fig., 3 tabs.

Carrigan, R.A. Jr.

1987-09-30T23:59:59.000Z

34

Research in High Energy Physics  

SciTech Connect

This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

Conway, John S.

2013-08-09T23:59:59.000Z

35

Proposal for a High Energy Nuclear Database  

E-Print Network (OSTI)

Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munitys ?compilations of high-energy nuclear data for applications

Brown, David A.; Vogt, Ramona

2005-01-01T23:59:59.000Z

36

The spectral density of the scattering matrix for high energies  

E-Print Network (OSTI)

We determine the density of eigenvalues of the scattering matrix of the Schrodinger operator with a short range potential in the high energy asymptotic regime. We give an explicit formula for this density in terms of the X-ray transform of the potential.

Daniel Bulger; Alexander Pushnitski

2011-10-17T23:59:59.000Z

37

The spectral density of the scattering matrix for high energies  

E-Print Network (OSTI)

We determine the density of eigenvalues of the scattering matrix of the Schrodinger operator with a short range potential in the high energy asymptotic regime. We give an explicit formula for this density in terms of the X-ray transform of the potential.

Bulger, Daniel

2011-01-01T23:59:59.000Z

38

High-energy atmospheric neutrinos  

E-Print Network (OSTI)

High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known...

Sinegovsky, S I; Sinegovskaya, T S

2010-01-01T23:59:59.000Z

39

High-energy atmospheric neutrinos  

E-Print Network (OSTI)

High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known hadronic models, SIBYLL 2.1 and QGSJET-II. The atmospheric neutrino flux in the energy range $10-10^7$ GeV was computed within the 1D approach to solve nuclear cascade equations in the atmosphere, which takes into account non-scaling behavior of the inclusive cross-sections for the particle production, the rise of total inelastic hadron-nucleus cross-sections and nonpower-law character of the primary cosmic ray spectrum. This approach was recently tested in the atmospheric muon flux calculations [1]. The results of the neutrino flux calculations are compared with the Frejus, AMANDA-II and IceCube measurement data.

S. I. Sinegovsky; A. A. Kochanov; T. S. Sinegovskaya

2010-10-12T23:59:59.000Z

40

High-energy Cosmic Rays  

E-Print Network (OSTI)

After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the `knee' above $10^{15}$ eV and the `ankle' above $10^{18}$ eV. An important question is whether the highest energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

Thomas K. Gaisser; Todor Stanev

2005-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

HIGH ENERGY GASEOUS DISCHARGE DEVICES  

DOE Patents (OSTI)

The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

Josephson, V.

1960-02-16T23:59:59.000Z

42

High Energy Laser Diagnostic Sensors  

Science Conference Proceedings (OSTI)

Recent advancements in high energy laser (HEL) sources have outpaced diagnostic tools capable of accurately quantifying system performance. Diagnostic tools are needed that allow system developers to measure the parameters that define HEL effectiveness. The two critical parameters for quantifying HEL effectiveness are the irradiance on target and resultant rise in target temperature. Off-board sensing has its limitations, including unpredictable changes in the reflectivity of the target, smoke and outgassing, and atmospheric distortion. On-board sensors overcome the limitations of off-board techniques but must survive high irradiance levels and extreme temperatures.We have developed sensors for on-target diagnostics of high energy laser beams and for the measurement of the thermal response of the target. The conformal sensors consist of an array of quantum dot photodetectors and resistive temperature detectors. The sensor arrays are lithographically fabricated on flexible substrates and can be attached to a variety of laser targets. We have developed a nanoparticle adhesive process that provides good thermal contact with the target and that ensures the sensor remains attached to the target for as long as the target survives. We have calibrated the temperature and irradiance sensors and demonstrated them in a HEL environment.

Luke, James R.; Goddard, Douglas N.; Thomas, David [AEgis Technologies Group, 10501 Research Rd SE, Suite D, Albuquerque, NM 87123, 505-938-9221 (United States); Lewis, Jay [RTI International, Research Triangle Park, NC (United States)

2010-10-08T23:59:59.000Z

43

String Scattering Amplitudes in High Energy Limits  

E-Print Network (OSTI)

A very review of string scattering amplitudes in two important high energy limits: hard scattering and Regge scattering. Recent results of the symmetries in string theory by studying high energy string scattering anplitudes are showed.

Yang, Yi

2011-01-01T23:59:59.000Z

44

Oxides having high energy densities  

DOE Patents (OSTI)

Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

Ceder, Gerbrand; Kang, Kisuk

2013-09-10T23:59:59.000Z

45

The Particle Adventure | How do we detect what's happening? | Wavelength  

NLE Websites -- All DOE Office Websites (Extended Search)

Wavelength and resolution explained Wavelength and resolution explained Wavelength and resolution explained Things with long wavelengths are analogous to the basketball in the cave story because neither can provide too much detail about what they hit. Things with short wavelengths are like the marbles in that they can provide you with fairly detailed information about what they hit. The shorter the probe's wavelength is, the more information you can get about the target. A good example of the wavelength vs. resolution issue is a swimming pool. If you have a swimming pool with waves which are 1 meter apart (a 1 meter wavelength) and push a stick into the water, the pool's waves just pass around the stick because the 1 meter wavelength means that the pool's waves won't be affected by such a tiny target.

46

High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context  

E-Print Network (OSTI)

High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context 1 Some references The following set of volumes is an outstanding summary of the field of High Energy Astrophysics and its relation to the rest of Astrophysics High Energy Astrophysics, Vols. 1,2 and 3. M.S. Longair, Cam- bridge University

Bicknell, Geoff

47

High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitora battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy densityhigh energy density means more energy storage. FastCAP is redesigning the ultracapacitors internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAPs ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitors electrode, increasing the overall efficiency and energy density of the device.

None

2010-04-01T23:59:59.000Z

48

High Energy Density Secondary Lithium Batteries  

High Energy Density Secondary Lithium Batteries Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

49

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Computing and Storage Requirements for High Energy Physics [for High Energy Physics Computational and Storage for High Energy Physics Computational and Storage

Gerber, Richard A.

2011-01-01T23:59:59.000Z

50

Light Wavelength and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Wavelength and Plants Name: John Location: NA Country: NA Date: NA Question: I just was wandering whether plants grow better in artificial light or in sunlight. I am...

51

TRIDENT high-energy-density facility experimental capabilities and diagnostics  

Science Conference Proceedings (OSTI)

The newly upgraded TRIDENT high-energy-density (HED) facility provides high-energy short-pulse laser-matter interactions with powers in excess of 200 TW and energies greater than 120 J. In addition, TRIDENT retains two long-pulse (nanoseconds to microseconds) beams that are available for simultaneous use in either the same experiment or a separate one. The facility's flexibility is enhanced by the presence of two separate target chambers with a third undergoing commissioning. This capability allows the experimental configuration to be optimized by choosing the chamber with the most advantageous geometry and features. The TRIDENT facility also provides a wide range of standard instruments including optical, x-ray, and particle diagnostics. In addition, one chamber has a 10 in. manipulator allowing OMEGA and National Ignition Facility (NIF) diagnostics to be prototyped and calibrated.

Batha, S. H.; Aragonez, R.; Archuleta, F. L.; Archuleta, T. N.; Benage, J. F.; Cobble, J. A.; Cowan, J. S.; Fatherley, V. E.; Flippo, K. A.; Gautier, D. C.; Gonzales, R. P.; Greenfield, S. R.; Hegelich, B. M.; Hurry, T. R.; Johnson, R. P.; Kline, J. L.; Letzring, S. A.; Loomis, E. N.; Lopez, F. E.; Luo, S. N. [Los Alamos National Laboratory, P.O. Box 1663, MS E526, Los Alamos, New Mexico 87545 (United States)] (and others)

2008-10-15T23:59:59.000Z

52

High Energy Laser for Space Debris Removal  

SciTech Connect

The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored pulse designed for high transmission through the atmosphere, as well as efficient ablative coupling to the target. The main amplifier would use either diode-pumped or flashlamp-pumped solid state gain media, depending on budget constraints of the project. A continuously operating system would use the gas-cooled amplifier technology developed for Mercury, while a burst-mode option would use the heat capacity laser technology. The ground-based system that we propose is capable of rapid engagement of targets whose orbits cross over the site, with potential for kill on a single pass. Very little target mass is ablated per pulse so the potential to create additional hazardous orbiting debris is minimal. Our cost estimates range from $2500 to $5000 per J depending on choices for laser gain medium, amplifier pump source, and thermal management method. A flashlamp-pumped, Nd:glass heat-capacity laser operating in the burst mode would have costs at the lower end of this spectrum and would suffice to demonstrate the efficacy of this approach as a prototype system. A diode-pumped, gas-cooled laser would have higher costs but could be operated continuously, and might be desirable for more demanding mission needs. Maneuverability can be incorporated in the system design if the additional cost is deemed acceptable. The laser system would need to be coupled with a target pointing and tracking telescope with guide-star-like wavefront correction capability.

Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

2009-10-30T23:59:59.000Z

53

High Energy Laser for Space Debris Removal  

SciTech Connect

The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored pulse designed for high transmission through the atmosphere, as well as efficient ablative coupling to the target. The main amplifier would use either diode-pumped or flashlamp-pumped solid state gain media, depending on budget constraints of the project. A continuously operating system would use the gas-cooled amplifier technology developed for Mercury, while a burst-mode option would use the heat capacity laser technology. The ground-based system that we propose is capable of rapid engagement of targets whose orbits cross over the site, with potential for kill on a single pass. Very little target mass is ablated per pulse so the potential to create additional hazardous orbiting debris is minimal. Our cost estimates range from $2500 to $5000 per J depending on choices for laser gain medium, amplifier pump source, and thermal management method. A flashlamp-pumped, Nd:glass heat-capacity laser operating in the burst mode would have costs at the lower end of this spectrum and would suffice to demonstrate the efficacy of this approach as a prototype system. A diode-pumped, gas-cooled laser would have higher costs but could be operated continuously, and might be desirable for more demanding mission needs. Maneuverability can be incorporated in the system design if the additional cost is deemed acceptable. The laser system would need to be coupled with a target pointing and tracking telescope with guide-star-like wavefront correction capability.

Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

2009-10-30T23:59:59.000Z

54

The evolution of high energy accelerators  

SciTech Connect

In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

Courant, E.D.

1989-10-01T23:59:59.000Z

55

Nuclear diffractive structure functions at high energies  

E-Print Network (OSTI)

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

Marquet, C; Lappi, T; Venugopalan, R

2008-01-01T23:59:59.000Z

56

Nuclear diffractive structure functions at high energies  

E-Print Network (OSTI)

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

2008-05-30T23:59:59.000Z

57

Elementary particle physics and high energy phenomena  

SciTech Connect

This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

1992-06-01T23:59:59.000Z

58

Scientific applications for high-energy lasers  

Science Conference Proceedings (OSTI)

The convergence of numerous factors makes the time ripe for the development of a community of researchers to use the high-energy laser for scientific investigations. This document attempts to outline the steps necessary to access high-energy laser systems and create a realistic plan to implement usage. Since an academic/scientific user community does not exist in the USA to any viable extent, we include information on present capabilities at the Nova laser. This will briefly cover laser performance and diagnostics and a sampling of some current experimental projects. Further, to make the future possibilities clearer, we will describe the proposed next- generation high-energy laser, named for its inertial fusion confinement (ICF) goal, the multi-megaJoule, 500-teraWatt National Facility, or NIF.

Lee, R.W. [comp.

1994-03-01T23:59:59.000Z

59

Evidence for Post-Quiescent, High-Energy Emission from Gamma-Ray Burst 990104  

E-Print Network (OSTI)

It is well known that high-energy emission (MeV-GeV) has been observed in a number of gamma-ray bursts, and temporally-extended emission from lowerenergy gamma rays through radio wavelengths is well established. An important observed characteristic of some bursts at low energy is quiescence: an initial emission followed by a quiet period before a second (post-quiescent) emission. Evidence for significant high-energy, post-quiescent emission has been lacking. Here we present evidence for high-energy emission, coincident with lower energy emission, from the post-quiescent emission episode of the very bright and long burst, GRB 990104. We show light curves and spectra that confirm emission above 50 MeV, approximately 152 seconds after the BATSE trigger and initial emission episode. Between the initial emission episode and the main peak, seen at both low and high energy, there was a quiescent period of ?100 s during which the burst was relatively quiet. This burst was found as part of an ongoing search for high-energy emission in gamma-ray bursts using the EGRET fixed interval (32 s) accumulation spectra, which provide sensitivity to later, high-energy emission that is otherwise missed by the standard EGRET BATSE-triggered burst spectra. Subject headings: gamma rays: burstsgamma rays: observations 2

D. N. Wren; D. L. Bertsch; S. Ritz

2002-01-01T23:59:59.000Z

60

High-energy cosmic ray interactions  

SciTech Connect

Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

Engel, Ralph [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Orellana, Mariana [Instituto Argentino de Radioastronomia (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina); Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque, 1900 La Plata (Argentina); Reynoso, Matias M. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Instituto de Investigaciones Fisicas de Mar del Plata, (UNMdP-CONICET) (Argentina); Vila, Gabriela S. [Instituto Argentino de Radioastronomia (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina)

2009-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High Energy Physics Research at Louisiana Tech  

SciTech Connect

The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D? experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

2013-06-28T23:59:59.000Z

62

Building Technologies Office: Highly Energy Efficient Wall Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Energy Efficient Wall Systems Research Project to someone by E-mail Share Building Technologies Office: Highly Energy Efficient Wall Systems Research Project on Facebook...

63

USDA - High Energy Cost Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Energy Cost Grant Program USDA - High Energy Cost Grant Program Eligibility Commercial Industrial Institutional Local Government Municipal Utility Nonprofit Residential...

64

High Energy Density Laboratory Plasmas Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog High Energy Density Laboratory Plasmas Program Home > High Energy Density Laboratory Plasmas...

65

High Energy Diffraction Microscopy at the Advanced Photon Source ...  

Science Conference Proceedings (OSTI)

The APS 1-ID beamline is dedicated to high-energy diffraction and the status of the ... High Energy Diffraction Microscopy at the Advanced Photon Source 1-ID...

66

Permeability enhancement using high energy gas fracturing  

DOE Green Energy (OSTI)

This paper reports the results of a preliminary study of using High Energy Gas Fracturing (HEGF) techniques for geothermal well stimulation. Experiments conducted in the G-tunnel complex at the Nevada Test Site (NTS) showed that multiple fractures could be created in water-filled boreholes using HEGF. Therefore, the method is potentially useful for geothermal well stimulation. 4 refs., 11 figs.

Chu, T.Y.; Cuderman, J.F.; Jung, J.; Jacobson, R.D.

1986-01-01T23:59:59.000Z

67

Very high energy heavy-ion accelerators  

SciTech Connect

A review is given of various programs for building heavy ion accelerators. Topics discussed are (1) options of reaching very high energies with heavy ions; (2) present performance of the superHILAC and the Bevalac; (3) heavy ion sources; (4) applications of heavy ion accelerators outside of basic research; and (5) reliability and operating costs of heavy ion sources. (PMA)

Grunder, H.A.

1975-10-01T23:59:59.000Z

68

Trends in experimental high-energy physics  

SciTech Connect

Data from a scan of papers in Physical Review Letters and Physical Review are used to demonstrate that American high-energy physicists show a pattern of accelerator and instrumentation usage characteristic of that expected from the logistic-substitution model of Marchetti and of Fischer and Pry.

Sanford, T.W.L.

1982-06-01T23:59:59.000Z

69

High-Energy Petawatt Project at the University of Rochester's Laboratory for Laser Energetics  

Science Conference Proceedings (OSTI)

A high-energy petawatt laser, OMEGA EP, is currently under construction at the University of Rochester's Laboratory for Laser Energetics. Integrated into the existing OMEGA laser, it will support three major areas of research: (a) backlighting of high-energy-density plasmas, (b) integrated fast ignition experiments, and (c) high-intensity physics. The laser will provide two beams combined collinearly and coaxially with short pulses (~1 to 100 ps) and high energy (2.6 kJ at 10 ps). Cone-in-shell fuel-assembly experiments and simulations of short-pulse heated cryogenic targets are being performed in preparation for cryogenic integrated fast ignitor experiments on OMEGA EP.

Stoeckl, C.; Delettrez, J.A.; Kelly, J.H.; Kessler, T.J.; Kruschwitz, B.E.; Loucks, S.J.; McCrory, R.L.; Meyerhofer, D.D.; Maywar, D.N.; Morse, S.F.B.; Myatt, J.; Rigatti, A.L.; Waxer, L.J.; Zuegel, J.D.; Stephens, R.B.

2006-04-12T23:59:59.000Z

70

The spectral density of the scattering matrix of the magnetic Schrodinger operator for high energies  

E-Print Network (OSTI)

The scattering matrix of the Schrodinger operator with smooth short-range electric and magnetic potentials is considered. The asymptotic density of the eigenvalues of this scattering matrix in the high energy regime is determined. An explicit formula for this density is given. This formula involves only the magnetic vector-potential.

Daniel Bulger; Alexander Pushnitski

2012-08-21T23:59:59.000Z

71

Ultra-short wavelength x-ray system  

DOE Patents (OSTI)

A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

Umstadter, Donald (Ann Arbor, MI); He, Fei (Ann Arbor, MI); Lau, Yue-Ying (Potomac, MD)

2008-01-22T23:59:59.000Z

72

Prospects of High Energy Laboratory Astrophysics  

SciTech Connect

Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms.

Ng, J.S.T.; Chen, P.; /SLAC

2006-09-21T23:59:59.000Z

73

ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.  

SciTech Connect

The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

2006-10-02T23:59:59.000Z

74

High Energy Particles in the Solar Corona  

E-Print Network (OSTI)

Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

A. Widom; Y. N. Srivastava; L. Larsen

2008-04-16T23:59:59.000Z

75

High energy physics at UC Riverside  

SciTech Connect

This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

1997-07-01T23:59:59.000Z

76

High Energy Studies of Pulsar Wind Nebulae  

E-Print Network (OSTI)

The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

Slane, Patrick

2008-01-01T23:59:59.000Z

77

High Energy Studies of Pulsar Wind Nebulae  

E-Print Network (OSTI)

The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

Patrick Slane

2008-11-12T23:59:59.000Z

78

EEEL Researchers Develop Novel Attenuator for High-energy ...  

Science Conference Proceedings (OSTI)

EEEL Researchers Develop Novel Attenuator for High-energy Lasers. For Immediate Release: June 2, 2008. ...

2011-10-03T23:59:59.000Z

79

Viscosity of High Energy Nuclear Fluids  

E-Print Network (OSTI)

Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

2007-03-15T23:59:59.000Z

80

Frontiers in High-Energy Astroparticle Physics  

E-Print Network (OSTI)

With the discovery of evidence for neutrino mass, a vivid gamma ray sky at multi-TeV energies, and cosmic ray particles with unexpectedly high energies, astroparticle physics currently runs through an era of rapid progress and moving frontiers. The non-vanishing neutrino mass establishes one smooth component of dark matter which does not, however, supply a critical mass to the Universe. Other dark matter particles are likely to be very massive and should produce high-energy gamma rays, neutrinos, and protons in annihilations or decays. The search for exotic relics with new gamma ray telescopes, extensive air shower arrays, and underwater/-ice neutrino telescopes is a fascinating challenge, but requires to understand the astrophysical background radiations at high energies. Among the high-energy sources in the Universe, radio-loud active galactic nuclei seem to be the most powerful accounting for at least a sizable fraction of the extragalactic gamma ray flux. They could also supply the bulk of the observed cosmic rays at ultrahigh energies and produce interesting event rates in neutrino telescopes aiming at the kubic kilometer scale such as AMANDA and ANTARES. It is proposed that the extragalactic neutrino beam can be used to search for tau lepton appearance thus allowing for a proof of the neutrino oscillation hypothesis. Furthermore, a new method for probing the era of star formation at high redshifts using gamma rays is presented which requires new-generation gamma ray telescopes operating in the 10-100 GeV regime such as MAGIC and GLAST.

Karl Mannheim

1999-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Support Vector Machines in High Energy Physics  

E-Print Network (OSTI)

This lecture will introduce the Support Vector algorithms for classification and regression. They are an application of the so called kernel trick, which allows the extension of a certain class of linear algorithms to the non linear case. The kernel trick will be introduced and in the context of structural risk minimization, large margin algorithms for classification and regression will be presented. Current applications in high energy physics will be discussed.

Anselm Vossen

2008-03-16T23:59:59.000Z

82

Novel technique of suppressing TBBU in high-energy ERLs  

Science Conference Proceedings (OSTI)

Energy recovery linacs (ERLs) are an emerging generation of accelerators that promise to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and augur the delivery of electron beams of unprecedented power and quality. However, one potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current. In this paper, I propose a novel method of suppressing these dangerous effects using the chromaticity of the transverse motion. In this short paper I am able only to touch the surface of the method and a complete description of the method with all relevant derivations can be found in [1].

Litvinenko V.

2012-05-20T23:59:59.000Z

83

The evolution of high energy accelerators  

SciTech Connect

Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

Courant, E.D.

1994-08-01T23:59:59.000Z

84

[Experimental and theoretical high energy physics program  

Science Conference Proceedings (OSTI)

Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

1993-04-01T23:59:59.000Z

85

Emerging Computing Technologies in High Energy Physics  

E-Print Network (OSTI)

While in the early 90s High Energy Physics (HEP) lead the computing industry by establishing the HTTP protocol and the first web-servers, the long time-scale for planning and building modern HEP experiments has resulted in a generally slow adoption of emerging computing technologies which rapidly become commonplace in business and other scientific fields. I will overview some of the fundamental computing problems in HEP computing and then present the current state and future potential of employing new computing technologies in addressing these problems.

Amir Farbin

2009-10-19T23:59:59.000Z

86

High Energy Instrumentation Efforts in Turkey  

Science Conference Proceedings (OSTI)

This work summarizes the efforts in Turkey to build a laboratory capable of building and testing high energy astrophysics detectors that work in space. The EC FP6 ASTRONS project contributed strongly to these efforts, and as a result a fully operational laboratory at Sabanci University have been developed. In this laboratory we test and develop Si and CdZnTe based room temperature semiconductor strip detectors and develop detector and electronics system to be used as a payload on potential small Turkish satellites.

Kalemci, Emrah [Sabanci University, Tuzla, Istanbul (Turkey)

2011-09-21T23:59:59.000Z

87

GEM applications outside high energy physics  

E-Print Network (OSTI)

From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

Pinto, Serge Duarte

2013-01-01T23:59:59.000Z

88

Critical database technologies for high energy physics  

SciTech Connect

A number of large-scale high energy physics experiments loom on the horizon, several of which will generate many petabytes of scientific data annually. A variety of exploratory projects are underway within the physics computing community to investigate approaches to managing the data. There are conflicting views of this massive data problem: (1) there is far too much data to manage effectively within a genuine database; (2) there is far too much data to manage effectively without a genuine database; and many people hold both views. The purpose of this paper is to begin a dialog between the computational physics and very large database community on such problems, and to simulate research in directions that will be of benefit to both groups. This paper will attempt to outline the nature and scope of these massive data problems, survey several of the approaches being explored by the physics community, and suggest areas in which high energy physicists hope to look to the database community for assistance.

Malon, D.M.; May, E.N.

1997-09-01T23:59:59.000Z

89

Very-High-Energy Gamma Rays from a Distant Quasar: How Transparent Is the Universe?  

E-Print Network (OSTI)

The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Since high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

MAGIC Collaboration; J. Albert

2008-07-17T23:59:59.000Z

90

JETS OF NUCLEAR MATTER FROM HIGH ENERGY HEAVY ION COLLISIONS  

E-Print Network (OSTI)

of the Office of High Energy and Nuclear Physics of the U.S.distributions and energy flux in violent nuclear collisions.of the Office of High Energy and Nuclear Physics of the U.S.

Stocker, H.

2013-01-01T23:59:59.000Z

91

Stochastic Jet Quenching in High Energy Nuclear Collisions  

E-Print Network (OSTI)

Energy losses of fast color particles in random inhomogeneous color medium created in high energy nuclear collisions are estimated.

Kirakosyan, M R

2008-01-01T23:59:59.000Z

92

Laboratory high-energy astrophysics on lasers  

SciTech Connect

The tremendous range of temperatures and densities spanned by astrophysical plasmas has significant overlap with conditions attainable using high-power laser facilities. These facilities provide an opportunity to create, control, and characterize plasmas in the laboratory that mirror conditions in some of the most important cosmological systems. Moreover, laboratory experiments can enhance astrophysical understanding by focusing on and isolating important physical processes, without necessarily reproducing the exact conditions of the integral system. Basic study of radiative properties, transport phenomena, thermodynamic response and hydrodynamic evolution in plasmas under properly scaled conditions leads both directly and indirectly to improved models of complex astrophysical systems. In this paper, we will discuss opportunities for current and planned highpower lasers to contribute to the study of high-energy astrophysics.

Goldstein, W.H.; Liedahl, D.A.; Walling, R.S.; Foord, M.E.; Osterheld, A.L.; Wilson, B.G.

1994-12-01T23:59:59.000Z

93

High-energy emission from pulsar binaries  

E-Print Network (OSTI)

Unpulsed, high-energy emission from pulsar binaries can be attributed to the interaction of a pulsar wind with that of a companion star. At the shock between the outflows, particles carried away from the pulsar magnetosphere are accelerated and radiate both in synchrotron and inverse Compton processes. This emission constitutes a significant fraction of the pulsar spin-down luminosity. It is not clear however, how the highly magnetized pulsar wind could convert its mainly electromagnetic energy into the particles with such high efficiency. Here we investigate a scenario in which a pulsar striped wind converts into a strong electromagnetic wave before reaching the shock. This mode can be thought of as a shock precursor that is able to accelerate particles to ultrarelativistic energies at the expense of the electromagnetic energy it carries. Radiation of the particles leads to damping of the wave. The efficiency of this process depends on the physical conditions imposed by the external medium. Two regimes can b...

Mochol, Iwona

2013-01-01T23:59:59.000Z

94

Stochastic cooling of a high energy collider  

SciTech Connect

Gold beams in RHIC revolve more than a billion times over the course of a data acquisition session or store. During operations with these heavy ions the event rates in the detectors decay as the beams diffuse. A primary cause for this beam diffusion is small angle Coloumb scattering of the particles within the bunches. This intra-beam scattering (IBS) is particularly problematic at high energy because the negative mass effect removes the possibility of even approximate thermal equilibrium. Stochastic cooling can combat IBS. A theory of bunched beam cooling was developed in the early eighties and stochastic cooling systems for the SPS and the Tevatron were explored. Cooling for heavy ions in RHIC was also considered.

Blaskiewicz, M.; Brennan, J.M.; Lee, R.C.; Mernick, K.

2011-09-04T23:59:59.000Z

95

High energy emission from galactic jets  

E-Print Network (OSTI)

In this chapter we review some aspects of X-ray binaries, particularly those presenting steady jets, i.e. microquasars. Because of their proximity and similarities with active galactic nuclei (AGN), galactic jet sources are unique laboratories to test astrophysical theories of a universal scope. Due to recent observational progress made with the new generation of gamma-ray imaging atmospheric Cherenkov telescopes and in view of the upcoming km3-size neutrino detectors, we focus especially on the possible high-energy gamma radiation and neutrino emission. In connection with this, we also comment about astrophysical jets present in young stellar objects, and we briefly discuss similarities and differences with extragalactic AGN and gamma-ray bursters.

H. R. Christiansen

2013-06-07T23:59:59.000Z

96

Diffractive phenomena in high energy processes  

E-Print Network (OSTI)

We review the evolution of the studies of diffractive processes in the strong interaction over the last 60 years. First, we briefly outline the early developments of the theory based on analyticity and unitarity of the S-matrix, including the derivation and exploration of the Regge trajectories and related moving cuts. Special attention is paid to the concept of the Pomeron trajectory introduced for description of total, elastic and diffractive cross sections at high energies and to the emergence of the dynamics of multi-Pomeron interactions.The role of large longitudinal distances and color coherent phenomena for the understanding of inelastic diffraction in hadron-hadron scattering and deep inelastic scattering is emphasized. The connection of these phenomena to the cancellation of the contribution of the Glauber approximation in hadron-nucleus collisions and to the understanding of the Gribov-Glauber approximation is explained. The presence of different scales in perturbative QCD due to masses of heavy quarks has led to the emergence of numerous new phenomena including non-universality of the slopes of Regge trajectories made of light and heavy quarks and non-universal energy dependence of elastic cross sections. The application of the perturbative QCD techniques allowed us to calculate from the first principles the interaction of small transverse size color singlets with hadrons leading to the development of the quantitative theory of hard exclusive reactions and to the successful prediction of many regularities in hard large mass diffraction. It also led to the prediction of the phenomenon of complete transparency of nuclear matter in QCD in special processes. The conflict of perturbative QCD with probability conservation for high energy processes of virtual photon-nucleon scattering is explained. Some properties of the new QCD regime are outlined.

Leonid Frankfurt; Mark Strikman

2013-04-16T23:59:59.000Z

97

FIU-2328-01 Selected Topics in High Energy Semi-Exclusive Electro-Nuclear Reactions  

E-Print Network (OSTI)

We review the present status of the theory of high energy reactions with semi-exclusive nucleon electro-production from nuclear targets. We demonstrate how the increase of transferred energies in these reactions opens a complete new window in studying the microscopic nuclear structure at small distances. The simplifications in theoretical descriptions associated with the increase of the energies are discussed. The theoretical framework for calculation of high energy nuclear reactions based on the effective Feynman diagram rules is described in details. The result of this approach is the generalized eikonal approximation (GEA), which is reduced to Glauber approximation when nucleon recoil is neglected. The method of GEA is demonstrated in the calculation of high energy electro-disintegration of the deuteron and A = 3 targets. Subsequently we generalize the obtained formulae for A> 3 nuclei. The relation of GEA to the Glauber theory is analyzed. Then based on the GEA framework we discuss some of the phenomena which can be studied in exclusive reactions, these are: nuclear transparency and short-range correlations in nuclei. We illustrate how light-cone dynamics of high-energy scattering emerge naturally in high energy electro-nuclear reactions. I.

Misak M. Sargsian

2008-01-01T23:59:59.000Z

98

Short Courses  

Science Conference Proceedings (OSTI)

The materials presented in this short course are based on the Summer School for Integrated Computational Materials Education, held at the University of...

99

Large Scale Computing and Storage Requirements for High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

for High Energy Physics for High Energy Physics Accelerator Physics P. Spentzouris, Fermilab Motivation Accelerators enable many important applications, both in basic research and applied sciences Different machine attributes are emphasized for different applications * Different particle beams and operation principles * Different energies and intensities Accelerator science and technology objectives for all applications * Achieve higher energy and intensity, faster and cheaper machine design, more reliable operation a wide spectrum of requirements for very complex instruments. Assisting their design and operation requires an equally complex set of computational tools. High Energy Physics Priorities High energy frontier * Use high-energy colliders to discover new particles and

100

On the Origin of Ultra High Energy Cosmic Rays II  

Science Conference Proceedings (OSTI)

We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

2011-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Spin structure in high energy processes: Proceedings  

Science Conference Proceedings (OSTI)

This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

DePorcel, L.; Dunwoodie, C. [eds.

1994-12-01T23:59:59.000Z

102

High energy activation data library (HEAD-2009)  

SciTech Connect

A proton activation data library for 682 nuclides from 1 H to 210Po in the energy range from 150 MeV up to 1 GeV was developed. To calculate proton activation data, the MCNPX 2.6.0 and CASCADE/INPE codes were chosen. Different intranuclear cascade, preequilibrium, and equilibrium nuclear reaction models and their combinations were used. The optimum calculation models have been chosen on the basis of statistical correlations for calculated and experimental proton data taken from the EXFOR library of experimental nuclear data. All the data are written in ENDF-6 format. The library is called HEPAD-2008 (High-Energy Proton Activation Data). A revision of IEAF-2005 neutron activation data library has been performed. A set of nuclides for which the cross-section data can be (and were) updated using more modern and improved models is specified, and the corresponding calculations have been made in the present work. The new version of the library is called IEAF-2009. The HEPAD-2008 and IEAF-2009 are merged to the final HEAD-2009 library.

Mashnik, Stepan G [Los Alamos National Laboratory; Korovin, Yury A [NON LANL; Natalenko, Anatoly A [NON LANL; Konobeyev, Alexander Yu [NON LANL; Stankovskiy, A Yu [NON LANL

2010-01-01T23:59:59.000Z

103

Ultra High-Energy Cosmic Ray Observations  

E-Print Network (OSTI)

The year 2007 has furnished us with outstanding results about the origin of the most energetic cosmic rays: a flux suppression as expected from the GZK-effect has been observed in the data of the HiRes and Auger experiments and correlations between the positions of nearby AGN and the arrival directions of trans-GZK events have been observed by the Pierre Auger Observatory. The latter finding marks the beginning of ultra high-energy cosmic ray astronomy and is considered a major breakthrough starting to shed first light onto the sources of the most extreme particles in nature. This report summarizes those observations and includes other major advances of the field, mostly presented at the 30th International Cosmic Ray Conference held in Merida, Mexico, in July 2007. With increasing statistics becoming available from current and even terminated experiments, systematic differences amongst different experiments and techniques can be studied in detail which is hoped to improve our understanding of experimental tec...

