Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A High Density Polarized Hydrogen Gas Target for Storage Rings  

E-Print Network (OSTI)

in a storage ring to study the target characteristics (nuclear polarization, target thickness, radiation 10 13 ~ H/cm 2 . The target polarization was unaffected by prolonged exposure of the target to beams in the use of polarized gases as internal targets in particle storage rings 1 . The first application

2

High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides  

DOE Green Energy (OSTI)

This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

2007-07-27T23:59:59.000Z

3

A Microelectromechanical High-Density Energy Storage/Rapid Release System  

DOE Green Energy (OSTI)

One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Sam L.

1999-07-21T23:59:59.000Z

4

High Density Hydrogen Storage Systems Demonstration Using NaAIH4  

NLE Websites -- All DOE Office Websites (Extended Search)

Density Hydrogen Storage Density Hydrogen Storage System Demonstration Using NaAlH 4 Complex Compound Hydrides D. Mosher, X. Tang, S. Arsenault, B. Laube, M. Cao, R. Brown, S. Saitta, J. Costello United Technologies Research Center East Hartford, Connecticut Report to the U.S. Department of Energy (DOE) Contract Number: DE-FC36-02AL-67610 December 19, 2006 * * Presented to the DOE and the FreedomCAR & Fuel Partnership Hydrogen Storage Tech Team This presentation does not contain proprietary or confidential information 2 Overview Objective: Identify and overcome the critical technical barriers in developing complex hydride based storage systems, especially those which differ from conventional metal hydride systems, to meet DOE system targets. Approach: Design, fabricate and test a sequence of subscale and full scale

5

Electrochemically controlled charging circuit for storage batteries  

DOE Patents (OSTI)

An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

Onstott, E.I.

1980-06-24T23:59:59.000Z

6

Method for charging a storage battery  

SciTech Connect

A method is disclosed for charging a lead-acid storage battery, the method comprising the steps of charging the battery at an initially high rate during an initial stage of the charging cycle, monitoring the internal battery voltage, charging the battery at a lower, finishing rate after a preselected battery voltage has been monitored, and periodically interrupting the finishing charge until the battery is recharged.

Fallon, W.H.; Kirby, D.W.; Neukirch, E.O.; Schober, W.R.

1983-07-19T23:59:59.000Z

7

High-Intensity and High-Density Charge-Exchange Injection Studies into the CERN PS Booster at Intermediate Energies  

E-Print Network (OSTI)

For the high brilliance LHC ultimate beam and the high intensity CNGS beam, single batch injections into the CERN Proton Synchrotron (PS) will be used to increase the overall machine intensity compared with the present double batch injections. Charge-exchange injection into the PS Booster with a new linac at intermediate energies is thus examined. A key parameter to consider is the energy dependence of beam incoherent tune shifts at injection. Increasing the linac energy from the present 50 MeV to 160 MeV should yield a safer tune shift. For each PS Booster ring, a charge-exchange injection scheme is envisaged inside a proper straight section, redesigned with new bends to make a local bump and using the existing fast bump magnets for horizontal phase-space painting. ACCSIM simulations for charge-exchange injection at 160 MeV have been investigated for both LHC and CNGS beams. After optimizing the parameters that are used for the space charge tracking routines, the results of the simulations agree well with ex...

Martini, M

2004-01-01T23:59:59.000Z

8

Charge allocation for hybrid electrical energy storage systems  

Science Conference Proceedings (OSTI)

Hybrid electrical energy storage (HEES) systems, composed of multiple banks of heterogeneous electrical energy storage (EES) elements with their unique strengths and weaknesses, have been introduced to efficiently store and retrieve electrical energy ... Keywords: charge allocation, charge management, hybrid electrical energy storage system

Qing Xie; Yanzhi Wang; Younghyun Kim; Naehyuck Chang; Massoud Pedram

2011-10-01T23:59:59.000Z

9

Electron Charged Graphite-based Hydrogen Storage Material  

DOE Green Energy (OSTI)

The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

Dr. Chinbay Q. Fan; D Manager

2012-03-14T23:59:59.000Z

10

Form-stable crystalline polymer pellets for thermal energy storage: high density polyethylene intermediate products. Final report, October 1, 1977--January 31, 1978  

DOE Green Energy (OSTI)

The primary objectives of this program were to demonstrate: (1) that form-stable high density polyethylene (HDPE), which has been shown to have desirable properties as a phase-change type of thermal energy storage material, could be produced by processing in a polyethylene plant for a projected price near 26 cents/lb; and (2) that the raw material, ethylene, will be available in the very long-term from alternate sources (other than petroleum and natural gas). These objectives were accomplished. Production of useful, form-stable HDPE pellets by radiation cross-linking was demonstrated. Such pellets are estimated to be obtainable at 26 cents/lb, using large-volume (> or equal to 10,000,000 lb/yr) in-plant processing. Well-developed technologies exist for obtaining ethylene from coal and plant (or biomass) sources, thus assuring its long-term availability and therefore that of polyethylene. A cost-benefit analysis of the HDPE thermal energy storage system was conducted over its 120 to 140/sup 0/C optimum operating range which is most suited for absorption air conditioning. The HDPE is more cost effective than either rocks, ethylene glycol, or pressurized water and is even competitive with a hypothetical 5 cents/lb salt-hydrate melting in this temperature range. These results applied, as appropriate, to both air and liquid transfer systems.

Botham, R.A.; Ball, G.L. III; Jenkins, G.H.; Salyer, I.O.

1978-01-01T23:59:59.000Z

11

Apparatus for regulating the charging of a storage battery  

SciTech Connect

An aleatory source of energy, e.g., a battery of photocells, supplies energy to a load and to a storage battery. When the source is supplying more energy than is being drawn by the load, the storage battery is charged; when the source is supplying less than the demand, the shortfall is made up by drawing energy from the storage battery. The state of charge of the storage battery is monitored by a meter (8) which governs a regulator. Once the battery is charged to a predetermined threshold, the amount of current it draws from the source is regulated, and energy supplied by the source in excess of the combined requirements of the load and of battery charging is diverted to a storage means other than the storage battery (e.g., a mains electricity supply grid). The flows of energy to both the battery and the other storage means are controlled by the regulator as a function of the state of charge of the battery.

Billot, M.; Godard, P.

1981-09-01T23:59:59.000Z

12

Apparatus for monitoring and charging electric storage battery  

SciTech Connect

A charge protector is described for battery maintenance and operable to continuously monitor the battery terminal voltage of a storage battery while the latter is not in use and to control charging of the battery by controlling the supply of DC power from a battery charger to the battery in accordance with the battery terminal voltage. The battery charge protector voltage; means energizable from the battery to effect initial supply of DC power to the battery when the battery terminal voltage is sensed as being at a predetermined minimum charge voltage level; means energizable from the battery to repeatedly effect subsequent termination and resupply of DC power to the battery when the battery terminal voltage is sensed as having reached an upper trip level voltage and a lower trip level voltage, respectively, the lower trip level voltage being greater than the minimum charge voltage and the upper trip level voltage being greater than the lower trip level voltage; and timer means energizable from the battery to maintain the supply of DC power to the battery for a predetermined interval of time after the battery terminal voltage is sensed as having reached the upper trip level voltage but before it reaches a maximum charge level voltage which is greater than the upper trip level voltage.

Sloan, A.H.

1986-04-15T23:59:59.000Z

13

Studies of the Charge Storage Properties of Poly(bithiophene) and Amorphous Carbon Nitride.  

E-Print Network (OSTI)

??The charge storage properties of several potential materials for battery applications have been investigated. Poly(bithiophene) films were prepared by potentiostatic and potentiodynamic electropolymerization methods. These… (more)

Forristal, Timothy Adam

2013-01-01T23:59:59.000Z

14

State of health aware charge management in hybrid electrical energy storage systems  

Science Conference Proceedings (OSTI)

This paper is the first to present an efficient charge management algorithm focusing on extending the cycle life of battery elements in hybrid electrical energy storage (HEES) systems while simultaneously improving the overall cycle efficiency. In particular, ... Keywords: charge management, hybrid electrical energy storage system, state of health

Qing Xie; Xue Lin; Yanzhi Wang; Massoud Pedram; Donghwa Shin; Naehyuck Chang

2012-03-01T23:59:59.000Z

15

Charge migration efficiency optimization in hybrid electrical energy storage (HEES) systems  

Science Conference Proceedings (OSTI)

Electrical energy is high-quality form of energy, and thus it is beneficial to store the excessive electric energy in the electrical energy storage (EES) rather than converting into a different type of energy. Like memory devices, no single type of EES ... Keywords: charge management, charge migration, hybrid electrical energy storage

Yanzhi Wang; Younghyun Kim; Qing Xie; Naehyuck Chang; Massoud Pedram

2011-08-01T23:59:59.000Z

16

Kinetics driving high-density chlorine plasmas  

Science Conference Proceedings (OSTI)

A simple fluid model was developed in order to investigate the driving kinetics of neutral and charged species in high-density chlorine plasmas. It was found that the dissociation degree of Cl{sub 2} molecules is directly linked to the power balance of the discharge which controls the electron density. The model was also used to identify those reactions that could be neglected in the particle balance of charged species and those that must be included. Our results further indicate that diffusion losses need to be considered up to a pressure that depends on magnetic-field intensity and reactor aspect ratio. Finally, it is shown that the dominant charged carriers are linked to the dissociation level of Cl{sub 2} molecules.

Stafford, L.; Margot, J.; Vidal, F.; Chaker, M.; Giroux, K.; Poirier, J.-S.; Quintal-Leonard, A.; Saussac, J. [Department de physique, Universite de Montreal, Montreal, Quebec (Canada); INRS-Energie, Materiaux et Telecommunications, Varennes, Quebec (Canada); Department de physique, Universite de Montreal, Montreal, Quebec (Canada)

2005-09-15T23:59:59.000Z

17

Charging system and method for multicell storage batteries  

SciTech Connect

A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

Cox, Jay A. (Rolling Hills Estates, CA)

1978-01-01T23:59:59.000Z

18

Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)  

DOE Green Energy (OSTI)

Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

Neubauer, J.; Simpson, M.

2013-10-01T23:59:59.000Z

19

Ultrafast photoinduced electron transfer reactions in supramolecular arrays: From charge separation and storage to molecular switches  

DOE Green Energy (OSTI)

Photoinduced charge separation reactions form the basis for energy storage processes in both natural and artificial photosynthesis. Moreover, rapid reversible photoinduced electron transfer reactions are a class of photophysical phenomena that can be exploited to develop schemes for optical switching. Examples from each of these fields are discussed.

Wasielewski, M.R.

1992-01-01T23:59:59.000Z

20

Ultrafast photoinduced electron transfer reactions in supramolecular arrays: From charge separation and storage to molecular switches  

DOE Green Energy (OSTI)

Photoinduced charge separation reactions form the basis for energy storage processes in both natural and artificial photosynthesis. Moreover, rapid reversible photoinduced electron transfer reactions are a class of photophysical phenomena that can be exploited to develop schemes for optical switching. Examples from each of these fields are discussed.

Wasielewski, M.R.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Molecular Ensemble Based Remote Quantum Storage for Charge Qubit via Quasi-Dark State  

E-Print Network (OSTI)

We propose a quantum storage scheme independent of the current time-control schemes, and study a "quantum data bus" (transmission line resonator) in a hybrid system consisting of a circuit QED system integrated with a cold molecular ensemble. Here, an effective interaction between charge qubit and molecule is mediated by the off-resonate field in the data bus. Correspondingly, the charge state can be mapped into the collective quasi-spin state of the molecular ensemble via the standard dark state based adiabatic manipulation.

Zhang, H R; Gong, Z R; Sun, C P

2009-01-01T23:59:59.000Z

22

Molecular Ensemble Based Remote Quantum Storage for Charge Qubit via Quasi-Dark State  

E-Print Network (OSTI)

We propose a quantum storage scheme independent of the current time-control schemes, and study a "quantum data bus" (transmission line resonator) in a hybrid system consisting of a circuit QED system integrated with a cold molecular ensemble. Here, an effective interaction between charge qubit and molecule is mediated by the off-resonate field in the data bus. Correspondingly, the charge state can be mapped into the collective quasi-spin state of the molecular ensemble via the standard dark state based adiabatic manipulation.

H. R. Zhang; Y. B. Gao; Z. R. Gong; C. P. Sun

2009-04-16T23:59:59.000Z

23

High density load bearing insulation peg  

DOE Patents (OSTI)

A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

Nowobilski, J.J.; Owens, W.J.

1985-01-29T23:59:59.000Z

24

High Density Fuel Development for Research Reactors  

SciTech Connect

An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

2007-09-01T23:59:59.000Z

25

High density load bearing insulation peg  

DOE Patents (OSTI)

A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

26

High density laser-driven target  

DOE Patents (OSTI)

A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

Lindl, John D. (San Ramon, CA)

1981-01-01T23:59:59.000Z

27

Relation between the High Density Phase and the Very-High Density Phase of Amorphous Solid Water  

E-Print Network (OSTI)

Relation between the High Density Phase and the Very-High Density Phase of Amorphous Solid Water; published 18 March 2005) It has been suggested that high-density amorphous (HDA) ice is a structurally arrested form of high- density liquid (HDL) water, while low-density amorphous ice is a structurally

Sciortino, Francesco

28

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

29

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

30

Ohmically heated high-density Z pinch  

SciTech Connect

The gross properties of a high-density (n approximately equal to 10$sup 27$ m$sup -3$), small-radius, (r = 10$sup -4$ m) gas-imbedded Z pinch have been examined considering only classical processes. The rate equation using only ohmic heating along with bremsstrahlung and radial heat transport shows that ohmic heating will rapidly take the pinch to thermonuclear temperatures for currents, I, greater than 1 MA. The radial heat loss for the pinch is very small for I greater than 1.5 MA. This suggests that the pinch could tolerate being driven to a nearby wall by an m = 1 kink. The laser technology for initiation of the small-diameter filament and the high-voltage technology for giving a 30-ns rise to a MA or more are available now. Some reactor considerations have been included. (auth)

Hammel, J.E.

1976-01-01T23:59:59.000Z

31

Vacuum Outgassing of High Density Polyethylene  

Science Conference Proceedings (OSTI)

A combination of thermogravimetric analysis (TGA) and temperature programmed decomposition (TPD) was employed to identify the outgassing species, the total amount of outgassing, and the outgassing kinetics of high density polyethylene (HDPE) in a vacuum environment. The isoconversional kinetic analysis was then used to analyze the outgassing kinetics and to predict the long-term outgassing of HDPE in vacuum applications at ambient temperature. H{sub 2}O and C{sub n}H{sub x} with n as high as 9 and x centering around 2n are the major outgassing species from solid HDPE, but the quantities evolved can be significantly reduced by vacuum baking at 368 K for a few hours prior to device assembly.

Dinh, L N; Sze, J; Schildbach, M A; Chinn, S C; Maxwell, R S; Raboin, P; McLean II, W

2008-08-11T23:59:59.000Z

32

Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)  

DOE Green Energy (OSTI)

Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

33

Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

34

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mike Simpson National Renewable Energy Laboratory 8 May 2012 NREL/PR-5400-55080 GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting Enablers Grid / Renewables Communities Vehicles SMART GRID & COMMUNI- CATION RENEWABLE GENERATION INTERMITTENCY POWER ELECTRONICS EFFICIENCY INFRASTRUCTURE CODES & STANDARDS BUILDING ENERGY MANAGE- MENT GRID OPERATION & RELIABILITY ENERGY STORAGE LIFE & COST STRATEGIC ENERGY ANALYSIS VEHICLE SYSTEMS ANALYSIS & TESTING DEPLOYMENT & PARTNERSHIPS Tx Tx Tx GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG 3 Vehicle Test Facilities at NREL

35

Inexpensive Production of High Density Thin Ceramic Films on ...  

Steven Visco, Lutgard DeJonghe, and Craig Jacobson have developed a simple, inexpensive method for producing high density, crack-free, thin ceramic ...

36

SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage  

E-Print Network (OSTI)

. Unfortunately, as the trends above indicate, rising prices have not yet mo- tivated consumers to conserve power-time and TOU prices in our case study home. 0 5 10 15 20 25 30 0 10 20 30 40 50 60 %CostSavings Energy Storage vary the pricing plans and battery characteristics to see how future price trends and battery

Shenoy, Prashant

37

Charge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems  

E-Print Network (OSTI)

. Experimental results for an HEES system comprising of banks of batteries and supercapacitors demonstrate a migration efficiency improvement up to 51.3%, for su- percapacitor to battery and supercapacitor to supercapacitor charge migration. 1. INTRODUCTION Electrical energy usage changes over time due to the types

Pedram, Massoud

38

Phase diagram of amorphous solid water: Low-density, high-density, and very-high-density amorphous ices  

E-Print Network (OSTI)

for the understanding of the transformation between the different amorphous ices and the two hypothesized phasesPhase diagram of amorphous solid water: Low-density, high-density, and very-high-density amorphous ices Nicolas Giovambattista,1,2 H. Eugene Stanley,2 and Francesco Sciortino3 1 Department of Chemical

Sciortino, Francesco

39

Monitoring charge storage processes in nanoscale oxides using electrochemical scanning probe microscopy.  

Science Conference Proceedings (OSTI)

Advances in electrochemical energy storage science require the development of new or the refinement of existing in situ probes that can be used to establish structure - activity relationships for technologically relevant materials. The drive to develop reversible, high capacity electrodes from nanoscale building blocks creates an additional requirement for high spatial resolution probes to yield information of local structural, compositional, and electronic property changes as a function of the storage state of a material. In this paper, we describe a method for deconstructing a lithium ion battery positive electrode into its basic constituents of ion insertion host particles and a carbon current collector. This model system is then probed in an electrochemical environment using a combination of atomic force microscopy and tunneling spectroscopy to correlate local activity with morphological and electronic configurational changes. Cubic spinel Li{sub 1+x}Mn{sub 2-x}O{sub 4} nanoparticles are grown on graphite surfaces using vacuum deposition methods. The structure and composition of these particles are determined using transmission electron microscopy and Auger microprobe analysis. The response of these particles to initial de-lithiation, along with subsequent electrochemical cycling, is tracked using scanning probe microscopy techniques in polar aprotic electrolytes (lithium hexafluorophosphate in ethylene carbonate:diethylcarbonate). The relationship between nanoparticle size and reversible ion insertion activity will be a specific focus of this paper.

Zavadil, Kevin Robert; Lu, Ping; Huang, Jian Yu

2010-11-01T23:59:59.000Z

40

Handbook of secondary storage batteries and charge regulators in photovoltaic systems. Final report  

DOE Green Energy (OSTI)

Solar photovoltaic systems often require battery subsystems to store reserve electrical energy for times of zero insolation. This handbook is designed to help the system designer make optimum choices of battery type, battery size and charge control circuits. Typical battery performance characteristics are summarized for four types of lead-acid batteries: pure lead, lead-calcium and lead-antimony pasted flat plate and lead-antimony tubular positive types. Similar data is also provided for pocket plate nickel cadmium batteries. Economics play a significant role in battery selection. Relative costs of each battery type are summarized under a variety of operating regimes expected for solar PV installations.

Not Available

1981-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High-density Fuel Development for High Performance Research ...  

Science Conference Proceedings (OSTI)

Abstract Scope, High density UMo (7-12wt% Mo) fuel for high performance research ... High Energy X-ray Diffraction Study of Deformation Behavior of Alloy HT9.

42

Magnetic Fields in High-Density Stellar Matter  

E-Print Network (OSTI)

I briefly review some aspects of the effect of magnetic fields in the high density regime relevant to neutron stars, focusing mainly on compact star structure and composition, superconductivity, combustion processes, and gamma ray bursts.

German Lugones

2005-04-20T23:59:59.000Z

43

Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors  

SciTech Connect

Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

Zhang, Hongxin [ORNL; Bhat, Vinay V [ORNL; Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL

2012-01-01T23:59:59.000Z

44

Nondestructive Evaluation: High-Density Polyethylene NDE Technology  

Science Conference Proceedings (OSTI)

BackgroundThis report summarizes the results of a study to evaluate and document the process of creating a manufacturing specification for producing quantifiable cold fusion controlled flaws of varying severity in high-density polyethylene (HDPE) fusion joints. This report is a continuation of previous research where nondestructive evaluation (NDE) techniques and flaws representing inclusions and cold fusion were ...

