National Library of Energy BETA

Sample records for high-energy physics nuclear

  1. High Energy Physics and Nuclear Physics Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01

    High Energy Physics and Nuclear Physics Network RequirementsCalifornia. High Energy Physics and Nuclear Physics Networkof High Energy Physics and Nuclear Physics, DOE Office of

  2. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect (OSTI)

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  3. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing...

  4. The Future of High Energy Nuclear Physics in Europe

    E-Print Network [OSTI]

    J. Schukraft

    2006-02-14

    In less than two years from now, the LHC at CERN will start operating with protons and later with heavy ions in the multi TeV energy range. With its unique physics potential and a strong, state-of-the complement of detectors, the LHC will provide the European, and in fact worldwide Nuclear Physics community, with a forefront facility to study nuclear matter under extreme conditions well into the next decade.

  5. Proposal for a High Energy Nuclear Database

    E-Print Network [OSTI]

    Brown, David A.; Vogt, Ramona

    2005-01-01

    Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?compilations of high-energy nuclear data for applications

  6. Proposal for a High Energy Nuclear Database

    E-Print Network [OSTI]

    Brown, David A.; Vogt, Ramona

    2005-01-01

    Proposal for a High Energy Nuclear Database XML documentsProposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?

  7. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 HEPlogo.jpg The NERSC Program Requirements Review "Large Scale Computing and Storage...

  8. High energy-density physics: From nuclear testing to the superlasers

    SciTech Connect (OSTI)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-10-20

    We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.

  9. Large-x connections of nuclear and high-energy physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Accardi, Alberto [Hampton U., JLAB

    2013-11-01

    I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. I devote particular attention to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.

  10. Large-x connections of nuclear and high-energy physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Accardi, Alberto

    2013-11-20

    I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. Particular attention is devoted to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.

  11. Theoretical High Energy Physics

    SciTech Connect (OSTI)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  12. FSU High Energy Physics

    SciTech Connect (OSTI)

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the non-zero neutrino masses or the overwhelming astrophysical evidence for an invisible form of matter, called dark matter, that has had a marked effect on the evolution of structure in the universe. The report highlights the main, recent, experimental achievements of the experimental group, which include the investigation of properties of the W and Z bosons; the search for new heavy stable charged particles and the search for a proposed property of nature called supersymmetry in proton-proton collisions that yield high energy photons. In addition, we report a few results from a more general search for supersymmetry at the LHC, initiated by the group. The report also highlights the group's significant contributions, both theoretical and experimental, to the 2012 discovery of the Higgs boson and the measurement of its properties.

  13. High energy physics

    SciTech Connect (OSTI)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  14. Proceedings of the Fourth International Workshop on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. PerretGallix, International Journal of Modern

    E-Print Network [OSTI]

    Peterson, Carsten

    Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. Perret­Gallix, International Journal on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, Pisa, Italy, April 3

  15. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    SciTech Connect (OSTI)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  16. A high energy physics perspective

    SciTech Connect (OSTI)

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  17. Final Report: High Energy Physics Program (HEP), Physics Department...

    Office of Scientific and Technical Information (OSTI)

    Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University Citation Details In-Document Search Title: Final Report: High Energy Physics Program...

  18. Proceedings of the Fourth International Workshop on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. PerretGallix, International Journal of Modern

    E-Print Network [OSTI]

    Lunds Universitet,

    on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, Pisa, Italy, April 3Proceedings of the Fourth International Workshop on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. Perret­Gallix, International Journal

  19. Making glue in high energy nuclear collisions

    E-Print Network [OSTI]

    Alex Krasnitz; Raju Venugopalan

    1999-05-12

    We discuss a real time, non-perturbative computation of the transverse dynamics of gluon fields at central rapidities in very high energy nuclear collisions.

  20. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS

    E-Print Network [OSTI]

    Saxon, D.S.

    2010-01-01

    Conf. Hioh Energy Physics and Nuclear Structure, Vancouver,on High Energy Physics and Nuclear Structure, Vancouver,Conf. High Energy Physics and Nuclear Structure, Vancouver

  1. Accelerators for high energy physics research

    SciTech Connect (OSTI)

    Chao, A.

    1995-12-01

    A brief survey of particle accelerators as research tools for high energy physics is given. The survey includes existing accelerators, as well as those envisioned for the future.

  2. Frontiers for Discovery in High Energy Density Physics

    SciTech Connect (OSTI)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  3. Nuclear diffractive structure functions at high energies

    E-Print Network [OSTI]

    C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

    2008-05-30

    A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

  4. Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of People's Republic of Bangladesh concerning Education, Scientific and Technical Co-operation in High-Energy Physics

    E-Print Network [OSTI]

    2014-01-01

    Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of People's Republic of Bangladesh concerning Education, Scientific and Technical Co-operation in High-Energy Physics

  5. High energy physics in the United States

    SciTech Connect (OSTI)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  6. Physics at high energy photon photon colliders

    SciTech Connect (OSTI)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  7. Research in High Energy Physics. Final report

    SciTech Connect (OSTI)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  8. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    E-Print Network [OSTI]

    Bieniosek, F.M.

    2010-01-01

    for high energy density physics and fusion applications,IFSA 2007, Journal of Physics, Conference Series 112 (2008)high energy density physics experiments F. M. Bieniosek, E.

  9. Viscosity of High Energy Nuclear Fluids

    E-Print Network [OSTI]

    V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

    2007-03-15

    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

  10. High Energy Physics Research at Louisiana Tech

    SciTech Connect (OSTI)

    Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D? experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  11. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema (OSTI)

    Ren-Yuan Zhu

    2010-01-08

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal?s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  12. Future Accelerator Challenges in Support of High-Energy Physics

    E-Print Network [OSTI]

    Zisman, M.S.

    2008-01-01

    IN SUPPORT OF HIGH- ENERGY PHYSICS* M. S. Zisman ‡ , LBNL,progress in high-energy physics has largely been determinedprogress in high-energy physics has traditionally depended

  13. PARTICIPATION IN HIGH ENERGY PHYSICS

    SciTech Connect (OSTI)

    White, Christopher

    2012-12-20

    This grant funded experimental and theoretical activities in elementary particles physics at the Illinois Institute of Technology (IIT). The experiments in which IIT faculty collaborated included the Daya Bay Reactor Neutrino Experiment, the MINOS experiment, the Double Chooz experiment, and FNAL E871 - HyperCP experiment. Funds were used to support summer salary for faculty, salary for postdocs, and general support for graduate and undergraduate students. Funds were also used for travel expenses related to these projects and general supplies.

  14. Nuclear Instruments and Methods in Physics Research A 565 (2006) 650656 Semiconductor high-energy radiation scintillation detector

    E-Print Network [OSTI]

    Luryi, Serge

    2006-01-01

    -energy radiation scintillation detector A. Kastalskya , S. Luryia,Ã, B. Spivakb a University at Stony Brook, ECE scintillation-type detector in which high-energy radiation generates electron­hole pairs in a direct semiconductor scintillator combines the best properties of currently existing radiation detectors and can

  15. Compilation of current high-energy physics experiments

    SciTech Connect (OSTI)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1981-05-01

    This is the fourth edition of the compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. Only approved experiments are included.

  16. High energy physics at UC Riverside

    SciTech Connect (OSTI)

    1997-07-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

  17. Emerging Computing Technologies in High Energy Physics

    E-Print Network [OSTI]

    Amir Farbin

    2009-10-19

    While in the early 90s High Energy Physics (HEP) lead the computing industry by establishing the HTTP protocol and the first web-servers, the long time-scale for planning and building modern HEP experiments has resulted in a generally slow adoption of emerging computing technologies which rapidly become commonplace in business and other scientific fields. I will overview some of the fundamental computing problems in HEP computing and then present the current state and future potential of employing new computing technologies in addressing these problems.

  18. UPR/Mayaguez High Energy Physics

    SciTech Connect (OSTI)

    Mendez, Hector

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1)#3; ?0b branching fraction, (2) B meson mass, and (3) hyperon ?-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of Puerto Rico-Rio Piedras (Carlos Malca). The students H. Moreno and C. Malca has been directly supervised by Dr. Mendez and S. Santiesteban supervised by Dr. Ramirez. During the last 13 years, our group have graduated 23 MS students on experimental High Energy Physics data analysis and applied hardware techniques. Most of the students have been supported by DOE grants, included this grant. Since 2001, Dr. Mendez have directly supervised eleven students, Dr. Ramirez three students and the former PI (Dr. Lopez) nine students. These theses work are fully documented in the group web page (http://charma.uprm.edu). The High Energy Physics group at Mayaguez is small and presently consists of three Physics faculty members, the Senior Investigators Dr. Hector Mendez (Professor) and Dr. Juan Eduardo Ramirez (Professor), and Dr. Sudhir Malik who was just hired in July 2014. Dr. Ramirez is in charge of the UPRM Tier-3 computing and will be building the network bandwidth infrastructure for the campus, while Dr. Mendez will continues his effort in finishing the heavy quark physics data analysis and moving to work on SUSY analysis for the 2015 data. Our last grant application in 2012 was awarded only for 2013-2014. As a result our postdoc position was lost last month of March. Since then, we have hired Dr. Malik as a new faculty in order to reinforce the group and to continue our efforts with the CMS experiment. Our plan is to hire another junior faculty in the next two years to strengthen the HEP group even further. Dr. Mendez continues with QuarkNet activities involving an ever larger group of high school physics teachers from all around Puerto Rico.

  19. NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01

    Flow in Central High Energy Nuclear Collisions H. Stockera,under Contract High energy nuclear collisions offer a uniquesidewards flow·in high-energy nuclear collisions. The

  20. Data mining in high energy physics Bertrand Brelier

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    Data mining in high energy physics Bertrand Brelier SOSCIP July 3, 2014 Bertrand Brelier (SOSCIP) Data mining in high energy physics July 3, 2014 1 / 8 #12;The Large Hadron Collider (LHC) Bertrand Brelier (SOSCIP) Data mining in high energy physics July 3, 2014 2 / 8 #12;The ATLAS detector Bertrand

  1. VOLUME 82, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 18 JANUARY 1999 High Energy Resolution Bolometers for Nuclear Physics and X-Ray Spectroscopy

    E-Print Network [OSTI]

    efficiency, since only a narrow band of energy can be analyzed at a time. The complementary energy dispersiveVOLUME 82, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 18 JANUARY 1999 High Energy Resolution Bolometers for Nuclear Physics and X-Ray Spectroscopy A. Alessandrello,1 J. W. Beeman,2 C

  2. Oklahoma Center for High Energy Physics (OCHEP)

    SciTech Connect (OSTI)

    S. Nandi; M.J. Strauss; J. Snow; F. Rizatdinova; B. Abbott; K. Babu; P. Gutierrez; C. Kao; A. Khanov; K.A. Milton; H. Neaman; H. Severini, P. Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma�¢����s impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging from the search for new phenomena at the Fermilab Tevatron and the CERN Large Hadron Collider to theoretical modeling, computer simulation, detector development and testing, and physics analysis. OCHEP faculty members participating on the D0 collaboration at the Fermilab Tevatron and on the ATLAS collaboration at the CERN LHC have made major impact on the Standard Model (SM) Higgs boson search, top quark studies, B physics studies, and measurements of Quantum Chromodynamics (QCD) phenomena. The OCHEP Grid computing facility consists of a large computer cluster which is playing a major role in data analysis and Monte Carlo productions for both the D0 and ATLAS experiments. Theoretical efforts are devoted to new ideas in Higgs bosons physics, extra dimensions, neutrino masses and oscillations, Grand Unified Theories, supersymmetric models, dark matter, and nonperturbative quantum field theory. Theory members are making major contributions to the understanding of phenomena being explored at the Tevatron and the LHC. They have proposed new models for Higgs bosons, and have suggested new signals for extra dimensions, and for the search of supersymmetric particles. During the seven year period when OCHEP was partially funded through the DOE EPSCoR implementation grant, OCHEP members published over 500 refereed journal articles and made over 200 invited presentations at major conferences. The Center is also involved in education and outreach activities by offering summer research programs for high school teachers and college students, and organizing summer workshops for high school teachers, sometimes coordinating with the Quarknet programs at OSU and OU. The details of the Center can be found in http://ochep.phy.okstate.edu.

  3. University of Oklahoma - High Energy Physics

    SciTech Connect (OSTI)

    Skubic, Patrick L.

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest distances, or at the very highest energies. The outcomes of the group's combined experimental and theoretical research will be an improved understanding of nature, at the highest energies reachable, from which applications to technological innovation will surely result, as they always have from such studies in the past.

  4. Large Scale Computing and Storage Requirements for High Energy Physics

    E-Print Network [OSTI]

    Gerber, Richard A.

    2011-01-01

    Journal of Computational Physics, Large Scale Computing andRequirements for High Energy Physics [3] A. S. Almgren, J.Journal of Computational Physics, 87:171–200, 1990. [7] G.

  5. HEPTech funding opportunites HEPTech -High Energy Physics Technology Transfer Network

    E-Print Network [OSTI]

    Roma "La Sapienza", Università di

    HEPTech funding opportunites 1 HEPTech - High Energy Physics Technology Transfer Network May 2015 Prepared by: Jozef Stefan Institute, CTT - Center for Technology Transfer and Innovation, Slovenia dr

  6. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  7. DOE/NSF HIGH-ENERGY PHYSICS ADVISORY PANEL

    E-Print Network [OSTI]

    will emerge, or to separate basic science from technology - advances in one are dependent on advancesDOE/NSF HIGH-ENERGY PHYSICS ADVISORY PANEL SUBPANEL ON LONG RANGE PLANNING FOR U.S. HIGH-ENERGY PHYSICS January 2002 Department of Energy National Science Foundation #12;COVER LETTER Through the spring

  8. HIGH-ENERGY PHYSICS LABORATORIES AND AGENCIES Particle Data Group

    E-Print Network [OSTI]

    HIGH-ENERGY PHYSICS LABORATORIES AND AGENCIES Particle Data Group Lawrence Berkeley National, write to: List of Addresses of High-Energy Physics Institutes Scientific Information Service CERN Greenwich (Universal) time. Cities with negative numbers lie to the east of Greenwich, England; cities

  9. Participation in High Energy Physics at the University of Chicago

    SciTech Connect (OSTI)

    Martinec, Emil J. [University of Chicago

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  10. MODELS OF HIGH ENERGY NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Glendenning, Norman K.

    2011-01-01

    the expansion phase at densities heJow nuclear density, (Jan expansion to a freeaeout density equal to the nuclearexpansion to freezeout is enormous, beginning with a Lorentz contracted nuclear

  11. Partonic EoS in High-Energy Nuclear Collisions at RHIC

    E-Print Network [OSTI]

    Xu, Nu

    2006-01-01

    Partonic EoS in High-Energy Nuclear Collisions at RHIC Nu Xuproperties. In high-energy nuclear collisions, the term ?owthe early stage of high-energy nuclear collision, both the

  12. Why is High Energy Physics Lorentz Invariant?

    E-Print Network [OSTI]

    Afshordi, Niayesh

    2015-01-01

    Despite the tremendous empirical success of equivalence principle, there are several theoretical motivations for existence of a preferred reference frame (or aether) in a consistent theory of quantum gravity. However, if quantum gravity had a preferred reference frame, why would high energy processes enjoy such a high degree of Lorentz symmetry? While this is often considered as an argument against aether, here I provide three independent arguments for why perturbative unitarity (or weak coupling) of the Lorentz-violating effective field theories put stringent constraints on possible observable violations of Lorentz symmetry at high energies. In particular, the interaction with the scalar graviton in a consistent low-energy theory of gravity and a (radiatively and dynamically) stable cosmological framework, leads to these constraints. The violation (quantified by the relative difference in maximum speed of propagation) is limited to $\\lesssim 10^{-10} E({\\rm eV})^{-4}$ (superseding all current empirical bound...

  13. Baryon Fluctuations in High Energy Nuclear Collisions

    E-Print Network [OSTI]

    Sean Gavin; Claude Pruneau

    1999-07-09

    We propose that dramatic changes in the variances and covariance of protons and antiprotons can result if baryons approach chemical equilibrium in nuclear collisions at RHIC. To explore how equilibration alters these fluctuations, we formulate both equilibrium and nonequilibrium hadrochemical descriptions of baryon evolution. Contributions to fluctuations from impact parameter averaging and finite acceptance in nuclear collisions are numerically simulated.

  14. Why is High Energy Physics Lorentz Invariant?

    E-Print Network [OSTI]

    Niayesh Afshordi

    2015-11-24

    Despite the tremendous empirical success of equivalence principle, there are several theoretical motivations for existence of a preferred reference frame (or aether) in a consistent theory of quantum gravity. However, if quantum gravity had a preferred reference frame, why would high energy processes enjoy such a high degree of Lorentz symmetry? While this is often considered as an argument against aether, here I provide three independent arguments for why perturbative unitarity (or weak coupling) of the Lorentz-violating effective field theories put stringent constraints on possible observable violations of Lorentz symmetry at high energies. In particular, the interaction with the scalar graviton in a consistent low-energy theory of gravity and a (radiatively and dynamically) stable cosmological framework, leads to these constraints. The violation (quantified by the relative difference in maximum speed of propagation) is limited to $\\lesssim 10^{-10} E({\\rm eV})^{-4}$ (superseding all current empirical bounds), or the theory will be strongly coupled beyond meV scale. The latter happens in extended Horava-Lifshitz gravities, as a result of a previously ignored quantum anomaly. Finally, given that all cosmologically viable theories with significant Lorentz violation appear to be strongly coupled beyond meV scale, we conjecture that, similar to color confinement in QCD, or Vainshetin screening for massive gravity, high energy theories (that interact with gravity) are shielded from Lorentz violation (at least, up to the scale where gravity is UV-completed). In contrast, microwave or radio photons, cosmic background neutrinos, or gravitational waves may provide more promising candidates for discovery of violations of Lorentz symmetry.

  15. Perspectives of Nuclear Physics

    E-Print Network [OSTI]

    Amand Faessler

    2002-12-06

    The organizers of this meeting have asked me to present perspectives of nuclear physics. This means to identify the areas where nuclear physics will be expanding in the next future. In six chapters a short overview of these areas will be given, where I expect that nuclear physics willdevelop quite fast: A. Quantum Chromodynamics and effective field theories in the confinement region; B. Nuclear structure at the limits; C. High energy heavy ion collisions; D. Nuclear astrophysics; E. Neutrino physics; F. Test of physics beyond the standard model by rare processes. After a survey over these six points I will pick out a few topics where I will go more in details. There is no time to give for all six points detailed examples. I shall discuss the following examples of the six topics mentionned above: 1. The perturbative chiral quark model and the nucleon $\\Sigma$-term, 2. VAMPIR (Variation After Mean field Projection In Realistic model spaces and with realistic forces) as an example of the nuclear structure renaissance, 3. Measurement of important astrophysical nuclear reactions in the Gamow peak, 4. The solar neutrino problem. As examples for testing new physics beyond the standard model by rare processes I had prepared to speak about the measurement of the electric neutron dipole moment and of the neutrinoless double beta decay. But the time is limited and so I have to skip these points, although they are extremely interesting.

  16. On the use of Satellite Television in High Energy Physics

    E-Print Network [OSTI]

    Lucas Taylor; David O. Williams

    1998-10-24

    This paper assesses the feasibility of exploiting commercial satellite television technologies to broadcast video signals and data from major High Energy Physics facilities to collaborating institutes throughout the world.

  17. Basic Research Needs for High Energy Density Laboratory Physics

    National Nuclear Security Administration (NNSA)

    in ICF target physics is the demonstration of high-energy gain. For a viable fusion energy power plant, the product of the driver efficiency and the target gain 8 should exceed...

  18. Microfluidic Scintillation Detectors for High Energy Physics

    E-Print Network [OSTI]

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  19. Muon Collider Physics at Very High Energies

    E-Print Network [OSTI]

    M. S. Berger

    2000-01-03

    Muon colliders might greatly extend the energy frontier of collider physics. One can contemplate circular colliders with center-of-mass energies in excess of 10 TeV. Some physics issues that might be relevant at such a machine are discussed.

  20. High Energy Physics from High Performance Computing

    E-Print Network [OSTI]

    T. Blum

    2009-08-06

    We discuss Quantum Chromodynamics calculations using the lattice regulator. The theory of the strong force is a cornerstone of the Standard Model of particle physics. We present USQCD collaboration results obtained on Argonne National Lab's Intrepid supercomputer that deepen our understanding of these fundamental theories of Nature and provide critical support to frontier particle physics experiments and phenomenology.

  1. High Energy Physics Division, ANL Lattice QCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptionsthroughput spectrometerEnergy Physics Division,

  2. Princeton University High Energy Physics Research

    SciTech Connect (OSTI)

    Marlow, Daniel R.

    2015-06-30

    This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement of $\\sin^22\\theta_{13}$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.

  3. High Energy Physics Advisory Panel October 1-2, 2015 | U.S. DOE...

    Office of Science (SC) Website

    High Energy Physics Advisory Panel October 1-2, 2015 High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Previous Meetings 2015 HEPAP Membership ChargesReports Charter...

  4. The Office of High Energy Physics Announces the Launch of Its...

    Office of Science (SC) Website

    News & Resources News Archives 2013 The Office of High Energy Physics Announces the Launch of Its New Accelerator R&D Stewardship Webpages High Energy Physics (HEP) HEP...

  5. The DPHEP Study Group: Data Preservation in High Energy Physics

    E-Print Network [OSTI]

    David M. South

    2013-02-14

    An inter-experimental study group, DPHEP, was formed in 2009 to systematically investigate the technical and organisational aspects of data preservation and long-term analysis in high-energy physics, a subject which had hitherto lacked clarity in the field. The study group includes representation from all major high-energy physics collider-based experiments and laboratories, as well as computing centres and funding agencies. A major report was released in May 2012, greatly expanding on the ideas contained in a preliminary publication three years earlier, and providing a more solid set of recommendations, not only concerning data preservation and its implementation in high-energy physics, but also the future direction and organisational model of the study group. A brief description of the DPHEP Study Group and some of the key messages from the major report are presented.

  6. Summary of activities in 2009 1. THEORETICAL NUCLEAR PHYSICS GROUP

    E-Print Network [OSTI]

    Sano, Masaki

    II Summary of activities in 2009 #12;#12;1. THEORETICAL NUCLEAR PHYSICS GROUP 1 Theoretical Nuclear. The subjects are divided into three major categories: Nuclear Structure Physics, Quantum Hadron Physics and High Energy Hadron Physics. Nuclear Structure Physics In the Nuclear Structure group (T. Otsuka and N

  7. he high-energy physics (HEP) com-munity engaged in the European Cen-

    E-Print Network [OSTI]

    Low, Steven H.

    T he high-energy physics (HEP) com- munity engaged in the European Cen- ter for Nuclear Research for collaboration among scientists located around the world. The massive, globally distributed data sets level by 2010. Distributing these data sets to scientists and computing centers around the world

  8. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS

    E-Print Network [OSTI]

    Saxon, D.S.

    2010-01-01

    8th Int. Conf. Hioh Energy Physics and Nuclear Structure,Division of Mathematical Physics, Fukui University, Fukui,8th Int. Conf. on High Energy Physics and Nuclear Structure,

  9. European School of High-Energy Physics, Caramulo. Portugal, 20 August- 2 September 2000

    E-Print Network [OSTI]

    2000-01-01

    The 2000 European School of High-Energy Physics (formerly the CERN-JINR School of Physics) will be organized jointly by the European Organization for Nuclear Research (CERN), Geneva, Switzerland and the Joint Institute for Nuclear Research (JINR), Dubna, Russia, together with LIP (Laboratório de Instrumentação e Física Experimental de Partículas) and the Faculty of Science and Technology of the University of Coimbra. The basic aim of the School is to teach various aspects of high-energy physics, but especially theoretical physics, to young experimental physicists, mainly from the Member States of CERN and of JINR. The Schools of Physics are designed to give a survey of up-to-date information, rather than to be a training course.

  10. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    SciTech Connect (OSTI)

    Chen, Chiping

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  11. Hindawi Publishing Corporation Advances in High Energy Physics

    E-Print Network [OSTI]

    Mcdonough, William F.

    Hindawi Publishing Corporation Advances in High Energy Physics Volume 2012, Article ID 235686, 34 under the Creative Commons Attribution License, which permits unrestricted use, distribution . The initial hot state 4.5 billion years ago was a result of gravitational energy of accretion and global

  12. Experimental And Theoretical High Energy Physics Research At UCLA

    SciTech Connect (OSTI)

    Cousins, Robert D.

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

  13. CERN and high energy physics, the grand picture

    ScienceCinema (OSTI)

    None

    2011-10-06

    The lecture will touch on several topics, to illustrate the role of CERN in the present and future of high-energy physics: how does CERN work? What is the role of the scientific community, of bodies like Council and SPC, and of international cooperation, in the definition of CERN's scientific programme? What are the plans for the future of the LHC and of the non-LHC physics programme? What is the role of R&D; and technology transfer at CERN?

  14. Charmonium Transverse Momentum Distribution in High Energy Nuclear Collisions

    E-Print Network [OSTI]

    Zebo Tang; Nu Xu; Kai Zhou; Pengfei Zhuang

    2014-09-19

    The Charmonium transverse momentum distribution is more sensitive to the nature of the hot QCD matter created in high energy nuclear collisions, in comparison with the yield. Taking a detailed transport approach for charmonium motion together with a hydrodynamic description for the medium evolution, the cancelation between the two hot nuclear matter effects, the dissociation and the regeneration, controls the charmonium transverse momentum distribution. Especially, the second moment of the distribution can be used to differentiate between the hot mediums produced at SPS, RHIC and LHC energies.

  15. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    E-Print Network [OSTI]

    Zhou, Kai; Xu, Nu; Zhuang, Pengfei

    2016-01-01

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  16. Theoretical Research in Cosmology, High-Energy Physics and String Theory

    SciTech Connect (OSTI)

    Ng, Y Jack; Dolan, Louise; Mersini-Houghton, Laura; Frampton, Paul

    2013-07-29

    The research was in the area of Theoretical Physics: Cosmology, High-Energy Physics and String Theory

  17. An Experimental and Theoretical High Energy Physics Program

    SciTech Connect (OSTI)

    Shipsey, Ian

    2012-07-31

    The Purdue High Energy Physics Group conducts research in experimental and theoretical elementary particle physics and experimental high energy astrophysics. Our goals, which we share with high energy physics colleagues around the world, are to understand at the most fundamental level the nature of matter, energy, space and time, and in order to explain the birth, evolution and fate of the Universe. The experiments in which we are currently involved are: CDF, CLEO-c, CMS, LSST, and VERITAS. We have been instrumental in establishing two major in-house facilities: The Purdue Particle Physics Microstructure Detector Facility (P3MD) in 1995 and the CMS Tier-2 center in 2005. The research efforts of the theory group span phenomenological and theoretical aspects of the Standard Model as well as many of its possible extensions. Recent work includes phenomenological consequences of supersymmetric models, string theory and applications of gauge/gravity duality, the cosmological implications of massive gravitons, and the physics of extra dimensions.

  18. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY...

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION Citation Details In-Document Search Title: THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY...

  19. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings...

  20. DDbar Correlations probing Thermalization in High-Energy Nuclear Collisions

    E-Print Network [OSTI]

    K. Schweda; X. Zhu; M. Bleicher; S. L. Huang; H. Stoecker; N. Xu; P. Zhuang

    2006-10-30

    We propose to measure azimuthal correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions. In particular, we show that hadronic interactions at the late stage cannot significantly disturb the initial back-to-back azimuthal correlations of DDbar pairs. Thus, a decrease or the complete absence of these initial correlations does indicate frequent interactions of heavy-flavor quarks and also light partons in the partonic stage, which are essential for the early thermalization of light partons.

  1. High Energy Physics at the University of Illinois

    SciTech Connect (OSTI)

    Liss, Tony M.; Thaler, Jon J.

    2013-07-26

    This is the final report for DOE award DE-FG02-91ER40677 (“High Energy Physics at the University of Illinois”), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

  2. High Energy Density Laboratory Plasmas Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program...

  3. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect (OSTI)

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  4. HEPAP White Paper on planning for U.S. high-energy physics [High Energy Physics Advisory Panel

    SciTech Connect (OSTI)

    None

    2000-10-01

    High-energy physicists seek to understand what the universe is made of, how it works, and where it has come from. They investigate the most basic particles and the forces between them. Experiments and theoretical insights over the past several decades have made it possible to see the deep connection between apparently unrelated phenomena, and to piece together more of the story of how a rich and complex cosmos could evolve from just a few kinds of elementary particles. The 1998 Subpanel of the High Energy Physics Advisory Panel (HEPAP) laid out a strategy for U.S. high-energy physics for the next decade. That strategy balanced exciting near-term opportunities with preparations for the most important discovery possibilities in the longer-term. Difficult choices were made to end several highly productive programs and to reduce others. This year HEPAP was charged to take the plan given in the Subpanel's report, understand it in the context of worldwide progress, and update it. In response to that charge, this White Paper provides an assessment of where we stand, states the next steps to take in the intermediate term, and serves as input for a longer range planning process involving a new HEPAP subpanel and high-energy physics community evaluation in 2001. Since the 1998 Subpanel, there have been important developments and a number of the Subpanel's recommendations have been implemented. Notably, construction of the B-factory at SLAC, the Main Injector at Fermilab, and the upgrade of CESR at Cornell have all been finished on schedule and on budget. We have gained great confidence in the performance of these accelerators and the associated detectors. The B-factory at SLAC is already operating above design luminosity and plans are in place to reach three times the design in the next few years. In addition, there have been major physics developments that lead us to believe that these completed projects are guaranteed to produce frontier physics results and have an enhanced potential for a truly major breakthrough. However, taking advantage of these facilities requires greater funding for operations than the significantly reduced level of the last several years.