Kampert, Karl-Heinz

2008-01-01T23:59:59.000Z

104

Oklahoma Center for High Energy Physics (OCHEP)  

SciTech Connect

The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma?¢????s impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging from the search for new phenomena at the Fermilab Tevatron and the CERN Large Hadron Collider to theoretical modeling, computer simulation, detector development and testing, and physics analysis. OCHEP faculty members participating on the D0 collaboration at the Fermilab Tevatron and on the ATLAS collaboration at the CERN LHC have made major impact on the Standard Model (SM) Higgs boson search, top quark studies, B physics studies, and measurements of Quantum Chromodynamics (QCD) phenomena. The OCHEP Grid computing facility consists of a large computer cluster which is playing a major role in data analysis and Monte Carlo productions for both the D0 and ATLAS experiments. Theoretical efforts are devoted to new ideas in Higgs bosons physics, extra dimensions, neutrino masses and oscillations, Grand Unified Theories, supersymmetric models, dark matter, and nonperturbative quantum field theory. Theory members are making major contributions to the understanding of phenomena being explored at the Tevatron and the LHC. They have proposed new models for Higgs bosons, and have suggested new signals for extra dimensions, and for the search of supersymmetric particles. During the seven year period when OCHEP was partially funded through the DOE EPSCoR implementation grant, OCHEP members published over 500 refereed journal articles and made over 200 invited presentations at major conferences. The Center is also involved in education and outreach activities by offering summer research programs for high school teachers and college students, and organizing summer workshops for high school teachers, sometimes coordinating with the Quarknet programs at OSU and OU. The details of the Center can be found in http://ochep.phy.okstate.edu.

S. Nandi; M.J. Strauss; J. Snow; F. Rizatdinova; B. Abbott; K. Babu; P. Gutierrez; C. Kao; A. Khanov; K.A. Milton; H. Neaman; H. Severini, P. Skubic

2012-02-29T23:59:59.000Z

105

Phase conjugation of high energy lasers.  

Science Conference Proceedings (OSTI)

In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 - 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

Bliss, David Emery; Valley, Michael T.; Atherton, Briggs W.; Bigman, Verle; Boye, Lydia Ann; Broyles, Robin Scott; Kimmel, Mark W.; Law, Ryan J.; Yoder, James R.

2013-01-01T23:59:59.000Z

106

High energy, low frequency, ultrasonic transducer  

DOE Patents (OSTI)

A wide bandwidth, ultrasonic transducer to generate nondispersive, extensional, pulsed acoustic pressure waves into concrete reinforced rods and tendons. The wave propagation distance is limited to double the length of the rod. The transducer acoustic impedance is matched to the rod impedance for maximum transfer of acoustic energy. The efficiency of the transducer is approximately 60 percent, depending upon the type of active elements used in the transducer. The transducer input energy is, for example, approximately 1 mJ. Ultrasonic reflections will occur at points along the rod where there are changes of one percent of a wavelength in the rod diameter. A reduction in the rod diameter will reflect a phase reversed echo, as compared with the reflection from an incremental increase in diameter. Echo signal processing of the stored waveform permits a reconstruction of those echoes into an image of the rod. The ultrasonic transducer has use in the acoustic inspection of long (40+foot) architectural reinforcements and structural supporting members, such as in bridges and dams.

Brown, Albert E. (Hayward, CA)

2000-01-01T23:59:59.000Z

107

High energy particles from gamma-ray bursts  

E-Print Network (OSTI)

A review is presented of the fireball model of gamma-ray bursts (GRBs), and of the production in GRB fireballs of high energy protons and neutrinos. Constraints imposed on the model by recent afterglow observations, which support the association of GRB and ultra-high energy cosmic-ray (UHECR) sources, are discussed. Predictions of the GRB model for UHECR production, which can be tested with planned large area UHECR detectors and with planned high energy neutrino telescopes, are reviewed.

Eli Waxman

2001-03-13T23:59:59.000Z

108

Future scientific applications for high-energy lasers  

Science Conference Proceedings (OSTI)

This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

Lee, R.W. [comp.

1994-08-01T23:59:59.000Z

109

Electrolytes and Electrodes for High-energy Secondary Batteries  

Science Conference Proceedings (OSTI)

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and Energy ... High Energy Density Lithium Capacitors Using Carbon-Carbon Electrodes.

110

047 Glass-Ceramic Composites for High Energy Density Capacitors  

Science Conference Proceedings (OSTI)

047 Glass-Ceramic Composites for High Energy Density Capacitors .... 150 Analysis of Hf-Ta Alloys for Oxidation Protection in Ultra High Temperature...

111

High Energy Density Lithium Capacitors Using Carbon-Carbon ...  

Science Conference Proceedings (OSTI)

We demonstrate a lithium capacitor which is capable of achieving high energy ... 3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and...

112

Aluminum Oxynitride Dielectrics for High Energy Density Capacitor ...  

Science Conference Proceedings (OSTI)

Oct 15, 2006 ... Aluminum Oxynitride Dielectrics for High Energy Density Capacitor Applications by Kevin R. Bray, Richard L.C. Wu, Sandra Fries-Carr, and...

113

Amplifying Magnetic Fields in High Energy Density Plasmas | U...  

Office of Science (SC) Website

Amplifying Magnetic Fields in High Energy Density Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities...

114

HIGH ENERGY DENSITY ALUMINUM BATTERY - Energy Innovation Portal  

Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery ...

115

High energy physics advisory panel`s subpanel on vision for the future of high-energy physics  

SciTech Connect

This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

1994-05-01T23:59:59.000Z

116

A Search for Short Duration Very High Energy Emission from Gamma-Ray Bursts.  

E-Print Network (OSTI)

??Milagro is a water-Cherenkov detector capable of observing air showers produced by gamma rays with primary energies of approximately 100 GeV and higher. The wide (more)

Noyes, David Carl

2005-01-01T23:59:59.000Z

117

High energy scattering in gravity and supergravity  

E-Print Network (OSTI)

We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra light states of supergravity, and this serves as an important check on long-range dynamics in a context where perturbative amplitudes are finite. We also argue that these considerations have other important implications: they obstruct probing the conjectured phenomenon of asymptotic safety through a physical scattering process, and ultraplanckian scattering exhibiting Regge behavior. These arguments sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity in the strong gravity regime.

Steven B. Giddings; Maximilian Schmidt-Sommerfeld; Jeppe R. Andersen

2010-05-28T23:59:59.000Z

118

High-Energy Petawatt Capability for the Omega Laser  

Science Conference Proceedings (OSTI)

The 60-beam Omega laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) has been a workhorse on the frontier of laser fusion and high-energy-density physics for more than a decade. LLE scientists are currently extending the performance of this unique, direct-drive laser system by adding high-energy petawatt capabilities.

Waxer, L.J.; Maywar, D.N.; Kelly, J.H.; Kessler, T.J.; Kruschwitz, B.E.; Loucks, S.J.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Stoeckl, C.; Zuegel, J.D.

2005-07-25T23:59:59.000Z

119

Present and future high-energy accelerators for neutrino experiments  

SciTech Connect

There is an active neutrino program making use of the high-energy (larger than 50 GeV) accelerators both in USA at Fermilab with NuMI and at CERN in Europe with CNGS. In this paper we will review the prospects for high intensity high energy beams in those two locations during the next decade.

Kourbanis, I.; /Fermilab

2007-06-01T23:59:59.000Z

120

Machine learning for event selection in high energy physics  

Science Conference Proceedings (OSTI)

The field of high energy physics aims to discover the underlying structure of matter by searching for and studying exotic particles, such as the top quark and Higgs boson, produced in collisions at modern accelerators. Since such accelerators are extraordinarily ... Keywords: Event selection, Evolutionary computation, High energy physics, Machine learning, Neural networks

Shimon Whiteson; Daniel Whiteson

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High energy factorization at NLO: Lipatov's effective action revisited  

E-Print Network (OSTI)

We discuss aspects of our recent derivation of the gluon Regge trajectory at two loop from Lipatov's high energy effective action. We show how the gluon Regge trajectory can be rigorously defined through renormalization of the high energy divergence of the reggeized gluon propagator. We furthermore provide some details on the determination of the two-loop reggeized gluon self-energy.

Chachamis, G; Madrigal, J D; Vera, A Sabio

2013-01-01T23:59:59.000Z

122

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission  

E-Print Network (OSTI)

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission R. P. fla B. Dennis, G mission is to investigate the physics of particle acceleration and energy release in solar flares, through-ray/gamma-ray spectroscopy 1. INTRODUCTION The primary scientific objective of the Reuven Ramaty High Energy Solar

California at Berkeley, University of

123

2D Optical Streaking for Ultra-Short Electron Beam Diagnostics  

SciTech Connect

We propose a novel approach to measure short electron bunch profiles at micrometer level. Low energy electrons generated during beam-gas ionization are simultaneously modulated by the transverse electric field of a circularly-polarized laser, and then they are collected at a downstream screen where the angular modulation is converted to a circular shape. The longitudinal bunch profile is simply represented by the angular distribution of the electrons on the screen. We only need to know the laser wavelength for calibration and there is no phase synchronization problem. Meanwhile the required laser power is also relatively low in this setup. Some simulations examples and experimental consideration of this method are discussed. At Linac Coherent Light Source (LCLS), an S-band RF transverse deflector (TCAV) is used to measure the bunch length with a resolution 10 femtosecond (fs) rms. An X-band deflector (wavelength 2.6cm) is proposed recently to improve the resolution. However, at the low charge operation mode (20pC), the pulse length can be as short as fs. It is very challenging to measure femtosecond and sub-femtosecond level bunch length. One of the methods is switching from RF to {mu}m level wavelength laser to deflect the bunch. A powerful laser ({approx}10s GW) is required to deflect such a high energy beam (GeV) in a wiggler. Synchronization is another difficulty: the jitter between the bunch and the laser can be larger than the laser wavelength, which makes single-shot measurement impossible. To reduce the laser power, we propose to use ionized electrons from high energy electron beam and gas interaction for high energy electron bunch diagnostics. Similarly, the femtosecond X-ray streak camera uses X-ray ionization electrons to measure the X-ray pulse. The electrons generated by beam-gas ionization have low energy (eVs). Therefore, a lower laser power is possible to deflect such low energy electrons. Note that there is no field ionization in our case. To avoid field ionization, which occurs in plasma case, gases species with high field ionization threshold should be considered. For a linear polarized laser, the kick to the ionized electrons depends on the phase of the laser when the electrons are born and the unknown timing jitter between the electron beam and laser beam makes the data analysis very difficult. Here we propose to use a circular polarized laser to do a 2-dimensional (2D) streaking (both x and y) and measure the bunch length from the angular distribution on the screen, where the phase jitter causes only a rotation of the image on the screen without changing of the relative angular distribution. Also we only need to know the laser wavelength for calibration. A similar circular RF deflecting mode was used to measure long bunches. We developed a numerical particle-in-Cell (PIC) code to study the dynamics of ionization electrons with the high energy beam and the laser beam.

Ding, Y.T.; Huang, Z.; Wang, L.; /SLAC

2011-12-14T23:59:59.000Z

124

Innovative High Energy Density Capacitor Design Offers Potential for Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Energy Density Capacitor Design Offers Potential High Energy Density Capacitor Design Offers Potential for Clean Energy Applications Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications June 10, 2011 - 4:46pm Addthis Similar system to the clustering tool that will manufacture TroyCap’s High Energy Density Nanolaminate Capacitor | Credit: TroyC Similar system to the clustering tool that will manufacture TroyCap's High Energy Density Nanolaminate Capacitor | Credit: TroyC Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy Can you imagine a photovoltaic module that's able to generate and store electricity on its own? Or an electric vehicle (EV) powered by a technology more durable than the advanced batteries in today's EVs? Malvern, Pennsylvania's TroyCap, LLC is using nanolaminate technology patented by

125

Innovative High Energy Density Capacitor Design Offers Potential for Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative High Energy Density Capacitor Design Offers Potential Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications June 10, 2011 - 4:46pm Addthis Similar system to the clustering tool that will manufacture TroyCap’s High Energy Density Nanolaminate Capacitor | Credit: TroyC Similar system to the clustering tool that will manufacture TroyCap's High Energy Density Nanolaminate Capacitor | Credit: TroyC Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy Can you imagine a photovoltaic module that's able to generate and store electricity on its own? Or an electric vehicle (EV) powered by a technology more durable than the advanced batteries in today's EVs? Malvern,

126

High energy mode locked fiber oscillators for high contrast, high energy petawatt laser seed sources  

Science Conference Proceedings (OSTI)

In a high-energy petawatt laser beam line the ASE pulse contrast is directly related to the total laser gain. Thus a more energetic input pulse will result in increased pulse contrast at the target. We have developed a mode-locked fiber laser with high quality pulses and energies exceeding 25nJ. We believe this 25nJ result is scalable to higher energies. This oscillator has no intra-cavity dispersion compensation, which yields an extremely simple, and elegant laser configuration. We will discuss the design of this laser, our most recent results and characterization of all the key parameters relevant to it use as a seed laser. Our oscillator is a ring cavity mode-locked fiber laser [1]. These lasers operate in a self-similar pulse propagation regime characterized by a spectrum that is almost square. This mode was found theoretically [2] to occur only in the positive dispersion regime. Further increasing positive dispersion should lead to increasing pulse energy [2]. We established that the positive dispersion required for high-energy operation was approximately that of 2m of fiber. To this end, we constructed a laser cavity similar to [1], but with no gratings and only 2m of fiber, which we cladding pumped in order to ensure sufficient pump power was available to achieve mode-locked operation. A schematic of the laser is shown in figure 1 below. This laser produced low noise 25nJ pulses with a broad self similar spectrum (figure 2) and pulses that could be de-chirped to <100fs (figure 3). Pulse contrast is important in peta-watt laser systems. A major contributor to pulse contrast is amplified spontaneous emission (ASE), which is proportional to the gain in the laser chain. As the oscillator strength is increased, the required gain to reach 1PW pulses is decreased, reducing ASE and improving pulse contrast. We believe these lasers can be scaled in a stable fashion to pulse energies as high as 100nJ and have in fact seen 60nJ briefly in our lab, which is work still in progress. At this level, even if the pulses are not perfect, post-oscillator pulse cleaning can be used to create a clean high energy pulse for injection into a peta-watt laser beam line.

Dawson, J W; Messerly, M J; An, J; Kim, D; Barty, C J

2006-06-15T23:59:59.000Z

127

EIS-0481: Engineered High Energy Crop Programs Programmatic Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Engineered High Energy Crop Programs Programmatic 1: Engineered High Energy Crop Programs Programmatic Environmental Impact Statement EIS-0481: Engineered High Energy Crop Programs Programmatic Environmental Impact Statement Summary This Programmatic EIS (PEIS) will evaluate the potential environmental impacts of implementing one or more programs to catalyze the deployment of engineered high energy crops (EHECs). A main component of the proposed EHEC programs would be providing financial assistance to funding recipients, such as research institutions, independent contract growers, or commercial entities, for field trials to evaluate the performance of EHECs. Confined field trials may range in size and could include development-scale (up to 5 acres), pilot-scale (up to 250 acres), or demonstration-scale (up to 15,000

128

Highly Energy Efficient Wall Systems Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highly Energy Efficient Wall Systems Highly Energy Efficient Wall Systems Research Project Highly Energy Efficient Wall Systems Research Project The Department of Energy is currently conducting research into highly energy efficient wall systems. Walls with high R-values are better insulators, and their development can help buildings come closer to having zero net energy consumption. Project Description This project seeks to develop a commercially viable wall system up to R-40 through integration of vacuum technology with the exterior insulated façade system (EIFS). Dow Corning will develop a wall system configuration of expanded polystyrene vacuum isolation panels that can be specified for R-values of 20, 30, and 40. This project also aims to develop a unitized protection system of vacuum isolation panels and to validate current code

129

Thomson scattering in short pulse laser experiments  

SciTech Connect

Thomson scattering is well used as a diagnostic in many areas of high energy density physics. In this paper, we quantitatively demonstrate the practicality of using Thomson scattering as a diagnostic of short-pulse laser-plasma experiments in the regime, where the plasmas probed are at solid density and have temperatures of many hundreds of eV using a backlighter produced with an optical laser. This method allows a diagnosis both spatially and temporally of the density and temperature distributions in high energy density laser-plasma interactions which is independent from, and would act as a useful complement to, the existing spectroscopic methods.

Hill, E. G.; Rose, S. J. [Plasma Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

2012-08-15T23:59:59.000Z

130

Fossil Plant High Energy Piping Damage: Theory and Practice  

Science Conference Proceedings (OSTI)

Condition assessment programs for high-energy piping systems are often a major aspect of a fossil utility's inspection and maintenance program. In the past 30 years, a number of major failures of fossil high-energy piping have been associated with flow-accelerated corrosion of feedwater piping, creep failures of longitudinal seam-welded hot reheat and main steam piping, and corrosion fatigue failures of cold reheat steam piping. In addition to these well-documented failures, most utilities experience fai...

2007-11-29T23:59:59.000Z

131

Fossil Plant High-Energy Piping Damage: Theory and Practice  

Science Conference Proceedings (OSTI)

Condition assessment programs for high-energy piping systems are often a major aspect of a fossil utility's inspection and maintenance program. In the past 30 years, a number of major failures of fossil high-energy piping have been associated with flow-accelerated corrosion of feedwater piping, creep failures of longitudinal seam-welded hot reheat and main steam piping, and corrosion fatigue failures of cold reheat steam piping. In addition to these well-documented failures, most utilities experience fai...

2007-06-26T23:59:59.000Z

132

First observations of power MOSFET burnout with high energy neutrons  

SciTech Connect

Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage {ge}400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed.

Oberg, D.L.; Wert, J.L.; Normand, E.; Majewski, P.P. [Boeing Defense and Space Group, Seattle, WA (United States)] [Boeing Defense and Space Group, Seattle, WA (United States); Wender, S.A. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States)

1996-12-01T23:59:59.000Z

133

Wavelength tunable alexandrite regenerative amplifier  

Science Conference Proceedings (OSTI)

We describe a wavelength tunable alexandrite regenerative amplifier which is used to amplify nanosecond slices from a single-frequency cw dye laser or 50-ps pulses emitted by a diode laser to energies in the 10-mJ range. The amplified 5-ns slices generated by the cw-pumped line narrowed dye laser are Fourier transform limited. The 50-ps pulses emitted by a gain-switched diode laser are amplified by more than 10 orders of magnitude in a single stage.

Harter, D.J.; Bado, P.

1988-11-01T23:59:59.000Z

134

High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST  

Science Conference Proceedings (OSTI)

Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

Fan, Yi-Zhong; Piran, Tsvi

2011-11-29T23:59:59.000Z

135

High-Energy Radiation from Remnants of Neutron Star Binary Mergers  

E-Print Network (OSTI)

We study high-energy emission from the mergers of neutron star binaries as electromagnetic counterparts to gravitational waves aside from short gamma-ray bursts. The mergers entail significant mass ejection, which interacts with the surrounding medium to produce similar but brighter remnants than supernova remnants in a few years. We show that electrons accelerated in the remnants can produce synchrotron radiation in X-rays detectable at $\\sim 100$ Mpc by current generation telescopes and inverse Compton emission in gamma rays detectable by the \\emph{Fermi} Large Area Telescopes and the Cherenkov Telescope Array under favorable conditions. The remnants may have already appeared in high-energy surveys such as the Monitor of All-sky X-ray Image and the \\emph{Fermi} Large Area Telescope as unidentified sources. We also suggest that the merger remnants could be the origin of ultra-high-energy cosmic rays beyond the knee energy, $\\sim 10^{15}$ eV, in the cosmic-ray spectrum.

Takami, Hajime; Ioka, Kunihito

2013-01-01T23:59:59.000Z

136

Wavelengths, Transition Probabilities, and Energy Levels for ...  

Science Conference Proceedings (OSTI)

Page 1. Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Sodium Na INa XI JE Sansonettia ...

2012-07-18T23:59:59.000Z

137

HIGH-ENERGY EMISSION INDUCED BY ULTRA-HIGH-ENERGY PHOTONS AS A PROBE OF ULTRA-HIGH-ENERGY COSMIC-RAY ACCELERATORS EMBEDDED IN THE COSMIC WEB  

SciTech Connect

The photomeson production in ultra-high-energy cosmic-ray (UHECR) accelerators such as {gamma}-ray bursts and active galaxies may lead to ultra-high-energy (UHE) {gamma}-ray emission. We show that the generation of UHE pairs in magnetized structured regions where the sources are embedded is inevitable, and accompanying {approx}> 0.1 TeV synchrotron emission provides an important probe of UHECR acceleration. It would especially be relevant for powerful transient sources, and synchrotron pair echoes may be detected by future CTA via coordinated search for transients of duration {approx}0.1-1 yr for the structured regions of {approx}Mpc. Detections will be useful for knowing structured extragalactic magnetic fields as well as properties of the sources.

Murase, Kohta [Department of Physics, Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH 43210 (United States)

2012-02-15T23:59:59.000Z

138

High Energy Density Laboratory Plasmas Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Program | National Nuclear Security Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog High Energy Density Laboratory Plasmas Program Home > High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible

139

Ultra-high energy cosmic rays, cascade gamma-rays, and high-energy neutrinos from gamma-ray bursts  

E-Print Network (OSTI)

Gamma-ray bursts (GRBs) are sources of energetic, highly variable fluxes of gamma rays, which demonstrates that they are powerful particle accelerators. Besides relativistic electrons, GRBs should also accelerate high-energy hadrons, some of which could escape cooling to produce ultra-high energy cosmic rays (UHECRs). Acceleration of high-energy hadrons in GRB blast waves will be established if high-energy neutrinos produced through photopion interactions in the blast wave are detected from GRBs. Limitations on the energy in nonthermal hadrons and the number of expected neutrinos are imposed by the fluxes from pair-photon cascades initiated in the same processes that produce neutrinos. Only the most powerful bursts at fluence levels >~ 3e-4 erg/cm^2 offer a realistic prospect for detection of >> TeV neutrinos. Detection of high-energy neutrinos is likely if GRB blast waves have large baryon loads and Doppler factors <~ 200. Cascade gamma rays will accompany neutrino production and might already have been detected as anomalous emission components in the spectra of some GRBs. Prospects for detection of GRBs in the Milky Way are also considered.

Charles D. Dermer; Armen Atoyan

2006-06-26T23:59:59.000Z

140

Quarkonium Production and Medium Effects in High Energy Nuclear Collisions  

E-Print Network (OSTI)

Color screening and regeneration are both hot medium effects on quarkonium production in high energy nuclear collisions. However, they affect in an opposite way the finally observed quarkonium spectra. Due to the competition of the two dynamical effects, the ratio of the integrated quarkonium yield between nuclear and elementary nucleon collisions loses its sensitivity. Once the information of quarkonium transverse motion is included, on the other hand, the ratio of averaged transverse momentum square reveals the nature of the QCD medium created in high energy nuclear collisions.

Zhou, Kai; Zhuang, Pengfei

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ultra high energy neutrinos from gamma ray bursts  

E-Print Network (OSTI)

Protons accelerated to high energies in the relativistic shocks that generate gamma ray bursts photoproduce pions, and then neutrinos in situ. I show that ultra high energy neutrinos (> 10^19 eV) are produced during the burst and the afterglow. A larger flux, also from bursts, is generated via photoproduction off CMBR photons in flight but is not correlated with currently observable bursts, appearing as a bright background. Adiabatic/synchrotron losses from protons/pions/muons are negligible. Temporal and directional coincidences with bursts detected by satellites can separate correlated neutrinos from the background.

Mario Vietri

1998-02-18T23:59:59.000Z

142

A Water Tank Cerenkov Detector for Very High Energy Astroparticles  

E-Print Network (OSTI)

Extensive airshower detection is an important issue in current astrophysics endeavours. Surface arrays detectors are a common practice since they are easy to handle and have a 100% duty cycle. In this work we present an experimental study of the parameters relevant to the design of a water Cerenkov detector for high energy airshowers. This detector is conceived as part of the surface array of the Pierre Auger Project, which is expected to be sensitive to ultra high energy cosmic rays. In this paper we focus our attention in the geometry of the tank and its inner liner material, discussing pulse shapes and charge collections.

P. Bauleo; A. Etchegoyen; J. O. Fernandez Niello; A. M. J. Ferrero; A. Filevich; C. K. Guerard; F. Hasenbalg; M. A. Mostafa; D. Ravignani; J. Rodriguez Martino

1997-07-24T23:59:59.000Z

143

Cross Section to Multiplicity Ratios at Very High Energy  

E-Print Network (OSTI)

Recent data from the LHC makes it possible to examine an old speculation that at very high energy the total multiplicity and the cross section in elementary particle interactions vary in parallel with energy. Using fits incorporating the new data, it appears that the ratios of the total, elastic, and inelastic cross sections to the average multiplicity N can in fact approach constants at very high energy. The approach to the limit is however quite slow for the total and inelastic cross sections and is not yet reached at LHC energies. The elastic ratio sigma^{el}/N at 7 TeV, however, is not far from its asymptotic value.

M. M. Block; L. Stodolsky

2013-12-09T23:59:59.000Z

144

Fossil Plant High-Energy Piping Damage: Theory and Practice  

Science Conference Proceedings (OSTI)

Condition assessment programs for high-energy piping systems are often a major aspect of a fossil utilitys inspection and maintenance program. In the past 30 years, a number of major failures of fossil high-energy piping have been associated with flow-accelerated corrosion (FAC) of feedwater piping, creep failures of longitudinal seam-welded hot reheat and main steam piping, and corrosion fatigue/thermal failures of cold reheat steam piping. In addition to these well-documented failures, most utilities e...

2008-03-27T23:59:59.000Z

145

High Energy Density Laboratory Plasmas | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog HEDLP High Energy Density Laboratory Plasmas Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > High Energy Density Laboratory Plasmas

146

Partonic EoS in High-Energy Nuclear Collisions at RHIC  

E-Print Network (OSTI)

Partonic EoS in High-Energy Nuclear Collisions at RHIC Nu Xuproperties. In high-energy nuclear collisions, the term ?owthe early stage of high-energy nuclear collision, both the

Xu, Nu

2006-01-01T23:59:59.000Z

147

Partonic Equations of State in High-Energy Nuclear Collisions at RHIC  

E-Print Network (OSTI)

Partonic EoS in High-Energy Nuclear Collisions at RHIC Nu Xuproperties. In high-energy nuclear collisions, the term ?owthe early stage of high-energy nuclear collision, both the

Xu, Nu

2006-01-01T23:59:59.000Z

148

Quantum-Gravity phenomenology and high energy particle propagation  

E-Print Network (OSTI)

Quantum-gravity effects may introduce relevant consequences for the propagation and interaction of high energy cosmic rays particles. Assuming the space-time foamy structure results in an intrinsic uncertainty of energy and momentum of particles, we show how low energy (under GZK) observations can provide strong constraints on the role of the fluctuating space-time structure.

R. Aloisio; P. Blasi; A. Galante; P. L. Ghia; A. F. Grillo

2004-10-18T23:59:59.000Z

149

February 20, 1991 Thermalization of high Energy Particles in a  

E-Print Network (OSTI)

revised February 20, 1991 Thermalization of high Energy Particles in a Cold Gas K.T. Waldeer and H to be answered are as to the thermalization time, the temporal evolution of the energy spectra of the gas T . We ask for the thermalization time and the temporal evolution of the energy spectra. We

Waldeer, Thomas

150

Integrability of the n-centre problem at high energies  

E-Print Network (OSTI)

It is shown that for generic configuration of the centres at high energy levels the n-centre problem is completely integrable by using $C^\\infty$ integrals of the motion however it is not integrable in terms of real analytic functions

A. Knauf; I. A. Taimanov

2003-12-23T23:59:59.000Z

151

Some Intensive and Extensive Quantities in High-Energy Collisions  

E-Print Network (OSTI)

We review the evolution of some statistical and thermodynamical quantities measured in difference sizes of high-energy collisions at different energies. We differentiate between intensive and extensive quantities and discuss the importance of their distinguishability in characterizing possible critical phenomena of nuclear collisions at various energies with different initial conditions.

Tawfik, A

2013-01-01T23:59:59.000Z

152

Optical sensing based on wavelength modulation spectroscopy  

DOE Patents (OSTI)

Techniques, apparatus and systems for using Wavelength Modulation Spectroscopy measurements to optically monitor gas media such as gases in gas combustion chambers.

Buckley, Steven G. (Redmond, WA); Gharavi, Mohammadreza (Tehran, IR); Borchers; Marco (Berlin, DE)

2011-06-28T23:59:59.000Z

153

Wavelengths, Transition Probabilities, and Energy Levels for ...  

Science Conference Proceedings (OSTI)

... energy levels, wavelengths, and ionization energies reported here ... the integer part of the energy is listed ... 61FOX/SER Fox, WN, and Series, GW, Proc ...

2012-04-06T23:59:59.000Z

154

DEVELOPMENT OF A LONG WAVELENGTH ACOUSTIC ...  

Science Conference Proceedings (OSTI)

... are developing a long-wavelength acoustic flowmeter (LWAF) for accurate, economical measurements of exhaust flows from coal-burning power ...

155

The Aerodynamic, Dual- Wavelength Optical Spectrometer  

NLE Websites -- All DOE Office Websites (Extended Search)

Determination of Real and Imaginary Refractive Indices, Diameter and Density with a Compact Instrument (A-DWOPS) * DWOPS: Two Wavelengths, Two Angles. - A. Nagy, W.W. Szymanski,...

156

Wavelengths, Energy Level Classifications, and Energy ...  

Science Conference Proceedings (OSTI)

... 5 FTS measurements of Ne in a thorium hollow cathode lamp by PE41 were used for some weak lines at wavelengths shorter than 7000 . ...

2008-06-09T23:59:59.000Z

157

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network (OSTI)

Flow in Central High Energy Nuclear Collisions H. Stockera,under Contract High energy nuclear collisions offer a uniquesidewards flowin high-energy nuclear collisions. The

Stocker, H.

2012-01-01T23:59:59.000Z

158

Why Onion-Like Carbons Make High-Energy Supercapacitors  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Onion-Like Why Onion-Like Carbons Make High-Energy Supercapacitors Why Onion-Like Carbons Make High-Energy Supercapacitors Simulations explain experimental results for electrical storage devices June 1, 2012 JiangCummingsCoverLarge.gif Capacitance and geometry effects revealed by molecular dynamics simulations. The OLC and the ionic liquid that were the basis of the simulation are shown in the lower left. (Guang Feng, De-en Jiang, Peter T. Cummings, © ACS Publications) The two most important electrical storage technologies are batteries and capacitors. Batteries can store a lot of energy, but have slow charge and discharge rates. Capacitors generally store less energy but have very fast (nearly instant) charge and discharge rates, and last longer than rechargeable batteries. Developing technologies that combine the optimal

159

ARGONNE NATIONAL LABORATORY HIGH ENERGY PHYSICS ARGONNE NATIONAL  

NLE Websites -- All DOE Office Websites (Extended Search)

HIGH ENERGY PHYSICS HIGH ENERGY PHYSICS ARGONNE NATIONAL LABORATORY Y. CHO DEC 2 01985 LS-45 INTRA-LABORATORY MEMO December 20, 1985 TO: Y. Cho HEP FROM: w. praeg(~ ETP SUBJECT: Frequency Response of Storage Ring Magnets, Eddy Current Shielding of Vacuum Chamber It is planned to use feedback to correction coils on ring magnets to reduce beam motion at frequencies of 120 Hz or less. The magnet cores, made from 1.5 mm thick laminations of 1010 steel, will readily carry flux of ~ 400 Hz. However, due to eddy currents, the aluminum vacuum chamber will attenuate verticle ac fields above 8 Hz and horizontal fields above 25 Hz. Eddy currents will also cause phase shifts between the field generated by the correction coils, Bo' and the field inside the vacuum

160

Extending Resonant Diffraction to Very High Energies for Structural Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuning the Collective Properties of Artificial Nanoparticle Supercrystals Tuning the Collective Properties of Artificial Nanoparticle Supercrystals The Workings of a Key Staph Enzyme and How to Block It Simple Lithium Is Good For Many Surprises Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Extending Resonant Diffraction to Very High Energies for Structural Studies of Complex Materials MARCH 15, 2011 Bookmark and Share Systems investigated using the high-energy resonant PDF method: the (dis)ordered phases of Cu3Au, PtPd random-alloy and core-shell nanoparticles (upper part), and the BiFeO3 perovskite structure (undistorted and distorted; lower part). Researchers utilizing the U.S. Department of Energy's Argonne Advanced

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy recovery linacs in high-energy and nuclear physics  

Science Conference Proceedings (OSTI)

Energy Recovery Linacs (ERL) have significant potential uses in High Energy Physics and Nuclear Physics. We describe some of the potential applications which are under development by our laboratories in this area and the technology issues that are associated with these applications. The applications that we discuss are electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for some of these applications are high currents of polarized electrons, high-charge and high-current electron beams and the associated issues of High-Order Modes. The advantages of ERLs for these applications are numerous and will be outlined in the text. It is worth noting that some of these advantages are the high-brightness of the ERL beams and their relative immunity to beam-beam disturbances.