2013-11-22T23:59:59.000Z

45

Interfaces and Charge Storage  

Science Conference Proceedings (OSTI)

Oct 20, 2011 ... Pico-Tesla magnetic field sensors based on multiferroic composites consisting of magnetization-graded ferromagnetic and ferroelectric phases ...

46

PREPARATION OF HIGH-DENSITY THORIUM OXIDE SPHERES  

DOE Patents (OSTI)

A method of preparing high-density thorium oxide spheres for use in pellet beds in nuclear reactors is presented. Sinterable thorium oxide is first converted to free-flowing granules by means such as compression into a compact and comminution of the compact. The granules are then compressed into cubes having a density of 5.0 to 5.3 grams per cubic centimeter. The cubes are tumbled to form spheres by attrition, and the spheres are then fired at 1250 to 1350 deg C. The fired spheres are then polished and fired at a temperature above 1650 deg C to obtain high density. Spherical pellets produced by this method are highly resistant to mechanical attrition hy water. (AEC)

McNees, R.A. Jr.; Taylor, A.J.

1963-12-31T23:59:59.000Z

47

Fire Testing of High-Density Polyethylene Pipe  

Science Conference Proceedings (OSTI)

The results in this report are intended to demonstrate a method that can be used to protect high-density polyethylene (HDPE) piping located aboveground from postulated fire events. This includes protecting both pipe and pipe fittings (for example, elbows, tees, and valves) from the fire environmentincluding the heat transmitted from pipe supportsand preventing the fire environment from passing through building wall or floor penetrations. The report is intended to be complementary to other ongoing Electr...

2011-08-23T23:59:59.000Z

48

Piezoelectric Films for High Density Switching Arrays for Logic  

Science Conference Proceedings (OSTI)

Specific to this work is the functionality of the high aspect ratio piezoelectric ... and Their Electrochemical Performance for Energy Storage Applications.

49

Nondestructive Evaluation: Ultrasonic Examination Techniques for High Density Polyethylene Pipes  

Science Conference Proceedings (OSTI)

High density polyethylene (HDPE) pipe has been used as a replacement material for buried carbon steel pipe in non-safety-related systems. Using the current butt fusion procedure that uses heat and pressure to melt and join two sections of plastic pipe, concerns have been raised that would indicate that the presence of decreased bond strength when the welding parameters for fusion set forth by the plastic pipe industry were not followed. Currently two utilities, Ameren UE at Callaway and Duke-Energy at Ca...

2011-11-15T23:59:59.000Z

50

A Cherenkov Radiation Detector with High Density Aerogels  

E-Print Network (OSTI)

We have designed a threshold Cherenkov detector at the Rutherford-Appleton Laboratory to identify muons with momenta between 230 and 350 MeV/c. We investigated the properties of three aerogels for the design. The nominal indexes of refraction were n = 1.03, 1.07, 1.12, respectively. Two of the samples are of high density aerogel not commonly used for Cherenkov light detection. We present results of an examination of some optical properties of the aerogel samples and present basic test beam results.

Cremaldi, Lucien; Sonnek, Peter; Summers, Donald J; Reidy, Jim

2009-01-01T23:59:59.000Z

51

Neutron spectroscopy of high-density amorphous ice.  

DOE Green Energy (OSTI)

Vibrational spectra of high-density amorphous ice (hda-ice) for H{sub 2}O and D{sub 2}O samples were measured by inelastic neutron scattering. The measured spectra of hda-ice are closer to those for high-pressure phase ice-VI, but not for low-density ice-Ih. This result suggests that similar to ice-VI the structure of hda-ice should consist of two interpenetrating hydrogen-bonded networks having no hydrogen bonds between themselves.

Kolesnikov, A. I.

1998-07-17T23:59:59.000Z

52

High density electronic circuit and process for making  

DOE Patents (OSTI)

High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

Morgan, W.P.

1999-06-29T23:59:59.000Z

53

Reference material RM 7811-7 for identification cards with high coercivity high density magnetic stripes  

E-Print Network (OSTI)

Reference material RM 7811-7 for identification cards with high coercivity high density magnetic stripes

Albrecht, M

2003-01-01T23:59:59.000Z

54

Transient thermal analysis of three fast-charging latent heat storage configurations for a space-based power system  

DOE Green Energy (OSTI)

A space-based thermal storage application must accept large quantities of heat in a short period of time at an elevated temperature. A model of a lithium hydride phase change energy storage system was used to estimate reasonable physical dimensions for this application which included the use of a liquid metal heat transfer fluid. A finite difference computer code was developed and used to evaluate three methods of enhancing heat transfer in the PCM energy storage system. None of these three methods, inserting thin fins, reticulated nickel, or liquid lithium, significantly improved the system performance. The use of a 95% void fraction reticulated nickel insert was found to increase the storage capacity (total energy stored) of the system slightly with only a small decrease in the system energy density (energy storage/system mass). The addition of 10% liquid lithium was found to cause minor increases in both storage density and storage capacity with the added benefit of reducing the hydrogen pressure of the lithium hydride. 9 refs., 7 figs., 2 tabs.

Stovall, T.K.; Arimilli, R.V.

1988-01-01T23:59:59.000Z

55

Current trends in commercial cool storage. Final report. [Use of chilled water and ice storage to reduce demand charges and electric bills; 85 projects  

DOE Green Energy (OSTI)

The objectives of this study were to identify, by means of a phone-and-mail survey, recent installations of off-peak cool storage air conditioning systems in commercial buildings; to monitor new developments; and to indicate trends. This report contains descriptions of over 80 systems installed since 1981, plus findings and conclusions based on site-specific information. Analysis of the findings suggests that storage cooling systems in commercial buildings can, in many cases, offer technical and cost advantages over nonstorage systems. The detailed information should be of value to potential customers and HVAC engineers in making cooling equipment decisions that would be advantageous to customer, utility, and HVAC industry alike. 20 refs.

Hersh, H.N.

1985-07-01T23:59:59.000Z

56

Analysis of Heat Charging and Discharging on the Phase Change Energy-Storage Composite Wallboard (PCECW) in Building  

E-Print Network (OSTI)

This research paper combines the phase change material and the basal building material to constitute a kind of new phase change energy- storage composite wallboard (PCECW), applied in a residential building in Beijing. We analyzed the energy-storage characteristics of the PCECW according to phase change energy-storage theory, which is used as the storage-heat body in the “light" inner wallboards, compared to the normal “heavy" inner wallboards. Through computer simulation, we measured the effects on the heating and energy consumption of the room when the enthalpy, thermal coefficient and thickness of the PCECW were changed. The results show that the PCECW the phase change wall could effectively reduce the temperature fluctuation and the winter heating energy consumption in the residential building.

Yue, H.; Chen, C.; Liu, Y.; Guo, H.

2006-01-01T23:59:59.000Z

57

Phase Diagram of Amorphous Solid Water: Low-Density, High-Density, and Very-High-Density Amorphous Ices  

E-Print Network (OSTI)

We describe the phase diagram of amorphous solid water by performing molecular dynamics simulations. Our simulations follow different paths in the phase diagram: isothermal compression/decompression, isochoric cooling/heating and isobaric cooling/heating. We are able to identify low-density amorphous (LDA), high-density amorphous (HDA), and very-high density amorphous (VHDA) ices. The density $\\rho$ of these glasses at different pressure $P$ and temperature $T$ agree well with experimental values. We also study the radial distribution functions of glassy water. We obtain VHDA by isobaric heating of HDA, as in experiment. We also find that ``other forms'' of glassy water can be obtained upon isobaric heating of LDA, as well as amorphous ices formed during the transformation of LDA to HDA. We argue that these other forms of amorphous ices, as well as VHDA, are not altogether new glasses but rather are the result of aging induced by heating. Samples of HDA and VHDA with different densities are recovered at normal $P$, showing that there is a continuum of glasses. Furthermore, the two ranges of densities of recovered HDA and recovered VHDA overlap at ambient $P$. Our simulations are consistent with the possibility of HDA$\\to$LDA and VHDA$\\to$LDA transformations, reproducing the experimental findings. We do not observe a VHDA$\\to$HDA transformation.

Nicolas Giovambattista; H. Eugene Stanley; Francesco Sciortino

2005-02-22T23:59:59.000Z

58

COMMENTS ON ANOMALOUS EFFECTS IN CHARGING OF PD POWDERS WITH HIGH DENSITY HYDROGEN ISOTOPES  

DOE Green Energy (OSTI)

In Kitamura, et al, Pd-containing materials are exposed to isotopes of hydrogen and anomalous results obtained. These are claimed to be a replication of another experiment conducted by Arata and Zhang. Erroneous basic assumptions are pointed out herein that alter the derived conclusions significantly. The final conclusion is that the reported results are likely normal chemistry combined with noise. Thus the claim to have proven that cold fusion is occurring in these systems is both premature and unlikely.

Shanahan, K.

2009-10-01T23:59:59.000Z

59

Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems  

Science Conference Proceedings (OSTI)

A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method'Â?s potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H{sub 2} dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH{sub 4}){sub 4} stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH{sub 4}){sub 2} and Mg(BH{sub 4}){sub 2} in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH{sub 4}){sub 4} ligand complex in SiO{sub 2} aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of Ca(BH{sub 4}){sub 2} and Mg(BH{sub 4}){sub 2} in nano-frameworks did not improve their H{sub 2} absorption due to the formation of stable alkaline earth B12H12 intermediates upon rehydrogenation. This project primarily investigated the effect of nano-framework surface chemistry on hydride properties, while the effect of pore size is the focus area of other efforts (e.g., HRL, Sandia National Laboratories (SNL) etc.) within the Metal Hydride Center of Excellence (MHCoE). The projects were complementary in gaining an overall understanding of the influence of nano-frameworks on hydride behavior.

Xia Tang , Susanne M. Opalka , Daniel A. Mosher, Bruce L. Laube, Ronald J. Brown, Thomas H. Vanderspurt, Sarah Arsenault, Robert Wu, Jamie Strickler, Ewa. Ronnebro, Tim. Boyle and Joseph Cordaro

2010-06-30T23:59:59.000Z

60

Multilevel charge storage in Si nanocrystals arranged in double-dot-layers within SiO2  

Science Conference Proceedings (OSTI)

We investigated charging/discharging characteristics of a MOS structure with two layers of Si-nanocrystals (NCs) embedded in the SiO"2 dielectric. The two-dimensional (2D) arrays of nanocrystals, of sizes 3 and 5nm in the lower and upper NCs layer, respectively, ... Keywords: Electrical characterization, Non-volatile memories, Si-nanocrystal memories, Si-nanocrystals

M. Theodoropoulou; A. G. Nassiopoulou

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fracture behavior of kaolin-reinforced high density polyethylene  

SciTech Connect

The addition of the low-cost mineral filler kaolin to high-density polyethylene (HDPE) creates a composite with both improved stiffness and toughness properties. This study focuses on two aspects of the toughness of these composites: the fracture toughness increment produced by work at the fracture surface and the directionality induced by the injection molding fabrication process. The Essential Work of Fracture (EWF) method gives results which show that a higher volume fraction of kaolin produces more surface work, consistent with earlier work using Compact Tension (CT) tests. The EWF method also demonstrates that a lower volume fraction can produce a higher overall plastic work and apparent toughness. A heat treatment that removes the orientation of the matrix but not that of the particles was applied to study the effect of matrix crystallinity. The results indicate that the matrix supramolecular structure (crystallinity and skin-core effect) is responsible for the directionality of toughness, and that a heat treatment can be used to produce high toughness behavior in both major directions.

Wetherhold, R.C.; Mouzakis, D.E.

1999-10-01T23:59:59.000Z

62

High-Density Infrared Surface Treatments of Refractories  

SciTech Connect

Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

Tiegs, T.N.

2005-03-31T23:59:59.000Z

63

Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1  

E-Print Network (OSTI)

1 Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1 pipeline Key words: high-density tiling microarray, high-density oligonucleotide microarray, microarray processing pipeline for analyzing tiling array data (http://tilescope.gersteinlab.org). In a completely

Gerstein, Mark

64

Surface interactions involved in flashover with high density electronegative gases.  

Science Conference Proceedings (OSTI)

This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

2010-01-01T23:59:59.000Z

65

High-density nanopore array for selective biomolecule transport.  

SciTech Connect

Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

Patel, Kamlesh D.

2011-11-01T23:59:59.000Z

66

Replication of high density optical disc using injection mold with MEMS heater  

Science Conference Proceedings (OSTI)

In this study, an injection mold equipped with a MEMS heater was designed and constructed to raise the stamper surface temperature over the glass transition temperature during the filling stage of the injection molding. First, high density optical disc ... Keywords: High density optical disc, Injection mold, MEMS RTD sensor, MEMS heater, Solidified layer, Stamper surface temperature

Youngmin Kim; Yong Choi; Shinill Kang

2005-07-01T23:59:59.000Z

67

Street-facing Dwelling Units and Livability: The Impacts of Emerging Building Types in Vancouver's New High-density Residential Neighbourhoods  

E-Print Network (OSTI)

s New High-density Residential Neighbourhoods Elizabeths New High-density Residential Neighbourhoods ELIZABETHbuilding new high-density residential neighbourhoods around

Macdonald, Elizabeth

2006-01-01T23:59:59.000Z

68

Post regulation circuit with energy storage  

DOE Patents (OSTI)

A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA)

1992-01-01T23:59:59.000Z

69

Kaon condensation in neutron stars and high density behaviour of nuclear symmetry energy  

E-Print Network (OSTI)

We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases.

S. Kubis; M. Kutschera

1999-07-24T23:59:59.000Z

70

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Production: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel ... Fact Sheet Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel

71

Short-Term Probabilistic Forecasts of Ceiling and Visibility Utilizing High-Density Surface Weather Observations  

Science Conference Proceedings (OSTI)

An automated statistical system that utilizes regional high-density surface observations to forecast low ceiling and visibility events in the upper Midwest is presented. The system is based solely upon surface observations as predictors, ...

Stephen M. Leyton; J. Michael Fritsch

2003-10-01T23:59:59.000Z

72

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel  

National Nuclear Security Administration (NNSA)

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Production: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel ... Fact Sheet Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel

73

FUNDAMENTAL SAFETY TESTING AND ANALYSIS OF HYDROGEN STORAGE MATERIALS AND SYSTEMS  

DOE Green Energy (OSTI)

Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight, low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems, it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems, it is important to understand quantitatively, the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems, an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe, North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis, handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH{sub 4}, a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.

Anton, D

2007-05-01T23:59:59.000Z

74

The final stage of gravitational collapse for high density fluid medium  

Science Conference Proceedings (OSTI)

The High density high density fluids can be represented by a stiff matter state equation P={rho} and also by the Hagedorn state equation. The first is constructed using a lagrangian that allows bare nucleons to interact attractively via scalar meson exchange, and repulsively by a more massive vector meson exchange; the second consider that for large mass the spectrum of hadrons grows exponentially, namely {rho}(m) {approx}exp(m/T{sub H}), where T{sub H} is the Hagedorn temperature, resulting the state equation P = P{sub 0}+{rho}{sub 0}ln({rho}/{rho}{sub 0}). We study the gravitational collapse for a high density fluid, considering a Hagedorn state equation in a presence of a vacuum component.

Souza, R. G. [Physics Department , Roraima Federal University, 69304-000 Boa Vista, RR (Brazil); De Campos, M. [Physics Department, Roraima Federal University, 69304-000 Boa Vista, RR (Brazil) and Astronomy Department, Sao Paulo University, 05508-900 Sao Paulo, SP (Brazil)

2013-03-25T23:59:59.000Z

75

Energy storage in carbon nanotube super-springs  

E-Print Network (OSTI)

A new technology is proposed for lightweight, high density energy storage. The objective of this thesis is to study the potential of storing energy in the elastic deformation of carbon nanotubes (CNTs). Prior experimental ...

Hill, Frances Ann

2008-01-01T23:59:59.000Z

76

Interplay between Spin Polarization and Color Superconductivity in High Density Quark Matter  

E-Print Network (OSTI)

Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical potential. It follows that the transition from one to the other phase occurs passing through true minima with both a spin polarization and a color superconducting gap. It is shown that the quark spin polarized phase is realized at rather high density, while the two-flavor color superconducting phase is realized at a lower density region.

Y. Tsue; J. da Providencia; C. Providencia; M. Yamamura; H. Bohr

2012-11-27T23:59:59.000Z

77

NERSC HPSS Charging  

NLE Websites -- All DOE Office Websites (Extended Search)

HPSS Charging NERSC uses Storage Resource Units (SRUs) to help manage HPSS storage. The goal is to provide a balanced computing environment with appropriate amounts of storage and adequate bandwidth to keep the compute engines fed with data. Performance and usage tracking allows NERSC to anticipate demand and maintain a responsive storage environment. Storage management also recognizes storage as a distinct resource in support of an increasing amount of data intensive computing. Storage management and the quota system are intended to encourage efficient usage by the user community. SRU Management SRUs are reported and managed through the NERSC Information Management (NIM) system. If a user is out of SRUs in all of their HPSS repositories that user will be restricted so that they can no longer write data to HPSS

78

High density phase change data on flexible substrates by thermal curing type nanoimprint lithography  

Science Conference Proceedings (OSTI)

In this study, high density phase change nano-pillar device (Tera-bit per inch^2 data density) was fabricated on flexible substrates by thermal curing type nanoimprint lithography with high throughput at a relatively low temperature (120^oC). Phase change ... Keywords: Flexible nano-device, Nanoimprint lithography, Phase change memory, Phase change nano-pillar device, Tera-bit record

Sung-Hoon Hong; Jun-Ho Jeong; Kang-In Kim; Heon Lee

2011-08-01T23:59:59.000Z

79

Device and method for electron beam heating of a high density plasma  

DOE Patents (OSTI)

A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

Thode, Lester E. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

80

Design and Qualification of High-Density Polyethylene for ASME Safety Class 3 Piping Systems  

Science Conference Proceedings (OSTI)

This report identifies the activities necessary and recommends a plan to gather needed data to establish design and qualification methods that will serve as the basis for ASME and regulatory approvals for allowing the nuclear power industry to use high-density polyethylene for Safety Class 3 applications.

2005-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hybrid electrical energy storage systems  

Science Conference Proceedings (OSTI)

Electrical energy is a high quality form of energy that can be easily converted to other forms of energy with high efficiency and, even more importantly, it can be used to control lower grades of energy quality with ease. However, building a cost-effective ... Keywords: charge, electrical storage, energy, energy storage, hybrid storage, management

Massoud Pedram; Naehyuck Chang; Younghyun Kim; Yanzhi Wang

2010-08-01T23:59:59.000Z

82

Argonne CNM Highlight: High density, high-aspect-ratio precision polyimide  

NLE Websites -- All DOE Office Websites (Extended Search)

High density, high-aspect-ratio precision polyimide nanofilters High density, high-aspect-ratio precision polyimide nanofilters Polyimide Nanofilter SEM of a polyimide film with holes ~250 nm in diameter and ~10 µm deep. The cross-sectional cut of the channels in the front are made visible by focused ion-beam milling. Collaborative users from Creatv MicroTech, Inc. and Los Alamos National Laboratory, working with CNM's Nanofabrication & Devices Group, have demonstrated a novel fabrication process that produces high-porosity polymer nanofilters with smooth, uniform. and straight pores and high aspect ratios. Nanofilters have a wide range of applications for various size-exclusion-based separations in bioseparation and nanomedicine, such as laboratory assays, removing bacteria and viruses, drug delivery devices,

83

Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios  

NLE Websites -- All DOE Office Websites (Extended Search)

Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios Seckin Gokaltun, Dwayne McDaniel and David Roelant Florida International University, Miami, FL Background As a result of atomic weapons production, millions of gallons of radioactive waste was generated and stored in underground tanks at various U.S. Department of Energy sites. Department of Energy is currently in the process of transferring the waste from single shell tanks to double shell tanks. Various waste retrieval and processing methods are employed during the transfer of the waste. One such method, pulsed-air mixing, involves injection of discrete pulses of compressed air or inert gas at the bottom of the tank to produce large bubbles that rise due to buoyancy and mix the waste in the tank

84

Equation-of-state for fluids at high densities-hydrogen isotope measurements and thermodynamic derivations  

DOE Green Energy (OSTI)

Hydrogen isotopes play an important role in energy technologies, in particular, the compression to high densities for initiation of controlled thermonuclear fusion energy. At high densities the properties of the compressed hydrogen isotopes depart drastically from ideal thermodynamic predictions. The measurement of accurate data including the author's own recent measurements of n-H/sub 2/ and n-D/sub 2/ in the range 75 to 300 K and 0.2 to 2.0 GPa (2 to 20 kbar) is reviewed. An equation-of-state of the Benedict type is fit to these data with a double-process least-squares computer program. The results are reviewed and compared with existing data and with a variety of theoretical work reported for fluid hydrogens. A new heuristic correlation is presented for simplicity in predicting volumes and sound velocity at high pressures. 9 figures, 1 table.

Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

1977-01-01T23:59:59.000Z

85

An Assessment of Industry Data Related to Essential Variables for Fusing High Density Polyethylene Pipe  

Science Conference Proceedings (OSTI)

The Nuclear Regulatory Commission has expressed concern about the essential variables used for fusing safety-related nuclear power plant piping systems constructed of high density polyethylene (HDPE). The essential variables detailed in the American Society of Mechanical Engineers (ASME) Code Case N-755-1, “Use of Polyethylene (PE) Plastic Pipe,” were considered to be incomplete. In addition, there were questions about using data in the Plastic Pipe Institute (PPI) report TR-33 ...

2013-07-31T23:59:59.000Z

86

Short-range tensor interaction and high-density nuclear symmetry energy  

E-Print Network (OSTI)

Effects of the short-range tensor interaction on the density-dependence of nuclear symmetry energy are examined by applying an approximate expression for the second-order tensor contribution to the symmetry energy derived earlier by G.E. Brown and R. Machleidt. It is found that the uncertainty in the short-range tensor force leads directly to a divergent high-density behavior of the nuclear symmetry energy.

Li, Ang

2011-01-01T23:59:59.000Z

87

Applicability of High-Density Polyethylene in Nuclear Piping Systems with Internal Radionuclides  

Science Conference Proceedings (OSTI)

This report serves as a preliminary evaluation on the long-term impact of radiation on high-density polyethylene (HDPE) piping for nuclear power plant applications. A short literature review is provided on the impact of radiation on HDPE material, followed by a Monte Carlo N-Particle (MCNP) model of internal radiation exposure from radionuclides commonly encountered at nuclear power facilities. Ultimately, this work seeks to provide guidance on the applicability of HDPE piping in radioactive ...

2013-05-16T23:59:59.000Z

88

Nondestructive Evaluation: NDE for High Density Polyethylene (HDPE) Pipe for Cold Fusion  

Science Conference Proceedings (OSTI)

Over the past several years, the Electric Power Research Institute (EPRI) has been investigating nondestructive evaluation (NDE) techniques to volumetrically examine butt fusion joints in high density polyethylene (HDPE) piping. The interest in this comes from AmerenUE’s Callaway Plant and Duke Energy‘s Catawba Plant both submitting relief requests to the U.S. Nuclear Regulatory Commission (NRC) for using HDPE in place of carbon steel piping in Section III, Class 3 systems in accordance with Code Case N-...

2009-11-30T23:59:59.000Z

89

HIGH-DENSITY MOLECULAR GAS PROPERTIES OF THE STARBURST GALAXY NGC 1614 REVEALED WITH ALMA  

Science Conference Proceedings (OSTI)

We present the results of HCN/HCO{sup +}/HNC J = 4-3 transition line observations of the nearby starburst galaxy NGC 1614, obtained with ALMA Cycle 0. We find that high density molecular gas traced with these lines shows a velocity structure such that the northern (southern) side of the nucleus is redshifted (blueshifted) with respect to the nuclear velocity of this galaxy. The redshifted and blueshifted emission peaks are offset by {approx}0.''6 at the northern and southern sides of the nucleus, respectively. At these offset positions, observations at infrared >3 {mu}m indicate the presence of active dusty starbursts, supporting the picture that high-density molecular gas is the site of active starbursts. The enclosed dynamical mass within the central {approx}2'' in radius, derived from the dynamics of the high-density molecular gas, is {approx}10{sup 9} M{sub Sun }, which is similar to previous estimates. Finally, the HCN emission is weaker than HCO{sup +} but stronger than HNC for J = 4-3 for all starburst regions of NGC 1614, as seen for J = 1-0 transition lines in starburst-dominated galaxies.

Imanishi, Masatoshi [Subaru Telescope, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura 763-0355, Santiago (Chile)

2013-09-15T23:59:59.000Z

90

Low temperature high density Si3N4 MIM capacitor technology for MMMIC and RF-MEMs applications  

Science Conference Proceedings (OSTI)

In this work, a novel, high quality, high-density, deposited at room temperature ultra thin 5 nm Si3N4 metal insulator metal (MIM) capacitor process for monolithic millimetre-wave integrated circuit (MMMIC) applications ... Keywords: RF MEMs, RF MIM capacitors, dielectric films, high density capacitors, room temperature ultra thin silicon nitride films metal insulator metal capacitors

K. Elgaid; H. Zhou; C. D. W. Wilkinson; I. G. Thayne

2004-06-01T23:59:59.000Z

91

Designing Nanostructured Hybrid Materials for Energy Storage ...  

Science Conference Proceedings (OSTI)

The resulting devices fabricated with low-cost materials through the scalable ... which can offer >5 times higher charge storage capacity than current technology.

92

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest ...

93

A Novel VLSI Technology to Manufacture High-Density Thermoelectric Cooling Devices  

E-Print Network (OSTI)

This paper describes a novel integrated circuit technology to manufacture high-density thermoelectric devices on a semiconductor wafer. With no moving parts, a thermoelectric cooler operates quietly, allows cooling below ambient temperature, and may be used for temperature control or heating if the direction of current flow is reversed. By using a monolithic process to increase the number of thermoelectric couples, the proposed solid-state cooling technology can be combined with traditional air cooling, liquid cooling, and phase-change cooling to yield greater heat flux and provide better cooling capability.

H. Chen; L. Hsu; X. Wei

2008-01-07T23:59:59.000Z

94

Transphase cool storage test report  

DOE Green Energy (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial cool storage systems. Transphase, Inc. provided a prototype of a new storage tank design equipped with coils designed for use with a secondary fluid system and filled with a eutectic designed to freeze at 41{degree}F. The Transphase cool storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank with relatively constant brine temperatures over most of the charging cycle. During discharge cycles, the storage tank outlet temperature was governed mainly by the brine flow rate and the tank`s remaining charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. This prototype unit experienced several operational problems, not unexpected for the first full-size execution of a new design. Such prototype testing was one of EPRI`s primary goals in founding the ISTF.

Stovall, T.K.

1993-12-01T23:59:59.000Z

95

Method and apparatus for rapid battery charging  

SciTech Connect

A method and apparatus for charging electrical storage batteries having a known nominal amperage are described. The method consists in discharging the battery to a predetermined value and then charging the battery with a charging current initially several times greater than the nominal battery amperage. The charging current decreases exponentially from the initial charging current to a charging current much less than the nominal battery amperage when the battery is fully charged. The apparatus uses the discharge rate of an RC circuit to control the charging current applied to the battery. 3 figures, 1 table.

Samsioe, P.E.

1979-12-18T23:59:59.000Z

96

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

be acquired. Battery storage costs are roughly consistentlow storage & PV cost (run 3) Battery charging Batterylow storage & PV cost (run 3) Battery discharging kW Utility

Stadler, Michael

2009-01-01T23:59:59.000Z

97

A Model for the Origin of High Density in Loop-top X-ray Sources  

E-Print Network (OSTI)

Super-hot looptop sources, detected in some large solar flares, are compact sources of HXR emission with spectra matching thermal electron populations exceeding 30 megakelvins. High observed emission measure, as well as inference of electron thermalization within the small source region, both provide evidence of high densities at the looptop; typically more than an order of magnitude above ambient. Where some investigators have suggested such density enhancement results from a rapid enhancement in the magnetic field strength, we propose an alternative model, based on Petschek reconnection, whereby looptop plasma is heated and compressed by slow magnetosonic shocks generated self-consistently through flux retraction following reconnection. Under steady conditions such shocks can enhance density by no more than a factor of four. These steady shock relations (Rankine-Hugoniot relations) turn out to be inapplicable to Petschek's model owing to transient effects of thermal conduction. The actual density enhancemen...

Longcope, D W

2011-01-01T23:59:59.000Z

98

Process and system for producing high-density pellets from a gaseous medium  

DOE Patents (OSTI)

A process and system for producing pellets of high density carbon dioxide or other gases utilize a chamber containing a plurality of cell-like freezing compartments within which ice is to be formed. A gas desired to be frozen into ice is introduced into the chamber while the internal pressure of the chamber is maintained at a level which is below the equilibrium triple pressure of the gas. The temperature of the freezing compartments is lowered to a temperature which is below the equilibrium vapor pressure temperature of the gas at the chamber pressure so that the gas condenses into ice within the compartments. The temperature of the freezing compartments is thereafter raised so that the ice is thereby released from and falls out of the compartments as pellets for collection.

Foster, Christopher A. (Clinton, TN)

1999-01-01T23:59:59.000Z

99

Behavior of a plasma in a high-density gas-embedded Z-pinch configuration  

Science Conference Proceedings (OSTI)

The theoretical analysis of a high density Z-pinch (HDZP) begins with an examination of the steady state energy balance between ohmic heating and bremsstrahlung radiation losses for a plasma column in pressure equilibrium. The model is then expanded to include the time-varying internal energy and results in a quasi-equilibrium prescription for the load current through a constant radius plasma channel. This set of current waveforms is useful in the design of experimental systems. The behavior of a plasma for physically realizable conditions is first examined by allowing adiabatic changes in the column radius. A more complete model is then developed by incorporating inertial effects into the momentum equation, and the resultant global MHD computational model is compared with more sophisticated, and costly, one- and two-dimensional computer simulations. These comparisons demonstrate the advantages of the global MHD description over previously developed zero-dimensional models.

Shlachter, J.S.

1982-05-01T23:59:59.000Z

100

Thermodynamics and Structural Properties of the High Density Gaussian Core Model  

E-Print Network (OSTI)

We numerically study thermodynamic and structural properties of the one-component Gaussian core model (GCM) at very high densities. The solid-fluid phase boundary is carefully determined. We find that the density dependence of both the freezing and melting temperatures obey the asymptotic relation, $\\log T_f$, $\\log T_m \\propto -\\rho^{2/3}$, where $\\rho$ is the number density, which is consistent with Stillinger's conjecture. Thermodynamic quantities such as the energy and pressure and the structural functions such as the static structure factor are also investigated in the fluid phase for a wide range of temperature above the phase boundary. We compare the numerical results with the prediction of the liquid theory with the random phase approximation (RPA). At high temperatures, the results are in almost perfect agreement with RPA for a wide range of density, as it has been already shown in the previous studies. In the low temperature regime close to the phase boundary line, although RPA fails to describe the structure factors and the radial distribution functions at the length scales of the interparticle distance, it successfully predicts their behaviors at shorter length scales. RPA also predicts thermodynamic quantities such as the energy, pressure, and the temperature at which the thermal expansion coefficient becomes negative, almost perfectly. Striking ability of RPA to predict thermodynamic quantities even at high densities and low temperatures is understood in terms of the decoupling of the length scales which dictate thermodynamic quantities from the interparticle distance which dominates the peak structures of the static structure factor due to the softness of the Gaussian core potential.

Atsushi Ikeda; Kunimasa Miyazaki

2011-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Grid Applications for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

102

High density quark matter in the Nambu-Jona-Lasinio model with dimensional versus cutoff regularization  

SciTech Connect

We investigate color superconducting phase at high density in the extended Nambu-Jona-Lasinio model for two-flavor quarks. Because of the nonrenormalizability of the model, physical observables may depend on the regularization procedure; that is why we apply two types of regularization, the cutoff and the dimensional one to evaluate the phase structure, the equation of state, and the relationship between the mass and the radius of a dense star. To obtain the phase structure we evaluate the minimum of the effective potential at finite temperature and chemical potential. The stress tensor is calculated to derive the equation of state. Solving the Tolman-Oppenheimer-Volkoff equation, we show the relationship between the mass and the radius of a dense star. The dependence on the regularization is found not to be small, interestingly. The dimensional regularization predicts color superconductivity phase at rather large values of {mu} (in agreement with perturbative QCD in contrast to the cutoff regularization), in the larger temperature interval, the existence of heavier and larger quark stars.

Fujihara, T.; Kimura, D.; Inagaki, T.; Kvinikhidze, A. [Department of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Information Media Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); A. Razmadze Mathematical Institute of Georgian Academy of Sciences, M. Alexidze Str. 1, 380093 Tbilisi (Georgia)

2009-05-01T23:59:59.000Z

103

DEGAS 2 Neutral Transport Modeling of High Density, Low Temperature Plasmas  

E-Print Network (OSTI)

Neutral transport in the high density, low temperature plasma regime is examined using the degas 2 Monte Carlo neutral transport code. Degas 2 is shown to agree with an analytic fluid neutral model valid in this regime as long as the grid cell spacing is less than twice the neutral mean-free path. Using new atomic physics data provided by the collisional radiative code cramd, degas 2 is applied to a detached Alcator C-Mod discharge. A model plasma with electron temperature # 1 eV along detached flux tubes, between the target and the ionization front, is used to demonstrate that recombination is essential to matching the experimental data. With the cramd data, # 20% of the total recombination is due to molecular activated recombination. # Massachusetts Institute of Technology , Plasma Fusion Center, 167 Albany Street, Cambridge, MA 02139, USA + Also at I. V. Kurchatov Institute of Atomic Energy 1 Kurchatov Sq., Moscow 123098, Russia # Presently at McKinsey & Company, Inc., London...

D. P. Stotler; A. Yu. Pigarov; C. F. F. Karney; S. I. Krasheninnikov; B. LaBombard; B. Lipschultz; G. M. McCracken; A. Niemczewski; J. A. Snipes; J. L. Terry; R. A. Vesey

1997-01-01T23:59:59.000Z

104

Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

2012-09-01T23:59:59.000Z

105

PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY  

Science Conference Proceedings (OSTI)

It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

Phifer, M.

2012-01-31T23:59:59.000Z

106

Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis  

Science Conference Proceedings (OSTI)

The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

Lu, Jinlian; Xiao, Hong [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)

2012-12-15T23:59:59.000Z

107

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

108

High density array fabrication and readout method for a fiber optic biosensor  

DOE Patents (OSTI)

The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.

Pinkel, Daniel (Walnut Creek, CA); Gray, Joe (San Francisco, CA); Albertson, Donna G. (Lafayette, CA)

2002-01-01T23:59:59.000Z

109

High density array fabrication and readout method for a fiber optic biosensor  

DOE Patents (OSTI)

The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.

Pinkel, Daniel (Walnut Creek, CA); Gray, Joe (San Francisco, CA); Albertson, Donna G. (Lafayette, CA)

2000-01-01T23:59:59.000Z

110

Calmac Ice Storage Test report  

DOE Green Energy (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. Calmac provided a storage tank equipped with coils designed for use with a secondary fluid system. The Calmac ice storage system was tested over a wide range of operating conditions. Measured system performance during charging was similar to that reported by the manufacturer. Both the measured average and minimum brine temperatures were in close agreement with Calmac's literature values, and the ability to fully charge the tank was relatively unaffected by charging rate and brine flow rate. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend most strongly on the discharge conditions required to serve the load. This report describes Calmac system performance fully under both charging and discharging conditions. Companion reports describe ISTF test procedures and ice-making efficiency test results that are common to many of the units tested. 11 refs., 31 figs., 9 tabs.

Stovall, T.K.

1991-08-01T23:59:59.000Z

111

A laser-driven target of high-density nuclear polarized hydrogen gas  

E-Print Network (OSTI)

We report the best figure-of-merit achieved for an internal nuclear polarized hydrogen gas target and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the simulation. The best result achieved for this target was 50.5% polarization with 58.2% degree of dissociation of the sample beam exiting the storage cell at a hydrogen flow rate of $1.1\\times 10^{18}$ atoms/s.

Clasie, B; Dutta, D; Gao, H; Seely, J; Xu, W

2006-01-01T23:59:59.000Z

112

Electric vehicle system for charging and supplying electrical ...  

A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft.

113

High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson, Li Tao, Mathew Goeckner, Walter Hua)  

E-Print Network (OSTI)

High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson sources. Despite the considerable development of inorganic semiconductor based light emitting diodes of miniaturization to nanoscale. Organic light emitting diode (OLED) technology is immune to quantum confinement

Hu, Wenchuang "Walter"

114

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of ...

115

Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners  

DOE Patents (OSTI)

A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

Thode, Lester E. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

116

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

117

HIGH-DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE S.G. Ermichev, V.I. Shapovalov, N.V.Sviridov (RFNC-VNIIEF, Sarov, Russia) V.K. Orlov, V.M. Sergeev, A. G. Semyenov, A.M. Visik, A.A. Maslov, A. V. Demin, D.D. Petrov, V.V. Noskov, V. I. Sorokin, O. I. Uferov (VNIINM, Moscow, Russia) L. Dole (ORNL, Oak Ridge, USA) Abstract - Russia is researching the production and testing of concretes with ceramic aggregate based on depleted uranium dioxide (UO 2 ). These DU concretes are to be used as structural and radiation-shielded material for casks for A-plant spent nuclear fuel transportation and storage. This paper presents the results of studies aimed at selection of ceramics and concrete composition, justification of their production technology, investigation of mechanical properties, and chemical stability.

118

A Spintronic Semiconductor with Selectable Charge Carriers  

NLE Websites -- All DOE Office Websites (Extended Search)

of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage...

119

ESS 2012 Peer Review - NYSERDA Energy Storage Projects - Dhruv...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Program in the DOE Office of Electricity for its support in this work. LIPA Tariff Time Energy Charge (kWh) Demand Charge (kWmonth) I. Off peak 11pm - 7am...

120

Compressed air energy storage system  

DOE Patents (OSTI)

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

122

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

123

Development of critical surface diagnostic based on the ion acoustic decay instability in laser produced high density plasma  

SciTech Connect

We have developed a large angle, UV collective Thomson scattering (CTS) diagnostic for high density, hot plasma relevant to laser fusion. The CTS measured the basic parameters of the plasma waves (frequency, wave number), or the spectral density function for selected wave vectors of plasma waves, which were excited by the IADI (ion acoustic parametric decay instability). It is a good diagnostic tool for a local electron temperature measurement. The electron temperature was estimated by measuring either ion acoustic wave or electron plasma wave in the laser intensity window of 1high density plasma.

Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S.; Estabrook, K.G.

1994-12-31T23:59:59.000Z

124

Integrating domain knowledge with statistical and data mining methods for high-density genomic SNP disease association analysis  

Science Conference Proceedings (OSTI)

Genome-wide association studies can help identify multi-gene contributions to disease. As the number of high-density genomic markers tested increases, however, so does the number of loci associated with disease by chance. Performing a brute-force test ... Keywords: Data integration, Data mining, False discovery rate (FDR), Genome-wide association (GWA), Pathway-based disease association, Single nucleotide polymorphisms (SNP)

Valentin Dinu; Hongyu Zhao; Perry L. Miller

2007-12-01T23:59:59.000Z

125

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by...

126

GreenCharge: Managing Renewable Energy in Smart Buildings  

E-Print Network (OSTI)

1 GreenCharge: Managing Renewable Energy in Smart Buildings Aditya Mishra, David Irwin, Prashant that combines market-based electricity pricing models with on-site renewables and modest energy storage (in, called GreenCharge, to efficiently manage the renewable energy and storage to reduce a building

Shenoy, Prashant

127

Energy Storage Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

128

NETL: NATCARB - CO2 Storage Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Formations Storage Formations NATCARB CO2 Storage Formations CO2 Storage Resource Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) were charged with providing a high-level, quantitative estimate of carbon dioxide (CO2) storage resource available in subsurface environments of their regions. Environments considered for CO2 storage were categorized into five major geologic systems: oil and gas reservoirs, unmineable coal areas, saline formations, shale, and basalt formations. Where possible, CO2 storage resource estimates have been quantified for oil and gas reservoirs, saline formations, and unmineable coal in the fourth edition of the United States Carbon Utilization and Storage Atlas (Atlas IV). Shale and basalt

129

Storage of burned PWR and BWR fuel  

SciTech Connect

In the last few years, credit for fuel burnup has been allowed in the design and criticality safety analysis of high-density spent-fuel storage racks. Design and operating philosophies, however, differ significantly between pressurized water reactor (PWR)- and boiling water reactor (BWR)-type plants because: (1) PWR storage pools generally use soluble boron, which provides backup criticality control under accident conditions; and (2) BWR fuel generally contains gadolinium burnable poison, which results in a characteristically peaked burnup-dependent reactivity variation. In PWR systems, the reactivity decreases monotonically with burnup in a nearly linear fashion (excluding xenon effects), and a two-region concept is feasible. In BWR systems, the reactivity is initially low, increases as fuel burnup progresses, and reaches a maximum at a burnup where the gadolinium is nearly depleted. In any spent-fuel storage rack design, uncertainties due to manufacturing tolerances and in calculational methods must be included to assure that the highest reactivity (k/sub eff/) is less than the 0.95 US Nuclear Regulatory Commission limit. In the absence of definitive critical experiment data with spent fuel, the uncertainty due to depletion calculations must be assumed on the basis of judgment. High-density spent-fuel storage racks may be designed for both PWR and BWR plants with credit for burnup. However, the design must be tailored to each plant with appropriate consideration of the preferences/specifications of the utility operating staff.