  5. Equilibrium Statistical-Thermal Models in High-Energy Physics

    E-Print Network [OSTI]

    Abdel Nasser Tawfik

    2014-10-25

    We review some recent highlights from the applications of statistical-thermal models to different experimental measurements and lattice QCD thermodynamics, that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical-thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948 an almost complete recipe for the statistical-thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analysed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-particle systems can be studied with the help of statistical-thermal methods. The analysis of yield multiplicities in high-energy collisions gives an overwhelming evidence for the chemical equilibrium in the final state. The strange particles might be an exception, as they are suppressed at lower beam energies. However, their relative yields fulfill statistical equilibrium, as well. We review the equilibrium statistical-thermal models for particle production, fluctuations and collective flow in heavy-ion experiments. We also review their reproduction of the lattice QCD thermodynamics at vanishing and finite chemical potential. During the last decade, five conditions have been suggested to describe the universal behavior of the chemical freeze out parameters.

  6. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks...

  7. High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter

    E-Print Network [OSTI]

    Lie-Wen Chen; Che Ming Ko; Bao-An Li

    2005-12-07

    Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons and protons in asymmetric nuclear matter. From the resulting Schr\\"{o}% dinger-equivalent potential, the high energy behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such high energy nucleon, the symmetry potential is slightly negative below a baryon density of about $% \\rho =0.22$ fm$^{-3}$ and then increases almost linearly to positive values at high densities. Our results thus provide an important constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.

  8. Automatic Metadata Extraction - The High Energy Physics Use Case

    E-Print Network [OSTI]

    Boyd, Joseph; Rajman, Martin

    Automatic metadata extraction (AME) of scientific papers has been described as one of the hardest problems in document engineering. Heterogeneous content, varying style, and unpredictable placement of article components render the problem inherently indeterministic. Conditional random fields (CRF), a machine learning technique, can be used to classify document metadata amidst this uncertainty, annotating document contents with semantic labels. High energy physics (HEP) papers, such as those written at CERN, have unique content and structural characteristics, with scientific collaborations of thousands of authors altering article layouts dramatically. The distinctive qualities of these papers necessitate the creation of specialised datasets and model features. In this work we build an unprecedented training set of HEP papers and propose and evaluate a set of innovative features for CRF models. We build upon state-of-the-art AME software, GROBID, a tool coordinating a hierarchy of CRF models in a full document ...

  9. National Research Council Study on Frontiers in High-Energy-Density Physics

    E-Print Network [OSTI]

    National Research Council Study on Frontiers in High-Energy-Density Physics David D. Meyerhofer of Fusion Fusion Power Associates Washington, DC 19­21 November 2003 #12;E12541 High-energy-density physics (HEDP) is a rapidly growing research area · Pressures in excess of 1 Mbar constitute high-energy-density

  10. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Kotwal, Ashutosh V.; Goshaw, Al; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, #12;ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22; ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water-#12;lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  11. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22;{mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  12. arXiv:physics/0211010v225Mar2003 Citation Networks in High Energy Physics

    E-Print Network [OSTI]

    arXiv:physics/0211010v225Mar2003 Citation Networks in High Energy Physics S. Lehmann, B. Lautrup. The probability that a given paper in the SPIRES data base has k citations is well described by simple power laws are presented that both represent the data well, one which generates power laws and one which generates

  13. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics science-innovationassetsimagesicon-science.jpg Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and...

  14. Integrating INIS into a high energy physics information environment thoughts from CERN

    E-Print Network [OSTI]

    Yeomans, Joanne; Baudic, Romain; Picchioli, Ingrid; International Conference on Nuclear Knowledge Management : Strategies, Information Management and Human Resource Development. Special Session : The Role of INIS in Knowledge Preservation

    2004-01-01

    Information searchers from the high energy physics community expect an integrated information environment. The CERN Library offers its print and electronic collections through a combined Web interface and maintains the database by semi-automated processes to upload bibliographic and full-text records. Suggestions are offered by which INIS could develop its own Web interface and better match HEP users’ expectations. These include implementing full-text linking, increasing currency, expanding search and display functions and developing the richness of the data. Links with the National Nuclear Data Center and Crossref could also increase its visibility.

  15. Present and future perspectives for high energy density physics with intense heavy ion and laser beams

    E-Print Network [OSTI]

    , Germany! accelerator facilities, together with two high energy laser systems: petawatt high energy laserPresent and future perspectives for high energy density physics with intense heavy ion and laser!, Plasmaphysik, Darmstadt, Germany 2 Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt

  16. Whither Nuclear Physics ?

    E-Print Network [OSTI]

    Syed Afsar Abbas

    2008-01-07

    Nuclear Physics has had its ups and downs. However in recent years, bucked up by some new and often puzzling data, it has become a potentially very rich field. We review some of these exciting developments in a few important sectors of nuclear physics. Emphasis shall be on the study of exotic nuclei and the new physics that these nuclei are teaching us.

  17. Nuclear Physics and the New Standard Model

    SciTech Connect (OSTI)

    Ramsey-Musolf, Michael J. [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States) and Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2010-08-04

    Nuclear physics studies of fundamental symmetries and neutrino properties have played a vital role in the development and confirmation of the Standard Model of fundamental interactions. With the advent of the CERN Large Hadron Collider, experiments at the high energy frontier promise exciting discoveries about the larger framework in which the Standard Model lies. In this talk, I discuss the complementary opportunities for probing the 'new Standard Model' with nuclear physics experiments at the low-energy high precision frontier.

  18. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to...

  19. Nuclear Physics Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Halls Hall A Hall B Hall C Hall D Physics Departments Administrative Office Data Acquisition Group Detector & Imaging Group Electronics Group User Liaison Nuclear...

  20. Nuclear Physics from QCD

    E-Print Network [OSTI]

    U. van Kolck

    2008-12-20

    Effective field theories provide a bridge between QCD and nuclear physics. I discuss light nuclei from this perspective, emphasizing the role of fine-tuning.

  1. JETS OF NUCLEAR MATTER FROM HIGH ENERGY HEAVY ION COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2013-01-01

    of California. LBL-11774 Jets of Nuclear Matter from Highclusters. Strongly correlated jets of nuclear matter areExperimental analysis of the jet phenomena is in progress.

  2. REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS

    SciTech Connect (OSTI)

    Wise, Mark B.; Kapustin, Anton N.; Schwarz, John Henry; Carroll, Sean; Ooguri, Hirosi; Gukov, Sergei; Preskill, John; Hitlin, David G.; Porter, Frank C.; Patterson, Ryan B.; Newman, Harvey B.; Spiropulu, Maria; Golwala, Sunil; Zhu, Ren-Yuan

    2014-08-26

    Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the motivation for these studies is the desire to gain a deeper understanding of superstring theory and M-theory. The research

  3. Nuclear physics and cosmology

    SciTech Connect (OSTI)

    Coc, Alain [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Université Paris Sud 11, UMR 8609, Bâtiment 104, F-91405 Orsay Campus (France)

    2014-05-09

    There are important aspects of Cosmology, the scientific study of the large scale properties of the universe as a whole, for which nuclear physics can provide insights. Here, we will focus on Standard Big-Bang Nucleosynthesis and we refer to the previous edition of the School [1] for the aspects concerning the variations of constants in nuclear cosmo-physics.

  4. Vacuum Polarization in High Energy Physics: (MZ) and at ILC scale 1. Introduction

    E-Print Network [OSTI]

    Röder, Beate

    Vacuum Polarization in High Energy Physics: (MZ) and at ILC scale 1. Introduction 2. (MZ. The running electric charge at high energies 179-1 #12;Physics of vacuum polarization ... 1. Introduction Non" (E) (charge screening by vacuum polarization) Of particular interest: (MZ) and aµ (g - 2)µ/2 (mµ

  5. Langston University - High Energy Physics (LU-HEP)

    SciTech Connect (OSTI)

    Snow, Dr., Joel [Langston Univ., OK (United States)

    2012-08-13

    This final report is presented by Langston University (LU) for the project entitled "Langston University High Energy Physics" (LUHEP) under the direction of principal investigator (PI) and project director Professor Joel Snow. The project encompassed high energy physics research performed at hadron colliders. The PI is a collaborator on the DZero experiment at Fermi National Accelerator Laboratory in Batavia, IL, USA and the ATLAS experiment at CERN in Geneva, Switzerland and was during the entire project period from April 1, 1999 until May 14, 2012. Both experiments seek to understand the fundamental constituents of the physical universe and the forces that govern their interactions. In 1999 as member of the Online Systems group for Run 2 the PI developed a cross-platform Python-based, Graphical User Interface (GUI) application for monitoring and control of EPICS based devices for control room use. This served as a model for other developers to enhance and build on for further monitoring and control tasks written in Python. Subsequently the PI created and developed a cross-platform C++ GUI utilizing a networked client-server paradigm and based on ROOT, the object oriented analysis framework from CERN. The GUI served as a user interface to the Examine tasks running in the D\\O\\ control room which monitored the status and integrity of data taking for Run 2. The PI developed the histogram server/control interface to the GUI client for the EXAMINE processes. The histogram server was built from the ROOT framework and was integrated into the D\\O\\ framework used for online monitoring programs and offline analysis. The PI developed the first implementation of displaying histograms dynamically generated by ROOT in a Web Browser. The PI's work resulted in several talks and papers at international conferences and workshops. The PI established computing software infrastructure at LU and U. Oklahoma (OU) to do analysis of DZero production data and produce simulation data for the experiment. Eventually this included the FNAL SAM data grid system, the SAMGrid (SG) infrastructure, and the Open Science Grid software stacks for computing and storage elements. At the end of 2003 Snow took on the role of global Monte Carlo production coordinator for the DØ experiment. A role which continues til this day. In January of 2004 Snow started working with the SAMGrid development team to help debug, deploy, and integrate SAMGrid with DØ Monte Carlo production. Snow installed and configured SG execution and client sites at LUHEP and OUHEP, and a SG scheduler site at LUHEP. The PI developed a python based GUI (DAJ) that acts as a front end for job submission to SAMGrid. The GUI interfaces to the DZero Mone Carlo (MC) request system that uses SAM to manage MC requests by the physics analysis groups. DAJ significantly simplified SG job submission and was deployed in DZero in an effort to increase the user base of SG. The following year was the advent of SAMGrid job submission to the Open Science Grid (OSG) and LHC Computing Grid (LCG) through a forwarding mechanism. The PI oversaw the integration of these grids into the existing production infrastructure. The PI developed an automatic MC (Automc) request processing system capable of operating without user intervention (other than getting grid credentials), and able to submit to any number of sites on various grids. The system manages production at all but 2 sites. The system was deployed at Fermilab and remains operating there today. The PI's work in distributed computing resulted in several talks at international conferences. UTA, OU, and LU were chosen as the collaborating institutions that form the Southwest Tier 2 Center (SWT2) for ATLAS. During the project period the PI contributed to the online and offline software infrastructure through his work with the Run 2 online group, and played a major role in Monte Carlo production for DZero. During the part of the project period in which the PI served as MC production coordinator MC production increased very significantly. In the first year of the PI'

  6. High Energy Physics: Report of research accomplishments and future goals, FY 1988

    SciTech Connect (OSTI)

    Barish, B C; Stone, E C; Ames, C A

    1987-07-10

    This report discusses high energy physics research in the following areas: Research in elementary particle physics; QCD phenomenology; lattice gauge theory; Mark III; MARK J and Mark II/SLC.

  7. High Energy Physics: Report of research accomplishments and future goals, FY 1987

    SciTech Connect (OSTI)

    Barish, B C; Stone, E C; Johnson, F H

    1986-07-30

    This report discusses high energy physics research in the following areas: Research in elementary particle physics; QCD phenomenology; lattice gauge theory; Mark III; MARK J and Mark II/SLC.

  8. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

  9. JETS OF NUCLEAR MATTER FROM HIGH ENERGY HEAVY ION COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2013-01-01

    be published. Table 1: The jet angle, ejet' relative to theof California. LBL~ll774 Jets of Nuclear Matter from Highreactions. Strongly correlated jets of nuclear matter are

  10. Large Scale Computing and Storage Requirements for High Energy Physics

    E-Print Network [OSTI]

    Gerber, Richard A.

    2011-01-01

    LHC upgrade, Project X, Compact Linear Collider (CLIC), highNuclear Research Compact Linear Collider Community Petascale

  11. LANL | Physics | Inertial Confinement Fusion and High Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's...

  12. The virtual library in action: Collaborative international control of high-energy physics pre-print

    SciTech Connect (OSTI)

    Kreitz, P.A.; Addis, L.; Galic, H.; Johnson, T.

    1996-02-01

    This paper will discuss how control of the grey literature in high-energy physics pre-prints developed through a collaborative effort of librarians and physicists. It will highlight the critical steps in the development process and describe one model of a rapidly evolving virtual library for high-energy physics information. In conclusion, this paper will extend this physics model to other areas of grey literature management.

  13. Percolation approach to phase transitions in high energy nuclear collisions

    E-Print Network [OSTI]

    A. Rodrigues; R. Ugoccioni; J. Dias de Deus

    1998-12-15

    We study continuum percolation in nuclear collisions for the realistic case in which the nuclear matter distribution is not uniform over the collision volume, and show that the percolation threshold is increased compared to the standard, uniform situation. In terms of quark-gluon plasma formation this means that the phase transition threshold is pushed to higher energies.

  14. Nuclear DVCS within the high energy QCD color dipole formalism

    E-Print Network [OSTI]

    M. V. T. Machado

    2009-05-27

    In this contribution, we present a study of the coherent and incoherent nuclear DVCS process in the small-$x$ regime within the color dipole formalism. Predictions for the nuclear DVCS cross section at photon level in the collider kinematics are presented.

  15. Nuclear Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposal PAC Review Scheduling Processes top-right bottom-left-corner bottom-right-corner Nuclear Physics Scientists from across the country and around the world use the Thomas...

  16. American particle and nuclear physics planning

    SciTech Connect (OSTI)

    Montgomery, Hugh E.

    2014-10-01

    In the United States the planning process relevant to future deep inelastic scattering involves both the high energy physics and nuclear physics funding and the two communities. In Canada there is no such split between the communities. Within the past two years there have been several planning initiatives and there may be more to come. We review the current status of both the planning and the plans.

  17. WEB Portal for Monte Carlo Simulations in High Energy Physics - HEPWEB

    E-Print Network [OSTI]

    E. I. Alexandrov; V. M. Kotov; V. V. Uzhinsky; P. V. Zrelov

    2012-08-31

    A WEB-portal HepWeb allows users to perform the most popular calculations in high energy physics - calculations of hadron-hadron, hadron-nucleus and nucleus-nucleus interaction cross sections as well as calculations of secondary particles characteristics in the interactions using Monte Carlo event generators. The List of the generators includes Dubna version of the intra-nuclear cascade model (CASCADE), FRITIOF model, ultra-relativistic quantum molecular dynamic model (UrQMD), HIJING model, and AMPT model. Setting up the colliding particles/nucleus properties (collision energy, mass numbers and charges of nuclei, impact parameters of interactions, and number of generated events) is realized by a WEB interface. A query is processed by a server, and results are presented to the user as a WEB-page. Short descriptions of the installed generators, the WEB interface implementation and the server operation are given.

  18. Evolution equation for soft physics at high energy

    E-Print Network [OSTI]

    P. Brogueira; J. Dias de Deus

    2010-05-20

    Based on the non-linear logistic equation we study, in a qualitative and semi-quantitative way, the evolution with energy and saturation of the elastic differential cross-section in $pp(\\bar{p}p)$ collisions at high energy. Geometrical scaling occurs at the black disk limit, and scaling develops first for small values of the scaling variable $|t|\\sigma_{tot.}$. Our prediction for $d \\sigma / \\ d t$ at LHC, with two zeros and a minimum at large $|t|$ differs, as far as we know, from all existing ones.

  19. High Energy Physics and Nuclear Physics Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01

    The AMS (Alpha Magnetic Spectrometer) is a satellite-basedProtocol Alpha Magnetic Spectrometer Argonne National

  20. High Energy Physics and Nuclear Physics Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01

    flexibility to process, reprocess, distill, disseminate, andused in four weeks to reprocess 400 million proton-protonexperiment will want to reprocess its data once a year. Key

  1. High Energy Physics and Nuclear Physics Network Requirements (Technical

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article) |different|(Journal(Conference) |Report) |

  2. High Energy Physics and Nuclear Physics Network Requirements (Technical

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article) |different|(Journal(Conference) |Report)

  3. Characterization of mono-energetic charged-particle radiography for high energy density physics experiments

    E-Print Network [OSTI]

    Manuel, Mario John-Errol

    2008-01-01

    Charged-particle radiography, specifically protons and alphas, has recently been used to image various High-Energy-Density Physics objects of interest, including Inertial Confinement Fusion capsules during their implosions, ...

  4. JETS OF NUCLEAR MATTER FROM HIGH ENERGY HEAVY ION COLLISIONS

    SciTech Connect (OSTI)

    Stocker, H.; Csernai, L.P.; Graebner, G.; Buchwald, G.; Kruse, H.; Cusson, R.Y.; Maruhn, J.A.; Greiner, W.

    1980-11-01

    The nuclear fluid dynamical model with final thermal breakup is used to study the reactions {sup 20}Ne + {sup 238}U and {sup 40} Ar + {sup 40}Ca at E{sub LAB}=390 MeV/n. Calculated double differential cross sections d{sup 2}{sigma}/d{Omega}dE are in agreement with recent experimental data. It is shown that azimuthally dependent triple differential cross sections d{sup 3}{sigma}/dEd cos{theta}d{phi} yield considerably deeper insight into the collision process and allow for snapshots of the reactions. Strongly correlated jets of nuclear matter are predicted.

  5. Overview of the use of the PCI bus in present and future high energy physics data acquisition systems

    E-Print Network [OSTI]

    Van Praag, A; Matheys, J P; Van de Vyvre, P; Anguelov, T; Georgiev, G; Piperov, S; Vankov, I; Gillot, D; Guglielmi, A M; Orel, O; Sytin, A N

    1995-01-01

    Overview of the use of the PCI bus in present and future high energy physics data acquisition systems

  6. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  7. High Energy Physics Division semiannual report of research activities, January 1, 1993--June 30, 1993

    SciTech Connect (OSTI)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. [eds.

    1993-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1993--June 30, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  8. Nuclear correlation and finite interaction-range effects in high-energy $(e,e'p)$ nuclear transparency

    E-Print Network [OSTI]

    Ryoichi Seki; T. D. Shoppa; Akihisa Kohama; Koichi Yazaki

    1995-12-06

    Nuclear transparency is calculated for high-energy, semi-inclusive $(e,e'p)$ reactions, by accounting for all orders of Glauber multiple-scattering and by using realistic finite-range $p N$ interaction and (dynamically and statistically) correlated nuclear wave functions. The nuclear correlation effect is reduced due to the $p N$ finite-range effect. The net effect is small, and depends sensitively on details of the nuclear correlations in finite nuclei, which are poorly known at present.

  9. DOE SC Exascale Requirements Review: High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2015 These compelling lines of inquiry show great promise for discovery: * Use the Higgs boson as a new tool for discovery * Pursue the physics associated with neutrino mass...

  10. Extensive Air Showers and the Physics of High Energy Interactions

    E-Print Network [OSTI]

    A. D. Erlykin

    2007-03-20

    Extensive Air Showers are still the only source of information on primary cosmic rays and their interactions at energies above PeV. However, this information is hidden inside the multiplicative character of the cascading process. Inspite of the great experimental and theoretical efforts the results of different studies are often ambiguous and even conflicting. These controversies can partly be referred to imperfections of our models of high energy interactions. The first part of the paper is concerned with this problem. The author thinks that the present models should be corrected to give slightly deeper penetration of the cascade into the atmosphere. In this respect the modification suggested by the QGSJET-II model seems to be the step in the right direction. The Sibyll 2.1 model provides a similar penetrating properties. However, this modification is not enough and a small additional transfer of the energy from EAS hadrons to the electromagnetic component is needed too. As a possible candidate for such a process the inelastic charge exchange of pions is discussed. In the second part of the paper the author discusses the need to account for the interaction of EAS with the stuff of detectors, their environment and the ground in the light of the 'neutron thunder' phenomenon, discovered recently.

  11. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  12. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  13. Experimental High Energy Physics Brandeis University Final Report

    SciTech Connect (OSTI)

    Blocker, Craig A.; Bensinger, James; Sciolla, Gabriella; Wellenstein, Hermann

    2013-07-26

    During the past three years, the Brandeis experimental particle physics group was comprised of four faculty (Bensinger, Blocker, Sciolla, and Wellenstein), one research scientist, one post doc, and ten graduate students. The group focused on the ATLAS experiment at LHC. In 2011, the LHC delivered 5/fb of pp colliding beam data at a center-of-mass energy of 7 TeV. In 2012, the center-of-mass energy was increased to 8 TeV, and 20/fb were delivered. The Brandeis group focused on two aspects of the ATLAS experiment -- the muon detection system and physics analysis. Since data taking began at the LHC in 2009, our group actively worked on ATLAS physics analysis, with an emphasis on exploiting the new energy regime of the LHC to search for indications of physics beyond the Standard Model. The topics investigated were Z' -> ll, Higgs -> ZZ* -. 4l, lepton flavor violation, muon compositeness, left-right symmetric theories, and a search for Higgs -> ee. The Brandeis group has for many years been a leader in the endcap muon system, making important contributions to every aspect of its design and production. During the past three years, the group continued to work on commissioning the muon detector and alignment system, development of alignment software, and installation of remaining chambers.

  14. Physics 129 Nuclear and Particle Physics

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics 129 Nuclear and Particle Physics Winter Quarter 2008 Instructor: David A. Williams (office Physics by W. S. C. Williams, Oxford University Press, 1991. Course materials Homework assignments materials will be distributed on the web site above. Nine texts on nuclear and particle physics, all

  15. An Outlook on Nuclear Physics

    E-Print Network [OSTI]

    Balantekin, A B

    2013-01-01

    A brief outlook on low-energy nuclear physics is presented. Selected recent developments in nuclear structure theory are highlighted and a few open questions are discussed.

  16. An Outlook on Nuclear Physics

    E-Print Network [OSTI]

    A. B. Balantekin

    2013-01-05

    A brief outlook on low-energy nuclear physics is presented. Selected recent developments in nuclear structure theory are highlighted and a few open questions are discussed.

  17. High energy astroparticle physics for high school students

    E-Print Network [OSTI]

    Krause, Maria; Classen, Lew; Holler, Markus; Hütten, Moritz; Raab, Susanne; Rautenberg, Julian; Schulz, Anneli

    2015-01-01

    The questions about the origin and type of cosmic particles are not only fascinating for scientists in astrophysics, but also for young enthusiastic high school students. To familiarize them with research in astroparticle physics, the Pierre Auger Collaboration agreed to make 1% of its data publicly available. The Pierre Auger Observatory investigates cosmic rays at the highest energies and consists of more than 1600 water Cherenkov detectors, located near Malarg\\"{u}e, Argentina. With publicly available data from the experiment, students can perform their own hands-on analysis. In the framework of a so-called Astroparticle Masterclass organized alongside the context of the German outreach network Netzwerk Teilchenwelt, students get a valuable insight into cosmic ray physics and scientific research concepts. We present the project and experiences with students.

  18. Investigations in Experimental and Theoretical High Energy Physics

    SciTech Connect (OSTI)

    Krennrich, Frank [Iowa State University

    2013-07-29

    We report on the work done under DOE grant DE-FG02-01ER41155. The experimental tasks have ongoing efforts at CERN (ATLAS), the Whipple observatory (VERITAS) and R&D work on dual readout calorimetry and neutrino-less double beta decay. The theoretical task emphasizes the weak interaction and in particular CP violation and neutrino physics. The detailed descriptions of the final report on each project are given under the appropriate task section of this report.

  19. Special Colloquium : Looking at High Energy Physics from a gender studies perspective

    ScienceCinema (OSTI)

    None

    2011-04-25

    Human actors, workplace cultures and knowledge production: Gender studies analyse the social constructions and cultural representations of gender. Using methods and tools from the humanities and social science, we look at all areas, including the natural sciences and technology, science education and research labs. After a short introduction to gender studies, the main focus of my talk will be the presentation of selected research findings on gender and high energy physics. You will hear about an ongoing research project on women in neutrino physics and learn about a study on the world of high energy physicists characterised by "rites of passage" and "male tales" told during a life in physics. I will also present a study on how the HEP community communicates, and research findings on the naming culture in HEP. Getting to know findings from another field on your own might contribute to create a high energy physics culture that is fair and welcoming to all genders.

  20. DOE SC Exascale Requirements Reviews: High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOE Project Taps HPC for2DOEDatabasePhysics DOE SC

  1. High Energy Physics: Report of research accomplishments and future goals, FY 1992

    SciTech Connect (OSTI)

    1991-09-05

    This report discusses high energy physics research in the following areas: Research in theoretical physics; phenomenology; experimental computer facility at Caltech; Beijing BES; MACRO; CLEO II; SLD; L3 at LEP; the B Factory R & D Program; SSC GEM Detector; and a high resolution barium fluoride calorimeter for the SSC.

  2. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    SciTech Connect (OSTI)

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  3. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION

    E-Print Network [OSTI]

    Chakrabarty, Deepto

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of ...

  4. UVA experimental and high energy physics. Final grant report

    SciTech Connect (OSTI)

    Cox, B.

    1999-10-07

    The period 1992--1997 was a mixture of frustrations and of accomplishments for the UVa HEP group. The experimental HEP group began this period with the completion of a truncated run of Experiment E771 at Fermilab in 1992. This experiment was designed to measure the cross section for beauty production in 800 GeV/c pN interactions. It succeeded in this goal as well as in obtaining one of the best limits on FCNC in charm decays by setting an upper limit on D{sup 0} {r_arrow} {mu}{sup +}{mu}{sup {minus}}. In addition, they were able to measure {Psi}, {Psi}, {chi}{sub 1},{chi}{sub 2} and upsilon production. Three UVa PhD theses have resulted from this experiment (as well as 12 other PhD's at other institutions). At the same time, the UVa experimental group was vigorously pursuing the goal of studying CP violation in B production. This took the form of a proposal to the SSC for a super fixed target facility, the SFT, which would focus on studies of B mesons. B. Cox was the spokesman of this experiment that had over thirty institutions. This proposal EOI-14 had a good reception by the SSC PAC. A R and D activity to prove the technique of crystal channeling was undertaken to prove the accelerator aspects of this proposal. This activity, known as E853 or CEX at Fermilab, resulted in proof of the crystal channeling technique as viable for the extraction of 20 TeV beam at the SSC. In addition to this activity, the UVa group investigated many other aspects of B physics at the SSC. They were among the leaders of the 1993 Snowmass meeting on B Physics at Hadronic Accelerators. The UVa HEP group worked vigorously on developing the ideas for B physics at the SSC, as evidenced by the many different studies listed in the publication list given, up to the very day the SSC was terminated by an act of Congress.

  5. A new physical phenomenon in ultra-high energy collisions

    E-Print Network [OSTI]

    Glennys R. Farrar; Jeffrey D. Allen

    2013-07-09

    We show that combining the published Pierre Auger Observatory measurements of the longitudinal_and_ lateral properties of UHE atmospheric showers, points to an unforeseen change in the nature of particle interactions at ultrahigh energy. A "toy model" of UHE proton-air interactions is presented which provides the first fully consistent description of air shower observations. It demonstrates that the observed energy dependence of the depth-of-shower-maximum distribution may not indicate a transition to a heavier composition, as commonly assumed. While fundamentally phenomenological, the model is based on considerations of how the normal vacuum of QCD might be vaporized and chiral symmetry restored by the extreme energy densities produced in UHE collisions. Whatever its origin, understanding this unexpected phenomenon opens exciting directions in particle physics and may impact Early Universe cosmology.

  6. GPGPU for track finding in High Energy Physics

    E-Print Network [OSTI]

    Lorenzo Rinaldi; Mauro Belgiovine; Riccardo Di Sipio; Alessandro Gabrielli; Matteo Negrini; Franco Semeria; Antonio Sidoti; Salvatore Alessandro Tupputi; Mauro Villa

    2015-07-11

    The LHC experiments are designed to detect large amount of physics events produced with a very high rate. Considering the future upgrades, the data acquisition rate will become even higher and new computing paradigms must be adopted for fast data-processing: General Purpose Graphics Processing Units (GPGPU) is a novel approach based on massive parallel computing. The intense computation power provided by Graphics Processing Units (GPU) is expected to reduce the computation time and to speed-up the low-latency applications used for fast decision taking. In particular, this approach could be hence used for high-level triggering in very complex environments, like the typical inner tracking systems of the multi-purpose experiments at LHC, where a large number of charged particle tracks will be produced with the luminosity upgrade. In this article we discuss a track pattern recognition algorithm based on the Hough Transform, where a parallel approach is expected to reduce dramatically the execution time.

