National Library of Energy BETA

Sample records for high-density charge storage

  1. Durable high-density data storage

    SciTech Connect (OSTI)

    Stutz, R.A.; Lamartine, B.C.

    1996-09-01

    This paper will discuss the Focus Ion Beam (FIB) milling process, media life considerations, and methods of reading the micromilled data. The FIB process for data storage provides a new non-magnetic storage method for archiving large amounts of data. The process stores data on robust materials such as steel, silicon, and gold coated silicon. The storage process was developed to provide a method to insure the long term storage life of data. We estimate the useful life of data written on silicon or gold coated silicon to be a few thousand years. The process uses an ion beam to carve material from the surface much like stone cutting. The deeper information is carved into the media the longer the expected life of the information. The process can read information in three formats: (1) binary at densities of 3.5 Gbits/cm{sup 2}, (2) alphanumeric at optical or non-optical density, and (3) graphical at optical and non-optical density. The formats can be mixed on the same media; and thus it is possible to record, in a human readable format, instructions that can be read using an optical microscope. These instructions provide guidance on reading the higher density information.

  2. Spectroscopic Feedback for High Density Data Storage and Micromachining

    DOE Patents [OSTI]

    Carr, Christopher W. (Livermore, CA); Demos, Stavros (Livermore, CA); Feit, Michael D. (Livermore, CA); Rubenchik, Alexander M. (Livermore, CA)

    2008-09-16

    Optical breakdown by predetermined laser pulses in transparent dielectrics produces an ionized region of dense plasma confined within the bulk of the material. Such an ionized region is responsible for broadband radiation that accompanies a desired breakdown process. Spectroscopic monitoring of the accompanying light in real-time is utilized to ascertain the morphology of the radiated interaction volume. Such a method and apparatus as presented herein, provides commercial realization of rapid prototyping of optoelectronic devices, optical three-dimensional data storage devices, and waveguide writing.

  3. Battery concepts for high density energy storage: Principles and practice. C. Austen Angell

    E-Print Network [OSTI]

    Angell, C. Austen

    of biblical times. Currently, success in this area is critical if solar energy harnessing is to become tolerate voltages above 5V, are needed. In this area, unlike materials science, the technology developedBattery concepts for high density energy storage: Principles and practice. C. Austen Angell Dept

  4. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    SciTech Connect (OSTI)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  5. A Microelectromechanical High-Density Energy Storage/Rapid Release System

    SciTech Connect (OSTI)

    Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Sam L.

    1999-07-21

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  6. High-Density Optical Data Storage Enabled by the Photonic Nanojet from a Dielectric Microsphere

    E-Print Network [OSTI]

    Taflove, Allen

    ossless dielectric cylinders and spheres under elec- tromagnetic wave illumination can generate a narrow data- storage capacity. # 2009 The Japan Society of Applied Physics DOI: 10.1143/JJAP.48.03A008 L : 1.3) The photonic nanojet is not an evanescent wave, despite its location in the near field

  7. Metalloboranes from first-principles calculations: A candidate for high-density hydrogen storage

    E-Print Network [OSTI]

    Akbarzadeh, A R; Tymczak, C J

    2015-01-01

    Using first principles calculations, we show the high hydrogen storage capacity of a new class of compounds, metalloboranes. Metalloboranes are transition metal (TM) and borane compounds that obey a novel-bonding scheme. We have found that the transition metal atoms can bind up to 10 H2 molecules.

  8. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  9. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  10. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same

    DOE Patents [OSTI]

    Goyal, Amit; Shin, Junsoo

    2014-04-01

    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  11. Electron Charged Graphite-based Hydrogen Storage Material

    SciTech Connect (OSTI)

    Dr. Chinbay Q. Fan R&D Manager Office of Technology and Innovations Phone: 847 768 0812

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  12. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores

    SciTech Connect (OSTI)

    Qiao, Rui; Meunier, V.; Huang, Jingsong; Wu, Peng; Sumpter, Bobby G

    2012-01-01

    Using molecular dynamics simulations, we show that charge storage in subnanometer pores follows a distinct voltage-dependent behavior. Specifically, at lower voltages, charge storage is achieved by swapping co-ions in the pore with counterions in the bulk electrolyte. As voltage increases, further charge storage is due mainly to the removal of co-ions from the pore, leading to a capacitance increase. The capacitance eventually reaches a maximum when all co-ions are expelled from the pore. At even higher electrode voltages, additional charge storage is realized by counterion insertion into the pore, accompanied by a reduction of capacitance. The molecular mechanisms of these observations are elucidated and provide useful insight for optimizing energy storage based on supercapacitors.

  13. Technology available for license: Charging of liquid energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology available for license: Charging of liquid energy storage media through radiolysis (ANL-IN-14-036) January 23, 2015 Tweet EmailPrint This technology utilizes radiolysis...

  14. Charge Allocation for Hybrid Electrical Energy Storage Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    Charge Allocation for Hybrid Electrical Energy Storage Systems Qing Xie1, Yanzhi Wang1, Younghyun Hybrid electrical energy storage (HEES) systems, composed of multiple banks of heterogeneous electrical to efficiently store and retrieve electrical energy while attaining performance metrics that are close

  15. ISIS2: Pixel Sensor with Local Charge Storage for ILC Vertex Detector

    E-Print Network [OSTI]

    Yiming Li; Chris Damerell; Rui Gao; Rhorry Gauld; Jaya John John; Peter Murray; Andrei Nomerotski; Konstantin Stefanov; Steve Thomas; Helena Wilding; Zhige Zhang

    2010-07-14

    ISIS (In-situ Storage Imaging Sensor) is a novel CMOS sensor with multiple charge storage capability developed for the ILC vertex detector by the Linear Collider Flavour Identification (LCFI) collaboration. This paper reports test results for ISIS2, the second generation of ISIS sensors implemented in a 0.18 micron CMOS process. The local charge storage and charge transfer were unambiguously demonstrated.

  16. Efficiency-Driven Design Time Optimization of a Hybrid Energy Storage System with Networked Charge Transfer

    E-Print Network [OSTI]

    Pedram, Massoud

    Efficiency-Driven Design Time Optimization of a Hybrid Energy Storage System with Networked Charge efficiency for various problem setups and scales. Keywords--hybrid energy storage system; networked charge transfer interconnect; placement I. INTRODUCTION Energy storage systems (ESSs) store the excess energy

  17. Light Effects on the Charge Storage in the A-SI:H Pin Diode 

    E-Print Network [OSTI]

    Wu, Shu-Hsien

    2013-04-19

    was verified with a pre-fabricated circuit which is a charge storage readout device. The diode under the long wavelength light illumination condition stored more charges than that under the short wavelength light illumination condition because the former could...

  18. Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    1 Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage reserves. A power balancing strategy based on a local energy storage system (ESS) is proposed in this paper], [8]. The aim of this paper is to address the problem by intro- ducing a dedicated energy storage

  19. Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage Systems*

    E-Print Network [OSTI]

    Pedram, Massoud

    Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage massimo.poncino@polito.it Abstract-- Hybrid electrical energy storage (HEES) systems consist of multiple banks of heterogeneous electrical energy storage (EES) elements that are connected to each other through

  20. High-density fluid compositions

    SciTech Connect (OSTI)

    Sanders, D.C.

    1981-09-29

    Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.

  1. Charge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    )-investment in the generation facilities. Electrical energy storage (EES) systems can thus increase power reliabilityCharge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems ABSTRACT Electrical energy is high-quality form of energy, and thus it is ben- eficial to store

  2. Electron shielding of vortons in high-density quark matter

    E-Print Network [OSTI]

    Paulo F. Bedaque; Evan Berkowitz; Geoffrey Ji; Nathan Ng

    2011-12-06

    We consider the the effect of the electron cloud about a vorton in the CFL-$K^0$ high-density phase by numerically solving the ultrarelativistic Thomas-Fermi equation about a toroidal charge. Including electrons removes the electric monopole contribution to the energy, and noticeably decreases the equilibrium radius of these stable vortex loops.

  3. Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization

    E-Print Network [OSTI]

    Subramanian, Venkat

    Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization Ravi The optimal profile of charging current for a lithium-ion battery is estimated using dynamic optimization sources such as lithium-ion batteries have had significant improvements in design, modeling, and operating

  4. Charging system and method for multicell storage batteries

    DOE Patents [OSTI]

    Cox, Jay A. (Rolling Hills Estates, CA)

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  5. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  6. Thermal response of a series- and parallel-connected solar energy storage to multi-day charge sequences

    SciTech Connect (OSTI)

    Cruickshank, Cynthia A.; Harrison, Stephen J.

    2011-01-15

    The thermal response of a multi-tank thermal storage was studied under variable charge conditions. Tests were conducted on an experimental apparatus that simulated the thermal charging of the storage system by a solar collector over predetermined (prescribed) daylong periods. The storage was assembled from three standard 270 L hot-water storage tanks each charged through coupled, side-arm, natural convection heat exchangers which were connected in either a series- or parallel-flow configuration. Both energy storage rates and tank temperature profiles were experimentally measured during charge periods representative of two consecutive clear days or combinations of a clear and overcast day. During this time, no draw-offs were conducted. Of particular interest was the effect of rising and falling charge-loop temperatures and collector-loop flow rate on storage tank stratification levels. Results of this study show that the series-connected thermal storage reached high levels of temperature stratification in the storage tanks during periods of rising charge temperatures and also limited destratification during periods of falling charge temperature. This feature is a consequence of the series-connected configuration that allowed sequential stratification to occur in the component tanks and energy to be distributed according to temperature level. This effect was not observed in the parallel charge configuration. A further aspect of the study investigated the effect of increasing charge-loop flow rate on the temperature distribution within the series-connected storage and showed that, at high flow rates, the temperature distributions were found to be similar to those obtained during parallel charging. A disadvantage of both the high-flow series-connected and parallel-connected multi-tank storage is that falling charge-loop temperatures, which normally occur in the afternoon, tend to mix and destratify the storage tanks. (author)

  7. Method for charging and discharging a latent-heat storage medium and heat storage

    SciTech Connect (OSTI)

    Kreikenbohm, R.; Reusch, H.

    1982-12-28

    A heat storage unit is disclosed having a vertically cylindrical container accommodating a latent-heat storage medium and a conduit introducing a heat carrier liquid not miscible with the medium at the bottom of the container. The conduit has an exit nozzle which is located outside the axial center of the cylinder and nearly perpendicular to the radius of the cylinder so that the heat carrier liquid enters the cylinder at the bottom in a direction to cause the heat storage melt to be set into a rotary motion.

  8. Method for charging and discharging a latent-heat storage medium and heat storage

    SciTech Connect (OSTI)

    Kreikenbohm, R.; Reusch, H.

    1981-10-13

    A heat storage unit is disclosed having a vertically cylindrical container accommodating a latent-heat storage medium and a conduit introducing a heat carrier liquid not miscible with the medium at the bottom of the container. The conduit has an exit nozzle which is located outside the axial center of the cylinder and nearly perpendicular to the radius of the cylinder so that the heat carrier liquid enters the cylinder at the bottom in a direction to cause the heat storage melt to be set into a rotary motion.

  9. Principles and Efficient Implementation of Charge Replacement in Hybrid Electrical Energy Storage

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Principles and Efficient Implementation of Charge Replacement in Hybrid Electrical Energy Storage energy generation and consumption rates are typ- ically not matched with each other. Electrical energy of the electrical energy, mitigate the supply-demand mismatch- es, and reduce the power generation capacity required

  10. SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage

    E-Print Network [OSTI]

    Kurose, Jim

    SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage Aditya Mishra, David,irwin,shenoy,kurose}@cs.umass.edu Ting Zhu Binghamton University tzhu@binghamton.edu ABSTRACT Market-based electricity pricing provides consumers an op- portunity to lower their electric bill by shifting consump- tion to low price periods

  11. Charge Storage in Organic Electrodes for Energy & Electrochemical Applications 

    E-Print Network [OSTI]

    Jeon, Ju Won

    2014-10-15

    ………………………………………………………………...………138 vii LIST OF FIGURES Page 1.1 Various cathode and anode materials with their potential and capacity..……...……3 1.2 Schematic illustration of the discharge and charge processes of a lithium rechargeable battery....13 Graphs of log i vs. log ? for (a) anodic and (b) cathodic scans of the 347 nm thick (PANI-NF2.5/ERGO3.5) LbL electrodes used to obtain b values. The calculation was performed using cyclic voltammograms from 1 to 5 mV/s….....101 4.14 Calculated b...

  12. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  13. Improved porous mixture of molybdenum nitride and tantalum oxide as a charge storage material

    SciTech Connect (OSTI)

    Deng, C.Z.; Pynenburg, R.A.J.; Tsai, K.C.

    1998-04-01

    High surface area {gamma}-molybdenum nitride has shown promise as a charge storage material. The addition of amorphous tantalum oxide to the molybdenum nitride system not only improves the film cohesion tremendously, but also widens the voltage stability window from 0.8 to 1.1 V. This occurs without adversely effecting the capacitance. Ultracapacitors, also called supercapacitors or electrochemical capacitors, are high power storage devices which have found application in products as diverse as cardiac pacemakers, cellular phones, electric vehicles, and air bags.

  14. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect (OSTI)

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  15. Method Of Charging Maintenance-Free Nickel Metal Hydride Storage Cells

    DOE Patents [OSTI]

    Berlureau, Thierry (Bordeaux, FR); Liska, Jean-Louis (Bordeaux, FR)

    1999-11-16

    A method of charging an industrial maintenance-free Ni-MH storage cell, the method comprising in combination a first stage at a constant current I.sub.1 lying in the range I.sub.c /10 to I.sub.c /2, and a second stage at a constant current I.sub.2 lying in the range I.sub.c /50 to I.sub.c /10, the changeover from the first stage to the second stage taking place when the time derivative of the temperature reaches a threshold value which varies as a function of the temperature at the time of the changeover.

  16. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage

    SciTech Connect (OSTI)

    Castello, Charles C; LaClair, Tim J; Maxey, L Curt

    2014-01-01

    The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

  17. Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Hetero-Nanosheets in Hierarchical Architectures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahmood, Qasim [Department of Chemical Engineering, College of Engineering, Kyung Hee University (Republic of Korea); Bak, Seong-Min [Brookhaven National Laboratory (BNL), Upton, NY (United States); Kim, Min G. [Beamline Research Division, Pohang Accelerator Laboratory, Pohang (Republic of Korea); Yun, Sol [School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon (Republic of Korea); Yang, Xiao-Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States); Shin, Hyeon S. [Department of Energy Engineering, Department of Chemistry, and Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology(UNIST) (Republic of Korea); Kim, Woo S. [Department of Chemical Engineering, College of Engineering, Kyung Hee University (Republic of Korea); Braun, Paul V. [Department of Materials Science and Engineering Materials Research Laboratory and Beckman Institute, University of Illinois at Urbana?Champaign, Urbana, Illinois (United States); Park, Ho S. [School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon (Republic of Korea)

    2015-04-08

    Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to the interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane W–S lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of W–W bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.

  18. Method of high-density foil fabrication

    DOE Patents [OSTI]

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  19. Lithium Charge Storage Mechanisms of Cross-Linked Triazine Networks and Their Porous Carbon Derivatives

    E-Print Network [OSTI]

    2015-01-01

    K. ; Inoue, Y. A New Energy Storage Material: OrganosulfurS. ; Eckert, J. An Energy Storage Principle Using Bipolarfor a Sodium-Organic Energy Storage Device. Nat. Commun.

  20. Ultra-high density diffraction grating

    DOE Patents [OSTI]

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  1. Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Hetero-Nanosheets in Hierarchical Architectures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahmood, Qasim; Bak, Seong-Min; Kim, Min G.; Yun, Sol; Yang, Xiao-Qing; Shin, Hyeon S.; Kim, Woo S.; Braun, Paul V.; Park, Ho S.

    2015-03-03

    Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to themore »interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane W–S lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of W–W bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.« less

  2. Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process

    E-Print Network [OSTI]

    Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process J. Z. Lu,1 Q. Wu,1 I. I parameters for the wood-fiber/high-density-polyethylene blends at 60 rpm were a temperature of 180°C

  3. Lanai high-density irradiance sensor network for characterizing...

    Office of Scientific and Technical Information (OSTI)

    Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system. Citation Details In-Document Search Title: Lanai high-density...

  4. The Chemistry of Atherogenic High Density Lipoprotein 

    E-Print Network [OSTI]

    Moore, D'Vesharronne J.

    2012-07-16

    in the mass to charge ratios corresponding to apoC-I peaks in the serum subfractions from all CAD cohort patients. This shifting was not observed in the non-CAD cohort, which displayed apoC-I peaks in accordance with the known mass of this protein...

  5. Measurement of Permanent Electric Dipole Moments of Charged Hadrons in Storage Rings

    E-Print Network [OSTI]

    Jörg Pretz

    2013-07-30

    Permanent Electric Dipole Moments (EDMs) of elementary particles violate two fundamental symmetries: time reversal invariance (T) and parity (P). Assuming the CPT theorem this implies CP-violation. The CP-violation of the Standard Model is orders of magnitude too small to be observed experimentally in EDMs in the foreseeable future. It is also way too small to explain the asymmetry in abundance of matter and anti-matter in our universe. Hence, other mechanisms of CP violation outside the realm of the Standard Model are searched for and could result in measurable EDMs. Up to now most of the EDM measurements were done with neutral particles. With new techniques it is now possible to perform dedicated EDM experiments with charged hadrons at storage rings where polarized particles are exposed to an electric field. If an EDM exists the spin vector will experience a torque resulting in change of the original spin direction which can be determined with the help of a polarimeter. Although the principle of the measurement is simple, the smallness of the expected effect makes this a challenging experiment requiring new developments in various experimental areas. Complementary efforts to measure EDMs of proton, deuteron and light nuclei are pursued at Brookhaven National Laboratory and at Forschungszentrum Juelich with an ultimate goal to reach a sensitivity of 10^{-29} e cm.

  6. Lithium Charge Storage Mechanisms of Cross-Linked Triazine Networks and Their Porous Carbon Derivatives

    E-Print Network [OSTI]

    2015-01-01

    K. ; Inoue, Y. A New Energy Storage Material: OrganosulfurA New Cathode Material for Batteries of High Energy Density.

  7. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  8. Irradiation effects in high-density polyethylene Jussi Polvia

    E-Print Network [OSTI]

    Nordlund, Kai

    Irradiation effects in high-density polyethylene Jussi Polvia , Kai Nordlunda a simulations, we have studied the irradiation effects in high density polyethylene. We determined the threshold for the hydrogen atoms in the polyethylene chain. Keywords: molecular dynamics, irradiation, damage threshold

  9. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  10. A study of electromagnetic showers in the high density projection chamber

    SciTech Connect (OSTI)

    Albrecht, E.; Berggren, M.; Cattai, A.; Fischer, H.G.; Flammier, M.; Gerutti, G.; Innocenti, P.G.; Iversen, P.S.

    1983-02-01

    A prototype module of a High density Projection Chamber (HPC) has been tested in an electron beam. The HPC, with the shower conversion separated from the charge collection, offers a simple, homogeneous large volume detector with an energy resolution of 12.5%/..sqrt..E and an exceptionally fine granularity both along and transverse to the shower axis. The results from the test are presented together with a description of the calorimeter system.

  11. Observable to explore high density behaviour of symmetry energy

    E-Print Network [OSTI]

    Aman D. Sood

    2011-09-28

    We aim to see the sensitivity of collective transverse in-plane flow to symmetry energy at low as well as high densities and also to see the effect of different density dependencies of symmetry energy on the same.

  12. Triboelectric charging of a perfluoropolyether lubricant J. V. Wasem, B. L. LaMarche, S. C. Langford, and J. T. Dickinsona)

    E-Print Network [OSTI]

    Dickinson, J. Thomas

    Triboelectric charging of a perfluoropolyether lubricant J. V. Wasem, B. L. LaMarche, S. C extensively to lubricate hard disks for high density information storage. Some PFPE lubricants have been shown generated during sliding contact may generate quasi-free electrons capable of degrading the lubricant. We

  13. Field of a moving locked charge as applied to beam-beam interactions in storage rings

    E-Print Network [OSTI]

    Alexander J. Silenko

    2015-07-20

    It is shown that the Lorentz transformation cannot in general be formally applied to potentials and fields of particles locked in a certain region. In particular, this property relates to nucleons in nuclei and to particles and nuclei in storage rings. Even if they move with high velocities, their electric fields are defined by the Coulomb law. The result obtained is rather important for the planned deuteron electric-dipole-moment experiment in storage rings.

  14. Field of a moving locked charge as applied to beam-beam interactions in storage rings

    E-Print Network [OSTI]

    Silenko, Alexander J

    2015-01-01

    It is shown that the Lorentz transformation cannot in general be formally applied to potentials and fields of particles locked in a certain region. In particular, this property relates to nucleons in nuclei and to particles and nuclei in storage rings. Even if they move with high velocities, their electric fields are defined by the Coulomb law. The result obtained is rather important for the planned deuteron electric-dipole-moment experiment in storage rings.

  15. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors

    SciTech Connect (OSTI)

    Simon, P.; Gogotsi, Y.

    2010-06-21

    Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors.

  16. Annealed high-density amorphous ice under pressure

    E-Print Network [OSTI]

    Loss, Daniel

    : 28 May 2006; doi:10.1038/nphys313 The well-known expansion of water on cooling below 277 K is one below 277 K responsible for lakes and seas freezing from the top down. This curious behaviour has been- order transition line between low- and high-density water below 220 K, but that cannot be tested

  17. ORIGINAL PAPER BambooFiber Filled High Density Polyethylene Composites

    E-Print Network [OSTI]

    strength, bending modulus and strength were improved with the use of MAPE. The use of the clayORIGINAL PAPER Bamboo­Fiber Filled High Density Polyethylene Composites: Effect of Coupling to achieve clay exfoliation. For pure HDPE system, both dynamic and static bending moduli increased, while

  18. Linear dynamics of charged particles in the main lattices of storage rings

    E-Print Network [OSTI]

    Shishanin, Oleg

    2015-01-01

    To study the characteristics of synchrotron radiation in magnetic fields of accelerators first the author was necessary to obtain a continuous solutions of Hill's equation. For this purpose the gradient or the components of magnetic field were developed in a series. The same procedure is followed now in the case of storage rings. This approach proved to be interesting not only from the point of view of describing the motion of partiles in ordinary three-dimensional space but also in the fact that we get new differential equations. This brief review can be regarded as an introduction to the proposed method. The next step may be to add nonlinearities. This would be the best approximation to the determination of betatron oscillations in the existing accelerators.