Turner, S.E.

1987-01-01T23:59:59.000Z

130

A digital miniature x-ray tube with a high-density triode carbon nanotube field emitter  

Science Conference Proceedings (OSTI)

We have fabricated a digital miniature x-ray tube (6 mm in diameter and 32 mm in length) with a high-density triode carbon nanotube (CNT) field emitter for special x-ray applications. The triode CNT emitter was densely formed within a diameter of below 4 mm with the focusing-functional gate. The brazing process enables us to obtain and maintain a desired vacuum level for the reliable electron emission from the CNT emitters after the vacuum packaging. The miniature x-ray tube exhibited a stable and reliable operation over 250 h in a pulse mode at an anode voltage of above 25 kV.

Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul [Nano Electron-source Creative Research Center, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700 (Korea, Republic of)] [Nano Electron-source Creative Research Center, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700 (Korea, Republic of); Kim, Jae-Woo; Song, Yoon-Ho [Nano Electron-source Creative Research Center, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700 (Korea, Republic of) [Nano Electron-source Creative Research Center, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700 (Korea, Republic of); School of Advanced Device Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Ahn, Seungjoon [Nano Electron-source Creative Research Center, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700 (Korea, Republic of) [Nano Electron-source Creative Research Center, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700 (Korea, Republic of); Department of Information Display, Sun Moon University, Kalsan-ri, Tangjeong-myoon, Asan-si, Chungnam 336-708 (Korea, Republic of)

2013-01-14T23:59:59.000Z

131

The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks.  

E-Print Network (OSTI)

electrolyte reservoirs for increased long-term baseline stability, and larger integral batteries allowing operation for in excess of 3 months without intervention. In this case sensors were sealed with rubber O-rings on the bottom of the enclosure behind a... The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. M. I. Mead1*, O.A.M. Popoola1, G. B. Stewart1, P. Landshoff3, M. Calleja2, M. Hayes2, J. J. Baldovi1, T. F. Hodgson1, M. W. McLeod1, J. Dicks4...

Mead, M I; Popoola, O A M; Stewart, G B; Landshoff, P; Calleja, M; Hayes, M; Baldovi, J J; Hodgson, T F; McLeod, M W; Dicks, J; Lewis, A; Cohen, J; Baron, R; Saffell, J R; Jones, R L

132

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

133

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems...

134

Criticality Evaluation of Plutonium-239 Moderated by High-Density Polyethylene in Stainless Steel and Aluminum Containers Suitable for Non-Exclusive Use Transport  

SciTech Connect

Research is conducted at the Joint Actinide Shock Physics Experimental Facility (JASPER) on the effects of high pressure and temperature environments on plutonium-239, in support of the stockpile stewardship program. Once an experiment has been completed, it is necessary to transport the end products for interim storage or final disposition. Federal shipping regulations for nonexclusive use transportation require that no more than 180 grams of fissile material are present in at least 360 kilograms of contiguous non-fissile material. To evaluate the conservatism of these regulatory requirements, a worst-case scenario of 180g {sup 239}Pu and a more realistic scenario of 100g {sup 239}Pu were modeled using one of Lawrence Livermore National Laboratory's Monte Carlo transport codes known as COG 10. The geometry consisted of {sup 239}Pu spheres homogeneously mixed with high-density polyethylene surrounded by a cube of either stainless steel 304 or aluminum. An optimized geometry for both cube materials and hydrogen-to-fissile isotope (H/X) ratio were determined for a single unit. Infinite and finite 3D arrays of these optimized units were then simulated to determine if the systems would exceed criticality. Completion of these simulations showed that the optimal H/X ratio for the most reactive units ranged from 800 to 1600. A single unit of either cube type for either scenario would not reach criticality. An infinite array was determined to reach criticality only for the 180g case. The offsetting of spheres in their respective cubes was also considered and showed a considerable decrease in the number of close-packed units needed to reach criticality. These results call into question the current regulations for fissile material transport, which under certain circumstances may not be sufficient in preventing the development of a critical system. However, a conservative, theoretical approach was taken in all assumptions and such idealized configurations may not be likely to be encountered in actual packaging, transportation, and storage configurations. Modeling of realistic, as-built configurations is beyond the scope of this study.

Watson, T T

2007-08-10T23:59:59.000Z

135

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report - Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Printable Version 2006 Annual Progress Report IV. Storage This section of the 2006 Progress Report for the DOE Hydrogen Program focuses on storage. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Storage Sub-Program Overview, Sunita Satyapal, Storage Team Lead, DOE Hydrogen Program (PDF 298 KB) A. Metal Hydrides High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides, Dan Mosher, United Technologies Research Center (PDF 763 KB) Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods, David Lesch, UOP LLC (PDF 780 KB) Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity, Dan Mosher, United Technologies Research Center (PDF 678 KB)

136

DUF6 Storage Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Safety Depleted UF6 Storage line line How DUF6 is Stored Where DUF6 is Stored DUF6 Storage Safety Cylinder Leakage Depleted UF6 Storage Safety Continued cylinder storage is...

137

Medium effects on charged pion ratio in heavy ion collisions  

E-Print Network (OSTI)

We have recently studied in the delta-resonance--nucleon-hole model the dependence of the pion spectral function in hot dense asymmetric nuclear matter on the charge of the pion due to the pion p-wave interaction in nuclear medium. In a thermal model, this isospin-dependent effect enhances the ratio of negatively charged to positively charged pions in neutron-rich nuclear matter, and the effect is comparable to that due to the uncertainties in the theoretically predicted stiffness of nuclear symmetry energy at high densities. This effect is, however, reversed if we also take into account the s-wave interaction of the pion in nuclear medium as given by chiral perturbation theory, resulting instead in a slightly reduced ratio of negatively charged to positively charged pions. Relevance of our results to the determination of the nuclear symmetry energy from the ratio of negatively to positively charged pions produced in heavy ion collisions is discussed.

Che Ming Ko; Yongseok Oh; Jun Xu

2010-02-01T23:59:59.000Z

138

High density photovoltaic  

DOE Green Energy (OSTI)

Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S. [Spire Corp., Bedford, MA (United States)

1997-10-14T23:59:59.000Z

139

HIGH DENSITY SLAG CONCRETE  

SciTech Connect

Test results are presented that show that a strong concrete weighing approximately 185 lb/ft/sup 3/ can be made using water, waste lead slag, and Ciment Fondu. Feasibility, materials, mortar tests, concrete tests, and Ciment Fondu concretes are discussed. A 24-in.-thick concrete shield wall would have to be increased in thickness by 5 in. if slag concrete is used in place of barytes or magnetite concrete. On a pound-for-pound basis, the waste lead slag concrete materials were 30% cheaper than barytes and magnetite concrete materials. (M.C.G.)

Northup, T.E.

1963-08-01T23:59:59.000Z

140

Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites  

Science Conference Proceedings (OSTI)

Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

Taib, R. M.; Ramarad, S.; Ishak, Z. A. M. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang (Malaysia); Rozman, H. D. [School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang (Malaysia)

2010-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Production of high density fuel through low temperature devolatilization of fossil fuels with hydrogen and iron oxides  

DOE Patents (OSTI)

A method is provided for producing high-energy high-density fuels and valuable co-products from fossil fuel sources which comprises the low temperature devolatilization of a fossil fuel such as coal in a moving fluid-bed reactor at a temperature of about 450-650C in the presence of hydrogen and iron oxides. The method is advantageous in that high quality liquid fuels are obtained in addition to valuable co-products such as elemental iron, elemental sulfur and carbon black, and the process is carried out efficiently with a large number of recyclable steps. In addition, the hydropyrolysis of the present invention can produce a highly reactive low-sulfur char which is convertible into a slurry fuel. 1 fig.

Khan, M.R.

1990-01-29T23:59:59.000Z

142

Collective renovation : case study on the public / private relationship in high-density low-rise residential areas of central Tokyo  

E-Print Network (OSTI)

This thesis starts with the interest in the undefined open spaces of high-density low-rise (HDLR) residential areas in Tokyo. In these spaces, one can witness numerous examples of overlapping public and private uses. For ...

Mizuguchi, Saki

2012-01-01T23:59:59.000Z

143

High density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for solar disinfection of drinking water in northern region, Ghana  

E-Print Network (OSTI)

The purpose of this study is to investigate the technical feasibility of high density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for the solar disinfection of drinking water ...

Yazdani, Iman

2007-01-01T23:59:59.000Z

144

Off peak ice storage generation  

DOE Green Energy (OSTI)

Due to the high costs associated with peak demand charges imposed by most electrical companies today, various means of shifting the peak HVAC load have been identified by the industry. This paper discusses the results of a study based upon a building site located in the high desert of the southwestern United States that evaluated ice storage as a mechanism of operating cost reductions. The discussion addresses both the seasonal and the annual cost and energy impacts of an ice storage system when used in place of an air-to-air heat pump system.

Davis, R.E.; Cerbo, F.J.

1985-01-01T23:59:59.000Z

145

Charge Depleting:  

NLE Websites -- All DOE Office Websites (Extended Search)

0.5 seconds 0.5 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 83.2 MPH Acceleration 1 Mile Maximum Speed: 100.6 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 10.6 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 82.8 MPH Acceleration 1 Mile Maximum Speed: 101.9 MPH Brake Test @ 60 MPH Distance Required: 145.1 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6,10 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 10 118.5 2.85 10 53.0 1.80 20 116.8 5.49 20 56.6 3.37 40 116.0 10.50 40 58.0 6.38 60 90.7 11.34 60 55.3 9.48 80 76.6 11.34 80 51.4 11.11 100 68.0 11.34 100 47.2 11.13 200 50.9 11.34 200 38.7 11.13 Fuel Economy with A/C Off 1 Cold Start Charge Depleting 2 : Fuel Economy: 119.7 MPG AC kWh Consumed 7 : 0.282 kWh/mi Charge Depleting

146

Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives - Develop and verify: On-board hydrogen storage systems achieving: 1.5 kWhkg (4.5 wt%), 1.2 kWhL, and 6kWh by 2005 2 kWhkg (6 wt%), 1.5 kWhL, and 4kWh by...

147

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

2011-10-01T23:59:59.000Z

148

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Scale Superconducting Magnetic Energy Storage Plant", IEEEfor SlIperconducting Magnetic Energy Storage Unit", inSuperconducting Magnetic Energy Storage Plant, Advances in

Hassenzahl, W.

2011-01-01T23:59:59.000Z

149

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

150

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

151

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Usage Storage Storage Energy storage isnt just for AA batteries. Thanks to investments from the Energy Department's Advanced Research...

152

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

153

FCT Hydrogen Storage: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Storage: Contacts on Facebook Tweet about FCT Hydrogen Storage: Contacts on Twitter Bookmark FCT Hydrogen Storage: Contacts on...

154

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report - Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Printable Version 2005 Annual Progress Report VI. Storage This section of the 2005 Progress Report for the DOE Hydrogen Program focuses on storage. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Storage Sub-program Overview, Sunita Satyapal, Department of Energy (PDF 244 KB) A. Metal Hydrides Catalytically Enhanced Hydrogen Storage Systems, Craig M. Jensen, University of Hawaii (PDF 441 KB) High Density Hydrogen Storage System Demonstration using NaAlH4 Based Complex Compound Hydrides, Donald L. Anton, United Technologies Research Center (PDF 633 KB) Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods, David A. Lesch, UOP LLC (PDF 308 KB)

155

Electric:SpaceCharge  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Electric:SpaceCharge. Prev, 6.4.1. Material Properties, Next. Name. Electric:SpaceCharge — Spatial charge density. Details. ...

2013-07-05T23:59:59.000Z

156

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

be acquired. Battery storage costs are roughly consistentlow storage & PV cost (run 3) Battery charging kW Batteryweekday low storage & PV cost (run 3) Battery discharging kW

Stadler, Michael

2009-01-01T23:59:59.000Z

157

LDRD ER Final Report: Recreating Planetary Cores in the Laboratory: New Techniques to Extremely High Density States  

DOE Green Energy (OSTI)

An accurate equation of state (EOS) for planetary constituents at extreme conditions is the key to any credible model of planets or low mass stars. However, very few materials have their high pressure (>few Mbar) EOS experimentally validated, and even then, only on the principal Hugoniot. For planetary and stellar interiors, compression occurs from gravitational force so that material states follow a line of isotropic compression (ignoring phase separation) to ultra-high densities. An example of the hydrogen phase space composing Jupiter and one particular Brown Dwarf is shown. At extreme densities, material states are predicted to have quite unearthly properties such as high temperature superconductivity and low temperature fusion. High density experiments on Earth are achieved with either static compression techniques (i.e. diamond anvil cells) or dynamic compression techniques using large laser facilities, gas guns, or explosives. The ultimate goal of this multi-directorate and multi-institutional proposal was to develop techniques that will enable us to understand material states that previously only existed at the core of giant planets, stars, or speculative theories. Our effort was a complete success, meeting all of the objectives set out in our proposals. First we focused on developing accurate Hugoniot techniques to be used for constraining the equation of state at high pressure/temperature. We mapped out an accurate water EOS and measured that the ionic->electronic conduction transition occurs at lower pressures than models predict. These data and their impact are fully described in the first enclosed paper ''The Equation of State and Optical Properties of Water Compressed by Strong Shock Waves.'' Currently models used to construct planetary isentropes are constrained by only the planet radius, outer atmospheric spectroscopy, and space probe gravitational moment and magnetic field data. Thus these data, which provide rigid constraints to these models, will have a significant impact on a broad community of planetary and condensed matter scientists, as well as our fundamental understanding of the giant planets. We then developed and tested precompressed and multiple shock techniques on water. Scientists around the world have teamed with us to conduct these complex and seminal high density experiments which allow access to the extreme core states of giant plants. Double shock experiments using a variety of anvils to compress water to densities higher and temperatures lower than accessible by single shock Hugoniot techniques. First a clear determination of the EOS and optical properties of the anvils needed to be measured. These properties for LiF and A1203 are written up in the second attached article, ''Shock-Induced Transformation of Sapphire and Lithium Fluoride into Semiconducting Liquids.'' An example double shock data record for water is shown. This data is being written up for publication.

Collins, G; Celliers, P; Hicks, D; Cauble, R; Bradley, D; MacKinnon, A; Moon, S; Young, D; Chau, R; Eggert, J; Willi, P; Pasley, J; Jeanloz, R; Lee, K; Bennedetti, R; Koenig, M; Benuzzi-Mounaix, A; Batani, D; Loubeyre, P; Hubbard, W

2003-02-07T23:59:59.000Z

158

Charge Depleting:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 seconds 3 seconds Acceleration 1/4 Mile Time: 20.3 seconds Maximum Speed: 74.3 MPH Acceleration 1 Mile Maximum Speed: 103.4 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 13.4 seconds Acceleration 1/4 Mile Time: 20.4 seconds Maximum Speed: 74.8 MPH Acceleration 1 Mile Maximum Speed: 104.0 MPH Brake Test @ 60 MPH Distance Required: 153.0 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6 Distance (miles)

159

Charge Depleting:  

NLE Websites -- All DOE Office Websites (Extended Search)

0 seconds 0 seconds Acceleration 1/4 Mile Time: 20.1 seconds Maximum Speed: 75.7 MPH Acceleration 1 Mile Maximum Speed: 104.9 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 12.8 seconds Acceleration 1/4 Mile Time: 20.0 seconds Maximum Speed: 75.7 MPH Acceleration 1 Mile Maximum Speed: 105.0 MPH Brake Test @ 60 MPH Distance Required: 126.8 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6 Distance (miles)

160

Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides  

Science Conference Proceedings (OSTI)

HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

None

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

162

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

163

ChargePoint America Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

ChargePoint America Vehicle Charging Infrastructure Summary Report Project Status to Date through: March 2012 Number of Charging Units Charging Electricity Charging Unit -...

164

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

165

Application-storage discovery  

Science Conference Proceedings (OSTI)

Discovering application dependency on data and storage is a key prerequisite for many storage optimization tasks such as data assignment to storage tiers, storage consolidation, virtualization, and handling unused data. However, in the real world these ... Keywords: enterprise storage, experimental evaluation, storage discovery

Nikolai Joukov; Birgit Pfitzmann; HariGovind V. Ramasamy; Murthy V. Devarakonda

2010-05-01T23:59:59.000Z

166

Read about Thermal Storage Research in OSTI Resources | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Read about Thermal Storage Research in OSTI Resources Read about Thermal Storage Research in OSTI Resources From the DOE Press Release: "High Energy Advanced Thermal Storage (HEATS). More than 90% of energy technologies involve the transport and conversion of thermal energy. Therefore, advancements in thermal energy storage - both hot and cold - would dramatically improve performance for a variety of critical energy applications. ..." From the Databases Energy Citations Database Information Bridge DOE Green Energy WorldWideScience.org More information Secretary Chu announces $130 Million for Advanced Research Projects, April 20, 2011 From Zero to $180 Million in Five Days DOE Blog ARPA-E's High Density Thermal Storage Workshop, January 2011 Advanced Heat Transfer and Thermal Storage Fluids High Energy Advanced Thermal Storage Grant Synopsis

167

High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment  

Science Conference Proceedings (OSTI)

There is increasing interest in harnessing the functional diversity of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Understanding the response of communities to stimulation, including flanking taxa, presents important opportunities for optimizing remediation approaches. We used high-density PhyloChip microarray analysis to comprehensively determine community membership and abundance patterns amongst a suite of samples from U(VI) bioremediation experiments. Samples were unstimulated or collected during Fe(III) and sulfate reduction from an acetate-augmented aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Results showed the greatest diversity in abundant SRB lineages was present in naturally-reduced sediment. Desulfuromonadales and Desulfobacterales were consistently identified as the dominant Fe(III)- and sulfate-reducing bacteria (IRB and SRB) throughout acetate amendment experiments. Stimulated communities also exhibited a high degree of functional redundancy amongst enriched flanking members. Not surprisingly, competition for both sulfate and iron was evident amongst abundant taxa, but the distribution and abundance of these ancillary SRB (Peptococcaceae, Desulfovibrionales and Syntrophobacterales), and lineages containing IRB (excluding Desulfobacteraceae) was heterogeneous amongst sample types. Interesting, amongst the most abundant taxa, particularly during sulfate reduction, were Epsilonproteobacteria that perform microaerobic or nitrate-dependant sulfur oxidation, and a number of bacteria other than Geobacteraceae that may enzymatically reduce U(VI). Finally, in depth community probing with PhyloChip determined the efficacy of experimental approaches, notably revealing striking similarity amongst stimulated sediment (from drill cores and in-situ columns) and groundwater communities, and demonstrating that sediment-packed in-situ (down-well) columns served as an ideal method for subsurface biostimulation.

Handley, Kim M.; Wrighton, Kelly E.; Piceno, Y. M.; Anderson, Gary L.; DeSantis, Todd; Williams, Kenneth H.; Wilkins, Michael J.; N'Guessan, A. L.; Peacock, Aaron; Bargar, John R.; Long, Philip E.; Banfield, Jillian F.

2012-06-13T23:59:59.000Z

168

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

169

NREL: Vehicles and Fuels Research - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map NREL's Energy Storage Project is leading the charge on battery thermal management, modeling, and systems solutions to enhance the performance of fuel cell, hybrid electric, and electric vehicles (FCVs, HEVs, and EVs) for a cleaner, more secure transportation future. NREL's experts work closely with the U.S. Department of Energy (DOE), industry, and automotive manufacturers to improve energy storage devices, such as battery modules and ultracapacitors, by enhancing their thermal performance and life-cycle cost. Activities also involve modeling and simulation to evaluate technical targets and energy storage parameters, and investigating combinations of energy storage systems to increase vehicle efficiency. Much of this research is conducted at our state-of-the-art energy storage

170

Production of high-density high-temperature plasma by collapsing small solid-density plasma shell with two ultra-intense laser pulses  

Science Conference Proceedings (OSTI)

Three-dimensional particle-in-cell simulations show that the anisotropic collapse of a plasma microshell by impact of two oppositely directed intense laser pulses can create at the center of the shell cavity a submicron-sized plasma of high density and temperature suitable for generating fusion neutrons.