  7. Energy Loss Effect in High Energy Nuclear Drell-Yan Process

    E-Print Network [OSTI]

    Chun-Gui Duan; Li-Hua Song; Li-Juan Huo; Guang-Lie Li

    2004-05-13

    The energy loss effect in nuclear matter, which is another nuclear effect apart from the nuclear effect on the parton distribution as in deep inelastic scattering process, can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of the nuclear parton distribution studied only with lepton deep inelastic scattering experimental data, measured Drell-Yan production cross sections for 800GeV proton incident on a variety of nuclear targets are analyzed within Glauber framework which takes into account energy loss of the beam proton. It is shown that the theoretical results with considering the energy loss effect are in good agreement with the FNAL E866.

  8. Nuclear Physics Review

    SciTech Connect (OSTI)

    Walker-Loud, Andre

    2014-11-01

    Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.

  9. Innovation in Scholarly Communication Vision and Projects from High-Energy Physics

    E-Print Network [OSTI]

    Heuer, Rolf-Dieter; Mele, Salvatore; 10.3233/ISU-2008-0570

    2008-01-01

    Having always been at the forefront of information management and open access, High-Energy Physics (HEP) proves to be an ideal test-bed for innovations in scholarly communication including new information and communication technologies. Three selected topics of scholarly communication in High-Energy Physics are presented here: A new open access business model, SCOAP3, a world-wide sponsoring consortium for peer-reviewed HEP literature; the design, development and deployment of an e-infrastructure for information management; and the emerging debate on long-term preservation, re-use and (open) access to HEP data.

  10. Nuclear Physics A456 (1986) 159-172 @ North-Holland, Amsterdam

    E-Print Network [OSTI]

    Bauer, Wolfgang

    1986-01-01

    Nuclear Physics A456 (1986) 159-172 @ North-Holland, Amsterdam HIGH ENERGY y-RAY EMISSION IN HEAVY Giessen, 6300 Giessen, West Germany R.Y. CUSSON GSI Darmstadt and Physics Department, Duke University-Holland Physics Publishing Division) #12;160 W. Bauer et al. / High energy y-emission The effect of residual

  11. A novel zirconium K{alpha} imager for high energy density physics...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; COMPUTERIZED...

  12. High Energy Solar Physics: Anticipating HESSI ASP Conference Series, Vol. xxx, 2000

    E-Print Network [OSTI]

    Priest, Eric

    High Energy Solar Physics: Anticipating HESSI ASP Conference Series, Vol. xxx, 2000 R. Ramaty and N. Mandzhavidze, eds. Solar Flare Theory and the Status of Flare Understanding E.R. Priest Department current understanding of the mag­ netohydrodynamics of solar flares. The theory of reconnection in 2D

  13. Roadmap for Ultra-High Energy Cosmic Ray Physics and Astronomy (whitepaper for Snowmass 2013)

    E-Print Network [OSTI]

    Luis A. Anchordoqui; Glennys R. Farrar; John F. Krizmanic; Jim Matthews; John W. Mitchell; Dave Nitz; Angela V. Olinto; Thomas C. Paul; Pierre Sokolsky; Gordon B. Thomson; Thomas J. Weiler

    2013-07-29

    We summarize the remarkable recent progress in ultra-high energy cosmic ray physics and astronomy enabled by the current generation of cosmic ray observatories. We discuss the primary objectives for future measurements and describe the plans for near-term enhancements of existing experiments as well as the next generation of observatories.

  14. Roadmap for Ultra-High Energy Cosmic Ray Physics and Astronomy (whitepaper for Snowmass 2013)

    E-Print Network [OSTI]

    Anchordoqui, Luis A; Krizmanic, John F; Matthews, Jim; Mitchell, John W; Olinto, Angela V; Paul, Thomas C; Sokolsky, Pierre; Thomson, Gordon B; Weiler, Thomas J

    2013-01-01

    We summarize the remarkable recent progress in ultra-high energy cosmic ray physics and astronomy enabled by the current generation of cosmic ray observatories. We discuss the primary objectives for future measurements and describe the plans for near-term enhancements of existing experiments as well as the next generation of observatories.

  15. High Energy Neutrino Physics with Liquid Scintillation Detectors John G. Learned #

    E-Print Network [OSTI]

    Learned, John

    , and these point sharply back towards the sun. But this low energy capability still has not been enough to detectHigh Energy Neutrino Physics with Liquid Scintillation Detectors John G. Learned # Department scintillation detectors have been generally dedicated to low energy neutrino measure­ ments, in the MeV energy

  16. High Energy Neutrino Physics with Liquid Scintillation Detectors John G. Learned

    E-Print Network [OSTI]

    Learned, John

    , and these point sharply back towards the sun. But this low energy capability still has not been enough to detectHigh Energy Neutrino Physics with Liquid Scintillation Detectors John G. Learned Department scintillation detectors have been generally dedicated to low energy neutrino measure- ments, in the MeV energy

  17. Status of networking for high energy physics in the United States

    SciTech Connect (OSTI)

    Kunz, P.F.

    1985-06-01

    Networks are used extensively for High Energy Physics in the United States. Although the networks have grown in an ad hoc manner with connections typically being made to satisfy the needs of one detector group, they now encompass to large fraction of the US HEP community in one form or another. This paper summarizes the current status and experience with networks.

  18. Nuclear Physics from Lattice Quantum Chromodynamics

    E-Print Network [OSTI]

    Savage, Martin J

    2015-01-01

    Quantum Chromodynamics and Quantum Electrodynamics, both renormalizable quantum field theories with a small number of precisely constrained input parameters, dominate the dynamics of the quarks and gluons - the underlying building blocks of protons, neutrons, and nuclei. While the analytic techniques of quantum field theory have played a key role in understanding the dynamics of matter in high energy processes, they encounter difficulties when applied to low-energy nuclear structure and reactions, and dense systems. Expected increases in computational resources into the exascale during the next decade will provide the ability to determine a range of important strong interaction processes directly from QCD using the numerical technique of Lattice QCD. This will complement the nuclear physics experimental program, and in partnership with new thrusts in nuclear many-body theory, will enable unprecedented understanding and refinement of nuclear forces and, more generally, the visible matter in our universe. In th...

  19. Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions

    E-Print Network [OSTI]

    J. Scott Moreland; Jonah E. Bernhard; Steffen A. Bass

    2015-06-07

    We introduce TRENTO, a new parametric initial condition model for high-energy nuclear collisions based on eikonal entropy deposition via a "reduced thickness" function. The model simultaneously describes experimental proton-proton, proton-nucleus, and nucleus-nucleus multiplicity distributions, and generates nucleus-nucleus eccentricity harmonics consistent with experimental flow constraints. In addition, the model is compatible with ultra-central uranium-uranium data unlike existing models that include binary collision terms.

  20. ? production as a probe for early state dynamics in high energy nuclear collisions at RHIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yunpeng; Chen, Baoyi; Xu, Nu; Zhuang, Pengfei

    2011-02-01

    ? production in heavy ion collisions at RHIC energy is investigated. While the transverse momentum spectra of the ground state ?(1s) are controlled by the initial state Cronin effect, the excited bb? states are characterized by the competition between the cold and hot nuclear matter effects and sensitive to the dissociation temperatures determined by the heavy quark potential. We emphasize that it is necessary to measure the excited heavy quark states in order to extract the early stage information in high energy nuclear collisions at RHIC.

  1. The Department of PhysicsPRESENTS Nuclear Physics & Society

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    on nuclear physics and public policy for anyone who wants to better understand nuclear power nuclear weapons P.M. Applications of Nuclear Physics on Earth: Nuclear power, weapons, and nuclear medicine. TopicsThe Department of PhysicsPRESENTS Nuclear Physics & Society A free, four-day short course

  2. Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS;...

    Office of Scientific and Technical Information (OSTI)

    constraints from Big Bang nucleosynthesis Bedaque, P; Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEUTERIUM; FIELD THEORIES; NUCLEAR PHYSICS; NUCLEOSYNTHESIS;...

  3. High-Energy Physics Strategies and Future Large-Scale Projects

    E-Print Network [OSTI]

    Zimmermann, F

    2014-01-01

    We sketch the actual European and international strategies and possible future facilities. In the near term the High Energy Physics (HEP) community will fully exploit the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). Post-LHC options include a linear e+e- collider in Japan (ILC) or at CERN (CLIC), as well as circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with linear and circular acceleration approaches based on crystals, and some perspectives for the far future of accelerator-based particle physics.

  4. Use of Effective Theories in Nuclear Physics

    E-Print Network [OSTI]

    Inoue, Satoru

    2012-01-01

    Theories in Nuclear Physics by Satoru Inoue A dissertationof Doctor of Philosophy in Physics in the GRADUATE DIVISIONEffective Theories in Nuclear Physics by Satoru Inoue Doctor

  5. The effect of partonic wind on charm quark correlations in high-energy nuclear collisions

    E-Print Network [OSTI]

    X. Zhu; N. Xu; P. Zhuang

    2007-09-03

    In high-energy collisions, massive heavy quarks are produced back-to-back initially and they are sensitive to early dynamical conditions. The strong collective partonic wind from the fast expanding quark-gluon plasma created in high-energy nuclear collisions modifies the correlation pattern significantly. As a result, the angular correlation function for D$\\bar{\\rm D}$ pairs is suppressed at the angle $\\Delta\\phi=\\pi$. While the hot and dense medium in collisions at RHIC ($\\sqrt{s_{NN}}=200$ GeV) can only smear the initial back-to-back D$\\bar {\\rm D}$ correlation, a clear and strong near side D$\\bar{\\rm D}$ correlation is expected at LHC ($\\sqrt{s_{NN}}=5500$ GeV).

  6. PHENIX (Pioneering High Energy Nuclear Interaction eXperiment): Data Tables and Figures from Published Papers

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The PHENIX Experiment is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. More than 60 published papers and preprints are listed here with links to the full text and separate links to the supporting PHENIX data in plain text tables and to EPS and GIF figures from the papers.

  7. HEPMath 1.4: A Mathematica Package for Semi-Automatic Computations in High Energy Physics

    E-Print Network [OSTI]

    Martin Wiebusch

    2015-07-07

    This article introduces the Mathematica package \\emph{HEPMath} which provides a number of utilities and algorithms for High Energy Physics computations in Mathematica. Its functionality is similar to packages like FormCalc or FeynCalc, but it takes a more complete and extensible approach to implementing common High Energy Physics notations in the Mathematica language, in particular those related to tensors and index contractions. It also provides a more flexible method for the generation of numerical code which is based on new features for C code generation in Mathematica. In particular it can automatically generate Python extension modules which make the compiled functions callable from Python, thus eliminating the need to write any code in a low-level language like C or Fortran. It also contains seamless interfaces to LHAPDF, FeynArts, and LoopTools.

  8. US/Japan Cooperation in High Energy Physics. Review of activities, 1988--1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-16

    The objective of the Implementing Arrangement was to further the energy programs of both countries by establishing a framework for cooperation in the field of high energy physics, including research, accelerator and detector instrumentation research and development, the fabrication and subsequent use of new experimental devices and facilities, and related joint efforts as may be mutually agreed. Over the years, this cooperation has been very effective and has strengthened the overall collaborative efforts and the understanding between our nations and their citizens. It has demonstrated to the world our ability to work together to attack difficult problems. High Energy Physics goes across national borders; the bond is clearly intellectual and common ground is shared for the benefit of all in a most effective manner. This review covers the activities conducted under the aegis of the US/Japan Committee for Cooperation in High Energy Physics during the past five years (1988--1993). This was the second such US review of the US/Japan cooperative activities; the first was held in 1987.

  9. Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...

    Office of Science (SC) Website

    Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  10. Proceedings of the 2010 European School of High-energy Physics, Raseborg, Finland, 20 Jun - 3 Jul 2010

    E-Print Network [OSTI]

    C. Grojean; M. Spiropulu

    2012-02-08

    The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, heavy ion physics, physics beyond the Standard Model, neutrino physics, and cosmology.

  11. Final Technical Report for "High Energy Physics at The University of Iowa"

    SciTech Connect (OSTI)

    Mallik, Usha; Meurice, Yannick; Nachtman, Jane; Onel, Yasar; Reno, Mary

    2013-07-31

    Particle Physics explores the very fundamental building blocks of our universe: the nature of forces, of space and time. By exploring very energetic collisions of sub-nuclear particles with sophisticated detectors at the colliding beam accelerators (as well as others), experimental particle physicists have established the current theory known as the Standard Model (SM), one of the several theoretical postulates to explain our everyday world. It explains all phenomena known up to a very small fraction of a second after the Big Bang to a high precision; the Higgs boson, discovered recently, was the last of the particle predicted by the SM. However, many other phenomena, like existence of dark energy, dark matter, absence of anti-matter, the parameters in the SM, neutrino masses etc. are not explained by the SM. So, in order to find out what lies beyond the SM, i.e., what conditions at the earliest fractions of the first second of the universe gave rise to the SM, we constructed the Large Hadron Collider (LHC) at CERN after the Tevatron collider at Fermi National Accelerator Laboratory. Each of these projects helped us push the boundary further with new insights as we explore a yet higher energy regime. The experiments are extremely complex, and as we push the boundaries of our existing knowledge, it also requires pushing the boundaries of our technical knowhow. So, not only do we pursue humankind’s most basic intellectual pursuit of knowledge, we help develop technology that benefits today’s highly technical society. Our trained Ph.D. students become experts at fast computing, manipulation of large data volumes and databases, developing cloud computing, fast electronics, advanced detector developments, and complex interfaces in several of these areas. Many of the Particle physics Ph.D.s build their careers at various technology and computing facilities, even financial institutions use some of their skills of simulation and statistical prowess. Additionally, last but not least, today’s discoveries make for tomorrow’s practical uses of an improved life style, case in point, internet technology, fiber optics, and many such things. At The University of Iowa we are involved in the LHC experiments, ATLAS and CMS, building equipment, with calibration and maintenance, supporting the infrastructure in hardware, software and analysis as well as participating in various aspects of data analyses. Our theory group works on fundamentals of field theories and on exploration of non-accelerator high energy neutrinos and possible dark matter searches.

  12. Monochromatic radiography of high energy density physics experiments on the MAGPIE generator

    SciTech Connect (OSTI)

    Hall, G. N. Burdiak, G. C.; Suttle, L.; Stuart, N. H.; Swadling, G. F.; Lebedev, S. V.; Smith, R. A.; Patankar, S.; Suzuki-Vidal, F.; Grouchy, P. de; Harvey-Thompson, A. J.; Bennett, M.; Bland, S. N.; Pickworth, L.; Skidmore, J.

    2014-11-15

    A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240 ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-?) from a laser plasma source driven by a ?7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

  13. Formalism for Simulation-based Optimization of Measurement Errors in High Energy Physics

    E-Print Network [OSTI]

    Yuehong Xie

    2009-04-29

    Miminizing errors of the physical parameters of interest should be the ultimate goal of any event selection optimization in high energy physics data analysis involving parameter determination. Quick and reliable error estimation is a crucial ingredient for realizing this goal. In this paper we derive a formalism for direct evaluation of measurement errors using the signal probability density function and large fully simulated signal and background samples without need for data fitting and background modelling. We illustrate the elegance of the formalism in the case of event selection optimization for CP violation measurement in B decays. The implication of this formalism on choosing event variables for data analysis is discussed.

  14. Long range rapidity correlations and jet production in high energy nuclear collisions 

    E-Print Network [OSTI]

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bnzarov, I.; Bombara, M.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L. C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X. -H; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.

    2009-01-01

    REVIEW C 80, 064912 (2009) Long range rapidity correlations and jet production in high energy nuclear collisions B. I. Abelev,8 M. M. Aggarwal,30 Z. Ahammed,47 A. V. Alakhverdyants,17 B. D. Anderson,18 D. Arkhipkin,3 G. S. Averichev,17 J. Balewski,22 O.... Barannikova,8 L. S. Barnby,2 J. Baudot,15 S. Baumgart,52 D. R. Beavis,3 R. Bellwied,50 F. Benedosso,27 M. J. Betancourt,22 R. R. Betts,8 A. Bhasin,16 A. K. Bhati,30 H. Bichsel,49 J. Bielcik,10 J. Bielcikova,11 B. Biritz,6 L. C. Bland,3 I. Bnzarov,17 M...

  15. Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group Citation Details In-Document Search Title: Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group...

  16. Constraints on high energy phenomena from low energy nuclear physics

    E-Print Network [OSTI]

    C. Hanhart

    2001-03-28

    A procedure to derive bounds on coupling strengths of exotic particles to nucleons from the neutrino signal of supernovae is outlined. The analysis is based on a model independent calculation for the emissivities for the exotic, detailed simulation for the evolution of the early proto-neutron star as well as a Likelihood analysis. As an example we derive confidence levels for the upper bound of the size of gravity only extra dimensions.

  17. Nuclear Physics from Lattice Quantum Chromodynamics

    E-Print Network [OSTI]

    Martin J. Savage

    2015-10-07

    Quantum Chromodynamics and Quantum Electrodynamics, both renormalizable quantum field theories with a small number of precisely constrained input parameters, dominate the dynamics of the quarks and gluons - the underlying building blocks of protons, neutrons, and nuclei. While the analytic techniques of quantum field theory have played a key role in understanding the dynamics of matter in high energy processes, they encounter difficulties when applied to low-energy nuclear structure and reactions, and dense systems. Expected increases in computational resources into the exascale during the next decade will provide the ability to determine a range of important strong interaction processes directly from QCD using the numerical technique of Lattice QCD. This will complement the nuclear physics experimental program, and in partnership with new thrusts in nuclear many-body theory, will enable unprecedented understanding and refinement of nuclear forces and, more generally, the visible matter in our universe. In this presentation, I will discuss the state-of-the-art Lattice QCD calculations of quantities of interest in nuclear physics, progress that is expected in the near future, and the anticipated impact.

  18. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    E-Print Network [OSTI]

    Tierney, Ed., Brian L

    2008-01-01

    Facilities Division, and the Office of Nuclear Physics.Nuclear Physics NetworkRequirements Workshop Nuclear Physics Program Office, DOE

  19. A pedagogical introduction to quantum integrability, with a view towards theoretical high-energy physics

    E-Print Network [OSTI]

    J. Lamers

    2015-06-03

    These are lecture notes of an introduction to quantum integrability given at the Tenth Modave Summer School in Mathematical Physics, 2014, aimed at PhD candidates and junior researchers in theoretical physics. We introduce spin chains and discuss the coordinate Bethe ansatz (CBA) for a representative example: the Heisenberg XXZ model. The focus lies on the structure of the CBA and on its main results, deferring a detailed treatment of the CBA for the general $M$-particle sector of the XXZ model to an appendix. Subsequently the transfer-matrix method is discussed for the six-vertex model, uncovering a relation between that model and the XXZ spin chain. Equipped with this background the quantum inverse-scattering method (QISM) and algebraic Bethe ansatz (ABA) are treated. We emphasize the use of graphical notation for algebraic quantities as well as computations. Finally we turn to quantum integrability in the context of theoretical high-energy physics. We discuss factorized scattering in two-dimensional QFT, and conclude with a qualitative introduction to one current research topic relating quantum integrability to theoretical high-energy physics: the Bethe/gauge correspondence.

  20. Final Report for Research in High Energy Physics (University of Hawaii)

    SciTech Connect (OSTI)

    Browder, Thomas E.

    2013-08-31

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).

  1. Nuclear Physics of Neutron Stars

    E-Print Network [OSTI]

    J. Piekarewicz

    2009-01-28

    Understanding the equation of state (EOS) of cold nuclear matter, namely, the relation between the pressure and energy density, is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the special role that nuclear physics plays in constraining the EOS of cold baryonic matter and its impact on the properties of neutron stars.

  2. Nuclear Physics: Recent Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Physics Topics:...

  3. Summaries of FY 1992 research in nuclear physics

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  4. Load management strategy for Particle-In-Cell simulations in high energy physics

    E-Print Network [OSTI]

    Beck, Arnaud; Derouillat, Julien

    2015-01-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. By comparing the results given by different codes, it is possible to point out algorithmic limitations both in terms of physical accuracy and computational performances. In this paper we illustrate some of these limitations in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy physics.

  5. Non-relativistic high-energy physics: top production and dark matter annihilation

    E-Print Network [OSTI]

    Beneke, Martin

    2015-01-01

    Non-relativistic physics is often associated with atomic physics and low-energy phenomena of the strong interactions between nuclei and quarks. In this review we cover three topics in contemporary high-energy physics at or close to the TeV scale, where non-relativistic dynamics plays an important if not defining role. We first discuss in detail the third-order corrections to top-quark pair production in electron-positron collisions in the threshold region, which plays a major role at a future high-energy e+ e- collider. Threshold effects are also relevant in the production of heavy particles in hadronic collisions, where in addition to the Coulomb force soft gluon radiation contributes to enhanced quantum corrections. We review the joint resummation of non-relativistic and soft gluon effects for pair production of top quarks and supersymmetric particles to next-to-next-to-leading logarithmic accuracy. The third topic deals with pair annihilation of dark matter particles within the framework of the Minimal Sup...

  6. Non-relativistic high-energy physics: top production and dark matter annihilation

    E-Print Network [OSTI]

    Martin Beneke; Matthias Steinhauser

    2015-06-26

    Non-relativistic physics is often associated with atomic physics and low-energy phenomena of the strong interactions between nuclei and quarks. In this review we cover three topics in contemporary high-energy physics at or close to the TeV scale, where non-relativistic dynamics plays an important if not defining role. We first discuss in detail the third-order corrections to top-quark pair production in electron-positron collisions in the threshold region, which plays a major role at a future high-energy e+ e- collider. Threshold effects are also relevant in the production of heavy particles in hadronic collisions, where in addition to the Coulomb force soft gluon radiation contributes to enhanced quantum corrections. We review the joint resummation of non-relativistic and soft gluon effects for pair production of top quarks and supersymmetric particles to next-to-next-to-leading logarithmic accuracy. The third topic deals with pair annihilation of dark matter particles within the framework of the Minimal Supersymmetric Standard Model. Here the electroweak Yukawa force generated by the exchange of gauge and Higgs bosons can cause large "Sommerfeld" enhancements of the annihilation cross section in some parameter regions.

  7. The study of multi-institutional collaborations in high-energy physics

    SciTech Connect (OSTI)

    Warnow-Blewett, Joan

    1991-01-01

    Since World War II, the organizational framework for scientific research is increasingly the multi-institutional collaboration, especially in high-energy physics. A broad preliminary survey, into the functioning of research collaborations involving three or more institutions is described. The study is designed to identify patterns of collaborations, define the scope of the documentation problems, field-test possible solutions, recommend future actions, and build an archives of oral history interviews and other resources for scholarly use. Once the study is completed, its findings will be used to promote systems to document significant collaborative research.

  8. High Energy Physics Advisory Panel April 6-7, 2015 | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High Energy Physics AdvisoryScience (SC) April

  9. High Energy Physics Advisory Panel August 2012 Meeting | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High Energy Physics AdvisoryScience (SC)

  10. International Conference on High Energy Physics, Philadelphia, 2008 Differential Reduction Algorithms for the All-Order Epsilon Expansion of

    E-Print Network [OSTI]

    Yost, Scott

    diagram calculations. The most impressive result in the Euler integral representation was the construction34th International Conference on High Energy Physics, Philadelphia, 2008 Differential Reduction d = 4 is required. We discuss the current status of differential reduction algorithms

  11. Physics of Nuclear Antishadowing

    E-Print Network [OSTI]

    Ivan Schmidt

    2005-11-14

    Shadowing and antishadowing of the electromagnetic nuclear structure functions are produced by the coherence of multiscattering quark nuclear processes. This picture leads to substantially different antishadowing for charged and neutral current processes, particularly in anti-neutrino reactions, thus affecting the extraction of the weak-mixing angle $\\sin^2\\theta_W$.

  12. Electro and gamma nuclear physics in Geant4

    E-Print Network [OSTI]

    J. P. Wellisch; M. Kossov; P. Degtyarenko

    2003-06-03

    Adequate description of electro and gamma nuclear physics is of utmost importance in studies of electron beam-dumps and intense electron beam accelerators. I also is mandatory to describe neutron backgrounds and activation in linear colliders. This physics was elaborated in Geant4 over the last year, and now entered into the stage of practical application. In the {\\sc Geant4} Photo-nuclear data base there are at present about 50 nuclei for which the Photo-nuclear absorption cross sections have been measured. Of these, data on 14 nuclei are used to parametrize the gamma nuclear reaction cross-section The resulting cross section is a complex, factorized function of $A$ and $e = log(E_\\gamma)$, where $E_\\gamma$ is the energy of the incident photon. Electro-nuclear reactions are so closely connected with Photo-nuclear reactions that sometimes they are often called ``Photo-nuclear''. The one-photon exchange mechanism dominates in Electro-nuclear reactions, and the electron can be substituted by a flux of photons. Folding this flux with the gamma-nuclear cross-section, we arrive at an acceptable description of the electro-nuclear physics. Final states in gamma and electro nuclear physics are described using chiral invariant phase-space decay at low gamma or equivalent photon energies, and quark gluon string model at high energies. We will present the modeling of this physics in {\\sc Geant4}, and show results from practical applications.

  13. Nuclear Physics with Electroweak Probes

    E-Print Network [OSTI]

    Omar Benhar

    2009-02-26

    In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects.

  14. arXiv:0810.3609v1[physics.data-an]20Oct2008 34th International Conference on High Energy Physics, Philadelphia, 2008

    E-Print Network [OSTI]

    Erdmann, Martin

    , Philadelphia, 2008 Visual Physics Analysis (VISPA) - Concepts and First Applications O. Actis, M. Erdmann, R International Conference on High Energy Physics, Philadelphia, 2008 Figure 1: Analysis design with the VISPA

  15. A Globally Distributed System for Job, Data, and Information Handling for High Energy Physics

    SciTech Connect (OSTI)

    Garzoglio, Gabriele

    2005-12-01

    The computing infrastructures of the modern high energy physics experiments need to address an unprecedented set of requirements. The collaborations consist of hundreds of members from dozens of institutions around the world and the computing power necessary to analyze the data produced surpasses already the capabilities of any single computing center. A software infrastructure capable of seamlessly integrating dozens of computing centers around the world, enabling computing for a large and dynamical group of users, is of fundamental importance for the production of scientific results. Such a computing infrastructure is called a computational grid. The SAM-Grid offers a solution to these problems for CDF and DZero, two of the largest high energy physics experiments in the world, running at Fermilab. The SAM-Grid integrates standard grid middleware, such as Condor-G and the Globus Toolkit, with software developed at Fermilab, organizing the system in three major components: data handling, job handling, and information management. This dissertation presents the challenges and the solutions provided in such a computing infrastructure.

  16. Closeout Report: Experimental High Energy Physics Group at the University of South Alabama

    SciTech Connect (OSTI)

    Jenkins, Charles M; Godang, Romulus

    2013-06-25

    The High Energy Physics group at the University of South Alabama has been supported by this research grant (DE-FG02-96ER40970) since 1996. One researcher, Dr. Merrill Jenkins, has been supported on this grant during this time worked on fixed target experiments at the Fermi National Accelerator Laboratory, west of Chicago, Illinois. These experiments have been E-705, E-771, E-871 (HyperCP) and E-921 (CKM) before it was canceled for budgetary reasons. After the cancellation of CKM, Dr. Jenkins joined the Compact Muon Solenoid (CMS) experiment as an associate member via the High Energy Physics Group at the Florida State University. A second, recently tenured faculty member, Dr. Romulus Godang joined the group in 2009 and has been supported by this grant since then. Dr. Godang is working on the BaBaR experiment at SLAC and has joined the Belle-II experiment located in Japan at KEK. According to the instructions sent to us by our grant monitor, we are to concentrate on the activities over the last three years in this closeout report.

  17. Hadronic rescattering effects on multi-strange hadrons in high-energy nuclear collisions

    E-Print Network [OSTI]

    Takeuchi, Shiori; Hirano, Tetsufumi; Huovinen, Pasi; Nara, Yasushi

    2015-01-01

    We study the effects of hadronic rescattering on hadron distributions in high-energy nuclear collisions by using an integrated dynamical approach. This approach is based on a hybrid model combining (3+1)-dimensional ideal hydrodynamics for the quark gluon plasma (QGP), and a transport model for the hadron resonance gas. Since the hadron distributions are the result of the entire expansion history of the system, understanding the QGP properties requires investigating how rescattering during the hadronic stage affects the final distributions of hadrons. We include multi-strange hadrons in our study, and quantify the effects of hadronic rescattering on their mean transverse momenta and elliptic flow. We find that multi-strange hadrons scatter less during the hadronic stage than non-strange particles, and thus their distributions reflect the properties of the system in an earlier stage than the distributions of non-strange particles.