I. Ben-Zvi; Ya. Derbenev; V. Litvinenko; L. Merminga

2005-03-01T23:59:59.000Z

162

Spacecraft Power Beaming Using High-Energy Lasers, Experimental Validation  

SciTech Connect

The lifetime of many spacecrafts are often limited by degradation of their electrical power subsystem, e.g. radiation-damaged solar arrays or failed batteries. Being able to beam power from terrestrial sites using high energy lasers, could alleviate this limitation, extending the lifetime of billions of dollars of satellite assets, as well as providing additional energy for electric propulsion that can be used for stationkeeping and orbital changes. In addition, extensive research at the Naval Postgraduate School (NPS) has shown the potential for annealing damaged solar cells using lasers. This paper describes that research and a proposed experiment to demonstrate the relevant concepts of high energy laser power beaming to an NPS-built and operated satellite. Preliminary results of ground experiment of laser illuminations of some of the solar panels of one of the spacecrafts are also presented.

Michael, Sherif [Naval Postgraduate School ECE Dep./Space Systems Academic Group, Monterey, CA 93943 (United States)

2008-04-28T23:59:59.000Z

163

Experimental And Theoretical High Energy Physics Research At UCLA  

SciTech Connect

This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERNs Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

Cousins, Robert D. [University of California Los Angeles] [University of California Los Angeles

2013-07-22T23:59:59.000Z

164

Cost forecasts: Euyropean International High-Energy Physics facilities - Million Swiss Francs at 1966 prices  

E-Print Network (OSTI)

Cost forecasts: Euyropean International High-Energy Physics facilities - Million Swiss Francs at 1966 prices

ECFA meeting

1966-01-01T23:59:59.000Z

165

High energy physics - The large and the small  

Science Conference Proceedings (OSTI)

In this Sixth International School on Field Theory and Gravitation, I was invited to give this talk to the students and researchers of Field Theory mainly about LHC - The Large Hadron Collider and results. I will try to summarize the main daily life of the high energy physics and give an idea about the experiments and the expectations for the near future. I will comment the present results and the prospects to LHC/CMS.

Santoro, Alberto [Universidade do Estado do Rio de Janeiro (Brazil)

2012-09-24T23:59:59.000Z

166

High energy XeBr electric discharge laser  

DOE Patents (OSTI)

A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

167

Modular safety interlock system for high energy physics experiments  

Science Conference Proceedings (OSTI)

A frequent problem in electronics systems for high energy physics experiments is to provide protection for personnel and equipment. Interlock systems are typically designed as an afterthought and as a result, the working environment around complex experiments with many independent high voltages or hazardous gas subsystems, and many different kinds of people involved, can be particularly dangerous. A set of modular hardware has been designed which makes possible a standardized, intergrated, hierarchical system's approach and which can be easily tailored to custom requirements.

Kieffer, J.; Golceff, B.V.

1980-10-01T23:59:59.000Z

168

High energy physics research. Final technical report, 1957--1994  

SciTech Connect

This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

Williams, H.H.

1995-10-01T23:59:59.000Z

169

High energy KrCl electric discharge laser  

SciTech Connect

A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

170

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

171

An Experimental and Theoretical High Energy Physics Program  

Science Conference Proceedings (OSTI)

The Purdue High Energy Physics Group conducts research in experimental and theoretical elementary particle physics and experimental high energy astrophysics. Our goals, which we share with high energy physics colleagues around the world, are to understand at the most fundamental level the nature of matter, energy, space and time, and in order to explain the birth, evolution and fate of the Universe. The experiments in which we are currently involved are: CDF, CLEO-c, CMS, LSST, and VERITAS. We have been instrumental in establishing two major in-house facilities: The Purdue Particle Physics Microstructure Detector Facility (P3MD) in 1995 and the CMS Tier-2 center in 2005. The research efforts of the theory group span phenomenological and theoretical aspects of the Standard Model as well as many of its possible extensions. Recent work includes phenomenological consequences of supersymmetric models, string theory and applications of gauge/gravity duality, the cosmological implications of massive gravitons, and the physics of extra dimensions.

Shipsey, Ian

2012-07-31T23:59:59.000Z

172

Preprint typeset using L ATEX style emulateapj v. 11/12/01 EVIDENCE FOR POSTQUIESCENT, HIGH-ENERGY EMISSION FROM GAMMA-RAY BURST 990104  

E-Print Network (OSTI)

It is well known that high-energy emission (MeV-GeV) has been observed in a number of gamma-ray bursts, and temporally-extended emission from lower energy gamma rays through radio wavelengths is well established. An important observed characteristic of some bursts at low energy is quiescence: an initial emission followed by a quiet period before a second (postquiescent) emission. Evidence for significant high-energy, postquiescent emission has been lacking. Here we present evidence for highenergy emission, coincident with lower energy emission, from the postquiescent emission episode of the very bright and long burst, GRB 990104. We show light curves and spectra that confirm emission above 50 MeV, approximately 152 seconds after the BATSE trigger and initial emission episode. Between the initial emission episode and the main peak, seen at both low and high energy, there was a quiescent period of ?100 s during which the burst was relatively quiet. This burst was found as part of an ongoing search for high-energy emission in gamma-ray bursts using the EGRET fixed interval (32 s) accumulation spectra, which provide sensitivity to later, high-energy emission that is otherwise missed by the standard EGRET BATSE-triggered burst spectra.

D. N. Wren; D. L. Bertsch; S. Ritz

2002-01-01T23:59:59.000Z

173

High-Energy Delayed Gamma Spectroscopy for Spent Nuclear Fuel Assay  

SciTech Connect

High-accuracy, direct, nondestructive measurement of fissile and fissionable isotopes in spent fuel, particularly the Pu isotopes, is a well-documented, but still unmet challenge in international safeguards. As nuclear fuel cycles propagate around the globe, the need for improved materials accountancy techniques for irradiated light-water reactor fuel will increase. This modeling study investigates the use of delayed gamma rays from fission-product nuclei to directly measure the relative concentrations of U-235, Pu-239, and Pu-241 in spent fuel assemblies. The method is based on the unique distribution of fission-product nuclei produced from fission in each of these fissile isotopes. Fission is stimulated in the assembly with a pulse-capable source of interrogating neutrons. The measured distributions of the short-lived fission products from the unknown sample are then fit with a linear combination of the known fission-product yield curves from pure U-235, Pu-239, and Pu-241 to determine the original proportions of these fissile isotopes. Modeling approaches for the intense gamma-ray background promulgated by the long-lived fission-product inventory and for the high-energy gamma-ray signatures emitted by short-lived fission products from induced fission are described. Benchmarking measurements are presented and compare favorably with the results of these models. Results for the simulated assay of simplified individual fuel elements ranging from fresh to 60 GWd/MTU burnup demonstrate the utility of the modeling methods for viability studies, although additional work is needed to more realistically assess the potential of High-Energy Delayed Gamma Spectroscopy (HEDGS).

Campbell, Luke W.; Smith, Leon E.; Misner, Alex C.

2011-02-01T23:59:59.000Z

174

Optical amplification at the 1. 31 wavelength  

DOE Patents (OSTI)

An optical amplifier operating at the 1.31 [mu]m wavelength for use in such applications as telecommunications, cable television, and computer systems is described. An optical fiber or other waveguide device is doped with both Tm[sup 3+] and Pr[sup 3+] ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm[sup 3+] ions to the Pr[sup 3+] ions, causing the Pr[sup 3+] ions to amplify at a wavelength of 1.31. 1 figure.

Cockroft, N.J.

1994-02-15T23:59:59.000Z

175

Short Course Agricultural Microscopy  

Science Conference Proceedings (OSTI)

Short Course in Agricultural Microscopy. Fargo North Dakota held June 13-16 2011. Sponsored by the Agricultural Microscopy Division of AOCS and the Great Plains Institute of Food Safety. Short Course Agricultural Microscopy Short Courses ...

176

Apparatus for shifting the wavelength of light  

DOE Patents (OSTI)

A light beam is reflected back and forth between a rotating body having a retroreflection corner at opposite ends thereof and a fixed mirror to change the wavelength of the light beam by the Doppler effect.

McCulla, William H. (Oak Ridge, TN); Allen, Jr., John D. (Knoxville, TN)

1983-01-01T23:59:59.000Z

177

Fossil AGN jets as ultra high energy particle accelerators  

E-Print Network (OSTI)

Remnants of AGN jets and their surrounding cocoons leave colossal magnetohydrodynamic (MHD) fossil structures storing total energies ~10^{60} erg. The original active galacic nucleus (AGN) may be dead but the fossil will retain its stable configuration resembling the reversed-field pinch (RFP) encountered in laboratory MHD experiments. In an RFP the longitudinal magnetic field changes direction at a critical distance from the axis, leading to magnetic re-connection there, and to slow decay of the large-scale RFP field. We show that this field decay induces large-scale electric fields which can accelerate cosmic rays with an E^{-2} power-law up to ultra-high energies with a cut-off depending on the fossil parameters. The cut-off is expected to be rigidity dependent, implying the observed composition would change from light to heavy close to the cut-off if one or two nearby AGN fossils dominate. Given that several percent of the universe's volume may house such slowly decaying structures, these fossils may even re-energize ultra-high energy cosmic rays from distant/old sources, offsetting the ``GZK-losses'' due to interactions with photons of the cosmic microwave background radiation and giving evidence of otherwise undetectable fossils. In this case the composition would remain light to the highest energies if distant sources or fossils dominated, but otherwise would be mixed. It is hoped the new generation of cosmic ray experiments such as the Pierre Auger Observatory and ultra-high energy neutrino telescopes such as ANITA and lunar Cherenkov experiments will clarify this.

Gregory Benford; R. J. Protheroe

2007-06-29T23:59:59.000Z

178

Pulsed power drivers for ICF and high energy density physics  

SciTech Connect

Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates {approximately}500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed {approximately}15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

1995-12-31T23:59:59.000Z

179

Countintg Extra Dimensions: Magnetic Cherenkov Radiation from High Energy Neutrinos  

E-Print Network (OSTI)

In theories which require a space of dimension d>4, there is a natural mechanism of suppressing neutrino masses: while Standard Model fields are confined to a 3-brane, right handed neutrinos live in the bulk. Due to Kaluza-Klein excitations, the effective magnetic moments of neutrinos are enhanced. The effective magnetic moment is a monotonically growing function of the energy of the neutrino: consequently, high energy neutrinos can emit observable amounts of magnetic Cherenkov radiation. By observing the energy dependence of the magnetic Cherenkov radiation, one may be able to determine the number of compactified dimensions.

G. Domokos; Andrea Erdas; S. Kovesi-Domokos

2002-12-30T23:59:59.000Z

180

Cosmic Ray Positrons at High Energies: A New Measurement  

E-Print Network (OSTI)

We present a new measurement of the cosmic-ray positron fraction e+/(e+ + e-) obtained from the first balloon flight of the High Energy Antimatter Telescope (HEAT). Using a magnet spectrometer combined with a transition radiation detector, an electromagnetic calorimeter, and time-of-flight counters we have achieved a high degree of background rejection. Our results do not indicate a major contribution to the positron flux from primary sources. In particular, we see no evidence for the significant rise in the positron fraction at energies above ~10 GeV previously reported.

HEAT Collaboration

1995-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Meson production in high-energy electron-nucleus scattering  

E-Print Network (OSTI)

Experimental studies of meson production through two-photon fusion in inelastic electron-nucleus scattering is now under way. A high-energy photon radiated by the incident electron is fused with a soft photon radiated by the nucleus. The process takes place in the small-angle-Coulomb region of nuclear scattering. We expound the theory for this production process as well as its interference with coherent-radiative-meson production. In particular, we investigate the distortion of the electron wave function due to multiple-Coulomb scattering.

Gran Fldt

2010-06-09T23:59:59.000Z

182

Spin rotation of polarized beams in high energy storage ring  

E-Print Network (OSTI)

The equations for spin evolution of a particle in a storage ring are obtained considering contributions from the tensor electric and magnetic polarizabilities of the particle along with the contributions from spin rotation and birefringence effect in polarized matter of an internal target. % Study of the spin rotation and birefringence effects for a particle in a high energy storage ring provides for measurement both the spin-dependent real part of the coherent elastic zero-angle scattering amplitude and tensor electric (magnetic) polarizabilities.

V. G. Baryshevsky

2006-03-23T23:59:59.000Z

183

Thermalization in collisions of large nuclei at high energies  

E-Print Network (OSTI)

Hydrodynamical analysis of experimental data of ultrarelativistic heavy ion collisions seems to indicate that the hot QCD matter created in the collisions thermalizes very quickly. Theoretically, we have no idea why this should be true. In this proceeding, I will describe how the thermalization takes place in the most theoretically clean limit -- that of large nuclei at asymptotically high energy per nucleon, where the system is described by weak-coupling QCD. In this limit, plasma instabilities dominate the dynamics from immediately after the collision until well after the plasma becomes nearly in equilibrium at time t \\alpha^(-5/2)Q^(-1).

Kurkela, Aleksi

2013-01-01T23:59:59.000Z

184

Very-high-energy quasars hint at ALPs  

E-Print Network (OSTI)

One of the mysteries of very-high-energy (VHE) astrophysics is the observation of flat spectrum radio quasars (FSRQs) above about 30 GeV, because at those energies their broad line region should prevent photons produced by the central engine to escape. Although a few astrophysical explanations have been put forward, they are totally ad hoc. We show that a natural explanation emerges within the conventional models of FSRQs provided that photon-ALP oscillations take place inside the source for the model parameters within an allowed range.

Roncadelli, Marco; Tavecchio, Fabrizio; Bonnoli, Giacomo

2013-01-01T23:59:59.000Z

185

Operational Radiation Protection in High-Energy Physics Accelerators  

SciTech Connect

An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

2012-04-03T23:59:59.000Z

186

High Energy Absorption Top Nozzle For A Nuclaer Fuel Assembly  

DOE Patents (OSTI)

A high energy absorption top nozzle for a nuclear fuel assembly that employs an elongated upper tubular housing and an elongated lower tubular housing slidable within the upper tubular housing. The upper and lower housings are biased away from each other by a plurality of longitudinally extending springs that are restrained by a longitudinally moveable piston whose upward travel is limited within the upper housing. The energy imparted to the nozzle by a control rod scram is mostly absorbed by the springs and the hydraulic affect of the piston within the nozzle.

Sparrow, James A. (Irmo, SC); Aleshin, Yuriy (Columbia, SC); Slyeptsov, Aleksey (Columbia, SC)

2004-05-18T23:59:59.000Z

187

High-energy ion processing of materials for improved hardcoatings  

SciTech Connect

Research has been directed toward use of economically viable ion processing strategies for production and improvement of hardcoatings. Processing techniques were high-energy ion implantation and electron cyclotron resonance microwave plasma processing. Subject materials were boron suboxides, Ti-6Al-4V alloy, CoCrMo alloy (a Stellite{trademark}), and electroplated Cr. These materials may be regarded either as coatings themselves (which might be deposited by thermal spraying, plasma processing, etc.) or in some cases, as substrates whose surfaces can be improved. hardness and other properties in relation to process variables are reported.

Williams, J.M.; Gorbatkin, S.M.; Rhoades, R.L.; Oliver, W.C.; Riester, L.; Tsui, T.Y.

1994-02-01T23:59:59.000Z

188

High Energy Density Physics and Exotic Acceleration Schemes  

Science Conference Proceedings (OSTI)

The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.

Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

2005-09-27T23:59:59.000Z

189

Process Performance of Optima XEx Single Wafer High Energy Implanter  

SciTech Connect

To meet the process requirements for well formation in future CMOS memory production, high energy implanters require more robust angle, dose, and energy control while maintaining high productivity. The Optima XEx high energy implanter meets these requirements by integrating a traditional LINAC beamline with a robust single wafer handling system. To achieve beam angle control, Optima XEx can control both the horizontal and vertical beam angles to within 0.1 degrees using advanced beam angle measurement and correction. Accurate energy calibration and energy trim functions accelerate process matching by eliminating energy calibration errors. The large volume process chamber and UDC (upstream dose control) using faraday cups outside of the process chamber precisely control implant dose regardless of any chamber pressure increase due to PR (photoresist) outgassing. An optimized RF LINAC accelerator improves reliability and enables singly charged phosphorus and boron energies up to 1200 keV and 1500 keV respectively with higher beam currents. A new single wafer endstation combined with increased beam performance leads to overall increased productivity. We report on the advanced performance of Optima XEx observed during tool installation and volume production at an advanced memory fab.

Kim, J. H.; Yoon, Jongyoon; Kondratenko, S.; David, J.; Rubin, L. M. [Axcelis Technologies, 108 Cherry Hill Drive, Beverly, MA 01950 (United States); Jang, I. S.; Cha, J. C.; Joo, Y. H.; Lee, A. B.; Jin, S. W. [Hynix Semiconductor Inc., San 136-1 Ami, Bubal, Ichon, Kyoungki-do, 467-701 (Korea, Republic of)

2011-01-07T23:59:59.000Z

190

Sharpening of field emitter tips using high-energy ions  

DOE Patents (OSTI)

A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.

Musket, Ronald G. (Danville, CA)

1999-11-30T23:59:59.000Z

191

GZK Photons as Ultra High Energy Cosmic Rays  

E-Print Network (OSTI)

We calculate the flux of "GZK-photons", namely the flux of Ultra High Energy Cosmic Rays (UHECR) consisting of photons produced by extragalactic nucleons through the resonant photoproduction of pions, the so called GZK effect. We We calculate the flux of "GZK-photons", namely the flux of Ultra High Energy Cosmic Rays (UHECR) consisting of photons produced by extragalactic nucleons through the resonant photoproduction of pions, the so called GZK effect. We show that, for primary nucleons, the GZK photon fraction of the total UHECR flux is between $10^{-4}$ and $10^{-2}$ above $10^{19}$ eV and up to the order of 0.1 above $10^{20}$ eV. The GZK photon flux depends on the assumed UHECR spectrum, slope of the nucleon flux at the source, distribution of sources and intervening backgrounds. Detection of this photon flux would open the way for UHECR gamma-ray astronomy. Detection of a larger photon flux would imply the emission of photons at the source or new physics. We compare the photon fractions expected for GZK photons and the minimal predicted by Top-Down models. We find that the photon fraction above $10^{19}$ eV is a crucial test for Top-Down models.

Graciela B. Gelmini; Oleg E. Kalashev; Dmitry V. Semikoz

2005-06-06T23:59:59.000Z

192

High energy physics program at Texas A M University  

Science Conference Proceedings (OSTI)

The Texas A M high energy physics program has achieved significant mile-stones in each of its research initiatives. We are participating in two major operating experiments, CDF and MACRO; the development of two new detector technologies, liquid scintillating fiber calorimetry and knife-edge chambers; and two SSC detector proposals, SDC and TEXAS/EMPACT. We have developed prototypes of a liquid-scintillator fiber calorimeter system, in which internally reflecting channels are imbedded in a lead matrix and filled with liquid scintillator. This approach combines the performance features of fiber calorimetry and the radiation hardness of liquid scintillator, and is being developed for forward calorimetry in TEXAS/EMPACT. A new element in this program is the inclusion of a theoretical high energy physics research program being carried out by D. Nanopoulos and C. Pope. D. Nanopoulos has succeeded in building a string-derived model that unifies all known interactions: flipped SU(5), which is the leading candidate for a TOE. The impact of this work on string phenomenology certainly has far reaching consequences. C. Pope is currently working on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two- dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity, and W-string theory. The following report presents details of the accomplishments of the Texas A M program over the past year and the proposed plan of research for the coming year.

Not Available

1990-10-01T23:59:59.000Z

193

HEND: A Database for High Energy Nuclear Data  

SciTech Connect

We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. The database will be searchable and cross-indexed with relevant publications, including published detector descriptions. It should eventually contain all published data from older heavy-ion programs such as the Bevalac, AGS, SPS and FNAL fixed-target programs, as well as published data from current programs at RHIC and new facilities at GSI (FAIR), KEK/Tsukuba and the LHC collider. This data includes all proton-proton, proton-nucleus to nucleus-nucleus collisions as well as other relevant systems and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of experiments. To enhance the utility of the database, we propose periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support.

Brown, D; Vogt, R

2007-02-21T23:59:59.000Z

194

A multi-crystal wavelength dispersive x-ray spectrometer  

Science Conference Proceedings (OSTI)

A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.

Alonso-Mori, Roberto; Montanez, Paul; Delor, James; Bergmann, Uwe [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kern, Jan [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States); Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis [SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States)

2012-07-15T23:59:59.000Z

195

Use of Dual-Wavelength Radar for Snow Parameter Estimates  

Science Conference Proceedings (OSTI)

Use of dual-wavelength radar, with properly chosen wavelengths, will significantly lessen the ambiguities in the retrieval of microphysical properties of hydrometeors. In this paper, a dual-wavelength algorithm is described to estimate the ...

Liang Liao; Robert Meneghini; Toshio Iguchi; Andrew Detwiler

2005-10-01T23:59:59.000Z

196

A Dual-Wavelength Radar Method to Measure Snowfall Rate  

Science Conference Proceedings (OSTI)

A dual-wavelength radar method to estimate snowfall rate has been developed. The method suggests taking simultaneous and collocated reflectivity measurements at two radar wavelengths. Snowfall backscattering at one of these wavelengths should be ...

Sergey Y. Matrosov

1998-11-01T23:59:59.000Z

197

Graduate Fellows in High Energy Theory | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Graduate Fellows in High Energy Theory Graduate Fellows in High Energy Theory High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Merit / Review Policies Early Career Research Opportunities in High Energy Physics Graduate Fellows in High Energy Theory Guidelines Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » Funding Opportunities Graduate Fellows in High Energy Theory Print Text Size: A A A RSS Feeds FeedbackShare Page DOE High Energy Physics Graduate Fellowship in Theory

198

Provably Good Solutions for Wavelength Assignment in Optical ...  

E-Print Network (OSTI)

the transmission and switching capacities of the installed equipment. ..... wavelengths on all its links and that no wavelength is assigned more than its availability.

199

Laser wavelength effects in ultrafast near-field laser nanostructuring...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser wavelength effects in ultrafast near-field laser nanostructuring of Si Title Laser wavelength effects in ultrafast near-field laser nanostructuring of Si Publication Type...

200

30th Anniversary Symposium of the US/Japan Collaboration in High Energy Physics  

Science Conference Proceedings (OSTI)

Proceedings of the Symposium that celebrated the 30th Anniversary of the US/Japan Collaboration in High Energy Physics

Ozaki, S.

2011-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Theoretical Research in Cosmology, High-Energy Physics and String Theory  

Science Conference Proceedings (OSTI)

The research was in the area of Theoretical Physics: Cosmology, High-Energy Physics and String Theory

Ng, Y Jack; Dolan, Louise; Mersini-Houghton, Laura; Frampton, Paul

2013-07-29T23:59:59.000Z

202

Workshop on NEUtron WAVElength Dependent Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

NEUtron WAVElength Dependent Imaging NEUtron WAVElength Dependent Imaging (NEUWAVE-4) Workshop October 2 - 5, 2011 Spallation Neutron Source * Oak Ridge National Laboratory * Gatlinburg, TN, USA About the Workshop Workshop Agenda Contact Information Important Dates NEUWAVE-4 Program Registration Lodging Social Events Tourist Information Organizing Committee Program Committee Workshop Flyer filler About the Workshop The Oak Ridge National Laboratory's Neutron Sciences Directorate and Energy & Environmental Sciences Directorate are pleased to host the 4th Workshop on NEUtron WAVElength Dependent Imaging (NEUWAVE-4). This meeting discusses the latest development in energy selective imaging techniques, applications and existing and future instrumentation. This meeting follows the successful meeting held in Garching, Germany (April 2008,) Abingdon, UK (June 2009,) and Hokkaido University (June 2010.)

203

Device for wavelength-selective imaging  

DOE Patents (OSTI)

An imaging device captures both a visible light image and a diagnostic image, the diagnostic image corresponding to emissions from an imaging medium within the object. The visible light image (which may be color or grayscale) and the diagnostic image may be superimposed to display regions of diagnostic significance within a visible light image. A number of imaging media may be used according to an intended application for the imaging device, and an imaging medium may have wavelengths above, below, or within the visible light spectrum. The devices described herein may be advantageously packaged within a single integrated device or other solid state device, and/or employed in an integrated, single-camera medical imaging system, as well as many non-medical imaging systems that would benefit from simultaneous capture of visible-light wavelength images along with images at other wavelengths.

Frangioni, John V. (Wayland, MA)

2010-09-14T23:59:59.000Z

204

High energy modifications of blackbody radiation and dimensional reduction  

E-Print Network (OSTI)

Quantization prescriptions that realize generalized uncertainty relations (GUP) are motivated by quantum gravity arguments that incorporate a fundamental length scale. We apply two such methods, polymer and deformed Heisenberg quantization, to scalar field theory in Fourier space. These alternative quantizations modify the oscillator spectrum for each mode, which in turn affects the blackbody distribution. We find that for a large class of modifications, the equation of state relating pressure $P$ and energy density $\\rho$ interpolates between $P=\\rho/3$ at low $T$ and $P=2\\rho/3$ at high $T$, where $T$ is the temperature. Furthermore, the Stefan-Boltzman law gets modified from $\\rho \\propto T^{4}$ to $\\rho \\propto T^{5/2}$ at high temperature. This suggests an effective reduction to 2.5 spacetime dimensions at high energy.

Viqar Husain; Sanjeev S. Seahra; Eric J. Webster

2013-05-13T23:59:59.000Z

205

High energy modifications of blackbody radiation and dimensional reduction  

E-Print Network (OSTI)

Quantization prescriptions that realize generalized uncertainty relations (GUP) are motivated by quantum gravity arguments that incorporate a fundamental length scale. We apply two such methods, polymer and deformed Heisenberg quantization, to scalar field theory in Fourier space. These alternative quantizations modify the oscillator spectrum for each mode, which in turn affects the blackbody distribution. We find that for a large class of modifications, the equation of state relating pressure $P$ and energy density $\\rho$ interpolates between $P=\\rho/3$ at low $T$ and $P=2\\rho/3$ at high $T$, where $T$ is the temperature. Furthermore, the Stefan-Boltzman law gets modified from $\\rho \\propto T^{4}$ to $\\rho \\propto T^{5/2}$ at high temperature. This suggests an effective reduction to 2.5 spacetime dimensions at high energy.

Husain, Viqar; Webster, Eric J

2013-01-01T23:59:59.000Z

206

ON THE VERY HIGH ENERGY SPECTRUM OF THE CRAB PULSAR  

SciTech Connect

In the present paper, we construct a self-consistent theory interpreting the observations from the MAGIC Cherenkov Telescope of the very high energy (VHE) pulsed emission from the Crab pulsar. In particular, on the basis of Vlasov's kinetic equation, we study the process of quasi-linear diffusion (QLD) developed by means of the cyclotron instability. This mechanism provides simultaneous generation of low (radio) and VHE (0.01-25 GeV) emission on light cylinder scales in one location of the pulsar magnetosphere. A different approach to the synchrotron emission is considered, giving the spectral index of the VHE emission ({beta} = 2) and the exponential cutoff energy (23 GeV) in good agreement with the observational data.

Chkheidze, N.; Machabeli, G.; Osmanov, Z., E-mail: nino.chkheidze@iliauni.edu.ge [Center for Theoretical Astrophysics, ITP, Ilia State University, 0162, Tbilisi (Georgia)

2011-04-01T23:59:59.000Z

207

Radiative polarization in high-energy storage rings  

SciTech Connect

Electron and positron beams circulating in high-energy storage rings become spontaneously polarized by the emission of synchrotron radiation. The asymptotic degree of polarization that can be attained is strongly affected by so-called depolarizing resonances. Detailed experimental measurements of the polarization were made SPEAR about ten years ago, but due to lack of a suitable theory only a limited theoretical fit to the data has so far been achieved. I present a general formalism for calculating depolarizing resonances, which as been coded into a computer program called SMILE, and use it to fit the SPEAR data. By the use of suitable approximations, I am able to fit both higher order and nonlinear resonances, and thereby to interpret many hitherto unexplained features in the data, and to resolve a puzzle concerning the asymmetry of certain resonance widths seen in the data. 18 refs., 2 figs.

Mane, S.R.

1989-03-01T23:59:59.000Z

208

Search for Correlated High Energy Cosmic Ray Events with CHICOS  

E-Print Network (OSTI)

We present the results of a search for time correlations in high energy cosmic ray data (primary E > 10^{14} eV) collected by the California HIgh school Cosmic ray ObServatory (CHICOS) array. Data from 60 detector sites spread over an area of 400 km^2 were studied for evidence of correlated events separated by more than 1 km with coincidence times ranging from 1 microsec up to 1 second. All searches were consistent with the absence of excess coincidences except for a 2.9 sigma excess observed for coincidence times less than 10 microsec. We report upper limits for the coincidence probability as a function of coincidence time.

Carlson, B E; Jillings, C J; Larson, M B; Lynn, T W; McKeown, R D; Hill, J E; Falkowski, B J; Seki, R; Sepikas, J; Yodh, G B; Hill, James E.

2005-01-01T23:59:59.000Z

209

Computing trends using graphic processor in high energy physics  

E-Print Network (OSTI)

One of the main challenges in Heavy Energy Physics is to make fast analysis of high amount of experimental and simulated data. At LHC-CERN one p-p event is approximate 1 Mb in size. The time taken to analyze the data and obtain fast results depends on high computational power. The main advantage of using GPU(Graphic Processor Unit) programming over traditional CPU one is that graphical cards bring a lot of computing power at a very low price. Today a huge number of application(scientific, financial etc) began to be ported or developed for GPU, including Monte Carlo tools or data analysis tools for High Energy Physics. In this paper, we'll present current status and trends in HEP using GPU.

Niculescu, Mihai

2011-01-01T23:59:59.000Z

210

Modeling of high energy laser ignition of energetic materials  

SciTech Connect

We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers the effect of irradiating a steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultrashort (femto- and picosecond) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine, triaminotrinitrobenzene, and octahydrotetranitrotetrazine are compared to experimental results. The experimental and numerical results are in good agreement.

Lee, Kyung-cheol; Kim, Ki-hong; Yoh, Jack J. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of)

2008-04-15T23:59:59.000Z

211

Technical challenges for the future of high energy lasers  

SciTech Connect

The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multi-generation laser development effort scalable to the megawatt power levels with current performance approaching 100 kilowatts. This program is one of many designed to harness the power of lasers for use as directed energy weapons. There are many hurdles common to all of these programs that must be overcome to make the technology viable. There will be a in-depth discussion of the general issues facing state-of-the-art high energy lasers and paths to their resolution. Despite the relative simplicity of the SSHCL design, many challenges have been uncovered in the implementation of this particular system. An overview of these and their resolution are discussed. The overall system design of the SSHCL, technological strengths and weaknesses, and most recent experimental results will be presented.

LaFortune, K N; Hurd, R L; Fochs, S N; Rotter, M D; Pax, P H; Combs, R L; Olivier, S S; Brase, J M; Yamamoto, R M

2007-01-10T23:59:59.000Z

212

Computing trends using graphic processor in high energy physics  

E-Print Network (OSTI)

One of the main challenges in Heavy Energy Physics is to make fast analysis of high amount of experimental and simulated data. At LHC-CERN one p-p event is approximate 1 Mb in size. The time taken to analyze the data and obtain fast results depends on high computational power. The main advantage of using GPU(Graphic Processor Unit) programming over traditional CPU one is that graphical cards bring a lot of computing power at a very low price. Today a huge number of application(scientific, financial etc) began to be ported or developed for GPU, including Monte Carlo tools or data analysis tools for High Energy Physics. In this paper, we'll present current status and trends in HEP using GPU.

Mihai Niculescu; Sorin-Ion Zgura

2011-06-30T23:59:59.000Z

213

High-energy accelerator for beams of heavy ions  

DOE Patents (OSTI)

An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

Martin, Ronald L. (La Grange, IL); Arnold, Richard C. (Chicago, IL)

1978-01-01T23:59:59.000Z

214

Design Considerations for High Energy Electron -- Positron Storage Rings  

DOE R&D Accomplishments (OSTI)

High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

Richter, B.

1966-11-00T23:59:59.000Z

215

A third generation mobile high energy radiography system  

Science Conference Proceedings (OSTI)

A third generation mobile high energy radiographic capability has been completed and put into service by the Los Alamos National Laboratory. The system includes a 6 MeV linac x-ray generator, Co-60 gamma source, all-terrain transportation, on-board power, real-time radiography (RTR), a control center, and a complete darkroom capability. The latest version includes upgraded and enhanced portability, flexibility, all-terrain operation, all-weather operation, and ease of use features learned from experience with the first and second generation systems. All systems were required to have the following characteristics; all-terrain, all-weather operation, self-powered, USAF airlift compatible, reliable, simple to setup, easy to operate, and all components two-person portable. The systems have met these characteristics to differing degrees, as is discussed in the following section, with the latest system being the most capable.