  19. Magnetic confinement of a high-density cylindrical plasma

    SciTech Connect (OSTI)

    Ahedo, Eduardo [E. T. S. Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-10-15

    The stationary structure of a weakly collisional plasma column, confined by an axial magnetic field and a cylindrical vessel, is studied for the high-density case, when the diamagnetic azimuthal current is large enough to demagnetize partially the plasma. The plasma response is characterized mainly by two dimensionless parameters: the ratios of the electron gyroradius and the electron skin-depth to the plasma radius, and each of them measures the independent influence of the applied magnetic field and the plasma density on the plasma response. The strong magnetic confinement regime, characterized by very small wall losses, is limited to the small gyroradius and large skin-depth ranges. In the high-density case, when the electron skin-depth is smaller than the electron gyroradius, the skin-depth turns out to be the magnetic screening length, so that the bulk of the plasma behaves as unmagnetized.

  20. Project Profile: Thermochemical Heat Storage for CSP Based on Multivalent Metal Oxides

    Broader source: Energy.gov [DOE]

    General Atomics (GA), under the Thermal Storage FOA, is developing a high-density thermochemical heat storage system based on solid metal oxides.

  1. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors

    SciTech Connect (OSTI)

    Zhang, Hongxin; Bhat, Vinay V; Gallego, Nidia C; Contescu, Cristian I

    2012-01-01

    Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

  2. Light-induced charge separation and storage in titanium oxide gels

    SciTech Connect (OSTI)

    Kuznetsov, A.I.; Kameneva, O.; Alexandrov, A.; Bityurin, N.; Marteau, Ph.; Chhor, K.; Kanaev, A.; Sanchez, C.

    2005-02-01

    We report on the interaction of light with a particular class of media--wet gels, which in contrast to sols of nanoparticles possess a macroscopic bulk structure, and which differ from conventional solids by the existence of the internal liquid-solid interface. We show, taking an absorption cross section of trapped electrons from Safrany, Gao, and Rabani [J. Phys. Chem. B 104, 5848 (2000)], that a separation of charges with quantum efficiency as high as 46% appears under the band-gap irradiation of titanium oxide gels: electrons are stored in the gel network as Ti{sup 3+} centers, whereas holes are stored in the liquid phase. Under a prolonged UV-laser irradiation, more than 14% of Ti{sup 4+} centers can be converted into Ti{sup 3+}. Their lifetime can be extremely long and exceeds months at room temperature. The trapped electrons are responsible for a 'dark' absorption continuum covering the spectral range from 350 nm to 2.5 {mu}m.

  3. High density electronic circuit and process for making

    DOE Patents [OSTI]

    Morgan, W.P.

    1999-06-29

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  4. A Cherenkov Radiation Detector with High Density Aerogels

    E-Print Network [OSTI]

    Cremaldi, Lucien; Sonnek, Peter; Summers, Donald J; Reidy, Jim

    2009-01-01

    We have designed a threshold Cherenkov detector at the Rutherford-Appleton Laboratory to identify muons with momenta between 230 and 350 MeV/c. We investigated the properties of three aerogels for the design. The nominal indexes of refraction were n = 1.03, 1.07, 1.12, respectively. Two of the samples are of high density aerogel not commonly used for Cherenkov light detection. We present results of an examination of some optical properties of the aerogel samples and present basic test beam results.

  5. Charge and frequency resolved isochronous mass spectrometry in storage rings: First direct mass measurement of the short-lived neutron-deficient $^{51}$Co nuclide

    E-Print Network [OSTI]

    P. Shuai; H. S. Xu; X. L. Tu; Y. H. Zhang; B. H. Sun; Yu. A. Litvinov; X. L. Yan; K. Blaum; M. Wang; X. H. Zhou; J. J. He; Y. Sun; K. Kaneko; Y. J. Yuan; J. W. Xia; J. C. Yang; G. Audi; X. C. Chen; G. B. Jia; Z. G. Hu; X. W. Ma; R. S. Mao; B. Mei; Z. Y. Sun; S. T. Wang; G. Q. Xiao; X. Xu; T. Yamaguchi; Y. Yamaguchi; Y. D. Zang; H. W. Zhao; T. C. Zhao; W. Zhang; W. L. Zhan

    2014-04-08

    Revolution frequency measurements of individual ions in storage rings require sophisticated timing detectors. One of common approaches for such detectors is the detection of secondary electrons released from a thin foil due to penetration of the stored ions. A new method based on the analysis of intensities of secondary electrons was developed which enables determination of the charge of each ion simultaneously with the measurement of its revolution frequency. Although the mass-over-charge ratios of $^{51}$Co$^{27+}$ and $^{34}$Ar$^{18+}$ ions are almost identical, and therefore, the ions can not be resolved in a storage ring, by applying the new method the mass excess of the short-lived $^{51}$Co is determined for the first time to be ME($^{51}$Co)=-27342(48) keV. Shell-model calculations in the $fp$-shell nuclei compared to the new data indicate the need to include isospin-nonconserving forces.

  6. Charge and frequency resolved isochronous mass spectrometry in storage rings: First direct mass measurement of the short-lived neutron-deficient $^{51}$Co nuclide

    E-Print Network [OSTI]

    Shuai, P; Tu, X L; Zhang, Y H; Sun, B H; Litvinov, Yu A; Yan, X L; Blaum, K; Wang, M; Zhou, X H; He, J J; Sun, Y; Kaneko, K; Yuan, Y J; Xia, J W; Yang, J C; Audi, G; Chen, X C; Jia, G B; Hu, Z G; Ma, X W; Mao, R S; Mei, B; Sun, Z Y; Wang, S T; Xiao, G Q; Xu, X; Yamaguchi, T; Yamaguchi, Y; Zang, Y D; Zhao, H W; Zhao, T C; Zhang, W; Zhan, W L

    2014-01-01

    Revolution frequency measurements of individual ions in storage rings require sophisticated timing detectors. One of common approaches for such detectors is the detection of secondary electrons released from a thin foil due to penetration of the stored ions. A new method based on the analysis of intensities of secondary electrons was developed which enables determination of the charge of each ion simultaneously with the measurement of its revolution frequency. Although the mass-over-charge ratios of $^{51}$Co$^{27+}$ and $^{34}$Ar$^{18+}$ ions are almost identical, and therefore, the ions can not be resolved in a storage ring, by applying the new method the mass excess of the short-lived $^{51}$Co is determined for the first time to be ME($^{51}$Co)=-27342(48) keV. Shell-model calculations in the $fp$-shell nuclei compared to the new data indicate the need to include isospin-nonconserving forces.

  7. Analysis of Heat Charging and Discharging on the Phase Change Energy-Storage Composite Wallboard (PCECW) in Building 

    E-Print Network [OSTI]

    Yue, H.; Chen, C.; Liu, Y.; Guo, H.

    2006-01-01

    This research paper combines the phase change material and the basal building material to constitute a kind of new phase change energy- storage composite wallboard (PCECW), applied in a residential building in Beijing. We analyzed the energy-storage...

  8. High-density percutaneous chronic connector for neural prosthetics

    SciTech Connect (OSTI)

    Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.

    2015-09-22

    A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnets are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.

  9. Methods and systems for rapid prototyping of high density circuits

    DOE Patents [OSTI]

    Palmer, Jeremy A. (Albuquerque, NM); Davis, Donald W. (Albuquerque, NM); Chavez, Bart D. (Albuquerque, NM); Gallegos, Phillip L. (Albuquerque, NM); Wicker, Ryan B. (El Paso, TX); Medina, Francisco R. (El Paso, TX)

    2008-09-02

    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  10. DC power supply for charging of a 12 KV 200 KJ energy storage capacitor battery of a 500 KA pulse system for the magnetic horn and reflectors of the CERN neutrino beam

    E-Print Network [OSTI]

    Langeseth, B

    1968-01-01

    DC power supply for charging of a 12 KV 200 KJ energy storage capacitor battery of a 500 KA pulse system for the magnetic horn and reflectors of the CERN neutrino beam

  11. Crystallographic texture evolution in high-density polyethylene during uniaxial tension

    E-Print Network [OSTI]

    Garmestani, Hamid

    Crystallographic texture evolution in high-density polyethylene during uniaxial tension D. Lia , H experimental measurements of crystallographic texture evolution in high-density polyethylene subjected to very straining of high-density polyethylene to large strains. There are at least three distinct preferred

  12. Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1

    E-Print Network [OSTI]

    Gerstein, Mark

    1 Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1 pipeline Key words: high-density tiling microarray, high-density oligonucleotide microarray, microarray processing pipeline for analyzing tiling array data (http://tilescope.gersteinlab.org). In a completely

  13. Wireless Geophone Networks (WGN) for high density land acquisitions*

    E-Print Network [OSTI]

    Savazzi, Stefano

    on the grid size and the particular acquisition geometry (e.g., the intervals among two receivers is limited as for multiple micro-line based geometries in figure 1. These limiting constraints suggest the adoption of an acquisition system that do not rely on cables. Receiver line Sub-surface Storage UnitShot Point Geophone Sub

  14. COMMENTS ON ANOMALOUS EFFECTS IN CHARGING OF PD POWDERS WITH HIGH DENSITY HYDROGEN ISOTOPES

    SciTech Connect (OSTI)

    Shanahan, K.

    2009-10-01

    In Kitamura, et al, Pd-containing materials are exposed to isotopes of hydrogen and anomalous results obtained. These are claimed to be a replication of another experiment conducted by Arata and Zhang. Erroneous basic assumptions are pointed out herein that alter the derived conclusions significantly. The final conclusion is that the reported results are likely normal chemistry combined with noise. Thus the claim to have proven that cold fusion is occurring in these systems is both premature and unlikely.

  15. Surface interactions involved in flashover with high density electronegative gases.

    SciTech Connect (OSTI)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  16. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    SciTech Connect (OSTI)

    Tang, Xia; Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of Ca(BH4)2 and Mg(BH4)2 in nano-frameworks did not improve their H2 absorption due to the formation of stable alkaline earth B12H12 intermediates upon rehydrogenation. This project primarily investigated the effect of nano-framework surface chemistry on hydride properties, while the effect of pore size is the focus area of other efforts (e.g., HRL, Sandia National Laboratories (SNL) etc.) within the Metal Hydride Center of Excellence (MHCoE). The projects were complementary in gaining an overall understanding of the influence of nano-frameworks on hydride behavior.

  17. High-density nanopore array for selective biomolecule transport.

    SciTech Connect (OSTI)

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  18. Shape stabilised phase change materials (SSPCMs): High density polyethylene and hydrocarbon waxes

    SciTech Connect (OSTI)

    Mu, Mulan, E-mail: mmu01@qub.ac.uk, E-mail: m.basheer@qub.ac.uk; Basheer, P. A. M., E-mail: mmu01@qub.ac.uk, E-mail: m.basheer@qub.ac.uk [School of Planning, Architecture and Civil Engineering, Queen's University Belfast, BT9 5AG (United Kingdom); Bai, Yun, E-mail: yun.bai@ucl.ac.uk [Department of Civil, Environmental and Geomatic Engineering, University College London, WC1E 6BT (United Kingdom); McNally, Tony, E-mail: t.mcnally@warwick.ac.uk [WMG, University of Warwick, CV4 7AL (United Kingdom)

    2014-05-15

    Shape stabilised phase change materials (SSPCMs) based on high density polyethylene (HDPE) with high (HPW, T{sub m}=56-58 °C) and low (L-PW, T{sub m}=18-23 °C) melting point waxes were prepared by melt-mixing in a twin-screw extruder and their potential in latent heat thermal energy storage (LHTES) applications for housing assessed. The structure and morphology of these blends were investigated by scanning electron microscopy (SEM). Both H-PW and L-PW were uniformly distributed throughout the HDPE matrix. The melting point and latent heat of the SSPCMs were determined by differential scanning calorimetry (DSC). The results demonstrated that both H-PW and L-PW have a plasticisation effect on the HDPE matrix. The tensile and flexural properties of the samples were measured at room temperature (RT, 20±2 °C) and 70 °C, respectively. All mechanical properties of HDPE/H-PW and HDPE/L-PW blends decreased from RT to 70 °C. In all instances at RT, modulus and stress, irrespective of the mode of deformation was greater for the HDPE/H-PW blends. However, at 70 °C, there was no significant difference in mechanical properties between the HDPE/H-PW and HDPE/L-PW blends.

  19. Charge Storage Behavior of Nanowire Transistors Functionalized with Bis(terpyridine)-Fe(II) Molecules: Dependence on Molecular Structure

    E-Print Network [OSTI]

    Zhou, Chongwu

    a floating gate can be charged or discharged via electron tunneling through a thin oxide layer.3 Replacing the insulating oxide layer with molecular components will further reduce device size and simplify fabrication

  20. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE Hydrogen and Fuel...

  1. Microslit Nod-shuffle Spectroscopy - a technique for achieving very high densities of spectra

    E-Print Network [OSTI]

    Glazebrook, K; Glazebrook, Karl; Bland-Hawthorn, Joss

    2000-01-01

    We describe a new approach to obtaining very high surface densities of optical spectra in astronomical observations with extremely accurate subtraction of night sky emission. The observing technique requires that the telescope is nodded rapidly between targets and adjacent sky positions; object and sky spectra are recorded on adjacent regions of a low-noise CCD through charge shuffling. This permits the use of extremely high densities of small slit apertures (`microslits') since an extended slit is not required for sky interpolation. The overall multi-object advantage of this technique is as large as 2.9x that of conventional multi-slit observing for an instrument configuration which has an underfilled CCD detector and is always >1.5 for high target densities. The `nod-shuffle' technique has been practically implemented at the Anglo-Australian Telescope as the `LDSS++ project' and achieves sky-subtraction accuracies as good as 0.04%, with even better performance possible. This is a factor of ten better than i...

  2. Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell

    E-Print Network [OSTI]

    Wang, Zhong L.

    Information ABSTRACT: Energy generation and energy storage are two distinct processes that are usually, such as piezoelectric nanogenerator and Li-ion battery; the former converts mechanical energy into electricity, and the latter stores electric energy as chemical energy. Here, we introduce a fundamental mechanism

  3. Flying-plate detonator using a high-density high explosive

    DOE Patents [OSTI]

    Stroud, John R. (Livermore, CA); Ornellas, Donald L. (Livermore, CA)

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  4. High density matter in AGS, SPS and RHIC collisions: Proceedings. Volume 9

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    This 1-day workshop focused on phenomenological models regarding the specific question of the maximum energy density achievable in collisions at AGS, SPS and RHIC. The idea was to have 30-minute (or less) presentations of each model--but not the model as a whole, rather then that strongly narrowed to the above physics question. The key topics addressed were: (1) to estimate the energy density in heavy-ion collisions within a model, and to discuss its physical implications; (2) to suggest experimental observables that may confirm the correctness of a model approach--with respect to the energy density estimate; (3) to compare with existing data from AGS and SPS heavy-ion collisions, and to give predictions for the future RHIC experiments. G. Ogilvie started up the workshop with a critical summary of experimental manifestations of high-density matter at the AGS, and gave a personal outlook on RHIC physics. R. Mattiello talked about his newly developed hadron cascade model for applications to AGS and SPS collisions. Next, D. Kharzeev gave a nice introduction of the Glauber approach to high-energy collisions and illustrated the predictive power of this approach in nucleus-nucleus collisions at the SPS. It followed S. Vance with a presentation of the baryon-junction model to explain the observed baryon stopping phenomenon in collisions of heavy nuclei. S. Bass continued with a broad perspective of the UrQMD model, and provided insight into the details of the microscopic dynamical features of nuclear collisions at high energy. J. Sandweiss and J. Kapusta addressed the interesting aspect of photon production in peripherical nuclear collisions due to intense electromagnetic bremstrahlung by the highly charged, fast moving ions. Finally, H. Sorge closed up the one-day workshop with a presentation of his recent work with the RQMD model. This report consists of a summary and vugraphs of the presentations.

  5. Microslit Nod-shuffle Spectroscopy - a technique for achieving very high densities of spectra

    E-Print Network [OSTI]

    Karl Glazebrook; Joss Bland-Hawthorn

    2000-11-04

    We describe a new approach to obtaining very high surface densities of optical spectra in astronomical observations with extremely accurate subtraction of night sky emission. The observing technique requires that the telescope is nodded rapidly between targets and adjacent sky positions; object and sky spectra are recorded on adjacent regions of a low-noise CCD through charge shuffling. This permits the use of extremely high densities of small slit apertures (`microslits') since an extended slit is not required for sky interpolation. The overall multi-object advantage of this technique is as large as 2.9x that of conventional multi-slit observing for an instrument configuration which has an underfilled CCD detector and is always >1.5 for high target densities. The `nod-shuffle' technique has been practically implemented at the Anglo-Australian Telescope as the `LDSS++ project' and achieves sky-subtraction accuracies as good as 0.04%, with even better performance possible. This is a factor of ten better than is routinely achieved with long-slits. LDSS++ has been used in various observational modes, which we describe, and for a wide variety of astronomical projects. The nod-shuffle approach should be of great benefit to most spectroscopic (e.g. long-slit, fiber, integral field) methods and would allow much deeper spectroscopy on very large telescopes (10m or greater) than is currently possible. Finally we discuss the prospects of using nod-shuffle to pursue extremely long spectroscopic exposures (many days) and of mimicking nod-shuffle observations with infrared arrays.

  6. Selected Physical Characteristics of Polystyrene/High Density Polyethylene Composites Prepared from Virgin

    E-Print Network [OSTI]

    Virgin and Recycled Materials Jayant Joshi, Richard Lehman, Thomas Nosker Rutgers University School: Mixtures of polystyrene and high density polyethylene were injection molded from recycled and virgin polymers to generate cocontinuous structures. The mechanical properties of these blends were evaluated

  7. Aerodynamic focusing of high-density aerosols D.E. Ruiz a,n

    E-Print Network [OSTI]

    be modeled by a simple drag force within a prescribed background flowing gas. The particle-to-gas feedback to study the properties of high-density aerosol focusing for 1 m silica spheres. Preliminary results

  8. Negatively Cooperative Binding of High-Density Lipoprotein to the HDL Receptor SR-BI

    E-Print Network [OSTI]

    Xu, Shangzhe

    Scavenger receptor class B, type I (SR-BI), is a high-density lipoprotein (HDL) receptor, which also binds low-density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. ...

  9. Lower hybrid current drive at high density in Alcator C-Mod

    E-Print Network [OSTI]

    Harvey, R.W.

    Experimental observations of lower hybrid current drive (LHCD) at high density on the Alcator C-Mod tokamak are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops ...

  10. , 2003, 123, . 3, . 1 16 c INTERNAL ENERGY OF HIGH-DENSITY HYDROGEN

    E-Print Network [OSTI]

    Bonitz, Michael

    �Ý��, 2003, òîì 123, âûï. 3, ñòð. 1#21;16 c 2003 INTERNAL ENERGY OF HIGH-DENSITY HYDROGEN 2002 The internal energy of high-density hydrogen plasmas in the temperature range T = 10000-Universität Berlin D-10115, Berlin, Germany b Institute for High Energy Density, Russian Academy of Sciences 127412

  11. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOE Patents [OSTI]

    Freitas, Barry L. (Livermore, CA)

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  12. Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report

    E-Print Network [OSTI]

    Lipman, Tim; Shah, Nihar

    2007-01-01

    State-of-the-Art Hydrogen Storage in Solids,” Presentationfor High Density Hydrogen storage,” Fuel Cell Seminar,for On-Board Vehicular Hydrogen Storage,” U.S. Department of

  13. Post regulation circuit with energy storage

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA)

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

  14. Insight into the Molecular Arrangement of High-Density Polyethylene Polymer Chains in Blends of Polystyrene/High-

    E-Print Network [OSTI]

    Insight into the Molecular Arrangement of High-Density Polyethylene Polymer Chains in Blends of Polystyrene/High- Density Polyethylene from Differential Scanning Calorimetry and Raman Techniques JAYANT/high-density polyethylene (PS/HDPE) blends were synthe- sized by melt blending in a single screw extruder. Co

  15. The final stage of gravitational collapse for high density fluid medium

    SciTech Connect (OSTI)

    Souza, R. G.; De Campos, M.

    2013-03-25

    The High density high density fluids can be represented by a stiff matter state equation P={rho} and also by the Hagedorn state equation. The first is constructed using a lagrangian that allows bare nucleons to interact attractively via scalar meson exchange, and repulsively by a more massive vector meson exchange; the second consider that for large mass the spectrum of hadrons grows exponentially, namely {rho}(m) {approx}exp(m/T{sub H}), where T{sub H} is the Hagedorn temperature, resulting the state equation P = P{sub 0}+{rho}{sub 0}ln({rho}/{rho}{sub 0}). We study the gravitational collapse for a high density fluid, considering a Hagedorn state equation in a presence of a vacuum component.

  16. High Density Neutron Star Equation of State from 4U 1636-53 Observations

    E-Print Network [OSTI]

    T. S. Olson

    2002-01-07

    A bound on the compactness of the neutron star in the low mass x-ray binary 4U 1636-53 is used to estimate the equation of state of neutron star matter at high density. Observations of 580 Hz oscillations during the rising phase of x-ray bursts from this system appear to be due to two antipodal hot spots on the surface of an accreting neutron star rotating at 290 Hz, implying the compactness of the neutron star is less than 0.163 at the 90% confidence level. The equation of state of high density neutron star matter estimated from this compactness limit is significantly stiffer than extrapolations to high density of equations of state determined by fits of experimental nucleon-nucleon scattering data and properties of light nuclei to two- and three-body interaction potentials.

  17. Energy storage in carbon nanotube super-springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2008-01-01

    A new technology is proposed for lightweight, high density energy storage. The objective of this thesis is to study the potential of storing energy in the elastic deformation of carbon nanotubes (CNTs). Prior experimental ...