  18. Probe the QCD phase diagram with ?-mesons in high energy nuclear collisions

    E-Print Network [OSTI]

    B. Mohanty; N. Xu

    2009-01-03

    High-energy nuclear collision provide a unique tool to study the strongly interacting medium. Recent results from the Relativistic Heavy Ion Collider (RHIC) on \\phi-meson production has revealed the formation of a dense partonic medium. The medium constituents are found to exhibit collective behaviour initiated due to partonic interactions in the medium. We present a brief review of the recent results on \\phi production in heavy-ion collisions at RHIC. One crucial question is where, in the phase diagram, does the transition happen for the matter changing from hadronic to partonic degrees of freedom. We discuss how \\phi-meson elliptic flow in heavy-ion collisions can be used for the search of the QCD phase boundary.

  19. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Experiment...

  20. Nuclear Physics: Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Talks Archived Talks Additional Information Computing at JLab Operations Logbook Physics Topics: Meetings Talks given at the Science & Technology Review 2004 Larry Cardman:...

  1. Neutrinos in Nuclear Physics

    E-Print Network [OSTI]

    McKeown, R D

    2014-01-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  2. High-Energy Physics on DECPeRLe-1 Programmable Active Memory

    E-Print Network [OSTI]

    Vuillemin, Jean

    Research Laboratory, Rueil- Malmaison, France. 1European Organization for Nuclear Research, Geneva: The ATLAS experiment. of the century, around year 2002. Two dierent detec- tor sets are being designed: CMS discrimination based on physics criteria. The third-level trigger is composed of high-level processors

  3. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    SciTech Connect (OSTI)

    Ruebel, Oliver

    2009-12-01

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research covered in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle acceleration, physicists model LWFAs computationally. The datasets produced by LWFA simulations are (i) extremely large, (ii) of varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-dimensional, making analysis and knowledge discovery from complex LWFA simulation data a challenging task. To address these challenges this thesis describes the integration of the visualization system VisIt and the state-of-the-art index/query system FastBit, enabling interactive visual exploration of extremely large three-dimensional particle datasets. Researchers are especially interested in beams of high-energy particles formed during the course of a simulation. This thesis describes novel methods for automatic detection and analysis of particle beams enabling a more accurate and efficient data analysis process. By integrating these automated analysis methods with visualization, this research enables more accurate, efficient, and effective analysis of LWFA simulation data than previously possible.

  4. Fractional Authorship in Nuclear Physics

    E-Print Network [OSTI]

    Pritychenko, B

    2015-01-01

    Large, multi-institutional groups or collaborations of scientists are engaged in nuclear physics research projects, and the number of research facilities is dwindling. These collaborations have their own authorship rules, and they produce a large number of highly-cited papers. Multiple authorship of nuclear physics publications creates a problem with the assessment of an individual author's productivity relative to his/her colleagues and renders ineffective a performance metrics solely based on annual publication and citation counts. Many institutions are increasingly relying on the total number of first-author papers; however, this approach becomes counterproductive for large research collaborations with an alphabetical order of authors. A concept of fractional authorship (the claiming of credit for authorship by more than one individual) helps to clarify this issue by providing a more complete picture of research activities. In the present work, nuclear physics fractional and total authorships have been inv...

  5. The Dependence of the Proton-Triton Nuclear Reaction Rate on the Temperature and Energy Content of the High-Energy Proton Distribution Function

    E-Print Network [OSTI]

    The Dependence of the Proton-Triton Nuclear Reaction Rate on the Temperature and Energy Content of the High-Energy Proton Distribution Function

  6. Cosmology and Gravitation: the grand scheme for High-Energy Physics

    E-Print Network [OSTI]

    P. Binétruy

    2015-04-27

    These lectures describe how the Standard Model of cosmology ($\\Lambda$CDM) has developped, based on observational facts but also on ideas formed in the context of the theory of fundamental interactions, both gravitational and nongravitational, the latter being described by the Standard Model of high energy physics. It focuses on the latest developments, in particular the precise knowledge of the early Universe provided by the observation of the Cosmic Microwave Background and the discovery of the present acceleration of the expansion of the Universe. While insisting on the successes of the Standard Model of cosmology, we will stress that it rests on three pillars which involve many open questions: the theory of inflation, the nature of dark matter and of dark energy. We will devote one chapter to each of these issues, describing in particular how this impacts our views on the theory of fundamental interactions. More technical parts are given in italics. They may be skipped altogether.

  7. A novel zirconium K{alpha} imager for high energy density physics research

    SciTech Connect (OSTI)

    Akli, K. U.; Jiang, S.; Storm, M. S.; Krygier, A.; Freeman, R. R.; Sanchez del Rio, M.; Stephens, R. B.; Pereira, N. R.; Baronova, E. O.; Theobald, W.; Ping, Y.; McLean, H. S.; Patel, P. K.; Key, M. H.

    2011-12-15

    We report on the development and characterization of a zirconium K{alpha} imager for high energy density physics research. The imager consists of a spherically bent quartz crystal operating at 15.7 keV photon energy. We compare the performance of the imager in terms of integrated reflectivity (R{sub int}) and temperature dependent collection efficiency ({eta}{sub Te}) to that of the widely used Cu K{alpha} imager. Our collisional-radiative simulations show that the new imager can be reliably used up to 250 eV plasma temperature. Monte Carlo simulations show that for a 25 {mu}m thick tracer layer of zirconium, the contribution to K{alpha} production from photo-pumping is only 2%. We present, for the first time, 2D spatially resolved images of zirconium plasmas generated by a high intensity short pulse laser interacting with Zr solid targets.

  8. Physics perspectives of heavy-ion collisions at very high energy

    E-Print Network [OSTI]

    Chang, Ning-bo; Chen, Bao-yi; Chen, Shi-yong; Chen, Zhen-yu; Ding, Heng-Tong; He, Min; Liu, Zhi-quan; Pang, Long-gang; Qin, Guang-you; Rapp, Ralf; Schenke, Björn; Shen, Chun; Song, Huichao; Xu, Hao-jie; Wang, Qun; Wang, Xin-Nian; Zhang, Ben-wei; Zhang, Han-zhong; Zhu, Xiangrong; Zhuang, Peng-fei

    2015-01-01

    Heavy-ion collisions at very high colliding energies are expected to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. We illustrate the potential of future experimental studies of the initial particle production and formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.

  9. FPGA based High Speed Data Acquisition System for High Energy Physics Application

    E-Print Network [OSTI]

    Mandal, Swagata; Chakrabarti, Amlan; Chattopadhyay, Subhasis

    2015-01-01

    In high energy physics experiments (HEP), high speed and fault resilient data communication is needed between detectors/sensors and the host PC. Transient faults can occur in the communication hardware due to various external effects like presence of charged particles, noise in the environment or radiation effects in HEP experiments and that leads to single/multiple bit error. In order to keep the communication system functional in such a radiation environment where direct intervention of human is not possible, a high speed data acquisition (DAQ) architecture is necessary which supports error recovery. This design presents an efficient implementation of field programmable gate array (FPGA) based high speed DAQ system with optical communication link supported by multi-bit error correcting model. The design has been implemented on Xilinx Kintex-7 board and is tested for board to board communication as well as for PC communication using PCI (Peripheral Component Interconnect express). Data communication speed up...

  10. Nuclear Physics from Lattice QCD

    E-Print Network [OSTI]

    S. R. Beane; W. Detmold; K. Orginos; M. J. Savage

    2010-10-26

    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

  11. The ultimate structure of matter: The high energy physics program from the 1950s through the 1980s

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    This discusses the following topics in High Energy Physics: The Particle Zoo; The Strong and the Weak; The Particle Explosion; Deep Inside the Nucleon; The Search for Unity; Physics in Collision; The Standard Model; Particles and the Cosmos; and Practical Benefits.

  12. Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics

    ScienceCinema (OSTI)

    None

    2011-10-06

    Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided About the speaker Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2½ years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

  13. A pedagogical introduction to quantum integrability, with a view towards theoretical high-energy physics

    E-Print Network [OSTI]

    Lamers, J

    2015-01-01

    These are lecture notes of an introduction to quantum integrability given at the Tenth Modave Summer School in Mathematical Physics, 2014, aimed at PhD candidates and junior researchers in theoretical physics. We introduce spin chains and discuss the coordinate Bethe Ansatz (CBA) for a representative example: the Heisenberg XXZ model. The focus lies on the structure of the CBA and on its main results, deferring a detailed treatment of the CBA for the general $M$-particle sector of the XXZ model to an appendix. Subsequently the transfer-matrix method is discussed for the six-vertex model, uncovering a relation between that model and the XXZ spin chain. Equipped with this background the quantum inverse-scattering method (QISM) and algebraic Bethe Ansatz (ABA) are treated. We emphasize the use of graphical notation for algebraic quantities as well as computations. Finally we turn to quantum integrability in the context of theoretical high-energy physics. We discuss factorized scattering in two-dimensional QFT, a...

  14. Effective Field Theory for Nuclear Physics

    E-Print Network [OSTI]

    Martin J. Savage

    2003-01-21

    I review the current status of the application of effective field theory to nuclear physics, and its present implications for nuclear astrophysics.

  15. Nuclear Physics with electroweak probes

    E-Print Network [OSTI]

    Giampaolo Co'

    2004-11-30

    The last few years activity of the Italian community concerning nuclear physics with electroweak probes is reviewed.Inclusive quasi-elastic electron-scattering, photon end electron induced one- and two-nucleon emission are considered. The scattering of neutrinos off nuclei in the quasi-elastic region is also discussed.

  16. Nuclear Physics from Lattice QCD

    E-Print Network [OSTI]

    Martin J. Savage

    2011-10-26

    I review recent progress in the development of Lattice QCD into a calculational tool for nuclear physics. Lattice QCD is currently the only known way of solving QCD in the low-energy regime, and it promises to provide a solid foundation for the structure and interactions of nuclei directly from QCD.

  17. Gogny, D; Schunck, N 73 NUCLEAR PHYSICS AND RADIATION PHYSICS...

    Office of Scientific and Technical Information (OSTI)

    of low energy fission: fragment properties Younes, W; Gogny, D; Schunck, N 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Abstract not provided Lawrence Livermore National Laboratory...

  18. Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13

    SciTech Connect (OSTI)

    Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.; DeWolfe, Oliver; Ford, William T.; Hasenfratz, Anna; Mahanthappa, K. T.; Marino, Alysia D.; Nauenberg, Uriel; Smith, James G.; Stenson, Kevin; Wagner, Stephen R.; Zimmerman, Eric D.

    2013-06-27

    The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions, lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.

  19. [Experimental nuclear physics]. Final report

    SciTech Connect (OSTI)

    NONE

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs.

  20. Nuclear Physics Long Range Plan | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Long Range Plan June 26, 2014 For a couple of years now, we have been waiting to get started on the next nuclear physics long range plan (LRP). What does that mean?...

  1. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    E-Print Network [OSTI]

    Gerber, Richard A.

    2012-01-01

    Requirements for Nuclear Physics [10] Hammer, N. J. , Janka,and Storage Requirements for Nuclear Physics ResearchIntegration of ab initio nuclear physics calculations with

  2. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    E-Print Network [OSTI]

    Gerber, Richard A.

    2012-01-01

    Requirements for Nuclear Physics [10] Hammer, N. J. , Janka,and Storage Requirements for Nuclear Physics Researchof ab initio nuclear physics calculations with optimization

  3. Nuclear physics frontier at RCNP, Osaka University

    SciTech Connect (OSTI)

    Ong, H. J. [10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2014-03-05

    Cyclotron accelerator facility and research activities at Research Center for Nuclear Physics (RCNP), Osaka University, are presented. A special focus is given on several topics in nuclear physics where interesting and important experiment results relevant to the nuclear structure as well as the nuclear astrophysics have been reported.

  4. ALICE-USA Contribution to the 2007 Long Range Plan for Nuclear Physics

    E-Print Network [OSTI]

    Gustafsson, Torgny

    1 ALICE-USA Contribution to the 2007 Long Range Plan for Nuclear Physics 1. Heavy Ions at the Large for Nuclear Research (CERN) in Geneva, Switzerland, is scheduled to commence proton operation in 2007 and understanding of high energy density QCD. Building on studies that have been undertaken with experiments

  5. Symmetry and Supersymmetry in Nuclear Physics

    E-Print Network [OSTI]

    A. B. Balantekin

    2007-11-05

    A survey of algebraic approaches to various problems in nuclear physics is given. Examples are chosen from pairing of many-nucleon systems, nuclear structure, fusion reactions below the Coulomb barrier, and supernova neutrino physics to illustrate the utility of group-theoretical and related algebraic methods in nuclear physics.

  6. VOLUME 57, NUMBER 23 PHYSICAL REVIEW LETTERS 8 DECEMBER 1986 Intranuclear N-N Collision Model for the Production of High-Energy

    E-Print Network [OSTI]

    Bertsch George F.

    Physics, Michigan State University, East Lansing, Michigan 48824 (Received 1 October 1986) High-energy y rays for the Production of High-Energy Gamma Rays in Heavy-Ion Collisions B.A. Remington and M. Blann Lawrence Livermore and interpretation of high-energy (E,,&20 MeV) y rays resulting from collisions of energetic heavy ions. ' If these y

  7. Information Resources in High-Energy Physics: Surveying the Present Landscape and Charting the Future Course

    SciTech Connect (OSTI)

    Gentil-Beccot, Anne; Mele, Salvatore; Holtkamp, Annette; O'Connell, Heath B.; Brooks, Travis C.

    2008-04-22

    Access to previous results is of paramount importance in the scientific process. Recent progress in information management focuses on building e-infrastructures for the optimization of the research workflow, through both policy-driven and user-pulled dynamics. For decades, High-Energy Physics (HEP) has pioneered innovative solutions in the field of information management and dissemination. In light of a transforming information environment, it is important to assess the current usage of information resources by researchers and HEP provides a unique test-bed for this assessment. A survey of about 10% of practitioners in the field reveals usage trends and information needs. Community-based services, such as the pioneering arXiv and SPIRES systems, largely answer the need of the scientists, with a limited but increasing fraction of younger users relying on Google. Commercial services offered by publishers or database vendors are essentially unused in the field. The survey offers an insight into the most important features that users require to optimize their research workflow. These results inform the future evolution of information management in HEP and, as these researchers are traditionally 'early adopters' of innovation in scholarly communication, can inspire developments of disciplinary repositories serving other communities.

  8. FPGA based High Speed Data Acquisition System for High Energy Physics Application

    E-Print Network [OSTI]

    Swagata Mandal; Suman Sau; Amlan Chakrabarti; Subhasis Chattopadhyay

    2015-03-30

    In high energy physics experiments (HEP), high speed and fault resilient data communication is needed between detectors/sensors and the host PC. Transient faults can occur in the communication hardware due to various external effects like presence of charged particles, noise in the environment or radiation effects in HEP experiments and that leads to single/multiple bit error. In order to keep the communication system functional in such a radiation environment where direct intervention of human is not possible, a high speed data acquisition (DAQ) architecture is necessary which supports error recovery. This design presents an efficient implementation of field programmable gate array (FPGA) based high speed DAQ system with optical communication link supported by multi-bit error correcting model. The design has been implemented on Xilinx Kintex-7 board and is tested for board to board communication as well as for PC communication using PCI (Peripheral Component Interconnect express). Data communication speed up to 4.8 Gbps has been achieved in board to board and board to PC communication and estimation of resource utilization and critical path delay are also measured.

  9. The impact of Hall physics on magnetized high energy density plasma jets

    SciTech Connect (OSTI)

    Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A.

    2014-05-15

    Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e}???10{sup 19}?cm{sup ?3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (?1 MA) and magnetic field helicity (15° angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10?T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)

  10. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  11. Physics from the Very-High Energy Cosmic-Ray Shadows of the Moon and Sun with Milagro

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics from the Very-High Energy Cosmic-Ray Shadows of the Moon and Sun with Milagro by Grant E. I'd also like to thank Jonathan Roberts for helpful comments on the Sun. After moving into a new of the Moon and Sun in TeV cosmic rays are unique probes of the character of these particles and the magnetic

  12. INTERFACE of QCD and NUCLEAR PHYSICS

    E-Print Network [OSTI]

    Weise, Wolfram

    NUCLEAR MATTER and NUCLEI Low-Energy Expansion: CHIRAL PERTURBATION THEORY 1 GeV #12;2. Nuclear ForcesINTERFACE of QCD and NUCLEAR PHYSICS Wolfram Weise Confinement8 Mainz 5 September 2008 Low-Energy QCD and CHIRAL SYMMETRY Nuclear Forces in the context of CHIRAL EFFECTIVE FIELD THEORY Nuclear Matter

  13. PHYSICS 237 SPRING 2006 Nuclear and Elementary Particle Physics

    E-Print Network [OSTI]

    787.C6 K56 2000 A. C. Melissinos Experiments in Modern Physics QC33.M52 D. H. Perkins Introduction Physics: A Comprehensive Introduction QC793.2 .S42 2005 W. S. C. Williams Nuclear and Particle Physics QCPHYSICS 237 SPRING 2006 Nuclear and Elementary Particle Physics BOOKS ON RESERVE IN CRERAR LIBRARY

  14. High energy hadron-hadron collisions. [Dept. of Physics and Astronomy, Univ. of Georgia, Athens, Georgia

    SciTech Connect (OSTI)

    Chou, T.T.

    1992-01-01

    Results of a study on high energy collisions with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) e[sup +]e[sup [minus

  15. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01

    J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [Atzeni, and C Ciampi, 1997 Nuclear Fusion 37, 1665. [38] B G

  16. Inclusive Particle Production Data in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lafferty, G. D.; Reeves, P. I.; Whalley, M. R.

    A comprehensive compilation of experimental data on inclusive particle production in e+e- interactions is presented. Data are given in both tabular and graphical form for multiplicities and inclusive differential cross sections from experiments at all of the world`s high energy e+e- colliders. To facilitate comparison between the data sets, curves are also shown from the JETSET 7.4 Monte Carlo program. (Taken from the abstract of A Compilation of Inclusive Particle Production Data in E+E- Annihilation, G.D. Lafferty, P.I. Reeves, and M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 21, Number 12A, 1995.) The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  17. THE ENERGY-DEPENDENT SINGLE NUCLEON POTENTIAL IN A RELATIVISTIC FIELD THEORY OF NUCLEAR MATTER

    E-Print Network [OSTI]

    Muller, K.-H.

    2012-01-01

    of the Office of High Energy and Nuclear Physics of the U.S.of the Office of High Energy and Nuclear Physics of the U.S.by fitting the binding energy of nuclear matter for a

  18. Physical Background OfPhysical Background Of Nuclear Magnetic ResonanceNuclear Magnetic Resonance

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    Physical Background OfPhysical Background Of Nuclear Magnetic ResonanceNuclear Magnetic Resonance SpectroscopySpectroscopy Michael McClellan Spring 2009 Department of Physics and Physical Oceanography Theoretically the nucleus can have any of these allowed spins #12;General Characteristics of Nuclear Spin

  19. arXiv:0810.0723v2[hep-ph]7Oct2008 34th International Conference on High Energy Physics, Philadelphia, 2008

    E-Print Network [OSTI]

    Yost, Scott

    , Philadelphia, 2008 Precision QEDQCD Resummation Theory for LHC Physics: IR-Improved Scheme for Parton been given [9] as 5.7%. 1 #12;34th International Conference on High Energy Physics, Philadelphia, 2008

  20. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    E-Print Network [OSTI]

    Ruebel, Oliver

    2010-01-01

    eld Accelerator Physics . . . . . . . . . . 60 Visualizationscale accelerator,” Nature Physics, vol. 2, pp. 696 – 699,wake?eld accelerator,” Physics of Plasma, vol. 14, 056708, [

  1. Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    E-Print Network [OSTI]

    Z. Akopov; Silvia Amerio; David Asner; Eduard Avetisyan; Olof Barring; James Beacham; Matthew Bellis; Gregorio Bernardi; Siegfried Bethke; Amber Boehnlein; Travis Brooks; Thomas Browder; Rene Brun; Concetta Cartaro; Marco Cattaneo; Gang Chen; David Corney; Kyle Cranmer; Ray Culbertson; Sunje Dallmeier-Tiessen; Dmitri Denisov; Cristinel Diaconu; Vitaliy Dodonov; Tony Doyle; Gregory Dubois-Felsmann; Michael Ernst; Martin Gasthuber; Achim Geiser; Fabiola Gianotti; Paolo Giubellino; Andrey Golutvin; John Gordon; Volker Guelzow; Takanori Hara; Hisaki Hayashii; Andreas Heiss; Frederic Hemmer; Fabio Hernandez; Graham Heyes; Andre Holzner; Peter Igo-Kemenes; Toru Iijima; Joe Incandela; Roger Jones; Yves Kemp; Kerstin Kleese van Dam; Juergen Knobloch; David Kreincik; Kati Lassila-Perini; Francois Le Diberder; Sergey Levonian; Aharon Levy; Qizhong Li; Bogdan Lobodzinski; Marcello Maggi; Janusz Malka; Salvatore Mele; Richard Mount; Homer Neal; Jan Olsson; Dmitri Ozerov; Leo Piilonen; Giovanni Punzi; Kevin Regimbal; Daniel Riley; Michael Roney; Robert Roser; Thomas Ruf; Yoshihide Sakai; Takashi Sasaki; Gunar Schnell; Matthias Schroeder; Yves Schutz; Jamie Shiers; Tim Smith; Rick Snider; David M. South; Rick St. Denis; Michael Steder; Jos Van Wezel; Erich Varnes; Margaret Votava; Yifang Wang; Dennis Weygand; Vicky White; Katarzyna Wichmann; Stephen Wolbers; Masanori Yamauchi; Itay Yavin; Hans von der Schmitt

    2012-05-21

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics.

  2. Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    SciTech Connect (OSTI)

    Akopov, Zaven; Amerio, Silvia; Asner, David; Avetisyan, Eduard; Barring, Olof; Beacham, James; Bernardi, Gregorio; Bethke, Siegfried; Boehnlein, Amber; Brooks, Travis; Browder, Thomas; Brun, Rene; Cartaro, Concetta; Cattaneo, Marco; Chen, Gang; Corney, David; Cranmer, Kyle; Culbertson, Ray; Dallmeier-Tiessen, Sunje; Denisov, Dmitri

    2013-03-27

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics.

  3. Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    E-Print Network [OSTI]

    Akopov, Zaven; Asner, David; Avetisyan, Eduard; Barring, Olof; Beacham, James; Bellis, Matthew; Bernardi, Gregorio; Bethke, Siegfried; Boehnlein, Amber; Brooks, Travis; Browder, Thomas; Brun, Rene; Cartaro, Concetta; Cattaneo, Marco; Chen, Gang; Corney, David; Cranmer, Kyle; Culbertson, Ray; Dallmeier-Tiessen, Sunje; Denisov, Dmitri; Diaconu, Cristinel; Dodonov, Vitaliy; Doyle, Tony; Dubois-Felsmann, Gregory; Ernst, Michael; Gasthuber, Martin; Geiser, Achim; Gianotti, Fabiola; Giubellino, Paolo; Golutvin, Andrey; Gordon, John; Guelzow, Volker; Hara, Takanori; Hayashii, Hisaki; Heiss, Andreas; Hemmer, Frederic; Hernandez, Fabio; Heyes, Graham; Holzner, Andre; Igo-Kemenes, Peter; Iijima, Toru; Incandela, Joe; Jones, Roger; Kemp, Yves; van Dam, Kerstin Kleese; Knobloch, Juergen; Kreincik, David; Lassila-Perini, Kati; Le Diberder, Francois; Levonian, Sergey; Levy, Aharon; Li, Qizhong; Lobodzinski, Bogdan; Maggi, Marcello; Malka, Janusz; Mele, Salvatore; Mount, Richard; Neal, Homer; Olsson, Jan; Ozerov, Dmitri; Piilonen, Leo; Punzi, Giovanni; Regimbal, Kevin; Riley, Daniel; Roney, Michael; Roser, Robert; Ruf, Thomas; Sakai, Yoshihide; Sasaki, Takashi; Schnell, Gunar; Schroeder, Matthias; Schutz, Yves; Shiers, Jamie; Smith, Tim; Snider, Rick; South, David M.; St. Denis, Rick; Steder, Michael; Van Wezel, Jos; Varnes, Erich; Votava, Margaret; Wang, Yifang; Weygand, Dennis; White, Vicky; Wichmann, Katarzyna; Wolbers, Stephen; Yamauchi, Masanori; Yavin, Itay; von der Schmitt, Hans

    2012-01-01

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics.

  4. Effective Field Theory in Nuclear Physics

    E-Print Network [OSTI]

    Martin J. Savage

    2000-07-11

    I review recent developments in the application of effective field theory to nuclear physics. Emphasis is placed on precision two-body calculations and efforts to formulate the nuclear shell model in terms of an effective field theory.

  5. Intriguing Trends in Nuclear Physics Articles Authorship

    SciTech Connect (OSTI)

    Pritychenko, B.

    2014-11-06

    A look at how authorship of physics publications (particularly nuclear publications) have changed throughout the decades by comparing data mined from the National Nuclear Data Center (NNDC) with observations.

  6. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    SciTech Connect (OSTI)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  7. FINITE PARTICLE NUMBER EFFECTS IN HIGH-ENERGY NUCLEAR COLLISIONS: IMPLICATIONS ON PION SPECTRA

    E-Print Network [OSTI]

    Bohrmann, Steffen

    2013-01-01

    nuclear matter density) already the interactions among the particles start to cease so that the following expansion

  8. High energy physics research. Final report, October 1, 1969--December 31, 1990

    SciTech Connect (OSTI)

    1995-05-01

    The goal of this research was to understand the fundamental constituents of matter and their interactions. First, a brief history of the high energy research at Princeton University is presented. Next, the extensive research covered in this 21 year period is summarized. Finally, a list of all publications issued during this period is presented.

  9. Nuclear Physics Technology Saves Lives | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Technology Saves Lives January 11, 2006 Listen to this story Ribbon With early detection, breast cancer can often be treated successfully. There are over two...

  10. Nuclear Physics: User/Researcher Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CEBAF @ 12GeV CEBAF Status Screen Conferences, Workshops, and Summer Schools Nuclear Physics CUGA Archive Directory of Members Member Institutions Experiment Information...

  11. Proceedings of the 2012 European School of High-Energy Physics (ESHEP 2012), La Pommeraye, Anjou, France, 06-19 Jun 2012

    E-Print Network [OSTI]

    C. Grojean; M. Mulders

    2015-04-28

    The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, flavour physics, physics beyond the Standard Model, neutrino physics, and cosmology.

  12. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01

    1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

  13. Colour Deconfinement and J/Psi Suppression in High Energy Nuclear Collisions

    E-Print Network [OSTI]

    Helmut Satz

    1997-11-11

    1. Introduction 2. Charmomium Dissociation and Colour Deconfinement 3. J/Psi Production in Nuclear Collisions 4. Anomalous J/Psi Suppression 5. Outlook and Summary

  14. Nuclear effects in the Drell-Yan process at very high energies

    E-Print Network [OSTI]

    B. Z. Kopeliovich; J. Raufeisen; A. V. Tarasov; M. B. Johnson

    2002-11-06

    We study Drell-Yan (DY) dilepton production in proton(deuterium)-nucleus and in nucleus-nucleus collisions within the light-cone color dipole formalism. This approach is especially suitable for predicting nuclear effects in the DY cross section for heavy ion collisions, as it provides the impact parameter dependence of nuclear shadowing and transverse momentum broadening, quantities that are not available from the standard parton model. For p(D)+A collisions we calculate nuclear shadowing and investigate nuclear modification of the DY transverse momentum distribution at RHIC and LHC for kinematics corresponding to coherence length much longer than the nuclear size. Calculations are performed separately for transversely and longitudinally polarized DY photons, and predictions are presented for the dilepton angular distribution. Furthermore, we calculate nuclear broadening of the mean transverse momentum squared of DY dileptons as function of the nuclear mass number and energy. We also predict nuclear effects for the cross section of the DY process in heavy ion collisions. We found a substantial nuclear shadowing for valence quarks, stronger than for the sea.

  15. Theoretical nuclear physics. Final report

    SciTech Connect (OSTI)

    NONE

    1997-05-01

    As the three-year period FY93-FY96 ended, there were six senior investigators on the grant full-time: Bulgac, Henley, Miller, Savage, van Kolck and Wilets. This represents an increase of two members from the previous three-year period, achieved with only a two percent increase over the budget for FY90-FY93. In addition, the permanent staff of the Institute for Nuclear Theory (George Bertsch, Wick Haxton, and David Kaplan) continued to be intimately associated with our physics research efforts. Aurel Bulgac joined the Group in September, 1993 as an assistant professor, with promotion requested by the Department and College of Arts and Sciences by September, 1997. Martin Savage, who was at Carnegie-Mellon University, jointed the Physics Department in September, 1996. U. van Kolck continued as research assistant professor, and we were supporting one postdoctoral research associate, Vesteinn Thorssen, who joined us in September, 1995. Seven graduate students were being supported by the Grant (Chuan-Tsung Chan, Michael Fosmire, William Hazelton, Jon Karakowski, Jeffrey Thompson, James Walden and Mitchell Watrous).