Fry, D.A.; Valdez, J.E.; Johnson, C.S.; Kimerly, H.J.; Vananne, J.R.

1997-12-01T23:59:59.000Z

216

Gravitational Model of High Energy Particles in a Collimated Jet  

E-Print Network (OSTI)

Observations suggest that relativistic particles play a fundamental role in the dynamics of jets emerging from active galactic nuclei as well as in their interaction with the intracluster medium. However, no general consensus exists concerning the acceleration mechanism of those high energy particles. A gravitational acceleration mechanism is here proposed, in which particles leaving precise regions within the ergosphere of a rotating supermassive black hole produce a highly collimated flow. These particles follow unbound geodesics which are asymptotically parallel to the spin axis of the black hole and are characterized by the energy $E$, the Carter constant ${\\cal Q}$ and zero angular momentum of the component $L_z$. If environmental effects are neglected, the present model predicts at distances of about 140 kpc from the ergosphere the presence of electrons with energies around 9.4 GeV. The present mechanism can also accelerate protons up to the highest energies observed in cosmic rays by the present experiments.

J. A. de Freitas Pacheco; J. Gariel; G. Marcilhacy; N. O. Santos

2012-10-02T23:59:59.000Z

217

High Energy Gamma Rays from Protons Hitting Compact Objects  

E-Print Network (OSTI)

In a previous paper the spectrum of positrons produced by matter initially at rest falling onto a massive compact object was calculated. In this paper this calculation is generalized to obtain both the spectrum of in-flight positron annihilation and pi0 decay gamma rays produced when protons with a cosmic ray-like spectrum hit the surface. The resulting pi0 decay gamma ray spectrum reflects the high energy proton energy spectrum, and is largely independent of the mass of the compact object. One notable prediction for all compact objects is a dip in the spectrum below 70 MeV. As applied to the 10^6 solar mass massive compact object near to the center of our galaxy, our theory shows promise for explaining the gamma rays coming from the galactic center as observed by both the Compton satellite and HESS ground based array.

J. Barbieri; G. Chapline

2008-06-09T23:59:59.000Z

218

Final project report: High energy rotor development, test and evaluation  

DOE Green Energy (OSTI)

Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

NONE

1996-09-01T23:59:59.000Z

219

CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES  

SciTech Connect

This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

Professor Bruce R. Kusse; Professor David A. Hammer

2007-04-18T23:59:59.000Z

220

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Inertial confinement and high density Inertial confinement and high density plasma physics Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's Inertial Confinement Fusion program is conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the OMEGA Laser Facility at the University of Rochester, and the Trident Laser Facility at Los Alamos. Within inertial confinement fusion and the high energy density area, Los Alamos specializes in hohlraum energetics, symmetry tuning, warm dense matter physics, and hydrodynamics in ultra-extreme conditions. When complete, this research will enable the exploitation of fusion as an energy resource and will enable advanced research in stockpile stewardship

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Laboratory testing of high energy density capacitors for electric vehicles  

DOE Green Energy (OSTI)

Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

Burke, A.F.

1991-10-01T23:59:59.000Z

222

National Research Council Study on Frontiers in High-Energy-Density Physics  

E-Print Network (OSTI)

of Fusion Fusion Power Associates Washington, DC 19­21 November 2003 #12;E12541 High-energy-density physicsNational Research Council Study on Frontiers in High-Energy-Density Physics David D. Meyerhofer (HEDP) is a rapidly growing research area · Pressures in excess of 1 Mbar constitute high-energy

223

Quantum key distribution network with wavelength addressing  

E-Print Network (OSTI)

Most traditional applications of quantum cryptography are point-to-point communications, in which only two users can exchange keys. In this letter, we present a network scheme that enable quantum key distribution between multi-user with wavelength addressing. Considering the current state of wavelength division multiplexing technique, dozens or hundreds of users can be connected to such a network and directly exchange keys with each other. With the scheme, a 4-user demonstration network was built up and key exchanges were performed.

Mo, X F; Han, Z F; Xu, F X; Zhang, T; Guo, Guang-Can; Han, Zheng-Fu; Mo, Xiao-Fan; Xu, Fang-Xing; Zhang, Tao

2006-01-01T23:59:59.000Z

224

Modulation of the Diurnal Cycle of Warm-Season Precipitation by Short-Wave Troughs  

Science Conference Proceedings (OSTI)

Traveling deep tropospheric disturbances of wavelengths ~1500 km (short waves) have long been known to play an important role in the initiation and maintenance of warm-season convection. To date, relatively few studies have formally documented the ...

John D. Tuttle; Chris A. Davis

2013-06-01T23:59:59.000Z

225

Two-wavelength spatial-heterodyne holography  

DOE Patents (OSTI)

Systems and methods are described for obtaining two-wavelength differential-phase holograms. A method includes determining a difference between a filtered analyzed recorded first spatially heterodyne hologram phase and a filtered analyzed recorded second spatially-heterodyned hologram phase.

Hanson, Gregory R. (Clinton, TN); Bingham, Philip R. (Knoxville, TN); Simpson, John T. (Knoxville, TN); Karnowski, Thomas P. (Knoxville, TN); Voelkl, Edgar (Austin, TX)

2007-12-25T23:59:59.000Z

226

Scanning 6-Wavelength 11-Channel Aerosol Lidar  

Science Conference Proceedings (OSTI)

A transportable multiple-wavelength lidar is presented, which is used for the profiling of optical and physical aerosol properties. Two Nd:YAG and two dye lasers in combination with frequency-doubling crystals emit simultaneously at 355, 400, 532,...

Dietrich Althausen; Detlef Mller; Albert Ansmann; Ulla Wandinger; Helgard Hube; Ernst Clauder; Steffen Zrner

2000-11-01T23:59:59.000Z

227

A Compact High Energy Camera for the Cherenkov Telescope Array  

E-Print Network (OSTI)

The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ~18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ~0.2 x 1.0 degrees, and has a 9 degree field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1m and diameter ~35cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the...

Daniel, M K; Berge, D; Buckley, J; Chadwick, P M; Cotter, G; Funk, S; Greenshaw, T; Hidaka, N; Hinton, J; Lapington, J; Markoff, S; Moore, P; Nolan, S; Ohm, S; Okumura, A; Ross, D; Sapozhnikov, L; Schmoll, J; Sutcliffe, P; Sykes, J; Tajima, H; Varner, G S; Vandenbroucke, J; Vink, J; Williams, D

2013-01-01T23:59:59.000Z

228

A new Variable Resolution Associative Memory for High Energy Physics  

E-Print Network (OSTI)

We describe an important advancement for the Associative Memory device (AM). The AM is a VLSI processor for pattern recognition based on Content Addressable Memory (CAM) architecture. The AM is optimized for on-line track finding in high-energy physics experiments. Pattern matching is carried out finding track candidates in coarse resolution roads. A large AM bank stores all trajectories of interest, called patterns, for a given detector resolution. The AM extracts roads compatible with a given event during detector read-out. Two important variables characterize the quality of the AM bank: its coverage and the level of found fakes. The coverage, which describes the geometric efficiency of a bank, is defined as the fraction of tracks that match at least a pattern in the bank. Given a certain road size, the coverage of the bank can be increased just adding patterns to the bank, while the number of found fakes unfortunately is roughly proportional to this number of patterns in the bank. M...

Annovi, A; The ATLAS collaboration; Beretta, M; Bossini, E; Crescioli, F; Dell'Orso, M; Giannetti, P; Hoff, J; Liberali, V; Liu, T; Magalotti, D; Piendibene, M; Sacco, A; Schoening, A; Soltveit, H K; Stabile, A; Tripiccione, R; Vitillo, R; Volpi, G

2011-01-01T23:59:59.000Z

229

A new Variable Resolution Associative Memory for High Energy Physics  

E-Print Network (OSTI)

We describe an important advancement for the Associative Memory device (AM). The AM is a VLSI processor for pattern recognition based on Content Addressable Memory (CAM) architecture. The AM is optimized for on-line track finding in high-energy physics experiments. Pattern matching is carried out finding track candidates in coarse resolution roads. A large AM bank stores all trajectories of interest, called patterns, for a given detector resolution. The AM extracts roads compatible with a given event during detector read-out. Two important variables characterize the quality of the AM bank: its coverage and the level of found fakes. The coverage, which describes the geometric efficiency of a bank, is defined as the fraction of tracks that match at least a pattern in the bank. Given a certain road size, the coverage of the bank can be increased just adding patterns to the bank, while the number of found fakes unfortunately is roughly proportional to this number of patterns in the bank. M...

Annovi, A; The ATLAS collaboration; Beretta, M; Bossini, E; Crescioli, F; Dell'Orso, M; Giannetti, P; Hoff, J; Liberali, V; Liu, T; Magalotti, D; Piendibene, M; Sacco, A; Schoening, A; Soltveit, H K; Stabile, A; Tripiccione, R; Vitillo, R; Volpi, G

2011-01-01T23:59:59.000Z

230

Iterated amplitudes in the high-energy limit  

E-Print Network (OSTI)

We consider the high-energy limits of the colour ordered four-, five- and six-gluon MHV amplitudes of the maximally supersymmetric QCD in the multi-Regge kinematics where all the gluons are strongly ordered in rapidity. We show that various building blocks occurring in the Regge factorisation (the Regge trajectory, the coefficient functions and the Lipatov vertex) satisfy an iterative structure very similar to the Bern-Dixon-Smirnov (BDS) ansatz. This iterative structure, combined with the universality of the building blocks, enables us to show that in the Euclidean region any two- and three-loop amplitude in multi-Regge kinematics is guaranteed to satisfy the BDS ansatz. We also consider slightly more general kinematics where the strong rapidity ordering applies to all the gluons except the two with either the largest or smallest rapidities, and we derive the iterative formula for the associated coefficient function. We show that in this kinematic limit the BDS ansatz is also satisfied. Finally, we argue that only for more general kinematics - e.g. with three gluons having similar rapidities, or where the two central gluons have similar rapidities - can a disagreement with the BDS ansatz arise.

V. Del Duca; C. Duhr; E. W. N. Glover

2008-09-10T23:59:59.000Z

231

ENERGY SPECTRA OF COSMIC-RAY NUCLEI AT HIGH ENERGIES  

SciTech Connect

We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic-Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to approx10{sup 14} eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E {sup -2.66} {sup +}- {sup 0.04} power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/n energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080 +- 0.025 (stat.)+-0.025 (sys.) at approx800 GeV/n, in good agreement with a recent result from the first CREAM flight.

Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Malinine, A. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Allison, P.; Beatty, J. J.; Brandt, T. J. [Department of Physics, Ohio State University, Columbus, OH 43210 (United States); Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S. [Department of Physics, University of Siena and INFN, Via Roma 56, 53100 Siena (Italy); Barbier, L. [Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Childers, J. T.; DuVernois, M. A. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Conklin, N. B.; Coutu, S. [Department of Physics, Penn State University, University Park, PA 16802 (United States); Jeon, J. A. [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Minnick, S., E-mail: paolo.maestro@pi.infn.i [Department of Physics, Kent State University, Tuscarawas, New Philadelphia, OH 44663 (United States)

2009-12-10T23:59:59.000Z

232

Fossil AGN jets as ultra high energy particle accelerators  

E-Print Network (OSTI)

Remnants of AGN jets and their surrounding cocoons leave colossal magnetohydrodynamic (MHD) fossil structures storing total energies ~10^{60} erg. The original active galacic nucleus (AGN) may be dead but the fossil will retain its stable configuration resembling the reversed-field pinch (RFP) encountered in laboratory MHD experiments. In an RFP the longitudinal magnetic field changes direction at a critical distance from the axis, leading to magnetic re-connection there, and to slow decay of the large-scale RFP field. We show that this field decay induces large-scale electric fields which can accelerate cosmic rays with an E^{-2} power-law up to ultra-high energies with a cut-off depending on the fossil parameters. The cut-off is expected to be rigidity dependent, implying the observed composition would change from light to heavy close to the cut-off if one or two nearby AGN fossils dominate. Given that several percent of the universe's volume may house such slowly decaying structures, these fossils may even...

Benford, Gregory

2007-01-01T23:59:59.000Z

233

Modular multi-element high energy particle detector  

DOE Patents (OSTI)

Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins porjecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array.

Coon, Darryl D. (Pittsburgh, PA); Elliott, John P. (Pittsburgh, PA)

1990-01-02T23:59:59.000Z

234

Upgrading of biorenewables to high energy density fuels  

DOE Green Energy (OSTI)

According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. "" Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH

2010-12-07T23:59:59.000Z

235

Indiana University High Energy Physics Group, Task C  

Science Conference Proceedings (OSTI)

The Indiana University High Energy Physics Group, Task C has been actively involved in the MACRO experiment at Gran Sasso and the SSC experiment L during the current contract year. MACRO is a large US-Italian Monopole, Astrophysics, and Cosmic Ray Observatory being built under the Gran Sasso Mountain outside of Rome. Indiana University is in charge of organizing the United States software effort. We have built a state-of-the-art two-meter spectrophotometer for the MACRO liquid scintillator. We are in charge of ERP, the Event Reconstruction Processor online trigger processor for muons and stellar collapse. We are designing an air Cerenkov array to be placed on top of the Gran Sasso. Our other activity involves participation in the SSC experiment L. As long-standing members of L we have done proposal writing and have worked on important L planning and organization matters. We are now doing development work on the L Central Tracker straw drift tubes, including gas optimization, readout, and Monte Carlos. 12 refs., 20 figs., 1 tab.

Heinz, R.M.; Mufson, S.L.; Musser, J.

1991-01-01T23:59:59.000Z

236

High-energy x-ray production with pyroelectric crystals  

Science Conference Proceedings (OSTI)

The invention of pyroelectric x-ray generator technology has enabled researchers to develop ultraportable, low-power x-ray sources for use in imaging, materials analysis, and other applications. For many applications, the usefulness of an x-ray source is determined by its yield and endpoint energy. In x-ray fluorescence, for example, high-energy sources enable the excitation of the K-shell x-ray peaks for high-Z materials as well as the lower-energy L-shell peaks, allowing more positive sample identification. This report shows how a paired-crystal pyroelectric source can be used to approximately double the endpoint x-ray energy, in addition to doubling the x-ray yield, versus a single-crystal source. As an example of the advantage of a paired-crystal system, we present a spectrum showing the fluorescence of the K shell of thorium using a pyroelectric source, as well as a spectrum showing the fluorescence of the K shell of lead. Also shown is an x-ray spectrum with an endpoint energy of 215 keV.

Geuther, Jeffrey A.; Danon, Yaron [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

2005-05-15T23:59:59.000Z

237

Metrology Challenges for High Energy Density Science Target Manufacture  

Science Conference Proceedings (OSTI)

Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

Seugling, R M; Bono, M J; Davis, P

2009-02-19T23:59:59.000Z

238

High energy physics experiment triggers and the trustworthiness of software  

SciTech Connect

For all the time and frustration that high energy physicists expend interacting with computers, it is surprising that more attention is not paid to the critical role computers play in the science. With large, expensive colliding beam experiments now dependent on complex programs working at startup, questions of reliability -- the trustworthiness of software -- need to be addressed. This issue is most acute in triggers, used to select data to record -- and data to discard -- in the real time environment of an experiment. High level triggers are built on codes that now exceed 2 million source lines -- and for the first time experiments are truly dependent on them. This dependency will increase at the accelerators planned for the new millennium (SSC and LHC), where cost and other pressures will reduce tolerance for first run problems, and the high luminosities will make this on-line data selection essential. A sense of this incipient crisis motivated the unusual juxtaposition to topics in these lectures. 37 refs., 1 fig.

Nash, T.

1991-10-01T23:59:59.000Z

239

A new type of bunch compressor and seeding of a short-wavelength coherent radiation.  

Science Conference Proceedings (OSTI)

Transverse-to-longitudinal emittance exchange was proposed in [1] as a tool for an effective matching of the electron beam phase space to requirements of a possible application. Here we propose a new purpose, namely, use of two consecutive emittance exchanges equipped with the telescope between them for a bunch compression that can be done without the energy chirp in the electron bunch. In principle it allows to reduce the electron peak current in the linac by moving the bunch compressor to the end of the linac and, thus, to relax collective effects associated with high peak currents. It is also possible to have a split-action compression when the first part is done inside the low-energy part of the linac and the second and final part is done after the linac. We also demonstrate how proposed bunch compressor can be used for frequency up-conversion of the energy modulation provided by the laser interacting with the electron beam and thus can prepare a significantly higher frequency seed for seeded free-electron lasers. The same approach can be used for a frequency down-conversion that can be useful for generation of THz radiation.

Zholents, A. A.; Zolotorev, M. S. (Accelerator Systems Division (APS)); (LBNL)

2011-05-30T23:59:59.000Z

240

Observing Structure and Motion in Molecules with Ultrafast Strong Field and Short Wavelength Laser Radiation  

SciTech Connect

The term "molecular movie" has come to describe efforts to track and record Angstrom-scale coherent atomic and electronic motion in a molecule. The relevant time scales for this range cover several orders of magnitude, from sub-femtosecond motion associated with electron-electron correlations, to 100-fs internal vibrations, to multi-picosecond motion associated with the dispersion and quantum revivals of molecular reorientation. Conventional methods of cinematography do not work well in this ultrafast and ultrasmall regime, but stroboscopic "pump and probe" techniques can reveal this motion with high fidelity. This talk will describe some of the methods and recent progress in exciting and controlling this motion, using both laboratory lasers and the SLAC Linac Coherent Light Source x-ray free electron laser, and will further try to relate the date to the goal of molecular movies.

Bucksbaum, Philip H

2011-04-13T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Phase contrast imaging measurements and modeling of short wavelength turbulence in the DIII-D tokamak  

E-Print Network (OSTI)

The DIII-D phase contrast imaging (PCI) diagnostic has been upgraded and used to measure turbulence in the outer plasma region (0.7 < r/a < 1). These upgrades extended its operational range to high frequencies (10 kHz - ...

Dorris, James Robert, III

2010-01-01T23:59:59.000Z

242

Self-Amplified Spontaneous Emission in the Short Wavelength Coherent Radiation  

E-Print Network (OSTI)

Generation Light Sources, SSRL Report 92/02, page 315, M.linac being proposed by SLAC/SSRL/UCLA/LBL collaboration [

Kim, K.-J.

2011-01-01T23:59:59.000Z

243

Inference of the Aerosol ngstrm Coefficient from SAGE Short-Wavelength Data  

Science Conference Proceedings (OSTI)

SAGE four-channel transmission profiles are inverted to retrieve the extinction profiles from which the aerosol ngstrm coefficient ? is obtained. The procedure allows one to check the influence of the NO2 absorption profile, which is small ...

J. Lenoble; P. Pruvost

1983-10-01T23:59:59.000Z

244

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

(83/3Q) (83/3Q) Short-Term Energy Outlook iuarterly Projections August 1983 Energy Information Administration Washington, D.C. 20585 t rt jrt- .ort- iort- iort- iort- nort- lort- '.ort- ort- Tt- .-m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term Term .-Term -Term xrm Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy -OJ.UUK Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

245

Short Sample Testing Facility for the Superconducting Super Collider: Requirements and Development Status  

E-Print Network (OSTI)

Office of High Energy and Nuclear Physics, High EnergyOffice of High Energy and Nuclear Physics, High Energy

Zbasnik, J.

2011-01-01T23:59:59.000Z

246

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-01-01T23:59:59.000Z

247

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-12-31T23:59:59.000Z

248

Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs  

E-Print Network (OSTI)

Hydrocarbon reforming involves a variety of chemical reactions at high temperatures and pressures in the presence of suitable catalysts. The conversion of naptha to high octane aromatics requires high energy to initiate and sustain the reaction at temperatures of 850-950oF. Hydrogen - rich off - gases are fired in combinations of process furnaces. Heat is transferred to hydrocarbon fluids by radiation, principally. Feed or return stream temperatures determine the need for convection sections. It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors and to regenerate catalysts. Firing rates provide an input of 216.2 x 106 Btu/hr. to the furnaces, at $1.90 per 106 Btu. The units are fitted with multiple natural draft burners. There is insufficient turbulence and swirl in the burners. Operators manually set up the burners with excessive airflows for normal, full-load firing. These furnaces represent production limits. Products of combustion exhaust at high thermal levels - the range is from 985-1700oF. The mixed gases flow through a "waste heat" boiler, or they bypass the boiler and enter a single stack. Steam generation at 150 psig averages 38,200 lb/hr. Heat is wasted via the bypass at a rate of 41.1x106 Btu /hr. at 1240oF. When airflows are reduced (to 15% excess air) the loss will be 18.7x106 Btu/hr. at 1180oF. Installation of a second, parallel waste heat boiler will result in a saving of l3.4x106 Btu/hr. Energy savings at this furnace complex will be equivalent to $628,700 per year. Investment costs were estimated to be less than $250,000 for the proposed heat trap addition.

Viar, W. L.

1979-01-01T23:59:59.000Z

249

Theoretical studies in high energy nuclear physics. Progress report  

SciTech Connect

This paper is a progress report for the period 1-1-93 to 6-30-95 on a project primarily directed at the application of high energy physics techniques to nuclear structure studies, and the ability to study hadron dynamics through interactions with nuclear targets. This work has included the first legitimate QCD calculations of hard coherent diffractive processes off nucleon (nuclear) targets which established novel features of color transparency phenomenon not anticipated in the previous intuitive or QCD inspired model calculations and predicted the fast increase of the cross section for electroproduction of {rho}-mesons with increase of the energy, which was confirmed very recently by the first HERA data on this reaction. First theoretical demonstration that color transparency phenomenon for the hard diffractive processes follow from QCD in the kinematics when both x{yields}0 and Q{sup 2}{yields}{infinity}. Establishing the pattern of color (cross section) fluctuations in hadrons. Confirmed by the FNAL inelastic diffraction data. Finding that in realistic quark, skyrmion models of a hadron large momentum transfer elastic lepton-hadron scattering occurs through formation of small spatial size configurations. Discovering a novel class of color transparency sensitive double interaction processes which is complementary to quasielastic reactions originally suggested by S. Brodsky and A. Mueller. Adopting ideas suggested elsewhere for hadron initiated reactions they developed a method for taking into account nuclear correlations in (e,e{prime}p) reactions. Such an approach gives practical possibility to overcome ambiguities of optical model approximation used before and to reliably interpret color transparency effects at intermediate Q{sup 2}.

1995-08-01T23:59:59.000Z

250

High energy imploding liner experiment HEL-1: Experimental results  

SciTech Connect

Magnetically driven imploding liner systems can be used as a source of shock energy for materials equation of state studies, implosion driven magnetized plasma fusion experiments, and other similar applications. The imploding liner is a cylinder of conducting material through which a current is passed in the longitudinal direction. Interaction of the current with its own magnetic field causes the liner to implode. Sources of electrical energy for imploding liner systems are capacitor banks or explosive pulse power systems seeded by capacitor banks. In August, 1996, a high energy liner experiment (HEL-1) was conducted at the All-Russia Scientific Research Institute (VNIIEF) in Sarov, Russia. A 5 tier 1 meter diameter explosive disk generator provided electrical energy to drive a 48 cm outside diameter, 4 mm thick, aluminum alloy liner having a mass of about 11kg onto an 11 cm diameter diagnostic package. The purpose of the experiment was to measure performance of the explosive pulse power generator and the heavy imploding liner. Electrical performance diagnostics included inductive (B-dot) probes, Faraday Rotation current measurement, Rogowski total current measurement, and voltage probes. Flux loss and conductor motion diagnostics included current-joint voltage measurements and motion sensing contact pins. Optical and electrical impact pins, inductive (B-dot) probes, manganin pressure probes, and continuously recording resistance probes in the Central Measuring Unit (CMU) and Piezo and manganin pressure probes, optical beam breakers, and inductive probes located in the glide planes were used as liner symmetry and velocity diagnostics. Preliminary analysis of the data indicate that a peak current of more than 100 MA was attained and the liner velocity was between 6.7 km/sec and 7.5 km/sec. Liner kinetic energy was between 22 MJ and 35 MJ. 4 refs., 6 figs., 1 tab.

Clark, D.A.; Anderson, B.G.; Ekdahl, C.A. [and others

1997-09-01T23:59:59.000Z

251

THE HIGH-ENERGY IMPULSIVE GROUND-LEVEL ENHANCEMENT  

Science Conference Proceedings (OSTI)

We have studied short-lived (21 minute average duration), highly anisotropic pulses of cosmic rays that constitute the first phase of 10 large ground-level enhancements (GLEs), and which extend to rigidities in the range 5-20 GV. We provide a set of constraints that must be met by any putative acceleration mechanism for this type of solar-energetic-particle (SEP) event. The pulses usually have very short rise-times (three to five minutes) at all rigidities, and exhibit the remarkable feature that the intensity drops precipitously by 50% to 70% from the maximum within another three to five minutes. Both the rising and falling phases exhibit velocity dispersion, which indicates that there are particles with rigidities in the range 1 90 MeV gamma-ray bursts, indicating that freshly accelerated SEPs had impinged on higher-density matter in the chromosphere prior to the departure of the SEP pulse for Earth. This study was based on an updated archive of the 71 GLEs in the historic record, which is now available for public use.

McCracken, K. G. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Moraal, H. [Centre for Space Research, School for Physical and Chemical Sciences, North-West University, Potchefstroom 2520 (South Africa); Shea, M. A. [CSPAR, University of Alabama at Huntsville, Huntsville, AL 35899 (United States)

2012-12-20T23:59:59.000Z

252

DOE High Energy Physics Reports | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DOE DOE High Energy Physics Reports High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources SC Graduate Fellowship Program: HEP 2010 Awardees External link Quick Links DOE High Energy Physics Reports HEP Sponsored Workshops and Conferences Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » News & Resources DOE High Energy Physics Reports Print Text Size: A A A RSS Feeds FeedbackShare Page The following are DOE High Energy Physics Reports for projects under construction and experiments operating using accelerators as well as

253

ESS 2012 Peer Review - Low Cost, High-Energy Density Flywheel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Boeing Management Company. Copyright 2011 Boeing. All rights reserved. | 1 Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration" Mike Strasik Program...

254

New Progress on Application of NEUI400kA Family High Energy ...  

Science Conference Proceedings (OSTI)

Presentation Title, New Progress on Application of NEUI400kA Family High Energy Efficiency Aluminum Reduction Pot (HEEP) Technology. Author(s)...

255

High Energy Density Anode Materials Based on SiO-SnCo/FeC for ...  

Science Conference Proceedings (OSTI)

Abstract Scope, High energy density anode material SiO-SnCoC is synthesized by mechanical alloying method and tested for lithium battery applications.

256

Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...  

Office of Science (SC) Website

Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIRSTTR...

257

New Materials for High-Energy, Long-Life Rechargeable Batteries...  

Office of Science (SC) Website

New Materials for High-Energy, Long-Life Rechargeable Batteries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding...

258

Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...  

Office of Science (SC) Website

Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives...

259

Large Scale Computing and Storage Requirements for High Energy Physics  

Science Conference Proceedings (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

Gerber, Richard A.; Wasserman, Harvey

2010-11-24T23:59:59.000Z

260

NIST Radiation Thermometry Short Course  

Science Conference Proceedings (OSTI)

NIST Radiation Thermometry Short Course. ... 2012 NIST Radiation Thermometry Short Course October 15-19, 2012 NIST Gaithersburg, Maryland. ...

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Polarimetric Radar at Attenuated Wavelength as a Hydrological Sensor  

Science Conference Proceedings (OSTI)

A new method for the estimation of the rain rate using a polarimetric radar at attenuated wavelengths is proposed. At attenuated wavelengths, the differential reflectivity for horizontal and vertical polarization, ZDR, is the addition of a term ...

Henri Sauvageot

1996-06-01T23:59:59.000Z

262

Heating Profiles Derived From Cm-wavelength Radar During TWP...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heating Profiles Derived From Cm-wavelength Radar During TWP-ICE Heating Profiles Derived From Cm-wavelength Radar During TWP-ICE Courtney Schumacher and Kaycee Frederick Courtney...

263

Multilevel interference lithography--fabricating sub-wavelength periodic nanostructures  

E-Print Network (OSTI)

Periodic nanostructures have many exciting applications, including high-energy spectroscopy, patterned magnetic media, photonic crystals, and templates for self-assembly. Interference lithography (IL) is an attractive ...

Chang, Chih-Hao, 1980-

2008-01-01T23:59:59.000Z

264

Detection of ultra high energy neutrinos with an underwater very large volume array of acoustic sensors: A simulation study  

E-Print Network (OSTI)

This thesis investigates the detection of ultra high energy (E > 1 EeV) cosmic neutrinos using acoustic sensors immersed in water. The method is based on the thermoacoustic model describing the production of microsecond bipolar acoustic pulses by neutrino-induced particle cascades. These cascades locally heat the medium which leads to rapid expansion and a short sonic pulse detectable in water with hydrophones over distances of several kilometres. This makes acoustic detection an approach complementary to todays optical Cerenkov and radio Cerenkov detectors, and could help to reduce the respective systematic uncertainties. In this work a complete simulation / reconstruction chain for a submarine acoustic neutrino telescope is developed, and the sensitivity of such a detector to a diffuse flux of ultra highenergy cosmic neutrinos is estimated.

Timo Karg

2006-08-15T23:59:59.000Z

265

Resolving The Moth at Millimeter Wavelengths  

E-Print Network (OSTI)

HD 61005, also known as "The Moth," is one of only a handful of debris disks that exhibit swept-back "wings" thought to be caused by interaction with the ambient interstellar medium (ISM). We present 1.3 mm Submillimeter Array (SMA) observations of the debris disk around HD 61005 at a spatial resolution of 1.9 arcsec that resolve the emission from large grains for the first time. The disk exhibits a double-peaked morphology at millimeter wavelengths, consistent with an optically thin ring viewed close to edge-on. To investigate the disk structure and the properties of the dust grains we simultaneously model the spatially resolved 1.3 mm visibilities and the unresolved spectral energy distribution. The temperatures indicated by the SED are consistent with expected temperatures for grains close to the blowout size located at radii commensurate with the millimeter and scattered light data. We also perform a visibility-domain analysis of the spatial distribution of millimeter-wavelength flux, incorporating constr...

Ricarte, Angelo; Hughes, A Meredith; Duchne, Gaspard; Williams, Jonathan P; Andrews, Sean M; Wilner, David J

2013-01-01T23:59:59.000Z

266

High Energy Physics Division semiannual report of research activities, July 1, 1996 - December 31, 1996  

Science Conference Proceedings (OSTI)

This report is divided into the following areas: (1) experimental research program; (2) theoretical research program; (3) accelerator research and development; (4) divisional computing activities; (5) publications; (6) colloquia and conference talks; (7) high energy physics community activities; and (7) High Energy Physics Division research personnel. Summaries are given for individual research programs for activities (1), (2) and (3).

Norem, J.; Rezmer, R.; Wagner, R.

1997-12-01T23:59:59.000Z

267

Limits on Very High Energy Emission from Gamma-Ray Bursts with the Milagro  

E-Print Network (OSTI)

Limits on Very High Energy Emission from Gamma-Ray Bursts with the Milagro Observatory Miguel F of Milagro allow it to detect very high energy (VHE) gamma-ray burst emission with much higher sensitivity gamma-ray burst satellites at keV to MeV energies. Even in the absence of a positive detection, VHE

California at Santa Cruz, University of

268

Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro  

E-Print Network (OSTI)

Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro P. M. Saz Parkinson 95064 Abstract. Gamma-Ray Bursts (GRBs) have been detected at GeV energies by EGRET and models predict for very high energy emission from a sample of 106 gamma-ray bursts (GRB) detected since the beginning

California at Santa Cruz, University of

269

CONFIRMING THE PRIMARILY SMOOTH STRUCTURE OF THE VEGA DEBRIS DISK AT MILLIMETER WAVELENGTHS  

SciTech Connect

Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with higher sensitivity has disputed the observed structure. We present three new millimeter-wavelength observations that help to resolve the puzzling and contradictory observations. We have observed the Vega system with the Submillimeter Array (SMA) at a wavelength of 880 {mu}m and an angular resolution of 5''; with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at a wavelength of 1.3 mm and an angular resolution of 5''; and with the Green Bank Telescope (GBT) at a wavelength of 3.3 mm and angular resolution of 10''. Despite high sensitivity and short baselines, we do not detect the Vega debris disk in either of the interferometric data sets (SMA and CARMA), which should be sensitive at high significance to clumpy structure based on previously reported observations. We obtain a marginal (3{sigma}) detection of disk emission in the GBT data; the spatial distribution of the emission is not well constrained. We analyze the observations in the context of several different models, demonstrating that the observations are consistent with a smooth, broad, axisymmetric disk with inner radius 20-100 AU and width {approx}> 50 AU. The interferometric data require that at least half of the 860 {mu}m emission detected by previous single-dish observations with the James Clerk Maxwell Telescope be distributed axisymmetrically, ruling out strong contributions from flux concentrations on spatial scales of {approx}<100 AU. These observations support recent results from the Plateau de Bure Interferometer indicating that previous detections of clumpy structure in the Vega debris disk were spurious.