  18. LOW POWER SCANNER FOR HIGH-DENSITY ELECTRODE ARRAY NEURAL RECORDING

    E-Print Network [OSTI]

    Mahmoodi, Hamid

    of this research is to design a low power integrated system that can be used in vivo for scanning the electrode. A model created in Python provides input vectors and output comparison for the verification processLOW POWER SCANNER FOR HIGH-DENSITY ELECTRODE ARRAY NEURAL RECORDING A Thesis work submitted

  19. Non-contact Low Power EEG/ECG Electrode for High Density Wearable Biopotential Sensor

    E-Print Network [OSTI]

    Cauwenberghs, Gert

    Non-contact Low Power EEG/ECG Electrode for High Density Wearable Biopotential Sensor Networks Yu Mchi@ucsd.edu Abstract--A non-contact capacitive biopotential electrode with a common-mode noise senses the local biopotential with a differential gain of 46dB over a 1-100Hz bandwidth. Signals

  20. Understanding and Mitigating Refresh Overheads in High-Density DDR4 DRAM Systems

    E-Print Network [OSTI]

    Martínez, José F.

    Understanding and Mitigating Refresh Overheads in High-Density DDR4 DRAM Systems Janani Mukundan as part of JEDEC's DDR4 DRAM specification that at- tempts to tackle this problem by creating a range conduct an analysis of DDR4 DRAM's FGR feature, and show that there is no one-size-fits-all option across

  1. A Portable Low-Cost High Density Sensor Network for Air Quality at London Heathrow Airport

    E-Print Network [OSTI]

    Jackson, Sophie

    species: CO, NO, O3, SO2, NO2 (electrochemical (EC) at 2 s) CO2 and total VOCs (optical at 10 s). · Size stations outside LHR (all CO2, sizeA Portable Low-Cost High Density Sensor Network for Air Quality at London Heathrow Airport Olalekan

  2. Rice Straw Fiber Reinforced High Density Polyethylene Composite: Effect of Coupled Compatibilizating and

    E-Print Network [OSTI]

    Rice Straw Fiber Reinforced High Density Polyethylene Composite: Effect of Coupled polyethylene (HDPE) composites were manufactured by extrusion and injection molding. Three compatibilizers compatibilizers, ma- leic anhydride grafted polyethylene and polypropylene (PE-g-MA and PP-g-MA) are considered

  3. Imprinted large-scale high density polymer nanopillars for organic solar cells

    E-Print Network [OSTI]

    Gao, Jinming

    Imprinted large-scale high density polymer nanopillars for organic solar cells Mukti Aryal used to make bulk heterojunction solar cells by depositing PCBM on top of the pillars. Imprinting provides a way to precisely control the interdigitized heterojunction morphology, leading to improved solar

  4. Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics

    E-Print Network [OSTI]

    Maharbiz, Michel

    Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics microfluidic system intended for very large scale integration (VLSI) microfluidics. By adding thin film metal with standard PDMS microfluidics, has actuation voltages low enough to be driven by commercial CMOS IC's and can

  5. Device and method for electron beam heating of a high density plasma

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  6. Magnetic confinement of a high-density cylindrical plasma Eduardo Ahedoa)

    E-Print Network [OSTI]

    Carlos III de Madrid, Universidad

    collisional plasma column, confined by an axial magnetic field and a cylindrical vessel, is studiedMagnetic confinement of a high-density cylindrical plasma Eduardo Ahedoa) E. T. S. Ingenieros the independent influence of the applied magnetic field and the plasma density on the plasma response. The strong

  7. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01

    between alternative solar storage system designs; almost allThe behavior of the storage solar receiver-reactor is baseddaytime (charging) storage process Boeing solar receiver [5J

  8. High Density H-Mode Discharges with Gas Fueling and Good Confinement on DIII-D

    SciTech Connect (OSTI)

    A.W. Leonard; T.H. Osborne; M.A. Mahdavi; M.E. Fenstermacher; C.J. Lasnier; T.W. Petrie; J.G.Watkins

    2000-08-01

    H-mode operation at high density is an attractive regime for future reactor-grade tokamaks [1]. High density maximizes fusion power output while the high confinement of H-mode keeps the plasma energy loss below the alpha heating power. One concern though is the energy released due to individual ELMs must be kept small to protect the diverter target from excess ablation. We report on discharges in DIII-D with electron densities as high as 1.45 times the Greenwald density, n{sub GW}(10{sup 20}m{sup -3})=I{sub p}(MA)/[{pi}{sup 2}(m)], with good confinement, H{sub ITER89P}=1.9, and ELMs with energy amplitude small enough to protect the divertor. These results were achieved at low triangularity single-null divertor, {delta}{approx}0.0 with a plasma current of 1.2 MA, q{sub 95} {approx} 3-4, and moderate neutral beam heating power of 2-4 MW. The density was controlled by moderate gas puffing and private flux pumping. A typical discharge is shown in Fig. 1 where upon gas puffing the pedestal density, n{sub e,epd}, quickly rises to {approx}0.8 x n{sub GW}. The confinement initially drops with the gas puff, on a longer timescale the central density rises, peaking the profile and increasing the confinement until an MHD instability terminates the high density and high confinement phase of the discharge. In this report we describe in detail edge pedestal changes and its effect on confinement as the density is increased. We then describe peaking of the density profile that offsets degradation of the pedestal at high density and restores good confinement. Finally we describe the small benign ELMs that result at these high densities.

  9. Relativistic Mean-Field Theory and the High-Density Nuclear Equation of State

    E-Print Network [OSTI]

    Horst Mueller; Brian D. Serot

    1996-03-22

    The properties of high-density nuclear and neutron matter are studied using a relativistic mean-field approximation to the nuclear matter energy functional. Based on ideas of effective field theory, nonlinear interactions between the fields are introduced to parametrize the density dependence of the energy functional. Various types of nonlinearities involving scalar-isoscalar ($\\sigma$), vector-isoscalar ($\\omega$), and vector-isovector ($\\rho$) fields are studied. After calibrating the model parameters at equilibrium nuclear matter density, the model and parameter dependence of the resulting equation of state is examined in the neutron-rich and high-density regime. It is possible to build different models that reproduce the same observed properties at normal nuclear densities, but which yield maximum neutron star masses that differ by more than one solar mass. Implications for the existence of kaon condensates or quark cores in neutron stars are discussed.

  10. Data Storage Data Storage

    E-Print Network [OSTI]

    Jiang, Anxiao "Andrew"

    I Data Storage #12;#12;Data Storage Edited by Prof. Florin Balasa In-Tech intechweb.org #12 Jakobovic Cover designed by Dino Smrekar Data Storage, Edited by Prof. Florin Balasa p. cm. ISBN 978-953-307-063-6 #12;V Preface Many different forms of storage, based on various natural phenomena, has been invented

  11. Z .Surface and Coatings Technology 130 2000 164 172 Production of high-density Ni-bonded tungsten carbide

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    Z .Surface and Coatings Technology 130 2000 164 172 Production of high-density Ni-bonded tungsten carbide coatings using an axially fed DC-plasmatron S. Sharafata,U , A. Kobayashib , S. Chena , N of high-density Ni WC coatings were produces with uniform distribution of WC particles. The small powder

  12. A Novel VLSI Technology to Manufacture High-Density Thermoelectric Cooling Devices

    E-Print Network [OSTI]

    H. Chen; L. Hsu; X. Wei

    2008-01-07

    This paper describes a novel integrated circuit technology to manufacture high-density thermoelectric devices on a semiconductor wafer. With no moving parts, a thermoelectric cooler operates quietly, allows cooling below ambient temperature, and may be used for temperature control or heating if the direction of current flow is reversed. By using a monolithic process to increase the number of thermoelectric couples, the proposed solid-state cooling technology can be combined with traditional air cooling, liquid cooling, and phase-change cooling to yield greater heat flux and provide better cooling capability.

  13. High-Density Plasma Arc Heating Studies of FePt Thin Films

    SciTech Connect (OSTI)

    Cole, Amanda C; Thompson, Gregory; Harrell, J. W.; Weston, James; Ott, Ronald D

    2006-01-01

    The effect of pulsed-thermal-processing with high-density plasma arc heating is discussed for 20 nm thick nanocrystalline FePt thin films. The dependence of the A1 {yields} L1{sub 0} phase transformation on pulsed time and radiant energy of the pulse is quantified through x-ray diffraction and alternating gradient magnetometry. For 100 ms and 250 ms pulse widths, the phase transformation was observed. Higher radiant energy densities resulted in a larger measured coercivity associated with the L1{sub 0} phase.

  14. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meezan, N. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berzak Hopkins, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000291875667); Le Pape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divol, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacKinnon, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Döppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ho, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khan, S. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Milovich, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ross, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thomas, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benedetti, L. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Celliers, P. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clark, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000272137538); Field, J. E. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808, USA; Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000184045131); Izumi, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kyrala, G. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moody, J. D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808, USA; Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sepke, S. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spears, B. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tommasini, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Town, R. P. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Biener, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bionta, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bond, E. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eckart, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gatu Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Grim, G. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamza, A. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hartouni, E. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000198694351); Hatarik, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoover, D. E. [General Atomics, San Diego, CA (United States)] (ORCID:0000000195652551); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Kozioziemski, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kroll, J. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNaney, J. M. [General Atomics, San Diego, CA (United States); Nikroo, A. [General Atomics, San Diego, CA (United States); Sayre, D. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-01

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10ą? neutrons, 40% of the 1D simulated yield.

  15. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; et al

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightlymore »oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10ą? neutrons, 40% of the 1D simulated yield.« less

  16. A Model For the Formation of High Density Clumps in Proto-Planetary Nebulae

    E-Print Network [OSTI]

    Patrick A. Young; J. L. Highberger; David Arnett; L. M. Ziurys

    2003-09-19

    The detection of NaCl at large radii in the Egg Nebula, CRL 2688, requires densities of 10^7 - 10^8 cm^-3 in a thick shell of r ~ a few X 10^17 cm. To explain these results, a mechanism is needed for producing high densities at a considerable distance from the central star. In two dimensional simulations of the interaction of the fast wind with an ambient medium, the material becomes thermally unstable. The resulting clumps can achieve the requisite conditions for NaCl excitation. We present 2D models with simple physics as proof-of-principle calculations to show that the clumping behavior is robust. Clumping is a natural outcome of cooling in the colliding wind model and comparable to that inferred from observations.

  17. Process and system for producing high-density pellets from a gaseous medium

    DOE Patents [OSTI]

    Foster, Christopher A. (Clinton, TN)

    1999-01-01

    A process and system for producing pellets of high density carbon dioxide or other gases utilize a chamber containing a plurality of cell-like freezing compartments within which ice is to be formed. A gas desired to be frozen into ice is introduced into the chamber while the internal pressure of the chamber is maintained at a level which is below the equilibrium triple pressure of the gas. The temperature of the freezing compartments is lowered to a temperature which is below the equilibrium vapor pressure temperature of the gas at the chamber pressure so that the gas condenses into ice within the compartments. The temperature of the freezing compartments is thereafter raised so that the ice is thereby released from and falls out of the compartments as pellets for collection.

  18. Thermodynamics and Structural Properties of the High Density Gaussian Core Model

    E-Print Network [OSTI]

    Atsushi Ikeda; Kunimasa Miyazaki

    2011-07-20

    We numerically study thermodynamic and structural properties of the one-component Gaussian core model (GCM) at very high densities. The solid-fluid phase boundary is carefully determined. We find that the density dependence of both the freezing and melting temperatures obey the asymptotic relation, $\\log T_f$, $\\log T_m \\propto -\\rho^{2/3}$, where $\\rho$ is the number density, which is consistent with Stillinger's conjecture. Thermodynamic quantities such as the energy and pressure and the structural functions such as the static structure factor are also investigated in the fluid phase for a wide range of temperature above the phase boundary. We compare the numerical results with the prediction of the liquid theory with the random phase approximation (RPA). At high temperatures, the results are in almost perfect agreement with RPA for a wide range of density, as it has been already shown in the previous studies. In the low temperature regime close to the phase boundary line, although RPA fails to describe the structure factors and the radial distribution functions at the length scales of the interparticle distance, it successfully predicts their behaviors at shorter length scales. RPA also predicts thermodynamic quantities such as the energy, pressure, and the temperature at which the thermal expansion coefficient becomes negative, almost perfectly. Striking ability of RPA to predict thermodynamic quantities even at high densities and low temperatures is understood in terms of the decoupling of the length scales which dictate thermodynamic quantities from the interparticle distance which dominates the peak structures of the static structure factor due to the softness of the Gaussian core potential.

  19. FAFCO Ice Storage test report

    SciTech Connect (OSTI)

    Stovall, T.K.

    1993-11-01

    The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

  20. Compact star constraints on the high-density EoS

    E-Print Network [OSTI]

    H. Grigorian; D. Blaschke; T. Klahn

    2006-11-19

    A new scheme for testing the nuclear matter (NM) equation of state (EoS) at high densities using constraints from compact star (CS) phenomenology is applied to neutron stars with a core of deconfined quark matter (QM). An acceptable EoS shall not to be in conflict with the mass measurement of 2.1 +/- 0.2 M_sun (1 sigma level) for PSR J0751+1807 and the mass-radius relation deduced from the thermal emission of RX J1856-3754. Further constraints for the state of matter in CS interiors come from temperature-age data for young, nearby objects. The CS cooling theory shall agree not only with these data, but also with the mass distribution inferred via population synthesis models as well as with LogN-LogS data. The scheme is applied to a set of hybrid EsoS with a phase transition to stiff, color superconducting QM which fulfills all above constraints and is constrained otherwise from NM saturation properties and flow data of heavy-ion collisions. We extrapolate our description to low temperatures and draw conclusions for the QCD phase diagram to be explored in heavy-ion collision experiments.

  1. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    SciTech Connect (OSTI)

    Phifer, M.

    2012-01-31

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  2. High-density carbon ablator experiments on the National Ignition Facilitya)

    SciTech Connect (OSTI)

    MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R.; Ma, T.; Spears, B.; Rygg, J. R.; Benedetti, L. R.; Town, R. P. J.; Bradley, D. K.; Dewald, E. L.; Fittinghoff, D.; Jones, O. S.; Robey, H. R.; Moody, J. D.; Khan, S.; Callahan, D. A.; Hamza, A.; Biener, J.; Celliers, P. M.; Braun, D. G.; Erskine, D. J.; Prisbrey, S. T.; Wallace, R. J.; Kozioziemski, B.; Dylla-Spears, R.; Sater, J.; Collins, G.; Storm, E.; Hsing, W.; Landen, O.; Atherton, J. L.; Lindl, J. D.; Edwards, M. J.; Frenje, J. A.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Rinderknecht, H.; Rosenberg, M.; Séguin, F. H.; Zylstra, A.; Knauer, J. P.; Grim, G.; Guler, N.; Merrill, F.; Olson, R.; Kyrala, G. A.; Kilkenny, J. D.; Nikroo, A.; Moreno, K.; Hoover, D. E.; Wild, C.; Werner, E.

    2014-05-01

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5?g/cc) than plastic (CH, 1?g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2?mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He?=?0.03?mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity?=?410?±?20?km/s with no observed ablator mixing into the hot spot.

  3. Considerations for cold weather construction using high density polyethylene for corrosion control systems

    SciTech Connect (OSTI)

    Szklarz, K.E.; Baron, J.J.

    1995-12-01

    High Density Polyethylene (HDPE) is commonly used as material for corrosion-resistant piping in the petroleum industry. It is used as thick-walled self-supporting linepipes, as internal liners for steel linepipe, and as protective jackets for insulated linepipes. In Canada, it is not uncommon for operations, such as pipeline installation, to be performed during the winter season when temperatures are in the 0 C to {minus}20 C range. Brittle failures of HDPE materials have been experienced during such sub-zero operations, particularly when pipe handling and bending is involved. This study evaluated the changes in HDPE mechanical properties within the temperature range of 10 C to {minus}40 C to understand any embrittlement phenomena that may be occurring. HDPE undergoes substantial increases in modulus and strength at lower temperatures and increasing strain rate. The changes are gradual and over a wide range of temperature with no sharp cut-off temperature at which brittle behavior will occur. Flexural properties behave in a similar manner. A notch, causing a local increased strain rate, has a significant effect on the failure behavior of HDPE material with a gradual transition in behavior of ductility and load at below 0 C.

  4. High-density carbon ablator experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    MacKinnon, A. J., E-mail: mackinnon2@llnl.gov; Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-05-15

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5?g/cc) than plastic (CH, 1?g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2?mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He?=?0.03?mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity?=?410?±?20?km/s with no observed ablator mixing into the hot spot.

  5. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect (OSTI)

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  6. Enhancing DNA binding rate using optical trapping of high-density gold nanodisks

    SciTech Connect (OSTI)

    Lin, En-Hung; Pan, Ming-Yang [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China) [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China); Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529 (China); Lee, Ming-Chang [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China)] [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China); Wei, Pei-Kuen, E-mail: pkwei@sinica.edu.tw [Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529 (China) [Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529 (China); Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan (China)

    2014-03-15

    We present the dynamic study of optical trapping of fluorescent molecules using high-density gold nanodisk arrays. The gold nanodisks were fabricated by electron beam lithography with a diameter of 500 nm and a period of 1 ?m. Dark-field illumination showed ?15 times enhancement of fluorescence near edges of nanodisks. Such enhanced near-field generated an optical trapping force of ?10 fN under 3.58 × 10{sup 3} W/m{sup 2} illumination intensity as calculated from the Brownian motions of 590 nm polystyrene beads. Kinetic observation of thiolated DNA modified with Cy5 dye showed different binding rates of DNA under different illumination intensity. The binding rate increased from 2.14 × 10{sup 3} s{sup ?1} (I = 0.7 × 10{sup 3} W/m{sup 2}) to 1.15 × 10{sup 5} s{sup ?1} (I = 3.58 × 10{sup 3} W/m{sup 2}). Both enhanced fluorescence and binding rate indicate that gold nanodisks efficiently improve both detection limit and interaction time for microarrays.

  7. High Density Infrared (HDI) Transient Liquid Coatings for Improved Wear and Corrosion Resistance

    SciTech Connect (OSTI)

    Ronald W. Smith

    2007-07-05

    This report documents a collaborative effort between Oak Ridge National Laboratory (ORNL), Materials Resources International and an industry team of participants to develop, evaluate and understand how high density infrared heating technology could be used to improve infiltrated carbide wear coatings and/or to densify sprayed coatings. The research included HDI fusion evaluations of infiltrated carbide suspensions such (BrazeCoat® S), composite suspensions with tool steel powders, thermally sprayed Ni-Cr- B-Si (self fluxing alloy) and nickel powder layers. The applied work developed practical HDI / transient liquid coating (TLC) procedures on test plates that demonstrated the ability to fuse carbide coatings for industrial applications such as agricultural blades, construction and mining vehicles. Fundamental studies helped create process models that led to improved process understanding and control. The coating of agricultural blades was demonstrated and showed the HDI process to have the ability to fuse industrial scale components. Sliding and brasive wear tests showed that high degree of wear resistance could be achieved with the addition of tool steel powders to carbide particulate composites.

  8. Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis

    SciTech Connect (OSTI)

    Lu, Jinlian; Xiao, Hong [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)

    2012-12-15

    The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

  9. High density array fabrication and readout method for a fiber optic biosensor

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA); Gray, Joe (San Francisco, CA); Albertson, Donna G. (Lafayette, CA)

    2002-01-01

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.

  10. High density array fabrication and readout method for a fiber optic biosensor

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA); Gray, Joe (San Francisco, CA); Albertson, Donna G. (Lafayette, CA)

    2000-01-01

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.

  11. High density array fabrication and readout method for a fiber optic biosensor

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA); Gray, Joe (San Francisco, CA)

    1997-01-01

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.

  12. High density array fabrication and readout method for a fiber optic biosensor

    DOE Patents [OSTI]

    Pinkel, D.; Gray, J.

    1997-11-25

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its ``sensor end`` biological ``binding partners`` (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor. 9 figs.

  13. High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson, Li Tao, Mathew Goeckner, Walter Hua)

    E-Print Network [OSTI]

    Hu, Wenchuang "Walter"

    High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson sources. Despite the considerable development of inorganic semiconductor based light emitting diodes of miniaturization to nanoscale. Organic light emitting diode (OLED) technology is immune to quantum confinement

  14. Olivine LiCoPO4 phase grown LiCoO2 cathode material for high density Li batteries

    E-Print Network [OSTI]

    Cho, Jaephil

    Olivine LiCoPO4 phase grown LiCoO2 cathode material for high density Li batteries Hyunjung Lee an increase in the cut-off voltage of the cell from 4.2 V to 4.4 V (vs. graphite). As an alterna- tive, we can

  15. Z .Diamond and Related Materials 10 2001 1947 1951 Synthesis of high-density carbon nanotube films by microwave

    E-Print Network [OSTI]

    Tománek, David

    and vertical growth rate of nanotubes. The growth rate on an iron-coated substrate is higher than on a nickel. Nanotubes in the present study are fabricated by MPCVD using iron Z . Z .Fe or nickel Ni as transition metalZ .Diamond and Related Materials 10 2001 1947 1951 Synthesis of high-density carbon nanotube films

  16. Self-Assembly of DNA Double-Double Crossover Complexes into High-Density, Doubly Connected, Planar Structures

    E-Print Network [OSTI]

    Brun, Yuriy

    consisting of two DNA double helices connected by two reciprocal exchanges (crossovers). In 1998, Winfree et connected by a total of six reciprocal exchanges. We use DDX complexes to self-assemble high-density, doubly reciprocal exchanges connecting each pair of adjacent helices. Figure 1b shows how the complexes might tile

  17. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  18. DEGAS 2 Neutral Transport Modeling of High Density, Low Temperature Plasmas

    E-Print Network [OSTI]

    , the resulting fluid neutral momentum balance in a slab geometry is d dx ł mnv 2 + nT ´ = # T n dT dx - m# cx nv.24, and the charge exchange frequency, # cx = 2.93# cx n(T/m) 1/2 . With a neutral source on one end of the slab (x density # # n(x)/n(L), d# dx = - 2 4 (1-# T ) T (L) dT (x) dx # + ##cx [T (L)/m] 1/2 T (x) T (L) - # 2 # 2

  19. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  20. Role of Surface Structure on Li-ion Energy Storage Capacity of...