Xu, H. [National Laboratory for Parallel and Distributed Processing, School of Computer Science, National University of Defense Technology, Changsha 410073 (China); Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900 (China); Yu Wei [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Yu, M. Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, Bochum D-44780 (Germany); Wong, A. Y. [Department of Physics, University of California, Los Angeles, California 90095 (United States); Sheng, Z. M.; Zhang, J. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan)

2012-04-02T23:59:59.000Z

171

FCT Hydrogen Storage: The 'National Hydrogen Storage Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

The 'National Hydrogen Storage Project' to someone by E-mail Share FCT Hydrogen Storage: The 'National Hydrogen Storage Project' on Facebook Tweet about FCT Hydrogen Storage: The...

172

Occult Trucking and Storage  

E-Print Network (OSTI)

At least we used to. We are Occult Trucking and Storage andNOTHING. FLASHBACK -- OCCULT TRUCKING AND STORAGE DEPOT --I saw him. FLASHBACK - OCCULT TRUCKING AND STORAGE DEPOT -

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

173

Sorption Storage Technology Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Technology Summary DOE H2 Storage Workshop, Feb 14-15, 2011, Washington, DC 1 Compressed & Cryo-Compressed Hydrogen Storage Workshop February 14 - 15, 2011, Washington, DC...

174

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

175

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Adki ns, "Raccoon Mountain Pumped-Storage Plant- Ten Years2J O. D. Johnson, "Worldwide Pumped-Storage Projects", PowerUnderground Pumped Hydro Storage", Proc. 1976 Eng.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

176

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

177

ChargePoint America Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

period: May 2011 through December 2011 ChargePoint Charging Electricity Charge Unit Usage - Charging Units Events Consumed By State Installed Performed (AC MWh) California 657...

178

NREL: Energy Storage - Awards and Successes  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards and Successes Awards and Successes Photo of Research and Development 100 Award In collaboration with DOE and industry, NREL's energy storage team has received numerous awards for innovative technologies that now benefit industry and consumers around the world. R&D 100 Awards Two prestigious R&D 100 awards were won by the energy storage team. These awards, which have been called "the Nobel Prizes of applied research," are presented annually by R&D Magazine and recognize the world's top 100 technologically significant products. Current-Interrupt Charging Algorithm Developed In 2001, NREL's energy storage team, Recombination Technologies, Optima Batteries, and the Advanced Lead Acid Battery Consortium were recognized with an R&D 100 Award for developing a current-interrupt charging algorithm

179

Charge state simulation  

Science Conference Proceedings (OSTI)

... The charge state balance (eg, the population of different charge states) inside the EBIT is determined by the balance between the different ...

2010-12-07T23:59:59.000Z

180

Electric Vehicle Public Charging -  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Public Charging - Time vs. Energy March, 2013 A critical factor for successful PEV adoption is the deployment and use of charging infrastructure in non-...

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Subsea Pumped Hydro Storage.  

E-Print Network (OSTI)

??A new technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources… (more)

Erik, Almen John

2013-01-01T23:59:59.000Z

182

Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energys Vehicle Technology Program to conduct various types of energy storage...

183

NERSC HPSS Storage Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting Optimizing IO performance on the Lustre file system IO Formats Sharing Data Transferring Data Unix...

184

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

185

Agent-based micro-storage management for the Smart Grid  

Science Conference Proceedings (OSTI)

The use of energy storage devices in homes has been advocated as one of the main ways of saving energy and reducing the reliance on fossil fuels in the future Smart Grid. However, if micro-storage devices are all charged at the same time using power ... Keywords: agent-based simulation, energy, micro-storage, smart grid

Perukrishnen Vytelingum; Thomas D. Voice; Sarvapali D. Ramchurn; Alex Rogers; Nicholas R. Jennings

2010-05-01T23:59:59.000Z

186

A Spintronic Semiconductor with Selectable Charge Carriers  

NLE Websites -- All DOE Office Websites (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

187

A Spintronic Semiconductor with Selectable Charge Carriers  

NLE Websites -- All DOE Office Websites (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

188

A Spintronic Semiconductor with Selectable Charge Carriers  

NLE Websites -- All DOE Office Websites (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

189

A Spintronic Semiconductor with Selectable Charge Carriers  

NLE Websites -- All DOE Office Websites (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

190

A Spintronic Semiconductor with Selectable Charge Carriers  

NLE Websites -- All DOE Office Websites (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

191

A Spintronic Semiconductor with Selectable Charge Carriers  

NLE Websites -- All DOE Office Websites (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

192

Battery charging system  

SciTech Connect

A battery charging system designed to charge a battery, especially a nickel-cadmium (Ni-cd) battery from a lead acid power supply without overcharging, and to charge uniformly a plurality of batteries in parallel is described. A non-linear resistance is utilized and is matched to the voltage difference of the power supply battery and the batteries being charged.

Komatsu, K.; Mabuchi, K.

1982-01-19T23:59:59.000Z

193

Battery charging system  

SciTech Connect

A highly efficient battery charging system is described in which the amperehour discharge of the battery is sensed for controlling the battery charging rate. The battery is charged at a relatively high charge rate during a first time period proportional to the extent of battery discharge and at a second lower rate thereafter.

Bilsky, H.W.; Callen, P.J.

1982-01-26T23:59:59.000Z

194

Quaternary 1T-2MTJ Cell Circuit for a High-Density and a High-Throughput Nonvolatile Bit-Serial CAM  

Science Conference Proceedings (OSTI)

A compact quaternary cell circuit using a single MOS transistor and two magnetic tunnel junction devices (1T-2MTJ) is proposed for a high-density nonvolatile bit-serial content-addressable memory (CAM). The use of quaternary CAM-cell structure makes ... Keywords: Low-Power, Compact, Spintronics, Magnetic Tunnel Junction, MTJ, MOS/MTJ-hybrid, Logic-in-Memory, Fine-Grain, Power Gating

Shoun Matsunaga; Takahiro Hanyu

2012-05-01T23:59:59.000Z

195

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

196

Consumer Acceptance and Public Policy Charging Infrastructure Group E Breakout Session  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Group E Charging Infrastructure Breakout Session #1 - Brainstorm Consumer Acceptance Barriers and Infrastructure Scenarios * Infrastructure Scenarios * Domicile & Workplace Charging: Being available were vehicles spend a lot of time (Level 1/2) * Gas Station model * Fast charging * Battery Swap * Flow Batteries: Electrolyte swap for long distance traveling * Dynamic Wireless Charging * Strategically placed and visible * Widespread and visible Charging Infrastructure (Group E) July 30, 2012 Breakout Session #2 - Refine Consumer Acceptance Concepts and Infrastructure Scenarios * DOE Actions for Fast Charging Scenario: * R&D on power transfer rates for batteries * Energy storage research to minimize grid impacts and demand charges

197

U.S. Department of Energy Categorical Exclusion Determination...  

NLE Websites -- All DOE Office Websites (Extended Search)

work is consistent with the goal of ADEPT: fundamental advances in soft magnetics, high voltage switches, and reliable, high-density charge storage. Proposed work consists...

198

U.S. Department of Energy Categorical Exclusion Determination...  

NLE Websites -- All DOE Office Websites (Extended Search)

The work is consistent with the goal of ADEPT: fundamental advances in soft magnetics, high voltage switches, and reliable, high-density charge storage. Work consists entirely...

199

U.S. Department of Energy Categorical Exclusion Determination...  

NLE Websites -- All DOE Office Websites (Extended Search)

work is consistent with the goals of ADEPT: fundamental advances in soft magnetics, high voltage switches, and reliable, high-density charge storage. Proposed work consists...

200

Analysis of performance capabilities of redox-flow storage batteries  

SciTech Connect

Major physical performance parameters and economic factors of a generalized redox-flow storage battery system are analyzed. The system is divided into power-related and energy-related subsystems. The economic factors include plant capital (and other) costs, electrical energy lost by the storage-cycle inefficiency, and a penalty term for failures. Relationships are formulated for the overall system efficiency and system performance parameters (voltages, current density, state-of-charge of the storage liquid, and parasitic losses). Equations for sizing and costing of the battery and the storage tank subsystems are given. Directions for needed research are indicated.

Roy, A.S.; Kaplan, S.I.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

202

A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses  

Science Conference Proceedings (OSTI)

A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification efficiency is calculated based on entropy balances or based on exergy balances. In practice, however, exergy balances are less affected by measurement uncertainties, whereas entropy balances can not be recommended if measurement uncertainties are not corrected in a way that the energy balance of the storage process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged directly, and a tank-in-tank system whose outer tank is charged and the inner tank is discharged thereafter. The new method has a great potential for the comparison of the stratification efficiencies of thermal energy storages and storage components such as stratifying devices. (author)

Haller, Michel Y.; Streicher, Wolfgang [Institute of Thermal Engineering, Graz University of Technology, Inffeldgasse 25/B, 8010 Graz (Austria); Yazdanshenas, Eshagh; Andersen, Elsa; Furbo, Simon [Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-2800, Kgs. Lyngby (Denmark); Bales, Chris [Solar Energy Research Center SERC, Hoegskolan Dalarna, 781 88 Borlaenge (Sweden)

2010-06-15T23:59:59.000Z

203

Flywheel Energy Storage technology workshop  

DOE Green Energy (OSTI)

Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

O`Kain, D.; Howell, D. [comps.

1993-12-31T23:59:59.000Z

204

Transportation Storage Interface | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Status...

205

Microsoft Word - CCS Geologic Storage-Intro_2011l.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Geologic carbon sequestration involves the storage of carbon dioxide (CO 2 ) in deep underground geologic formations. The majority of geologic formations considered for CO 2 storage, deep saline or depleted oil and gas reservoirs, are layers of subsurface porous rock that are overlain by a layer or multiple layers of low-permeability rock. Under high pressures, CO 2 is a supercritical fluid, with the high- density characteristics of a liquid but behaves like a gas by filling all available volume. Coal seams are also a viable option for geologic storage. When CO 2 is injected into a coal formation it is adsorbed onto the coal surfaces and methane gas is released and produced in adjacent wells. NETL's Core R&D research is focused on developing the ability to characterize a geologic formation

206

Establishment of very uniform gas-flow pattern in the process chamber for microwave-excited high-density plasma by ceramic shower plate  

SciTech Connect

The authors developed a ceramic upper shower plate used in the microwave-excited high-density plasma process equipment incorporating a dual shower-plate structure to establish a very uniform gas-flow pattern in the process chamber. Thousands of very fine gas-injection holes are implemented on this Al{sub 2}O{sub 3} upper shower plate with optimized allocation to establish a uniform gas-flow pattern of plasma-excitation gases and radical-generation gases for generating intended radicals in the plasma-excitation region. The size of these fine holes must be 50 {mu}m or less in diameter and 8 mm or more in length because these holes perform an essential role: They completely avoid the plasma excitation in these fine holes and upper gas-supply regions resulting from the plasma penetration into these regions from excited high-density plasma, even if very high-density plasma greater than 1x10{sup 12} cm{sup -3} is excited just under the ceramic upper shower plate by microwaves supplied from the radial line slot antenna. On the other hand, various process gases, such as material gases for film formations and etching gases, are supplied from the lower shower plate installed in the diffusion plasma region to this very uniform gas-flow pattern region of plasma-excitation gases and radical-generation gases. As a result, the process gases are supplied to the wafer surface in a very effective manner without excess decomposition of those process gas molecules and undesired reaction-product deposition on the inner surface of the process chamber. The process results are improved drastically by introducing the newly developed ceramic upper shower plate. But also, process uniformity on the entire wafer is improved with drastically reducing reaction-product deposition on the inner surface of the process chamber.

Goto, Tetsuya; Inokuchi, Atsutoshi; Ishibashi, Kiyotaka; Yasuda, Seij; Nakanishi, Toshio; Kohno, Masayuki; Okesaku, Masahiro; Sasaki, Masaru; Nozawa, Toshihisa; Hirayama, Masaki; Ohmi, Tadahiro [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan); Tokyo Electron Ltd., Tokyo 107-6325 (Japan); Tokyo Electron Technology Development Institute, Inc., Hyogo 660-0891 (Japan); New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan); Tokyo Electron AT Ltd., Hyogo 660-0891 (Japan); Hokuriku Seikei Industrial, Co., Ltd., Ishikawa 923-0157 (Japan); Tokyo Electron Technology Development Institute, Inc., Hyogo 660-0891 (Japan); New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

2009-07-15T23:59:59.000Z

207

Soldier power. Battery charging.  

E-Print Network (OSTI)

Soldier power. Marine. Battery charging. Advertising. Remote. SOFC (NanoDynamics, AMI) 60 watts q SOFC #12;

Hong, Deog Ki

208

ChargePoint America Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2013 Number of Charging Units Charging Electricity Charging Unit - Private Not Installed to Events Consumed By Region Residential Commercia Public Specified Date Performed...

209

Study of the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature  

Science Conference Proceedings (OSTI)

Magnetars are neutron stars with a strong surface magnetic field. Observations of soft gamma-ray and anomalous X-ray pulsars pointed out that the surface magnetic field of magnetars is equal or even greater than 10{sup 15} G. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons and with magnetic field. As output of the numerical calculations, we obtain the relative population of each species of particles as function of baryon density.

Coelho, Eduardo L.; Chiapparini, Marcelo [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20559-900, Rio de Janeiro, RJ (Brazil); Bracco, Mirian E. [Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, 27537-000, Resende, RJ (Brazil)

2013-03-25T23:59:59.000Z

210

Upcoming Natural Gas Storage Facilities.  

U.S. Energy Information Administration (EIA)

Kentucky Energy Hub Project Orbit Gas Storage Inc KY Leader One Gas Storage Project Peregrine Midstream Partners WY Tricor Ten Section Storage Project

211

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

212

Electrically charged pulsars  

E-Print Network (OSTI)

n the present work we investigate one possible variation on the usual electrically neutral pulsars: the inclusion of electric charge. We study the effect of electric charge in pulsars assuming that the charge distribution is proportional to the energy density. All calculations were performed for zero temperature and fixed entropy equations of state.

M. D. Alloy; D. P. Menezes

2007-04-24T23:59:59.000Z

213

Electrically charged pulsars  

E-Print Network (OSTI)

n the present work we investigate one possible variation on the usual electrically neutral pulsars: the inclusion of electric charge. We study the effect of electric charge in pulsars assuming that the charge distribution is proportional to the energy density. All calculations were performed for zero temperature and fixed entropy equations of state.

Alloy, M D

2007-01-01T23:59:59.000Z

214

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

215

NREL: Energy Storage - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage News Below are news stories related to NREL's energy storage research. August 28, 2013 NREL Battery Calorimeters Win R&D 100 Award The award-wining Isothermal...

216

NETL: Carbon Storage Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Carbon Storage Newsletter PDF-571KB has been posted. 08.27.2013 Publications August 2013 Carbon Storage Newsletter PDF-1.1MB has been posted. 08.15.2013 News Ancient...

217

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

pumped hydro, compressed air, and battery energy storage areto other energy storage sys tem s suc h as pumped hydro andenergy would be $50/MJ whereas the cost of the pumped hydro

Hassenzahl, W.

2011-01-01T23:59:59.000Z

218

Energy Storage & Delivery  

Science Conference Proceedings (OSTI)

Energy Storage & Delivery. Summary: Schematic of Membrane Molecular Structure The goal of the project is to develop ...

2013-07-23T23:59:59.000Z

219

Conventional Storage Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Conventional storage water heaters remain the most popular type of water heating system for homes and buildings.

220

Charge storage in nanocrystal systems: Role of defects?  

E-Print Network (OSTI)

Wet thermal oxidations of polycrystalline Si?.??Ge?.?? films at 600°C for 30 and 50 min were carried out. A stable mixed oxide was obtained for films that were oxidized for 50 min. ...

Kan, Eric Win Hong

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

INTEGRATED HYDROGEN STORAGE SYSTEM MODEL  

DOE Green Energy (OSTI)

Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride makes it difficult to remove the heat of reaction, especially in the relatively short target refueling times, see Attachment 3. This document describes a detailed numerical model for general metal hydride beds that couples reaction kinetics with heat and mass transfer, for both hydriding and dehydriding of the bed. The detailed model is part of a comprehensive methodology for the design, evaluation and modification of hydrogen storage systems. In Hardy [2007], scoping models for reaction kinetics, bed geometry and heat removal parameters are discussed. The scoping models are used to perform a quick assessment of storage systems and identify those which have the potential to meet DOE performance targets. The operational characteristics of successful candidate systems are then evaluated with the more detailed models discussed in this document. The detailed analysis for hydrogen storage systems is modeled in either 2 or 3-dimensions, via the general purpose finite element solver COMSOL Multiphysics{reg_sign}. The two-dimensional model serves to provide rapid evaluation of bed configurations and physical processes, while the three-dimensional model, which requires a much longer run time, is used to investigate detailed effects that do not readily lend themselves to two-dimensional representations. The model is general and can be adapted to any geometry or storage media. In this document, the model is applied to a modified cylindrical shell and tube geometry with radial fins perpendicular to the axis, see Figures 4.1-1 and 4.1-2. Sodium alanate, NaAlH{sub 4}, is used as the hydrogen storage medium. The model can be run on any DOS, LINUX or Unix based system.

Hardy, B

2007-11-16T23:59:59.000Z

222

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

223

Test profiles for stationary energy storage applications  

Science Conference Proceedings (OSTI)

Evaluation of battery and other energy storage technologies for stationary uses is progressing rapidly toward application-specific testing that uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes that simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation and spinning reserve. Other test profiles under development simulate conditions for the energy storage component of Remote Area Power Supplies (RAPS) that include renewable and/or fossil-fueled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. However, almost all RAPS tests and many tests that represent other stationary applications need to simulate significant time periods during which storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to effectively predict the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy storage technologies and test regimes that are designed to simulate them. The paper also discusses efforts to develop international testing standards.

Butler, P.C. [Sandia National Labs., Albuquerque, NM (United States); Cole, J.F. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Taylor, P.A. [Energetics, Inc., Columbia, MD (United States)

1998-09-01T23:59:59.000Z

224

Absolute intensity calibration of flat-field space-resolved extreme ultraviolet spectrometer using radial profiles of visible and extreme ultraviolet bremsstrahlung continuum emitted from high-density plasmas in Large Helical Device  

Science Conference Proceedings (OSTI)

A precise absolute intensity calibration of a flat-field space-resolved extreme ultraviolet (EUV) spectrometer working in wavelength range of 60-400 A is carried out using a new calibration technique based on radial profile measurement of the bremsstrahlung continuum in Large Helical Device. A peaked vertical profile of the EUV bremsstrahlung continuum has been successfully observed in high-density plasmas (n{sub e}{>=} 10{sup 14} cm{sup -3}) with hydrogen ice pellet injection. The absolute calibration can be done by comparing the EUV bremsstrahlung profile with the visible bremsstrahlung profile of which the absolute value has been already calibrated using a standard lamp. The line-integrated profile of measured visible bremsstrahlung continuum is firstly converted into the local emissivity profile by considering a magnetic surface distortion due to the plasma pressure, and the local emissivity profile of EUV bremsstrahlung is secondly calculated by taking into account the electron temperature profile and free-free gaunt factor. The line-integrated profile of the EUV bremsstrahlung continuum is finally calculated from the local emissivity profile in order to compare with measured EUV bremsstrahlung profile. The absolute intensity calibration can be done by comparing measured and calculated EUV bremsstrahlung profiles. The calibration factor is thus obtained as a function of wavelength with excellent accuracy. It is also found in the profile analysis that the grating reflectivity of EUV emissions is constant along the direction perpendicular to the wavelength dispersion. Uncertainties on the calibration factor determined with the present method are discussed including charge-coupled device operation modes.