Hughes, A. Meredith; Plambeck, Richard; Chiang, Eugene [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Wilner, David J.; Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mason, Brian [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Carpenter, John M. [California Institute of Technology, Department of Astronomy, MC 105-24, Pasadena, CA 91125 (United States); Chiang, Hsin-Fang [Institute for Astronomy, University of Hawaii, 640 North Aohoku Place, Hilo, HI 96720 (United States); Williams, Jonathan P. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hales, Antonio [Joint ALMA Observatory, Av. El Golf 40, Piso 18, Santiago (Chile); Su, Kate [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Dicker, Simon; Korngut, Phil; Devlin, Mark, E-mail: mhughes@astro.berkeley.edu [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States)

2012-05-01T23:59:59.000Z

270

Progress on High Energy Delayed Gamma Spectroscopy for Direct Assay of Pu in Spent Fuel  

Science Conference Proceedings (OSTI)

The direct, nondestructive measurement of fissile and fissionable isotopes in spent fuel is not yet possible. Current methods which infer plutonium content through proxy measurements and confirmatory burnup calculations have relatively large uncertainty and do not satisfy the desire for a measurement that is independent of operator declarations. We are currently exploring the High Energy Delayed Gamma Spectroscopy (HEDGS) technique for direct, independent Pu measurement in light-water reactor fuels. HEDGS exploits the unique distribution of fission-product nuclei from each of the fissile isotopes. Fission is stimulated in the sample with a source of interrogating neutrons, and delayed gamma rays from the decay of the short-lived fission-product nuclei are measured. The measured gamma spectrum from the unknown sample is then fit with a linear combination of gamma spectra from pure U-235, Pu-239, and Pu-241, as deduced from the known fission-product yield curves and decay properties of the fission-product nuclei, to determine the original proportions of these fissile isotopes. In previous work, we performed preliminary modeling studies of HEDGS on idealized single fuel pins of various burnups. Here, we report progress on extending our GEANT-based modeling tools to efficiently model full pressurized water reactor (PWR) fuel assemblies using variance reduction techniques specific to the background emissions and induced signal, as appropriate. Predicted performance for a nominal HEDGS instrument design, is reported for the assay of U-235, Pu-239 and Pu-241 in spent fuel assemblies ranging from fresh to 60 GWd/MTU in burnup.

Campbell, Luke W.; Smith, Leon E.

2010-08-11T23:59:59.000Z

271

Relics of Minijets amid Anisotropic Flows in High-energy Heavy-ion Collisions  

E-Print Network (OSTI)

Two dimensional low-$p_T$ dihadron correlations in azimuthal angle $\\phi$ and pseudo-rapidity $\\eta$ in high-energy heavy-ion collisions are investigated within both the HIJING Monte Carlo model and an event-by-event (3+1)D ideal hydrodynamic model. Without final-state interaction and collective expansion, dihadron correlations from HIJING simulations have a typical structure from minijets that contains a near-side two-dimensional peak and an away-side ridge along the $\\eta$-direction. In contrast, event-by-event (3+1)D ideal hydrodynamic simulations with fluctuating initial conditions from the HIJING+AMPT model produce a strong dihadron correlation that has an away-side as well as a near-side ridge. Relics of intrinsic dihadron correlation from minijets in the initial conditions still remain as superimposed on the two ridges. By varying initial conditions from HIJING+AMPT, we study effects of minijets, non-vanishing initial flow and longitudinal fluctuation on the final state dihadron correlations. With a large rapidity gap, one can exclude near-side correlations from minijet relics and dihadron correlations can be described by the superposition of harmonic flows up to the 6th order. When long-range correlations with a large rapidity gap are subtracted from short-range correlations with a small rapidity gap, the remaining near-side dihadron correlations result solely from relics of minijets. Low transverse momentum hadron yields per trigger ($p_T^{\\rm trig} <4$ GeV/$c$, $p_T^{\\rm asso}<2$ GeV/$c$) in central heavy-ion collisions are significantly enhanced over that in p+p collisions while widths in azimuthal angle remain the same, in qualitative agreement with experimental data.

Longgang Pang; Qun Wang; Xin-Nian Wang

2013-09-26T23:59:59.000Z

272

A Thousand Invisible Cords Binding Astronomy and High-Energy Physics  

E-Print Network (OSTI)

The traditional realm of astronomy is the observation and study of the largest objects in the Universe, while the traditional domain of high-energy physics is the study of the smallest things in nature. But these two sciences concerned with opposite ends of the size spectrum are, in Muir's words, bound fast by a thousand invisible cords that cannot be broken. In this essay I propose that collaborations of astronomers and high-energy physicists on common problems are beneficial for both fields, and that both astronomy and high-energy physics can advance by this close and still growing relationship. Dark matter and dark energy are two of the binding cords I will use to illustrate how collaborations of astronomers and high-energy physicists on large astronomical projects can be good for astronomy, and how discoveries in astronomy can guide high-energy physicists in their quest for understanding nature on the smallest scales. Of course, the fields have some different intellectual and collaborative traditions, neither of which is ideal. The cultures of the different fields cannot be judged to be right or wrong; they either work or they don't. When astronomers and high-energy physicists work together, the binding cords can either encourage or choke creativity. The challenge facing the astronomy and high-energy physics communities is to adopt the best traditions of both fields. It is up to us to choose wisely.

Rocky Kolb

2007-08-09T23:59:59.000Z

273

ShortShort--Term Energy Outlook Term Energy Outlook  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis ShortShort--Term Energy Outlook Term Energy Outlook Chart Gallery for Chart Gallery for ...

274

Meeting and Short Course Proposal  

Science Conference Proceedings (OSTI)

Share your knowledge and propose an AOCS Meeting or Short Course. Meeting and Short Course Proposal Meetings, Conferences and Short Courses aocs AOCS Annual Meeting & Expo Call for Papers Conferences Congress control dispersions edible exhibit exp

275

C. Alan Short  

NLE Websites -- All DOE Office Websites (Extended Search)

Alan Short Alan Short Professor of Architecture University of Cambridge cas64@cam.ac.uk This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not otherwise associated with Lawrence Berkeley National Laboratory, unless specifically identified as a Berkeley Lab staff member. C. Alan Short's practice has also won the first 'High Architecture, Low Energy Award' (Architecture Today) 1995; 'Green Building of the Year' (The Independent) 1995; H.J. Dyos Award 1996, 'Building of the Year Award' (Building Magazine) 2000, Society of College, National and University Librarians (SCONUL) 'Best Academic Library Award' 1998-2003 and also in 2008; CIBSE 'Project of the Year' 2003 & 2004; RIBA Awards 1996, 2000.

276

Electron-beam-controlled gas lasers: discussion from the engineering viewpoint. Part II. Problems in the electrical design of very high energy systems  

SciTech Connect

Some problem areas in the design of very-high-energy electronbeam- controlled short-pulse gas lasers are discussed. One of the prime areas of interest is the high-voltage pulse generators for driving the electron gun and gas pumping. The use of pulse-forming networks for improving energy-transfer efficiency is discussed. The use of thermionic cathode devices will require a large ac power installation. The properties of alternate electron sources (cold cathode and plasma cathode devices) are reviewed. The impact of laser beam energy density limitations on system geometry and electrical design are discussed last. (auth)

Riepe, K.B.; Stapleton, R.E.

1973-01-01T23:59:59.000Z

277

Neutronics studies for a long-wavelength target station at SNS.  

DOE Green Energy (OSTI)

The Spallation Neutron Source (SNS), under construction at Oak Ridge National Laboratory, will be the premier facility for neutron scattering studies in the United States. From the outset the SNS can achieve additional flexibility and accommodate a broader range of scientific investigation than would be possible with only the High Power Target Station by utilizing two target stations, each operating under a separate set of conditions and optimized for a certain class of instruments. A second target station, termed the Long-Wavelength Target Station (LWTS), would operate at a lower pulse rate (e.g., 10 vs. 60 Hz) and utilize very cold moderators to emphasize low-energy (long wavelength) neutrons. The LWTS concept discussed here obtains the highest low-energy fluxes possible for neutron scattering instruments by using a heavy-water-cooled solid tungsten target with two moderators in slab geometry and one in a front wing position. The primary focus has been on solid methane moderators, with liquid methane and hydrogen also considered. We used MCNPX to conduct a series of optimization and sensitivity studies to help determine the optimal neutronic parameters of the LWTS. We compared different options based on the thermal and epithermal fluxes as determined by fitting the spectral intensity of the moderators with a Maxwellian peak and a modified Westcott function. The primary parameters are the moderator positions and composition and the target size. We report results for spectral intensity, pulse shapes, high-energy neutron emission, heating profiles in the target, and target activation.

Micklich, B. J.; Iverson, E. B.; Carpenter, J. M.

2001-09-21T23:59:59.000Z

278

INTEGRAL observations of the blazar Mrk 421 in outburst (Results of a multi-wavelength campaign)  

E-Print Network (OSTI)

We report the results of a multi-wavelength campaign on the blazar Mrk 421 during outburst. We observed four strong flares at X-ray energies that were not seen at other wavelengths (partially because of missing data). From the fastest rise in the X-rays, an upper limit could be derived on the extension of the emission region. A time lag between high-energy and low-energy X-rays was observed, which allowed an estimation of the magnetic-field strength. The spectral analysis of the X-rays revealed a slight spectral hardening of the low-energy (3 - 43 keV) spectral index. The hardness-ratio analysis of the Swift-XRT (0.2 - 10 keV) data indicated a small correlation with the intensity; i. e., a hard-to-soft evolution was observed. At the energies of IBIS/ISGRI (20 - 150 keV), such correlations are less obvious. A multiwavelength spectrum was composed and the X-ray and bolometric luminosities are calculated.

G. G. Lichti; E. Bottacini; M. Ajello; P. Charlot; W. Collmar; A. Falcone; D. Horan; S. Huber; A. von Kienlin; A. Lhteenmki; E. Lindfors; D. Morris; K. Nilsson; D. Petry; M. Rger; A. Sillanp; F. Spanier; M. Tornikoski

2008-05-16T23:59:59.000Z

279

THE AFTERGLOW AND ENVIRONMENT OF THE SHORT GRB 111117A  

Science Conference Proceedings (OSTI)

We present multi-wavelength observations of the afterglow of the short GRB 111117A, and follow-up observations of its host galaxy. From rapid optical and radio observations, we place limits of r {approx}> 25.5 mag at {delta}t Almost-Equal-To 0.55 days and F{sub {nu}}(5.8 GHz) {approx}light curve at {delta}t {approx} 3-10 Degree-Sign (depending on the circumburst density). We conclude that Chandra observations of short GRBs are effective at determining precise positions and robust host galaxy associations in the absence of optical and radio detections.

Margutti, R.; Berger, E.; Fong, W.; Zauderer, B. A.; Soderberg, A. M.; Milisavljevic, D.; Sanders, N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cenko, S. B. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Greiner, J. [Max-Planck-Institut fuer Extraterrestrische Physik, D-85740 Garching (Germany); Cucchiara, A. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Rossi, A.; Klose, S.; Schmidl, S. [Thueringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany)

2012-09-01T23:59:59.000Z

280

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration Independent Statistics & Analysis Short Short- -Term Energy Outlook Term Energy Outlook Chart Gallery for Chart Gallery for November...

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE Office of  

Office of Science (SC) Website

Ion Sources for High Energy Ion Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Ion Sources for High Energy Ion Implantation at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Ion Sources for High Energy Ion Implantation Developed at: Brookhaven National Laboratory, New York; High Current Electronic

282

High Energy Physics Advisory Panel (HEPAP) Homepage | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

HEPAP Home HEPAP Home High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Members .pdf file (20KB) Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors HEP Home Print Text Size: A A A RSS Feeds FeedbackShare Page P5 Planning The high energy physics research community is engaged in developing a ten-year plan for U.S. particle physics. To learn more about the so-called "P5" process, and to stay abreast of meetings, please click on the following external link: Particle Physics Project Prioritization Panel (P5) External link The High Energy Physics Advisory Panel (HEPAP) has advised the Federal Government on the national program in experimental and theoretical high energy physics (HEP) research since its inception in 1967. Since October 2000, the Panel now has joint ownership and continues to be chartered by

283

Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II  

SciTech Connect

This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

Silver, R.N. (comp.)

1984-12-01T23:59:59.000Z

284

Climate Change: Anticipated Effects on High-Energy Laser Weapon Systems in Maritime Environments  

Science Conference Proceedings (OSTI)

This study quantifies the potential impacts on ship-defense high-energy-laser (HEL) performance due to atmospheric effects in the marine boundary layer driven by recent observations and analysis of worldwide sea surface temperatures (SSTs). The ...

Steven T. Fiorino; Robb M. Randall; Richard J. Bartell; Adam D. Downs; Peter C. Chu; C. W. Fan

2011-01-01T23:59:59.000Z

285

Detecting High-Energy Emission from Gamma-Ray Bursts with EGRET and GLAST.  

E-Print Network (OSTI)

??The research described in this dissertation explores the detection of high-energy emission from gamma-ray bursts (GRBs) with EGRET and GLAST. Data from the EGRET experiment (more)

Wren, David Nathan

2005-01-01T23:59:59.000Z

286

Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics  

E-Print Network (OSTI)

The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system ...

Pilawa-Podgurski, R. C. N.

287

Multiplication of high-energy electrons in irradiated materials studied using the Boltzmann kinetic equation  

SciTech Connect

Processes involved in the formation of electron collision cascades created by nonrelativistic high-energy electrons, which can develop in materials exposed to electron and gamma radiation fluxes, have been considered. The problem is solved using the Boltzmann kinetic equation for high-energy electrons moving in a medium. A model scattering indicatrix is constructed for this equation with an arbitrary potential of interaction between colliding particles. Using this scattering indicatrix, the distribution of the particle energies is obtained. Based on this energy distribution (with an arbitrary interparticle interaction potential), a cascade function is found that describes the multiplication of knock-out electrons (electron cascade) generated when a high-energy electron with a certain energy is scattered on the electron subsystem of the irradiated material. The cascade function has been calculated for the Coulomb potential of the interaction between a high-energy electron and atomic-shell electrons.

Ryazanov, A. I., E-mail: ryazanoff@eomail.ru; Mogilyuk, T. I.; Semenov, E. V. [National Research Centre Kurchatov Institute (Russian Federation)

2012-04-15T23:59:59.000Z

288

4D-HD for high energy density plasmas: shedding light into rapidly...  

NLE Websites -- All DOE Office Websites (Extended Search)

D-HD for high energy density plasmas: shedding light into rapidly changing, opaque plasmas Wednesday, July 24, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Marta Fajardo,...

289

CoNiFe Alloy Powder Synthesis by High Energy Milling  

Science Conference Proceedings (OSTI)

CoNiFe alloy powder was synthesized by high energy milling of mixtures of Co, Ni and Fe powder as a bulk processing method for producing powder. A milling...

290

High-Energy Synchrotron X-Ray Diffraction for In-Situ Study of ...  

Science Conference Proceedings (OSTI)

At the APS high-energy x-ray beamline 11-ID-C, we have employed 115 keV ... ( Use of the Advanced Photon Source was supported by the U. S. Department of...

291

The energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos  

E-Print Network (OSTI)

We present a semi-analytic calculation of the tau-lepton flux emerging from the Earth, induced by the incident high energy neutrinos interacting inside the Earth for $10^{5} \\leq E_{\

J. -J. Tseng; T. -W. Yeh; H. Athar; M. A. Huang; F. -F. Lee; G. -L. Lin

2003-05-27T23:59:59.000Z

292

Visible-wavelength semiconductor lasers and arrays  

DOE Patents (OSTI)

A visible semiconductor laser. The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1.lambda.) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%.

Schneider, Jr., Richard P. (Albuquerque, NM); Crawford, Mary H. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

293

Visible-wavelength semiconductor lasers and arrays  

DOE Patents (OSTI)

The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1{lambda}) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%. 5 figs.

Schneider, R.P. Jr.; Crawford, M.H.

1996-09-17T23:59:59.000Z

294

High-energy tritium beams as current drivers in tokamak reactors  

Science Conference Proceedings (OSTI)

The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams.

Mikkelsen, D.R.; Grisham, L.R.

1983-04-01T23:59:59.000Z

295

Budget projections 1990, 1991, and 1992 for research in high energy nuclear physics  

Science Conference Proceedings (OSTI)

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. The committee members are: G.W. Brandenburg, M. Franklin, S. Geer, R. J. Glauber, K. Kinoshita, F. M. Pipkin, R. F. Schwitters, K. Strauch, M. E. Law, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, R.F.Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. Professor Schwitters is currently on leave of absence as Director of the Superconducting Super Collider project. In the fall of 1990 Professor G. Feldman, who is currently at SLAC, will join the Harvard faculty and become a principal investigator. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared equally by the experimental groups.

Not Available

1990-05-01T23:59:59.000Z

296

Budget projections - 1991 through 1996 for research in high energy physics  

Science Conference Proceedings (OSTI)

This research program in high energy physics is carried out under the general supervision of a committee which is composed of G.W. Brandenburg, G.J. Feldman, M.E. Franklin, R.J. Glauber, K. Kinoshita, F.M. Pipkin, K. Strauch, R. Wilson, and H. Yamamoto. Professor G.J. Feldman currently serves as chair of this committee. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. In the fall of 1991 S. Mishra will join this committee. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting thirteen research students. In addition, undergraduate students work in projects at HEPL during the academic year and over summers. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared proportionally by the experimental groups. Harvard financially supports this high energy physics research program in many ways.

Not Available

1991-05-01T23:59:59.000Z

297

Elementary particle physics and high energy phenomena. Progress report for FY92  

Science Conference Proceedings (OSTI)

This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

1992-06-01T23:59:59.000Z

298

Velocity distribution of high-energy particles and the solar neutrino problem  

E-Print Network (OSTI)

High energy infers high velocity and high velocity is a concept of special relativity. The Maxwellian velocity distribution is corrected to be consistent with special relativity. The corrected distribution reduces to the Maxwellian distribution for small velocities, contains a relatively depleted high-energy tail and vanishes at the velocity of light. This corrected distribution will lower solar neutrino fluxes and change solar neutrino energy spectra but keep solar sound speeds.

Jian-Miin Liu

2001-08-18T23:59:59.000Z

299

Study of high energy ion loss during hydrogen minority heating in TFTR  

DOE Green Energy (OSTI)

High energy ion loss during hydrogen minority ICRF heating is measured and compared with the loss of the D-D fusion products. During H minority heating a relatively large loss of high energy ions is observed at 45{degrees} below the outer midplane, with or without simultaneous NBI heating. This increase is most likely due to a loss of the minority tail protons, a possible model for this process is described.

Park, J.; Zweben, S.J.

1994-03-01T23:59:59.000Z

300

Woltjer-Taylor State Without Taylor's Conjecture - Plasma Relaxation at all Wavelengths  

SciTech Connect

In astrophysical and laboratory plasmas, it has been discovered that plasmas relax towards the well-known Woltjer-Taylor state specified by ? x B = ?B for a constant ? . To explain how such a relaxed state is reached, Taylor developed his famous relaxation theory based on the conjecture that the relaxation is dominated by short wavelength fluctuations. However, there is no conclusive experimental and numerical evidence to support Taylor's conjecture. A new theory is developed, which predicts that the system will evolve towards the Woltjer-Taylor state for an arbitrary fluctuation spectrum.

Hong Qin,Wandong Liu, Hong Li, and Jonathan Squire

2012-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Molecular Cell Short Article  

E-Print Network (OSTI)

Molecular Cell Short Article Nucleosome Organization Affects the Sensitivity of Gene Expression to Promoter Mutations Gil Hornung,1 Moshe Oren,2 and Naama Barkai1,* 1Department of Molecular Genetics 2Department of Molecular Cell Biology Weizmann Institute of Science, Rehovot, Israel *Correspondence: naama

Barkai, Naama

302

Jayasumana Performance tradeoffs of shared limited range wavelength conversion schemes  

E-Print Network (OSTI)

Abstract Performance of all-optical switches that employee different types of limited-range wavelength converters (LRWC) are investigated. Previous work has shown that there is a remarkable improvement in blocking probability while using LRWC over full range conversion, but has not considered the coincident effect of conversion resources sharing. We consider the case where an incoming wavelength can be converted to a range of outgoing wavelengths, where d is the range of conversion. The simulation results demonstrate that the performance improvement obtained by full range wavelength conversion can almost be achieved by using a fractional ranged ranged LRWC. I.

Fahad A. Al-zahrani; Abdulgader A. Habiballa; Ayman G. Fayoumi; Anura P. Jayasumana

2005-01-01T23:59:59.000Z

303

Dual-hop LANs using station wavelength routing  

Science Conference Proceedings (OSTI)

Abstract: In future WDM local area networks, the number of available wavelengths may initially be fairly modest. As a result, spatial reuse is required in order to obtain designs which will support a reasonable number of stations. A dual-hop architecture ... Keywords: ATM buffer/switch components, WDM local area networks, all-optical approaches, buffering stage, control strategies, dual-hop LAN, dual-hop architecture, electronic implementations, hybrid electro-optic designs, local optical network, multiple wavelength sharing, optical fibre LAN, spatial reuse, station wavelength routing, system performance, traffic models, wavelength agility

1995-09-01T23:59:59.000Z

304

Argonne National Laboratory, High Energy Physics Division, semiannual report of research activities, July 1, 1989--December 31, 1989  

Science Conference Proceedings (OSTI)

This report discusses research being conducted at the Argonne National Laboratory in the following areas: Experimental High Energy Physics; Theoretical High Energy Physics; Experimental Facilities Research; Accelerator Research and Development; and SSC Detector Research and Development.

Not Available

1989-01-01T23:59:59.000Z

305

A detailed calibration of a stack monitor used in the measurement of airborne radionuclides at a high energy proton accelerator  

E-Print Network (OSTI)

A detailed calibration of a stack monitor used in the measurement of airborne radionuclides at a high energy proton accelerator

Vaziri, K; Cossairt, J D; Bhnlein, D J; Elwyn, A J

1996-01-01T23:59:59.000Z

306

FLUKA calculations of radionuclides, star, and neutron fluence in soil around high-energy electron and proton linear accelerators  

E-Print Network (OSTI)

FLUKA calculations of radionuclides, star, and neutron fluence in soil around high-energy electron and proton linear accelerators

Puryear, A; Rokni, S H

2002-01-01T23:59:59.000Z

307

XOP, a fast versatile processor, as a building block for parallel processing in high energy physics experiments  

E-Print Network (OSTI)

XOP, a fast versatile processor, as a building block for parallel processing in high energy physics experiments

Bhler, P; Lingjaerde, Tor; Ljuslin, C; Van Praag, A; Werner, P

1986-01-01T23:59:59.000Z

308

The effect of a short-wavelength mode on the evolution of a long-wavelength perturbation driven by a strong blast wave  

Science Conference Proceedings (OSTI)

Shock-accelerated material interfaces are potentially unstable to both the Richtmyer-Meshkov and Rayleigh-Taylor (RT) instabilities. Shear that develops along with these instabilities in turn drives the Kelvin-Helmholtz instability. When driven by strong shocks, the evolution and interaction of these instabilities is further complicated by compressibility effects. This paper details a computational study of the formation of jets at strongly driven hydrodynamically unstable interfaces, and the interaction of these jets with one another and with developing spikes and bubbles. This provides a nonlinear spike-spike and spike-bubble interaction mechanism that can have a significant impact on the large-scale characteristics of the mixing layer. These interactions result in sensitivity to the initial perturbation spectrum, including the relative phases of the various modes, that persists long into the nonlinear phase of instability evolution. Implications for instability growth rates, the bubble merger process, and the degree of mix in the layer are described. Results from relevant deceleration RT experiments, performed on OMEGA [J. M. Soures et al., Phys. Plasmas 5, 2108 (1996)], are shown to demonstrate some of these effects.

Miles, A.R.; Edwards, M.J.; Blue, B.; Hansen, J.F.; Robey, H.F.; Drake, R.P.; Kuranz, C.; Leibrandt, D.R. [Lawrence Livermore National Laboratory, Livermore, California 94550 and University of Maryland, College Park, Maryland 20741 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); University of Michigan, 2455 Hayward Street, Ann Arbor, Michigan 48109 (United States)

2004-12-01T23:59:59.000Z

309

The Effect of a Short Wavelength Mode on the Nonlinear Evolution of a Long-Wavelength Perturbation Driven by a Strong Blast Wave  

Science Conference Proceedings (OSTI)

We present a computational study of the formation of jets at strongly driven hydrodynamically unstable interfaces, and the interaction of these jets with one another and with developing spikes and bubbles. This provides a nonlinear spike-spike and spike-bubble interaction mechanism that can have a significant impact on the large-scale characteristics of the mixing layer. These interactions result in sensitivity to the initial perturbation spectrum, including the relative phases of the various modes, that persists long into the nonlinear phase of instability evolution.

Miles, A; Edwards, J; Robey, H F

2003-08-25T23:59:59.000Z

310

The effect of a short wavelength mode on the evolution of a long wavelength perturbation driven by a strong blast wave  

Science Conference Proceedings (OSTI)

Shock-accelerated material interfaces are potentially unstable to both the Richtmyer-Meshkov and Rayleigh-Taylor instabilities. Shear that develops along with these instabilities in turn drives the Kelvin-Helmholtz instability. When driven by strong shocks, the evolution and interaction of these instabilities is further complicated by compressibility effects. In this paper, we present a computational study of the formation of jets at strongly driven hydrodynamically unstable interfaces, and the interaction of these jets with one another and with developing spikes and bubbles. This provides a nonlinear spike-spike and spike-bubble interaction mechanism that can have a significant impact on the large-scale characteristics of the mixing layer. These interactions result in sensitivity to the initial perturbation spectrum, including the relative phases of the various modes, that persists long into the nonlinear phase of instability evolution. We describe implications for instability growth rates, the bubble merger process, and the degree of mix in the layer. Finally, we consider results from relevant deceleration RT experiments, performed on OMEGA, to demonstrate some of these effects.

Miles, A R; Edwards, M; Blue, B; Hansen, J F; Robey, H F; Drake, R P; Kuranz, C; Leibrandt, D R

2004-03-16T23:59:59.000Z

311

Budget projections 1989, 1990, and 1991 for research in high energy nuclear physics  

Science Conference Proceedings (OSTI)

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. The committee members are: G.W. Brandenburg, S. Geer, R.J. Glauber, K. Kinoshita, R. Nickerson, F.M. Pipkin, R.F. Schwitters, M. Shapiro, K. Strauch, R. Vanelli, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, R.F. Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. Professor Schwitters is currently on leave of absence as Director of the Superconducting Super Collider project. In the fall of 1990 Professor G. Feldman, who is currently at SLAC, will join the Harvard faculty and become a principal investigator. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting 15 research students. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared equally by the experimental groups.

Not Available

1989-05-01T23:59:59.000Z

312

Budget projections 1988, 1989, and 1990 for research in high energy nuclear physics  

Science Conference Proceedings (OSTI)

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. Professor R.F. Schwitters is currently chairman of this committee. The committee members are: G.W. Brandenburg, S. Geer, R.J. Glauber, K. Kinoshita, R. Nickerson, F.M. Pipkin, J. Rohlf, C. Rubbia, R.F. Schwitters, M. Shapiro, K. Strauch, R. Vanelli, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, C. Rubbia, R.F. Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg (Associate Director, High Energy Physics Laboratory) administers the High Energy Physics Laboratory and is in charge of the Computer Facility. Professor Rubbia is currently on leave of absence and will leave Harvard on December 31, 1988 to become the Director General of CERN. A reduced UA1 effort will remain at Harvard after Professor Rubbia`s departure. Harvard is planning to make one or two senior faculty appointments in experimental high energy physics sometime in 1988-89. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting 15 research students. In addition, undergraduate students work in projects at HEPL during the academic year and over summers. Many of these students have gone on to graduate school studying physics at Harvard and elsewhere.

Not Available

1988-04-01T23:59:59.000Z

313

Wavelength routing of uniform instances in all-optical rings  

Science Conference Proceedings (OSTI)

We consider the problem of routing uniform communication instances in switched optical rings that use wavelength-division multiplexing technology. A communication instance is called uniform if it consists exactly of all pairs of nodes in the graph whose ... Keywords: Edge load, Optical ring, Routing, Uniform instance, WDM, Wavelength index

Lata Narayanan; Jaroslav Opatrny

2005-12-01T23:59:59.000Z

314

Systematic wavelength selection for improved multivariate spectral analysis  

DOE Patents (OSTI)

Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

Thomas, Edward V. (2828 Georgia NE., Albuquerque, NM 87110); Robinson, Mark R. (1603 Solano NE., Albuquerque, NM 87110); Haaland, David M. (809 Richmond Dr. SE., Albuquerque, NM 87106)

1995-01-01T23:59:59.000Z

315

Polarization-independent optical wavelength filter for channel dropping applications  

DOE Patents (OSTI)

The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division-multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required.

Deri, Robert J. (Pleasanton, CA); Patterson, Frank (Livermore, CA)

1996-01-01T23:59:59.000Z

316

Polarization-independent optical wavelength filter for channel dropping applications  

DOE Patents (OSTI)

The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required. 14 figs.

Deri, R.J.; Patterson, F.

1996-05-07T23:59:59.000Z

317

High Energy Physics Advisory Panel August 2012 Meeting | U.S. DOE Office of  

Office of Science (SC) Website

High Energy Physics Advisory Panel August 2012 Meeting High Energy Physics Advisory Panel August 2012 Meeting High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Previous Meetings Members .pdf file (20KB) Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors HEP Home Meetings High Energy Physics Advisory Panel August 2012 Meeting Print Text Size: A A A RSS Feeds FeedbackShare Page Agenda High Energy Physics Advisory Panel Hilton Hotel 1750 Rockville Pike Rockville, Maryland August 27-28, 2012 Monday, August 27, 2012 NEWS FROM THE AGENCIES 9:00 a.m. DOE News .pdf file (2.7MB) J. Siegrist 9:30 a.m. Discussion 9:45 a.m. NSF News .pdf file (1.3MB) J. Dehmer 10:05 a.m. Discussion 10:20 a.m. BREAK ENERGY FRONTIER - LHC 10:50 a.m. Higgs Discovery - ATLAS .pdf file (10.1MB) F. Gianotti 11:30 a.m. Higgs Discovery - CMS .pdf file (7.6MB) D. Marlow

318

Summary of the 9th international symposium on high energy spin-physics  

Science Conference Proceedings (OSTI)

Summarizing an international conference in high energy spin physics is never an easy task, because of the wide-ranging subjects in physics and technology that are involved. I have chosen to organize the topics of this conference into three broad categories relating to spin; intrinsic spin; composite spin; and spin, the experimental tool. In the first category, I will briefly revisit some historical and recent developments to set a background. In the second category, composite spin, I will discuss the status and developments in several areas, including magnetic moments of baryons, hyperon polarization in high energy high p {perpendicular} production, transverse polarization and asymmetries from transversely polarized targets in high p {perpendicular} scattering, spin structure of the proton, and the Bjorken sum rule. In the third category, I will discuss the steady, and at times rapid, progress in spin technology. In this part I include recent progress in high energy facilities, and comment on the highlights of the Workshops.

Prescott, C.Y.

1990-11-01T23:59:59.000Z

319

Extremely High Energy Neutrinos, Neutrino Hot Dark Matter, and the Highest Energy Cosmic Rays  

E-Print Network (OSTI)

Extremely high energy (up to 10**(22) eV) cosmic neutrino beams initiate high energy particle cascades in the background of relic neutrinos from the Big Bang. We perform numerical calculations to show that such cascades could contribute more than 10% to the observed cosmic ray flux above 10**(19) eV if neutrinos have masses in the electron volt range. The required intensity of primary neutrinos could be consistent with astrophysical models for their production if the maximum neutrino energy reaches to 10**(22) eV and the massive neutrino dark matter is locally clustered. Future observations of ultra high energy cosmic rays will lead to an indirect but practical search for neutrino dark matter.

Shigeru Yoshida; Guenter Sigl; Sangjin Lee

1998-08-14T23:59:59.000Z

320

Gluon Regge trajectory at two loops from Lipatov's high energy effective action  

E-Print Network (OSTI)

We present the derivation of the two-loop gluon Regge trajectory using Lipatov's high energy effective action and a direct evaluation of Feynman diagrams. Using a gauge invariant regularization of high energy divergences by deforming the light-cone vectors of the effective action, we determine the two-loop self-energy of the reggeized gluon, after computing the master integrals involved using the Mellin-Barnes representations technique. The self-energy is further matched to QCD through a recently proposed subtraction prescription. The Regge trajectory of the gluon is then defined through renormalization of the reggeized gluon propagator with respect to high energy divergences. Our result is in agreement with previous computations in the literature, providing a non-trivial test of the effective action and the proposed subtraction and renormalization framework.