    Office of Scientific and Technical Information (OSTI)

    solar (fuels), energy storage (including batteries and capacitors), hydrogen and fuel cells, electrodes - solar, mechanical behavior, charge transport, materials and...

  1. Relation Between Type-II ELMs, Edge Localized Turbulence, Washboard Modes and Energy Losses Between ELMs in High Density ELMy H-modes on JET

    E-Print Network [OSTI]

    Relation Between Type-II ELMs, Edge Localized Turbulence, Washboard Modes and Energy Losses Between ELMs in High Density ELMy H-modes on JET

  2. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect (OSTI)

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  3. Optimization of Ice Thermal Storage Systems Design for HVAC Systems 

    E-Print Network [OSTI]

    Nassif, N.; Hall, C.; Freelnad, D.

    2013-01-01

    energy cost. A tool for optimal ice storage design is developed, considering the charging and discharge times and optimal sizing of ice thermal storage system. Detailed simulation studies using real office building located near Orlando, FL including...

  4. Probing topological relations between high-density and low-density regions of 2MASS with hexagon cells

    SciTech Connect (OSTI)

    Wu, Yongfeng; Xiao, Weike

    2014-02-01

    We introduced a new two-dimensional (2D) hexagon technique for probing the topological structure of the universe in which we mapped regions of the sky with high and low galaxy densities onto a 2D lattice of hexagonal unit cells. We defined filled cells as corresponding to high-density regions and empty cells as corresponding to low-density regions. The numbers of filled cells and empty cells were kept the same by controlling the size of the cells. By analyzing the six sides of each hexagon, we could obtain and compare the statistical topological properties of high-density and low-density regions of the universe in order to have a better understanding of the evolution of the universe. We applied this hexagonal method to Two Micron All Sky Survey data and discovered significant topological differences between the high-density and low-density regions. Both regions had significant (>5?) topological shifts from both the binomial distribution and the random distribution.

  5. Microstructural characterization of in situ MXCT images of high density foams under large strains

    SciTech Connect (OSTI)

    Patterson, Brian M; Gleiman, Seth; Marks, Trevor G; Milstein, Fredrick

    2009-01-01

    Foams are used in numerous applications, such as vibration damping and energy mitigation (e.g., packaging and helmets), wherein their mechanical properties are of critical importance. A typical compressive response of a high density elastomeric foam, shown in Fig 1, generally contains three regions of interest: (I) a linear-elastic region, governed by strut bending; (II) a relatively flat, or slowly increasing stress-strain response, accompanied by strut buckling and the localized collapse of pores; and (III) an exponentially increasing stress-strain curve wherein the collapse of the pore matrix leads to densification. Two material properties of interest, upon which considerable research has focused are the foam's Young's modulus, E{sub f}, defined as the slope of the stress-strain response in region I, and the collapse stress, {sigma}{sub f}, defined as the stress at which the response begins to deviate from linearity. It has been observed [1, 2, 3] that Young's modulus and the collapse stress are dependent on the material properties of the strut material and the non-dimensional relative-density of the foam, {rho}* = {rho}{sub f}/{rho}{sub m}, where {rho}{sub r} is the gross density of the foam and {rho}{sub m} is the density of the strut, or matrix, material. For foam of low relative-density, i.e, {rho}* < 0.1, the collapse stress and Young's modulus obey the relations {sigma}{sub c}/E{sub m} {proportional_to} ({rho}*){sup m} and E{sub f}/E{sub m} {proportional_to} ({rho}*){sup n} where E{sub m} is Young's modulus of the strut material and the bounds on the parameters m and n are 0.05 {le} m {le} 0.2 and 1 {le} n {le} 4 [4]. For open-celled foams, n = 2, whereas for closed-celled foams, n = 3. Theoretically, n = 1 for foams with an ''ideal strut'' configuration [6]. Foams of high relative-density ({rho}* > 0.1) require correcting terms to account for the axial contributions of the ''thick'' struts [5]. The above equations relate important foam properties to the relative-density of the foam; however, there exists a gap in the understanding of how the foam microstructure affects the mechanical response of the foam. This is due in large part to the difficulty of characterizing foam structures in 3D, especially foams of high relative-density. Most elastomeric foams are manufactured by the introduction of a gas into a cross-linking polymer. The developing foam microstructure has a complex dependence on the polymer viscosity and rate of polymerization, resulting in a randomly arranged pore structure with a large distribution of pore sizes. One approach is to characterize foam microstructures solely in terms of the cross-sectional shape and vector arrangement of the strut matrix, since it is this matrix that supports the stresses upon loading of the foam; yet as the density of a foam is increased, the very definition of what constitutes a strut brakes down. Another, perhaps easier to visualize, characterization of foam microstructure can come from a description of the pore shape and arrangement. Given the random nature of the microstructures of blown foam, both approaches are useful and valid. This paper describes our work aimed at linking the mechanical response and microstructural evolution of high relative-density foam as it undergoes large deformation. This work consists of several inter-related parts, including (i) measuring the compressive stress-strain response, as illustrated in Fig. 1, (ii) obtaining in situ micro X-ray computed tomography (MXCT) images of high relative-density foams undergoing large strains, and (iii) developing mathematical, computer aided, methodologies to perform image analysis and calculations of parameters that characterize the pores and struts. By using MXCT, a non-invasive technique for imaging the internal structure of materials, we are able to observe, internally, individual struts and pores as they undergo large deformation. Here we describe our computer aided image analysis methodologies and present examples of their application to the MXCT images of foams. Operations of the compute

  6. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  7. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  8. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  9. Surface-charge-induced freezing of colloidal suspensions

    E-Print Network [OSTI]

    S. Grandner; S. H. L. Klapp

    2010-06-07

    Using grand-canonical Monte Carlo simulations we investigate the impact of charged walls on the crystallization properties of charged colloidal suspensions confined between these walls. The investigations are based on an effective model focussing on the colloids alone. Our results demonstrate that the fluid-wall interaction stemming from charged walls has a crucial impact on the fluid's high-density behavior as compared to the case of uncharged walls. In particular, based on an analysis of in-plane bond order parameters we find surface-charge-induced freezing and melting transitions.

  10. Constraining the High-Density Behavior of Nuclear Symmetry Energy with the Tidal Polarizability of Neutron Stars

    E-Print Network [OSTI]

    F. J. Fattoyev; J. Carvajal; W. G. Newton; Bao-An Li

    2012-10-12

    Using a set of model equations of state satisfying the latest constraints from both terrestrial nuclear experiments and astrophysical observations as well as state-of-the-art nuclear many-body calculations of the pure neutron matter equation of state, the tidal polarizability of canonical neutron stars in coalescing binaries is found to be a very sensitive probe of the high-density behavior of nuclear symmetry energy which is among the most uncertain properties of dense neutron-rich nucleonic matter. Moreover, it changes less than $\\pm 10%$ by varying various properties of symmetric nuclear matter and symmetry energy around the saturation density within their respective ranges of remaining uncertainty.

  11. Constraining the High-Density Behavior of Nuclear Symmetry Energy with the Tidal Polarizability of Neutron Stars

    E-Print Network [OSTI]

    Fattoyev, F J; Newton, W G; Li, Bao-An

    2012-01-01

    Using a set of model equations of state satisfying the latest constraints from both terrestrial nuclear experiments and astrophysical observations as well as state-of-the-art nuclear many-body calculations of the pure neutron matter equation of state, the tidal polarizability of canonical neutron stars in coalescing binaries is found to be a very sensitive probe of the high-density behavior of nuclear symmetry energy which is among the most uncertain properties of dense neutron-rich nucleonic matter. Moreover, it changes less than $\\pm 10%$ by varying various properties of symmetric nuclear matter and symmetry energy around the saturation density within their respective ranges of remaining uncertainty.

  12. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  13. Criticality Evaluation of Plutonium-239 Moderated by High-Density Polyethylene in Stainless Steel and Aluminum Containers Suitable for Non-Exclusive Use Transport

    SciTech Connect (OSTI)

    Watson, T T

    2007-08-10

    Research is conducted at the Joint Actinide Shock Physics Experimental Facility (JASPER) on the effects of high pressure and temperature environments on plutonium-239, in support of the stockpile stewardship program. Once an experiment has been completed, it is necessary to transport the end products for interim storage or final disposition. Federal shipping regulations for nonexclusive use transportation require that no more than 180 grams of fissile material are present in at least 360 kilograms of contiguous non-fissile material. To evaluate the conservatism of these regulatory requirements, a worst-case scenario of 180g {sup 239}Pu and a more realistic scenario of 100g {sup 239}Pu were modeled using one of Lawrence Livermore National Laboratory's Monte Carlo transport codes known as COG 10. The geometry consisted of {sup 239}Pu spheres homogeneously mixed with high-density polyethylene surrounded by a cube of either stainless steel 304 or aluminum. An optimized geometry for both cube materials and hydrogen-to-fissile isotope (H/X) ratio were determined for a single unit. Infinite and finite 3D arrays of these optimized units were then simulated to determine if the systems would exceed criticality. Completion of these simulations showed that the optimal H/X ratio for the most reactive units ranged from 800 to 1600. A single unit of either cube type for either scenario would not reach criticality. An infinite array was determined to reach criticality only for the 180g case. The offsetting of spheres in their respective cubes was also considered and showed a considerable decrease in the number of close-packed units needed to reach criticality. These results call into question the current regulations for fissile material transport, which under certain circumstances may not be sufficient in preventing the development of a critical system. However, a conservative, theoretical approach was taken in all assumptions and such idealized configurations may not be likely to be encountered in actual packaging, transportation, and storage configurations. Modeling of realistic, as-built configurations is beyond the scope of this study.

  14. SMARTSTORAGE: STORAGE-AWARE SMARTPHONE ENERGY SAVINGS

    E-Print Network [OSTI]

    Zhou, Gang

    SMARTSTORAGE: STORAGE-AWARE SMARTPHONE ENERGY SAVINGS DAVID T. NGUYEN. COLLEGE OF WILLIAM & MARY owners is the poor battery life. To many such users, being re- quired to charge the smartphone after of smartphone storage techniques on total energy consumption and we answer two key research questions: How does

  15. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  16. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  17. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01

    T. E. Reilly, 2002: Flow and storage in groundwater systems.storage ..2013: Global ocean storage of anthropogenic carbon.

  18. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01

    storage . . . . . . . . . . . . . . . . . . . . . .example system based on log-structured storage 10.1 SystemA storage bottleneck. . . . . . . . . . . . . . . .

  19. GreenCharge: Managing Renewable Energy in Smart Buildings

    E-Print Network [OSTI]

    Shenoy, Prashant

    1 GreenCharge: Managing Renewable Energy in Smart Buildings Aditya Mishra, David Irwin, Prashant that combines market-based electricity pricing models with on-site renewables and modest energy storage (in, called GreenCharge, to efficiently manage the renewable energy and storage to reduce a building

  20. Different methods for particle diameter determination of low density and high density lipoproteins-Comparison and evaluation 

    E-Print Network [OSTI]

    Vaidyanathan, Vidya

    2009-05-15

    ) Evaluating the two methods in terms of their ability to identify bi-modal samples. A secondary purpose of this research was to investigate the effect of refrigerated plasma storage on particle diameter. Reproducibility was measured as Coefficient of Variance...

  1. Collective renovation : case study on the public / private relationship in high-density low-rise residential areas of central Tokyo

    E-Print Network [OSTI]

    Mizuguchi, Saki

    2012-01-01

    This thesis starts with the interest in the undefined open spaces of high-density low-rise (HDLR) residential areas in Tokyo. In these spaces, one can witness numerous examples of overlapping public and private uses. For ...

  2. Tissue specific regulation of the high density lipoprotein (HDL) receptor, scavenger receptor Class B, Type I (SR-BI) by the scaffold protein PDZK1

    E-Print Network [OSTI]

    Fenske, Sara Anne

    2008-01-01

    PDZK1 is a four PDZ-domain containing cytoplasmic adaptor protein that binds the Cterminus of the high-density lipoprotein (HDL) receptor SR-BI. Abolishing PDZK1 expression in PDZK1 knockout (KO) mice leads to a ...

  3. High density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for solar disinfection of drinking water in northern region, Ghana

    E-Print Network [OSTI]

    Yazdani, Iman

    2007-01-01

    The purpose of this study is to investigate the technical feasibility of high density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for the solar disinfection of drinking water ...

  4. Aalborg Universitet Price Based Electric Vehicle Charging

    E-Print Network [OSTI]

    Mahat, Pukar

    Aalborg Universitet Price Based Electric Vehicle Charging Mahat, Pukar; Handl, Martin; Kanstrup., Lozano, A., & Sleimovits, A. (2012). Price Based Electric Vehicle Charging. In Proceedings of the 2012 in the future will be electrical vehicles (EV). The storage capacity of these EVs has the potential

  5. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    SciTech Connect (OSTI)

    Ferreto, H. F. R. E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F. E-mail: ana-feitoza@yahoo.com.br; Parra, D. F. E-mail: ablugao@ipen.br; Lugăo, A. B. E-mail: ablugao@ipen.br; Gaia, R.

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  6. Observation of a new high-? and high-density state of a magnetospheric plasma in RT-1

    SciTech Connect (OSTI)

    Saitoh, H.; Yano, Y.; Yoshida, Z.; Nishiura, M.; Morikawa, J.; Kawazura, Y.; Nogami, T.; Yamasaki, M. [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)

    2014-08-15

    A new high-? and high-density state is reported for a plasma confined in a laboratory magnetosphere. In order to expand the parameter regime of an electron cyclotron resonance heating experiment, the 8.2?GHz microwave power of the Ring Trap 1 device has been upgraded with the installation of a new waveguide system. The rated input power launched from a klystron was increased from 25 to 50?kW, which enabled the more stable formation of a hot-electron high-? plasma. The diamagnetic signal (the averaged value of four magnetic loops signals) of a plasma reached 5.2 mWb. According to a two-dimensional Grad-Shafranov analysis, the corresponding local ? value is close to 100%.

  7. Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode

    SciTech Connect (OSTI)

    Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.; Fenstermacher, M. E.; Garofalo, A. M.; Grierson, B. A.; Loarte, A.; McKee, G. R.; Nazikian, R; Osborne, T. H.

    2014-07-01

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.

  8. Aalborg Universitet Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    . Keywords--EV charging station; flywheel energy storage system; distributed bus signaling I. INTRODUCTIONAalborg Universitet Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Vehicle Charging Stations with Multi Flywheel Energy Storage System. In IEEE ICDCM 2015. IEEE. General

  9. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  10. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  11. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect (OSTI)

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  12. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; Anderson, K. S.; Beg, F. N.; Epstein, R.; Fiksel, G.; Giraldez, E. M.; Glebov, V. Yu.; Habara, H.; et al

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achievemore »areal densities in excess of 300 mg cm#2;-2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.« less

  13. Extension of the Nambu-Jona-Lasinio model predictions at high densities and temperatures using an implicit regularization scheme

    SciTech Connect (OSTI)

    Farias, R. L. S. [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20559-900 (Brazil); Dallabona, G. [Departamento de Ciencias Exatas, Universidade Federal de Lavras, Cx. Postal 37, 37200-000, Lavras, MG (Brazil); Krein, G. [Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona 145, Sao Paulo, SP 01405-900 (Brazil); Battistel, O. A. [CBPF, Centro Brasileiro de Pesquisas Fisicas Rua Xavier Sigaud 150, 22290-180 Urca Rio de Janeiro, RJ (Brazil)

    2008-06-15

    Traditional cutoff regularization schemes of the Nambu-Jona-Lasinio model limit the applicability of the model to energy-momentum scales much below the value of the regularizing cutoff. In particular, the model cannot be used to study quark matter with Fermi momenta larger than the cutoff. In the present work, an extension of the model to high temperatures and densities recently proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri is used in connection with an implicit regularization scheme. This is done by making use of scaling relations of the divergent one-loop integrals that relate these integrals at different energy-momentum scales. Fixing the pion decay constant at the chiral symmetry breaking scale in the vacuum, the scaling relations predict a running coupling constant that decreases as the regularization scale increases, implementing in a schematic way the property of asymptotic freedom of quantum chromodynamics. If the regularization scale is allowed to increase with density and temperature, the coupling will decrease with density and temperature, extending in this way the applicability of the model to high densities and temperatures. These results are obtained without specifying an explicit regularization. As an illustration of the formalism, numerical results are obtained for the finite density and finite temperature quark condensate and applied to the problem of color superconductivity at high quark densities and finite temperature.

  14. Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility

    SciTech Connect (OSTI)

    Chapman, D. A., E-mail: david.chapman@awe.co.uk [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kraus, D.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Gaffney, J. A.; Hawreliak, J. A.; Landen, O. L.; Le Pape, S.; Ma, T.; Nilsen, J.; Pak, A.; Swift, D. C.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Guymer, T. M. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Neumayer, P. [Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Redmer, R. [Institut für Physik, Universität Rostock, 18051 Rostock (Germany); and others

    2014-08-15

    We have developed a model for analysing x-ray Thomson scattering data from high-density, millimetre-scale inhomogeneous plasmas created during ultra-high pressure implosions at the National Ignition Facility in a spherically convergent geometry. The density weighting of the scattered signal and attenuation of the incident and scattered x-rays throughout the target are included using radial profiles of the density, opacity, ionization state, and temperature provided by radiation-hydrodynamics simulations. These simulations show that the scattered signal is strongly weighted toward the bulk of the shocked plasma and the Fermi degenerate material near the ablation front. We show that the scattered signal provides a good representation of the temperature of this highly nonuniform bulk plasma and can be determined to an accuracy of ca. 15% using typical data analysis techniques with simple 0D calculations. On the other hand, the mean ionization of the carbon in the bulk is underestimated. We suggest that this discrepancy is due to the convolution of scattering profiles from different regions of the target. Subsequently, we discuss modifications to the current platform to minimise the impact of inhomogeneities, as well as opacity, and also to enable probing of conditions more strongly weighted toward the compressed core.

  15. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion

    SciTech Connect (OSTI)

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; Anderson, K. S.; Beg, F. N.; Epstein, R.; Fiksel, G.; Giraldez, E. M.; Glebov, V. Yu.; Habara, H.; Ivancic, S.; Jarrott, L. C.; Marshall, F. J.; McKiernan, G.; McLean, H. S.; Mileham, C.; Nilson, P. M.; Patel, P. K.; Pérez, F.; Sangster, T. C.; Santos, J. J.; Sawada, H.; Shvydky, A.; Stephens, R. B.; Wei, M. S.

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm#2;-2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.

  16. Charge-Transfer-Induced Cesium Superlattices on Graphene Can-Li Song,1,2

    E-Print Network [OSTI]

    Wang, Wei Hua

    superlattices for applications in high-density recording and data storage. DOI: 10.1103/PhysRevLett.108 is a promising route to build future device applications with nanometer dimen- sions. Previous studies have by Silly et al. [2,3] and equilateral metal nanostructures on strained substrates by Brune et al. [5

  17. Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models

    E-Print Network [OSTI]

    Steen, David

    2014-01-01

    stratified TES calculated for different storage sizes and chargeideal stratified tank will have higher losses for low chargestratified TES, the storage losses will be less dependent on the actual charge

  18. Energy Storage

    SciTech Connect (OSTI)

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 şC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10-8 mol/s/cm2 were achieved.

  19. Energy storage, Thermal energy storage (TES)

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Energy storage, Thermal energy storage (TES) Ron Zevenhoven Ĺbo Akademi University Thermal and Flow 8, 20500 Turku 2/32 4.1 Energy storage #12;Energy storage - motivations Several reasons motivate the storage of energy, either as heat, cold, or electricity: ­ Supplies of energy are in many cases

  20. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  1. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  2. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01

    AutoRAID hierarchical storage system,” in SOSP, 1995. [147]next-generation storage systems, and to use segments andclasses of distributed storage systems. Bibliography [1] D.

  3. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  4. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  5. Charge-pump voltage converter

    DOE Patents [OSTI]

    Brainard, John P. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  6. Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Johnson, Lars; Ellis, Abraham; Kuszmaul, Scott S.

    2012-01-01

    Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery operated data acquisition system. The Lanai High-Density Irradiance Sensor Network is comprised of 24 LI-COR{reg_sign} irradiance sensors (silicon pyranometers) polled by 19 RF Radios. The system was implemented with commercially available hardware and custom developed LabVIEW applications. The network of solar irradiance sensors was installed in January 2010 around the periphery and within the 1.2 MW ac La Ola PV plant on the island of Lanai, Hawaii. Data acquired at 1 second intervals is transmitted over wireless links to be time-stamped and recorded on SunPower data servers at the site for later analysis. The intent is to study power and solar resource data sets to correlate the movement of cloud shadows across the PV array and its effect on power output of the PV plant. The irradiance data sets recorded will be used to study the shape, size and velocity of cloud shadows. This data, along with time-correlated PV array output data, will support the development and validation of a PV performance model that can predict the short-term output characteristics (ramp rates) of PV systems of different sizes and designs. This analysis could also be used by the La Ola system operator to predict power ramp events and support the function of the future battery system. This experience could be used to validate short-term output forecasting methodologies.

  7. Rapid Wireless Capacitor Charging Using a Multi-Tapped Inductively-Coupled Secondary Coil

    E-Print Network [OSTI]

    Mercier, Patrick P.

    This paper presents an inductive coupling system designed to wirelessly charge ultra-capacitors used as energy storage elements. Although ultra-capacitors offer the native ability to rapidly charge, it is shown that standard ...