  16. Drell-Yan Cross Sections: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stirling, W. J.; Whalley, M. R.

    A compilation of data on Drell-Yan cross sections above a lepton-pair mass of 4 GeV/c2 is presented. The relevant experiments at Fermilab and CERN are included dating from approximately 1977 to the present day, covering p, p and pi +or- beams on a variety of nuclear and hydrogen targets, with centre-of-mass energies from 8.6 GeV to 630 GeV. The type of data presented include d sigma /dm, d2 sigma /dm dx and d2 sigma /dm dy distributions as well as other variations of these, and also transverse momentum distributions. The data are compared with a standard theoretical model, and a phenomenological 'K-factor' for each set is calculated. (Taken from the abstract of A Compilation of Drell-Yan Cross sections, W.J. Stirling and M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 19, Data Review, 1993.) The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  17. Nonextensive statistical effects in nuclear physics problems

    E-Print Network [OSTI]

    G. Kaniadakis; A. Lavagno; M. Lissia; P. Quarati

    1998-12-12

    Recent progresses in statistical mechanics indicate the Tsallis nonextensive thermostatistics as the natural generalization of the standard classical and quantum statistics, when memory effects and long-range forces are not negligible. In this framework, weakly nonextensive statistical deviations can strongly reduce the puzzling discrepancies between experimental data and theoretical previsions for solar neutrinos and for pion transverse-momentum correlations in Pb-Pb high-energy nuclear collisions.

  18. Nuclear and Plasma Physics Heriot-Watt

    E-Print Network [OSTI]

    Greenaway, Alan

    Nuclear and Plasma Physics Heriot-Watt 1. S. Porro, G. De Temmerman, S. Lisgo, D.L. Rudakov, A conditions" Journal of Nuclear Materials (2010), doi: 10.1016/j.jnucmat.2010.10.005 2. S Porro, G De L35 2008 Glasgow: Nuclear 19. GeV2 A. J. R. Puckett, et al (JLab, Hall A Collaboration) Recoil

  19. LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS

    E-Print Network [OSTI]

    McDonald, Kirk

    LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS G. I. Silvestrov, Budker Institute for Nuclear Physics Novosibirsk, August 1998. #12;1 LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS target of liquid metal. The technical solution is producing the target in the form of flat jet flowing

  20. J.E. 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEFORMED NUCLEI...

    Office of Scientific and Technical Information (OSTI)

    years of nuclear fission: Nuclear data and measurements series Lynn, J.E. 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEFORMED NUCLEI; FISSION BARRIER; FISSION; HISTORICAL ASPECTS;...

  1. Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions

    E-Print Network [OSTI]

    Chen, G; Kapusta, J I; Li, Y

    2015-01-01

    Nuclei colliding at very high energy create a strong, quasi-classical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromo-electric and chromo-magnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. For example, we find that the ratio of longitudinal to transverse pressure very early in the system behaves as $p_L/p_T = -[1-\\frac{3}{2a}(Q\\tau)^2]/[1-\\frac{1}{a}(Q\\tau)^2]+\\mathcal{O}(Q\\tau)^4$ where $\\tau$ is the longitudinal proper time, $Q$ is related to the saturation scales $Q_s$ of the two nuclei, and $a = \\ln (Q^2/\\hat{m}^2)$ with $\\hat m$ a scale to be defined later. Our results are generally applicable if $\\tau \\less...

  2. Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions

    E-Print Network [OSTI]

    G. Chen; R. J. Fries; J. I. Kapusta; Y. Li

    2015-07-13

    Nuclei colliding at very high energy create a strong, quasi-classical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromo-electric and chromo-magnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. For example, we find that the ratio of longitudinal to transverse pressure very early in the system behaves as $p_L/p_T = -[1-\\frac{3}{2a}(Q\\tau)^2]/[1-\\frac{1}{a}(Q\\tau)^2]+\\mathcal{O}(Q\\tau)^4$ where $\\tau$ is the longitudinal proper time, $Q$ is related to the saturation scales $Q_s$ of the two nuclei, and $a = \\ln (Q^2/\\hat{m}^2)$ with $\\hat m$ a scale to be defined later. Our results are generally applicable if $\\tau \\lesssim 1/Q$. As already discussed in a previous paper, the transverse energy flow $S^i$ of the gluon field exhibits hydrodynamic-like contributions that follow transverse gradients of the energy density $\

  3. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    DOE Patents [OSTI]

    Norman, Eric B. (Oakland, CA); Prussin, Stanley G. (Kensington, CA)

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  4. HepSim: A Repository with Predictions for High-Energy Physics Experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chekanov, S. V.

    2015-01-01

    A file repository for calculations of cross sections and kinematic distributions using Monte Carlo generators for high-energy collisions is discussed. The repository is used to facilitate effective preservation and archiving of data from theoretical calculations and for comparisons with experimental data. The HepSim data library is publicly accessible and includes a number of Monte Carlo event samples with Standard Model predictions for current and future experiments. The HepSim project includes a software package to automate the process of downloading and viewing online Monte Carlo event samples. Data streaming over a network for end-user analysis is discussed.

  5. HepSim: a repository with predictions for high-energy physics experiments

    E-Print Network [OSTI]

    S. V. Chekanov

    2015-02-06

    A file repository for calculations of cross sections and kinematic distributions using Monte Carlo generators for high-energy collisions is discussed. The repository is used to facilitate effective preservation and archiving of data from theoretical calculations, as well as for comparisons with experimental data. The HepSim data library is publicly accessible and includes a number of Monte Carlo event samples with Standard Model predictions for current and future experiments. The HepSim project includes a software package to automate the process of downloading and viewing online Monte Carlo event samples. A data streaming over a network for end-user analysis is discussed.

  6. The study of multi-institutional collaborations in high-energy physics. Progress report, January 1989--March 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    Since World War II, the organizational framework for scientific research is increasingly the multi-institutional collaboration, especially in high-energy physics. A broad preliminary survey, into the functioning of research collaborations involving three or more institutions is described. The study is designed to identify patterns of collaborations, define the scope of the documentation problems, field-test possible solutions, recommend future actions, and build an archives of oral history interviews and other resources for scholarly use. Once the study is completed, its findings will be used to promote systems to document significant collaborative research.

  7. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/?E of order 10?000 and spatial resolution better than 10 ?m. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  8. Nuclear like effects in proton-proton collisions at high energy

    E-Print Network [OSTI]

    L. Cunqueiro; J. Dias de Deus; C. Pajares

    2009-09-17

    We show that several effects considered nuclear effects are not nuclear in the sense that they do not only occur in nucleus-nucleus and hadron-nucleus collisions but, as well, they are present in hadron-hadron (proton-proton) collisions. The matter creation mechanism in hh, hA and AA collisions is always the same. The pT suppression of particles produced in large multiplicity events compared to low multiplicity events, the elliptic flow and the Cronin effect are predicted to occur in pp collisions at LHC energies as a consequence of the obtained high density partonic medium.

  9. PHYSICAL REVIEW C 87, 035204 (2013) Search for -mesic 4

    E-Print Network [OSTI]

    Magiera, Andrzej

    2013-01-01

    , 35392 Giessen, Germany 15 Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Indore 452017, Madhya Pradesh, India 16 High Energy Physics Division, Petersburg Nuclear Physics

  10. Azimuthal asymmetry in transverse energy flow in nuclear collisions at high energies

    E-Print Network [OSTI]

    Andrei Leonidov; Dmitry Ostrovsky

    2000-05-01

    The azimuthal pattern of transverse energy flow in nuclear collisions at RHIC and LHC energies is considered. We show that the probability distribution of the event-by-event azimuthal disbalance in transverse energy flow is essentially sensitive to the presence of the semihard minijet component.

  11. On some inverse problems in nuclear physics

    E-Print Network [OSTI]

    B. Z. Belashev; M. K. Suleymanov

    2001-10-23

    Some inverse problems in high-energy physics, neutron diffraction and NMR spectroscopy are discussed. To solve them, the Fourier integrated transformation method and the Maximum Entropy Technique (MENT) were used. The integrated images of experimental distributions are shown to be informative when determining the space-time parameters of a particle generation zone and when analysing blurred spectra. The efficiency of the above methods was checked by comparing relevant results with the results obtained independently.

  12. collisions'' Ulrich W. Heinz 73 NUCLEAR PHYSICS AND RADIATION...

    Office of Scientific and Technical Information (OSTI)

    Theory of ultra-relativistic heavy-ion collisions'' Ulrich W. Heinz 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Nuclear Theory, Relativistic Heavy-Ion Collisions, Quark-Gluon...

  13. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics. Final report The...

  14. U.C. Davis high energy particle physics research: Technical progress report -- 1990

    SciTech Connect (OSTI)

    NONE

    1990-12-31

    Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.

  15. Effective Field Theory for Nuclear Physics

    E-Print Network [OSTI]

    David B. Kaplan

    1999-01-01

    I summarize the motivation for the effective field theory approach to nuclear physics, and highlight some of its recent accomplishments. The results are compared with those computed in potential models.

  16. Structure Functions in Deep Inelastic Lepton Scattering: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gehrmann, T; Roberts, R. G.; Whalley, M. R.; Durham HEP Database Group

    Gehrmann, Roberts, and Whalley in their 1999 paper, A Compilation of Structure Functions in Deep Inelastic Scattering, published in volume 25 of Journal of Physics G (Nuclear and Particle Physics) note that these data will continue to be relevant to the next generation of hadron colliders. They present data on the unpolarized structure functions F2 and xF3, R D ._L=_T /, the virtual photon asymmetries A1 and A2 and the polarized structure functions g1 and g2, from deep inelastic lepton scattering off protons, deuterium and nuclei. Data are presented in both tabular and graphical format and include predictions based on the MRST98 and CTEQ4 parton distribution functionsö as well. The data gathered from the relevant collaborations at DOE's Fermilab, SLAC, and JLAB are available, and so are data from related collaborations based at CERN and DESY. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also include in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  17. Hadronic Total Cross Sections (R) in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Whalley, M. R.

    A comprehensive compilation of experimental data on total hadronic cross sections, and R ratios, in e+e- interactions is presented. Published data from the Novosibirsk, Orsay, Frascati, SLAC, CORNELL, DESY, KEK and CERN e+e- colliders on both exclusive and inclusive final particle states are included from threshold energies to the highest LEP energies. The data are presented in tabular form supplemented by compilation plots of different exclusive final particle states and of different energy regions. (Taken from abstract of paper, A Compilation of Data on Hadronic Total Cross Sections in E+E- Interactions, M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 29, Number 12A, 2003). The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  18. Single Photon Production in Hadronic Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vogelsang and Whalley in their 1997 paper, ôA Compilation of Data on Single and Double Prompt Photon Production in Hadron-Hadron Interactionsö published in volume 23 of Journal of Physics G (Nuclear and Particle Physics) present the compilation as well as ôan interpretation of these data in terms of the æstate-of-the-art NLO theory with specific emphasis on the uncertainties involved.ö They also say, ôComparisons of this theory with the individual data sets are made in order to indicate to the reader the scope and general status of the available data. For completeness, data on two-prompt-photon production are also included in a separate small section.ö The data gathered from the relevant collaborations at DOEÆs Fermilab are available, and so are data from related collaborations based at CERN. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  19. High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch

    SciTech Connect (OSTI)

    Beg, Farhat N

    2013-08-14

    Recent advances in technology has made possible to create matter with extremely high energy density (energy densities and pressure exceeding 1011 J/m3 and 1 Mbar respectively). The field is new and complex. The basic question for high energy density physics (HEDP) is how does matter behave under extreme conditions of temperature, pressure, density and electromagnetic radiation? The conditions for studying HEDP are normally produced using high intensity short pulse laser, x-rays, particle beams and pulsed power z-pinches. Most of these installations occupy a large laboratory floor space and require a team consisting of a large number of scientists and engineers. This limits the number of experiments that can be performed to explore and understand the complex physics. A novel way of studying HEDP is with a compact x-pinch in university scale laboratory. The x-pinch is a configuration in which a pulsed current is passed through two or more wires placed between the electrodes making the shape of the letter ‘X’. Extreme conditions of magnetic field (> 200 MGauss for less than 1 ns), temperature (1 keV) and density (~ 1022 cm-3) are produced at the cross-point, where two wires make contact. Further, supersonic jets are produced on either side of the cross-point. The physics of the formation of the plasma at the cross-point is complex. It is not clear what role radiation plays in the formation of high energy density plasma (>> 1011 J/m3) at the cross-point. Nor it is understood how the supersonic jets are formed. Present numerical codes do not contain complex physics that can take into account some of these aspects. Indeed, a comprehensive experimental study could answer some of the questions, which are relevant to wide-ranging fields such as inertial confinement fusion, astrophysical plasmas, high intensity laser plasma interactions and radiation physics. The main aim of the proposal was to increase the fundamental understanding of high energy density physics and particularly address the key issues associated with x-pinches, which include radiation transport, energetic particle transport, supersonic jet formation, using state-of-the-art compact pulsed power drivers. All the primary objectives of the proposed work were met. These objectives include: • Understanding of the fundamental physics of hot and dense plasma formation, implosion to less than 1 µm size due to the radiation enhanced collapse and energetic electron heating, • Study of the jet formation mechanism, which is of interest due to the astrophysical jets and deposition of energy by energetic electrons in jets, • Characterization of an x-pinch as a point x-ray source for the phase contrast radiography of beryllium cryogenic targets for the National Ignition Facility (NIF) experiments. The work carried out included a strong educational component involving both undergraduate and graduate students. Several undergraduate students from University of California San Diego participated in this project. A post-doctoral fellow, Dr. Simon Bott and two graduate students, David Haas and Erik Shipton contributed to every aspect of this project. The success of the project can be judged from the fact that fifteen peer-reviewed papers were published in high quality journals. In addition several presentations were made to a number of scientific meetings.

  20. BELLE High Energy Physics Experiment at the KEK B-factory: Data and Physics Results for CPV, Rare, DKM, 5S, Charm, Tau, and New Particles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Belle is a high-energy physics (HEP) experiment that began in 1999 at the KEK B-factory in Japan under the direction of the International Belle Collaboration. The Collaboration was formed around the common interest of clarifying a long standing physics puzzle, that of CP violation. The goal of the experiments was to make a definitive test of the Standard Models predictions for CP violations in the decays of B mesons. The original Belle experiment verified the KM theory, leading to a Nobel prize in 2008 for Kobayashi and Maskawa. Belle II Collaboration is now working on additional discoveries.

  1. Overview and Perspectives in Nuclear Physics

    E-Print Network [OSTI]

    Wolfram Weise

    2008-01-14

    This presentation reviews recent guiding themes in the broad context of nuclear physics, from developments in chiral effective field theory applied to nuclear systems, via the phases and structures of QCD, to matter under extreme conditions in heavy-ion collisions and neutron stars.

  2. High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter RID A-2398-2009 

    E-Print Network [OSTI]

    Chen, LW; Ko, Che Ming; Li, Ba.

    2005-01-01

    Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons ...

  3. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-11-01

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation packagemore »capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).« less

  4. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect (OSTI)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-11-01

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

  5. Nuclear Instruments and Methods in Physics Research A 428 (1999) 593}607 Radio-controlled xenon #ashers for atmospheric monitoring

    E-Print Network [OSTI]

    1999-01-01

    Nuclear Instruments and Methods in Physics Research A 428 (1999) 593}607 Radio-controlled xenon of Physics, High Energy Astrophysics Institute, University of Utah, Salt Lake City, UT 84112, USA Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, South Australia 5005, Australia

  6. Heavy ion fusion science research for high energy density physics and fusion applications*

    E-Print Network [OSTI]

    Wurtele, Jonathan

    . Two Filtered Cathodic Arc Plasma Sources (FCAPS) streamed aluminum metal plasma upstream toward, CA, 94551, USA 3 Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA 4 Gesellschaft fur and longitudinal compression of intense ion beams propagating through background plasma resulted in on-axis beam

  7. ICHEP98 Abstract 753 XXIX International Conference on High Energy Physics

    E-Print Network [OSTI]

    sensitivity have already been placed on the scalar and on the tensor terms [8]. Since g and \\Lambda only enter window for searching for indications of physics processes beyond the Standard Model (SM). A wide class interactions (CI). Particular interest in a search for such signatures was stimulated by an excess of events

  8. DOE Closeout Report from SUNY Albany High Energy Physics to Department of Energy Office of Science.

    SciTech Connect (OSTI)

    Ernst, Jesse; Jain, Vivek

    2014-08-15

    A report from the SUNY Albany Particle Physics Group summarizing our activities on the ATLAS experiment at the Large Hadron Collider. We summarize our work: on data analysis projects, on efforts to improve detector performance, and on service work to the experiment.

  9. The University of Virginia Experimental and Theoretical High Energy Physics Closeout Report

    SciTech Connect (OSTI)

    Principal Investigator: Harry B. Thacker

    2012-08-13

    The work covered in this report includes a joint project on using gauge-gravity duality to discover qualitatively new results on jet quenching in strongly-coupled QCD-like plasmas. Other topics addressed by the theoretical work include jet stopping and energy loss in weakly-coupled plasmas, perturbative QCD amplitudes, AdS/CMT, dynamical electroweak symmetry breaking with a heavy fourth generation, electroweak-scale #23;{nu}{sub R} model, vacuum topological structure and chiral dynamics in strongly coupled gauge theory. Effort committed to the CMS experiment is reported, particularly the management, maintenance, operation and upgrade of the CMS electromagnetic detector (ECAL). Activities in various physics analyses including Supersymmetry, Higgs, Top, and QCD analyses are reported. Physics projects covering wide areas of physics at the LHC are reported. CY2010 saw the accumulation of a data sample corresponding to approximately 36 pb{sup -1}; in CY 2011 the data sample swelled to more than 5 fb{sup -1}. The UVa CMS analysis efforts are focused on this large 2011 data sample in a suite of crucial measurements and searches. KTeV physics activities are reported. Efforts are reported pertaining to several experiments, including: HyperCP, CKM, MIPP, D?, NO#23;{nu}A, and Mu2e.

  10. Evidence for radial flow of thermal dileptons in high-energy nuclear collisions

    E-Print Network [OSTI]

    NA60 Collaboration; R. Arnaldi

    2007-11-12

    The NA60 experiment at the CERN SPS has studied low-mass dimuon production in 158 AGeV In-In collisions. An excess of pairs above the known meson decays has been reported before. We now present precision results on the associated transverse momentum spectra. The slope parameter Teff extracted from the spectra rises with dimuon mass up to the rho, followed by a sudden decline above. While the initial rise is consistent with the expectations for radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow. This may well represent the first direct evidence for thermal radiation of partonic origin in nuclear collisions.

  11. Material brittle fracture owing to thermoelastic effect of high energy nuclear particle

    SciTech Connect (OSTI)

    Kalinichenko, A.I.

    1996-12-31

    Rapid arising of the overheated domain near very heavy ion path (near fast neutron collision point) in solid results in generation of cylinder (spherical) thermoelastic stress wave. The latter can exceed the material strength and cause brittle fracture at going out on the free body interface. Size and shape of an erosion zone as well as erosion rate for both sorts of primary nuclear particles are found. The role of wave attenuation is discussed. The products of erosion are of macroscopic scaly particles having the typical thickness (1 {divided_by} 5) {center_dot} 10{sup -7} cm and mass 10{sup -18} {divided_by} 10{sup -17} g. Such ion (neutron)-stimulated thermoacoustic grinding can take place in radioactive materials with fissionable addenda. The consideration of the brittle destruction under cosmic ray bombardment may be essential for equipment of deep space missions.

  12. Effective Field Theory in Nuclear Physics

    E-Print Network [OSTI]

    Martin J. Savage; Barry R. Holstein

    2000-12-15

    The Electromagnetic and Hadronic Physics sub-community of nuclear physics held a town hall meeting at Jefferson Lab during November 30 to December 4 of 2000. This is is our combined contribution to the white paper that will result from this meeting.

  13. Chiral Magnetic Effect in High-Energy Nuclear Collisions --- A Status Report

    E-Print Network [OSTI]

    D. E. Kharzeev; J. Liao; S. A. Voloshin; G. Wang

    2015-11-12

    The interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark-gluon plasma. Among them is the Chiral Magnetic Effect (CME) -- the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark-gluon plasma, and can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data.

  14. Fundamental constants and their variability in theories of High Energy Physics

    E-Print Network [OSTI]

    Thomas Dent

    2008-02-12

    The Standard Model of particle physics and the theory of General Relativity (GR) currently provide a good description of almost all phenomena of particle physics and gravitation that have received controlled experimental tests. However, the Standard Model contains many a priori variable parameters whose values, and whose apparent (near-)constancy, have yet to receive a convincing theoretical explanation. At the same time, GR may now require to be extended or altered at the largest length scales, to account for the recent apparent accelerated cosmological expansion. In this introductory review I present theoretical aspects of the search for explanations of the values and possible variations of fundamental ``constants'', focusing on the possibility of unification of interactions. I also relate cosmological variations to modifications of gravity both locally and cosmologically.

  15. Nuclear Physics: Archived Talks - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Accelerator Hall A Hall B Hall C 12 GeV Upgrade Experimental Techniques...

  16. Entropic and enthalpic phase transitions in high energy density nuclear matter

    E-Print Network [OSTI]

    Iosilevskiy, Igor

    2015-01-01

    Features of Gas-Liquid (GL) and Quark-Hadron (QH) phase transitions (PT) in dense nuclear matter are under discussion in comparison with their terrestrial counterparts, e.g. so-called "plasma" PT in shock-compressed hydrogen, nitrogen etc. Both, GLPT and QHPT, when being represented in widely accepted temperature - baryonic chemical potential plane, are often considered as similar, i.e. amenable to one-to-one mapping by simple scaling. It is argued that this impression is illusive and that GLPT and QHPT belong to different classes: GLPT is typical enthalpic PT (Van-der-Waals-like) while QHPT ("deconfinement-driven") is typical entropic PT. Subdivision of 1st-order fluid-fluid phase transitions into enthalpy- and entropy-driven subclasses was proposed previously [arXiv:1403.8053]. Properties of enthalpic and entropic PTs differ significantly. Entropic PTs are always internal parts of more general and extended thermodynamic anomalies - domains with abnormal (negative) sign for the set of (usually positive) seco...

  17. High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    E-Print Network [OSTI]

    Habib, Salman; LeCompte, Tom; Marshall, Zach; Borgland, Anders; Viren, Brett; Nugent, Peter; Asai, Makoto; Bauerdick, Lothar; Finkel, Hal; Gottlieb, Steve; Hoeche, Stefan; Sheldon, Paul; Vay, Jean-Luc; Elmer, Peter; Kirby, Michael; Patton, Simon; Potekhin, Maxim; Yanny, Brian; Calafiura, Paolo; Dart, Eli; Gutsche, Oliver; Izubuchi, Taku; Lyon, Adam; Petravick, Don

    2015-01-01

    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.

  18. High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    E-Print Network [OSTI]

    Salman Habib; Robert Roser; Tom LeCompte; Zach Marshall; Anders Borgland; Brett Viren; Peter Nugent; Makoto Asai; Lothar Bauerdick; Hal Finkel; Steve Gottlieb; Stefan Hoeche; Paul Sheldon; Jean-Luc Vay; Peter Elmer; Michael Kirby; Simon Patton; Maxim Potekhin; Brian Yanny; Paolo Calafiura; Eli Dart; Oliver Gutsche; Taku Izubuchi; Adam Lyon; Don Petravick

    2015-10-29

    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.

  19. Status Report of the DPHEP Collaboration: A Global Effort for Sustainable Data Preservation in High Energy Physics

    E-Print Network [OSTI]

    Amerio, Silvia; Berghaus, Frank; Blomer, Jakob; Branson, Andrew; Cancio, Germán; Cartaro, Concetta; Chen, Gang; Dallmeier-Tiessen, Sünje; Diaconu, Cristinel; Ganis, Gerardo; Gheata, Mihaela; Hara, Takanori; Herner, Ken; Hildreth, Mike; Jones, Roger; Kluth, Stefan; Krücker, Dirk; Lassila-Perini, Kati; Maggi, Marcello; de Lucas, Jesus Marco; Mele, Salvatore; Pace, Alberto; Schröder, Matthias; Shamdasani, Jetendr; Shiers, Jamie; Smith, Tim; Sobie, Randall; South, David Michael; Verbytskyi, Andrii; Viljoen, Matthew; Wang, Lu; Zimmermann, Markus

    2015-01-01

    Data from High Energy Physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organizational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP and an extended blueprint paper was published in 2012. In July 2014 the DPHEP collaboration was formed as a result of the signature of the Collaboration Agreement by seven large funding agencies (others have since joined or are in the process of acquisition) and in June 2015 the first DPHEP Collaboration Workshop and Collaboration Board meeting took place. This status report of the DPHEP collaboration details the progress during the period from 2013 to 2015 inclusive.

  20. Status Report of the DPHEP Collaboration: A Global Effort for Sustainable Data Preservation in High Energy Physics

    E-Print Network [OSTI]

    DPHEP Collaboration; Silvia Amerio; Roberto Barbera; Frank Berghaus; Jakob Blomer; Andrew Branson; Germán Cancio; Concetta Cartaro; Gang Chen; Sünje Dallmeier-Tiessen; Cristinel Diaconu; Gerardo Ganis; Mihaela Gheata; Takanori Hara; Ken Herner; Mike Hildreth; Roger Jones; Stefan Kluth; Dirk Krücker; Kati Lassila-Perini; Marcello Maggi; Jesus Marco de Lucas; Salvatore Mele; Alberto Pace; Matthias Schröder; Jetendr Shamdasani; Jamie Shiers; Tim Smith; Randall Sobie; David Michael South; Andrii Verbytskyi; Matthew Viljoen; Lu Wang; Markus Zimmermann

    2015-12-07

    Data from High Energy Physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organizational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP and an extended blueprint paper was published in 2012. In July 2014 the DPHEP collaboration was formed as a result of the signature of the Collaboration Agreement by seven large funding agencies (others have since joined or are in the process of acquisition) and in June 2015 the first DPHEP Collaboration Workshop and Collaboration Board meeting took place. This status report of the DPHEP collaboration details the progress during the period from 2013 to 2015 inclusive.

  1. Correlation between radiation processes in silicon and long-time degradation of detectors for high energy physics experiments

    E-Print Network [OSTI]

    Sorina Lazanu; Ionel Lazanu

    2006-11-20

    In this contribution, the correlation between fundamental interaction processes induced by radiation in silicon and observable effects which limit the use of silicon detectors in high energy physics experiments is investigated in the frame of a phenomenological model which includes: generation of primary defects at irradiation starting from elementary interactions in silicon; kinetics of defects, effects at the p-n junction detector level. The effects due to irradiating particles (pions, protons, neutrons), to their flux, to the anisotropy of the threshold energy in silicon, to the impurity concentrations and resistivity of the starting material are investigated as time, fluence and temperature dependences of detector characteristics. The expected degradation of the electrical parameters of detectors in the complex hadron background fields at LHC & SLHC are predicted.

  2. Research in high energy physics. Progress report, 1 July 1993--30 June 1994

    SciTech Connect (OSTI)

    Rosen, J.; Block, M.; Buchholz, D.

    1994-07-01

    Progress on Task A centered around data analysis. E835 is now approved. It will extend E760 studies, exploring new charmonium states and featuring an upgraded detector system plus operation at 4--6 times higher luminosity. Results are given on E760 analysis. Task B has 10 papers that have either appeared in print, or have been prepared for publication. They break down into four categories; experimental physics, theoretical physics, and computer computational techniques. They are described here along with an exciting new experimental proposal to use Da{Phi}ne, the {Phi} factory that is being constructed at Frascati National Laboratory. Progress for Task C which includes participating in the D0 project at TeV I, and the photoproduction experiment, E687, at TeV II is given. While Northwestern is not participating in the top quark physics group at D0, they have been involved in the data analysis and the discussions that led to the limits on the top quark mass. Task D comprises the shared services for the Northwestern DOE contract. This includes the maintenance and operation of all computers within the HEP group. The projects supported by Task D during the past year are given. Task E progress was to resolve the apparent conflict between EMC, SMC, and SLAC results on nucleon structure functions and Bjorken sum rules. Task F covered research in hadronic decay of the tau, thermal field theory, plasma effects in astrophysics, and heavy quarkonium. Task G covers E665, a general purpose muon scattering experiment which can detect both the scattered muon and most charged and neutral hadrons produced in the forward region. The Northwest group has collaborated very closely in the past year with the Harvard group on analyses of structure functions and vector meson production in the 1991 data sample.

  3. Entropic and enthalpic phase transitions in high energy density nuclear matter

    E-Print Network [OSTI]

    Igor Iosilevskiy

    2015-06-06

    Features of Gas-Liquid (GL) and Quark-Hadron (QH) phase transitions (PT) in dense nuclear matter are under discussion in comparison with their terrestrial counterparts, e.g. so-called "plasma" PT in shock-compressed hydrogen, nitrogen etc. Both, GLPT and QHPT, when being represented in widely accepted temperature - baryonic chemical potential plane, are often considered as similar, i.e. amenable to one-to-one mapping by simple scaling. It is argued that this impression is illusive and that GLPT and QHPT belong to different classes: GLPT is typical enthalpic PT (Van-der-Waals-like) while QHPT ("deconfinement-driven") is typical entropic PT. Subdivision of 1st-order fluid-fluid phase transitions into enthalpy- and entropy-driven subclasses was proposed previously [arXiv:1403.8053]. Properties of enthalpic and entropic PTs differ significantly. Entropic PTs are always internal parts of more general and extended thermodynamic anomalies - domains with abnormal (negative) sign for the set of (usually positive) second derivatives of thermodynamic potential. Three of them are of primary importance: Gruneizen and thermal expansion and thermal pressure coefficients. Negative sign of these derivatives lead to violation of standard behavior and relative order in P-V plane for many iso-lines, e.g. isotherms, isentropes, shock adiabats etc. Entropic PTs have more complicated topology of stable and metastable areas within its two-phase region in comparison with conventional enthalpic (VdW-like) PTs. In particular, new additional metastable region, bounded by new additional spinodal, appears in the case of entropic PT. All the features of entropic PTs and accompanying abnormal thermodynamics region have transparent geometrical interpretation - multi-layered structure of thermodynamic surfaces for temperature, entropy and internal energy as a pressure-volume functions, e.g. T(P,V), S(P,V) and U(P,V).