Chachamis, G; Madrigal, J D; Vera, A Sabio

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High-Energy, Low-Frequency Risk to the North American Bulk Power System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Energy, Low-Frequency Risk to the North American Bulk Power High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the U.S. Department of Energy's November 2009 Workshop. The North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) partnered in July of 2009 on an effort to address High-Impact, Low-Frequency risks to the North American bulk power system. In August, NERC formed a steering committee made up of industry and risk experts to lead the development of an initial workshop on the subject, chaired by Scott Moore, VP Transmission System & Region Operations for American Electric Power, and Robert Stephan, Former Assistant Secretary for

322

Discovery of two candidate pulsar wind nebulae in very-high-energy gamma rays  

E-Print Network (OSTI)

We present the discovery of two very-high-energy gamma-ray sources in an ongoing systematic search for emission above 100 GeV from pulsar wind nebulae in survey data from the H.E.S.S. telescope array. Imaging Atmospheric Cherenkov Telescopes are ideal tools for searching for extended emission from pulsar wind nebulae in the very-high-energy regime. H.E.S.S., with its large field of view of 5 degrees and high sensitivity, gives new prospects for the search for these objects. An ongoing systematic search for very-high-energy emission from energetic pulsars over the region of the Galactic plane between -60 degrees wind nebulae, HESS J1718-385 and HESS J1809-193. H.E.S.S. has proven to be a suitable instrument for pulsar wind nebula searches.

H. E. S. S. Collaboration; :; F. Aharonian

2007-05-11T23:59:59.000Z

323

Apparatus for shifting the wavelength of light. [US patent application  

DOE Patents (OSTI)

This invention, which resulted from a contract with the United States Department of Energy, relates to a means for shifting the wavelength of light and, more particularly, to a means for changing the wavelength of a laser beam so that the beam can be effectively used in a process for separation uranium isotopes. As disclosed in US Patent 3,940,615, /sup 235/U can be separated from /sup 238/U by selectively ionizing the /sup 235/U isotope in a vapor containing both /sup 235/U and /sup 238/U, this ionization being effected by passing a laser beam having a proper frequency (or wavelength) through the vapor. Doppler shifting of the wavelength of a laser beam to obtain an optimal light wavelength for ionizing /sup 235/U in such a separation process has been proposed heretofore. However, the applicants are aware of no apparatus for Doppler shifting of the wavelength of light that has the features or advantages of apparatus constructed in accordance with the principles of their invention. A light beam is reflected back and forth between a rotating body having a retroreflection corner at opposite ends thereof and a fixed mirror to change the wavelength of the light beam by the Doppler effect.

McCulla, W.H.; Allen, J.D. Jr.

1982-01-29T23:59:59.000Z

324

Very-high-energy gamma radiation associated with the unshocked wind of the Crab pulsar  

E-Print Network (OSTI)

We show that the relativistic wind in the Crab pulsar, which is commonly thought to be invisible in the region upstream of the termination shock at R wind that is not accessible at other wavelengths.

S. V. Bogovalov; F. A. Aharonian

2000-03-11T23:59:59.000Z

325

Analysis of nucleus-nucleus collisions at high energies and random matrix theory  

Science Conference Proceedings (OSTI)

We propose a novel statistical approach to the analysis of experimental data obtained in nucleus-nucleus collisions at high energies which borrows from methods developed within the context of random matrix theory. It is applied to the detection of correlations in a system of secondary particles. We find good agreement between the results obtained in this way and a standard analysis based on the method of effective mass spectra and two-pair correlation function often used in high energy physics. The method introduced here is free from unwanted background contributions.

Nazmitdinov, R. G. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Shahaliev, E. I. [High Energy Physics Laboratory, Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Institute of Radiation Problems, 370143 Baku (Azerbaijan); Suleymanov, M. K. [High Energy Physics Laboratory, Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Tomsovic, S. [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany)

2009-05-15T23:59:59.000Z

326

ESS 2012 Peer Review - Novel High Energy Density Dielectrics for Scalable Capacitor Needs - Geoff Brennecka, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel High Energy Density Novel High Energy Density Dielectrics for Scalable Capacitor Needs 27 September 2012 Geoff Brennecka The author gratefully acknowledges the support of Dr. Imre Gyuk and the Department of Energy's Office of Electricity Delivery and Energy Reliability. 400nF 2000V Project  Currently-available capacitor options force undesired choices:  (power, capacitance) vs. reliability  performance vs. (temperature, voltage) stability  Capacitors are often not deployed where they could be beneficial, or are deployed and fail (or are severely derated)  Stationary storage and related applications can realize significant value via improved capacitor performance and reliability  Improve reliability and efficiency of high temperature power electronics

327

Effect of high-energy neutral particles on extreme ultraviolet spectroscopy in large helical device  

Science Conference Proceedings (OSTI)

Spectra measured by an extreme ultraviolet (EUV) spectrometer frequently suffer large spike noise when Large Helical Device is operated in low-density range ({order to examine the effect of NBI, a carbon filter with thickness of 150 nm was installed in the EUV spectrometer. As a result, the spike noise was reduced by an order of magnitude. It is experimentally verified that the spike noise is caused by escaping high-energy neutral particles resulting from the circulating high-energy hydrogen ions borne from NBI.

Dong Chunfeng; Sakaue, Hiroyuki [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Morita, Shigeru; Tokitani, Masayuki; Goto, Motoshi [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Wang, Erhui [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Zushi, Hideki [RIAM, Kyushu University, Kasuga 816-8580, Fukuoka (Japan)

2012-10-15T23:59:59.000Z

328

Analysis of nucleus-nucleus collisions at high energies and Random Matrix Theory  

E-Print Network (OSTI)

We propose a novel statistical approach to the analysis of experimental data obtained in nucleus-nucleus collisions at high energies which borrows from methods developed within the context of Random Matrix Theory. It is applied to the detection of correlations in momentum distributions of emitted particles. We find good agreement between the results obtained in this way and a standard analysis based on the method of effective mass spectra and two-pair correlation function often used in high energy physics. The method introduced here is free from unwanted background contributions.

R. G. Nazmitdinov; E. I. Shahaliev; M. K. Suleymanov; S. Tomsovic

2008-04-07T23:59:59.000Z

329

Optical amplification at the 1.31 wavelength  

DOE Patents (OSTI)

An optical amplifier operating at the 1.31 .mu.m wavelength for use in such applications as telecommunications, cable television, and computer systems. An optical fiber or other waveguide device is doped with both Tm.sup.3+ and Pr.sup.3+ ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm.sup.3+ ions to the Pr.sup.3+ ions, causing the Pr.sup.3+ ions to amplify at a wavelength of 1.31

Cockroft, Nigel J. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

330

Rational choices for the wavelengths of a two color interferometer  

Science Conference Proceedings (OSTI)

If in a two color interferometer for plasma density measurements, the two wavelengths are chosen to have a ratio that is a rational number, and if the signals from each of the wavelengths are multiplied in frequency by the appropriate integer of the rational number and then heterodyned together, the resultant signal will have all effects of component motion nulled out. A phase measurement of this signal will have only plasma density information in it. With CO{sub 2} lasers, it is possible to find suitable wavelength pairs which are close enough to rational numbers to produce an improvement of about 100 in density resolution, compared to standard two color interferometers.

Jobes, F.C.

1995-07-01T23:59:59.000Z

331

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration | Short-Term Energy Outlook July 2013 1 July 2013 Short-Term Energy Outlook (STEO) Highlights The U.S. Energy Information ...

332

NIF sets records for target shots, wavelength changes | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NIF sets records for target shots, wavelength changes NIF sets records for target shots,...

333

Antenna Beam Patterns and Dual-Wavelength Processing  

Science Conference Proceedings (OSTI)

The detection of hail with a dual-wavelength radar system can succeed only when the two essentially independent radars used are correctly calibrated, when attenuation is correctly handled, and when the radars sample the same volume in space. The ...

Ronald E. Rinehart; John D. Tuttle

1982-12-01T23:59:59.000Z

334

Wavelength Dependence of Aerosol Extinction Coefficient for Stratospheric Aerosols  

Science Conference Proceedings (OSTI)

A simple empirical formula for the wavelength dependence of the aerosol extinction coefficient is proposed. The relationship between the constants in the formula and the variable parameter in the aerosol size distribution is explicitly expressed. ...

Glenn K. Yue

1986-11-01T23:59:59.000Z

335

Proceedings of the 1992 workshops on high-energy physics with colliding beams. Volume 1, Search for new phenomena at colliding-beam facilities  

SciTech Connect

This report contains brief papers and viewgraphs on high energy topics like: supersymmetry; new gauge bosons; and new high energy colliders.

Rogers, J. [ed.

1992-12-31T23:59:59.000Z

336

Search for ultra-high energy photons using Telescope Array surface detector  

SciTech Connect

We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive an upper limit on the absolute flux of primary photons with energies above 10{sup 19} eV.

Rubtsov, G. I.; Troitsky, S. V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, 117312 (Russian Federation); Ivanov, D.; Stokes, B. T. [Rutgers - State University of New Jersey, Piscataway (United States); Thomson, G. B. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States)

2011-09-22T23:59:59.000Z

337

Massive Stars in Colliding Wind Systems: the High-Energy Gamma-Ray Perspective  

SciTech Connect

Colliding winds of massive stars in binary systems are viable candidates for non-thermal high-energy photon emission. Long since, coincidences between massive star systems/associations and {gamma}-ray sources have been noted. Now, with the sensitivity of the Fermi Gamma Ray Observatory and current very-high-energy (VHE) Cherenkov instruments, will it be possible to sensibly probe these systems as high-energy emitters.We will summarize the characteristics and broadband predictions of generic optically thin emission models in the observables accessible at GeV and TeV energies. The ability to constrain orbital parameters of massive star-star binaries through GeV-to-TeV observations is discussed. As an example we will present orbital parameter constraints for the nearby Wolf-Rayet binary system WR 147 based on recently published VHE flux limits. Combining our broadband emission model with the cataloged binaries systems and their individual parameters allows us to conclude on the population of massive star-star systems at high-energy {gamma}-rays.

Reimer, Anita; Reimer, Olaf; /Stanford U., HEPL /KIPAC, Menlo Park

2011-11-23T23:59:59.000Z

338

Are back-to-back particle--antiparticle correlations observable in high energy nuclear collisions?  

E-Print Network (OSTI)

Analytical formulae are presented which provide quantitative estimates for the suppression of the anticipated back-to-back particle--antiparticle correlations in high energy nuclear collisions due to the finite duration of the transition dynamics. They show that it is unlikely to observ the effect.

Knoll, Joern

2010-01-01T23:59:59.000Z

339

Services for High Energy Physics EGI-InSPIRE EU deliverable: MS603  

E-Print Network (OSTI)

The computing systems of the LHC experiments at CERN are probably the most complex grid-integrated applications currently in production. This milestone describes the critical services on which the computing systems are based and how they interact with each other. This description represents the current state of the art in the high energy physics community.

Sciaba, A; Barreiro Megino, F; Lanciotti, E; Santinelli, R; Spiga, D; Trentadue, R; Valassi, A; Van Der Ster, D C; Cinquilli, M; CERN. Geneva. IT Department

2010-01-01T23:59:59.000Z

340

Title of dissertation: A SEARCH FOR BURSTS OF VERY HIGH ENERGY GAMMA RAYS  

E-Print Network (OSTI)

ABSTRACT Title of dissertation: A SEARCH FOR BURSTS OF VERY HIGH ENERGY GAMMA RAYS WITH MILAGRO Vlasios Vasileiou, Doctor of Philosophy, 2008 Dissertation directed by: Professor Jordan A. Goodman by cosmic gamma rays of energies E 100 GeV . The effective area of Milagro peaks at energies E 10 Te

California at Santa Cruz, University of

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High energy neutrino absorption by W production in a strong magnetic field  

E-Print Network (OSTI)

An influence of a strong external magnetic field on the neutrino self-energy operator is investigated. The width of the neutrino decay into the electron and W boson, and the mean free path of an ultra-high energy neutrino in a strong magnetic field are calculated. A kind of energy cutoff for neutrinos propagating in a strong field is defined.

Kuznetsov, A V; Serghienko, A V

2010-01-01T23:59:59.000Z

342

High energy neutrino absorption by W production in a strong magnetic field  

E-Print Network (OSTI)

An influence of a strong external magnetic field on the neutrino self-energy operator is investigated. The width of the neutrino decay into the electron and W boson, and the mean free path of an ultra-high energy neutrino in a strong magnetic field are calculated. A kind of energy cutoff for neutrinos propagating in a strong field is defined.

A. V. Kuznetsov; N. V. Mikheev; A. V. Serghienko

2010-02-19T23:59:59.000Z

343

Ultra high energy photon showers in magnetic field:angular distribution of produced particles  

E-Print Network (OSTI)

Ultra high energy (UHE) photons can initiate electromagnetic showers in magnetic field. We analyze the two processes that determine the development of the shower, $e^+ e^-$ pair creation and synchrotron radiation, and derive formulae for the angular distribution of the produced particles. These formulae are necessary to study the three-dimensional development of the shower.

Massimo Coraddu; Marcello Lissia; Giuseppe Mezzorani

2002-10-07T23:59:59.000Z

344

AIP study of multi-institutional collaborations: Phase 1, high-energy physics  

Science Conference Proceedings (OSTI)

This document presents a report on project activities, archival findings (analysis and future actions), records creation in the context of laboratory operations and research at the Stanford Linear Accelerator Center, and appraisal guidelines for records of collaborations in high-energy physics.

Warnow-Blewett, J.; Maloney, L.; Nilan, R.

1992-01-01T23:59:59.000Z

345

Primordial Black Holes as a Probe of Cosmology and High Energy Physics  

E-Print Network (OSTI)

Recent developments in the study of primordial black holes (PBHs) will be reviewed, with particular emphasis on their formation and evaporation. PBHs could provide a unique probe of the early Universe, gravitational collapse, high energy physics and quantum gravity. Indeed their study may place interesting constraints on the physics relevant to these areas even if they never formed.

B. J. Carr

2003-10-29T23:59:59.000Z

346

Parallelization of an existing high-energy physics event reconstruction software package  

E-Print Network (OSTI)

Software parallelization allows an efficient use of available computing power to in- crease the performance of applications. In a case study we have investigated the parallelization of high-energy physics event reconstruction software in terms of costs (effort, computing resource requirements), benefits (performance increase), and the feasibility of a systematic parallelization approach. Guidelines facilitating a parallel implementation are proposed for future software development.

Schiefer, R

1995-01-01T23:59:59.000Z

347

Study of Celestial Objects with Very High Energy Gamma Rays CANGAROO III  

E-Print Network (OSTI)

), the doppler boosting of secondary gamma-rays is sufficient to produce TeV gamma-rays. Gamma-ray bursts: Fireballs expanding with relativistic speed explain gamma-ray bursts at cosmological distancesStudy of Celestial Objects with Very High Energy Gamma Rays CANGAROO III Project Description

Enomoto, Ryoji

348

Ivan De Mitri VHE Gamma Ray Astronomy 1 Very High Energy  

E-Print Network (OSTI)

~ 1/day Gamma Ray Bursts The X-ray counterpart detection with better pointing accuracy instrumentsIvan De Mitri VHE Gamma Ray Astronomy 1 Very High Energy Gamma Ray Astronomy Ivan De Mitri'Aquila, 11- Jun -2002 Photo F. Arneodo #12;Ivan De Mitri VHE Gamma Ray Astronomy 2 Seminar Outline Background

Harrison, Thomas

349

Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density  

E-Print Network (OSTI)

supercapacitors of high energy density Qian Cheng a,b , Jie Tang a,b,**, Norio Shinya b , Lu-Chang Qin c as supercapacitor electrodes. Energy density of 188 Wh kg?1 has been obtained. Graphene composite with carbon April 2013 Keywords: Supercapacitor Graphene Carbon nanotube PANI a b s t r a c t Graphene and single

Qin, Lu-Chang

350

On the history of multi-particle production in high energy collisions  

E-Print Network (OSTI)

The 60th birthday of Johann Rafelski was celebrated during the Strangeness in Quark Matter 2011 in Krakow. Johann was born in Krakow and he initiated the series of the SQM conferences. This report, which briefly presents my personal view on a history of multi-particle production in high energy collisions, is dedicated to Johann.

Gazdzicki, M

2012-01-01T23:59:59.000Z

351

On the history of multi-particle production in high energy collisions  

E-Print Network (OSTI)

The 60th birthday of Johann Rafelski was celebrated during the Strangeness in Quark Matter 2011 in Krakow. Johann was born in Krakow and he initiated the series of the SQM conferences. This report, which briefly presents my personal view on a history of multi-particle production in high energy collisions, is dedicated to Johann.

M. Gazdzicki

2012-01-02T23:59:59.000Z

352

Ultra High Energy Particles Propagation and the Transition from Galactic to Extra-Galactic Cosmic Rays  

E-Print Network (OSTI)

We discuss the basic features of the propagation of Ultra High Energy Cosmic Rays in astrophysical backgrounds, comparing two alternative computation schemes to compute the expected fluxes. We also discuss the issue of the transition among galactic and extra-galactic cosmic rays using theoretical results on fluxes to compare different models.

Aloisio, Roberto

2013-01-01T23:59:59.000Z

353

Compilation of radiation damage test data materials used around high-energy accelerators  

E-Print Network (OSTI)

For pt.II see CERN report 79-08 (1979). This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins.

Beynel, Paul; Schnbacher, Helmut

1982-01-01T23:59:59.000Z

354

HETE, the High Energy Transient Explorer : unlocking the mysteries of gamma ray bursts  

E-Print Network (OSTI)

The High Energy Transient Explorer (HETE), was built primarily at MIT and launched in October 2000 with the goal of studying Gamma Ray Bursts (GRBs) at X-ray and gamma-ray energies. A suite of instruments aboard HETE provide ...

Monnelly, Glen Pickslay, 1973-

2002-01-01T23:59:59.000Z

355

High Energy Physics Division semiannual report of research activities, July 1, 1992--December 30, 1992  

Science Conference Proceedings (OSTI)

This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1992--December 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. [eds.

1993-07-01T23:59:59.000Z

356

High energy physics research. Final report, October 1, 1969--December 31, 1990  

Science Conference Proceedings (OSTI)

The goal of this research was to understand the fundamental constituents of matter and their interactions. First, a brief history of the high energy research at Princeton University is presented. Next, the extensive research covered in this 21 year period is summarized. Finally, a list of all publications issued during this period is presented.

NONE

1995-05-01T23:59:59.000Z

357

Be7(p,gamma)B8 and the high-energy solar neutrino flux  

E-Print Network (OSTI)

The importance of the Be7(p,gamma)B8 reaction in predicting the high-energy solar neutrino flux is discussed. I present a microscopic eight-body model and a potential model for the calculation of the Be7(p,gamma)B8 cross section.

Attila Csoto

1997-04-23T23:59:59.000Z

358

The Radio Cerenkov Technique for Ultra-High Energy Neutrino Detection  

E-Print Network (OSTI)

I review the status of the Radio Cerenkov detection technique in searches for ultra-high energy (UHE) neutrinos of cosmic origin. After outlining the physics motivations for UHE neutrino searches, I give an overview of the status of current and proposed experiments in the field.

Amy Connolly

2008-09-22T23:59:59.000Z

359

Production and supply of radioisotopes with high-energy particle accelerators current status and future directions  

Science Conference Proceedings (OSTI)

Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose.

Srivastava, S.C.; Mausner, L.F.

1994-03-01T23:59:59.000Z

360

High Energy Physics Division semiannual report of research activities, July 1, 1991--December 31, 1991  

SciTech Connect

This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1991--December 31, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. [eds.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High energy atomic chemistry and chemical radiation effects. Progress report, January 1, 1973--December 31, 1973  

SciTech Connect

Research progress is reported on high energy atomic chemistry studies that include stopping power research; classical trajectory calculations; F to HF abstraction reactions; hot substitution reactions; and fast neutron dosimetry. A listing is included of technical publications resulting from the research and manuscripts in preparation. Abstracts of technical papers scheduled for presentation are also included. (DHM)

1973-01-01T23:59:59.000Z

362

High Energy Physics Division semiannual report of research activities July 1, 1997 - December 31, 1997.  

SciTech Connect

This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1997--December 31, 1997. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R. [eds.

1998-08-11T23:59:59.000Z

363

Theoretical and high energy physics programs. Progress report, September 1, 1972--August 31, 1973  

SciTech Connect

Research in nuclear physics and elementary particle physics is described. The nuclear research is all theoretical, but the high energy research is both theoretical and experimental. The report is organized according to this three- way division of the research activities. It is warned that some of the results presented are tentative and may be modified before publication. A list of publications is presented. (auth)

1973-01-01T23:59:59.000Z

364

High Energy Physics division semiannual report of research activities, January 1, 1998--June 30, 1998.  

SciTech Connect

This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1998 through June 30, 1998. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

Ayres, D. S.; Berger, E. L.; Blair, R.; Bodwin, G. T.; Drake, G.; Goodman, M. C.; Guarino, V.; Klasen, M.; Lagae, J.-F.; Magill, S.; May, E. N.; Nodulman, L.; Norem, J.; Petrelli, A.; Proudfoot, J.; Repond, J.; Schoessow, P. V.; Sinclair, D. K.; Spinka, H. M.; Stanek, R.; Underwood, D.; Wagner, R.; White, A. R.; Yokosawa, A.; Zachos, C.

1999-03-09T23:59:59.000Z

365

Search for a dark matter particle in high energy cosmic rays  

E-Print Network (OSTI)

Existing data hints that high energy cosmic ray experiments may offer the most promissing shot at finding a dark matter particle. A search in the PeV mass range is suggested, where the discovery of such a particle might help explain the GZK cutoff violation data.

Yukio Tomozawa

2008-04-09T23:59:59.000Z

366

HOW MANY ULTRA-HIGH ENERGY COSMIC RAYS COULD WE EXPECT FROM CENTAURUS A?  

Science Conference Proceedings (OSTI)

The Pierre Auger Observatory has associated a few ultra-high energy cosmic rays (UHECRs) with the direction of Centaurus A. This source has been deeply studied in radio, infrared, X-ray, and {gamma}-rays (MeV-TeV) because it is the nearest radio-loud active galactic nucleus. Its spectral energy distribution or spectrum shows two main peaks, the low-energy peak, at an energy of 10{sup -2} eV, and the high-energy peak, at about 150 keV. There is also a faint very high energy (VHE; E {>=} 100 GeV) {gamma}-ray emission fully detected by the High Energy Stereoscopic System experiment. In this work, we describe the entire spectrum: the two main peaks with a synchrotron/synchrotron self-Compton model, and the VHE emission with a hadronic model. We consider p{gamma} and pp interactions. For the p{gamma} interaction, we assume that the target photons are those produced at 150 keV in leptonic processes. On the other hand, for the pp interaction we consider as targets the thermal particle densities in the lobes. Requiring a satisfactory description of the spectra at very high energies with p{gamma} interaction, we obtain an excessive luminosity in UHECRs (even exceeding the Eddington luminosity). However, when considering the pp interaction to describe the {gamma}-spectrum, the number of UHECRs obtained is in agreement with Pierre Auger observations. We also calculate the possible neutrino signal from pp interactions on a Km{sup 3} neutrino telescope using Monte Carlo simulations.

Fraija, N.; Gonzalez, M. M.; Perez, M. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.U., A. Postal 70-264, 04510 Mexico D.F. (Mexico); Marinelli, A., E-mail: nifraija@astro.unam.mx, E-mail: magda@astro.unam.mx, E-mail: jguillen@astro.unam.mx, E-mail: antonio.marinelli@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.U., A. Postal 70-264, 04510 Mexico D.F. (Mexico)

2012-07-01T23:59:59.000Z

367

OPTIMUM ENERGY ABSORPTION OF A SHORT-PULSE LASER IN A DOPED DIELECTRIC SLAB  

SciTech Connect

A model is used to calculate energy absorption efficiency when a short-pulse laser impinges on a dielectric slab doped with an impurity for which the electrons have a resonant line at the laser wavelength. The amount of the energy resonant absorption is due to the overlapping between laser spectrum and resonance spectrum. The energy absorption efficiency can be maximized for a certain degree of doping concentration (at a given pulselength) and also for a certain pulselength (at a given doping concentration). For a modest amount of impurity, the resonant absorption may increase the fraction of energy absorption up to tens of percent of laser energy at 100s optical cycles when the laser wavelength is tuned within 1% of the resonant line. Dimensionless parameters are constructed so that the scaling to various parameters: laser wavelength, laser pulselength, dielectric constant, slab thickness, impurity concentration, resonant linewidth, and separation between the laser wavelength and the line resonance, could easily be obtained.

L. ANG

2001-05-01T23:59:59.000Z

368

Response to 'A comment on "Signatures of fissile materials: High-energy gamma rays following fission," by Zeev B. Alfassi'  

E-Print Network (OSTI)

high-energy ? rays following fission" by Zeev B. Alfassi ,radionuclides that are not fission products, but which emittemporal variation of the fission product gamma rays should

2004-01-01T23:59:59.000Z

369

Short-range force between two Higgs bosons  

E-Print Network (OSTI)

The $S$-wave scattering length and the effective range of the Higgs boson in Standard Model are studied using effective-field-theory approach. After incorporating the first-order electroweak correction, the short-range force between two Higgs bosons remains weakly attractive for $M_H=126$ GeV. It is interesting to find that the force range is about two order-of-magnitude larger than the Compton wavelength of the Higgs boson, almost comparable with the typical length scale of the strong interaction.

Feng Feng; Yu Jia; Wen-Long Sang

2013-12-06T23:59:59.000Z

370

The study of quark-gluon matter in high-energy nucleus-nucleus collisions  

SciTech Connect

A short overview is given on the study of hot matter produced in relativistic nucleusnucleus collisions, with emphasis on recent measurements at the LHC.

Andronic, A. [Reasearch Division and EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung, D-64291 Darmstadt (Germany)

2012-11-20T23:59:59.000Z

371

Advances in Using High-Energy X-Rays for Materials ...  

Science Conference Proceedings (OSTI)

Measuring the Phase of a Superstructure Microstructural Characterization of Snow and Ice Monte Carlo Study of Diffuse Scattering and Short-Range Order in

372

Discovery of very high energy gamma-ray emission from the blazar 1ES 1727+502 with the MAGIC Telescopes  

E-Print Network (OSTI)

Motivated by the Costamante & Ghisellini (2002) predictions we investigated if the blazar 1ES 1727+502 (z=0.055) is emitting very high energy (VHE, E>100 GeV) gamma rays. We observed the BL Lac object 1ES 1727+502 in stereoscopic mode with the two MAGIC telescopes during 14 nights between May 6th and June 10th 2011, for a total effective observing time of 12.6 hours. For the study of the multiwavelength spectral energy distribution (SED) we use simultaneous optical R-band data from the KVA telescope, archival UV/optical and X-ray observations by instruments UVOT and XRT on board of the Swift satellite and high energy (HE, 0.1 GeV - 100 GeV) gamma-ray data from the Fermi-LAT instrument. We detect, for the first time, VHE gamma-ray emission from 1ES 1727+502 at a statistical significance of 5.5 sigma. The integral flux above 150 GeV is estimated to be (2.1\\pm0.4)% of the Crab Nebula flux and the de-absorbed VHE spectrum has a photon index of (2.7\\pm0.5). No significant short-term variability was found in an...

Aleksi?, J; Antoranz, P; Asensio, M; Backes, M; de Almeida, U Barres; Barrio, J A; Gonzlez, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnefoy, S; Bonnoli, G; Tridon, D Borla; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Fidalgo, D Carreto; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domnguez, A; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Farina, E; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; Lpez, R J Garca; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinovi?, N; Muoz, A Gonzlez; Gozzini, S R; Hadamek, A; Hadasch, D; Hfner, D; Herrero, A; Hose, J; Hrupec, D; Idec, W; Jankowski, F; Kadenius, V; Klepser, S; Knoetig, M L; Krhenbhl, T; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Lpez, M; Lpez-Coto, R; Lpez-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martnez, M; Masbou, J; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldn, J; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Partini, S; Persic, M; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Rib, M; Rico, J; Rgamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanp, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Sun, S; Suri?, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzi?, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Weitzel, Q; Zandanel, F; Zanin, R

2013-01-01T23:59:59.000Z

373

Plasma Diagnostic Calibration and Characterizations with High Energy X-rays  

SciTech Connect

National Security Technologies High Energy X-ray (HEX) Facility is unique in the U.S. Department of Energy complex. The HEX provides fluorescent X-rays of 5 keV to 100 keV with fluence of 10^510^6 photons/cm^2/second at the desired line energy. Low energy lines can be filtered, and both filters and fluorescers can be changed rapidly. We present results of calibrating image plates (sensitivity and modulation transfer function), a Bremsstrahlung spectrometer (stacked filters and image plates), and the National Ignition Facilitys Filter- Fluorescer Experiment (FFLEX) high energy X-ray spectrometer. We also show results of a scintillator light yield and alignment study for a neutron imaging system.

Zaheer Ali

2009-06-05T23:59:59.000Z

374

High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter  

E-Print Network (OSTI)

Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons and protons in asymmetric nuclear matter. From the resulting Schr\\"{o}% dinger-equivalent potential, the high energy behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such high energy nucleon, the symmetry potential is slightly negative below a baryon density of about $% \\rho =0.22$ fm$^{-3}$ and then increases almost linearly to positive values at high densities. Our results thus provide an important constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.

Lie-Wen Chen; Che Ming Ko; Bao-An Li

2005-08-24T23:59:59.000Z

375

High-Energy X-ray Diffraction Study of Internal Stresses in Metal Matrix  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy X-ray Diffraction Study of Internal Stresses in Metal Matrix High-Energy X-ray Diffraction Study of Internal Stresses in Metal Matrix Composites Metal matrix composites (MMCs) comprise an intriguing new class of materials coming to prominence in the aerospace, electronics, and automotive industries. Internal stresses play an important role in the behavior and successful application of MMCs and multi-phase alloys. These stresses form during processing and service due to transformation or thermal expansion mismatch, as well as elastic and plastic mismatch during deformation. In order to develop a deeper understanding of the thermo-mechanical behavior of these materials, it is of key interest to examine the development of mean stresses in the phases of the composite as a function of time upon changes of temperature and/or external load.

376

High Energy Physics (HEP) Homepage | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs » HEP Home Programs » HEP Home High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » Higgs Boson Discovery Leads to Nobel Prize External link François Englert and Peter Higgs were awarded the 2013 Nobel Prize in Physics for their contributions to our understanding of the origin of mass, confirmed by the discovery of the Higgs boson in 2012 by the ATLAS and CMS experiments at CERN's Large Hadron Collider.Read More External linkage US Participation in the Higgs Discovery External link

377

Liquid lithium target as a high intensity, high energy neutron source  

DOE Patents (OSTI)

This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

Parkin, Don M. (Los Alamos, NM); Dudey, Norman D. (Glen Ellyn, IL)

1976-01-01T23:59:59.000Z

378

Evaluation of high-energy-efficiency powertrain approaches: the 1996 futurecar challenge  

DOE Green Energy (OSTI)

Twelve colleges and universities were selected to design, build, and develop a mid-size vehicle that could achieve high energy economy while maintaining the performance characteristics of today`s mid-size vehicle. Many of the teams were able to increase the fuel economy of their vehicles, but most of these increases came at the expense of decreased performance or worsened emissions. This paper evaluates and summarizes the high-energy-efficiency powertrain technology approaches that were utilized in the 1996 FutureCar Challenge, which was the first evaluation of these vehicles in a two-year program. Of the 11 vehicles evaluated in the competition, nine utilized hybrid electric vehicle approaches. This paper discusses the design trade- offs made by the teams to achieve high efficiency while trying to maintain stock performance.

Sluder, S.; Duoba, M.; Larsen, R.

1997-02-01T23:59:59.000Z

379

Superconducting gamma and fast-neutron spectrometers with high energy resolution  

DOE Patents (OSTI)

Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

Friedrich, Stephan (San Jose, CA); , Niedermayr, Thomas R. (Oakland, CA); Labov, Simon E. (Berkeley, CA)

2008-11-04T23:59:59.000Z

380

The comparison and selection of programming languages for high energy physics applications  

Science Conference Proceedings (OSTI)

This paper discusses the issues surrounding the comparison and selection of a programming language to be used in high energy physics software applications. The evaluation method used was specifically devised to address the issues of particular importance to high energy physics (HEP) applications, not just the technical features of the languages considered. The method assumes a knowledge of the requirements of current HEP applications, the data-processing environments expected to support these applications and relevant non-technical issues. The languages evaluated were Ada, C, FORTRAN 77, FORTRAN 99 (formerly 8X), Pascal and PL/1. Particular emphasis is placed upon the past, present and anticipated future role of FORTRAN in HEP software applications. Upon examination of the technical and practical issues, conclusions are reached and some recommendations are made regarding the role of FORTRAN and other programming languages in the current and future development of HEP software. 54 refs.

White, B.

1991-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

PHENIX (Pioneering High Energy Nuclear Interaction eXperiment): Data Tables and Figures from Published Papers  

DOE Data Explorer (OSTI)

The PHENIX Experiment is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. More than 60 published papers and preprints are listed here with links to the full text and separate links to the supporting PHENIX data in plain text tables and to EPS and GIF figures from the papers.