  8. PROJECT INFORMATION FORM Project Title Deployment of Sustainable Fueling/Charging Systems at California

    E-Print Network [OSTI]

    California at Davis, University of

    fueling stations for fuel cell vehicles and fast charging stations for electric infrastructure investment. Present hydrogen fueling stations, fast EV charging stations, renewable power sources, and energy storages are usually located at different sites

  9. LA-UR-02-6305 1 10/4/2002 Overview of High-density FRC Research on FRX-L

    E-Print Network [OSTI]

    is compressed to fusion conditions. Our target plasma is an FRC because it has the required closedLA-UR-02-6305 1 10/4/2002 Overview of High-density FRC Research on FRX-L at Los Alamos National, Albuquerque, NM USA Abstract We present an overview of the FRC research on the Field Reversed configuration e

  10. High Density Packaging in 2010 and Beyond Rao R. Tunmala*, Venky Sundaram, Fuhan Liu, George White, Swapan Bhattacharya, Raj M. Pulugurtha, Madhavan

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    High Density Packaging in 2010 and Beyond Rao R. Tunmala*, Venky Sundaram, Fuhan Liu, George White, Swapan Bhattacharya, Raj M. Pulugurtha, Madhavan Packaging Research Center, Georgia Institute and the package increases tremendously. With the shift towards nano ICs by 2003 with 100nm features, pitch of area

  11. Cool Storage Performance 

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01

    . This article covers three thermal storage topics. The first section catalogs various thermal storage systems and applications. Included are: load shifting and load leveling, chilled water storage systems, and ice storage systems using Refrigerant 22 or ethylene...

  12. Control Strategies for Electric Vehicle (EV) Charging Using Renewables...

    Office of Scientific and Technical Information (OSTI)

    demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the...

  13. Space Charge and Equilibrium Emittances in Damping Rings

    SciTech Connect (OSTI)

    Venturini, Marco; Oide, Katsunobu; Wolski, Andy

    2006-06-21

    We present a model of dynamics to account for the possible impact of space charge on the equilibrium emittances in storage rings and apply the model to study the current design of the International Linear Collider (ILC) damping rings.

  14. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    SciTech Connect (OSTI)

    Saini, Viney [Univ. of Arkansas at Little Rock, Little Rock, AR (United States) Dept. of Applied Science; Li, Zhongrui [Univ. of Arkansas at Little Rock, Little Rock, AR (United States) Dept. of Applied Science; Bourdo, Shawn [Univ. of Arkansas at Little Rock, Little Rock, AR (United States) Dept. of Applied Science; Univ. of Arkansas at Little Rock, Little Rock, AR (United States) Dept. of Chemistry; Kunets, Vasyl P. [Univ. of Arkansas, Fayetteville, AR (United States) Dept. of Physics; Trigwell, Steven [NASA Kennedy Space Center, FL (United States); Couraud, Arthur [Univ. of Arkansas at Little Rock, Little Rock, AR (United States) Dept. of Applied Science; Ecole d'Ingenieurs du CESI-EIA, La Couronne (France); Rioux, Julien [Univ. of Arkansas at Little Rock, Little Rock, AR (United States) Dept. of Applied Science; Ecole d'Ingenieurs du CESI-EIA, La Couronne (France); Boyer, Cyril [Univ. of Arkansas at Little Rock, Little Rock, AR (United States) Dept. of Applied Science; Ecole d'Ingenieurs du CESI-EIA, La Couronne (France); Nteziyaremye, Valens [Univ. of Arkansas at Little Rock, Little Rock, AR (United States) Dept. of Applied Science; Dervishi, Enkeleda [Univ. of Arkansas at Little Rock, Little Rock, AR (United States) Dept. of Applied Science; Biris, Alexandru R. [National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca (Romania); Salamo, Gregory J. [Univ. of Arkansas, Fayetteville, AR (United States) Dept. of Physics; Viswanathan, Tito [Univ. of Arkansas at Little Rock, Little Rock, AR (United States) Dept. of Chemistry; Biris, Alexandru S. [Univ. of Arkansas at Little Rock, Little Rock, AR (United States) Dept. of Applied Science

    2011-01-01

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.

  15. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saini, Viney [Univ. of Arkansas, Little Rock, AR (United States); Li, Zhongrui [Univ. of Arkansas, Little Rock, AR (United States); Bourdo, Shawn [Univ. of Arkansas, Little Rock, AR (United States); Kunets, Vasyl P. [Univ. of Arkansas, Fayetteville, AR (United States); Trigwell, Steven [ASRC Aerospace Corp., Kennedy Space Center, FL (United States); Couraud, Arthur [Univ. of Arkansas, Little Rock, AR (United States) and Ecole d'Ingenieurs de CESI-EIA, La Couronne (France); Rioux, Julien [Univ. of Arkansas, Little Rock, AR (United States) and Ecole d'Ingenieurs du CESI-EIA, La Couronne (France); Boyer, Cyril [Univ. of Arkansas, Little Rock, AR (United States) and Ecole d'Ingenieurs du CESI-EIA, La Couronne (France); Nteziyaremye, Valens [Univ. of Arkansas, Little Rock, AR (United States); Dervishi, Enkeleda [Univ. of Arkansas, Little Rock, AR (United States); Biris, Alexandru R. [National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca (Romania); Salamo, Gregory J. [Univ. of Arkansas, Fayetteville, AR (United States); Viswanathan, Tito [Univ. of Arkansas, Little Rock, AR (United States); Biris, Alexandru S. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-01-13

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.

  16. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saini, Viney; Li, Zhongrui; Bourdo, Shawn; Kunets, Vasyl P.; Trigwell, Steven; Couraud, Arthur; Ecole d'Ingenieurs du CESI-EIA, La Couronne; Rioux, Julien; Ecole d'Ingenieurs du CESI-EIA, La Couronne; Boyer, Cyril; et al

    2011-01-13

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, whilemore »the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.« less

  17. Storage System and IBM System Storage

    E-Print Network [OSTI]

    IBM® XIV® Storage System and IBM System Storage® SAN Volume Controller deliver high performance and smart management for SAP® landscapes IBM SAP International Competence Center #12;"The combination of the XIV Storage System and SAN Volume Controller gives us a smarter way to manage our storage. If we need

  18. Storage of H.sub.2 by absorption and/or mixture within a fluid medium

    DOE Patents [OSTI]

    Berry, Gene David; Aceves, Salvador Martin

    2007-03-20

    For the first time, a hydrogen storage method, apparatus and system having a fluid mixture is provided. At predetermined pressures and/or temperatures within a contained substantially fixed volume, the fluid mixture can store a high density of hydrogen molecules, wherein a predetermined phase of the fluid mixture is capable of being withdrawn from the substantially fixed volume for use as a vehicle fuel or energy storage having reduced and/or eliminated evaporative losses, especially where storage weight, vessel cost, vessel shape, safety, and energy efficiency are beneficial.

  19. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  20. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  1. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  2. Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage Ringsrlogo_t.gif

  3. "Goodbye Doesn’t Mean Forever:" Selection Strategies for the Transfer of Slavic to Off-Site Remote Storage

    E-Print Network [OSTI]

    Giullian, Jon C.

    2007-01-01

    to the storage crisis, several of the nation’s top research libraries have constructed off-site, high-density shelving facilities. This paper first summarizes the discussion about the nature and function of these facilities. The paper goes on to document a case...

  4. Low-Density and High Porosity Hydrogen Storage Materials Built from Ultra-Light Elements. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Feng, Pingyun

    2014-01-10

    A number of significant advances have been achieved, opening up new opportunities for the synthetic development of novel porous materials and their energy-related applications including gas storage and separation and catalysis. These include lithium-based metal-organic frameworks, magnesium-based metal-organic frameworks, and high gas uptake in porous frameworks with high density of open donor sites.

  5. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    SciTech Connect (OSTI)

    Uwe, Greife

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  6. HPSS Charging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based29 1.921HEPCharging HPSS Charging

  7. Degenerate resistive switching and ultrahigh density storage in resistive memory

    SciTech Connect (OSTI)

    Lohn, Andrew J., E-mail: drewlohn@gmail.com; Mickel, Patrick R., E-mail: prmicke@sandia.gov; James, Conrad D.; Marinella, Matthew J. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-09-08

    We show that in tantalum oxide resistive memories, activation power provides a multi-level variable for information storage that can be set and read separately from the resistance. These two state variables (resistance and activation power) can be precisely controlled in two steps: (1) the possible activation power states are selected by partially reducing resistance, then (2) a subsequent partial increase in resistance specifies the resistance state and the final activation power state. We show that these states can be precisely written and read electrically, making this approach potentially amenable for ultra-high density memories. We provide a theoretical explanation for information storage and retrieval from activation power and experimentally demonstrate information storage in a third dimension related to the change in activation power with resistance.

  8. Multi-dimensional collective effects in high-current relativistic beams relevant to High Density Laboratory Plasmas

    SciTech Connect (OSTI)

    Shvets, Gennady

    2014-05-09

    In summary, an analytical model describing the self-pinching of a relativistic charge-neutralized electron beam undergoing the collisionless Weibel instability in an overdense plasma has been developed. The model accurately predicts the final temperature and size of the self-focused filament. It is found that the final temperature is primarily defined by the total beam’s current, while the filament’s radius is shown to be smaller than the collisionless skin depth in the plasma and primarily determined by the beam’s initial size. The model also accurately predicts the repartitioning ratio of the initial energy of the beam’s forward motion into the magnetic field energy and the kinetic energy of the surrounding plasma. The density profile of the final filament is shown to be a superposition of the standard Bennett pinch profile and a wide halo surrounding the pinch, which contains a significant fraction of the beam’s electrons. PIC simulations confirm the key assumption of the analytic theory: the collisionless merger of multiple current filaments in the course of the Weibel Instability provides the mechanism for Maxwellization of the beam’s distribution function. Deviations from the Maxwell-Boltzmann distribution are explained by incomplete thermalization of the deeply trapped and halo electrons. It is conjectured that the simple expression derived here can be used for understanding collsionless shock acceleration and magnetic field amplification in astrophysical plasmas.

  9. Photon Storage Cavities

    E-Print Network [OSTI]

    Kim, K.-J.

    2008-01-01

    Sessler, "Analysis of Photon Storage Cavities for a Free-configuration of coupled storage cavity and PEL cavity. TheFig. 2. A ring resonator storage cavity coupled through a

  10. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

  11. Neutrino oscillations and electron-capture storage-ring experiments

    E-Print Network [OSTI]

    Walter Potzel

    2015-01-20

    Oscillations in the electron-capture (EC) decay rate observed in storage-ring experiments are reconsidered in connection with the neutrino mass difference. Taking into account that - according to Relativity Theory - time is slowed down in the reference frame of the orbiting charged particles as compared to the neutral particles (neutrinos) moving on a rectilinear path after the EC decay, we derive a value of $\\Delta m^{2}_{21}=(0.768\\pm0.012)\\cdot10^{-4} eV^{2}$ for the neutrino mass-squared difference which fully agrees with that observed in other neutrino-oscillation experiments. To further check the connection between EC-decay oscillations and $\\Delta m^{2}_{21}$ we suggest experiments with different orbital speeds, i.e., different values of the Lorentz factor.

  12. Neutrino oscillations and electron-capture storage-ring experiments

    E-Print Network [OSTI]

    Potzel, Walter

    2014-01-01

    Oscillations in the electron-capture (EC) decay rate observed in storage-ring experiments are reconsidered in connection with the neutrino mass difference. Taking into account that - according to Relativity Theory - time is slowed down in the reference frame of the orbiting charged particles as compared to the neutral particles (neutrinos) moving on a rectilinear path after the EC decay, we derive a value of $\\Delta m^{2}_{21}=(0.768\\pm0.012)\\cdot10^{-4} eV^{2}$ for the neutrino mass-squared difference which fully agrees with that observed in other neutrino-oscillation experiments. To further check the connection between EC-decay oscillations and $\\Delta m^{2}_{21}$ we suggest experiments with different orbital speeds, i.e., different values of the Lorentz factor.

  13. Aalborg Universitet Multiagent Based Distributed Control for State-of-Charge Balance of Distributed

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    generations, energy storage systems and may operate in both grid-connected and islanded modes [1]. MG concept Energy Storage in DC microgrids Li, Chendan; Dragicevic, Tomislav; Garcia Plaza, Manuel; Andrade, Fabio for State-of-Charge Balance of Distributed Energy Storage in DC microgrids. In Proceedings of the 40th

  14. Ion Storage Ring Measurements of Dielectronic Recombination for Astrophysically Relevant Feq+ Ions

    E-Print Network [OSTI]

    Savin, Daniel Wolf

    Ion Storage Ring Measurements of Dielectronic Recombination for Astrophysically Relevant Feq+ Ions. Using the heavy- ion storage ring at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany. Measurements are underway for other charge states of iron. INTRODUCTION Heavy-ion storage rings, coupled

  15. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  16. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  17. Aalborg Universitet Flexible Local Load Controller for Fast ElectricVehicle Charging Station Supplemented

    E-Print Network [OSTI]

    Schaltz, Erik

    the charging patterns of EV batteries, thus prolonging their lifetime and increasing the drivers' comfort levelAalborg Universitet Flexible Local Load Controller for Fast ElectricVehicle Charging Station Controller for Fast ElectricVehicle Charging Station Supplemented with Flywheel Energy Storage System

  18. Aalborg Universitet Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Reactive Power Support of Electrical Vehicle Charging Station Upgraded of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System," in Proc. IEEE PowerTech, 2015. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy

  19. Aalborg Universitet Voltage Scheduling Droop Control for State-of-Charge Balance of Distributed Energy

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    ., & Guerrero, J. M. (2014). Voltage Scheduling Droop Control for State-of-Charge Balance of Distributed Energy-of-Charge Balance of Distributed Energy Storage in DC Microgrids," in Proc. IEEE International Energy Conference (EnergyCon'14), 2014. Voltage Scheduling Droop Control for State-of- Charge Balance of Distributed Energy

  20. Workplace Charging Challenge: Sample Workplace Charging Policy

    Broader source: Energy.gov [DOE]

    Review the policy guidelines used by one Workplace Charging Challenge partner to keep their program running safe and successfully.

  1. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Gap...

  2. Power Conservation Strategies for MEMS-based Storage Devices Ying Lin Scott A. Brandt Darrell D. E. Long Ethan L. Miller

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    ] or magnetic [1] recording techniques to achieve extremely high density storage. To achieve these high devices because physical move- ments to locate data are extremely small. Though the bit rate off each read/O performance, smaller physical size, lower heat dissipation requirements, and in- tegrated processing

  3. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Twitter Attend local EV events Share your story Currently have 13 ChargePoint charging stations scattered throughout Vermont 2015 - 12 Freedom Stations & 10...

  4. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping...

  5. Workplace Charging Challenge

    SciTech Connect (OSTI)

    2013-09-01

    Fact sheet about the EV Everywhere Workplace Charging Challenge which is to increase the number of American employers offering workplace charging by tenfold in the next five years.

  6. RATIONAL MATERIALS DESIGN THROUGH THEORY AND MODELING The rational design of novel electrical energy storage (EES) systems with high energy and

    E-Print Network [OSTI]

    Bazant, Martin Z.

    energy storage (EES) systems with high energy and power density will require the development of a full breakthroughs. Although chemical energy storage (batteries) and ECs share common components such as electrodes the research directions for each are presented separately. Chemical Energy Storage Storage of electrical charge

  7. Flywheel Energy Storage technology workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  8. Abstract -This paper presents the coordinated control of distributed energy storage systems (DESSs) in DC micro-grids.

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    ) in DC micro-grids. In order to balance the state-of-charge (SoC) of each energy storage unit (ESU--Droop control; distributed energy storage system (DESS); DC micro-grids; state-of-charge (SoC) I. INTRODUCTION and more popularity [1]. Nowadays DC micro-grids are becoming more attractive with the raise of DC power

  9. Distributed storage with communication costs

    E-Print Network [OSTI]

    Armstrong, Craig Kenneth

    2011-01-01

    5 Introduction to Coding for Distributed Storage The Repairflow graph for 1 repair with varying storage capac- itythe Capacity of Storage Nodes . . . 4.1 Characterizing

  10. Studies of protein adsorption on implant materials in relation to biofilm formation I. Activity of Pseudomonas aeruginosa on Polypropylene and High density Polyethylene in presence of serum albumin

    E-Print Network [OSTI]

    Sinha, S Dutta; Maity, P K; Tarafdar, S; Moulik, S P

    2014-01-01

    The surface of biomaterials used as implants are highly susceptible to bacterial colonization and subsequent infection. The amount of protein adsorption on biomaterials, among other factors, can affect the nature and quality of biofilms formed on them. The variation in the adsorption time of the protein on the biomaterial surface produces a phenotypic change in the bacteria by alteration of the production of EPS (exoplysaccharide) matrix. Knowledge of the effects of protein adsorption on implant infection will be very useful in understanding the chemistry of the biomaterial surfaces, which can deter the formation of biofilms. It is observed that the adsorption of BSA on the biomaterial surfaces increases with time and concentration, irrespective of their type and the nature of the EPS matrix of the bacterial biofilm is dependent on the amount of protein adsorbed on the biomaterial surface. The adsorption of protein (BSA) on the biomaterials, polypropylene (PP) and high density polyethylene (HDPE) has been stu...

  11. Assessment of an ORION-based experimental platform for measuring the opacity of high-temperature and high-density plasma

    SciTech Connect (OSTI)

    Beiersdorfer, P; Schneider, M; Shepherd, R

    2012-06-11

    The following provides an assessment of an experimental platform based on the ORION laser at AWE Aldermasten, England, for measuring the opacity of high-temperature and high-density LTE plasmas. The specific points addressed are (1) the range of electron density and temperature that can be achieved with short-pulse beams alone, as well as (2) by means of compression with a long-pulse beam; (3) the accuracy with which electron density, electron temperature, and absolute emissivity can be measured; (4) the use of pulse shaping to increase the sample density to above solid density; (5) the effect that target materials and target design have on maintaining spatial uniformity of the sample, and (6) the need for additional diagnostics to produce and characterize samples for decisive measurements.

  12. Evidence of the existence of the high-density and low-density phases in deeply-cooled confined heavy water under high pressures

    SciTech Connect (OSTI)

    Wang, Zhe; Chen, Sow-Hsin; Liu, Kao-Hsiang; Harriger, Leland; Leăo, Juscelino B.

    2014-07-07

    The average density of D{sub 2}O confined in a nanoporous silica matrix (MCM-41-S) is studied with neutron scattering. We find that below ?210 K, the pressure-temperature plane of the system can be divided into two regions. The average density of the confined D{sub 2}O in the higher-pressure region is about 16% larger than that in the lower-pressure region. These two regions could represent the so-called “low-density liquid” and “high-density liquid” phases. The dividing line of these two regions, which could represent the associated 1st order liquid-liquid transition line, is also determined.

  13. Study of Charge-Exchange Neutrals Emission from Hot Plasma at the Multimirror Trap GOL-3

    SciTech Connect (OSTI)

    Burdakov, A.V.; Derevyankin, G.E.; Koidan, V.S.; Shoshin, A.A.; Trunev, Yu.A. [Budker Institute of Nuclear Physics of Russian Academy of Science (Russian Federation)

    2005-01-15

    Tentative experiments on registration of the energy spectrum of fast charge exchange (CX) neutrals emitted from the high-density hot plasma of the GOL-3 facility were carried out. Experimental data provided by used 5-channel CX neutrals analyzer are presented and the procedure of determining of the energy distribution of registered CX neutrals is discussed. From calculated data of the neutrals energy distribution the estimated temperature is 1.5 {+-} 0.5 keV.

  14. On Evolution of the Pair-Electromagnetic Pulse of a Charge Black Hole

    E-Print Network [OSTI]

    Remo Ruffini; Jay D. Salmonson; James R. Wilson; She-Sheng Xue

    1999-05-04

    Using hydrodynamic computer codes, we study the possible patterns of relativistic expansion of an enormous pair-electromagnetic-pulse (P.E.M. pulse); a hot, high density plasma composed of photons, electron-positron pairs and baryons deposited near a charged black hole (EMBH). On the bases of baryon-loading and energy conservation, we study the bulk Lorentz factor of expansion of the P.E.M. pulse by both numerical and analytical methods.

  15. Pumped Storage Hydropower

    Broader source: Energy.gov [DOE]

    In addition to traditional hydropower, pumped-storage hydropower (PSH)—A type of hydropower that works like a battery, pumping water from a lower reservoir to an upper reservoir for storage and...

  16. Multiported storage devices 

    E-Print Network [OSTI]

    Grande, Marcus Bryan

    2000-01-01

    and intelligence than the traditional block storage device. A multiported storage device allows application-specific code that we call filter applets to be downloaded to the device while still maintaining the simple block-level interface. The device contains...

  17. Transportation Storage Interface

    Office of Environmental Management (EM)

    in above- ground bunkers, each of which is about the size of a one-car garage. Spent Fuel Storage: Dual Purpose Cask Systems 8 Spent Fuel Storage and Transportation: Framework...

  18. Unit 35 - Raster Storage

    E-Print Network [OSTI]

    Unit 35, CC in GIS; Peuquet, Donna

    1990-01-01

    in GIS - 1990 Page 8 Unit 35 - Raster Storage GIS to whichNCGIA Core Curriculum in GIS - 1990 Page 9 Unit 35 - RasterStorage UNIT 35 IMAGES NCGIA Core Curriculum in GIS - 1990

  19. Efficient high density train operations

    DOE Patents [OSTI]

    Gordon, Susanna P. (Oakland, CA); Evans, John A. (Hayward, CA)

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  20. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  1. Accountable Storage Giuseppe Ateniese

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Accountable Storage Giuseppe Ateniese Michael T. Goodrich Vassilios Lekakis Charalampos Papamanthou§ Evripidis Paraskevas§ Roberto Tamassia¶ Abstract We introduce Accountable Storage (AS), a framework allowing. Such protocols offer "provable storage insurance" to a client: In case of a data loss, the client can

  2. Groundwater and Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  3. Storage Ring Revised March 1994

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage Ring 8.2.2. Computer Aided Refined Pole Designs #12; Storage Ring 111 #12; 112 Storage Ring #12

  4. Storage : DAS / SAN / NAS Dploiement

    E-Print Network [OSTI]

    Collette. Sébastien

    CH8 Divers 2 Agenda · Storage : DAS / SAN / NAS · Déploiement · VLAN ­ 802.1Q · Gestion d · Sécurisation de Windows · Sécurisation de UNIX · Qu'est-ce que... ­ Firewall, VPN, IDS/IPS, PKI Storage : DAS, NAS, SAN #12;3 Storage : DAS, NAS, SAN · Direct Attached Storage · Network Attached Storage · Storage

  5. Kauai Island Utility Cooperative energy storage study.

    SciTech Connect (OSTI)

    Akhil, Abbas Ali; Yamane, Mike; Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce into the KIUC grid. General Electric is presently conducting such a study and results of this study will be available in the near future. Another study conducted by Electric Power Systems, Inc. (EPS) in May 2006 took a broader approach to determine the causes of KIUC system outages. This study concluded that energy storage with batteries will provide stability benefits and possibly eliminate the load shedding while also providing positive voltage control. Due to the lack of fuel diversity in the KIUC generation mix, SNL recommends that KIUC continue its efforts to quantify the dynamic benefits of storage. The value of the dynamic benefits, especially as an enabler of renewable generation such as wind energy, may be far greater than the production cost benefits alone. A combination of these benefits may provide KIUC sufficient positive economic and operational benefits to implement an energy storage project that will contribute to the overall enhancement of the KIUC system.