  4. REPORT OF RESEARCH ACTIVITIES FOR THE YEARS 2000 - 2003; HIGH ENERGY PHYSICS GROUP; SOUTHERN METHODIST UNIVERSITY; EXPERIMENTAL TASK A AND THEORY TASK B

    SciTech Connect (OSTI)

    Dr. Ryszard Stroynowski

    2003-07-01

    The experimental program in High Energy Physics at SMU was initiated in 1992. Its main goal is the search for new physics phenomena beyond the Standard Model (SSC, LHC) and the study of the properties of heavy quarks and leptons (CLEO, BTeV).

  5. High Energy Theory Workshops and Visitors at the Michigan Center for Theoretical Physics FY14

    SciTech Connect (OSTI)

    Pierce, Aaron T.

    2014-04-01

    The workshop was held from September 23-25, 2013 on the University of Michigan campus. Local organizers were Dragan Huterer, Katherine Freese, and Heidi Wu (University of Michigan). Marilena Lo Verde (University of Chicago) also served as an external organizer. This workshop sought to gather experimentalists and theorists to discuss and define directions in cosmology research after the 1st year release of Planck data. The workshop included 35 invited (non-U-M) cosmologists, most of them relatively junior. The workshop was notable for spirited discussion of various theoretical ideas and experimental developments, and particularly on how one could test theory with ongoing and future experiments. In our follow-up poll, 95% of participants reported that interactions with other participants at the workshop may lead to further collaboration. Most participants (again about 95%) reported that they are very satisfied with the quality of the program, information they received, and the logistical support. Slides are available on line at: http://www.umich.edu/~mctp/SciPrgPgs/events/2013/CAP13/program.html. The YHET visitor program invited weekly young visitors to the University of Michigan campus to present their work. This year 23 participants came under the program. Slides are available on line for talks when applicable: http://mctp.physics.lsa.umich.edu/brown-bag-seminar-history/winter 2014 and http://mctp.physics.lsa.umich.edu/brown-bag-seminar-history/fall-2013.

  6. About Nuclear Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physics is an important pursuit because the study of the nucleus of the atom is at the heart of our ability to understand the universe. It provides answers and expands our...

  7. Nuclear and Radiological Engineering and Medical Physics Programs

    E-Print Network [OSTI]

    Weber, Rodney

    Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Year Enrollment - Fall Semester Undergraduate Graduate #12; Nuclear Power Industry Radiological Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants

  8. Medium Energy Nuclear Physics Research at the University of Richmond

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    1 Medium Energy Nuclear Physics Research at the University of Richmond G. P. Gilfoyle Physics Physics: Medium Energy Nuclear Physics Program Program Manager: Dr. Brad Tippens #12;2 #12;3 Contents 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.1 Facilities and Support for Nuclear Physics . . . . . . . . . . . . . . . . . . . . 22 2

  9. Medium Energy Nuclear Physics Research at the University of Richmond

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Medium Energy Nuclear Physics Research at the University of Richmond G. P. Gilfoyle Physics Physics: Medium Energy Nuclear Physics Program Program Manager: Dr. Gulshan Rai 1 #12;2 #12;Contents 1 Justification 39 3 #12;4 #12;Medium Energy Nuclear Physics Research at the University of Richmond G. P. Gilfoyle

  10. PHYSICAL REVIEW C 88, 055208 (2013) Measurement of the pn pp0

    E-Print Network [OSTI]

    Magiera, Andrzej

    2013-01-01

    , 35392 Giessen, Germany 16 Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Indore 452017, Madhya Pradesh, India 17 High Energy Physics Division, Petersburg Nuclear Physics

  11. PHYSICAL REVIEW C 88, 014004 (2013) Investigation of the dd 3

    E-Print Network [OSTI]

    Magiera, Andrzej

    2013-01-01

    , 35392 Giessen, Germany 16 Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Indore 452017, Madhya Pradesh, India 17 High Energy Physics Division, Petersburg Nuclear Physics

  12. IGBT PEBB Technology for Future High Energy Physics Machine Operation Applications

    SciTech Connect (OSTI)

    Macken, K.J.P.; MacNair, D.; Nguyen, M.N.; Hugyik, J.; Olsen, J.; Kemp, M.; /SLAC

    2012-04-11

    Terascale physics is driving the demand for innovative pulsed power modulators having greater compactness and better manufacturability with increasingly superior performance. A particularly promising route for such modulators is Marx-architecture based. Moreover, there is opportunity for improvement and gain of greater benefits through further development of topology and architecture, gate driver method, and control schemes. Prior work discussed a new concept of droop correction, which was the result of topology hybridisation using a nesting approach, and illustrated its great potential. This is further investigated here. This paper details various design aspects of a hybrid Marx cell Power Electronic Building Block (PEBB) and includes specifics about estimated losses and efficiency, thermal management issues, protection strategies, gate driver development, and control implementation. In addition, figures-of-merit of the cell design are given for comparison and evaluation purposes. Experimental results, based on both single-cell and three-cell hardware prototypes, are presented demonstrating the functionality and performance of the new topology. This is a significant milestone in the progression toward constructing a full 32-cell PEBB-based Marx klystron modulator with nested droop correction. Lessons learned during various stages of the prototype development and future directions are commented on.

  13. 16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology

    E-Print Network [OSTI]

    & TechnologyNuclear Science & Technology 13th CERNISTC SAC Seminar New Perspectives of High Energy Physics 01 in Nuclear Science & Technology · Fundamental Nuclear/High Energy Physics · Nuclear safety and efficiency; · Nuclear technologies for medicine; · Fusion; ....observing carefully nonproliferation aspects in all

  14. Dr. Timothy J. Hallman Associate Director for Nuclear Physics

    E-Print Network [OSTI]

    Dr. Timothy J. Hallman Associate Director for Nuclear Physics DOE Office of Science Frontiers 13, 2015 22 Nuclear Physics' Mission Discovering, exploring, and understanding all forms of nuclear that ensures leadership/optimizes resources DOE/NP is the largest supporter of nuclear physics in the U

  15. 22.101 Applied Nuclear Physics, Fall 2004

    E-Print Network [OSTI]

    Yip, Sidney

    Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. ...

  16. Input to review of STFC UK Nuclear Physics Community

    E-Print Network [OSTI]

    Crowther, Paul

    Input to review of STFC UK Nuclear Physics Community Introduction STFC covers essentially and project funding for Astronomy, Nuclear Physics, Particle Physics and Space Science Since STFC was formed programme. Grant funding Nuclear Physics grant funding was in EPSRC until 2007 and then moved to STFC

  17. RELATIVISTIC HEAVY-ION PHYSICS WITHOUT NUCLEAR CONTACT

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    RELATIVISTIC HEAVY-ION PHYSICS WITHOUT NUCLEAR CONTACT The large electromagnetic field generated physics research--for example, for investigating nuclear structure, hadronic structure, atomic physics Berkeley Laboratory--it became clear that heavy-ion physics without nuclear contact could be very useful

  18. AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS

    E-Print Network [OSTI]

    Chen, Ying

    AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS 14 UD TANK OPENING REPORT # 103 24th. It was a stupid mistake to run up to that voltage with so little SF6 in the machine. The safe operating voltage change was not involved but that spark energy had stunned the Group 3 board. Spark protection had

  19. AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS

    E-Print Network [OSTI]

    Chen, Ying

    . TURBO PUMPS During tank opening #85 the RF shielded boxes, in the terminal, were opened to allow fittingAUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS 14 UD TANK OPENING REPORT # 86 24th TO 25th AUGUST 1999 A.K.COOPER D.C.WEISSER REASON FOR TANK OPENING To investigate why the terminal turbo

  20. AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS

    E-Print Network [OSTI]

    Chen, Ying

    shielding box was commenced outside the tank. · PFA tube was removed from the HE end and fitted to the LEAUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS 14 UD TANK OPENING REPORT # 96 23 Nov to 2 Dec 2004 A.K.COOPER D.C.WEISSER REASON FOR TANK OPENING The machine had been closed for a year and

  1. Nuclear physics aspects of double beta decay

    E-Print Network [OSTI]

    Petr Vogel

    2008-07-15

    Comprehensive description of the phenomenology of the $\\beta\\beta$ decay is given, with emphasis on the nuclear physics aspects. After a brief review of the neutrino oscillation results and of motivation to test the lepton number conservation, the mechanism of the $0\

  2. A Vision of Nuclear and Particle Physics

    E-Print Network [OSTI]

    Hugh E. Montgomery

    2015-09-28

    This paper will consist of a selected, personal view of some of the issues associated with the intersections of nuclear and particle physics. As well as touching on the recent developments we will attempt to look at how those aspects of the subject might evolve over the next few years.

  3. Physics -Particle and Nuclear Physics | Theory of Nuclear Fission Springer is part of Springer Science+Business Media

    E-Print Network [OSTI]

    Pomorski, Krzysztof

    Physics - Particle and Nuclear Physics | Theory of Nuclear Fission © Springer is part of Springer Science+Business Media Theory of Nuclear Fission A Textbook Series: Lecture Notes in Physics, Vol. 838. Softcover, ISBN 978-3-642-23514-6 Due: October 31, 2011 69,95 About this book Theory of Nuclear Fission

  4. Final Report for Research in High Energy Physics at the University of Pennsylvania for the period ending April 30, 2012

    SciTech Connect (OSTI)

    Williams, Hugh H.; Balasubramanian, V.; Bernstein, G.; Beier, E. W.; Cveti?c, M.; Gladney, L.; Jain, B.; Klein, J.; Kroll, J.; Lipeles, E.; Ovrut, B.; Thomson, E.

    2015-07-23

    The University of Pennsylvania elementary particle physics/particle cosmology group, funded by the Department of Energy Office of Science, participates in research in high energy physics and particle cosmology that addresses some of the most important unanswered questions in science. The research is divided into five areas. Energy Frontier - We participate in the study of proton-proton collisions at the Large Hadron Collider in Geneva, Switzerland using the ATLAS detector. The University of Pennsylvania group was responsible for the design, installation, and commissioning of the front-end electronics for the Transition Radiation Tracker (TRT) and plays the primary role in its maintenance and operation. We play an important role in the triggering of ATLAS, and we have made large contributions to the TRT performance and to the study and identification of electrons, photons, and taus. We have been actively involved in searches for the Higgs boson and for SUSY and other exotic particles. We have made significant contributions to measurement of Standard Model processes such as inclusive photon production and WW pair production. We also have participated significantly in R&D for upgrades to the ATLAS detector. Cosmic Frontier - The Dark Energy Survey (DES) telescope will be used to elucidate the nature of dark energy and the distribution of dark matter. Penn has played a leading role both in the use of weak gravitational lensing of distant galaxies and the discovery of large numbers of distant supernovae. The techniques and forecasts developed at Penn are also guiding the development of the proposed Large Synoptic Survey Telescope (LSST).We are also developing a new detector, MiniClean, to search for direct detection of dark matter particles. Intensity Frontier - We are participating in the design and R&D of detectors for the Long Baseline Neutrino Experiment (now DUNE), a new experiment to study the properties of neutrinos. Advanced Techology R&D - We have an extensive involvement in electronics required for sophisticated new detectors at the LHC and are developing electronics for the LSST camera. Theoretical Physics - We are carrying out a broad program studying the fundamental forces of nature and early universe cosmology and mathematical physics. Our activities span the range from model building, formal field theory, and string theory to new paradigms for cosmology and the interface of string theory with mathematics. Our effort combines extensive development of the formal aspects of string theory with a focus on real phenomena in particle physics, cosmology and gravity.

  5. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D. Title: Professor - ResearchAdministration |High

  6. High Energy Physics Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D. Title: Professor -

  7. New Nuclear Physics for Big Bang Nucleosynthesis

    E-Print Network [OSTI]

    Richard N. Boyd; Carl R. Brune; George M. Fuller; Christel J. Smith

    2010-08-04

    We discuss nuclear reactions which could play a role in Big Bang Nucleosynthesis (BBN). Most of these reactions involve lithium and beryllium isotopes and the rates for some of these have not previously been included in BBN calculations. Few of these reactions are well studied in the laboratory. We also discuss novel effects in these reactions, including thermal population of nuclear target states, resonant enhancement, and non-thermal neutron reaction products. We perform sensitivity studies which show that even given considerable nuclear physics uncertainties, most of these nuclear reactions have minimal leverage on the standard BBN abundance yields of 6Li and 7Li. Although a few have the potential to alter the yields significantly, we argue that this is unlikely.

  8. Dark Matter Studies Entrain Nuclear Physics

    E-Print Network [OSTI]

    Susan Gardner; George Fuller

    2013-03-19

    We review theoretically well-motivated dark-matter candidates, and pathways to their discovery, in the light of recent results from collider physics, astrophysics, and cosmology. Taken in aggregate, these encourage broader thinking in regards to possible dark-matter candidates --- dark-matter need not be made of "WIMPs," i.e., elementary particles with weak-scale masses and interactions. Facilities dedicated to nuclear physics are well-poised to investigate certain non-WIMP models. In parallel to this, developments in observational cosmology permit probes of the relativistic energy density at early epochs and thus provide new ways to constrain dark-matter models, provided nuclear physics inputs are sufficiently well-known. The emerging confluence of accelerator, astrophysical, and cosmological constraints permit searches for dark-matter candidates in a greater range of masses and interaction strengths than heretofore possible.

  9. ARCHITECTURE Of SMALL COMPUTING CLUSTERS IN HIGH ENERGY PHYSICS A.N. Lodkin, A.A. Oreshkin, A.Y. Shevel, T.S. Serebrova

    E-Print Network [OSTI]

    Titov, Anatoly

    329 ARCHITECTURE Of SMALL COMPUTING CLUSTERS IN HIGH ENERGY PHYSICS A.N. Lodkin, A.A. Oreshkin, A computing architecture might be used by small physicist's teams. Contemporary architecture of small architecture someone can easily send jobs to another cluster where the data are, i.e. it possible to use more

  10. High energy physics program: Task A, Experiment and theory; Task B, Numerical simulation. Progress report, July 1, 1988--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This report discusses research in High Energy Physics at Florida State University. Contained in this paper are: highlights of activities during the past few years; five year summary; fixed target experiments; collider experiments; SSC preparation, detector development and detector construction; computing, networking and VAX upgrade to ALPHA; and particle theory programs.

  11. Fission Younes, W; Gogny, D 73 NUCLEAR PHYSICS AND RADIATION...

    Office of Scientific and Technical Information (OSTI)

    in a Time-Dependent Microscopic Theory of Fission Younes, W; Gogny, D 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Abstract not provided Lawrence Livermore National Laboratory...

  12. [Experimental nuclear physics]. Annual report 1989

    SciTech Connect (OSTI)

    1989-04-01

    This is the April 1989 annual report of the Nuclear Physics Labortaory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, computer systems, instrumentation, and the Laboratory`s booster linac work. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1988-1989 academic year, and publications. Refs., 23 figs., 3 tabs.

  13. [Experimental nuclear physics]. Annual report 1988

    SciTech Connect (OSTI)

    1988-05-01

    This is the May 1988 annual report of the Nuclear Physics Laboratory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, the Laboratory`s booster linac project work, instrumentation, and computer systems. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1987-88 academic year, and publications. Refs., 27 figs., 4 tabs.

  14. Nuclear physics from QCD on lattice

    E-Print Network [OSTI]

    Takashi Inoue; for HAL QCD Collaboration

    2015-11-24

    We have presented a strategy to study nuclei and nuclear matters from the 1st principle, QCD. We first compute nucleon-nucleon potentials numerically in lattice QCD, and then use them to investigate properties of nuclei and the matters by various method developed in nuclear physics. As the demonstration for this strategy to work, mass and structure of 4^He, 16^O and 40^Ca, and equation of state of nuclear matters are determined with the lattice QCD induced two-nucleon potentials in a heavy quark region as an input. We have found that these nuclei and the symmetric nuclear matter are bound at one quark mass corresponding to the pseudo-scalar meson (pion) mass of 469 MeV (the octet baryon (nucleon) mass of 1161 MeV). Obtained binding energy per nucleon has a uniform mass number A dependence which is consistent to the Bethe-Weizsacker mass formula qualitatively. The present study demonstrates that our strategy works well to investigate various properties of atomic nuclei and nuclear matters starting from QCD, without depending on models or experimental information of nuclear force.

  15. Nuclear Physics A 750 (2005) 259293 Chiral approach to nuclear matter: role of two-pion

    E-Print Network [OSTI]

    Weise, Wolfram

    2005-01-01

    Nuclear Physics A 750 (2005) 259­293 Chiral approach to nuclear matter: role of two-pion exchange monotonically with density. In the density regime = 2n nuclear physics our.12.042 #12;260 S. Fritsch et al. / Nuclear Physics A 750 (2005) 259­293 2004 Elsevier B.V. All rights

  16. Reprinted from Nuclear Physics A654 (1999) 436~457~

    E-Print Network [OSTI]

    1999-01-01

    Reprinted from YSICS A Nuclear Physics A654 (1999) 436~457~ www.eIsevier.nl/locate/npe Accelerator-driven Transmutation Projects. The Importance of Nuclear Physics Research for Waste Transmutation. Waclaw Gudowsk? aRoyal Institute of Technology,Stockholm, Sweden ELSEVIER #12;International Nuclear Physics Conference 1998 UNESCO

  17. 12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics...

    Office of Scientific and Technical Information (OSTI)

    13-16), based on the observed ratio of Kalpha to Kbeta. Kr gas jets provide a debris-free high energy Kalpha source for time-resolved diagnosis of dense matter. Authors:...

  18. Proton-rich nucleosynthesis and nuclear physics

    SciTech Connect (OSTI)

    Rauscher, T.; Froehlich, C. [Dept. of Physics, University of Basel, 4056 Basel (Switzerland); Dept. of Physics, NCSU, Raleigh, NC 27695 (United States)

    2012-11-12

    Although the detailed conditions for explosive nucleosynthesis are derived from astrophysical modeling, nuclear physics determines fundamental patterns in abundance yields, not only for equilibrium processes. Focussing on the {nu}p- and the {gamma}-process, general nucleosynthesis features within the range of astrophysical models, but (mostly) independent of details in the modelling, are presented. Remaining uncertainties due to uncertain Q-values and reaction rates are discussed.

  19. Quantum Monte Carlo methods for nuclear physics

    E-Print Network [OSTI]

    J. Carlson; S. Gandolfi; F. Pederiva; Steven C. Pieper; R. Schiavilla; K. E. Schmidt; R. B. Wiringa

    2015-04-29

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  20. Quantum Monte Carlo methods for nuclear physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore »interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  1. Nuclear physics from QCD on lattice

    E-Print Network [OSTI]

    ,

    2015-01-01

    We have presented a strategy to study nuclei and nuclear matters from the 1st principle, QCD. We first compute nucleon-nucleon potentials numerically in lattice QCD, and then use them to investigate properties of nuclei and the matters by various method developed in nuclear physics. As the demonstration for this strategy to work, mass and structure of 4^He, 16^O and 40^Ca, and equation of state of nuclear matters are determined with the lattice QCD induced two-nucleon potentials in a heavy quark region as an input. We have found that these nuclei and the symmetric nuclear matter are bound at one quark mass corresponding to the pseudo-scalar meson (pion) mass of 469 MeV (the octet baryon (nucleon) mass of 1161 MeV). Obtained binding energy per nucleon has a uniform mass number A dependence which is consistent to the Bethe-Weizsacker mass formula qualitatively. The present study demonstrates that our strategy works well to investigate various properties of atomic nuclei and nuclear matters starting from QCD, wi...

  2. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect (OSTI)

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  3. Medium Energy Nuclear Physics Research at the University of Richmond

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    1 Medium Energy Nuclear Physics Research at the University of Richmond G. P. Gilfoyle Physics Physics: Medium Energy Nuclear Physics Program Program Manager: Dr. Ted Barnes #12;2 #12;3 Contents 1 Project Introduction 5 2 Project Description 7 2.1 Status of Current Projects

  4. This volume presents summary of activities of the High Energy Physics Division in the five year period 1997--2001. It can be considered as a continuation of the previous edition describing

    E-Print Network [OSTI]

    Titov, Anatoly

    production and analysis stage: -- L3 and Isolde at CERN. -- HERMES at DESY (Germany). -- SELEX and D0 at FNALPREFACE This volume presents summary of activities of the High Energy Physics Division in the five the HEPD activities prior to 1997 (PNPI­XXV, High Energy Physics Division. Main Scientific Activities 1971

  5. Current Status of Nuclear Physics Research

    E-Print Network [OSTI]

    C. A. Bertulani; M. S. Hussein

    2015-09-01

    In this review we discuss the current status of research in nuclear physics which is being carried out in different centers in the World. For this purpose we supply a short account of the development in the area which evolved over the last 9 decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data become available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as $^4$He, $^7$Li, $^9$Be etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly statistical mechanics does not work for such finite system, neither does other theories applicable to condensed matter systems. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei deal with the wealth of experimental data available in the last 35 years. Further, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked with.

  6. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1980-February 14, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The stereochemistry of high energy /sup 18/F, /sup 34m/Cl, and /sup 76/Br substitution reactions involving enantiomeric molecules in the gas and condensed phase is studied. The gas to condensed state transition in halogen high energy chemistry, involving chlorine, bromine, and iodine activated by the (n,..gamma..) and (I.T.) processes in halomethanes, saturated and unsaturated hydrocarbons is being investigated in more detail. Special attention is given to defining the nature of the enhancement yields in the condensed phase. High energy halogen reactions in liquid and frozen aqueous solutions of organic and biomolecular solutes are studied in an attempt to learn more about these reactions. The applications of high energy chemistry techniques and theory to neutron activation analysis of biological systems are being continued. Special attention is given to developing procedures for trace molecular determinations in biological systems. The applications of hot halogen atoms as indicators of solute-solute interactions in liquid and frozen aqueous solutions of halogenated bases and nucleosides are being developed. Experiments are designed to explain the mechanisms of the radioprotection offered biomolecular solutes trapped within the frozen ice lattice. Reactions of bromine and iodine activated by isomeric transition with halogenated biomolecular solutes in liquid and frozen aqueous solutions are studied. The high energy reactions of iodine with the isomers of pentene have been studied in low pressure gaseous systems employing additives and rare gas moderators and liquid systems. Reactivity of excited complex formation and structural effects of electrophilic iodine attack on the pi-bond systems are studied.

  7. Two-Photon Reactions Leading to Hadron Final States: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Whalley, M. R.

    The data gathered from the relevant collaborations at DOEÆs SLAC are available, and so are data from related collaborations based at CERN, DESY, KEK, NOVO, ORSAY, and CORNELL University. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  8. VERY HIGH ENERGY NUCLEAR COLLISIONS: THE ASYMPTOTIC HADRON SPECTRUM, ANTI-NUCLEI, HYPER-NUCLEI, AND QUARK PHASE

    E-Print Network [OSTI]

    Glendenning, N.K.

    2011-01-01

    the expansion phase at densities below nuclear density, (1an expansion to a freezeout density equal to the nuclearexpansion stage as a function of 1/p where the density is measured in units of the nuclear

  9. DOE fundamentals handbook: Nuclear physics and reactor theory

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  10. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  11. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  12. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Work FeaturedNuclear & Particle Physics

  13. Search for a signal on intermediate baryon systems formation in hadron-nuclear and nuclear-nuclear interactions at high energies

    E-Print Network [OSTI]

    Y. H. Huseynaliyev; M. K. Suleymanov; E. U. Khan; A. Kravchakova; S. Vokal

    2007-08-20

    We have analyzed the behavior of different characteristics of hadron-nuclear and nuclear-nuclear interactions as a function of centrality to get a signal on the formation of intermediate baryon systems. We observed that the data demonstrate the regime change and saturation. The angular distributions of slow particles exhibit some structure in the above mentioned reactions at low energy. We believe that the structure could be connected with the formation and decay of the percolation cluster. With increasing the mass of colliding nuclei, the structure starts to become weak and almost disappears ultimately. This shows that the number of secondary internuclear interactions increases with increasing the mass of the colliding nuclei. The latter could be a reason of the disintegration of any intermediate formations as well as clusters, which decrease their influence on the angular distribution of the emitted particles.

  14. Lattice Gauge Theory for Nuclear Physics

    SciTech Connect (OSTI)

    Konstantinos Orginos

    2012-12-01

    Quantum Chromodynamcs (QCD) is now established as the theory of strong interactions. A plethora of hadronic physics phenomena can be explained and described by QCD. From the early days of QCD, it was clear that low energy phenomena require a non-perturbative approach. Lattice QCD is a non-perturbative formulation of QCD that is particularly suited for numerical calculations. Today, supercomputers have achieved performance cabable of performing calculations that allow us to understand complex phenomana that arise from QCD. In this talk I will review the most recent results, relevant to nuclear physics. In particular, I will focus on results relevant to the structure and interactions of hadrons. Finally, I will comment on the opportunities opening up as we approach the era of exaflop computing.

  15. Preliminary Simulations for Geometric Optimization of a High-Energy Delayed Gamma Spectrometer for Direct Assay of Pu in Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Kulisek, Jonathan A.; Campbell, Luke W.; Rodriguez, Douglas C.

    2012-06-07

    High-energy, beta-delayed gamma-ray spectroscopy is under investigation as part of the Next Generation Safeguard Initiative effort to develop non-destructive assay instruments for plutonium mass quantification in spent nuclear fuel assemblies. Results obtained to date indicate that individual isotope-specific signatures contained in the delayed gamma-ray spectra can potentially be used to quantify the total fissile content and individual weight fractions of fissile and fertile nuclides present in spent fuel. Adequate assay precision for inventory analysis can be obtained using a neutron generator of sufficient strength and currently available detection technology. In an attempt to optimize the geometric configuration and material composition for a delayed gamma measurement on spent fuel, the current study applies MCNPX, a Monte Carlo radiation transport code, in order to obtain the best signal-to-noise ratio. Results are presented for optimizing the neutron spectrum tailoring material, geometries to maximize thermal or fast fissions from a given neutron source, and detector location to allow an acceptable delayed gamma-ray signal while achieving a reasonable detector lifetime while operating in a high-energy neutron field. This work is supported in part by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  16. Bogoliubov Laboratory of Theoretical Physics JOINT INSTITUTE FOR NUCLEAR RESEARCH

    E-Print Network [OSTI]

    Bogoliubov Laboratory of Theoretical Physics JOINT INSTITUTE FOR NUCLEAR RESEARCH 141980 Dubna is well known in physics of nuclear reactions and astrophysics. Developing methods for studying resonances components taken on the physical sheet only. The representations for T ­matrix are used then to construct

  17. Nuclear Physics B 561 1999 188240 www.elsevier.nlrlocaternpe

    E-Print Network [OSTI]

    Kaiser, David

    Nuclear Physics B 561 1999 188­240 www.elsevier.nlrlocaternpe Metric preheating Science B.V. All rights reserved. Z .PII: S0550-3213 99 00495-2 #12;( )B.A. Bassett et al.rNuclear Physics d a Department of Theoretical Physics, Oxford UniÕersity, Oxford OX1 3NP, UK b Department

  18. Energy Response and Physical Reoperties of NTA* Personnel Neutron Dosimeter Nuclear Track Film

    E-Print Network [OSTI]

    Lehman, Richard L.

    1961-01-01

    PHYSICAL PERSONNEL NEUTRON DOSIMETER PROPERTIES NUCLEAR OFOF NTA'." PERSONNEL NEUTRON DOSIMETER NUCLEAR TRACK FILMNEUTRON AND PHYSICA'L DOSIMETER Richard PROPERTIES NUCLEAR

  19. A new tool in nuclear physics: Nuclear lattice simulations

    E-Print Network [OSTI]

    Ulf-G. Meißner

    2015-05-26

    In the last years, chiral effective field theory has been successfully developed for and applied to systems with few nucleons. Here, I present a new approach for ab initio calculations of nuclei that combines these precise and systematic forces with Monte Carlo simulation techniques that allow for exact solutions of the nuclear A-body problem. A short introduction of this method is given and a few assorted results concerning the spectrum and structure of 12C and 16O are presented. The framework further allows one to study the properties of nuclei in worlds that have fundamental parameters different from the ones in Nature. This allows for a physics test of the anthropic principle by addressing the question how strongly the generation of the life-relevant elements depends on the light quark masses and the electromagnetic fine structure constant.