Dong Chunfeng; Wang Erhui [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Morita, Shigeru; Goto, Motoshi [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); National Institute for Fusion Science, Toki 509-5292, Gifu (Japan)

2011-11-15T23:59:59.000Z

225

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

226

Similarity and generalized analysis of efficiencies of thermal energy storage systems  

SciTech Connect

This paper examined the features of three typical thermal storage systems including: (1) direct storage of heat transfer fluid in containers, (2) storage of thermal energy in a packed bed of solid filler material, with energy being carried in/out by a flowing heat transfer fluid which directly contacts the packed bed, and (3) a system in which heat transfer fluid flows through tubes that are imbedded into a thermal storage material which may be solid, liquid, or a mixture of the two. The similarity of the three types of thermal storage systems was discussed, and generalized energy storage governing equations were introduced in both dimensional and dimensionless forms. The temperatures of the heat transfer fluid during energy charge and discharge processes and the overall energy storage efficiencies were studied through solution of the energy storage governing equations. Finally, provided in the paper are a series of generalized charts bearing curves for energy storage effectiveness against four dimensionless parameters grouped up from many of the thermal storage system properties including dimensions, fluid and thermal storage material properties, as well as the operational conditions including mass flow rate of the fluid, and the ratio of energy charge and discharge time periods. Engineers can conveniently look up the charts to design and calibrate the size of thermal storage tanks and operational conditions without doing complicated individual modeling and computations. It is expected that the charts will serve as standard tools for thermal storage system design and calibration.

Peiwen Li; Jon Van Lew; Cholik Chan; Wafaa Karaki; Jake Stephens; J. E. O'Brien

2012-03-01T23:59:59.000Z

227

Chemical Storage-Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

228

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

229

Kauai Island Utility Cooperative energy storage study.  

DOE Green Energy (OSTI)

Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce into the KIUC grid. General Electric is presently conducting such a study and results of this study will be available in the near future. Another study conducted by Electric Power Systems, Inc. (EPS) in May 2006 took a broader approach to determine the causes of KIUC system outages. This study concluded that energy storage with batteries will provide stability benefits and possibly eliminate the load shedding while also providing positive voltage control. Due to the lack of fuel diversity in the KIUC generation mix, SNL recommends that KIUC continue its efforts to quantify the dynamic benefits of storage. The value of the dynamic benefits, especially as an enabler of renewable generation such as wind energy, may be far greater than the production cost benefits alone. A combination of these benefits may provide KIUC sufficient positive economic and operational benefits to implement an energy storage project that will contribute to the overall enhancement of the KIUC system.

Akhil, Abbas Ali; Yamane, Mike (Kauai Island Utility Cooperative, Lihu'e, HI); Murray, Aaron T.

2009-06-01T23:59:59.000Z

230

System Benefits Charge  

Energy.gov (U.S. Department of Energy (DOE))

New York's system benefits charge (SBC), established in 1996 by the New York Public Service Commission (PSC), supports energy efficiency, education and outreach, research and development, and low...

231

Linear Thermite Charge  

The Linear Thermite Charge (LTC) is designed to rapidly cut through concrete and steel structural components by using extremely high temperature thermite reactions jetted through a linear nozzle. 

232

Efficient high density train operations  

DOE Patents (OSTI)

The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

Gordon, Susanna P. (Oakland, CA); Evans, John A. (Hayward, CA)

2001-01-01T23:59:59.000Z

233

HIGH DENSITY NUCLEAR FUEL COMPOSITION  

DOE Patents (OSTI)

ABS>A nuclear fuel consisting essentially of uranium monocarbide and containing 2.2 to 4.6 wt% carbon, 0.1 to 2.3 wt% oxygen, 0.05 to 2.5 wt% nitrogen, and the balance uranium was developed. The maximum oxygen content was less than one-half the carbon content by weight and the carbon, oxygen, and nitrogen are present as a single phase substituted solid solution of UC, C, O, and N. A method of preparing the fuel composition is described. (AEC)

Litton, F.B.

1962-07-17T23:59:59.000Z

234

Assessment of an ORION-based experimental platform for measuring the opacity of high-temperature and high-density plasma  

SciTech Connect

The following provides an assessment of an experimental platform based on the ORION laser at AWE Aldermasten, England, for measuring the opacity of high-temperature and high-density LTE plasmas. The specific points addressed are (1) the range of electron density and temperature that can be achieved with short-pulse beams alone, as well as (2) by means of compression with a long-pulse beam; (3) the accuracy with which electron density, electron temperature, and absolute emissivity can be measured; (4) the use of pulse shaping to increase the sample density to above solid density; (5) the effect that target materials and target design have on maintaining spatial uniformity of the sample, and (6) the need for additional diagnostics to produce and characterize samples for decisive measurements.

Beiersdorfer, P; Schneider, M; Shepherd, R

2012-06-11T23:59:59.000Z

235

The evaluation of a coal-derived liquid as a feedstock for the production of high-density aviation turbine fuel  

DOE Green Energy (OSTI)

The conversion of coal-derived liquids to transportation fuels has been the subject of many studies sponsored by the US Department of Energy and the US Department of Defense. For the most part, these studies evaluated conventional petroleum processes for the production of specification-grade fuels. Recently, however, the interest of these two departments expanded to include the evaluation of alternate fossil fuels as a feedstock for the production of high-density aviation turbine fuel. In this study, we evaluated five processes for their ability to produce intermediates from a coal-derived liquid for the production of high-density turbine fuel. These processes include acid-base extraction to reduce the heteroatom content of the middle distillate and the atmospheric and vacuum gas oils, solvent dewaxing to reduce the paraffin (alkane) content of the atmospheric and vacuum gas oils, Attapulgus clay treatment to reduce the heteroatom content of the middle distillate, coking to reduce the distillate range of the vacuum gas oil, and hydrogenation to remove heteroatoms and to saturate aromatic rings in the middle distillate and atmospheric gas oil. The chemical and physical properties that the US Air Force considers critical for the development of high-denisty aviation turbine fuel are specific gravity and net heat of combustion. The target minimum values for these properties are a specific gravity of at least 0.85 and a net heat of combustion of at least 130,000 Btu/gal. In addition, the minimum hydrogen content is 13.0 wt %, the maximum freeze point is {minus}53{degrees}F ({minus}47{degrees}C), the maximum amount of aromatics is about 25 to 30 vol %, and the maximum amount of paraffins is 10 vol %. 13 refs., 20 tabs.

Thomas, K.P.; Hunter, D.E.

1989-08-01T23:59:59.000Z

236

Heat storage duration  

DOE Green Energy (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

237

Baltimore Aircoil Company (BAC) ice storage test report  

DOE Green Energy (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. Baltimore Aircoil Company (BAC) provided a storage tank equipped with coils designed for use with a liquid overfeed refrigeration system. Separate coils were also supplied for use with a secondary fluid system. The BAC ice storage system was tested over a wide range of operating conditions. System performance was satisfactory under both charging and discharging conditions. During the liquid-overfeed ice build cycle, the evaporator temperature closely matched the manufacturer's literature. The measured average brine temperatures were slightly higher than those given in the BAC literature (i.e., the BAC report is conservative). During discharge cycles, the storage tank outlet temperature remains nearly constant below 35{degree}F, rising only after most of the ice has been melted. The discharge performance was relatively unaffected by discharge rates or tank inlet temperatures. Based on these tests, a storage tank sized solely according to the latent ice storage capacity is capable of providing a relatively constant temperature to the load throughout most of the discharge cycle. This report describes BAC system performance fully under both charging and discharging conditions. Companion reports describe ISTF test procedures and ice-making efficiency test results that are common to many of the units tested. 10 refs., 30 figs., 7 tabs.

Stovall, T.K.

1991-03-01T23:59:59.000Z

238

DOE Hydrogen Analysis Repository: Hydrogen Storage Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Systems Analysis Storage Systems Analysis Project Summary Full Title: System Level Analysis of Hydrogen Storage Options Project ID: 202 Principal Investigator: Rajesh K. Ahluwalia Keywords: Hydrogen storage; compressed hydrogen tanks Purpose ANL is developing models to understand the characteristics of storage systems based on approaches with unique characteristics (thermal energy and temperature of charge and discharge, kinetics of the physical and chemical process steps involved) and to evaluate their potential to meet DOE targets for on-board applications. Performer Principal Investigator: Rajesh K. Ahluwalia Organization: Argonne National Laboratory (ANL) Address: 9700 S. Cass Ave. Argonne, IL 60439 Telephone: 630-252-5979 Email: walia@anl.gov Additional Performers: T.Q. Hua, Argonne National Laboratory; Romesh Kumar, Argonne National Laboratory; J-C Peng, Argonne National Laboratory

239

Long vs. short-term energy storage:sensitivity analysis.  

DOE Green Energy (OSTI)

This report extends earlier work to characterize long-duration and short-duration energy storage technologies, primarily on the basis of life-cycle cost, and to investigate sensitivities to various input assumptions. Another technology--asymmetric lead-carbon capacitors--has also been added. Energy storage technologies are examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. Sensitivity analyses include cost of electricity and natural gas, and system life, which impacts replacement costs and capital carrying charges. Results are presented in terms of annual cost, $/kW-yr. A major variable affecting system cost is hours of storage available for discharge.

Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA); Hassenzahl, William V. (,Advanced Energy Analysis, Piedmont, CA)

2007-07-01T23:59:59.000Z

240

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Other Innovative Storage Systems  

Science Conference Proceedings (OSTI)

High Efficiency Electrical Energy Storage Using Reversible Solid Oxide Cells: Scott Barnett1; Gareth Hughes1; Kyle Yakal-Kremski1; Zhan Gao1; 1 Northwestern ...

242

NREL: Energy Storage - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

to reply. Your name: Your email address: Your message: Send Message Printable Version Energy Storage Home About the Project Technology Basics Research & Development Awards &...

243

NREL: Energy Storage - Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The National Renewable Energy Laboratory's (NREL) Energy Storage team and partners work within a variety of programs that have created test manuals to establish standard...

244

Advanced Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Publications Reports: Advanced Technology Development Program For Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report Advanced Technology...

245

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gaps - Existing R&D and pilot programs - CAES - Controllable pumping - Off shore (energy island, etc) - Gravity systems - Thermal storage Confidential 3 Report to DOE ...

246

Carbon Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel power plants as viable, clean sources of electric power. The program is focused on developing technologies that can achieve 99 percent of carbon dioxide (CO 2 ) storage...

247

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

248

H 2 Storage Projects  

Science Conference Proceedings (OSTI)

... 10. Titanium-decorated carbon nanotubes: a potential high-capacity hydrogen storage madium. ... 3. Exohydrogenated single-wall carbon nanotubes. ...

249

Natural Gas Storage Valuation .  

E-Print Network (OSTI)

??In this thesis, one methodology for natural gas storage valuation is developed and two methodologies are improved. Then all of the three methodologies are applied… (more)

Li, Yun

2007-01-01T23:59:59.000Z

250

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Does CCS really make a difference for the environment? Carbon capture and storage (CCS) is one of several options, including the use of renewables, nuclear energy, alternative...

251

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

252

Solar Pilot Plant, Phase I. Preliminary design report. Volume V. Thermal storage subsystem. CDRL item 2  

DOE Green Energy (OSTI)

Design, specifications, and diagrams for the thermal storage subsystem for the 10-MW pilot tower focus power plant are presented in detail. The Honeywell thermal storage subsystem design features a sensible heat storage arrangement using proven equipment and materials. The subsystem consists of a main storage containing oil and rock, two buried superheater tanks containing inorganic salts (Hitec), and the necessary piping, instrumentation, controls, and safety devices. The subsystem can provide 7 MW(e) for three hours after twenty hours of hold. It can be charged in approximately four hours. Storage for the commercial-scale plant consists of the same elements appropriately scaled up. Performance analysis and tradeoff studies are included.

None

1977-05-01T23:59:59.000Z

253

Electrically charged compact stars  

E-Print Network (OSTI)

We review here the classical argument used to justify the electrical neutrality of stars and show that if the pressure and density of the matter and gravitational field inside the star are large, then a charge and a strong electric field can be present. For a neutron star with high pressure (~ 10^{33} to 10^{35} dynes /cm^2) and strong gravitational field (~ 10^{14} cm/s^2), these conditions are satisfied. The hydrostatic equation which arises from general relativity, is modified considerably to meet the requirements of the inclusion of the charge. In order to see any appreciable effect on the phenomenology of the neutron stars, the charge and the electrical fields have to be huge (~ 10^{21} Volts/cm). These stars are not however stable from the viewpoint that each charged particle is unbound to the uncharged particles, and thus the system collapses one step further to a charged black hole

Subharthi Ray; Manuel Malheiro; Jose' P. S. Lemos; Vilson T. Zanchin

2006-04-17T23:59:59.000Z

254

Auxiliary battery charging terminal  

SciTech Connect

In accordance with the present invention there is provided an auxiliary battery charging terminal that may selectively engage battery charging circuitry inside a portable radio pager. There is provided a current conducting cap having a downwardly and outwardly flared rim that deforms to lock under the crimped edge an insulating seal ring of a standard rechargeable cell by application of a compressive axial force. The auxiliary battery charging terminal is further provided with a central tip axially projecting upwardly from the cap. The auxiliary terminal may be further provided with a cap of reduced diameter to circumferentially engage the raised battery cathode terminal on the battery cell. A mating recess in a remote battery charging receptacle may receive the tip to captivate the battery cell against lateral displacement. The tip may be further provided with a rounded apex to relieve localized frictional forces upon insertion and removal of the battery cell from the remote battery charging receptacle.

Field, H.; Richter, R. E.

1985-04-23T23:59:59.000Z

255

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

256

Magnetic charge crystals imaged in artificial spin ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic charge crystals imaged in artificial spin ice Magnetic charge crystals imaged in artificial spin ice Magnetic charge crystals imaged in artificial spin ice Potential data storage and computational advances could follow August 27, 2013 Potential data storage and computational advances could follow A 3-D depiction of the honeycomb artificial spin ice topography after the annealing and cooling protocols. The light and dark colors represent the north and south magnetic poles of the islands. Image by Ian Gilbert, U. of I. Department of Physics and Frederick Seitz Materials Research Laboratory Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email Siv Schwink U. Illinois (217) 300-2201 Email "The emergence of magnetic monopoles in spin ice systems is a particular case of what physicists call fractionalization, or deconfinement of

257

Conductive lithium storage electrode  

DOE Patents (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

258

Conductive lithium storage electrode  

Science Conference Proceedings (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

259

Conductive lithium storage electrode  

DOE Patents (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

260

Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH  

E-Print Network (OSTI)

is the fall in potential energy surface during heating. Keywords: hydrogen storage, reactive force fieldModeling of Hydrogen Storage Materials: A Reactive Force Field for NaH Ojwang' J.G.O.*, Rutger van governing hydrogen desorption in NaH. During the abstraction process of surface molecular hydrogen charge

Goddard III, William A.

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Experimental Research of Sleeping Bed Integrated with PCM Heat Storage and Solar Heating  

Science Conference Proceedings (OSTI)

This paper puts forward a new way of using solar energy and Phase Change Material (PCM): the integration of PCM, sleeping bed and solar energy. The cavity of sleeping bed is filled with PCM. The sleeping bed is a heat storage device charged by solar ... Keywords: Solar heating, Sleeping bed, PCM heat storage

Guoqing Yu; Ji Qiang; Huizhong Zhao; Zonghu Lv

2009-10-01T23:59:59.000Z

262

Cool Storage Technology Guide  

Science Conference Proceedings (OSTI)

It is a fact that avoiding load growth is cheaper than constructing new power plants. Cool storage technologies offer one method for strategically stemming the impact of future peak demand growth. This guide provides a comprehensive resource for understanding and evaluating cool storage technologies.

2000-08-14T23:59:59.000Z

263

Energy storage capacitors  

DOE Green Energy (OSTI)

The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

Sarjeant, W.J.

1984-01-01T23:59:59.000Z

264

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

265

Superconducting magnetic energy storage for asynchronous electrical systems  

DOE Patents (OSTI)

A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.

Boenig, Heinrich J. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

266

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

267

UK CARBON CAPTURE AND STORAGE, WHERE IS IT ? Stuart Haszeldine  

E-Print Network (OSTI)

.haszeldine@ed.ac.uk SUMMARY Carbon capture and storage, to capture CO2 from power plants and big industry, remains much is seen as the ideal compliment to variable wind power, and so is critical to the UK's future electricity electricity charges or impacting significantly on personal budgets. This is important for CCS protagonists

Haszeldine, Stuart

268

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

269

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 View History All Operators Natural Gas in Storage 6,482,603 6,102,063 6,235,751 6,653,184 7,027,708 7,302,556 1973-2013 Base Gas 4,379,494...

270

Photon: history, mass, charge  

E-Print Network (OSTI)

The talk consists of three parts. ``History'' briefly describes the emergence and evolution of the concept of photon during the first two decades of the 20th century. ``Mass'' gives a short review of the literature on the upper limit of the photon's mass. ``Charge'' is a critical discussion of the existing interpretation of searches for photon charge. Schemes, in which all photons are charged, are grossly inconsistent. A model with three kinds of photons (positive, negative and neutral) seems at first sight to be more consistent, but turns out to have its own serious problems.

L. B. Okun

2006-02-03T23:59:59.000Z

271

Hydrogen-based electrochemical energy storage - Energy ...  

An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage ...

272

ChargePoint America Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Availability: Range of Charging Units with a Vehicle Connected versus Time of Day Percentage Max percentage of charging units connected across all days Inner-quartile range of...

273

taking charge : optimizing urban charging infrastructure for shared electric vehicles  

E-Print Network (OSTI)

This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

Subramani, Praveen

2012-01-01T23:59:59.000Z

274

Pseudocapacitive Lithium-Ion Storage in Oriented Anatase TiO2 Nanotube Arrays  

SciTech Connect

We report on the synthesis and electrochemical properties of oriented anatase TiO{sub 2} nanotube (NT) arrays as electrodes for Li-ion batteries. The TiO{sub 2} NT electrodes displayed both pseudocapacitive Li{sup +} storage associated with the NT surface and the Li{sup +} storage within the bulk material. The relative contribution of the pseudocapacitive and bulk storages depends strongly on the scan rate. While the charges are stored primarily in the bulk at low scan rates (<< 1 mV/s), the surface storage dominates the total storage capacity at higher scan rates (>1 mV/s). The storage capacity of the NT electrodes as a function of charge/discharge rates showed no dependence on the NT film thickness, suggesting that the Li{sup +} insertion/extraction processes occur homogeneously across the entire length of NT arrays. These results indicated that the electron conduction along the NT walls and the ion conduction within the electrolyte do not cause significant hindering of the charge/discharge kinetics for NT electrode architectures. As a result of the surface pseudocapacitive storage, the reversible Li{sup +} storage capacities for TiO{sub 2} NT electrodes were higher than the theoretical storage capacity for bulk anatase TiO{sub 2} materials.

Zhu, K.; Wang, Q.; Kim, J. H.; Pesaran, A. A.; Frank, A. J.

2012-06-07T23:59:59.000Z

275

Primitive Virtual Negative Charge  

E-Print Network (OSTI)

Physical fields, such as gravity and electromagnetic field, are interpreted as results from rearrangement of vacuum particles to get the equilibrium of net charge density and net mass density in 4-dimensional complex space. Then, both fields should interact to each other in that physical interaction is considered as a field-to-field interaction. Hence, Mass-Charge interaction is introduced with primitive-virtual negative charge defined for the mass. With the concept of Mass-Charge interaction electric equilibrium of the earth is discussed, especially about the electric field and magnetic field of the earth. For unsettled phenomena related with the earth's gravity, such as antigravity phenomenon, gravity anomalies during the solar eclipses, the connection between geomagnetic storms and earthquakes, etc., possible explanations are discussed.

Kim, Kiyoung

2008-01-01T23:59:59.000Z

276

Primitive Virtual Negative Charge  

E-Print Network (OSTI)

Physical fields, such as gravity and electromagnetic field, are interpreted as results from rearrangement of vacuum particles to get the equilibrium of net charge density and net mass density in 4-dimensional complex space. Then, both fields should interact to each other in that physical interaction is considered as a field-to-field interaction. Hence, Mass-Charge interaction is introduced with primitive-virtual negative charge defined for the mass. With the concept of Mass-Charge interaction electric equilibrium of the earth is discussed, especially about the electric field and magnetic field of the earth. For unsettled phenomena related with the earth's gravity, such as antigravity phenomenon, gravity anomalies during the solar eclipses, the connection between geomagnetic storms and earthquakes, etc., possible explanations are discussed.

Kiyoung Kim

2008-11-04T23:59:59.000Z

277

International aeronautical user charges  

E-Print Network (OSTI)

Introduction: 1.1 BACKGROUND AND MOTIVATION Very few issues relating to the international air transportation industry are today as divisive as those pertaining to user charges imposed at international airports and enroute ...