  6. Thermal Energy Storage: It's not Just for Electric Cost Savings Anymore 

    E-Print Network [OSTI]

    Andrepont, J. S.

    2014-01-01

    Large cool Thermal Energy Storage (TES), typically ice TES or chilled water (CHW) TES, has traditionally been thought of, and used for, managing time-of-day electricity use to reduce the cost associated with electric energy and demand charges...

  7. Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01

    Large Releases from CO2 Storage Reservoirs: Analogs,S.T. Nelson. Natural Leaking CO2-charged Systems as AnalogsY. Sano, and H.U. Schmincke. CO2-rich Gases from Lakes Nyos

  8. A Dynamic Programming Approach to Estimate the Capacity Value of Energy Storage

    Broader source: Energy.gov [DOE]

    We present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that it explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.

  9. Continuous Commissioning(SM) of a Thermal Storage System 

    E-Print Network [OSTI]

    Turner, W. D.; Liu, M.

    2001-01-01

    electrical demand dropped rapidly after 4:30 PM, the control sequence was modified to turn on one small 200-ton chiller after 5:00 PM if the thermal storage tank is about to run out of chilled water and the electrical demand is below 1200 kW. This situation... Storage Tank and the Chilled Water System In the charging mode, chilled water produced by the chillers enters the bottom of the storage tank (Port FGe0 Port E Ge0 Pump Ge0 Port B Ge0 Port A). In the discharge mode, 3-way control valves V1 and V2 move...

  10. Cooling Semiconductor Manufacturing Facilities with Chilled Water Storage 

    E-Print Network [OSTI]

    Fiorino, D. P.

    1995-01-01

    2). Recovery of this facility's very large fixed costs caused the high voltage demand charge to increase by 135% (from $5.20/kW to $ 12.20/kW) making daytime electric water chilling a much more! expensive practice than previously. DPIIDMOS5... and pumping horsepower. And, if necessary, valves in the secondary pump suction header permit the "warm" pump to substitute for either of the two "cold" pumps. CHILLED WATER STORAGE Storage Type Stratified chilled water storage was the most cost...

  11. Charge regulation circuit

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA)

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.

  12. Long vs. short-term energy storage:sensitivity analysis.

    SciTech Connect (OSTI)

    Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA); Hassenzahl, William V. (,Advanced Energy Analysis, Piedmont, CA)

    2007-07-01

    This report extends earlier work to characterize long-duration and short-duration energy storage technologies, primarily on the basis of life-cycle cost, and to investigate sensitivities to various input assumptions. Another technology--asymmetric lead-carbon capacitors--has also been added. Energy storage technologies are examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. Sensitivity analyses include cost of electricity and natural gas, and system life, which impacts replacement costs and capital carrying charges. Results are presented in terms of annual cost, $/kW-yr. A major variable affecting system cost is hours of storage available for discharge.

  13. Workplace Charging Challenge

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    corporate leadership and innovation, demonstrating a willingness to adopt advanced technology. Sustainability Providing PEV charging can enhance corporate sustainability efforts,...

  14. High density and taper-free boron doped Si{sub 1?x}Ge{sub x} nanowire via two-step growth process

    SciTech Connect (OSTI)

    Periwal, Priyanka; Salem, Bassem; Bassani, Franck; Baron, Thierry, E-mail: thierry.baron@cea.fr [University of Grenoble Alpes LTM, F-38000 Grenoble, France and CNRS LTM, UMR-5129, F-38000 Grenoble (France); Barnes, Jean-Paul [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2014-07-01

    The authors study Au catalyzed chemical vapor growth of Si{sub 1?x}Ge{sub x} alloyed nanowires in the presence of diborane, serving as a dopant precursor. Our experiments reveal that introduction of diborane has a significant effect on doping and morphology. Boron exposure poisons the Au catalyst surface, suppresses catalyst activity, and causes significantly tapered wires, as a result of conformal growth. The authors develop here a two-step method to obtain high density and taper-free boron doped Si{sub 1?x}Ge{sub x} alloy nanowires. The two-step process consists of: (1) growth of a small undoped Si{sub 1?x}Ge{sub x} section and (2) introduction of diborane to form a boron doped Si{sub 1?x}Ge{sub x} section. The catalyst preparation step remarkably influences wire yield, quality and morphology. The authors show that dopant-ratio influences wire resistivity and morphology. Resistivity for high boron doped Si{sub 1?x}Ge{sub x} nanowire is 6 m?-cm. Four probe measurements show that it is possible to dope Si{sub 1?x}Ge{sub x} alloy nanowires with diborane.

  15. Studies of protein adsorption on implant materials in relation to biofilm formation I. Activity of Pseudomonas aeruginosa on Polypropylene and High density Polyethylene in presence of serum albumin

    E-Print Network [OSTI]

    S Dutta Sinha; Susmita Chatterjee; P. K. Maity; S. Tarafdar; S. P. Moulik

    2014-11-19

    The surface of biomaterials used as implants are highly susceptible to bacterial colonization and subsequent infection. The amount of protein adsorption on biomaterials, among other factors, can affect the nature and quality of biofilms formed on them. The variation in the adsorption time of the protein on the biomaterial surface produces a phenotypic change in the bacteria by alteration of the production of EPS (exoplysaccharide) matrix. Knowledge of the effects of protein adsorption on implant infection will be very useful in understanding the chemistry of the biomaterial surfaces, which can deter the formation of biofilms. It is observed that the adsorption of BSA on the biomaterial surfaces increases with time and concentration, irrespective of their type and the nature of the EPS matrix of the bacterial biofilm is dependent on the amount of protein adsorbed on the biomaterial surface. The adsorption of protein (BSA) on the biomaterials, polypropylene (PP) and high density polyethylene (HDPE) has been studied and the formation of the biofilms of Pseudomonas aeruginosa on them has been examined.

  16. Technology available for license: Charging of liquid energy storage media

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatterTechnologyLaboratoryL.

  17. Charge exchange system

    DOE Patents [OSTI]

    Anderson, Oscar A. (Berkeley, CA)

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  18. Thermite charge - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Trademark Office Marketing Summary: Linear Thermite Charge Abstract: The present invention provides for cutting operations using linear thermite charges; the charges cut one...

  19. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01

    Management for Urban EV Charging Systems”, 2013 IEEEfor Large Scale Public EV Charging Facilities”, 2013 IEEESmart Electric Vehicle (EV) Charging and Grid Integration

  20. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  1. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  2. Culex quinquefasciatus Storage Proteins

    E-Print Network [OSTI]

    2013-01-01

    and hemolymph proteins of Cx. quinquefasciatus . A and B:of typical storage proteins in Cx. quinquefasciatus.Fourth-instar Cx. quinquefasciatus larvae and early pupae

  3. Transmission and Storage Operations

    Energy Savers [EERE]

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014...

  4. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  5. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  6. Hydrogen Storage Challenges

    Broader source: Energy.gov [DOE]

    For transportation, the overarching technical challenge for hydrogen storage is how to store the amount of hydrogen required for a conventional driving range (>300 miles) within the vehicular...

  7. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    thermal energy becomes apparent with the development of solarsolar energy systems, aquifer energy storage provides a buffer between time-varying solar energy inputs and thermal

  8. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Weekday Total Electricity Generation (Storage AdoptionWeekday Total Electricity Generation (Storage Adoptionrecovery and storage) utility electricity and natural gas

  9. Electron capture and beta-decay rates for sd-shell nuclei in stellar environments relevant to high density O-Ne-Mg cores

    E-Print Network [OSTI]

    Toshio Suzuki; Hiroshi Toki; Ken'ichi Nomoto

    2015-12-01

    Electron capture and beta-decay rates for nuclear pairs in sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O-Ne-Mg cores of stars with the initial masses of 8-10 solar mass. Electron capture induces a rapid contraction of the electron-degenerate O-Ne-Mg core. The outcome of rapid contraction depends on the evolutionary changes in the central density and temperature, which are determined by the competing processes of contraction, cooling, and heating. The fate of the stars are determined by these competitions, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. Since the competing processes are induced by electron capture and beta-decay, the accurate weak rates are crucially important. The rates are obtained for pairs with A=20, 23, 24, 25 and 27 by shell-model calculations in sd-shell with the USDB Hamiltonian. Effects of Coulomb corrections on the rates are evaluated. The rates for pairs with A=23 and 25 are important for nuclear URCA processes that determine the cooling rate of O-Ne-Mg core, while those for pairs with A=20 and 24 are important for the core-contraction and heat generation rates in the core. We provide these nuclear rates at stellar environments in tables with fine enough meshes at various densities and temperatures for the studies of astrophysical processes sensitive to the rates. In particular, the accurate rate tables are crucially important for the final fates of not only O-Ne-Mg cores but also a wider range of stars such as C-O cores of lower mass stars.

  10. High-Temperature SiC Power Module with Integrated SiC Gate Drivers for Future High-Density Power Electronics Applications

    SciTech Connect (OSTI)

    Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.; Passmore, Mr. Brandon [APEI, Inc.; Martin, Daniel [APEI, Inc.; Mcnutt, Tyler [APEI, Inc.; Lostetter, Dr. Alex [APEI, Inc.; Ericson, Milton Nance [ORNL; Frank, Steven Shane [ORNL; Britton Jr, Charles L [ORNL; Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Dr. Matt [University of Arkansas; Lamichhane, Ranjan [University of Arkansas; Shepherd, Dr. Paul [University of Arkansas; Glover, Dr. Michael [University of Arkansas

    2015-01-01

    This paper presents the testing results of an all-silicon carbide (SiC) intelligent power module (IPM) for use in future high-density power electronics applications. The IPM has high-temperature capability and contains both SiC power devices and SiC gate driver integrated circuits (ICs). The high-temperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes high frequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter to showcase the performance of the module in a system level application. The converter was initially operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The efficiency of the converter was then evaluated experimentally and optimized by increasing the overdrive voltage on the SiC gate driver ICs. Overall a peak efficiency of 97.7% was measured at 3.0 kW output. The converter s switching frequency was then increased to 500 kHz to prove the high frequency capability of the power module was then pushed to its limits and operated at a switching frequency of 500 kHz. With no further optimization of components, the converter was able to operate under these conditions and showed a peak efficiency of 95.0% at an output power of 2.1 kW.

  11. Ice Bear® Storage Module | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ice Bear Storage Module Ice Bear Storage Module Thermal Energy Storage for Light Commercial Refrigerant-Based Air Conditioning Units The Ice Bear storage technology was...

  12. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  13. Workplace Charging Challenge Progress Update 2014: Employers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workplace Charging Challenge Progress Update 2014: Employers Take Charge Workplace Charging Challenge Progress Update 2014: Employers Take Charge The Workplace Charging Challenge...

  14. Pseudocapacitive Lithium-Ion Storage in Oriented Anatase TiO2 Nanotube Arrays

    SciTech Connect (OSTI)

    Zhu, K.; Wang, Q.; Kim, J. H.; Pesaran, A. A.; Frank, A. J.

    2012-06-07

    We report on the synthesis and electrochemical properties of oriented anatase TiO{sub 2} nanotube (NT) arrays as electrodes for Li-ion batteries. The TiO{sub 2} NT electrodes displayed both pseudocapacitive Li{sup +} storage associated with the NT surface and the Li{sup +} storage within the bulk material. The relative contribution of the pseudocapacitive and bulk storages depends strongly on the scan rate. While the charges are stored primarily in the bulk at low scan rates (<< 1 mV/s), the surface storage dominates the total storage capacity at higher scan rates (>1 mV/s). The storage capacity of the NT electrodes as a function of charge/discharge rates showed no dependence on the NT film thickness, suggesting that the Li{sup +} insertion/extraction processes occur homogeneously across the entire length of NT arrays. These results indicated that the electron conduction along the NT walls and the ion conduction within the electrolyte do not cause significant hindering of the charge/discharge kinetics for NT electrode architectures. As a result of the surface pseudocapacitive storage, the reversible Li{sup +} storage capacities for TiO{sub 2} NT electrodes were higher than the theoretical storage capacity for bulk anatase TiO{sub 2} materials.

  15. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

    2008-03-18

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  16. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

    2012-04-03

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  17. Storage resource manager

    SciTech Connect (OSTI)

    Perelmutov, T.; Bakken, J.; Petravick, D.; /Fermilab

    2004-12-01

    Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic space allocation and file management on shared storage components on the Grid[1,2]. SRMs support protocol negotiation and reliable replication mechanism. The SRM standard supports independent SRM implementations, allowing for a uniform access to heterogeneous storage elements. SRMs allow site-specific policies at each location. Resource Reservations made through SRMs have limited lifetimes and allow for automatic collection of unused resources thus preventing clogging of storage systems with ''orphan'' files. At Fermilab, data handling systems use the SRM management interface to the dCache Distributed Disk Cache [5,6] and the Enstore Tape Storage System [15] as key components to satisfy current and future user requests [4]. The SAM project offers the SRM interface for its internal caches as well.

  18. Ultra-HighDensity Board Technologyfor suh-100pn Pitch nano-WaferLevel Packaging Venky Sundaram, Fuhan Liu, Ankur 0.Aggarwal, Seyed M. Hosseini, Sharath Mekala, George E. White, Rao R. Tummala,

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    Ultra-HighDensity Board Technologyfor suh-100pn Pitch nano-WaferLevel Packaging Venky Sundaram, Packaging Research Center, Georgia Institute of Technology, 813 Ferst Dr, Atlanta, GA 30332-0560, USA and the package increases tremendously. With the shift towards nano ICs by 2004 with cl00 nm feature sizes

  19. ,"Underground Natural Gas Storage by Storage Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

  20. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Initiative Arguably the most important infrastructure strategy to accelerate adoption of PEVs. Why are we doing Workplace Charging? * PEV Market Growth - Critical now...

  1. Energy Storage | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage SHARE Energy Storage Development Growing popularity and education about the benefits of alternative, sustainable transportation options-such as electric and hybrid...

  2. Secure Storage Architectures

    SciTech Connect (OSTI)

    Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine; Koch, Scott M; Naughton, III, Thomas J; Pogge, James R; Scott, Stephen L; Shipman, Galen M; Sorrillo, Lawrence

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to help with this issue, which are a particular instances of the more general challenge of efficient host/guest IO that is the focus of interfaces like virtio. A collection of bridging technologies have been identified in Chapter 4, which can be helpful to overcome the limitations and challenges of supporting efficient storage for secure enclaves. The synthesis of native filesystem security mechanisms and bridging technologies led to an isolation-centric storage architecture that is proposed in Chapter 5, which leverages isolation mechanisms from different layers to facilitate secure storage for an enclave. Recommendations: The following highlights recommendations from the investigations done thus far. - The Lustre filesystem offers excellent performance but does not support some security related features, e.g., encryption, that are included in GPFS. If encryption is of paramount importance, then GPFS may be a more suitable choice. - There are several possible Lustre related enhancements that may provide functionality of use for secure-enclaves. However, since these features are not currently integrated, the use of Lustre as a secure storage system may require more direct involvement (support). (*The network that connects the storage subsystem and users, e.g., Lustre s LNET.) - The use of OpenStack with GPFS will be more streamlined than with Lustre, as there are available drivers for GPFS. - The Manilla project offers Filesystem as a Service for OpenStack and is worth further investigation. Manilla has some support for GPFS. - The proposed Lustre enhancement of Dynamic-LNET should be further investigated to provide more dynamic changes to the storage network which could be used to isolate hosts and their tenants. - The Linux namespaces offer a good solution for creating efficient restrictions to shared HPC filesystems. However, we still need to conduct a thorough round of storage/filesystem benchmarks. - Vendor products should be more closely reviewed, possibly to include evaluation of performance/protection of select products. (Note, we are investigation the opti

  3. Storage Exchange: A Global Trading Platform for Storage Services

    E-Print Network [OSTI]

    Melbourne, University of

    Storage Exchange: A Global Trading Platform for Storage Services Martin Placek and Rajkumar Buyya}@csse.unimelb.edu.au Abstract. The Storage Exchange (SX) is a new platform allowing stor- age to be treated as a tradeable resource. Organisations with varying storage requirements can use the SX platform to trade and exchange

  4. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

    E-Print Network [OSTI]

    Minnesota, University of

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim are witnessing a revival of Storage Service Providers (SSP) in the form of new vendors as well as traditional players. While storage outsourcing is cost-effective, many companies are hesitating to outsource

  5. Storage Exchange: A Global Trading Platform for Storage Services

    E-Print Network [OSTI]

    Melbourne, University of

    Storage Exchange: A Global Trading Platform for Storage Services Martin Placek and Rajkumar Buyya,raj}@csse.unimelb.edu.au Abstract. The Storage Exchange (SX) is a new platform allowing stor- age to be treated as a tradeable resource. Organisations with varying storage requirements can use the SX platform to trade and exchange

  6. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next up previous Next: Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010...

  7. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  8. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  9. Wet storage integrity update

    SciTech Connect (OSTI)

    Bailey, W.J.; Johnson, A.B. Jr.

    1983-09-01

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables.

  10. Process for fabricating a charge coupled device

    DOE Patents [OSTI]

    Conder, Alan D. (Tracy, CA); Young, Bruce K. F. (Livermore, CA)

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  11. Three-dimensional charge coupled device

    DOE Patents [OSTI]

    Conder, Alan D. (Tracy, CA); Young, Bruce K. F. (Livermore, CA)

    1999-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  12. Analog storage integrated circuit

    DOE Patents [OSTI]

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  13. Analog storage integrated circuit

    DOE Patents [OSTI]

    Walker, J. T. (Palo Alto, CA); Larsen, R. S. (Menlo Park, CA); Shapiro, S. L. (Palo Alto, CA)

    1989-01-01

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

  14. Marketing Cool Storage Technology 

    E-Print Network [OSTI]

    McCannon, L.

    1987-01-01

    -09-74 Proceedings from the Ninth Annual Industrial Energy Technology Conference, Houston, TX, September 16-18, 1987 Utility Cool Storage Inducement Progra~ ,.,.. ?? ,.. ,., Utilities With Inducement~ CA -- Southern California Edison San Diego Gas &Electric..., electric utilities have been faced with risin~ construction costs, more strin~ent re~ulations, and increasin~ environmental constraints re~ardin~ development of new generatin~ facilities. As the viability of cool storage has been substantiated. bv...

  15. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program deŢnes a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  16. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program defines a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  17. Savannah River Hydrogen Storage Technology

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  18. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  19. Economic Analysis Case Studies of Battery Energy Storage with SAM

    SciTech Connect (OSTI)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.

  20. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  1. Photon: history, mass, charge

    E-Print Network [OSTI]

    L. B. Okun

    2006-02-13

    The talk consists of three parts. ``History'' briefly describes the emergence and evolution of the concept of photon during the first two decades of the 20th century. ``Mass'' gives a short review of the literature on the upper limit of the photon's mass. ``Charge'' is a critical discussion of the existing interpretation of searches for photon charge. Schemes, in which all photons are charged, are grossly inconsistent. A model with three kinds of photons (positive, negative and neutral) seems at first sight to be more consistent, but turns out to have its own serious problems.

  2. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  3. International aeronautical user charges

    E-Print Network [OSTI]

    Odoni, Amedeo R.

    1985-01-01

    Introduction: 1.1 BACKGROUND AND MOTIVATION Very few issues relating to the international air transportation industry are today as divisive as those pertaining to user charges imposed at international airports and enroute ...

  4. Trends in Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donofrio Ford Motor Company Trends in Workplace Charging Est EV NA NA approx 21 70-100 Miles: What Types of Chargers are Being Used? Considerations for Campus Installations *...

  5. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Broader source: Energy.gov (indexed) [DOE]

    Fast Charge - November 2012 WirelessInductive Charging Inductive charging, also known as wireless charging, uses an electromagnetic field to transfer electricity to a PEV without...

  6. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  7. Aalborg Universitet Fuzzy-Logic-Based Gain-Scheduling Control for State-of-Charge Balance of Distributed

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    nature of renewable energy sources and changes of load demand. Apart from that, the use of distributed of Distributed Energy Storage Systems for DC Microgrids Aldana, Nelson Leonardo Diaz; Dragicevic, Tomislav-Logic-Based Gain-Scheduling Control for State-of-Charge Balance of Distributed Energy Storage Systems for DC

  8. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K. (Livermore, CA); Hunt, Angus L. (Alamo, CA)

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  9. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  10. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  11. Integrated Building Energy Systems Design Considering Storage Technologies

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  12. Electric vehicle system for charging and supplying electrical power

    DOE Patents [OSTI]

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  13. Storage battery systems analysis

    SciTech Connect (OSTI)

    Murphy, K.D.

    1982-01-01

    Storage Battery Systems Analysis supports the battery Exploratory Technology Development and Testing Project with technical and economic analysis of battery systems in various end-use applications. Computer modeling and simulation techniques are used in the analyses. Analysis objectives are achieved through both in-house efforts and outside contracts. In-house studies during FY82 included a study of the relationship between storage battery system reliability and cost, through cost-of-investment and cost-of-service interruption inputs; revision and update of the SOLSTOR computer code in standard FORTRAN 77 form; parametric studies of residential stand-alone photovoltaic systems using the SOLSTOR code; simulation of wind turbine collector/storage battery systems for the community of Kalaupapa, Molokai, Hawaii.

  14. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  15. Neptunium storage at Hanford

    SciTech Connect (OSTI)

    Alderman, C.J.; Shiraga, S.S.; Schwartz, R.A.; Smith, R.J.; Wootan, D.W.