  20. PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-10

    E-Print Network [OSTI]

    Danon, Yaron

    PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-10 10 11 12 13 14 15 16 17 18 19 neutron wavelength, D is given by: cE mM Mm 2 + = h D , (1.22) 1 Bell and Glasstone, Nuclear Reactor Theory, p. 392, 1970. #12;PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-11 Where m

  1. Current Status of Nuclear Physics Research

    E-Print Network [OSTI]

    Bertulani, C A

    2015-01-01

    In this review we discuss the current status of research in nuclear physics which is being carried out in different centers in the World. For this purpose we supply a short account of the development in the area which evolved over the last 9 decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data become available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as $^4$He, $^7$Li, $^9$Be etc. and up the ladder to heavier bound nuclei co...

  2. Parker, J.L. 98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL...

    Office of Scientific and Technical Information (OSTI)

    for plutonium and americium-241 decay corrections Sampson, T.E.; Parker, J.L. 98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION; AMERICIUM 241; DECAY; PLUTONIUM;...

  3. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOE Patents [OSTI]

    Norman, Eric B. (Oakland, CA); Prussin, Stanley G. (Kensington, CA)

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  4. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOE Patents [OSTI]

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-05-05

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  5. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOE Patents [OSTI]

    Norman, Eric B. (Oakland, CA); Prussin, Stanley G. (Kensington, CA)

    2009-01-06

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  6. Physics of Ultra-Peripheral Nuclear Collisions

    E-Print Network [OSTI]

    Carlos A. Bertulani; Spencer R. Klein; Joakim Nystrand

    2005-07-13

    Moving highly-charged ions carry strong electromagnetic fields that act as a field of photons. In collisions at large impact parameters, hadronic interactions are not possible, and the ions interact through photon-ion and photon-photon collisions known as {\\it ultra-peripheral collisions} (UPC). Hadron colliders like the Relativistic Heavy Ion Collider (RHIC), the Tevatron and the Large Hadron Collider (LHC) produce photonuclear and two-photon interactions at luminosities and energies beyond that accessible elsewhere; the LHC will reach a $\\gamma p$ energy ten times that of the Hadron-Electron Ring Accelerator (HERA). Reactions as diverse as the production of anti-hydrogen, photoproduction of the $\\rho^0$, transmutation of lead into bismuth and excitation of collective nuclear resonances have already been studied. At the LHC, UPCs can study many types of `new physics.'

  7. Physics of Ultra-Peripheral Nuclear Collisions

    SciTech Connect (OSTI)

    Bertulani, Carlos A.; Klein, Spencer R.; Nystrand, Joakim

    2005-02-02

    Moving highly-charged ions carry strong electromagnetic fields which act as a field of photons. In collisions at large impact parameters, hadronic interactions are not possible, and the ions interact through photon-ion and photon-photon collisions known as ultra-peripheral collisions (UPC). Hadron colliders like the Relativistic Heavy Ion Collider (RHIC), the Tevatron and the Large Hadron Collider (LHC) produce photonuclear and two-photon interactions at luminosities and energies beyond that accessible elsewhere; the LHC will reach a {gamma}p energy ten times that of the Hadron-Electron Ring Accelerator (HERA). Reactions as diverse as the production of anti-hydrogen, photoproduction of the {rho}{sup 0}, transmutation of lead into bismuth and excitation of collective nuclear resonances have already been studied. At the LHC, UPCs can study many types of ''new physics''.

  8. Physical conditions in potential sources of ultra-high-energy cosmic rays: Updated Hillas plot and radiation-loss constraints

    E-Print Network [OSTI]

    Ksenia Ptitsyna; Sergey Troitsky

    2010-03-26

    We review basic constraints on the acceleration of ultra-high-energy (UHE) cosmic rays (CRs) in astrophysical sources, namely the geometrical (Hillas) criterion and restrictions from radiation losses in different acceleration regimes. Using the latest available astrophysical data, we redraw the Hillas plot and figure out potential UHECR accelerators. For the acceleration in central engines of active galactic nuclei, we constrain the maximal UHECR energy for a given black-hole mass. Among active galaxies, only the most powerful ones, radio galaxies and blazars, are able to accelerate protons to UHE, though acceleration of heavier nuclei is possible in much more abundant lower-power Seyfert galaxies.

  9. Nuclear physics with spherically symmetric supernova models

    E-Print Network [OSTI]

    M. Liebendoerfer; T. Fischer; C. Fröhlich; F. -K. Thielemann; S. Whitehouse

    2007-08-31

    Few years ago, Boltzmann neutrino transport led to a new and reliable generation of spherically symmetric models of stellar core collapse and postbounce evolution. After the failure to prove the principles of the supernova explosion mechanism, these sophisticated models continue to illuminate the close interaction between high-density matter under extreme conditions and the transport of leptons and energy in general relativistically curved space-time. We emphasize that very different input physics is likely to be relevant for the different evolutionary phases, e.g. nuclear structure for weak rates in collapse, the equation of state of bulk nuclear matter during bounce, multidimensional plasma dynamics in the postbounce evolution, and neutrino cross sections in the explosive nucleosynthesis. We illustrate the complexity of the dynamics using preliminary 3D MHD high-resolution simulations based on parameterized deleptonization. With established spherically symmetric models we show that typical features of the different phases are reflected in the predicted neutrino signal and that a consistent neutrino flux leads to electron fractions larger than 0.5 in neutrino-driven supernova ejecta.

  10. Low Energy Neutrino Cross Sections: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This large collection of low-energy (less than 30 GEV) neutrino cross sections is extracted from the results of many experiments from 1973 through 2002. The experiments, facilities, and collaborations include ANL, BNL, and FNAL in the U.S., along with CERN, Gargamelle, SKAT, LSND, and others. The data are presented in both tabular and plotted formats. The Durham High Energy Physics Database Group makes these data available in one place, easy to access and compare. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  11. Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional

    E-Print Network [OSTI]

    Weise, Wolfram

    2006-01-01

    Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density Keywords: Relativistic mean field; Density functional theory; Nuclear structure; Chiral dynamics; QCD sum

  12. Co-operation agreement between CERN and the National Council for Scientific Research, Lebanon (CNRS-L) concerning Scientific and Technical Co-operation in High-Energy Physics

    E-Print Network [OSTI]

    2015-01-01

    Co-operation agreement between CERN and the National Council for Scientific Research, Lebanon (CNRS-L) concerning Scientific and Technical Co-operation in High-Energy Physics

  13. Nuclear Thermal Rockets: The Physics of the Fission Reactor

    E-Print Network [OSTI]

    Ross, Shane

    Nuclear Thermal Rockets: The Physics of the Fission Reactor Shane D. Ross Control and Dynamical heats up when it passes through a nuclear reactor, where controlled fission of some fissionable material, with the nuclear fission reactor as a heat source [Lawrence, Witter, and Humble, 1992]. it works essentially

  14. Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics

    E-Print Network [OSTI]

    Seager, Sara

    Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics (Dated: February 5, 2014) In this experiment, the phenomenon of Nuclear Magnetic Resonance (NMR) is used to determine the magnetic moments-factor in atomic spectroscopy and is given by g = (µ/µN )/I, (2) and µN is the nuclear magneton, e /2mp

  15. Jefferson Lab Nuclear Physics Events: Seminars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Physics Colloquia Physics Seminars Theory Seminars Graduate Student Seminars Summer Detector & Computer Lecture Series Conference Listings JLab Event Calendar Physics...

  16. Recent U.S. advances in ion-beam-driven high energy density physics and heavy ion fusion

    E-Print Network [OSTI]

    2006-01-01

    physics and heavy ion fusion energy drivers, including bothoptions towards inertial fusion energy. Acknowledgements:fusion drivers for inertial fusion energy. 1. Introduction A

  17. Fast-cycling superconducting synchrotrons and possible path to the future of US experimental high-energy particle physics

    SciTech Connect (OSTI)

    Piekarz, Henryk; /Fermilab

    2008-02-01

    The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.

  18. Apparent unitarity violation in top quark's mass off-shell region from a new physics at high energy colliders

    E-Print Network [OSTI]

    Han, Chengcheng; Park, Myeonghun

    2015-01-01

    Perturbative unitarity conditions have been playing an important role by estimating the energy scale of new physics, including the Higgs mass as one of the most important examples. In this letter, we show that there is a possibility to see the hint of a new physics (top quark partner) indirectly by observing an "apparent" unitarity violation in $M_{bw}$ distribution well above top quark mass in a process of a heavy resonance decaying into a pair of top quarks.

  19. Physics Division progress report for period ending September 30, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  20. Nuclear Physics Related Brochures | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

  1. Nuclear Physics A 768 (2006) 99117 Quasi-particle interaction in nuclear matter from chiral

    E-Print Network [OSTI]

    Weise, Wolfram

    2006-01-01

    in these approaches is a repulsive contribution to the energy per particle ¯E(kf ) gener- ated by Pauli blockingNuclear Physics A 768 (2006) 99­117 Quasi-particle interaction in nuclear matter from chiral pion 20 January 2006 Abstract Based on a recent chiral approach to nuclear matter we calculate the in

  2. Rutgers Physics and Astronomy Graduate Program

    E-Print Network [OSTI]

    Gustafsson, Torgny

    Society. · Charlie Glashausser and Noémie Koller are past chairs of the APS Division of Nuclear PhysicsRutgers Physics and Astronomy Graduate Program The Department of Physics and Astronomy has long-standing, prominent research programs in experimental and theoretical nuclear physics, high-energy physics (including

  3. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    SciTech Connect (OSTI)

    Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

    1993-11-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

  4. Quantrum chaos and statistical nuclear physics

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This book contains 33 selections. Some of the titles are: Chaotic motion and statistical nuclear theory; Test of spectrum and strength fluctuations with proton resonances; Nuclear level densities and level spacing distributions; Spectral statistics of scale invariant systems; and Antiunitary symmetries and energy level statistics.

  5. Charged-Particle Thermonuclear Reaction Rates: III. Nuclear Physics Input

    E-Print Network [OSTI]

    Christian Iliadis; Richard Longland; Art Champagne; Alain Coc

    2010-04-23

    The nuclear physics input used to compute the Monte Carlo reaction rates and probability density functions that are tabulated in the second paper of this series (Paper II) is presented. Specifically, we publish the input files to the Monte Carlo reaction rate code RatesMC, which is based on the formalism presented in the first paper of this series (Paper I). This data base contains overwhelmingly experimental nuclear physics information. The survey of literature for this review was concluded in November 2009.

  6. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    SciTech Connect (OSTI)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.

    2014-03-15

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100?ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  7. Theoretical nuclear physics at Yale University

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Brief summaries of past and planned activities in the following areas are given: models of nuclear structure; models of hadronic structure; hot nuclei; chaos in nuclei; reactions and structure; dissipation, diffusion, and collective motion; and modeling equilibrium and nonequilibrium systems.

  8. Nuclear physics from strong coupling QCD

    E-Print Network [OSTI]

    Michael Fromm; Philippe de Forcrand

    2009-12-14

    The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect.

  9. Random matrices and chaos in nuclear physics: Nuclear structure

    SciTech Connect (OSTI)

    Weidenmueller, H. A.; Mitchell, G. E. [Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg (Germany); North Carolina State University, Raleigh, North Carolina 27695 (United States) and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27706 (United States)

    2009-04-15

    Evidence for the applicability of random-matrix theory to nuclear spectra is reviewed. In analogy to systems with few degrees of freedom, one speaks of chaos (more accurately, quantum chaos) in nuclei whenever random-matrix predictions are fulfilled. An introduction into the basic concepts of random-matrix theory is followed by a survey over the extant experimental information on spectral fluctuations, including a discussion of the violation of a symmetry or invariance property. Chaos in nuclear models is discussed for the spherical shell model, for the deformed shell model, and for the interacting boson model. Evidence for chaos also comes from random-matrix ensembles patterned after the shell model such as the embedded two-body ensemble, the two-body random ensemble, and the constrained ensembles. All this evidence points to the fact that chaos is a generic property of nuclear spectra, except for the ground-state regions of strongly deformed nuclei.

  10. Lasers as a Bridge between Atomic and Nuclear Physics

    E-Print Network [OSTI]

    Sergei G. Matinyan

    1997-06-02

    This paper reviews the application of optical and UV laser radiation to several topics in low-energy nuclear physics. We consider the laser-induced nuclear anti-Stokes transitions, the laser-assisted and the laser-induced internal conversion, and the Electron Bridge and Inverse Electron Bridge mechanisms as tools for deexciting and exciting of low-lying nuclear isomeric states. A study of the anomalous, by low-lying, nuclear isomeric states (on an example of the $^{229}$Th nucleus) is presented in detail.

  11. Nuclear Science--A Guide to the Nuclear Science Wall Chart 2003 Contemporary Physics Education Project (CPEP)

    E-Print Network [OSTI]

    Nuclear Science--A Guide to the Nuclear Science Wall Chart ©2003 Contemporary Physics Education Project (CPEP) 7-1 Chapter 7 Nuclear Reactions Nuclear reactions and nuclear scattering are used, protons, alphas, or "heavy ions"), creates these reactions when they strike a target nucleus. Nuclear

  12. Nuclear Physics A562 (1993) 365-388 North-Holland

    E-Print Network [OSTI]

    Bauer, Wolfgang

    1993-01-01

    Nuclear Physics A562 (1993) 365-388 North-Holland NUCLEAR PHYSICS A Possible observation of medium, Russian Federation. 3 Institute of Nuclear Physics, ul. Kawiory 26a, 30-055 Krak6w, Poland. 4 Institute of Nuclear Physics, ul. Radzikowskiego 152, Krakow, Poland. * Laboratoire de Physique Corpusculaire, Clermont

  13. JET Papers Presented to 13th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion Research

    E-Print Network [OSTI]

    JET Papers Presented to 13th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion Research

  14. Nuclear Physics Laboratory, University of Washington annual report

    SciTech Connect (OSTI)

    NONE

    1998-04-01

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters.

  15. University of Washington, Nuclear Physics Laboratory annual report, 1995

    SciTech Connect (OSTI)

    1995-04-01

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995.

  16. Nuclear Physics in a Susy Universe

    E-Print Network [OSTI]

    L. Clavelli; I. Perevalova

    2010-07-28

    We refine a previous zeroth order analysis of the nuclear properties of a supersymmetric (susy) universe with standard model particle content plus degenerate susy partners. No assumptions are made concerning the Higgs structure except we assume that the degenerate fermion/sfermion masses are non-zero. This alternate universe has been dubbed Susyria and it has been proposed that such a world may exist with zero vacuum energy in the string landscape.

  17. 288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors

    E-Print Network [OSTI]

    Demazière, Christophe

    of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics of nuclear reactors are based on the use of different solvers for resolving the different physical fields and the corresponding approximations. Keywords: nuclear reactors; multi-physics; multi-scale; modelling; deterministic

  18. Accelerating Innovation: How Nuclear Physics Benefits Us All

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    From fighting cancer to assuring food is safe to protecting our borders, nuclear physics impacts the lives of people around the globe every day. In learning about the nucleus of the atom and the forces that govern it, scientists develop a depth of knowledge, techniques and remarkable research tools that can be used to develop a variety of often unexpected, practical applications. These applications include devices and technologies for medical diagnostics and therapy, energy production and exploration, safety and national security, and for the analysis of materials and environmental contaminants. This brochure by the Office of Nuclear Physics of the USDOE Office of Science discusses nuclear physics and ways in which its applications fuel our economic vitality, and make the world and our lives safer and healthier.

  19. Physics Division progress report for period ending June 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)

  20. Citing and Reading Behaviors of High-Energy Physics or How a Community Stopped Worrying about Journals and Learned to Love Repositories

    SciTech Connect (OSTI)

    Gentil-Beccot, Anne; Mele, Salvatore; /CERN; Brooks, Travis C.; /SLAC

    2009-10-17

    Contemporary scholarly discourse follows many alternative routes in addition to the three-century old tradition of publication in peer-reviewed journals. The field of High-Energy Physics (HEP) has explored alternative communication strategies for decades, initially via the mass mailing of paper copies of preliminary manuscripts, then via the inception of the first online repositories and digital libraries. This field is uniquely placed to answer recurrent questions raised by the current trends in scholarly communication: is there an advantage for scientists to make their work available through repositories, often in preliminary form? Is there an advantage to publishing in Open Access journals? Do scientists still read journals or do they use digital repositories? The analysis of citation data demonstrates that free and immediate online dissemination of preprints creates an immense citation advantage in HEP, whereas publication in Open Access journals presents no discernible advantage. In addition, the analysis of clickstreams in the leading digital library of the field shows that HEP scientists seldom read journals, preferring preprints instead.

  1. Nuclear and Particle Physics, Astrophysics, and Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressureNavy TurnsNuclear Weapons

  2. Nuclear energy | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclear and Particle Futuresenergy

  3. Nuclear safety | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclear and Particlesafety Subscribe to

  4. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    SciTech Connect (OSTI)

    Redondo, Antonio

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  5. Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 INSTRUMENTS

    E-Print Network [OSTI]

    Dutz, Hartmut

    1995-01-01

    ELSEVIER Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 NUCLEAR INSTRUMENTS 8 METHODS IN PHYSICS REgtR?n Thermodynamics of dynamic nuclear polarization W.Th. Wenckebach Faculty ofApplied Physics, Delfr Unicersity of Technology, P.O.B. 5046, 2600 GA De& The Netherlands Abstract Dynamic nuclear

  6. Reprinted from Nuclear Physics A663&664 (2000) 169c-182c

    E-Print Network [OSTI]

    2000-01-01

    Reprinted from YSICS A Nuclear Physics A663&664 (2000) 169c-182c www;Nuclear Physics A663&664 (2000) 169c-182c Transmutation of Nuclear Waste Waclaw Gudowski Royal Institute of delayed neutrons. #12;W. Gudowski/Nuclear Physics A663&664 (2000) 169c-182c Few percents of energy

  7. Nuclear Physics A533 (1991) 749-760 North-Holland

    E-Print Network [OSTI]

    Bauer, Wolfgang

    1991-01-01

    Nuclear Physics A533 (1991) 749-760 North-Holland 0375-9474/91/$03.50 PION PRODUCTION nuclear physics reason for the production of radioactive beams and their use for nuclear reaction studies Publishers ON. All rights reserved NUCLEAR PHYSICS A #12;750 P.-A. Li et al. / Pion production 0.12 0.10 0

  8. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    SciTech Connect (OSTI)

    Moon, Chang-Bum

    2014-04-15

    This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  9. Nuclear Engineering & Radiation Health Physics Program Outcomes Ability to apply knowledge of mathematics, science, and engineering

    E-Print Network [OSTI]

    Tullos, Desiree

    Nuclear Engineering & Radiation Health Physics Program Outcomes · Ability to apply knowledge for engineering practice · Ability to apply knowledge of atomic and nuclear physics to nuclear and radiological to nuclear and radiation processes · Ability to measure nuclear and radiation processes · Ability to work

  10. Physical Security Systems | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformance andAreaPhotoinducedCenter ObjectivePhysical

  11. Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons

    E-Print Network [OSTI]

    Gustafsson, Torgny

    Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons Colin of the central challenges of contemporary nuclear physics. Recent advances in lattice field theory, developments's). The calculations of all of these are specified as Nuclear Physics 2014 milestones in Hadronic Physics (HP

  12. Nuclear Physics Laboratory annual report, University of Washington April 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems. (LSP)

  13. Nuclear Physics Laboratory annual report, University of Washington April 1992

    SciTech Connect (OSTI)

    Cramer, John G.; Ramirez, Maria G.

    1992-01-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems. (LSP)

  14. Nuclear and fundamental physics instrumentation for the ANS project

    SciTech Connect (OSTI)

    Robinson, S.J. [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics; Raman, S.; Arterburn, J.; McManamy, T.; Peretz, F.J. [Oak Ridge National Lab., TN (United States); Faust, H. [Institut Laue-Langevin, 38 - Grenoble (France); Piotrowski, A.E. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1996-05-01

    This report summarizes work carried out during the period 1991-1995 in connection with the refinement of the concepts and detailed designs for nuclear and fundamental physics research instrumentation at the proposed Advanced Neutron source at Oak Ridge National Laboratory. Initially, emphasis was placed on refining the existing System Design Document (SDD-43) to detail more accurately the needs and interfaces of the instruments that are identified in the document. The conceptual designs of these instruments were also refined to reflect current thinking in the field of nuclear and fundamental physics. In particular, the on-line isotope separator (ISOL) facility design was reconsidered in the light of the development of interest in radioactive ion beams within the nuclear physics community. The second stage of this work was to define those instrument parameters that would interface directly with the reactor systems so that these parameters could be considered for the ISOL facility and particularly for its associated ion source. Since two of these options involved ion sources internal to the long slant beam tube, these were studied in detail. In addition, preliminary work was done to identify the needs for the target holder and changing facility to be located in the tangential through-tube. Because many of the planned nuclear and fundamental physics instruments have similar needs in terms of detection apparatus, some progress was also made in defining the parameters for these detectors. 21 refs., 32 figs., 2 tabs.

  15. Nuclear Instruments and Methods in Physics Research A ] (

    E-Print Network [OSTI]

    U N C O R R EC TED PR O O F Nuclear Instruments and Methods in Physics Research to a crystal mass of about 450 mg. Requirements on energy and time resolutions are not too stringent, therefore technique. From a safe extrapolation of the Milano neutrino mass experi- ment (MIBETA) results [2

  16. The Nuclear Physics of Solar and Supernova Neutrino Detection

    E-Print Network [OSTI]

    W. C. Haxton

    1999-01-15

    This talk provides a basic introduction for students interested in the responses of detectors to solar, supernova, and other low-energy neutrino sources. Some of the nuclear physics is then applied in a discussion of nucleosynthesis within a Type II supernova, including the r-process and the neutrino process.

  17. EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH OPAL Physics Paper PR395

    E-Print Network [OSTI]

    EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH OPAL Physics Paper PR395 15 th January 2004 Revised 1 st at LEP2 The OPAL Collaboration Abstract Anomalous quartic couplings between the electroweak gauge bosons. This analysis uses the LEP2 OPAL data sample at centre-of-mass energies up to 209 GeV. Event selections identify

  18. Nucleosynthesis: a field with still many open nuclear physics questions

    SciTech Connect (OSTI)

    Goriely, S. [Institut d'Astronomie et d'Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226 1050 Brussels (Belgium)

    2010-06-01

    Stellar nucleosynthesis is a vastly interdisciplinary field. There is a large number of different problems invoked calling for a variety of different and complementary research fields. Impressive progress has been made for the last decades in the various fields related to nucleosynthesis, especially in experimental and theoretical nuclear physics, as well as in ground-based or space astronomical observations and astrophysical modellings. In spite of that success, major problems and puzzles remain. The three major nucleosynthesis processes called for to explain the origin of the elements heavier than iron are described and the major pending questions discussed. As far as nuclear physics is concerned, good quality nuclear data is known to be a necessary condition for a reliable modelling of stellar nucleosynthesis. Through some specific examples, the need for further theoretical or experimental developments is also critically discussed in view of their impact on nucleosynthesis predictions.

  19. NP2010: An Assessment and Outlook for Nuclear Physics

    SciTech Connect (OSTI)

    Lancaster, James

    2014-05-22

    This grant provided partial support for the National Research Council’s (NRC) decadal survey of nuclear physics. This is part of NRC’s larger effort to assess and discuss the outlook for different fields in physics and astronomy, Physics 2010, which takes place approximately every ten years. A report has been prepared as a result of the study that is intended to inform those who are interested about the current status of research in this area and to help guide future developments of the field. A pdf version of the report is available for download, for free, at http://www.nap.edu/catalog.php?record_id=13438. Among the principal conclusions reached in the report are that the nuclear physics program in the United States has been especially well managed, principally through a recurring long-range planning process conducted by the community, and that current opportunities developed pursuant to that planning process should be exploited. In the section entitled “Building the Foundation for the Future,” the report notes that attention needs to be paid to certain elements that are essential to the continued vitality of the field. These include ensuring that education and research at universities remain a focus for funding and that a plan be developed to ensure that forefront-computing resources, including exascale capabilities when developed, be made available to nuclear science researchers. The report also notes that nimbleness is essential for the United States to remain competitive in a rapidly expanding international nuclear physics arena and that streamlined and flexible procedures should be developed for initiating and managing smaller-scale nuclear science projects.

  20. www.physicstoday.org November 2012 Physics Today 59 Nuclear energy can provide great

    E-Print Network [OSTI]

    www.physicstoday.org November 2012 Physics Today 59 Nuclear energy can provide great The Nuclear.95 For related titles, visit www.hooverpress.org or 800.621.2736 THe NuCLEAR ENterprise is a welcome introduction

  1. High Energy Resummation in Quantum Chromo–Dynamics 

    E-Print Network [OSTI]

    Marzani, Simone

    2008-01-01

    In this thesis I discuss different aspects of high energy resummation in Quantum Chromo-Dynamics and its relevance for precision physics at hadron colliders. The high energy factorisation theorem is presented and discussed ...

  2. Nuclear & Hadron Physics Colloquium Hebrew University, Jerusalem, 26 April 2010 CHIRAL DYNAMICS Realizations of QCD

    E-Print Network [OSTI]

    Weise, Wolfram

    -Energy Expansion: CHIRAL PERTURBATION THEORY 1 GeV #12;2 Nuclear Forces - Recent Developments - V 1 2 3 IIIIII r [µNuclear & Hadron Physics Colloquium Hebrew University, Jerusalem, 26 April 2010 CHIRAL DYNAMICS Realizations of QCD in HADRONIC and NUCLEAR PHYSICS Wolfram Weise Nuclear chiral dynamics QCD interface

  3. Nuclear Physics A 611 ( 1996) 484-513 Mesonic and binding contributions to the EMC

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    NUCLEAR PHYSICS A Nuclear Physics A 611 ( 1996) 484-513 Mesonic and binding contributions November 1995; revised 30 July 1996 Abstract We revise the conventional nuclear effects of Fermi motion for an interacting Fermi sea and the local density approximation to translate results from nuclear matter to finite

  4. High-Energy Astrophysics and Cosmology

    E-Print Network [OSTI]

    John Ellis

    2002-10-26

    Interfaces between high-energy physics, astrophysics and cosmology are reviewed, with particular emphasis on the important roles played by high-energy cosmic-ray physics. These include the understanding of atmospheric neutrinos, the search for massive cold dark matter particles and possible tests of models of quantum gravity. In return, experiments at the LHC may be useful for refining models of ultra-high-energy cosmic rays, and thereby contributing indirectly to understanding their origin. Only future experiments will be able to tell whether these are due to some bottom-up astrophysical mechanism or some top-down cosmological mechanism.

  5. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    E-Print Network [OSTI]

    Danon, Yaron

    Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point , Yaron Danonc , Brian Morettia , and Jeffrey Muskb a Department of Physics and Nuclear Engineering education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets

  6. Author's personal copy Progress in Particle and Nuclear Physics 62 (2009) 468472

    E-Print Network [OSTI]

    Bauer, Wolfgang

    2009-01-01

    Author's personal copy Progress in Particle and Nuclear Physics 62 (2009) 468­472 Contents lists available at ScienceDirect Progress in Particle and Nuclear Physics journal homepage: www.ppnp.2008.12.035 #12;Author's personal copy T. Strother, W. Bauer / Progress in Particle and Nuclear Physics

  7. Nuclear Physics A452 (19X6) 699-722 V'North-Holland Publishing Company

    E-Print Network [OSTI]

    Bauer, Wolfgang

    Nuclear Physics A452 (19X6) 699-722 V'North-Holland Publishing Company THE NUCLEAR LATTICE MODEL is a difficult and far-from-understood area of current nuclear physics research. Experiments have been made for the inclusion of different physical mechanisms. The fits to mass-yield data are then quantitative over the whole

  8. Nuclear Physics A 735 (2004) 449481 www.elsevier.com/locate/npe

    E-Print Network [OSTI]

    Weise, Wolfram

    2004-01-01

    Nuclear Physics A 735 (2004) 449­481 www.elsevier.com/locate/npe Relativistic nuclear model.nuclphysa.2004.02.001 #12;450 P. Finelli et al. / Nuclear Physics A 735 (2004) 449­481 1. Introduction Concepts , W. Weise b,d a Physics Department, University of Bologna, and INFN, Bologna, I-40126 Bologna, Italy

  9. Nuclear Physics A561 (1993) 466-476 North-Holland

    E-Print Network [OSTI]

    Bauer, Wolfgang

    1993-01-01

    Nuclear Physics A561 (1993) 466-476 North-Holland NUCLEAR PHYSICS A Charged-particle correlations, FZ Rossendorf; Germany ' National Superconducting Cyclotron Laboratory and Department of Physics, 2100 Copenhagen, Denmark ' institute for Nuclear Research, II 7312 Moscow, Russia ' Institute de F

  10. Nuclear Physics Neutrino PreTown Meeting: Summary and Recommendations

    E-Print Network [OSTI]

    W. C. Haxton; John Bahcall; A. Baha Balantekin; Stuart Freedman; Kevin Lesko; Hamish Robertson; Bob Lanou; George Fuller; Ken Lande; Tony Mezzacappa; Frank Avignone; Bill Louis; Petr Vogel; Todd Haines; John Wilkerson

    2000-11-08

    In preparation for the nuclear physics Long Range Plan exercise, a group of 104 neutrino physicists met in Seattle September 21-23 to discuss both the present state of the field and the new opportunities of the next decade. This report summarizes the conclusions of that meeting and presents its recommendations. Further information is available at the workshop's web site. This report will be further reviewed at the upcoming Oakland Town Meeting.