Odoni, Amedeo R.

1985-01-01T23:59:59.000Z

278

Enhancement of mechanical strength of TiO{sub 2}/high-density polyethylene composites for bone repair with silane-coupling treatment  

SciTech Connect

Mechanical properties of composites made up of high-density polyethylene (HDPE) and silanated TiO{sub 2} particles for use as a bone-repairing material were investigated in comparison with those of the composites of HDPE with unsilanized TiO{sub 2} particles. The interfacial morphology and interaction between silanated TiO{sub 2} and HDPE were analyzed by means of Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The absorption in spectral bands related to the carboxyl bond in the silane-coupling agent, the vinyl group in the HDPE, and the formation of the ether bond was studied in order to assess the influence of the silane-coupling agent. The SEM micrograph showed that the 'bridging effect' between HDPE and TiO{sub 2} was brought about by the silane-coupling agent. The use of the silane-coupling agent and the increase of the hot-pressing pressure for shaping the composites facilitated the penetration of polymer into cavities between individual TiO{sub 2} particles, which increased the density of the composite. Therefore, mechanical properties such as bending yield strength and Young's modulus increased from 49 MPa and 7.5 GPa to 65 MPa and 10 GPa, respectively, after the silane-coupling treatment and increase in the hot-pressing pressure.

Hashimoto, Masami [Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 (Japan)]. E-mail: masami@jfcc.or.jp; Takadama, Hiroaki [Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 (Japan)]. E-mail: takadama@jfcc.or.jp; Mizuno, Mineo [Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 (Japan)]. E-mail: mizuno@jfcc.or.jp; Kokubo, Tadashi [Research Institute for Science and Technology, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501 (Japan)]. E-mail: kokubo@isc.chubu.ac.jp

2006-03-09T23:59:59.000Z

279

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

280

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

282

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

283

SERI Solar Energy Storage Program  

DOE Green Energy (OSTI)

The SERI Solar Energy Storage Program provides research on advanced technologies, system analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications.

Copeland, R. J.; Wright, J. D.; Wyman, C. E.

1980-02-01T23:59:59.000Z

284

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

285

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

286

Collector: storage wall systems  

SciTech Connect

Passive Trombe wall systems require massive masonry walls to minimize large temperature swings and movable night insulation to prevent excessive night heat losses. As a solar energy collection system, Trombe wall systems have low efficiencies because of the nature of the wall and, if auxiliary heat is needed, because of absorption of this heat. Separation of collector and storage functions markedly improves the efficiency. A simple fiberglass absorber can provide high efficiency while phase change storage provides a compact storage unit. The need for movable insulation is obviated.

Boardman, H.

1980-01-01T23:59:59.000Z

287

Thermal Storage Systems at IBM Facilities  

E-Print Network (OSTI)

In 1979, IBM commissioned its first large scale thermal storage system with a capacity of 2.7 million gallons of chilled water and 1.2 million gallons of reclaimed, low temperature hot water. The stored cooling energy represents approximately 27,000 ton hours. Through reduced chiller plant capacity and annual operating cost savings in primarily electric demand charges the payback will be approximately 3 1/2 years. The water is stored in multiple, insulated tanks, located above the ground. A similar but smaller system at IBM's Charlotte, North Carolina plant has no provisions for heat reclaim. Instead, it uses cooling tower water directly in the chilled water circuit when outside conditions permit. This paper presents system designs, control modes and economic considerations and describes IBM's experience to date with large volume storage systems.

Koch, G.

1981-01-01T23:59:59.000Z

288

Hydrogen Storage by Polylithiated Molecules and  

E-Print Network (OSTI)

We study polylithiated molecules as building blocks for hydrogen storage materials, using first-principles calculations. CLi4 and OLi2 bind 12 and 10 hydrogen molecules, respectively, with an average binding energy of 0.10 and 0.13 eV, leading to gravimetric densities of 37.8 and 40.3 weight % H. Bonding between Li and C or O is strongly polar and H2 molecules attach to the partially charged Li atoms without dissociating, which is favorable for (de)hydrogenation kinetics. CLin and OLim molecules can be chemically bonded to graphene sheets to hinder the aggregation of such molecules. In particular B or Be doped graphene strongly bind the molecules without seriously affecting the hydrogen binding energy. It still leads to a hydrogen storage capacity in the range 5-8.5 wt. % H.

Süleyman Er; Gilles A. De Wijs; Geert Brocks

2009-01-01T23:59:59.000Z

289

Hydrogen Storage- Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

290

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

291

storage technology barriers. The...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Power to build a 400-megawatt (MW) coal-fired power plant with carbon capture and storage (CCS) in Britain. The companies will submit the Caledonia Clean Energy Project to...

292

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh100 kW Flywheel Energy Storage Module * 100KWh - 18 cost KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft Hub (which limits surface speed)...

293

DUF6 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

of depleted UF6 is stored in steel cylinders at three sites in the U.S. Depleted UF6 Inventory and Storage Locations U.S. DOE's inventory of depleted UF6 consists of approximately...

294

Storage Ring Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV...

295

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

The Ice Bear30 Hybrid Air Conditionerthermal energy storage system150uses smart integrated controls, ice storage, and a dedicated compressor for cooling. The system is designed to provide cooling to interior spaces by circulating refrigerant within an additional evaporator coil added to a standard unitary air conditioner. The Ice Bear 30 is a relatively small size (5 ton), intended for use in residential and light commercial applications. This report describes EPRI tests of the Ice Bear 30, which is manu...

2009-12-14T23:59:59.000Z

296

Analog storage integrated circuit  

DOE Patents (OSTI)

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

Walker, J. T. (Palo Alto, CA); Larsen, R. S. (Menlo Park, CA); Shapiro, S. L. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

297

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This Technology Brief provides an update on the current state of cool thermal energy storage systems (TES) for end-use applications. Because of its ability to shape energy use, TES is strategic technology that allows end-users to reduce their energy costs while simultaneously providing benefits for electric utilities through persistent peak demand reduction and peak shifting. In addition to discussing the concepts of thermal energy storage, the Brief discusses the current state of TES technologies and dr...

2008-12-16T23:59:59.000Z

298

Analog storage integrated circuit  

DOE Patents (OSTI)

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

1989-03-07T23:59:59.000Z

299

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

300

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

302

Measurements for Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

Measurements for Hydrogen Storage Materials. Summary: ... Hydrogen is promoted as petroleum replacement in the Hydrogen Economy. ...

2013-07-02T23:59:59.000Z

303

Dry Cask Storage Characterization Project  

Science Conference Proceedings (OSTI)

Nuclear utilities have developed independent spent fuel storage installations (ISFSIs) as a means of expanding their spent-fuel storage capacity on an interim basis until a geologic repository is available to accept the fuel for permanent storage. This report provides a technical basis for demonstrating the feasibility of extended spent-fuel storage in ISFSIs.

2002-09-26T23:59:59.000Z

304

GAS STORAGE TECHNOLOGY CONSORTIUM  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

305

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

306

EV Charging Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Infrastructure Charging Infrastructure JOHN DAVIS: Virtually anywhere in the U.S. you can bring light to a room with the flick of a finger. We take it for granted, but creating the national electric grid to make that possible took decades to accomplish. Now, in just a few years, we've seen the birth of a new infrastructure that allows electric vehicles to quickly recharge their batteries at home, work, or wherever they may roam. But this rapid growth has come with a few growing pains. Starting with less than 500 in 2009, there are now over 19,000 public-access charging outlets available to electric vehicles owners at commuter lots, parking garages, airports, retail areas and thousands of

307

Method and apparatus for controlling battery charging in a hybrid electric vehicle  

DOE Green Energy (OSTI)

A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2003-06-24T23:59:59.000Z

308

Aggregation in Charged Nano Suspensions  

E-Print Network (OSTI)

In order to control aggregation phenomena in suspensions of nanoparticles, one often charges the particles electrically, e.g. by triboelectric charging. Stabilization of suspensions against aggregation of particles is an important issue, which may be realized by monopolar charging, where particles repel each other. Contrarily, bipolar charging may be used in coating processes, where smaller particles of one material coat larger particles of another material. When the two particle fractions are charged oppositely, aggregation between equally charged particles is hindered whereas aggregation between oppositely charged particles is preferred, thereby improving the coating process. We study various aspects of these two situations by theoretical investigations and computer simulations.

J. H. Werth; S. M. Dammer; H. A. Knudsen; H. Hinrichsen; D. E. Wolf

2005-03-10T23:59:59.000Z

309

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

310

Charged Metallic Clusters  

Science Conference Proceedings (OSTI)

Usually in Nuclear Physics the minimum of the liquid drop model (LDM) energy occurs at a mass asymmetry which is different from the minimum of shell correction. Charged metallic clusters are ideal emitters of singly ionized trimers because both LDM and shell correction are reaching a minimum for the same mass asymmetry corresponding to the emission of a charged particle with two delocalized electrons. Maximum dissociation energy (Q-value) is obtained for metallic clusters with high surface tension and low Wigner-Seitz radius (transition metals). The Q-values for spheroidal shapes are much larger than for hemispheroids.

Poenaru, D. N.; Gherghescu, R. A. [Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest-Magurele (Romania); Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main (Germany); Solov'yov, A. V.; Greiner, W. [Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main (Germany)

2009-12-03T23:59:59.000Z

311

Charged Vacuum Bubble Stability  

E-Print Network (OSTI)

A type of scenario is considered where electrically charged vacuum bubbles, formed from degenerate or nearly degenerate vacuua separated by a thin domain wall, are cosmologically produced due to the breaking of a discrete symmetry, with the bubble charge arising from fermions residing within the domain wall. Stability issues associated with wall tension, fermion gas, and Coulombic effects for such configurations are examined. The stability of a bubble depends upon parameters such as the symmetry breaking scale and the fermion coupling. A dominance of either the Fermi gas or the Coulomb contribution may be realized under certain conditions, depending upon parameter values.

J. R. Morris

1998-10-20T23:59:59.000Z

312

HITRAP: A facility at GSI for highly charged ions  

E-Print Network (OSTI)

An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fuer Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.

H. -J. Kluge; T. Beier; K. Blaum; L. Dahl; S. Eliseev; F. Herfurth; B. Hofmann; O. Kester; S. Koszudowski; C. Kozhuharov; G. Maero; W. Noertershaeuser; J. Pfister; W. Quint; U. Ratzinger; A. Schempp; R. Schuch; T. Stoehlker; R. C. Thompson; M. Vogel; G. Vorobjev; D. F. A. Winters; G. Werth

2007-10-30T23:59:59.000Z

313

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

314

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

315

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Long-time varying-daily, weekly, and seasonal-power demands require the electric utility industry to have installed generating capacity in excess of the average load. Energy storage can reduce the requirement for less efficient excess generating capacity used to meet peak load demands. Short-time fluctuations in electric power can occur as negatively damped oscillations in complex power systems with generators connected by long transmission lines. Superconducting inductors with their associated converter systems are under development for both load leveling and transmission line stabilization in electric utility systems. Superconducting magnetic energy storage (SMES) is based upon the phenomenon of the nearly lossless behavior of superconductors. Application is, in principal, efficient since the electromagnetic energy can be transferred to and from the storage coils without any intermediate conversion to other energy forms. Results from a reference design for a 10-GWh SMES unit for load leveling are presented. The conceptual engineering design of a 30-MJ, 10-MW energy storage coil is discussed with regard to system stabilization, and tests of a small scale, 100-KJ SMES system are presented. Some results of experiments are provided from a related technology based program which uses superconducting inductive energy storage to drive fusion plasmas.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.; Schermer, R.I.

1978-01-01T23:59:59.000Z

316

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

317

Underground Natural Gas Storage by Storage Type  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

318

NREL: Learning - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

319

Storage Ring Operation Modes  

NLE Websites -- All DOE Office Websites (Extended Search)

Longitudinal bunch profile and Up: APS Storage Ring Parameters Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between singlets. Lattice configuration: Low emittance lattice with effective emittance of 3.1 nm-rad and coupling of 1%. Bunch length (rms): 33.5 ps. Refill schedule: Continuous top-up with single injection pulses occurring at a minimum of two minute intervals, or a multiple of two minute intervals. Special Operating Mode - 324 bunches, non top-up Fill pattern: 102 mA in 324 uniformly spaced singlets with a nominal single bunch current of 0.31 mA and a spacing of 11.37 nanoseconds between singlets.

320

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Inertial energy storage device  

DOE Patents (OSTI)

The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

Knight, Jr., Charles E. (Knoxville, TN); Kelly, James J. (Oak Ridge, TN); Pollard, Roy E. (Powell, TN)

1978-01-01T23:59:59.000Z

322

ESS 2012 Peer Review - Thermoelectrochemical Energy Storage - Nick Hudak, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectrochemical Thermoelectrochemical Energy Storage 27 September 2012 Nick Hudak Advanced Power Sources R&D Sandia National Laboratories The author gratefully acknowledges the support of Dr. Imre Gyuk and the Department of Energy's Office of Electricity Delivery & Energy Reliability. Thermoelectrochemical Energy Storage  Problem: Flow batteries exhibit inefficiencies that are affected by operating temperature.  Opportunity: Power plants produce waste heat that can be recovered and applied to other processes.  We can use the heat to increase the temperature of all or part of a flow battery system.  Approach: Demonstrate the advantage of non-isothermal operation of a flow battery.  Charge at higher temperature and discharge at lower temperature

323

Air ejector augmented compressed air energy storage system  

DOE Patents (OSTI)

Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1980-01-01T23:59:59.000Z

324

Thermal energy storage material  

DOE Patents (OSTI)

A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

Leifer, Leslie (Hancock, MI)

1976-01-01T23:59:59.000Z

325

ChargePoint America Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Report period: May 1, 2011 through August 31, 2011 Includes all charging units that were in use by the end of the reporting period A charging event is defined as the...

326

Storage Business Model White Paper  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Business Model White Paper Storage Business Model White Paper Summary June 11 2013 Storage Business Model White Paper - Purpose  Identify existing business models for investors/operators, utilities, end users  Discuss alignment of storage "value proposition" with existing market designs and regulatory paradigms  Difficulties in realizing wholesale market product revenue streams for distributed storage - the "bundled applications" problem  Discuss risks/barriers to storage adoption and where existing risk mitigation measures fall down  Recommendations for policy/research steps - Alternative business models - Accelerated research into life span and failure modes

327

Spent-fuel-storage alternatives  

Science Conference Proceedings (OSTI)

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

328

Integrated Building Energy Systems Design Considering Storage Technologies  

Science Conference Proceedings (OSTI)

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

2009-04-07T23:59:59.000Z

329

Blasting charge and method  

SciTech Connect

This is a process for setting off a blasting charge employing nitrate explosions in a thick aqueous slurry. There is formed in the bore a blasting charge consisting, in part, of a thick aqueous slurry of dispersed ammonium nitrate particles as the predominant explosive material with or without a lesser amount of sodium, calcium, or other nitrate in like dispersion. In addition, one or more localized or undispersed solid bodies of booster explosive are included in the body of the slurry. Conventional means are used for detonating the booster, such as a blasting cap, an electric blasting cap, or a detonating fuse. The slurry may be formed in the bore or may be preformed and packaged for shipment, the latter being preferable.

Towle, L.W.

1966-02-22T23:59:59.000Z

330

Charge! for Scientists  

NLE Websites -- All DOE Office Websites (Extended Search)

Charge! for Scientists Charge! for Scientists This show can be adapted for grades 2-8. Materials This equipment is located in the Lederman Science Center. Please talk to Susan Dahl. Balloons PVC pipe and wool Electroscope (glass jar with wire hanging from top and two small pieces of aluminum foil hanging from wire) Van de Graaff generator Bar magnets with opposite ends painted blue and red Circular magnets and pencils Compass Iron filings Battery, wire and nail Things kids can do at home Olga's overheads David Christian's PowerPoint Demos Balloons - Ask for a few volunteers and have them rub a balloon on their head or shirt. PVC pipe and wool - Pour a bunch of pieces of various material onto the table in the front of the room, including pieces of aluminum foil, styrofoam peanuts, paper clips, staples. Have a student rub the wool on the

331

NGLW RCRA Storage Study  

Science Conference Proceedings (OSTI)

The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

2000-06-01T23:59:59.000Z

332

Electrical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrochemical Flow Storage System Typical Cell Power Density (Wcm 2 ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 UTRC Conventional Conventional flow battery cell UTRC flow battery...

333

Flash Storage Today  

Science Conference Proceedings (OSTI)

Can flash memory become the foundation for a new tier in the storage hierarchy? The past few years have been an exciting time for flash memory. The cost has fallen dramatically as fabrication has become more efficient and the market has grown; the density ...

Adam Leventhal

2008-07-01T23:59:59.000Z

334

Alkaline storage battery  

Science Conference Proceedings (OSTI)

An alkaline storage battery having located in a battery container a battery element comprising a positive electrode, a negative electrode, a separator and a gas ionizing auxiliary electrode, in which the gas ionizing electrode is contained in a bag of microporous film, is described.

Suzuki, S.

1984-02-28T23:59:59.000Z

335

Flywheel Energy Storage  

Science Conference Proceedings (OSTI)

Flywheels are under consideration as an alternative for electrochemical batteries in a variety of applications This summary report provides a discussion of the mechanics of flywheels and magnetic bearings, the general characteristics of inertial energy storage systems, design considerations for flywheel systems, materials for advanced flywheels, and cost considerations.

1997-09-03T23:59:59.000Z

336

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

337

Cryptographic cloud storage  

Science Conference Proceedings (OSTI)

We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and ...

Seny Kamara; Kristin Lauter

2010-01-01T23:59:59.000Z

338

Pneumatic energy storage  

DOE Green Energy (OSTI)

An essential component to hybrid electric and electric vehicles is energy storage. A power assist device could also be important to many vehicle applications. This discussion focuses on the use of compressed gas as a system for energy storage and power in vehicle systems. Three possible vehicular applications for which these system could be used are discussed in this paper. These applications are pneumatically driven vehicles, series hybrid electric vehicles, and power boost for electric and conventional vehicles. One option for a compressed gas system is as a long duration power output device for purely pneumatic and hybrid cars. This system must provide enough power and energy to drive under normal conditions for a specified time or distance. The energy storage system for this use has the requirement that it will be highly efficient, compact, and have low mass. Use of a compressed gas energy storage as a short duration, high power output system for conventional motor vehicles could reduce engine size or reduce transient emissions. For electric vehicles this kind of system could lengthen battery life by providing battery load leveling during accelerations. The system requirements for this application are that it be compact and have low mass. The efficiency of the system is a secondary consideration in this application.

Flowers, D.

1995-09-19T23:59:59.000Z

339

Hydrogen transport and storage in engineered glass microspheres  

DOE Green Energy (OSTI)

New, high-strength, hollow, glass microspheres filled with pressurized hydrogen exhibit storage densities which make them attractive for bulk hydrogen storage and transport. The hoop stress at failure of our engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which fail at wall stresses of 50,000 psi. For this project, microsphere material and structure will be optimized for storage capacity and charge/discharge kinetics to improve their commercial practicality. Microsphere production scale up will be performed, directed towards large-scale commercial use. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics` indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as hydride beds, cryocarbons and pressurized tube transports. For microspheres made from advanced materials and processes, analysis will also be performed to identify the appropriate applications of the microspheres considering property variables, and different hydrogen infrastructure, end use, production and market scenarios. This report presents some of the recent modelling results for large beds of glass microspheres in hydrogen storage applications. It includes plans for experiments to identify the properties relevant to large-bed hydrogen transport and storage applications, of the best, currently producible, glass microspheres. This work began in March, 1994. Project successes will be manifest in the matching of cur-rent glass microspheres with a useful application in hydrogen bulk transport and storage, and in developing microsphere materials and processes that increase the storage density and reduce the storage energy requirement.

Rambach, G.D.

1994-04-20T23:59:59.000Z

340

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

Flexible, lightweight energy-storage devices are of greatstrategy to fabricate flexible energy-storage devices.Flexible, lightweight energy-storage devices (batteries and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

342

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

343

Storage/Handling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

344

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

345

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects...

346

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

Authors, Various

2011-01-01T23:59:59.000Z

347

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

348

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

B. Quale. Seasonal storage of thermal energy in water in theand J. Schwarz, Survey of Thermal Energy Storage in AquifersSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

349

Nuclear Fuels Storage & Transportation Planning Project | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown...