    1993-06-01

    A decision must be made regarding whether the United State`s stockpile of neptunium should be discarded into the waste stream or kept for the production of Pu-238. Although the cost of long term storage is not inconsequential, to dispose of the material means the closing of our option to maintain control over our Pu-238 stockpile. Within the Fuels and Materials Examination Facility at Hanford there exists a remotely operated facility that can be converted for neptunium storage. This paper describes the facility and the anticipated handling requirements.

  16. Storage tracking refinery trends

    SciTech Connect (OSTI)

    Saunders, J.

    1996-05-01

    Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

  17. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from thecarbon captureCarbon Storage AtlasStorage

  18. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!TransportStorage RingStorage Ring

  19. Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaff andState andStorage Storage

  20. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  1. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    tiles for thermal energy storage,” working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  2. Carbon Nanotube Films for Energy Storage Applications

    E-Print Network [OSTI]

    Kozinda, Alina

    2014-01-01

    Silicon Nanotubes and their Application to Energy Storage,&as an energy storage application of the amorphous-siliconof silicon nanowires hinders the energy storage capability [

  3. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

  4. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01

    based Materials for Energy Storage A dissertation submittedbased Materials for Energy storage by Lynn Margaret Ricewind are intermittent. Energy storage systems, then, that

  5. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  6. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    Effect of Heat and Electricity Storage and Reliability onNM, USA. [37] Electricity Storage Association, Morgan Hill,dimensionless d. electricity storage loss factor for the EV

  7. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    Effect of Heat and Electricity Storage and Reliability onthe final report for the Electricity Storage Viability andof utility electricity purchase, on-site generation, storage

  8. Hydrogen Storage Research and Development Activities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Research and Development Activities Hydrogen Storage Research and Development Activities DOE's hydrogen storage research and development (R&D) activities are aimed...

  9. MASS STORAGE SYSTEMS AND LARGE RESEARCH LIBRARIES

    E-Print Network [OSTI]

    Baker, James A.

    2013-01-01

    Symposium on Mass Storage Systems, Denver, CO, April15-17, 1980 MASS STORAGE SYSTEMS AND LARGE RESEARCHSymposium on Mass Storage Systems, Denver, Colorado, April

  10. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    D. Todd, (1973). Heat storage Systems in the L - Temperaturements for Energy Storage Systems, Los Alamos Scientificdirector for Physi- cal Storage Systems. Under Jim are three

  11. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    the prob- lem of seasonal storage of thermal energy (Matheyto study seasonal storage of thermal energy: winter storagewithin the Seasonal Thermal Energy Storage Program managed

  12. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

  13. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  14. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

  15. Pest Management For Grain Storage and Fumigation

    E-Print Network [OSTI]

    Dyer, Bill

    Pest Management For Grain Storage and Fumigation Seed Treatment -Pest Control- Grain Storage & Seed MANAGEMENT FOR GRAIN STORAGE AND FUMIGATION Introduction .................................................................................................................................................................. 12 Resistance Management Issues

  16. EIA - Natural Gas Storage Data & Analysis

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground...

  17. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Distributed Generation with Heat Recovery and Storage AfzalGeneration with Heat Recovery and Storage Manuscript Numberhere in order to focus on heat recovery and storage) utility

  18. IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 311 Optimizing Electric Vehicle Charging With Energy

    E-Print Network [OSTI]

    Tang, Jian "Neil"

    With Energy Storage in the Electricity Market Chenrui Jin, Member, IEEE, Jian Tang, Member, IEEE, and Prasanta, we study a problem of sched- uling EV charging with ES from an electricity market perspectiveIEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 311 Optimizing Electric Vehicle Charging

  19. 175 GMACS/mW Charge-Mode Adiabatic Mixed-Signal Array Processor Rafal Karakiewicz, Roman Genov

    E-Print Network [OSTI]

    Genov, Roman

    175 GMACS/mW Charge-Mode Adiabatic Mixed-Signal Array Processor Rafal Karakiewicz, Roman Genov with integrated DRAM storage (right, top), and charge transfer diagram for active write and compute operations (right, bottom). A 1-bit binary data example is shown. L Carray=CCL pullHC Vdd ERL DRIVERS CLen CLen CLen

  20. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  1. Storage and Infrastructure

    E-Print Network [OSTI]

    Madey, Gregory R.

    ;Cheaper to Collect RFIDs Sensor Nets The WWW, Screen Scraping, Google Searches Life in CyberSpace - Log Files, Digital Traces, MetaData Faster Computers ==> More Data to Study #12;Data Driven Discovery Organizations, Cyberinfrastructure #12;Research Opportunities & Challenges Sensors, Sensor Networks Storage

  2. Chit-based Remote Storage

    E-Print Network [OSTI]

    Paluska, Justin Mazzola

    We propose a model for reliable remote storage founded on contract law. Consumers submit their bits to storage providers in exchange for a chit. A chit is a cryptographically secure, verifiable contract between a consumer ...

  3. Hydrogen Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  4. Status of Hydrogen Storage Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The current status in terms of weight, volume, and cost of various hydrogen storage technologies is shown below. These values are estimates from storage system developers and the R&D community...

  5. Grid regulation services for energy storage devices based on grid frequency

    SciTech Connect (OSTI)

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  6. Grid regulation services for energy storage devices based on grid frequency

    DOE Patents [OSTI]

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  7. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  8. Iron-titanium-mischmetal alloys for hydrogen storage

    DOE Patents [OSTI]

    Sandrock, Gary Dale (Ringwood, NJ)

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  9. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  10. HIERARCHICAL METHODOLOGY FOR MODELING HYDROGEN STORAGE SYSTEMS PART II: DETAILED MODELS

    SciTech Connect (OSTI)

    Hardy, B; Donald L. Anton, D

    2008-12-22

    There is significant interest in hydrogen storage systems that employ a media which either adsorbs, absorbs or reacts with hydrogen in a nearly reversible manner. In any media based storage system the rate of hydrogen uptake and the system capacity is governed by a number of complex, coupled physical processes. To design and evaluate such storage systems, a comprehensive methodology was developed, consisting of a hierarchical sequence of models that range from scoping calculations to numerical models that couple reaction kinetics with heat and mass transfer for both the hydrogen charging and discharging phases. The scoping models were presented in Part I [1] of this two part series of papers. This paper describes a detailed numerical model that integrates the phenomena occurring when hydrogen is charged and discharged. A specific application of the methodology is made to a system using NaAlH{sub 4} as the storage media.

  11. Charged Vacuum Bubble Stability

    E-Print Network [OSTI]

    J. R. Morris

    1998-10-20

    A type of scenario is considered where electrically charged vacuum bubbles, formed from degenerate or nearly degenerate vacuua separated by a thin domain wall, are cosmologically produced due to the breaking of a discrete symmetry, with the bubble charge arising from fermions residing within the domain wall. Stability issues associated with wall tension, fermion gas, and Coulombic effects for such configurations are examined. The stability of a bubble depends upon parameters such as the symmetry breaking scale and the fermion coupling. A dominance of either the Fermi gas or the Coulomb contribution may be realized under certain conditions, depending upon parameter values.

  12. The electrically charged universe

    E-Print Network [OSTI]

    Michael Düren

    2012-01-31

    The paper discusses the possibility of a universe that is not electrically neutral but has a net positive charge. It is claimed that such a universe contains a homogeneous distribution of protons that are not bound to galaxies and fill up the intergalactic space. This proton `gas' charges macroscopic objects like stars and planets, but it does not generate electrostatic or magnetic fields that affect the motion of these bodies significantly. However, the proton gas may contribute significantly to the total dark matter of the universe and its electrostatic potential may contribute to the dark energy and to the expansion of the universe.

  13. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  14. HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE

    E-Print Network [OSTI]

    Chan, Shueng-Han Gary

    HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE VIDEO­ON­DEMAND Shueng­Han Gary Chan and Fouad A; Hierarchical Storage Systems for Interactive Video­On­Demand Shueng­Han Gary Chan and Fouad A. Tobagi Technical­9040 pubs@shasta.stanford.edu Abstract On­demand video servers based on hierarchical storage systems

  15. Electrical Energy Storage: Stan Whittingham

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    1 p. 1 Electrical Energy Storage: Stan Whittingham Report of DOE workshop, April 2007 A Cleaner and Energy Independent America through Chemistry Chemical Storage: Batteries, today and tomorrow http needed in Energy Storage Lithium Economy not Hydrogen Economy #12;9 p. 9 Batteries are key to an economy

  16. High energy storage capacitor by embedding tunneling nano-structures

    DOE Patents [OSTI]

    Holme, Timothy P; Prinz, Friedrich B; Van Stockum, Philip B

    2014-11-04

    In an All-Electron Battery (AEB), inclusions embedded in an active region between two electrodes of a capacitor provide enhanced energy storage. Electrons can tunnel to/from and/or between the inclusions, thereby increasing the charge storage density relative to a conventional capacitor. One or more barrier layers is present in an AEB to block DC current flow through the device. The AEB effect can be enhanced by using multi-layer active regions having inclusion layers with the inclusions separated by spacer layers that don't have the inclusions. The use of cylindrical geometry or wrap around electrodes and/or barrier layers in a planar geometry can enhance the basic AEB effect. Other physical effects that can be employed in connection with the AEB effect are excited state energy storage, and formation of a Bose-Einstein condensate (BEC).

  17. Energy Storage: Current landscape for alternative energy

    E-Print Network [OSTI]

    Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

  18. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium...

  19. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  20. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

  1. Image Charge Differential

    E-Print Network [OSTI]

    Weston, Ken

    Image Charge Differential Amplifier FT 0 Crude Oil Time (s) 543210 Frequency (kHz) m/z m q B f organic molecules such as heavy crude oils. Heavy crudes are some of the most complex organic mixtures found in nature. As the crude oil industry grows in size and demand for crude oil increases, techniques

  2. High-density Er-implanted GaN optical memory devices Boon K. Lee, Robert Chih-Jen Chi, David Liang-Chiun Chao, Ji Cheng, Irving Yeong-Ning Chry,

    E-Print Network [OSTI]

    Cincinnati, University of

    . The integrated upconversion emission power was measured to be 40 pW when pumped by a 840-nm laser at 265 m, volumetric storage methods increase storage capacity by stacking data three dimension- ally. Based on optical larger than the existing optical disk technologies. First proposed in 1960, volumetric optical data

  3. Nanoscale data storage

    E-Print Network [OSTI]

    J. C. Li

    2007-01-29

    The object of this article is to review the development of ultrahigh-density, nanoscale data storage, i.e., nanostorage. As a fundamentally new type of storage system, the recording mechanisms of nanostorage may be completely different to those of the traditional devices. Currently, two types of molecules are being studied for potential application in nanostorage. One is molecular electronic elements including molecular wires, rectifiers, switches, and transistors. The other approach employs nanostructured materials such as nanotubes, nanowires, and nanoparticles. The challenges for nanostorage are not only the materials, ultrahigh data-densities, fabrication-costs, device operating temperatures and large-scale integration, but also the development of the physical principles and models. There are already some breakthroughs obtained, but it is still unclear what kind of nanostorage systems can ultimately replace the current silicon based transistors. A promising candidate may be a molecular-nanostructure hybrid device with sub-5 nm dimensions.

  4. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  5. Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps

    E-Print Network [OSTI]

    Guise, Nicholas D; Tan, Joseph N

    2013-01-01

    A newly constructed apparatus at the National Institute of Standards and Technology (NIST) is designed for the isolation, manipulation, and study of highly charged ions. Highly charged ions are produced in the NIST electron-beam ion trap (EBIT), extracted through a beamline that selects a single mass/charge species, then captured in a compact Penning trap. The magnetic field of the trap is generated by cylindrical NdFeB permanent magnets integrated into its electrodes. In a room-temperature prototype trap with a single NdFeB magnet, species including Ne10+ and N7+ were confined with storage times of order 1 second, showing the potential of this setup for manipulation and spectroscopy of highly charged ions in a controlled environment. Ion capture has since been demonstrated with similar storage times in a more-elaborate Penning trap that integrates two coaxial NdFeB magnets for improved B-field homogeneity. Ongoing experiments utilize a second-generation apparatus that incorporates this two-magnet Penning tra...

  6. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W. Henry (Danville, CA)

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  7. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  8. AVTA: ChargePoint AC Level 2 Charging System Testing Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ChargePoint AC Level 2 Charging System Testing Results AVTA: ChargePoint AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing...

  9. Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement

    Broader source: Energy.gov [DOE]

    Review the agreement proposed by one municipality to register PEV drivers and inform staff of charging policy.

  10. High Levels of Electrochemical Doping of Carbon Nanotubes: Evidence for a Transition from Double-Layer Charging to Intercalation and Functionalization

    E-Print Network [OSTI]

    Nabben, Reinhard

    (SWNT) are remarkable nanostructures with promising perspectives for application as charge storage devices,1,2 actuators,3 and various electronic devices.4 Plenty of these applications are related

  11. Charge detection in semiconductor nanostructures

    E-Print Network [OSTI]

    MacLean, Kenneth (Kenneth MacLean, III)

    2010-01-01

    In this thesis nanometer scale charge sensors are used to study charge transport in two solid state systems: Lateral GaAs quantum dots and hydrogenated amorphous silicon (a-Si:H). In both of these experiments we use ...

  12. Cost-Optimal Operation of Energy Storage Units: Benefits of a Problem-Specific Approach

    E-Print Network [OSTI]

    Siemer, Lars; Kleinhans, David

    2015-01-01

    The integration of large shares of electricity produced by non-dispatchable Renewable Energy Sources (RES) leads to an increasingly volatile energy generation side, with temporary local overproduction. The application of energy storage units has the potential to use this excess electricity from RES efficiently and to prevent curtailment. The objective of this work is to calculate cost-optimal charging strategies for energy storage units used as buffers. For this purpose, a new mathematical optimization method is presented that is applicable to general storage-related problems. Due to a tremendous gain in efficiency of this method compared with standard solvers and proven optimality, calculations of complex problems as well as a high-resolution sensitivity analysis of multiple system combinations are feasible within a very short time. As an example technology, Power-to-Heat converters used in combination with thermal storage units are investigated in detail and optimal system configurations, including storage ...

  13. New insights into designing metallacarborane based room temperature hydrogen storage media

    SciTech Connect (OSTI)

    Bora, Pankaj Lochan; Singh, Abhishek K.

    2013-10-28

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H{sub 2} sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  14. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartmentAudits and6AuidtWorkplace Charging Summit

  15. On the Proton charge extensions

    E-Print Network [OSTI]

    M. Gluck

    2015-02-03

    It is shown that the recent determination of the various proton charge extensions is compatible with Standard Model expectations.

  16. Thermal energy storage for cooling of commercial buildings

    SciTech Connect (OSTI)

    Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  17. Lithium-decorated oxidized graphyne for hydrogen storage by first principles study

    SciTech Connect (OSTI)

    Yan, Zeyu; Wang, Lang; Cheng, Julong; Huang, Libei; Zhu, Chao; Chen, Chi; Miao, Ling Jiang, Jianjun

    2014-11-07

    The geometric stability and hydrogen storage capacity of Li decorated oxidized ?-graphyne are studied based on the first-principles calculations. It is found that oxygen atoms trend to bond with acetylenic carbons and form C=O double bonds on both sides of graphyne. The binding energy of single Li atom on oxidized graphyne is 3.29?eV, owning to the strong interaction between Li atom and O atom. Meanwhile, the dispersion of Li is stable even under a relatively high density. One attached Li atom can at least adsorb six hydrogen molecules around. Benefitting from the porous structure of graphyne and the high attached Li density, a maximum hydrogen storage density 12.03?wt. % is achieved with four Li atoms in graphyne cell. The corresponding average binding energy is 0.24?eV/H{sub 2}, which is suitable for reversible storage. These results indicate that Li decorated graphyne can serve as a promising hydrogen storage material.

  18. Tools for charged Higgs bosons

    E-Print Network [OSTI]

    Oscar Stĺl

    2010-12-13

    We review the status of publicly available software tools applicable to charged Higgs physics. A selection of codes are highlighted in more detail, focusing on new developments that have taken place since the previous charged Higgs workshop in 2008. We conclude that phenomenologists now have the tools ready to face the LHC data. A new webpage collecting charged Higgs resources is presented.

  19. Neutrino signals in electron-capture storage-ring experiments

    E-Print Network [OSTI]

    Avraham Gal

    2015-05-26

    Neutrino signals in electron-capture storage-ring experiments at GSI are reconsidered, with special emphasis placed on the quasi-circular motion of the daughter ions in two-body decays. Whereas parent-ion decay rates cannot exhibit modulation with the several-second period reported in these experiments, the time evolution of the detected daughter ions is shown to produce oscillations that under certain conditions may provide resolution of the `GSI Oscillations' puzzle. New dedicated storage-ring or trap experiments could look up for these oscillations.

  20. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Progress Update 2014: Employers Take Charge Available at energy.goveerevehiclesev-everywhere-workplace-charging-challenge Workplace Charging Challenge 5 Cumulative...

  1. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    be used to offset EV charging at home at the residentialthe different EV and home charging constraints. Decisiondimensionless EV battery charging efficiency, dimensionless

  2. Safe Home Food Storage 

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22

    leftovers? The charts in this publication give storage times for many leftover foods. Planning and us- ing leftovers carefully can save money and time. To prevent food-borne illness, it is important to prepare and handle foods properly: a78 Wash your hands.... Cooked fish or shellfish 2-3 days 3 months Canned fish or shellfish (unopened) 12 months (opened) 1 day Surimi seafood 2 weeks 9 months Fruits Fresh Do not wash fruit before storing?mois- Apples 1 month ture encourages spoilage?but wash Apricots, avocados...

  3. Entanglement Storage Units

    E-Print Network [OSTI]

    T. Caneva; T. Calarco; S. Montangero

    2012-09-27

    We introduce a protocol based on optimal control to drive many body quantum systems into long-lived entangled states, protected from decoherence by big energy gaps, without requiring any apriori knowledge of the system. With this approach it is possible to implement scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a prototype many-body quantum system that describes different experimental setups, and in the ordered Ising chain, a model representing a possible implementation of a quantum bus.

  4. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  5. Interim storage study report

    SciTech Connect (OSTI)

    Rawlins, J.K.

    1998-02-01

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  6. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveApril 2,BL4-2StefanLightsource504,103FormulaStorage

  7. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage Ring Parameters

  8. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage Ring

  9. Storage Trends and Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage

  10. Storage by Scientific Discipline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters StorageHeat & Cool »

  11. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!TransportStorage Ring Parameters

  12. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!TransportStorage Ring

  13. National Energy Storage Strategy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram | DepartmentEnergy6 3Energy Storage Strategy

  14. Fractional charges and Misner-Wheeler charge without charge effect in metamaterials

    E-Print Network [OSTI]

    Igor I. Smolyaninov

    2014-12-08

    Optical space in metamaterials may be engineered to emulate four dimensional Kaluza-Klein theory. Nonlinear optics of such metamaterials mimics interaction of quantized electric charges. An electromagnetic wormhole is designed, which connects two points of such an optical space and changes its effective topology. Electromagnetic field configurations which exhibit fractional charges appear as a result of such topology change. Moreover, such effects as Misner-Wheeler charge without charge may be replicated.

  15. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  16. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  17. Molecules as Segmented Storage Elements in Floating Gate Memories................................................................................................MAT.1 In-situ Deposition of High-k Dielectrics on a III-V Compound Semiconductor .............

    E-Print Network [OSTI]

    Reif, Rafael

    that are on the order of 1nm in size, representing a uniform set of identical nanostructured charge-storage centers. WeMaterials Molecules as Segmented Storage Elements in Floating Gate Memories ....................................................................................MAT.2 A CMOS-compatible Substrate and Contact Technology for Monolithic Integration of III-V Devices

  18. The Petascale Data Storage Institute

    SciTech Connect (OSTI)

    Gibson, Garth; Long, Darrell; Honeyman, Peter; Grider, Gary; Kramer, William; Shalf, John; Roth, Philip; Felix, Evan; Ward, Lee

    2013-07-01

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability.The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools.The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  19. Holographic Storage of Biphoton Entanglement

    E-Print Network [OSTI]

    Han-Ning Dai; Han Zhang; Sheng-Jun Yang; Tian-Ming Zhao; Jun Rui; You-Jin Deng; Li Li; Nai-Le Liu; Shuai Chen; Xiao-Hui Bao; Xian-Min Jin; Bo Zhao; Jian-Wei Pan

    2012-04-06

    Coherent and reversible storage of multi-photon entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although single photon has been successfully stored in different quantum systems, storage of multi-photon entanglement remains challenging because of the critical requirement for coherent control of photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates Bell's inequality for 1 microsecond storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

  20. Automotive Energy Storage Systems 2015

    Broader source: Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  1. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  2. Electron-beam-induced information storage in hydrogenated amorphous silicon devices

    DOE Patents [OSTI]

    Yacobi, B.G.

    1985-03-18

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge collection efficiency and thus in the charge collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage.

  3. Nano- and Microscale Architectures for Energy Storage Systems

    E-Print Network [OSTI]

    Dudek, Lisa

    2014-01-01

    Host for Emerging Energy Storage Systems Introduction Li-ionStorage Systems …………………………………………………………………………………………………………85Architectures for Energy Storage Systems A dissertation

  4. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  5. Engineering Schottky Contacts in Open-Air Fabricated Heterojunction Solar Cells to Enable High Performance and Ohmic Charge Transport

    E-Print Network [OSTI]

    Hoye, Robert L. Z.; Heffernan, Shane; Ievskaya, Yulia; Sadhanala, Aditya; Flewitt, Andrew; Friend, Richard H.; MacManus-Driscol, Judith L.; Musselman, Kevin P.

    2014-11-24

    surface states27 or (iii) charge tunneling through the Schottky barrier, either directly or via trap states extending below the band-edge of the Zn0.8Mg0.2O. 8,27 Fermi level pinning is unlikely,because there is a large parallel resistance at the Zn0.8Mg0... via a tunneling process may be possible if there exists a sufficiently high density of sub-bandgap states in the Schottky barrier depletion width that electrons can tunnel (hop) between. Accordingly, absorption measurements of Zn0.8Mg0.2O (depos- ited...