382

A Neutron Multiplicity Meter for Deep Underground Muon-Induced High Energy Neutron Measurements  

E-Print Network (OSTI)

We present the design of an instrument capable of measuring the high energy ($>$60 MeV) muon-induced neutron flux deep underground. The instrument is based on applying the Gd-loaded liquid-scintillator technique to measure the rate of high-energy neutrons underground based on the neutron multiplicity induced in a Pb target. We present design studies based on Monte Carlo simulations that show that an apparatus consisting of a Pb target of 200 cm by 200 cm area by 60 cm thickness covered by a 60 cm thick Gd-loaded liquid scintillator (0.5% Gd content) detector could measure, at a depth of 2000 meters of water equivalent, a rate of $70\\pm8$ (stat) events/year. Based on these studies, we also discuss the benefits of using a neutron multiplicity meter as a component of active shielding in such experiments.

R. Hennings-Yeomans; D. S. Akerib

2006-11-12T23:59:59.000Z

383

Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry  

E-Print Network (OSTI)

A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV - 1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.

Dimitra Atri; Adrian L. Melott; Brian C. Thomas

2008-04-20T23:59:59.000Z

384

Gamma-Ray Bursts: Super-Explosions in the Universe and Related High-Energy Phenomena  

E-Print Network (OSTI)

The recent progress in studies of gamma-ray bursts, their afterglows, and host galaxies is discussed. The emphasis is given to high-energy phenomena associated with gamma-ray burst explosions: high-energy cosmic rays, neutrinos, gravitational waves. We also show how the relativistic fireball model for GRBs can be used to constrain modern theories of large and infinite extra-dimensions. In particular, in the frame of 5D gravity with the Standard Model localized on 3D brane (Dvali et al. 2000), the very existence of relativistic fireballs of $\\sim 10^{53}$ ergs puts the lower bound on the quantum gravity scale $\\sim 0.1$ eV.

K. A. Postnov

2001-07-06T23:59:59.000Z

385

Final Design And Manufacturing of the PEP II High Energy Ring Arc Bellows Module  

SciTech Connect

A novel RF shield bellows module developed at SLAC has been successfully manufactured and installed in the PEP-II High Energy Ring (HER). Tests indicate that the module meets its performance and operational requirements. The primary function of the bellows module is to allow for thermal expansion of the chambers and for lateral, longitudinal and angular offsets due to tolerances and alignment, while providing RF continuity between adjoining chambers. An update on the Arc bellows module for the PEP-II High Energy Ring is presented. Final design, manufacturing issues, material and coating selection, and tribological and RF testing are discussed. Performance and operational requirements are also reviewed. The RF shield design has been proven during assembly to allow for large manufacturing tolerances without reducing the mechanical spring force below required values. In addition, the RF shield maintains electrical contact even with large misalignments across the module.

Kurita, Nadine R.; Kulikov, Artem; /SLAC; Corlett, John; /LBL, Berkeley

2011-09-01T23:59:59.000Z

386

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

1996-01-01T23:59:59.000Z

387

The effect of partonic wind on charm quark correlations in high-energy nuclear collisions  

E-Print Network (OSTI)

In high-energy collisions, massive heavy quarks are produced back-to-back initially and they are sensitive to early dynamical conditions. The strong collective partonic wind from the fast expanding quark-gluon plasma created in high-energy nuclear collisions modifies the correlation pattern significantly. As a result, the angular correlation function for D$\\bar{\\rm D}$ pairs is suppressed at the angle $\\Delta\\phi=\\pi$. While the hot and dense medium in collisions at RHIC ($\\sqrt{s_{NN}}=200$ GeV) can only smear the initial back-to-back D$\\bar {\\rm D}$ correlation, a clear and strong near side D$\\bar{\\rm D}$ correlation is expected at LHC ($\\sqrt{s_{NN}}=5500$ GeV).

X. Zhu; N. Xu; P. Zhuang

2007-09-03T23:59:59.000Z

388

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

1996-06-11T23:59:59.000Z

389

Efficient Excitation of Gain-Saturated Sub-9-nm-Wavelength Tabletop Soft-X-Ray Lasers and Lasing Down to 7.36 nm  

Science Conference Proceedings (OSTI)

We have demonstrated the efficient generation of sub-9-nm-wavelength picosecond laser pulses of microjoule energy at 1-Hz repetition rate with a tabletop laser. Gain-saturated lasing was obtained at =8.85 nm in nickel-like lanthanum ions excited by collisional electron-impact excitation in a precreated plasma column heated by a picosecond optical laser pulse of 4-J energy. Furthermore, isoelectronic scaling along the lanthanide series resulted in lasing at wavelengths as short as =7.36 nm. Simulations show that the collisionally broadened atomic transitions in these dense plasmas can support the amplification of subpicosecond soft-x-ray laser pulses.

Alessi, David [Colorado State University, Fort Collins; Wang, Yong [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins; Liu, Yanwei [University of California, Berkeley & LBNL; Berrill, Mark A [ORNL; Jorge, Rocca [Colorado State University, Fort Collins

2011-01-01T23:59:59.000Z

390

[Experimental and theoretical high energy physics program]. [Purdue Univ. , West Lafayette, Indiana  

Science Conference Proceedings (OSTI)

Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac[endash]Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e[sup +]e[sup [minus

Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

1993-04-01T23:59:59.000Z

391

Shock waves in a Z-pinch and the formation of high energy density plasma  

Science Conference Proceedings (OSTI)

A Z-pinch liner, imploding onto a target plasma, evolves in a step-wise manner, producing a stable, magneto-inertial, high-energy-density plasma compression. The typical configuration is a cylindrical, high-atomic-number liner imploding onto a low-atomic-number target. The parameters for a terawatt-class machine (e.g., Zebra at the University of Nevada, Reno, Nevada Terawatt Facility) have been simulated. The 2-1/2 D MHD code, MACH2, was used to study this configuration. The requirements are for an initial radius of a few mm for stable implosion; the material densities properly distributed, so that the target is effectively heated initially by shock heating and finally by adiabatic compression; and the liner's thickness adjusted to promote radial current transport and subsequent current amplification in the target. Since the shock velocity is smaller in the liner, than in the target, a stable-shock forms at the interface, allowing the central load to accelerate magnetically and inertially, producing a magneto-inertial implosion and high-energy density plasma. Comparing the implosion dynamics of a low-Z target with those of a high-Z target demonstrates the role of shock waves in terms of compression and heating. In the case of a high-Z target, the shock wave does not play a significant heating role. The shock waves carry current and transport the magnetic field, producing a high density on-axis, at relatively low temperature. Whereas, in the case of a low-Z target, the fast moving shock wave preheats the target during the initial implosion phase, and the later adiabatic compression further heats the target to very high energy density. As a result, the compression ratio required for heating the low-Z plasma to very high energy densities is greatly reduced.

Rahman, H. U. [Magneto-Inertial Fusion Technologies Inc. (MIFTI), Irvine, California 92612 (United States) and Department of Physics, University of California Irvine, Irvine, California 92697 (United States); Wessel, F. J. [Department of Physics, University of California Irvine, Irvine California 92697 (United States); Ney, P. [Mount San Jacinto College, Menifee, California 92584 (United States); Presura, R. [University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557-0208 (United States); Ellahi, Rahmat [Department of Mathematics and Statistics, FBAS, IIU, Islamabad (Pakistan) and Department of Mechanical Engineering, University of California Riverside, Riverside, California 92521 (United States); Shukla, P. K. [Department of Mechanical and Aerospace Engineering and Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)

2012-12-15T23:59:59.000Z

392

A STUDY ON THE CHOICE OF PARAMETERS FOR A HIGH ENERGY ELECTRON RING ACCELERATOR  

SciTech Connect

The production of high energy (multi-GeV) proton beams by an electron ring accelerator is considered. Both the final energy and intensity of the proton beam depend on the choice of parameters for the electron ring. Possible sets of parameters, consistent with all the known requirements of ring stability, and which optimize the energy and (or) the intensity of the proton beam, are presented.

Bovet, C.; Pellegrini, C.

1970-06-26T23:59:59.000Z

393

Signatures of Pulsar Polar-Cap Emission at the High-Energy Spectral Cut-off  

E-Print Network (OSTI)

We address four unique signatures in pulsar gamma-ray radiation as predicted by polar-cap models. These signatures are expected to be present nearby the spectral high-energy cutoff at around several GeV. Their magnitude and, therefore, their observability depends strongly on the orientational factors, the rotation, as well as on the details of the polar cap structure. These strong predictions are likely to be verified by the NASA's future gamma-ray mission GLAST.

J. Dyks; B. Rudak

2003-04-18T23:59:59.000Z

394

Possible Upper limits on Lorentz Factors in High Energy Astrophysical Processes  

E-Print Network (OSTI)

Gamma ray bursts (GRBs) are the most luminous physical phenomena in the universe. The relativistic effect on the blast wave associated with the GRB introduces the gamma factor. Here we put an upper limit on the gamma factor via constraints on maximal power allowed by general relativity and hence set upper limits on other observable quantities such as deceleration distance. Also upper limits are set on the high energy particle radiation due to constraints set by cosmic microwave background radiation.

C. Sivaram; Kenath Arun

2010-08-31T23:59:59.000Z

395

Guidelines for the Evaluation of Seam-Welded High-Energy Piping  

Science Conference Proceedings (OSTI)

The body of available utility experience and data on seam-welded piping inspection and failures has grown considerably since the publication of the first edition of the Guidelines for Evaluation of Seam-Welded Piping in 1987 (CS-4774), as has the body of information on applicable nondestructive evaluation (NDE) methods. Ongoing concern for the integrity of seam-welded high- energy piping motivated EPRI to publish new editions of the Guidelines in 1996, 2001, and 2003 (EPRI reports ...

2012-12-14T23:59:59.000Z

396

Universality of electron distributions in high-energy air showers - description of Cherenkov light production  

E-Print Network (OSTI)

The shower simulation code CORSIKA has been used to investigate the electron energy and angular distributions in high-energy showers. Based on the universality of both distributions, we develop an analytical description of Cherenkov light emission in extensive air showers, which provides the total number and angular distribution of photons. The parameterisation can be used e.g. to calculate the contribution of direct and scattered Cherenkov light to shower profiles measured with the air fluorescence technique.

F. Nerling; J. Blmer; R. Engel; M. Risse

2005-06-29T23:59:59.000Z

397

An alternative scaling solution for high-energy QCD saturation with running coupling  

E-Print Network (OSTI)

A new type of approximate scaling compatible with the Balitsky-Kovchegov equation with running coupling is found, which is different from the previously known running coupling geometric scaling. The corresponding asymptotic traveling wave solution is derived. Although featuring different scaling behaviors, the two solutions are complementary approximations of the same universal solution, and they become equivalent in the high energy limit. The new type of scaling is observed in the small-x DIS data.

Beuf, Guillaume

2008-01-01T23:59:59.000Z

398

An alternative scaling solution for high-energy QCD saturation with running coupling  

E-Print Network (OSTI)

A new type of approximate scaling compatible with the Balitsky-Kovchegov equation with running coupling is found, which is different from the previously known running coupling geometric scaling. The corresponding asymptotic traveling wave solution is derived. Although featuring different scaling behaviors, the two solutions are complementary approximations of the same universal solution, and they become equivalent in the high energy limit. The new type of scaling is observed in the small-x DIS data.

Guillaume Beuf

2008-03-14T23:59:59.000Z

399

On the behaviour of R(pA) at high energy  

E-Print Network (OSTI)

We discuss the behaviour of R(pA), the ratio of the unintegrated gluon distribution of a nucleus over the unintegrated gluon distribution of a proton scaled up by A^{1/3}, at high energy and fixed coupling. We show that R(pA) exhibits a rising gluon shadowing with growing rapidity, approaching 1/A^{1/3} at asymptotic rapidity, which means total gluon shadowing due to gluon number fluctuations or Pomeron loops.

Misha Kozlov; Arif I. Shoshi; Bo-Wen Xiao

2007-08-31T23:59:59.000Z

400

Compilation of high energy physics reaction data: inventory of the particle data group holdings 1980  

Science Conference Proceedings (OSTI)

A compilation is presented of reaction data taken from experimental high energy physics journal articles, reports, preprints, theses, and other sources. Listings of all the data are given, and the data points are indexed by reaction and momentum, as well as by their source document. Much of the original compilation was done by others working in the field. The data presented also exist in the form of a computer-readable and searchable database; primitive access facilities for this database are available.

Fox, G.C.; Stevens, P.R.; Rittenberg, A.

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Residual stress measurement with high energy x-rays at the Advanced Photon Source.  

SciTech Connect

Preliminary measurements with high energy x-rays from the SRI CAT 1-ID beam line at the Advanced Photon show great promise for the measurement of stress and strain using diffraction. Comparisons are made with neutron measurements. Measurements of strains in a 2 mm thick 304 stainless steel weld show that excellent strain and spatial resolutions are possible. With 200 {micro}m slits, strain resolutions of 1 x 10{sup {minus}5} were achieved.

Winholtz, R. A.; Haeffner, D. R.; Green, R.E.L.; Varma, R.; Hammond, D.

2000-03-02T23:59:59.000Z

402

Basics of Feature Selection and Statistical Learning for High Energy Physics  

E-Print Network (OSTI)

This document introduces basics in data preparation, feature selection and learning basics for high energy physics tasks. The emphasis is on feature selection by principal component analysis, information gain and significance measures for features. As examples for basic statistical learning algorithms, the maximum a posteriori and maximum likelihood classifiers are shown. Furthermore, a simple rule based classification as a means for automated cut finding is introduced. Finally two toolboxes for the application of statistical learning techniques are introduced.

Anselm Vossen

2008-03-16T23:59:59.000Z

403

Acoustic Emission for High-Energy Piping: A State-of-Knowledge Summary  

Science Conference Proceedings (OSTI)

This report pulls together information on the application of acoustic emission (AE) testing for monitoring high-energy piping in fossil power plants. The experience data reviewed include the Electric Power Research Institute (EPRI) initiatives under research project RP1893 (circa 19861995) that culminated in the 1995 monitoring guidelines for hot reheat piping and available post-guidelines field applications through to the present. EPRI has had more than two decades of application experience ...

2013-11-14T23:59:59.000Z

404

Search for Ultra-High Energy Photons with the Pierre Auger Observatory  

E-Print Network (OSTI)

Data taken at the Pierre Auger Observatory are used to search for air showers initiated by ultra-high energy (UHE) photons. Results of searches are reported from hybrid observations where events are measured with both fluorescence and array detectors. Additionally, a more stringent test of the photon fluxes predicted with energies above 10^19 eV is made using a larger data set measured using only the surface detectors of the observatory.

M. D. Healy; for the Pierre Auger Collaboration

2007-09-28T23:59:59.000Z

405

Wavelength and intensity dependent studies of isolated Photosystem II reaction centers using an optical parametric amplifier  

DOE Green Energy (OSTI)

Isolated Photosystem II reaction centers were excited at five wavelengths to study the effects of excitation wavelength and intensity on energy transfer and charge separation.

Greenfield, S.R. [Argonne National Lab., IL (United States); Seibert, M. [National Renewable Energy Lab., Golden, CO (United States). Basic Sciences Div.; Govindjee [Illinois Univ., Urbana, IL (United States). Dept. of Plant Biology; Wasielewski, M.R. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry

1996-05-01T23:59:59.000Z

406

LIMITS TO THE FRACTION OF HIGH-ENERGY PHOTON EMITTING GAMMA-RAY BURSTS  

Science Conference Proceedings (OSTI)

After almost four years of operation, the two instruments on board the Fermi Gamma-ray Space Telescope have shown that the number of gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV cannot exceed roughly 9% of the total number of all such events, at least at the present detection limits. In a recent paper, we found that GRBs with photons detected in the Large Area Telescope have a surprisingly broad distribution with respect to the observed event photon number. Extrapolation of our empirical fit to numbers of photons below our previous detection limit suggests that the overall rate of such low flux events could be estimated by standard image co-adding techniques. In this case, we have taken advantage of the excellent angular resolution of the Swift mission to provide accurate reference points for 79 GRB events which have eluded any previous correlations with high-energy photons. We find a small but significant signal in the co-added field. Guided by the extrapolated power-law fit previously obtained for the number distribution of GRBs with higher fluxes, the data suggest that only a small fraction of GRBs are sources of high-energy photons.

Akerlof, Carl W.; Zheng, WeiKang, E-mail: akerlof@umich.edu [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040 (United States)] [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040 (United States)

2013-02-20T23:59:59.000Z

407

HIGH-ENERGY NEUTRINO AND GAMMA-RAY TRANSIENTS FROM TRANS-RELATIVISTIC SUPERNOVA SHOCK BREAKOUTS  

SciTech Connect

Trans-relativistic shocks that accompany some supernovae (SNe) produce X-ray burst emissions as they break out in the dense circumstellar medium around the progenitors. This phenomenon is sometimes associated with peculiar low-luminosity gamma-ray bursts (LL GRBs). Here, we investigate the high-energy neutrino and gamma-ray counterparts of such a class of SNe. Just beyond the shock breakout radius, particle acceleration in the collisionless shock starts to operate in the presence of breakout photons. We show that protons may be accelerated to sufficiently high energies and produce high-energy neutrinos and gamma rays via the photomeson interaction. These neutrinos and gamma rays may be detectable from {approx}< 10 Mpc away by IceCube/KM3Net as multi-TeV transients almost simultaneously with the X-ray breakout, and even from {approx}< 100 Mpc away with follow-up observations by the Cherenkov Telescope Array using a wide-field sky monitor like Swift as a trigger. A statistical technique using a stacking approach could also be possible for the detection, with the aid of the SN optical/infrared counterparts. Such multi-messenger observations offer the possibility to probe the transition of trans-relativistic shocks from radiation-mediated to collisionless ones, and would also constrain the mechanisms of particle acceleration and emission in LL GRBs.

Kashiyama, Kazumi; Gao, Shan; Meszaros, Peter [Center for Particle and Gravitational Astrophysics, Department of Astronomy and Astrophysics, Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Murase, Kohta; Horiuchi, Shunsaku, E-mail: kzk15@psu.edu [CCAPP and Department of Physics, Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210 (United States)

2013-05-20T23:59:59.000Z

408

Radiation tolerance survey of selected silicon photomultipliers to high energy neutron irradiation  

SciTech Connect

A key feature of silicon photomultipliers (SiPMs) that can hinder their wider use in medium and high energy physics applications is their relatively high sensitivity to high energy background radiation, with particular regard to high energy neutrons. Dosages of 1010 neq/cm2 can damage them severely. In this study, some standard versions along with some new formulations are irradiated with a high intensity 241AmBe source up to a total dose of 5 109 neq/cm2. Key parameters monitored include dark noise, photon detection efficiency (PDE), gain, and voltage breakdown. Only dark noise was found to change significantly for this range of dosage. Analysis of the data indicates that within each vendor's product line, the change in dark noise is very similar as a function of increasing dose. At present, the best strategy for alleviating the effects of radiation damage is to cool the devices to minimize the effects of increased dark noise with accumulated dose.

Barbosa, Fernando J. [JLAB; McKisson, John E. [JLAB; Qiang, Yi [JLAB; Steinberger, William [JLAB; Xi, Wenze [JLAB; Zorn, Carl J. [JLAB

2012-11-01T23:59:59.000Z

409

Fourier-Ray Modeling of Short-Wavelength Trapped Lee Waves Observed in Infrared Satellite Imagery near Jan Mayen  

Science Conference Proceedings (OSTI)

A time-dependent generalization of a Fourier-ray method is presented and tested for fast numerical computation of high-resolution nonhydrostatic mountain-wave fields. The method is used to model mountain waves from Jan Mayen on 25 January 2000, a ...

Stephen D. Eckermann; Dave Broutman; Jun Ma; John Lindeman

2006-10-01T23:59:59.000Z

410

High-energy and smoothness asymptotic expansion of the scattering amplitude for the Dirac equation and applications  

E-Print Network (OSTI)

We obtain an explicit formula for the diagonal singularities of the scattering amplitude for the Dirac equation with short-range electromagnetic potentials. Using this expansion we uniquely reconstruct an electric potential and magnetic field from the high-energy limit of the scattering amplitude. Moreover, supposing that the electric potential and magnetic field are asymptotic sums of homogeneous terms we give the unique reconstruction procedure for these asymptotics from the scattering amplitude, known for some energy $E.$ Furthermore, we prove that the set of the averaged scattering solutions to the Dirac equation is dense in the set of all solutions to the Dirac equation that are in $L^{2}\\left( \\Omega\\right) ,$ where $\\Omega$ is any connected bounded open set in $\\mathbb{R}^{3}$ with smooth boundary, and we show that if we know an electric potential and a magnetic field for $\\mathbb{R}^{3}\\setminus\\Omega$, then the scattering amplitude, given for some energy $E$, uniquely determines these electric potential and magnetic field everywhere in $\\mathbb{R}^{3}$. Combining this uniqueness result with the reconstruction procedure for the asymptotics of the electric potential and the magnetic field we show that the scattering amplitude, known for some $E$, uniquely determines a electric potential and a magnetic field, that are asymptotic sums of homogeneous terms, which converges to the electric potential and the magnetic field, respectively. Moreover, we discuss the symmetries of the kernel of the scattering matrix, which follow from the parity, charge-conjugation and time-reversal transformations for the Dirac operator.

Ivan Naumkin; Ricardo Weder

2013-12-02T23:59:59.000Z

411

2010 Short Course Lipid Oxidation and Health Short Course: From Chemistry to Nutrition  

Science Conference Proceedings (OSTI)

Lipid Oxidation and Health Short Course: From Chemistry to Nutrition Short Course held at the 101st AOCS Annual Meeting and Expo. 2010 Short Course Lipid Oxidation and Health Short Course: From Chemistry to Nutrition Lipid Oxidation and Health Short

412

Wavelength Assignment in Multi-Fiber WDM Networks by ...  

E-Print Network (OSTI)

states. In the WA problem, the paths are supplied with a wavelength at each of .... capacity is installed to switch all channels provided by the links incident to it. ... both directions), for formulation purposes the path p is directed from a source ?p...

413

CO ICE PHOTODESORPTION: A WAVELENGTH-DEPENDENT STUDY  

SciTech Connect

UV-induced photodesorption of ice is a non-thermal evaporation process that can explain the presence of cold molecular gas in a range of interstellar regions. Information on the average UV photodesorption yield of astrophysically important ices exists for broadband UV lamp experiments. UV fields around low-mass pre-main-sequence stars, around shocks and in many other astrophysical environments are however often dominated by discrete atomic and molecular emission lines. It is therefore crucial to consider the wavelength dependence of photodesorption yields and mechanisms. In this work, for the first time, the wavelength-dependent photodesorption of pure CO ice is explored between 90 and 170 nm. The experiments are performed under ultra high vacuum conditions using tunable synchrotron radiation. Ice photodesorption is simultaneously probed by infrared absorption spectroscopy in reflection mode of the ice and by quadrupole mass spectrometry of the gas phase. The experimental results for CO reveal a strong wavelength dependence directly linked to the vibronic transition strengths of CO ice, implying that photodesorption is induced by electronic transition (DIET). The observed dependence on the ice absorption spectra implies relatively low photodesorption yields at 121.6 nm (Ly{alpha}), where CO barely absorbs, compared to the high yields found at wavelengths coinciding with transitions into the first electronic state of CO (A{sup 1}{Pi} at 150 nm); the CO photodesorption rates depend strongly on the UV profiles encountered in different star formation environments.

Fayolle, Edith C.; Linnartz, Harold [Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Bertin, Mathieu; Romanzin, Claire; Michaut, Xavier; Fillion, Jean-Hugues [Laboratoire de Physique Moleculaire pour l'Atmosphere et l'Astrophysique, Universite Pierre et Marie Curie-Paris 6, CNRS UMR7092, 75005 Paris (France); Oeberg, Karin I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-10-01T23:59:59.000Z

414

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents (OSTI)

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

Olson, J.M.; Kurtz, S.R.

1992-11-24T23:59:59.000Z

415

Wavelength tunability of ion-bombardment-induced ripples on sapphire  

Science Conference Proceedings (OSTI)

A study of ripple formation on sapphire surfaces by 300-2000 eV Ar{sup +} ion bombardment is presented. Surface characterization by in-situ synchrotron grazing incidence small angle x-ray scattering and ex-situ atomic force microscopy is performed in order to study the wavelength of ripples formed on sapphire (0001) surfaces. We find that the wavelength can be varied over a remarkably wide range--nearly two orders of magnitude--by changing the ion incidence angle. Within the linear theory regime, the ion induced viscous flow smoothing mechanism explains the general trends of the ripple wavelength at low temperature and incidence angles larger than 30 deg. . In this model, relaxation is confined to a few nm thick damaged surface layer. The behavior at high temperature suggests relaxation by surface diffusion. However, strong smoothing is inferred from the observed ripple wavelength near normal incidence, which is not consistent with either surface diffusion or viscous flow relaxation.

Zhou Hua; Wang Yiping; Zhou Lan; Headrick, Randall L.; Oezcan, Ahmet S.; Wang Yiyi; Oezaydin, Goezde; Ludwig, Karl F. Jr.; Siddons, D. Peter [Department of Physics, University of Vermont, Burlington, Vermont 05405 (United States); Department of Physics, Boston University, Massachusetts 02215 (United States); National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2007-04-15T23:59:59.000Z

416

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents (OSTI)

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1992-01-01T23:59:59.000Z

417

Magnetars in the Metagalaxy: An Origin for Ultra High Energy Cosmic Rays in the Nearby Universe  

E-Print Network (OSTI)

I show that the relativistic winds of newly born magnetars with khz initial spin rates, occurring in all normal galaxies, can accelerate ultrarelativistic light ions with an E^{-1} injection spectrum, steepening to E^{-2} at higher energies, with an upper cutoff above 10^{21} eV. Interactions with the CMB yield a spectrum in good accord with the observed spectrum of Ultra-High Energy Cosmic Rays (UHECR), if ~ 5-10% of the magnetars are born with voltages sufficiently high to accelerate the UHECR. The form the spectrum spectrum takes depends on the gravitational wave losses during the magnetars' early spindown - pure electromagnetic spindown yields a flattening of the E^3 J(E) spectrum below 10^{20} eV, while a moderate GZK ``cutoff'' appears if gravitational wave losses are strong enough. I outline the physics such that the high energy particles escape with small energy losses from a magnetar's natal supernova, including Rayleigh-Taylor ``shredding'' of the supernova envelope, expansion of a relativistic blast wave into the interstellar medium, acceleration of the UHE ions through surf-riding in the electromgnetic fields of the wind, and escape of the UHE ions in the rotational equator with negligible radiation loss. The abundance of interstellar supershells and unusually large supernova remnants suggests that most of the initial spindown energy is radiated in khz gravitational waves for several hours after each supernova, with effective strains from sources at typical distances ~ 3 x 10^{-21}. Such bursts of gravitational radiation should correlate with bursts of ultra-high energy particles. The Auger experiment should see such bursts every few years.

Jonathan Arons

2002-08-23T23:59:59.000Z

418

Two-Pole Caustic Model for High-Energy Lightcurves of Pulsars  

E-Print Network (OSTI)

We present a new model of high-energy lightcurves from rotation powered pulsars. The key ingredient of the model is the gap region (i.e. the region where particle acceleration is taking place and high-energy photons originate) which satisfies the following assumptions: i) the gap region extends from each polar cap to the light cylinder; ii) the gap is thin and confined to the surface of last open magnetic-field lines; iii) photon emissivity is uniform within the gap region. The model lightcurves are dominated by strong peaks (either double or single) of caustic origin. Unlike in other pulsar models with caustic effects, the double peaks arise due to crossing two caustics, each of which is associated with a different magnetic pole. The generic features of the lightcurves are consistent with the observed characteristics of pulsar lightcurves: 1) the most natural (in terms of probability) shape consists of two peaks (separated by 0.4 to 0.5 in phase for large viewing angles); 2) the peaks posess well developed wings; 3) there is a bridge (inter-peak) emission component; 4) there is a non-vanishing off-pulse emission level; 5) the radio pulse occurs before the leading high-energy peak. The model is well suited for four gamma-ray pulsars - Crab, Vela, Geminga and B1951+32 - with double-peak lightcurves exhibiting the peak separation of 0.4 to 0.5 in phase. Hereby, we apply the model to the Vela pulsar. Moreover, we indicate the limitation of the model in accurate reproducing of the lightcurves with single pulses and narrowly separated (about 0.2 in phase) pulse peaks. We also discuss the optical polarization properties for the Crab pulsar in the context of the two-pole caustic model.

J. Dyks; B. Rudak

2003-03-01T23:59:59.000Z

419

High Energy Nuclear Database: A Testbed for Nuclear Data Information Technology  

SciTech Connect

We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a testbed for the further development of an object-oriented nuclear data format and database system. By using ''off-the-shelf'' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a ''Grand Unified Nuclear Format'' encapsulating data types used in the ENSDF, ENDF/B, EXFOR, NSR and other formats, including processed data formats.

Brown, D A; Vogt, R; Beck, B; Pruet, J

2007-04-18T23:59:59.000Z

420

Non-thermal high-energy emission from colliding winds of massive stars  

E-Print Network (OSTI)

Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)

A. Reimer; M. Pohl; O. Reimer

2005-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The high-energy gamma-ray light curve of PSR B1259 -63  

E-Print Network (OSTI)

The high-energy gamma-ray light curve of the binary system PSR B1259 -63, is computed using the approach that successfully predicted the spectrum at periastron. The simultaneous INTEGRAL and H.E.S.S. spectra taken 16 days after periastron currently permit both a model with dominant radiative losses, high pulsar wind Lorentz factor and modest efficiency as well as one with dominant adiabatic losses, a slower wind and higher efficiency. In this paper we shown how the long-term light curve may help to lift this degeneracy.

J. G. Kirk; Lewis Ball; S. Johnston

2005-09-30T23:59:59.000Z

422

The effect of highly structured cosmic magnetic fields on ultra-high energy cosmic ray propagation  

E-Print Network (OSTI)

The possibility that the magnetic field is strongly correlated with the large-scale structure of the universe has been recently considered in the literature. In this scenario the intergalactic magnetic field has a strong ($\\mu$G) regular component spanning tens of Mpc but localized in sheets and filaments, while the vast voids in between are almost free of magnetic field. If true, this could have important consequences on the propagation of ultra-high energy cosmic rays, and severely affect our capacity of doing astronomy with charged particles. A quantitative discussion of these effects is given in the present work.

Gustavo Medina Tanco

1998-08-07T23:59:59.000Z

423

Ultra high energy cosmic rays and the large scale structure of the galactic magnetic field  

E-Print Network (OSTI)

We study the deflection of ultra high energy cosmic ray protons in different models of the regular galactic magnetic field. Such particles have gyroradii well in excess of 1 kpc and their propagation in the galaxy reflects only the large scale structure of the galactic magnetic field. A future large experimental statistics of cosmic rays of energy above 10$^{19}$ eV could be used for a study of the large scale structure of the galactic magnetic field if such cosmic rays are indeed charged nuclei accelerated at powerful astrophysical objects and if the distribution of their sources is not fully isotropic.

Todor Stanev

1996-07-17T23:59:59.000Z

424

Science on high-energy lasers: From today to the NIF  

SciTech Connect

This document presents both a concise definition of the current capabilities of high energy lasers and a description of capabilities of the NIF (National Ignition Facility). Five scientific areas are discussed (Astrophysics, Hydrodynamics, Material Properties, Plasma Physics, Radiation Sources, and Radiative Properties). In these five areas we project a picture of the future based on investigations that are being carried on today. Even with this very conservative approach we find that the development of new higher energy lasers will make many extremely exciting areas accessible to us.

Lee, R.W.; Petrasso, R.; Falcone, R.W.

1995-01-01T23:59:59.000Z

425

ON THE VERY HIGH ENERGY PULSED EMISSION IN THE CRAB PULSAR  

Science Conference Proceedings (OSTI)

We have examined the recently detected very high energy (VHE) pulsed radiation from the Crab pulsar. According to the observational evidence, the emission (>25 GeV) peaks at the same phase as the optical spectrum. By considering the cyclotron instability, we show that the pitch angles become non-vanishing, leading to the efficient synchrotron mechanism near the light cylinder surface. We argue that the inverse Compton scattering and the curvature radiation mechanisms do not contribute to the VHE domain detected by MAGIC.

Machabeli, G.; Osmanov, Z., E-mail: g.machabeli@astro-ge.or, E-mail: z.osmanov@astro-ge.or [Georgian National Astrophysical Observatory, Chavchavadze State University, Kazbegi 2a, 0106, Tbilisi (Georgia)

2010-02-01T23:59:59.000Z

426

Gas-liquid transition in the model of particles interacting at high energy  

E-Print Network (OSTI)

An application of the ideas of the inertial confinement fusion process in the case of particles interacting at high energy is investigated. A possibility of the gas-liquid transition in the gas is considered using different approaches. In particular, a shock wave description of interactions between particles is studied and a self-similar solution of Euler's equation is discussed. Additionally, Boltzmann equation is solved for self-consistent field (Vlasov's equation) in linear approximation for the case of a gas under external pressure and the corresponding change of Knudsen number of the system is calculated.