  11. NMIS-07 SUBMITTED TO IEEE TRANSACTIONS ON NUCLEAR SCIENCE, MARCH 2002 SECOND REVIEW 1 Abstract--We consider detection of high-energy photons

    E-Print Network [OSTI]

    Zibulevsky, Michael

    Anger algorithm. Index Terms--emission tomography, gamma camera, scintillation detector, artificial on the Anger scintillation camera [1]. Incident high- energy gamma quanta, generated due to positron decay. Application of such thick crystals in PET scanners is desirable, due to their low cost and very high light

  12. Nuclear shadowing

    E-Print Network [OSTI]

    N. Armesto

    2006-07-05

    The phenomenon of shadowing of nuclear structure functions at small values of Bjorken-$x$ is analyzed. First, multiple scattering is discussed as the underlying physical mechanism. In this context three different but related approaches are presented: Glauber-like rescatterings, Gribov inelastic shadowing and ideas based on high-density Quantum Chromodynamics. Next, different parametrizations of nuclear partonic distributions based on fit analysis to existing data combined with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution, are reviewed. Finally, a comparison of the different approaches is shown, and a few phenomenological consequences of nuclear shadowing in high-energy nuclear collisions are presented.

  13. Graduate Fellows in High Energy Theory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Graduate Fellows in High Energy Theory High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Closed Funding...

  14. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Shiltsev, Vladimir

    2015-01-01

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  15. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Vladimir Shiltsev

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  16. Proceedings of the 8th high energy heavy ion study

    SciTech Connect (OSTI)

    Harris, J.W.; Wozniak, G.J.

    1988-01-01

    This was the eighth in a series of conferences jointly sponsored by the Nuclear Science Division of LBL and the Gesellschaft fuer Schwerionenforschung in West Germany. Sixty papers on current research at both relativistic and intermediate energies are included in this report. Topics covered consisted of: Equation of State of Nuclear Matter, Pion and High Energy Gamma Emission, Theory of Multifragmentation, Intermediate Energies, Fragmentation, Atomic Physics, Nuclear Structure, Electromagnetic Processes, and New Facilities planned for SIS-ESR. The latest design parameters of the Bevalac Upgrade Proposal were reviewed for the user community. Also, the design of a new electronic 4..pi.. detector, a time projection chamber which would be placed at the HISS facility, was presented.

  17. Daniel E. Archer Ph.D., Experimental Nuclear Structure Physics, Florida State University, 1996

    E-Print Network [OSTI]

    Daniel E. Archer Ph.D., Experimental Nuclear Structure Physics, Florida State University, 1996 M with particular expertise in experimental nuclear physics, including "hands-on" laboratory experience · Leadership.S., Physics, Florida State University, 1993 B.S., Physics (Major), Computer Based Honors Program (Minor

  18. High-energy Cosmic Rays

    E-Print Network [OSTI]

    Thomas K. Gaisser; Todor Stanev

    2005-10-11

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the `knee' above $10^{15}$ eV and the `ankle' above $10^{18}$ eV. An important question is whether the highest energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  19. General Physics II Exam 5 -Chs. 30, 31 -Nuclear Physics May 11, 2010 Name Rec. Instr. Rec. Time

    E-Print Network [OSTI]

    Wysin, Gary

    General Physics II Exam 5 - Chs. 30, 31 - Nuclear Physics May 11, 2010 Name Rec. Instr. Rec. Time C + p ? a. oxygen (O) b. nitrogen (N) c. boron (B) d. silicon (Si) 7. (2) A nucleus has a binding

  20. PROCEEDINGS OF THE 1ST CONFERENCE ON NUCLEAR STRUCTURE DATA EVALUATION HELD IN CONJUNCTION WITH THE APS/DIVISION OF NUCLEAR PHYSICS FALL MEETING ASILOMAR CONFERENCE GROUNDS, PACIFIC GROVE, CA., OCT. 27-30, 1981.

    E-Print Network [OSTI]

    Firestone, R.B.

    2008-01-01

    with the APS/Division of Nuclear Physics Fall Meetingical Soc iety (APS): Division of Nuclear Physics Arrer ican

  1. Siberian Branch of Russian Academy of Sciences BUDKER INSTITUTE OF NUCLEAR PHYSICS

    E-Print Network [OSTI]

    Siberian Branch of Russian Academy of Sciences BUDKER INSTITUTE OF NUCLEAR PHYSICS ANNUAL REPORT 2010 NOVOSIBIRSK 2011 #12;Contents Introduction 7 1. Physics of Elementary Particles...............................................................................32 1.9.2 Physical results

  2. DIFFRACTION SCATTERING AT HIGH ENERGIES (outlook from 1980s) 1

    E-Print Network [OSTI]

    Titov, Anatoly

    DIFFRACTION SCATTERING AT HIGH ENERGIES (outlook from 1980s) 1 A.A.Vorobyov 1. Introduction In 1960 of the most exciting tasks in the high energy physics. Several theorems have been formulated based on general cross sections in the asymptotic region at high energies. Among the general theorems of the axiomatic

  3. Medical applications of nuclear physics and heavy-ion beams

    SciTech Connect (OSTI)

    Alonso, Jose R.

    2000-08-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use.

  4. Nuclear Physics A471 (1987) 604-612 North-Holland, Amsterdam

    E-Print Network [OSTI]

    Bauer, Wolfgang

    1987-01-01

    Nuclear Physics A471 (1987) 604-612 North-Holland, Amsterdam LIGHT PARTICLE CORRELATIONS IN HEAVY. (North-Holland Physics Publishing Division) #12;W. Bauer / Light particle correlations 605 p3-pd-body limit yields a nuclear matter binding energy of -15.75 MeV, saturates at p = po, and yields a nuclear

  5. Nuclear Physics A545 (1992) 369c-380c North-Holland, Amsterdam

    E-Print Network [OSTI]

    Bauer, Wolfgang

    1992-01-01

    Nuclear Physics A545 (1992) 369c-380c North-Holland, Amsterdam olfgang A Department of Physics on the nuclear Boltzmann-Uehling-Uhlenbeck transport theory. At heavy ion beam energies around 100 MeV pernucleon it is found that thereis only a weak sensitivity of the results on the nuclear compressibility, but a strong

  6. High Energy Density Laboratory Plasmas

    E-Print Network [OSTI]

    High Energy Density Laboratory Plasmas General Plasma Science Developing founda/ons and advancing fundamental understanding #12;The High Energy Density developing innovative techniques to study the properties of instabilities in magnetized-high-energy-density

  7. Experiences with the High Energy Resolution Optics (HERO) update...

    Office of Scientific and Technical Information (OSTI)

    Experiences with the High Energy Resolution Optics (HERO) update on a physical electronics 690 auger system. Citation Details In-Document Search Title: Experiences with the High...

  8. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS

    E-Print Network [OSTI]

    Saxon, D.S.

    2010-01-01

    contribution to nuclear photon scattering at higher energies,contribution of OPEP to the binding energy of nuclear matterenergy tail of the nuclear response function. In this contribution,

  9. High-energy detector

    DOE Patents [OSTI]

    Bolotnikov, Aleksey E. (South Setauket, NY); Camarda, Giuseppe (Farmingville, NY); Cui, Yonggang (Upton, NY); James, Ralph B. (Ridge, NY)

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  10. Introduction A major goal in nuclear physics is to understand how

    E-Print Network [OSTI]

    Mihaila, Bogdan

    Monte Carlo (GFMC), and coupled cluster expansion (CCE). Modern Nuclear Hamiltonians A huge amount of NNIntroduction A major goal in nuclear physics is to understand how nuclear binding, stability the accurate calculation of nuclear matrix ele- ments needed for some tests of the standard model

  11. Physics division progress report for period ending September 30 1991

    SciTech Connect (OSTI)

    Livingston, A.B. [ed.

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)

  12. BNL Strategic Plan for Nuclear Physics T. Kirk, Associate Laboratory Director, HENP

    E-Print Network [OSTI]

    these experiments begin contributing to the advance of nuclear physics. We also note the impact of theory- Spin RHIC II eRHIC RHIC II eRHIC Neutrino Physics SNO SNOLAB s Exp. Reactor Exp. Reactor Exp. TheoryBNL Strategic Plan for Nuclear Physics T. Kirk, Associate Laboratory Director, HENP January 3, 2005

  13. Progress in Particle and Nuclear Physics 73 (2013) 134 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Mcdonough, William F.

    2013-01-01

    Progress in Particle and Nuclear Physics 73 (2013) 1­34 Contents lists available at ScienceDirect Progress in Particle and Nuclear Physics journal homepage: www.elsevier.com/locate/ppnp Review Geo field between Geology and Physics: the study of the Earth's geo-neutrino flux. We describe competing

  14. Nuclear Instruments and Methods in Physics Research A 360 (1995) 189-192 INSTRUMENTS

    E-Print Network [OSTI]

    Ramello, Luciano

    1995-01-01

    ELSEVIER Nuclear Instruments and Methods in Physics Research A 360 (1995) 189-192 NUCLEARFaculty ofPhysics and Nuclear Techniques Academy ofMining and Metallurgy, Cracow, Poland h INFN, Torino INSTRUMENTS 8 METHODS IN PHYSICS RESEARCH SectIonA A fast, high-granularity silicon multiplicity detector

  15. PHYSICAL REVIEW C 76, 054603 (2007) Zipf's law in nuclear multifragmentation and percolation theory

    E-Print Network [OSTI]

    Bauer, Wolfgang

    2007-01-01

    PHYSICAL REVIEW C 76, 054603 (2007) Zipf's law in nuclear multifragmentation and percolation theory(s): 25.70.Pq, 05.70.Jk, 64.60.Ak, 05.70.Fh I. INTRODUCTION A central goal of nuclear physics is to study Kerstin Paech, Wolfgang Bauer, and Scott Pratt Department of Physics and Astronomy, Michigan State

  16. PHYSICAL REVIEW C 87, 064608 (2013) Nuclear meson transparency in a relativistic Glauber model

    E-Print Network [OSTI]

    Gent, Universiteit

    2013-01-01

    PHYSICAL REVIEW C 87, 064608 (2013) Nuclear meson transparency in a relativistic Glauber model W traditional nuclear-physics calculations. The measurement of the onset and magnitude of the CT effect allows. Cosyn* and J. Ryckebusch Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B

  17. The r-process nucleosynthesis: Nuclear physics challenges

    SciTech Connect (OSTI)

    Goriely, S.

    2012-10-20

    About half of the nuclei heavier than iron observed in nature are produced by the socalled rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved and for which essentially no experimental data exist. The present contribution emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Their impact on the r-abundance distribution resulting from the decompression of neutron star matter is discussed.

  18. Nuclear Instruments and Methods in Physics Research A 392 (1997) 402-406 INSTRUMENTS

    E-Print Network [OSTI]

    Thompson, Chris

    1997-01-01

    Nuclear Instruments and Methods in Physics Research A 392 (1997) 402-406 NUCLEAR INSTRUMENTS _.z 6]. Other princi- pal shortcomings of PET are its considerable capital cost and limited availability. We

  19. High Energy Photoproduction

    E-Print Network [OSTI]

    J. M. Butterworth; M. Wing

    2005-09-15

    The experimental and phenomenological status of high energy photoproduction is reviewed. Topics covered include the structure of the photon, production of jets, heavy flavours and prompt photons, rapidity gaps, energy flow and underlying events. The results are placed in the context of the current understanding of QCD, with particular application to present and future hadron and lepton colliders.

  20. Paul Sellin, Centre for Nuclear and Radiation Physics Mobility and lifetime mapping in wide bandgap

    E-Print Network [OSTI]

    Sellin, Paul

    Paul Sellin, Centre for Nuclear and Radiation Physics Mobility and lifetime mapping in wide bandgap uniformity #12;Paul Sellin, Centre for Nuclear and Radiation Physics µ mapping in CdZnTe with IBIC Electron µ for Nuclear and Radiation Physics µ maps of CdZnTe and CdTe CdZnTe CdTe Map of electron µ in CdZnTe shows µe

  1. Particle Diffraction at High Energies

    E-Print Network [OSTI]

    Vladimir A. Petrov

    1998-04-27

    A brief ideological and historical review of problems of high energy diffractive scattering is given.

  2. Nuclear Physics on the Light Front - a new old way to do an old new problem

    E-Print Network [OSTI]

    Gerald A. Miller

    1999-08-10

    A brief introduction to light front techniques is presented. This is followed by a review of recent attempts to perform realistic, relativistic nuclear physics with those techniques.

  3. Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests

    E-Print Network [OSTI]

    C. Curceanu; J. Marton; E. Milotti

    2011-12-06

    Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests, ECT*-Trento, 29 August - 2 September, 2011

  4. Ultra High Energy Fermions

    E-Print Network [OSTI]

    Burra G. Sidharth

    2015-04-07

    The LHC in Geneva is already operating at a total energy of $7 TeV$ and hopefully after a pause in 2012, it will attain its full capacity of $14 TeV$ in 2013. These are the highest energies achieved todate in any accelerator. It is against this backdrop that it is worthwhile to revisit very high energy collisions of Fermions (Cf. also \\cite{bgspp}). We will in fact examine their behaviour at such energies.

  5. R-process nucleosynthesis calculations with complete nuclear physics input

    E-Print Network [OSTI]

    I. Petermann; A. Arcones; A. Keli?; K. Langanke; G. Martínez-Pinedo; K. -H. Schmidt; W. R. Hix; I. Panov; T. Rauscher; F. -K. Thielemann; N. Zinner

    2008-12-04

    The r-process constitutes one of the major challenges in nuclear astrophysics. Its astrophysical site has not yet been identified but there is observational evidence suggesting that at least two possible sites should contribute to the solar system abundance of r-process elements and that the r-process responsible for the production of elements heavier than Z=56 operates quite robustly producing always the same relative abundances. From the nuclear-physics point of view the r-process requires the knowledge of a large number of reaction rates involving exotic nuclei. These include neutron capture rates, beta-decays and fission rates, the latter for the heavier nuclei produced in the r-process. We have developed for the first time a complete database of reaction rates that in addition to neutron-capture rates and beta-decay half-lives includes all possible reactions that can induce fission (neutron-capture, beta-decay and spontaneous fission) and the corresponding fission yields. In addition, we have implemented these reaction rates in a fully implicit reaction network. We have performed r-process calculations for the neutrino-driven wind scenario to explore whether or not fission can contribute to provide a robust r-process pattern.

  6. Physics-based multiscale coupling for full core nuclear reactor...

    Office of Scientific and Technical Information (OSTI)

    multiscale coupling for full core nuclear reactor simulation Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety,...

  7. The Institute for Nuclear and Particle Physics at the Department of Physics in the Faculty of Science has the following immediate openings

    E-Print Network [OSTI]

    experi- mental methods of nuclear physics (e.g. the neutrinoless double beta decay or the direct search

  8. Nuclear Instruments and Methods in Physics Research A 343 (1994) 527-538 North-Holland

    E-Print Network [OSTI]

    Terry, Fred L.

    1994-01-01

    Nuclear Instruments and Methods in Physics Research A 343 (1994) 527-538 North-Holland Present status of undoped semi-insulating LEC bulk GaAs as a radiation spectrometer NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SectionA Douglas S. McGregor a,*, Ronald A. Rojeski a, Glenn F. Knoll a, Fred L. Terry

  9. Nuclear Physics from QCD : The Anticipated Impact of Exa-Scale Computing

    E-Print Network [OSTI]

    Martin J. Savage

    2010-12-04

    I discuss highlights in the progress that is being made toward calculating processes of importance in nuclear physics from QCD using high performance computing. As exa-scale computing resources are expected to become available around 2017, I present current estimates of the computational resources required to accomplish central goals of nuclear physics.

  10. Nuclear Physics B 587 (2000) 403418 www.elsevier.nl/locate/npe

    E-Print Network [OSTI]

    Aarts, Gert

    2000-01-01

    Nuclear Physics B 587 (2000) 403­418 www.elsevier.nl/locate/npe On thermalization in classical. PII: S0550-3213(00)00447-8 #12;404 G. Aarts et al. / Nuclear Physics B 587 (2000) 403­418 boundaries

  11. Nuclear Physics A369 (1981) 47082 North-Holland Publishing Company

    E-Print Network [OSTI]

    Lagaris, Isaac

    1981-01-01

    Nuclear Physics A369 (1981) 47082 © North-Holland Publishing Company VARIATIONAL CALCULATIONS OF ASYMMETRIC NUCLEAR MATTER I. E. LAGARIS and V. R. PANDHARIPANDE Deportment oJ'Phti'sics, Unic) Abstract: We report on variational calculations of the energy E(p, ß) of asymmetric nuclear matter having p

  12. Department of physics Seminar 1B 1.st year, Nuclear engineering

    E-Print Network [OSTI]

    ?umer, Slobodan

    1 Department of physics Seminar 1B ­ 1.st year, Nuclear engineering Calibration procedure for vibration sensors in nuclear power plants Author: Bor Kos Mentor: mag. Matjaz Lindic Co-Mentor: Miha Kokalj procedure of vibration sensors used in the Krsko Nuclear power plant made by SIQ Ljubljana (Slovenian

  13. http://arXiv.org/physics/0507088 Teaching About Nature's Nuclear Reactors

    E-Print Network [OSTI]

    Learned, John

    http://arXiv.org/physics/0507088 Teaching About Nature's Nuclear Reactors J. Marvin Herndon reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating

  14. PHYSICAL REVIEW C VOLUME 46, NUMBER 1 JULY 1992 Nuclear fission with diffusive dynamics

    E-Print Network [OSTI]

    Bertsch George F.

    PHYSICAL REVIEW C VOLUME 46, NUMBER 1 JULY 1992 Nuclear fission with diffusive dynamics D. Cha investigate the dynamics of nuclear fission, assuming purely diffusive motion up to the saddle point/BP=(Bp/BE' )(BE*/BP). Several authors have applied the Smoluchowski equation to nuclear fission processes

  15. ELXVIER Nuclear Instruments and Methods in Physics Research A 399 ( 1997) 477-488 INSTRUMENTS

    E-Print Network [OSTI]

    Morselli, Aldo

    NUCLEAR ELXVIER Nuclear Instruments and Methods in Physics Research A 399 ( 1997) 477 ' Russian Space Corporation "Energia" by name Korolev, Korolev, Moscow region, Russia ' Royal Institute light flashes (LF) in cosmonauts' eyes during orbital flights and for investigation of the nuclear

  16. PHYSICAL REVIEW C 72, 025806 (2005) Nuclear fusion in dense matter: Reaction rate and carbon burning

    E-Print Network [OSTI]

    2005-01-01

    PHYSICAL REVIEW C 72, 025806 (2005) Nuclear fusion in dense matter: Reaction rate and carbon August 2005) In this paper we analyze the nuclear fusion rates among equal nuclei for all five different.025806 PACS number(s): 26.50.+x, 25.60.Pj, 97.10.Cv I. INTRODUCTION We study nuclear fusion rates of identical

  17. PHYSICAL REVIEW C 80, 014611 (2009) Nuclear fusion reaction rates for strongly coupled ionic mixtures

    E-Print Network [OSTI]

    2009-01-01

    PHYSICAL REVIEW C 80, 014611 (2009) Nuclear fusion reaction rates for strongly coupled ionic.014611 PACS number(s): 26.30.-k I. INTRODUCTION Nuclear fusion in dense stellar matter is most important the nuclear interaction. We will mostly focus on the Coulomb barrier penetration problem. Fusion reactions

  18. Physics Division progress report for period ending September 30, 1989

    SciTech Connect (OSTI)

    Livingston, A.B.

    1990-03-01

    This report discusses topics in the following areas: Holifield heavy ion research; Experimental Nuclear physics; The Uniser program; Experimental Atomic Physics; Theoretical Physics; Laser and electro-optics lab; High Energy Physics; compilations and evaluations; and accelerator design and development. (FI)

  19. OZSPEC-2: An improved broadband high-resolution elliptical crystal x-ray spectrometer for high-energy density physics experiments (invited)

    SciTech Connect (OSTI)

    Heeter, R. F.; Anderson, S. G.; Booth, R.; Brown, G. V.; Emig, J.; Fulkerson, S.; McCarville, T.; Norman, D.; Schneider, M. B.; Young, B. K. F.

    2008-10-15

    A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 {mu}m resolution over a 1500 {mu}m field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/{delta}E>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments.

  20. Glauber model for heavy ion collisions from low energies to high energies

    E-Print Network [OSTI]

    P. Shukla

    2001-12-13

    The Glauber model is extensively applied to heavy ion collision for describing a number of interaction processes over a wide range of energies from near the Coulomb barrier to higher energies. The model gives the nucleus-nucleus interaction in terms of interaction between the constituent nucleons with a given density distribution. The model is a semiclassical model picturing the nuclear collision in the impact parameter representation where the nuclei move along the collision direction in a straight path. In these lectures we derive this model and discuss its applications in variety of problems in nuclear and high energy physics.

  1. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  2. HIGH ENERGY PHYSICS T H E U N I V E R S I T Y O F C H I C A G O

    E-Print Network [OSTI]

    radiation evolves into an intense- quasi-coherent radiation via free-electron laser (FEL) interaction way to quantify the radiation strength. I then discuss how the initially incoherent undulator experiments, such as matter-wave interferometry, for fundamental physics. Alongside these main themes, stories

  3. General Physics II Exam 5 -Chs. 30, 31 -Nuclear Physics Dec. 17, 2013 Name Rec. Instr. Rec. Time

    E-Print Network [OSTI]

    Wysin, Gary

    General Physics II Exam 5 - Chs. 30, 31 - Nuclear Physics Dec. 17, 2013 Name Rec. Instr. Rec. Time, n+X 14 6 C + p ? a. oxygen (O) b. nitrogen (N) c. boron (B) d. silicon (Si) 6. (3) When a fission

  4. Thin-thick hydrogen target for nuclear physics

    SciTech Connect (OSTI)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G. [CEA Saclay, Irfu/SACM, F-91191 Gif-Sur-Yvette cedex (France); Vinyar, I. [PELIN Limited Liability Company 27 A, Gzhatskaya Str, office 103 St. Petersbourg 195220 (Russian Federation); Relland, J. [CEA Saclay, Irfu/SIS, F-91191 Gif-Sur-Yvette cedex (France); Commeaux, C. [Institut de Physique Nucléaire, campus Universitaire-Bat 103, 91406 Orsay cedex (France)

    2014-01-29

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

  5. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS

    E-Print Network [OSTI]

    Saxon, D.S.

    2010-01-01

    Phys. Conf. , C.A.P. Chalk River (1978) IV.1 2. S. Gales, S.3. T.L. Khoo et al.. Chalk River Nuclear Laboratory reportEnergy of Canada Ltd. , Chalk River Nuclear Laboratories,

  6. Research in theoretical nuclear and neutrino physics. Final report

    Office of Scientific and Technical Information (OSTI)

    ANNIHILATION; FLAVOR MODEL; SUPERNOVAE; QUANTUM CHROMODYNAMICS; HEAVY ION REACTIONS; SUN; NUCLEAR THEORY; CONVERSION; CHARM PARTICLES; PROGRESS REPORT; NONLUMINOUS MATTER; STAR...

  7. High Energy Particles in the Solar Corona

    E-Print Network [OSTI]

    A. Widom; Y. N. Srivastava; L. Larsen

    2008-04-16

    Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

  8. Nuclear Physics and National Security in an Age of Terrorism

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    235 neutrons A Chain Reaction #12;Nuclear Weapons 101 · A uranium, gun-type nuclear weapon - High (Tumbler Snapper). The fireball is about 20 m across. #12;HEU Gun-Type Design The figure to the right shows, University of Richmond, Virginia Outline: 1. How do we assess the threat? 1. Nuclear Weapons 101 2. Catching

  9. Machine Learning Methods for Data Driven Theory in the Physical Sciences with Applications to Confinement Regime Identification in Nuclear Fusion

    E-Print Network [OSTI]

    Machine Learning Methods for Data Driven Theory in the Physical Sciences with Applications to Confinement Regime Identification in Nuclear Fusion

  10. JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

    E-Print Network [OSTI]

    JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

  11. Nuclear Physics A531 (1991) 253-284 North-Holland

    E-Print Network [OSTI]

    Seevinck, Michiel

    1991-01-01

    Nuclear Physics A531 (1991) 253-284 North-Holland F E ATIO SINGLE-PARTICLE STRENGTH A E VA SHELL MODEL* M.G.E. BRAND, G.A. RIJSDIJK, F.A. MULLER and K. ALLAAR° Department of Physics and Astronomy, Free University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands W.H. DICKHOFF Department of Physics

  12. Nuclear Physics A519 (1990) 141c-156c 141c North-Holland

    E-Print Network [OSTI]

    Bauer, Wolfgang

    1990-01-01

    Nuclear Physics A519 (1990) 141c-156c 141c North-Holland COLLECTIVE FLOW, MULTI-FRAGMENT EMISSION of Physics and Astronomy Michigan State University, East Lansing, MI 48824-1321, USA and A. Nadasen Department of Physics University of Michigan at Dearborn, Dearborn, MI 48128, USA Using the MSU 41r Array

  13. Nuclear Physics A538 (1992) 83c-90c North-Holland, Amsterdam

    E-Print Network [OSTI]

    Bauer, Wolfgang

    1992-01-01

    Nuclear Physics A538 (1992) 83c-90c North-Holland, Amsterdam Wolfgang Bauer National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East.V. All rights reserved. C EA PHYSICS A Hadronic Transport Properties in Intermediate Energy Heavy Ion

  14. MRI: Acquisition of a computing cluster for nuclear physics and astrophysics research at the University of Richmond

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    MRI: Acquisition of a computing cluster for nuclear physics and astrophysics research, 23173 USA January 25, 2007 1 #12;2 Contents 1 Introduction 1 2 Nuclear Physics 1 2.1 Out.5 Role of Senior Personnel in Nuclear Physics . . . . . . . . . . . . . . . . . . . . . . 4 3

  15. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    SciTech Connect (OSTI)

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations.

  16. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission

    E-Print Network [OSTI]

    California at Berkeley, University of

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission R. P. fla B. Dennis, G mission is to investigate the physics of particle acceleration and energy release in solar flares, through-ray/gamma-ray spectroscopy 1. INTRODUCTION The primary scientific objective of the Reuven Ramaty High Energy Solar

  17. r-Java 2.0: the nuclear physics

    E-Print Network [OSTI]

    M. Kostka; N. Koning; Z. Shand; R. Ouyed; P. Jaikumar

    2014-02-16

    [Aims:] We present r-Java 2.0, a nucleosynthesis code for open use that performs r-process calculations as well as a suite of other analysis tools. [Methods:] Equipped with a straightforward graphical user interface, r-Java 2.0 is capable of; simulating nuclear statistical equilibrium (NSE), calculating r-process abundances for a wide range of input parameters and astrophysical environments, computing the mass fragmentation from neutron-induced fission as well as the study of individual nucleosynthesis processes. [Results:] In this paper we discuss enhancements made to this version of r-Java, paramount of which is the ability to solve the full reaction network. The sophisticated fission methodology incorporated into r-Java 2.0 which includes three fission channels (beta-delayed, neutron-induced and spontaneous fission) as well as computation of the mass fragmentation is compared to the upper limit on mass fission approximation. The effects of including beta-delayed neutron emission on r-process yield is studied. The role of coulomb interactions in NSE abundances is shown to be significant, supporting previous findings. A comparative analysis was undertaken during the development of r-Java 2.0 whereby we reproduced the results found in literature from three other r-process codes. This code is capable of simulating the physical environment of; the high-entropy wind around a proto-neutron star, the ejecta from a neutron star merger or the relativistic ejecta from a quark nova. As well the users of r-Java 2.0 are given the freedom to define a custom environment. This software provides an even platform for comparison of different proposed r-process sites and is available for download from the website of the Quark-Nova Project: http://quarknova.ucalgary.ca/

  18. Scalar field and QCD constraints in Nuclear Physics

    E-Print Network [OSTI]

    M. Ericson; G. Chanfray

    2008-04-10

    Relativistic theories of nuclear matter are discussed in a new pespective. First the chiral character of the scalar nuclear field is introduced in the framework of the linear sigma model. With the assumption that the nucleon mass originates in part from the coupling to the quark condensate it is possible to relate the optical potential for the propagation of the scalar field to the QCD scalar susceptibility of the nucleon, on which indications exist from the lattice evolution of the nucleon mass with the quark mass. Constraining the parameters of the nuclear scalar potential by the lattice expansion parameters a successful description of the nuclear saturation properties can be reached.

  19. High Energy Density Microwaves

    SciTech Connect (OSTI)

    Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  20. MIT Research using High-Energy Density Plasmas at OMEGA and the NIF

    E-Print Network [OSTI]

    MIT Research using High-Energy Density Plasmas at OMEGA and the NIF Hans Rinderknecht Wednesday He D-D T 2.3 m SiO2 D3He gas 860 m #12;The High Energy Density Physics Division at MIT of Inertial Confinement Fusion (ICF) implosions VII. Proton Radiography #12;High Energy Density Physics