  6. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  7. Improving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems

    E-Print Network [OSTI]

    Qiu, Qinru

    University Syracuse, New York, 13244, USA {yzhan158, yage, qiqiu}@syr.edu ABSTRACT In energy harvestingImproving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems Yukan in the electrical energy storage (EES) bank. How much energy can be stored is affected by many factors including

  8. Isolated nanographene crystals for nano-floating gate in charge trapping

    E-Print Network [OSTI]

    Zhang, Guangyu

    with the development of miniaturized and scaled up devices, nanostructured graphene emerges as an ideal material Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, and high work-function make it very promising as the charge storage media for memory applications. Along

  9. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  10. A new method of measuring electric dipole moments in storage rings

    E-Print Network [OSTI]

    F. J. M. Farley; K. Jungmann; J. P. Miller; W. M. Morse; Y. F. Orlov; B. L. Roberts; Y. K. Semertzidis; A. Silenko; E. J. Stephenson

    2004-10-12

    A new highly sensitive method of looking for electric dipole moments of charged particles in storage rings is described. The major systematic errors inherent in the method are addressed and ways to minimize them are suggested. It seems possible to measure the muon EDM to levels that test speculative theories beyond the standard model.

  11. Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tehachapi Wind Energy Storage Project (May 2014) Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage...

  12. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  13. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    rates between the gas and the storage unit are specified forcontrol valves. two gas-distribution storage mani- folds andmanifold Main gas compressor Storage manifold Storage flow-

  14. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multi-scale dynamics of glycine receptors in the neuronal membrane

    E-Print Network [OSTI]

    Masson, Jean-Baptiste; Salvatico, Charlotte; Renner, Marianne; Specht, Christian G; Triller, Antoine; Dahan, Maxime

    2015-01-01

    Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ~100 nm resolution (with acquisition of a few minutes). When applying these analytical tools to glycine neurotransmitter receptors (GlyRs) at inhibitory synapses, we find that gephyrin scaffolds act as shallow energy traps (~3 kBT) for GlyRs, with a depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population, and thereby, to model the stochastic fluctuations of physiologi...

  15. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect (OSTI)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

  16. Efficiency Considerations of Diesel Premixed Charge Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Considerations of Diesel Premixed Charge Compression Ignition Combustion Efficiency Considerations of Diesel Premixed Charge Compression Ignition Combustion Poster...

  17. Workplace Charging Challenge Partner: University of Maryland...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland Baltimore Washington Medical Center Workplace Charging Challenge Partner: University of Maryland Baltimore Washington Medical Center Workplace Charging Challenge Partner:...

  18. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    dreportoutcaci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E...

  19. Workplace Charging Challenge Partner: Bosch Automotive Service...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive...

  20. Workplace Charging Challenge Partner: University of California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa...

  1. Pipeline charging of coke ovens with a preheated charge

    SciTech Connect (OSTI)

    Karpov, A.V.; Khadzhioglo, A.V.; Kuznichenko, V.M.

    1983-01-01

    Work to test a pipeline charging method was conducted at the Konetsk Coke Works (a PK-2K coke oven system with a single gas main, oven width 407 mm, height 4300 mm, effective column 20.0 cm/sub 3/). This method consists of transporting the heated coal charge to the ovens through a pipe by means of steam. the charge is transported by high pressure chamber groups, and loaded by means of systems equipped with devices for separation, withdrawal and treatment of the spent steam. The principal goal of the present investigation was to test technical advances in the emission-free charging of preheated charges. The problem was, first, to create a reliable technology for separation of the steam from the charge immediately before loading it into the oven and, second, to provide a total elimination of emissions, thereby protecting the environment against toxic substances.

  2. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  3. Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage

    E-Print Network [OSTI]

    Li, Baochun

    Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage Jun Li, Baochun--Distributed storage systems store redundant data to tolerate failures of storage nodes and lost data should be repaired when storage nodes fail. A class of MDS codes, called minimum- storage regenerating (MSR) codes

  4. March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure

    E-Print Network [OSTI]

    Adam, Salah

    March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure Chapter 12 #12;March 29, 2008 OS: Mass Storage Structure 2 Objectives Describe the physical structure of secondary and tertiary storage of mass-storage devices Discuss operating-system services provided for mass storage, including RAID

  5. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Office of Environmental Management (EM)

    in annual sales of plug-in electric vehicles by 2023, which may substantially increase electricity usage and peak demand in high adoption areas. Understanding customer charging...

  6. Core assembly storage structure

    DOE Patents [OSTI]

    Jones, Jr., Charles E. (Northridge, CA); Brunings, Jay E. (Chatsworth, CA)

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  7. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  8. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  9. Iron Air collision with high density QCD

    E-Print Network [OSTI]

    Hans-Joachim Drescher

    2006-12-08

    The color glass condensate approach describes successfully heavy ion collisions at RHIC. We investigate Iron-air collisions within this approach and compare results to event generators commonly used in air shower simulations. We estimate uncertainties in the extrapolation to GZK energies and discuss implications for air shower simulations.

  10. High-Density Wireless Neural Recording System

    E-Print Network [OSTI]

    Chae, Moo Sung

    2013-01-01

    wireless FM IC for biopotential recording applications,” inInterference in Biopotential Measurements,” Instrumentation

  11. Pulsed High Density Fusion John Slough#

    E-Print Network [OSTI]

    Washington at Seattle, University of

    configuration allowing for much longer energy confinement lifetimes. For this reason, the FRC plasma need. Essentially, the more massive the system required to confine and heat the fusion plasma, the larger the cost required for fusion gain with low steady state reactors ( being the ratio of the plasma to magnetic energy

  12. A flexible high-density sensor network

    E-Print Network [OSTI]

    Mistree, Behram Farrokh Thomas

    2008-01-01

    This thesis explores building and deploying a scalable electronic sensate skin that was designed as a dense sensor network. Our skin is built from small (1" x 1") rigid circuit boards attached to their neighbors with ...

  13. High-Density Wireless Neural Recording System

    E-Print Network [OSTI]

    Chae, Moo Sung

    2013-01-01

    A 4-channel Wearable Wireless Neural Recording System,” inand J.C. Principe, “Wireless, In Vivo Neural Recording usingPower Integrated Circuit for a Wireless 100-Electrode Neural

  14. On Storage Rings for Short Wavelength FELs

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01

    for a hypothetical 144 m long storage ring optimized for FELin the Proceedings On Storage Rings for Short WavelengthLBL-28483 ESG Note-92 ON STORAGE RINGS FOR SHORT WAVELENGTH

  15. Hopper File Storage and I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Storage and IO File Storage and IO Disk Quota Change Request Form Hopper File Systems Hopper has 5 user file systems which provide different degrees of storage, performance...

  16. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    of Heat and Electricity Storage and Reliability on MicrogridEPRI-DOE Handbook of Energy Storage for Transmission andLong- vs. Short-Term Energy Storage Technologies Analysis, A

  17. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Resources Res. 14: 273-280. THERMAL STORAGE OF COLD WATER INR.C. HARE, 1972. Thermal Storage for Eco-Energy Utilities,W.J. MASICA, 1977. "Thermal Storage for Electric Utilities,"

  18. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    R. C. 1 1972 1 Thermal storage for eco=energy utilities: GE-and Harris, w. B. 0 1978 0 Thermal storage of cold water induration EXPERIMENTS Thermal storage radius (m) thickness

  19. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  20. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over...

  1. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    20) E. B. Quale. Seasonal storage of thermal energy in waterE.B. , 1976. "Seasonal Storage of Thermal Energy in Water ina truly worthwhile goal. Seasonal Storage of Thermal Energy

  2. Functional Carbon Materials for Electrochemical Energy Storage

    E-Print Network [OSTI]

    Zhou, Huihui

    2015-01-01

    Temperature Dense Phase Hydrogen Storage Materials withinJugroot, Review of hydrogen storage techniques for on boardFigure 1.2 Plot of hydrogen storage materials as a function

  3. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    aquifers for heat storage, solar captors for heat productionZakhidov, R. A. 8 1971, Storage of solar energy in a sandy-thermal energy storage for cogeneration and solar systems,

  4. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    associat~ ed with solar thermal storage. Now this system canand R.A. Zakhidov, "Storage of Solar Energy in a Sandy-Heat as Related to the Storage of Solar Energy. Sharing the

  5. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  6. Charge, from EM fields only

    E-Print Network [OSTI]

    R. L. Collins

    2007-03-04

    Consider the electric field E about an electron. Its source has been thought a substance called charge, enclosed within a small volume that defines the size of the electron. Scattering experiments find no size at all. Charge is useful, but mysterious. This study concludes that charge is not real. Useful, but not real. Absent real charge, the electric field must look to a different source. We know another electric field, vxB, not sourced by charge. A simple model of the electron, using EM fields only, has been found that generates an electric field vxB very like E. Gauss' law finds the model contains charge, but div vxB cannot find the charge density. The model contains a permanent magnetic flux quantum, configured as a dipole. The dipolar B fields spin around the symmetry axis, accounting for angular momentum. Spin stabilizes the magnetic flux quantum, and creates the vxB electric field. Stability in this model is dynamic. Energy is exchanged between the dipolar magnetic moment and an encircling toroidal displacement current, at the Compton frequency, mc^2/h = 1.24x10^20 Hz. The electric field undulates at this rate, instead of being static like E associated with charge. Absent any real charge, we have to abandon the notion that size of a charged particle is that of a small sack full of charge. The only electric field is vxB, and its source is not charge. What is the size of an electron? Coulomb scattering finds it point-like, but its spinning B fields extend to infinity.

  7. Energy transfer through a multi-layer liner for shaped charges

    DOE Patents [OSTI]

    Skolnick, Saul (Albuquerque, NM); Goodman, Albert (Albuquerque, NM)

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  8. Stable Charged Cosmic Strings

    SciTech Connect (OSTI)

    Weigel, H. [Physics Department, Stellenbosch University, Matieland 7602 (South Africa); Quandt, M. [Institute for Theoretical Physics, Tuebingen University, D-72076 Tuebingen (Germany); Graham, N. [Department of Physics, Middlebury College , Middlebury, Vermont 05753 (United States)

    2011-03-11

    We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius {approx_equal}10{sup -18} m. The vacuum remains stable in our model, because neutral strings are not energetically favored.

  9. Effects of Milan's Congestion Charge

    E-Print Network [OSTI]

    Carnovale, Maria; Gibson, Matthew

    2012-01-01

    Transportation Research Part A: Policy and Practice 44.5 [20] Transport for London,London, and Milan have congestion charges. In the US, the Department of Transportation

  10. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01

    technology provides PEV chargers that simultaneously connectall types, from public fast chargers that will relieve rangeto home and garage chargers used for everyday charging. As a

  11. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Storage - Challenges and Opportunities Hydro-Pac Inc., A High Pressure Company...

  12. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012,...

  13. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Energy Storage Systems 2014 Peer Review Presentations - Session 11...

  14. Integrated Renewable Energy and Energy Storage Systems

    E-Print Network [OSTI]

    Integrated Renewable Energy and Energy Storage Systems Prepared for the U.S. Department of Energy and Energy Storage Systems TABLE OF CONTENTS 1

  15. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Presentations - Day 1, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS)...

  16. Analytic Challenges to Valuing Energy Storage

    SciTech Connect (OSTI)

    Ma, Ookie; O'Malley, Mark; Cheung, Kerry; Larochelle, Philippe; Scheer, Rich

    2011-10-25

    Electric grid energy storage value. System-level asset focus for mechanical and electrochemical energy storage. Analysis questions for power system planning, operations, and customer-side solutions.

  17. National Hydrogen Storage Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Hydrogen Storage Project National Hydrogen Storage Project In July 2003, the Department of Energy (DOE) issued a "Grand Challenge" to the global scientific community for...

  18. Hydrogen Storage Materials Workshop Proceedings Workshop, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings Workshop, October 16th, 2002 Hydrogen Storage Materials Workshop Proceedings Workshop, October 16th, 2002 A workshop on compressed and liquefied hydrogen storage was a...

  19. Overview of Gridscale Rampable Intermittent Dispatchable Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Washington, DC. flowcells2012johnson.pdf More Documents & Publications Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 Energy Storage Systems...

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    A New Concept in Electric Generation and Energy Storage,"A New Concept in Electric Generation and Energy Storage,"of Solar Energy for Electric Power Generation," Proceedings

  1. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen...

  2. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Energy Savers [EERE]

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

  3. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    Superconducting Magnetic Bearing - Mike Strasik, Boeing.pdf More Documents & Publications Energy Storage Systems 2006 Peer Review - Day 1 morning presentations Energy Storage...

  4. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  5. Combinatorial Approach for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of Energy's Hydrogen...

  6. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Savers [EERE]

    Electricity Storage - Sanjoy Banerjee, CUNY.pdf PDF icon ESS 2010 Update Conference - Hydrogen-Bromine Flow Batteries for Grid-Scale Energy Storage - Venkat Srinivasan,...

  7. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

  8. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  9. Method and apparatus for operating an improved thermocline storage unit

    DOE Patents [OSTI]

    Copeland, Robert J. (Lakewood, CO)

    1985-01-01

    A method and apparatus for operating a thermocline storage unit in which an insulated barrier member is provided substantially at the interface region between the hot and cold liquids in the storage tank. The barrier member physically and thermally separates the hot and cold liquids substantially preventing any diffusing or mixing between them and substantially preventing any heat transfer therebetween. The barrier member follows the rise and fall of the interface region between the liquids as the tank is charged and discharged. Two methods of maintaining it in the interface region are disclosed. With the structure and operation of the present invention and in particular the significant reduction in diffusing or mixing between the hot and cold liquids as well as the significant reduction in the thermal heat transfer between them, the performance of the storage tank is improved. More specifically, the stability of the interface region or thermocline is enhanced and the thickness of the thermocline is reduced producing a corresponding increase in the steepness of the temperature gradient across the thermocline and a more efficiently operating thermocline storage unit.

  10. Method and apparatus for operating an improved thermocline storage unit

    DOE Patents [OSTI]

    Copeland, R.J.

    1982-09-30

    A method and apparatus for operating a thermocline storage unit in which an insulated barrier member is provided substantially at the interface region between the hot and cold liquids in the storage tank. The barrier member physically and thermally separates the hot and cold liquids substantially preventing any diffusing or mixing between them and substantially preventing any heat transfer there between. The barrier member follows the rise and fall of the interface region between the liquids as the tank is charged and discharged. Two methods of maintaining it in the interface region are disclosed. With the structure and operation of the present invention and in particular the significant reduction in diffusing or mixing between the hot and cold liquids as well as the significant reduction in the thermal heat transfer between them, the performance of the storage tank is improved. More specifically, the stability of the interface region or thermocline is enhanced and the thickness of the thermocline is reduced producing a corresponding increase in the steepness of the temperature gradient across the thermocline and a more efficiently operating thermocline storage unit.

  11. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

  12. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  13. Experience with thermal storage in tanks of stratified water for solar heating and load management

    SciTech Connect (OSTI)

    Wildin, M.W.; Witkofsky, M.P.; Noble, J.M.; Hopper, R.E.; Stromberg, P.G.

    1982-01-01

    Results have been obtained for performance of stratified tanks of water used to store heating and cooling capacity in a 5574 m/sup 2/ university building. The major sources of energy used to charge the heated tanks were solar energy, obtained via collectors on the roof of the building, and excess heat recovered from the interior of the building via thermal storage and electric-driven heat pump/chillers. Through stratification of the water in the storage tanks and an appropriate system operating strategy, 40 percent of the building's total heating needs were supplied by solar energy during the first four months of 1981. Month-long thermal efficiencies of the storage array ranging from 70 percent during the heating season to nearly 90 percent during the cooling season, were measured. Work is underway to improve the performance of thermal storage.

  14. Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes

    E-Print Network [OSTI]

    Biesheuvel, P M

    2009-01-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by super-capacitors, water desalination and purification by capacitive deionization (or desalination), and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory in the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes wi...

  15. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Morrison, Robert L. (Modesto, CA); Kaschmitter, James L. (Pleasanton, CA)

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  16. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  17. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

    2014-10-07

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries.

  18. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  19. Holographic thermalization of charged operators

    E-Print Network [OSTI]

    Alejandro Giordano; Nicolas E. Grandi; Guillermo A. Silva

    2014-12-26

    We study a light-like charged collapsing shell in AdS-Reissner-Nordstrom spacetime, investigating whether the corresponding Vaidya metric is supported by matter that satisfies the null energy condition. We find that, if the absolute value of the charge decreases during the collapse, energy conditions are fulfilled everywhere in spacetime. On the other hand, if the absolute value of the charge increases, the metric does not satisfy energy conditions in the IR region. Therefore, from the gauge/gravity perspective, this last case is only useful to study the thermalization of the UV degrees of freedom. For all these geometries, we probe the thermalization process with two point correlators of charged operators, finding that the thermalization time grows with the charge of the operator, as well as with the dimension of space.

  20. Stratified charge internal combustion engine

    SciTech Connect (OSTI)

    Skopil, A.O.

    1991-01-01

    This patent describes an internal combustion engine. It comprises: a main cylinder, a main piston within the main cylinder, and means for delivering a combustible charge into the main cylinder; a smaller idle cylinder, and idle piston within the idle cylinder, and means for delivering a combustible charge into the idle cylinder; an ignition passageway leading from the idle cylinder to the main cylinder; and an ignition device within the ignition passageway operable to ignite a compressed charge discharged by the idle cylinder into the ignition passageway. The passageway being positioned to discharge the ignited compressed charge from the idle cylinder into the main cylinder to ignite the compressed charge within the main cylinder.

  1. Production, Storage, and FC Analysis

    Broader source: Energy.gov [DOE]

    Presentation on Production, Storage, and FC Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  2. Efficient storage of versioned matrices

    E-Print Network [OSTI]

    Seering, Adam B

    2011-01-01

    Versioned-matrix storage is increasingly important in scientific applications. Various computer-based scientific research, from astronomy observations to weather predictions to mechanical finite-element analyses, results ...

  3. Device-transparent personal storage

    E-Print Network [OSTI]

    Strauss, Jacob A. (Jacob Alo), 1979-

    2010-01-01

    Users increasingly store data collections such as digital photographs on multiple personal devices, each of which typically presents the user with a storage management interface isolated from the contents of all other ...

  4. A Successful Cool Storage Rate 

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01

    local natural gas distribution company. The end result is a very successful cool storage program with 52 projects and 31 megawatts of demand reduction in the first three and one-half years of program implementation....

  5. Hydrogen Storage "Think Tank" Report

    Broader source: Energy.gov [DOE]

    This report is a compilation of information exchanged at a forum on March 14, 2003 in Washington, DC. The forum was assembled for innovative and non-conventional brainstorming on this issue of hydrogen storage technologies.

  6. Final Report: Metal Perhydrides for Hydrogen Storage

    SciTech Connect (OSTI)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One LiH molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise between chemisorption and physisorption for hydrogen storage. Bonding of chemisorption is too

  7. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  8. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  9. Hydrogen Storage Technologies Roadmap, November 2005

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing plan for research into and development of hydrogen storage technology for transportation applications.

  10. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    microgrid can be fuel cells, PV, solar thermal, stationary storage, absorption cooling, combined heat and power,

  11. 1 Files and Databases mass storage

    E-Print Network [OSTI]

    Verschelde, Jan

    Outline 1 Files and Databases mass storage hash functions 2 Dictionaries logical key values nested Jan Verschelde, 28 January 2015 Intro to Computer Science (MCS 260) mass storage and dictionaries L-7 28 January 2015 1 / 32 #12;mass storage dictionaries in Python 1 Files and Databases mass storage

  12. Addressing the Grand Challenges in Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2013-02-25

    The editorial summarizes the contents of the special issue for energy storage in Advanced Functional Materials.

  13. Optimize Storage Placement in Sensor Networks

    E-Print Network [OSTI]

    Li, Qun

    of limited storage, communication capacity, and battery power is ameliorated. Placing storage nodesOptimize Storage Placement in Sensor Networks Bo Sheng, Member, IEEE, Qun Li, Member, IEEE, and Weizhen Mao Abstract--Data storage has become an important issue in sensor networks as a large amount

  14. Hydrogen Storage at Lawrence Berkeley National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  15. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01

    This presentation describes how you economically manage integration costs of storage and variable generation.

  16. New York's Energy Storage System Gets Recharged

    Broader source: Energy.gov [DOE]

    Jonathan Silver and Matt Rogers on a major breakthrough for New York state's energy storage capacity.

  17. AQUIFER STORAGE SITE EVALUATION AND MONITORING

    E-Print Network [OSTI]

    Edwards, Mike

    on the market sectors of electricity transmission, gas transmission, storage and distribution and process

  18. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB{sub 6}-filament

    SciTech Connect (OSTI)

    Ueno, A.; Oguri, H.; Ikegami, K.; Namekawa, Y.; Ohkoshi, K.; Tokuchi, A.

    2010-02-15

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB{sub 6}) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 {mu}H inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 Ax140 V) and a duty factor of more than 1.5%(600 {mu}sx25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H{sup -} ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 {mu}s and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  19. Screening of remote charge scattering sites from the oxide/silicon interface of strained Si two-dimensional electron gases by an intermediate tunable shielding electron layer

    SciTech Connect (OSTI)

    Huang, Chiao-Ti, E-mail: chiaoti@princeton.edu; Li, Jiun-Yun; Chou, Kevin S.; Sturm, James C. [Department of Electrical Engineering, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-06-16

    We report the strong screening of the remote charge scattering sites from the oxide/semiconductor interface of buried enhancement-mode undoped Si two-dimensional electron gases (2DEGs), by introducing a tunable shielding electron layer between the 2DEG and the scattering sites. When a high density of electrons in the buried silicon quantum well exists, the tunneling of electrons from the buried layer to the surface quantum well can lead to the formation of a nearly immobile surface electron layer. The screening of the remote charges at the interface by this newly formed surface electron layer results in an increase in the mobility of the buried 2DEG. Furthermore, a significant decrease in the minimum mobile electron density of the 2DEG occurs as well. Together, these effects can reduce the increased detrimental effect of interface charges as the setback distance for the 2DEG to the surface is reduced for improved lateral confinement by top gates.

  20. Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement 

    E-Print Network [OSTI]

    Abraham, Michaela Marie

    1993-01-01

    of 10'F, the irreversibility developed from the heat transfer between the tank water and the refrigerant increases with lower freezing temperatures. The second part of this study presents a simplified optimization method for a pure water, ice storage...