S. Bondarenko; K. Komoshvili

2012-03-25T23:59:59.000Z

427

Simulation of Ultra High Energy Neutrino Interactions in Ice and Water  

E-Print Network (OSTI)

The CORSIKA program, usually used to simulate extensive cosmic ray air showers, has been adapted to work in a water or ice medium. The adapted CORSIKA code was used to simulate hadronic showers produced by neutrino interactions. The simulated showers have been used to study the spatial distribution of the deposited energy in the showers. This allows a more precise determination of the acoustic signals produced by ultra high energy neutrinos than has been possible previously. The properties of the acoustic signals generated by such showers are described.

S. Bevan; S. Danaher; J. Perkin; S. Ralph; C. Rhodes; L. Thompson; T. Sloan; D. Waters

2007-04-08T23:59:59.000Z

428

The study of multi-institutional collaborations in high-energy physics  

SciTech Connect

Since World War II, the organizational framework for scientific research is increasingly the multi-institutional collaboration, especially in high-energy physics. A broad preliminary survey, into the functioning of research collaborations involving three or more institutions is described. The study is designed to identify patterns of collaborations, define the scope of the documentation problems, field-test possible solutions, recommend future actions, and build an archives of oral history interviews and other resources for scholarly use. Once the study is completed, its findings will be used to promote systems to document significant collaborative research.

Not Available

1991-01-01T23:59:59.000Z

429

Overview of event-by-event analysis of high energy nuclear collisions  

E-Print Network (OSTI)

The event-by-event analysis of high energy nuclear collisions aims at revealing the richness of the underlying event structures and provide unique measures of dynamical fluctuations associated with QGP phase transition. The major challenge in these studies is to separate the dynamical fluctuations from the many other sources which contribute to the measured values. We present the fluctuations in terms of event multiplicity, mean transverse momentum, elliptic flow, source sizes, particle ratios and net charge distributions. In addition, we discuss the effect of long range correlations, disoriented chiral condensates and presence of jets. A brief review of various probes used for fluctuation studies and available experimental results are presented.

Nayak, Tapan K

2007-01-01T23:59:59.000Z

430

Simulation of Ultra High Energy Neutrino Interactions in Ice and Water  

E-Print Network (OSTI)

The CORSIKA program, usually used to simulate extensive cosmic ray air showers, has been adapted to work in a water or ice medium. The adapted CORSIKA code was used to simulate hadronic showers produced by neutrino interactions. The simulated showers have been used to study the spatial distribution of the deposited energy in the showers. This allows a more precise determination of the acoustic signals produced by ultra high energy neutrinos than has been possible previously. The properties of the acoustic signals generated by such showers are described.

Bevan, S; Perkin, J; Ralph, S; Rhodes, C; Thompson, L; Sloan, T; Waters, D

2007-01-01T23:59:59.000Z

431

High energy proton irradiation induced pinning centers in Bi-2212 and Bi-2223 superconductors  

Science Conference Proceedings (OSTI)

Bi-2212 single crystals and Bi-2223/Ag-sheathed tapes were irradiated with high energy protons. TEM images reveal the production of randomly oriented (splayed) columnar defects with an amorphous core of {approximately}10 nm diameter caused by the fissioning of Bi nuclei. The critical current density J{sub c} and irreversibility line both substantially increased with the proton dose for both crystals and tapes, especially for the magnetic field parallel to the c axis. An irradiated tape had a J{sub c} value {approximately}100 times greater than that of an unirradiated one at 1 T and 75 K.

Willis, J.O.; Safar, H.; Cho, J.H. [and others

1995-12-01T23:59:59.000Z

432

Controlled self-modulation of high energy beams in a plasma  

SciTech Connect

A high energy particle beam propagating in a uniform plasma is subject to the transverse two-stream instability that first transforms the beam into the train of microbunches and then quickly destroys that train by transverse wakefields. By the proper longitudinal inhomogeneity of the plasma density, it is possible to stop the instability action at the stage of microbunches and form the bunch train that can resonantly excite plasma wakefields over a long distance. The latter feature is vital for proton beam driven plasma wakefield acceleration that was recently proposed as a way to bring electrons to TeV energy range in a single plasma section.

Lotov, K. V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

2011-02-15T23:59:59.000Z

433

(The 25th international conference on high-energy physics at Singapore)  

SciTech Connect

The traveler attended the 25th International Conference on High-Energy Physics in Singapore, August 1--8, 1990. The conference was dominated by results from the new LEP accelerator at CERN. The precision of the data from LEP is impressive, and all results are consistent with the standard model. No new physics'' has emerged at LEP. The traveler presented a talk on CERN/SPS WA80 results and had several interesting, private discussions on both L* and WA80 topics.

Plasil, F.

1990-08-17T23:59:59.000Z

434

High Energy Physics Presentation Videos from the Twenty-second Physics in Collision Conference  

DOE Data Explorer (OSTI)

The Physics in Collision (PIC) series of conferences has been ongoing since the early 1980s. Meetings are held all over the world and attended by scientists on the leading edge of High Energy Physics (HEP) research. The twenty-second PIC conference was held 2002 in Stanford, California. It was sponsored and hosted by DOE, Stanford University, and SLAC. Twenty-seven video presentations take you to the sessions on Flavor Physics, Astro Particle Physics, QCD, Neutrino Physics, and Electroweak Physics. Access is also provided to the PowerPoint slides and a PDF paper or presentation associated with each video.

435

Dictionary of high-energy physics in English, German, French and Russian  

Science Conference Proceedings (OSTI)

The dictionary contains approximately 5,000 entries in each of the four languages covered (English, German, French and Russian). This dictionary provides a comprehensive collection of terms used in high-energy physics. The terms were compiled from specialized literature, including the most recent reports from research institutes and proceedings of conferences. The dictionary uses the approved lexicographical system of the other dictionaries. To each entry is added the special field from which the term derives and further information that may help in understanding the correct meaning of the term. The alphanumeric arrangement allows the user to translate from any of the four languages into any of the other languages included.

Sube, R.

1987-01-01T23:59:59.000Z

436

High-energy-physics studies. Progress report, Part I. Experimental program  

SciTech Connect

The experimental high energy physics program at Ohio State University for 1982 is described. The following topics are discussed: a search for neutrino oscillations at LAMPF; measuring charm and beauty decays via hadronic production in a hybrid emulsion spectrometer; prompt neutrino production experiment; search for long-lived particles from neutrino interactions in a tagged emulsion spectrometer; electron-positron interactions at CESR-CLEO; a search for exotic forms of stable matter; and development of computer systems for data processing and for development of detectors. (GHT)

1982-01-01T23:59:59.000Z

437

Probing low-scale quantum gravity with high-energy neutrinos  

SciTech Connect

Motivated by the quantum structure of space-time at high scales M{sub QG}, we study the propagation behavior of the high-energy neutrino within the quantum gravity effect. We consider the possible induced dispersive effect and derive the resulting vacuum refraction index {eta}{sub vac}(E{sub {nu}}) Asymptotically-Equal-To 1 + E{sub {nu}}{sup 2}/M{sub QG}{sup 2}. Then, by referring to the SN1987A and basing on the recorded neutrino data we approach the corresponding scale M{sub QG} Asymptotically-Equal-To 10{sup 4} GeV.

Ennadifi, Salah Eddine, E-mail: ennadifis@gmail.com [University Mohammed V-Agdal, Laboratory of High Energy Physics, Modeling and Simulation, Faculty of Science (Morocco)

2013-05-15T23:59:59.000Z

438

Milagro Search for Very High Energy Emission from Gamma-Ray Bursts in the Swift Era  

E-Print Network (OSTI)

2005. 1. Me´sza´ros, P. & Rees, M. Optical and long-wavelength afterglow from gamma- ray bursts model. Astrophys. J. 517, L109­-L112 (1999). 3. Ford, L. A. et al. BATSE observations of gamma-ray burst, F. et al. Spectral properties of the prompt X-ray emission and afterglow from the gamma-ray burst

California at Santa Cruz, University of

439

High-energy gamma rays in Hiroshima and Nagasaki: Implications for risk and W{sub R}  

SciTech Connect

Based on the DS86 dosimetry system, nearly all of the dose to survivors of the atomic bombings of Hiroshima and Nagasaki was due to unusually high-energy gamma rays, predominantly in the 2- to 5-MeV range. These high energies resulted in part from neutron capture gamma rays as the bomb neutrons penetrated large distances of air. Because of the inverse relationship between energy and biological effectiveness, these high-energy gamma rays are expected to be substantially less effective in producing biological damage than the radiations commonly used in radiobiology and risk assessment. This observation has implications for radiation protection and risk assessment.

Straume, T. [Lawrence Livermore National Lab., CA (United States)

1995-12-01T23:59:59.000Z

440

High energy density batteries. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities database). Published Search  

SciTech Connect

The bibliography contains citations concerning high energy density electric batteries. Battery electrolyte materials such as sodium-sulfur, lithium-aluminum, nickel-cadmium, lithium-thionyl, lithium-lead, sodium-sodiumpolysulfide, nickel-iron, nickel-zinc, and alkali-sulfur are examined. Test methods for these high energy batteries are discussed. Molten salt electrochemical studies for high energy cells are included. Military applications are also presented. (Contains a minimum of 63 citations and includes a subject term index and title list.)

Not Available

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

442

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA)

DOE/EIA-0202(98/3Q) Distribution Category UC-950 Short-Term Energy Outlook July 1998 Energy Information Administration Office of Energy Markets and End Use

443

Magnet Coil Shorted Turn Detector  

Science Conference Proceedings (OSTI)

The Magnet Coil Shorted Turn Detector has been developed to facilitate the location of shorted turns in magnet coils. Finding these shorted turns is necessary to determine failure modes that are a necessary step in developing future production techniques. Up to this point, coils with shorted turns had the insulation burned off without the fault having been located. This disassembly process destroyed any chance of being able to find the fault. In order to maintain a flux balance in a coupled system such as a magnet coil, the current in a shorted turn must be opposed to the incident current. If the direction of the current in each conductor can be measured relative to the incident current, then the exact location of the short can be determined. In this device, an AC voltage is applied to the magnet under test. A small hand held B-dot pickup coil monitors the magnetic field produced by current in the individual magnet conductors. The relative phase of this pickup coil voltage is compared to a reference signal derived from the input current to detect a current reversal as the B-dot pickup coil is swept over the conductors of the coil under test. This technique however, is limited to only those conductors that are accessible to the hand held probe.

Dinkel, J.A.; Biggs, J.E.

1994-03-01T23:59:59.000Z

444

The Gamma Ray Burst section of the White Paper on the Status and Future of Very High Energy Gamma Ray Astronomy A Brief Preliminary Report  

E-Print Network (OSTI)

This is a short report on the preliminary findings of the gamma ray burst (GRB) working group for the white paper on the status and future of very high energy (VHE; >50 GeV) gamma-ray astronomy. The white paper discusses the status of past and current attempts to observe GRBs at GeV-TeV energies, including a handful of low-significance, possible detections. The white paper concentrates on the potential of future ground-based gamma-ray experiments to observe the highest energy emission ever recorded for GRBs, particularly for those that are nearby and have high Lorentz factors in the GRB jet. It is clear that the detection of VHE emission would have strong implications for GRB models, as well as cosmic ray origin. In particular, the extended emission phase (including both afterglow emission and possible flaring) of nearby long GRBs could provide the best possibility for detection. The difficult-to-obtain observations during the prompt phase of nearby long GRBs and short GRBs could also provide particularly str...

Falcone, A D; Baring, M G; Blandford, R; Connaughton, V; Coppi, P; Dermer, C; Dingus, B; Fryer, C; Gehrels, N; Granot, J; Horan, D; Katz, J I; Khn, K; Mszros, P; Norris, J; Parkinson, P Saz; Per, A; Ramirez-Ruiz, E; Razzaque, S; Wang, X; Zhang, B

2008-01-01T23:59:59.000Z

445

The Gamma Ray Burst section of the White Paper on the Status and Future of Very High Energy Gamma Ray Astronomy: A Brief Preliminary Report  

E-Print Network (OSTI)

This is a short report on the preliminary findings of the gamma ray burst (GRB) working group for the white paper on the status and future of very high energy (VHE; >50 GeV) gamma-ray astronomy. The white paper discusses the status of past and current attempts to observe GRBs at GeV-TeV energies, including a handful of low-significance, possible detections. The white paper concentrates on the potential of future ground-based gamma-ray experiments to observe the highest energy emission ever recorded for GRBs, particularly for those that are nearby and have high Lorentz factors in the GRB jet. It is clear that the detection of VHE emission would have strong implications for GRB models, as well as cosmic ray origin. In particular, the extended emission phase (including both afterglow emission and possible flaring) of nearby long GRBs could provide the best possibility for detection. The difficult-to-obtain observations during the prompt phase of nearby long GRBs and short GRBs could also provide particularly strong constraints on the opacity and bulk Lorentz factors surrounding the acceleration site. The synergy with upcoming and existing observatories will, of course, be critical for both identification of GRBs and for multiwavelength/multimessenger studies.

A. D. Falcone; D. A. Williams; M. G. Baring; R. Blandford; V. Connaughton; P. Coppi; C. Dermer; B. Dingus; C. Fryer; N. Gehrels; J. Granot; D. Horan; J. I. Katz; K. Kuehn; P. Meszaros; J. Norris; P. Saz Parkinson; A. Peer; E. Ramirez-Ruiz; S. Razzaque; X. Wang; B. Zhang

2008-04-15T23:59:59.000Z

446

Silicon detectors for the next generation of high energy physics experiments: expected degradation  

E-Print Network (OSTI)

There exists an enormous interest for the study of very high energy domain in particle physics, both theoretically and experimentally, in the aim to construct a general theory of the fundamental constituents of matter and of their interactions. Until now, semiconductor detectors have widely been used in modern high energy physics experiments. They are elements of the high resolution vertex and tracking system, as well as of calorimeters. The main motivation of this work is to discuss how to prepare some possible detectors - only silicon option being considered, for the new era of HEP challenges because the bulk displacement damage in the detector, consequence of irradiation, produces effects at the device level that limit their long time utilisation, increasing the leakage current and the depletion voltage, eventually up to breakdown, and thus affecting the lifetime of detector systems. In this paper, physical phenomena that conduce to the degradation of the detector are discussed and effects are analysed at the device level (leakage current and effective carrier concentration) in the radiation environments expected in the next generation of hadron colliders after LHC, at the next lepton and gamma-gamma colliders, as well as in astroparticle experiments, in conditions of long time continuum irradiations, for different technological options. The predicted results permit a better decision to obtain devices with harder parameters to radiation.

I. Lazanu; S. Lazanu

2005-12-31T23:59:59.000Z

447

Modeling high-energy cosmic ray induced terrestrial and atmospheric neutron flux: A lookup table  

E-Print Network (OSTI)

Under current conditions, the cosmic ray spectrum incident on the Earth is dominated by particles with energies solar flares, supernovae and gamma ray bursts produce high energy cosmic rays (HECRs) with drastically higher energies. The Earth is likely episodically exposed to a greatly increased HECR flux from such events, some of which lasting thousands to millions of years. The air showers produced by HECRs ionize the atmosphere and produce harmful secondary particles such as muons and neutrons. Neutrons currently contribute a significant radiation dose at commercial passenger airplane altitude. With higher cosmic ray energies, these effects will be propagated to ground level. This work shows the results of Monte Carlo simulations quantifying the neutron flux due to high energy cosmic rays at various primary energies and altitudes. We provide here lookup tables that can be used to determine neutron fluxes from primaries with total energies 1 GeV - 1 PeV. By convolution, one can compute the neutron flux for any arbitrary CR spectrum. Our results demonstrate that deducing the nature of primaries from ground level neutron enhancements would be very difficult.

Andrew Overholt; Adrian Melott; Dimitra Atri

2012-06-22T23:59:59.000Z

448

Gluons and the quark sea at high energies: distributions, polarization, tomography  

Science Conference Proceedings (OSTI)

This report is based on a ten-week program on Gluons and the quark sea at high-energies, which took place at the Institute for Nuclear Theory (INT) in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics (QCD). This report is organized around the following four major themes: (i) the spin and flavor structure of the proton, (ii) three dimensional structure of nucleons and nuclei in momentum and configuration space, (iii) QCD matter in nuclei, and (iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific opportunities presented by an EIC.

Boer, D.; Venugopalan, R.; Diehl, M.; Milner, R.; Vogelsang, W.; et al.

2011-09-30T23:59:59.000Z

449

Extended CO Solid: A New Class of High Energy Density Material  

DOE Green Energy (OSTI)

Covalently bonded extended phases of molecular solids made of first- and second-row elements at high pressures are a new class of materials with advanced optical, mechanical and energetic properties. The existence of such extended solids has recently been demonstrated using diamond anvil cells in several systems, including N{sub 2}, CO{sub 2},and CO. However, the microscopic quantities produced at the formidable high-pressure/temperature conditions have limited the characterization of their predicted novel properties including high-energy content. In this paper, we present the first experimental evidence that these extended low-Z solids are indeed high energy density materials via milligram-scale high-pressure synthesis, recovery and characterization of polymeric CO (p-CO). Our spectroscopic data reveal that p-CO is a random polymer made of lactonic entities and conjugated C=C with an energy content rivaling or exceeding that of HMX. Solid p-CO explosively decomposes to CO{sub 2} and glassy carbon and thus might be used as an advanced energetic material.

Lipp, M J; Evans, W J; Baer, B J; Yoo, C

2004-10-14T23:59:59.000Z

450

"No High Energy Emission" GRB Class Is Attributable to Brightness Bias  

E-Print Network (OSTI)

The inhomogeneous brightness distribution of BATSE detected gamma-ray bursts has been considered strong evidence for their cosmological origin. However, subclasses of gamma-ray bursts have been shown to have significantly more homogeneous brightness distributions. Pendleton et al. (1997) have found such a result for gamma-ray bursts with no detectable emission at energies >300 keV. Accordingly, it has been suggested that these no high energy (NHE) emission bursts represent an underluminous population of nearby sources. A distinct homogeneous NHE brightness distribution has also been considered as evidence for beaming of different spectral components of the prompt burst emission. We synthesize observed distributions of gamma-ray bursts based on a sample of typical bright BATSE bursts with intrinsic high energy emission and adopt a single cosmological distance scale for all sources. We find that the resulting synthetic NHE bursts do indeed have a more nearly homogeneous intensity distribution when an appropriate decrease in signal to noise and redshifted spectrum is incorporated. We argue that the definition of NHE bursts, and soft-spectrum bursts in general, naturally produces a steep distribution. The NHE class of gamma-ray bursts is therefore likely due to brightness bias.

J. T. Bonnell; J. P. Norris

1999-05-25T23:59:59.000Z

451

Automatic Quenching of High Energy gamma-ray Sources by Synchrotron Photons  

Science Conference Proceedings (OSTI)

Here we investigate evolution of a magnetized system, in which continuously produced high energy emission undergoes annihilation on a soft photon field, such that the synchrotron radiation of the created electron-positron pairs increases number density of the soft photons. This situation is important in high energy astrophysics, because, for an extremely wide range of magnetic field strengths (nano to mega Gauss), it involves {gamma}-ray photons with energies between 0.3GeV and 30TeV. We derive and analyze the conditions for which the system is unstable to runaway production of soft photons and ultrarelativistic electrons, and for which it can reach a steady state with an optical depth to photon-photon annihilation larger than unity, as well those for which efficient pair loading of the emitting volume takes place. We also discuss the application of our analysis to a realistic situation involving astrophysical sources of a broad-band {gamma}-ray emission and briefly consider the particular case of sources close to active supermassive black holes.

Stawarz, Lukasz; /KIPAC, Menlo Park /SLAC /Jagiellonian U., Astron. Observ.; Kirk, John; /Heidelberg, Max Planck Inst.

2007-02-02T23:59:59.000Z

452

Ultra-High Energy Gamma Rays in Geomagnetic Field and Atmosphere  

E-Print Network (OSTI)

The nature and origin of ultra-high energy (UHE: reffering to > 10^19 eV) cosmic rays are great mysteries in modern astrophysics. The current theories for their explanation include the so-called "top-down" decay scenarios whose main signature is a large ratio of UHE gamma rays to protons. Important step in determining the primary composition at ultra-high energies is the study of air shower development. UHE gamma ray induced showers are affected by the Landau-Pomeranchuk-Migdal (LPM) effect and the geomagnetic cascading process. In this work extensive simulations have been carried out to study the characteristics of air showers from UHE gamma rays. At energies above several times 10^19 eV the shower is affected by geomagnetic cascading rather than by the LPM effect. The properties of the longitudinal development such as average depth of the shower maximum or its fluctuations depend strongly on both primary energy and incident direction. This feature may provide a possible evidence of the UHE gamma ray presence by fluorescence detectors.

H. P. Vankov; N. Inoue; K. Shinozaki

2002-11-04T23:59:59.000Z

453

A Globally Distributed System for Job, Data, and Information Handling for High Energy Physics  

SciTech Connect

The computing infrastructures of the modern high energy physics experiments need to address an unprecedented set of requirements. The collaborations consist of hundreds of members from dozens of institutions around the world and the computing power necessary to analyze the data produced surpasses already the capabilities of any single computing center. A software infrastructure capable of seamlessly integrating dozens of computing centers around the world, enabling computing for a large and dynamical group of users, is of fundamental importance for the production of scientific results. Such a computing infrastructure is called a computational grid. The SAM-Grid offers a solution to these problems for CDF and DZero, two of the largest high energy physics experiments in the world, running at Fermilab. The SAM-Grid integrates standard grid middleware, such as Condor-G and the Globus Toolkit, with software developed at Fermilab, organizing the system in three major components: data handling, job handling, and information management. This dissertation presents the challenges and the solutions provided in such a computing infrastructure.

Garzoglio, Gabriele; /DePaul U.

2005-12-01T23:59:59.000Z

454

Activation measurements of high energy deuterons in the plasma focus device  

SciTech Connect

Nuclear activation techniques were used to measure the fluence of high energy deuterons in a plasma focus device having a stored energy of 75 kilojoules at 18 kV. The $sup 12$C(d,n)$sup 13$N (330 keV threshold) and $sup 27$Al(d,p)$sup 28$Al reactions were used to provide both an absolute number of high energy deuterons and an average energy, evaluated from the $sup 13$N/$sup 28$Al ratio calculated for various energies by Young. Previous measurements indicated more than 10$sup 15$ deuterons could be accelerated to energies above 330 keV in the low pressure mode of operation, with a highly anisotropic distribution. Present measurements show that more than 10$sup 12$ deuterons achieve energies greater than 5 MeV on some high intensity shots in the low pressure mode. The presence of multi-MeV deuterons in the plasma focus device was substantiated by measuring activation as a function of depth in 1 mil Al foils, and by measurements of neutron energy using time-of-flight. (auth)

Gullickson, R.L.; Sahlin, H.L.

1975-12-01T23:59:59.000Z

455

On the significance of the observed clustering of ultra-high energy cosmic rays  

E-Print Network (OSTI)

Three pairs of possibly correlated ultra-high energy cosmic ray events were reported by Hayashida et al (1996). Here we calculate the propagation of the corresponding particles through both the intergalactic and galactic magnetic fields. The large scale disc and halo magnetic components are approximated by the models of Stanev (1997). The intergalactic magnetic field intensity is modulated by the actual density of luminous matter along the corresponding lines of sight, calculated from the CfA redshift catalogue (Huchra et al, 1995). The results indicate that, if the events of each pair had a common source and were simultaneously produced, they either originated inside the galactic halo or otherwise very unlikely events were observed. On the other hand, an estimate of the arrival probability of ultra-high energy cosmic rays, under the assumption that the distribution of luminous matter in the nearby universe traces the distribution of the sources of the particles and intensity of the intergalactic magnetic field, suggests that the pairs are chance clusterings.

Gustavo A. Medina Tanco

1998-01-08T23:59:59.000Z

456

Modeling high-energy cosmic ray induced terrestrial muon flux: A lookup table  

E-Print Network (OSTI)

On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. Typical cosmic ray energies may be much higher than the ~ 1 GeV flux which normally dominates. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the radiation dose. Muons contribute 85% to the radiation dose from cosmic rays. This enhanced dose could be potentially harmful to the biosphere. This mechanism has been discussed extensively in literature but has never been quantified. Here, we have developed a lookup table that can be used to quantify this effect by modeling terrestrial muon flux from any arbitrary cosmic ray spectra with 10 GeV - 1 PeV primaries. This will enable us to compute the radiation dose on terrestrial planetary surfaces from a number of astrophysical sources.

Dimitra Atri; Adrian L. Melott

2010-11-19T23:59:59.000Z

457

TeV Burst of Gamma-Ray Bursts and Ultra High Energy Cosmic Rays  

E-Print Network (OSTI)

Some recent experiments detecting very high energy (VHE) gamma-rays above 10-20 TeV independently reported VHE bursts for some of bright gamma-ray bursts (GRBs). If these signals are truly from GRBs, these GRBs must emit a much larger amount of energy as VHE gamma-rays than in the ordinary photon energy range of GRBs (keV-MeV). We show that such extreme phenomena can be reasonably explained by synchrotron radiation of protons accelerated to \\sim 10^{20-21} eV, which has been predicted by Totani (1998a). Protons seem to carry about (m_p/m_e) times larger energy than electrons, and hence the total energy liberated by one GRB becomes as large as \\sim 10^{56} (\\Delta \\Omega / 4 \\pi) ergs. Therefore a strong beaming of GRB emission is highly likely. Extension of the VHE spectrum beyond 20 TeV gives a nearly model-independent lower limit of the Lorentz factor of GRBs, as $\\gamma \\gtilde 500$. Furthermore, our model gives the correct energy range and time variability of ordinary keV-MeV gamma-rays of GRBs by synchrotron radiation of electrons. Therefore the VHE bursts of GRBs strongly support the hypothesis that ultra high energy cosmic rays observed on the Earth are produced by GRBs.

Tomonori Totani

1998-10-14T23:59:59.000Z

458

Electron Quasielastic Scattering at High Energy from $^{56}$Fe, What Suppression?  

E-Print Network (OSTI)

Quasielastic electron scattering $(e,e')$ from $^{56}$Fe is calculated at large electron energies (2-4 GeV) and large three momentum transfer (0.5-1.5 GeV/c). We use a relativistic mean-field single particle model for the bound and continuum nucleon wavefunctions based on the $\\sigma-\\omega$ model and we include the effects of electron Coulomb distortion in the calculation. The calculations are compared to high energy data from SLAC and more recent data from Jefferson Laboratory, particularly for kinematics where the energy transfer is less than 500 to 600 MeV and the quasielastic process is expected to dominate the cross section. The effects of the predicted weakening of the strong scalar and vector potentials of the $\\sigma-\\omega$ model at high energy are investigated. Possible evidence for `longitudinal suppression' or modifications of nucleon form factors in the medium is considered, but neither is necessary to explain the quasielastic data for four momentum transfers less than 1 (GeV/c)$^2$.

K. S. Kim; L. E. Wright

2002-08-21T23:59:59.000Z

459

Apparatus for generating coherent infrared energy of selected wavelength  

SciTech Connect

A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

Stevens, Charles G. (Danville, CA)

1985-01-01T23:59:59.000Z

460

Semiconductor light source with electrically tunable emission wavelength  

DOE Patents (OSTI)

A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

Belenky, Gregory (Port Jefferson, NY); Bruno, John D. (Bowie, MD); Kisin, Mikhail V. (Centereach, NY); Luryi, Serge (Setauket, NY); Shterengas, Leon (Centereach, NY); Suchalkin, Sergey (Centereach, NY); Tober, Richard L. (Elkridge, MD)

2011-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "high-energy short wavelength" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Three dimensional imaging detector employing wavelength-shifting optical fibers  

DOE Patents (OSTI)

A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

Worstell, William A. (Framingham, MA)

1997-01-01T23:59:59.000Z

462

Approaches for a quantum memory at telecommunication wavelengths  

Science Conference Proceedings (OSTI)

We report experimental storage and retrieval of weak coherent states of light at telecommunication wavelengths using erbium ions doped into a solid. We use two photon-echo-based quantum storage protocols. The first one is based on controlled reversible inhomogeneous broadening (CRIB). It allows the retrieval of the light on demand by controlling the collective atomic coherence with an external electric field, via the linear Stark effect. We study how atoms in the excited state affect the signal-to-noise ratio of the CRIB memory. Additionally we show how CRIB can be used to modify the temporal width of the retrieved light pulse. The second protocol is based on atomic frequency combs. Using this protocol we verify that the reversible mapping is phase preserving by performing an interference experiment with a local oscillator. These measurements are enabling steps toward solid-state quantum memories at telecommunication wavelengths. We also give an outlook on possible improvements.

Lauritzen, Bjoern; Minar, Jiri; Riedmatten, Hugues de; Afzelius, Mikael; Gisin, Nicolas [Group of Applied Physics, University of Geneva, CH-1211 Geneva 4 (Switzerland)

2011-01-15T23:59:59.000Z

463

Wavelength-resonant surface-emitting semiconductor laser  

DOE Patents (OSTI)

A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

Brueck, Steven R. J. (Albuquerque, NM); Schaus, Christian F. (Albuquerque, NM); Osinski, Marek A. (Albuquerque, NM); McInerney, John G. (Cedar Crest, NM); Raja, M. Yasin A. (Albuquerque, NM); Brennan, Thomas M. (Albuquerque, NM); Hammons, Burrell E. (Tijeras, NM)

1989-01-01T23:59:59.000Z

464

Argonne National Laboratory High Energy Physics Division semiannual report of research activities, January 1, 1989--June 30, 1989  

Science Conference Proceedings (OSTI)

This paper discuss the following areas on High Energy Physics at Argonne National Laboratory: experimental program; theory program; experimental facilities research; accelerator research and development; and SSC detector research and development.

Not Available

1989-01-01T23:59:59.000Z

465

Upconverting device for enhanced recogntion of certain wavelengths of light  

DOE Patents (OSTI)

An upconverting device for enhanced recognition of selected wavelengths is provided. The device comprises a transparent light transmitter in combination with a plurality of upconverting nanoparticles. The device may a lens in eyewear or alternatively a transparent panel such as a window in an instrument or machine. In use the upconverting device is positioned between a light source and the eye(s) of the user of the upconverting device.

Kross, Brian; McKIsson, John (Jack) E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zorn, Carl

2013-05-21T23:59:59.000Z

466

Measurements of long-wavelength density fluctuations in TFTR  

SciTech Connect

Several experiments have been devised to measure plasma fluctuations in an effort to help elucidate a possible connection between plasma microturbulence and anomalous transport. Results from microwave scattering on the Tokamak Fusion Test Reactor (TFTR) (Nucl. Fusion {bold 18}, 1089 (1978)) show that the level of plasma fluctuations increases toward the long-wavelength region ({ital k}{sub {perpendicular}}{rho}{sub {ital s}}{le}0.2), at which point the fluctuations cannot be spatially resolved. The desire to measure long-wavelength fluctuations has motivated the development of two fluctuation diagnostics, beam emission spectroscopy (BES), and microwave reflectometry on TFTR. BES measures long-wavelength density fluctuations ({ital k}{sub {perpendicular}}{le}2 cm{sup {minus}1}) by observing the fluorescence emitted from collisionally excited atoms in a TFTR heating beam. In L-mode discharges with relatively flat density profiles, the fluctuations measured with BES are concentrated in the low-frequency region ({le}30 kHz). In the laboratory frame, the fluctuations have a poloidal propagation velocity that is approximately equal to that of the plasma rotation, and the frequency spectra are broadened by Doppler effects. Measured fluctuation levels are 5%--10% at the edge of the plasma. In the core, the level falls to less than 1%, which is comparable to observations made with microwave reflectometry and scattering. The fluctuation level in the core ({ital r}/{ital a}=0.7) is seen to increase with injected beam power, as is observed with microwave scattering at shorter wavelengths ({ital k}{sub {perpendicular}}{approx}2--10 cm{sup {minus}1}). In contrast, the fluctuation level in the edge region does not change significantly with neutral beam power.

Paul, S.F.; Bretz, N.; Durst, R.D.; Fonck, R.J.; Kim, Y.J.; Mazzucato, E.; Nazikian, R. (Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States))

1992-09-01T23:59:59.000Z

467

Low-energy U(1) x USp(2M) gauge theory from simple high-energy gauge group  

E-Print Network (OSTI)

We give an explicit example of the embedding of a near BPS low-energy (U(1) x USp(2M))/Z_2 gauge theory into a high-energy theory with a simple gauge group and adjoint matter content. This system possesses degenerate monopoles arising from the high-energy symmetry breaking as well as non-Abelian vortices due to the symmetry breaking at low energies. These solitons of different codimensions are related by the exact homotopy sequences.

Sven Bjarke Gudnason; Kenichi Konishi

2010-02-04T23:59:59.000Z

468

Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model  

E-Print Network (OSTI)

We modify a mathematical model of photosynthesis to quantify the perturbations that high energy muons could make on aquatic primary productivity. Then we apply this in the context of the extragalactic shock model, according to which Earth receives an enhanced dose of high-energy cosmic rays when it is at the galactic north. We obtain considerable reduction in the photosynthesis rates, consistent with potential drops in biodiversity.

Rodriguez, Lien; Rodriguez, Oscar

2013-01-01T23:59:59.000Z

469