350

Fuel Cell Technologies Office: Hydrogen Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Hydrogen Storage Search Search Help Hydrogen Storage EERE Fuel Cell Technologies Office Hydrogen Storage Printable Version Share this resource Send...

351

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of electricity and natural gas DER No Heat Storage: therecovery and storage) utility electricity and natural gasbut no heat storage, a 200 kW natural gas reciprocating

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

352

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

353

Silo Storage Preconceptual Design  

Science Conference Proceedings (OSTI)

The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

2012-09-01T23:59:59.000Z

354

Storage Ring | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

The Electron Storage Ring The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located...

355

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, nonbinding, and nonlegal

356

Thermal energy storage application areas  

DOE Green Energy (OSTI)

The use of thermal energy storage in the areas of building heating and cooling, recovery of industrial process and waste heat, solar power generation, and off-peak energy storage and load management in electric utilities is reviewed. (TFD)

Not Available

1979-03-01T23:59:59.000Z

357

Electric rate structures for thermal energy storage evaluation  

DOE Green Energy (OSTI)

Future electric rate structures are critical to thermal energy storage (TES) technologies that are specifically designed to take advantage of electric energy costs that vary depending on the magnitude, duration, and timing of power demand (e.g., cool storage). In fact, rate structure characteristics may affect the TES system design and operating approach as well as economic feasibility. The objective of this study, conducted by the Pacific Northwest Laboratory for the US Department of Energy, was to define reference electric utility rate structures to be used in technical assessments of TES technologies. Electric rate structures were characterized for residential, commercial and industrial sectors. A range of conditions for several alternative rate structures was identified for each sector to capture the variability of likely conditions. Individual rate structure characteristics include demand charges and energy charges applicable during different months of the year, days of the week, and hours of the day. 7 refs., 21 tabs.

Brown, D R; Garrett, S M; Sedgewick, J M

1991-05-01T23:59:59.000Z

358

A Stable Massive Charged Particle  

E-Print Network (OSTI)

We consider the possibility of the existence of a stable massive charged particle by a minimal extension of the standard model particle content. Absolute stability in the case of singly charged particle is not possible if the usual doublet Higgs exists, unless a discrete symmetry is imposed.But a doubly charged particle is absolutely stable.

G. Rajasekaran

2011-05-26T23:59:59.000Z

359

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term -...

360

Charging effect simulation model used in simulations of plasma etching of silicon  

SciTech Connect

Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)-a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured-as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Rangelow, Ivo W. [Department of Micro- and Nanoelectronic Systems, Ilmenau University of Technology, Ilmenau 98693 (Germany); Cooke, Mike [Oxford Instruments Plasma Technology, North End, Yatton, Bristol BS49 4AP (United Kingdom)

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE  

DOE Green Energy (OSTI)

Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

2009-01-09T23:59:59.000Z

362

ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE  

DOE Green Energy (OSTI)

Hydrogen storage is one of the greatest challenges for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods; the direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

Fewox, C; Ragaiy Zidan, R; Brenda Garcia-Diaz, B

2008-12-31T23:59:59.000Z

363

Normal matter storage of antiprotons  

SciTech Connect

Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

Campbell, L.J.

1987-01-01T23:59:59.000Z

364

Transportable Energy Storage Systems Project  

Science Conference Proceedings (OSTI)

This project will define the requirements and specification for a transportable energy storage system and then screen various energy storage options and assess their capability to meet that specification. The application will be designed to meet peak electrical loads (3-4 hours of storage) on the electrical distribution system.

2009-10-23T23:59:59.000Z

365

COSBench: cloud object storage benchmark  

Science Conference Proceedings (OSTI)

With object storage systems being increasingly recognized as a preferred way to expose one's storage infrastructure to the web, the past few years have witnessed an explosion in the acceptance of these systems. Unfortunately, the proliferation of available ... Keywords: benchmark tool, object storage

Qing Zheng; Haopeng Chen; Yaguang Wang; Jian Zhang; Jiangang Duan

2013-04-01T23:59:59.000Z

366

Grid regulation services for energy storage devices based on grid frequency  

DOE Patents (OSTI)

Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

2013-07-02T23:59:59.000Z

367

Energy Storage & Power Electronics 2008 Peer Review - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

& Power Electronics 2008 Peer Review - Energy & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Energy Storage Systems (ESS) presentations are available below. ESPE 2008 Peer Review - EAC Energy Storage Subcommittee - Brad Roberts, S&C

368

Vehicle Technologies Office: Workplace Charging Challenge Partner...  

NLE Websites -- All DOE Office Websites (Extended Search)

Workplace Charging Challenge Partner: Raytheon Raytheon has installed seven dual 220-volt plug-in electric vehicle (PEV) charging stations (14 charging points) at three...

369

Argonne's Pilot Electric Vehicle Charging Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Pilot Electric Vehicle Charging Project solar array and charging station Solar array and charging station. View larger image. As part of Argonne's continuing efforts to...

370

Fermilab | Fermilab Director Search | Process and Charge  

NLE Websites -- All DOE Office Websites (Extended Search)

Process and Charge Charge to the Director Search Committee Fermi National Accelerator Laboratory The Fermi Research Alliance, LLC Board of Directors charges the Committee to engage...

371

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

372

gas cylinder storage guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Cylinder Storage Guidelines Compressed Gas Cylinder Storage Guidelines All cylinders must be stored vertical, top up across the upper half the cylinder but below the shoulder. Small cylinder stands or other methods may be appropriate to ensure that the cylinders are secured from movement. Boxes, cartons, and other items used to support small cylinders must not allow water to accumulate and possible cause corrosion. Avoid corrosive chemicals including salt and fumes - keep away from direct sunlight and keep objects away that could fall on them. Use Gas pressure regulators that have been inspected in the last 5 years. Cylinders that contain fuel gases whether full or empty must be stored away from oxidizer cylinders at a minimum of 20 feet. In the event they are stored together, they must be separated by a wall 5 feet high with

373

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Options in the Illinois Basin - Phase III DE-FC26-05NT42588 Robert J. Finley and the MGSC Project Team Illinois State Geological Survey (University of Illinois) and Schlumberger Carbon Services U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 * The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal

374

NSLS VUV Storage Ring  

NLE Websites -- All DOE Office Websites (Extended Search)

VUV Storage Ring VUV Storage Ring VUV Normal Operations Operating Parameters (pdf) Insertion Devices Flux & Brightness Orbit Stability Lattice Information (pdf) Lattice : MAD Dataset Mechanical Drawing (pdf) VUV Operating Schedule Introduction & History The VUV Ring at the National Synchrotron Light Source was one of the first of the 2nd generation light sources to operate in the world. Initially designed in 1976 the final lattice design was completed in 1978 shortly after funding was approved. Construction started at the beginning of FY 1979 and installation of the magnets was well underway by the end of FY 1980. The first stored beam was achieved in December of 1981 at 600 MeV and the first photons were delivered to beamlines in May 1982, with routine beam line operations underway by the start of FY 1983. The number of beam

375

Solar panel with storage  

SciTech Connect

A self contained, fully automatic, vertical wall panel, solar energy system characterized by having no moving parts in the panel. The panel is substantially a shallow rectangular box having a closed perimeter, an outer insulating chamber which is substantially a double glazed window, and an inner energy storage chamber which is provided with containers of phase change materials. The energy storage chamber is provided with air entrance and exit passages which communicate with the space to be heated. Thermostatically controlled blowers serve to move air from the space to be heated across the containers of phase change material and back to the space to be heated. Thermostatically controlled blowers also serve to move insulating material into and out of the insulating chamber at appropriate times.

Zilisch, K.P.

1984-05-08T23:59:59.000Z

376

Superconducting magnetic energy storage  

SciTech Connect

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

377

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented.

Rogers, J.D.

1976-01-01T23:59:59.000Z

378

Feasible utility scale Superconducting Magnetic Energy Storage system  

DOE Green Energy (OSTI)

This paper presents the latest design features and estimated costs of a 5000 MWh/1000 MW Superconducting Magnetic Energy Storage (SMES) plant. SMES is proposed as a commercially viable technology for electric utility load leveling. The primary advantage of SMES over other electrical energy storage technologies is its high net roundtrip efficiency. Other features include rapid availability and low maintenance and operating costs. Economic comparisons are made with other energy storage options and with gas turbines. In a diurnal load leveling application, a superconducting coil can be charged from the utility grid during off-peak hours. The ac grid is connected to the dc magnetic coil through a power conversion system that includes an inverter/rectifier. Once charged, the superconducting coil conducts current, which supports an electromagnetic field, with virtually no losses. During hours of peak load, the stored energy is discharged to the grid by reversing the charging process. The principle of operation of a SMES unit is shown in Fig. 1. For operation in the superconducting mode, the coil is maintained at extremely low temperature by immersion in a bath of liquid helium.

Loyd, R.J.; Schoenung, S.M.; Nakamura, T.; Lieurance, D.W.; Hilal, M.A.; Rogers, J.D.; Purcell, J.R.; Hassenzahl, W.V.

1986-01-01T23:59:59.000Z

379

NATURAL GAS STORAGE ENGINEERING Kashy Aminian  

E-Print Network (OSTI)

NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory Chapters Glossary Bibliography Biographical Sketch Summary Underground storage of natural gas

Mohaghegh, Shahab

380

Development of a Procedure for the Predictive Control Strategy of a Chilled Water Storage System  

E-Print Network (OSTI)

Thermal energy storage systems store the thermal energy produced by the chiller plant in periods of off-peak electrical demand or when cheaper electricity is available. The stored thermal energy is then withdrawn from the reservoir to satisfy cooling load during peak demand periods. This paper discusses the development of a simplified predictive control strategy for a 7000 ton-hour chilled water storage system serving a hospital. Control strategies are developed for both on-peak and off-peak months to minimize demand charges. By optimizing the operation of the building air handling units (AHUs), chilled water pumps, chiller plant and the thermal storage system, the storage tank is better charged while chiller run time is reduced. Both on-peak and off-peak electrical demands are expected to be reduced significantly.

Wei, G.; Sakuri, Y.; Claridge, D. E.; Turner, W. D.; Liu, M.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

HIERARCHICAL METHODOLOGY FOR MODELING HYDROGEN STORAGE SYSTEMS PART II: DETAILED MODELS  

DOE Green Energy (OSTI)

There is significant interest in hydrogen storage systems that employ a media which either adsorbs, absorbs or reacts with hydrogen in a nearly reversible manner. In any media based storage system the rate of hydrogen uptake and the system capacity is governed by a number of complex, coupled physical processes. To design and evaluate such storage systems, a comprehensive methodology was developed, consisting of a hierarchical sequence of models that range from scoping calculations to numerical models that couple reaction kinetics with heat and mass transfer for both the hydrogen charging and discharging phases. The scoping models were presented in Part I [1] of this two part series of papers. This paper describes a detailed numerical model that integrates the phenomena occurring when hydrogen is charged and discharged. A specific application of the methodology is made to a system using NaAlH{sub 4} as the storage media.

Hardy, B; Donald L. Anton, D

2008-12-22T23:59:59.000Z

382

Condition responsive battery charging circuit  

SciTech Connect

A battery charging circuit includes a ferroresonant transformer having a rectified output for providing a constant output voltage to be supplied to a battery to be charged. Battery temperature is sensed providing an input to a control circuit which operates a shunt regulator associated with the ferroresonant transformer to provide battery charge voltage as a function of battery temperature. In response to a high battery temperature the controller functions to lower the output voltage to the battery, and in response to a low battery temperature, operates to provide a higher output voltage, with suitable control for any battery temperature between minus 10* and plus 150* fahrenheit. As the battery approaches full charge and battery acceptance current falls below a predetermined level, a charge cycle termination control allows charging to continue for a period preset by the operator, at the end of which period, line voltage is removed from the charger thereby terminating the charge cycle.

Reidenbach, S.G.

1980-06-24T23:59:59.000Z

383

Analysis of pulsed high-density HBr and Cl{sub 2} plasmas: Impact of the pulsing parameters on the radical densities  

Science Conference Proceedings (OSTI)

The dynamic of charged particles in pulsed plasma is relatively well known since the 1990s. In contrast, works reporting on the impact of the plasma modulation frequency and duty cycle on the radicals' densities are scarce. In this work, we analyze the impact of these modulation parameters on the radicals' composition in Cl{sub 2} and HBr plasmas. The radicals' densities are measured by broad-band UV and vacuum-ultraviolet (VUV) absorption spectroscopy and modulated-beam mass spectrometry. We show that pulsing the rf power allows controlling the plasma chemistry and gives access to the plasma conditions that cannot be reached in continuous wave plasmas. In particular, we show that above 500 Hz, the pulsing frequency has no influence on the plasma chemistry, whereas in contrast the duty cycle is an excellent knob to control the fragmentation of the parent gas, thus the chemical reactivity of the discharge. At low duty cycle, a reduced gas fragmentation combined with a large ion flux leads to new etching conditions, compared to cw plasmas and the expected consequences on pulsed-etching processes are discussed.

Bodart, P.; Brihoum, M.; Cunge, G.; Joubert, O.; Sadeghi, N. [Laboratoire des Technologies de la Microelectronique, CNRS-LTM, 17 rue des Martyrs, Grenoble 38054 (France)

2011-12-01T23:59:59.000Z

384

Maui energy storage study.  

SciTech Connect

This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

2012-12-01T23:59:59.000Z

385

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November...

386

Energy Storage Technologies Available for Licensing ...  

Energy Storage Technologies Available for Licensing U.S. Department of Energy laboratories and participating research institutions have energy storage ...

387

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

388

Extended storage of low-level radioactive waste: potential problem areas  

DOE Green Energy (OSTI)

If a state or state compact does not have adequate disposal capacity for low-level radioactive waste (LLRW) by 1986 as required by the Low-Level Waste Policy Act, then extended storage of certain LLRW may be necessary. The issue of extended storage of LLRW is addressed in order to determine for the Nuclear Regulatory Commission the areas of concern and the actions recommended to resolve these concerns. The focus is on the properties and behavior of the waste form and waste container. Storage alternatives are considered in order to characterize the likely storage environments for these wastes. The areas of concern about extended storage of LLRW are grouped into two categories: 1. Behavior of the waste form and/or container during storage, e.g., radiolytic gas generation, radiation-enhanced degradation of polymeric materials, and corrosion. 2. Effects of extended storage on the properties of the waste form and/or container that are important after storage (e.g., radiation-induced oxidative embrittlement of high-density polyethylene and the weakening of steel containers resulting from corrosion by the waste). The additional information and actions required to address these concerns are discussed and, in particular, it is concluded that further information is needed on the rates of corrosion of container material by Class A wastes and on the apparent dose-rate dependence of radiolytic processes in Class B and C waste packages. Modifications to the guidance for solidified wastes and high-integrity containers in NRC's Technical Position on Waste Form are recommended. 27 references.

Siskind, B.; Dougherty, D.R.; MacKenzie, D.R.

1985-01-01T23:59:59.000Z

389

Electrically charged curvaton  

E-Print Network (OSTI)

We consider the possibility that the primordial curvature perturbation was generated through the curvaton mechanism from a scalar field with an electric charge, or precisely the Standard Model U(1) weak hypercharge. This links the dynamics of the very early universe concretely to the Standard Model of particle physics, and because the coupling strength is known, it reduces the number of free parameters in the curvaton model. The gauge coupling also introduces several new physical effects. Charge fluctuations are generated during inflation, but they are screened by electron-positron pairs therefore do not violate observational constraints. After inflation, the curvaton interacts with thermal radiation which destroys the curvaton condensate and prevents the generation of curvature perturbations, unless the inflaton dynamics satisfy strong constraints. The curvaton also experiences a period of parametric resonance with the U(1) gauge field. Using the standard perturbative approach, we find that the model can generate the observed density perturbation for Hubble rate H_* > 10^8 GeV and curvaton mass m > 0.01 H_*, but with a level of non-Gaussianity (f_NL > 130) that violates observational constraints. However, previous studies have shown that the parametric resonance changes the predicted perturbations significantly, and therefore fully non-linear numerical field theory simulations are required.

Michela D'Onofrio; Rose N. Lerner; Arttu Rajantie

2012-07-04T23:59:59.000Z

390

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents (OSTI)

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

391

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

392

Photon and Charged Particle Data Center  

Science Conference Proceedings (OSTI)

Photon and Charged Particle Data Center. Summary: The Photon and Charged Particle Data Center has long been an ...

2013-02-26T23:59:59.000Z

393

Vehicle Technologies Office: Workplace Charging Challenge Partner...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Southern California Edison on Facebook Tweet about Vehicle Technologies Office: Workplace Charging...

394

Vehicle Technologies Office: Workplace Charging Challenge Partner...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: Workplace Charging Challenge Partner: Chrysler Group LLC on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner:...

395

Vehicle Technologies Office: Workplace Charging Challenge Partner...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Workplace Charging Challenge Partner: WESCO International, Inc. on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: WESCO...

396

NETL: Carbon Storage - NETL Carbon Capture and Storage Database  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS Database CCS Database Carbon Storage NETL's Carbon Capture, Utilization, and Storage Database - Version 4 Welcome to NETL's Carbon Capture, Utilization, and Storage (CCUS) Database. The database includes active, proposed, canceled, and terminated CCUS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCUS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCUS technology. As of November 2012, the database contained 268 CCUS projects worldwide. The 268 projects include 68 capture, 61 storage, and 139 for capture and storage in more than 30 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 37 are actively capturing and injecting CO2

397

Charge Density Wave Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Fisher Research Group Fisher Research Group Layered Chalcogenides 29 February 2008 Controlling the Wave by Brad Plummer, SLAC Communications Stanford University researchers working in part at SSRL have discovered a novel set of properties pertaining to a compound of materials called tritellurides. These compounds, composed of three atoms of tellurium and a single atom of one of the rare earth elements, demonstrate unique electronic properties that can be controlled by altering the temperature of the material. The tritellurides display phenomena known as charge density waves (CDW). In a normal conductive metal, electrons persist in a "sea" wherein they are evenly distributed and equally available, or conductive. A CDW occurs under certain circumstances and causes the electrons to clump together, lowering their availability, and thereby lowering the compound's conductivity. Tellurium, when crystallized into quasi-two-dimensional planes and combined with rare earth elements, produces a material with CDWs that can be manipulated and controlled.

398

Stable Charged Cosmic Strings  

Science Conference Proceedings (OSTI)

We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius {approx_equal}10{sup -18} m. The vacuum remains stable in our model, because neutral strings are not energetically favored.

Weigel, H. [Physics Department, Stellenbosch University, Matieland 7602 (South Africa); Quandt, M. [Institute for Theoretical Physics, Tuebingen University, D-72076 Tuebingen (Germany); Graham, N. [Department of Physics, Middlebury College , Middlebury, Vermont 05753 (United States)

2011-03-11T23:59:59.000Z

399

High dynamic range charge measurements  

DOE Patents (OSTI)

A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

De Geronimo, Gianluigi

2012-09-04T23:59:59.000Z

400

Interim storage study report  

SciTech Connect

High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

Rawlins, J.K.

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

402

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

reliability of storage technologies as well as PV dependingreliability and availability of the different technologies such as ICEs, batteries or PVs is important. For example, PVPV depending on the charge / discharge cycle and solar radiation. The reliability /

Stadler, Michael

2009-01-01T23:59:59.000Z

403

Reading Comprehension - Charges and Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Charges and Electricity Atoms, the basic building blocks of matter, are made of three basic components: protons, neutrons and electrons. The protons and neutrons cluster together...

404

ESS 2012 Peer Review - Electrical Energy Storage R&D at PNNL - Vincent Sprenkle, PNNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNNL Electrical Energy Storage (EES) PNNL Electrical Energy Storage (EES) R&D strategy Crosscutting science Advanced diagnostic study, NMR, TEM, etc. Electrochemical study * Mass/charge transport * Electrochemical * Flow, thermal, ... * Basic chemistry * Materials structure * Physical properties * Electrochemical activity * Reaction kinetics * Performance Computer Modeling Technology Transfer EES Technologies Novel redox flow batteries Next gen Na-batteries Low cost, long life Li-ion, New concepts, emerging technologies Grid Analytics * Roles of storage in US grids * Value, locations, targets Cost Analysis * Cost and performance requirements Academic/National Lab/Industrial Collaborations Next Generation Redox Flow Batteries Developed next generation redox flow battery (RFB) that can demonstrate substantial

405

Hydrogen Storage Materials Database Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

| Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http://hydrogenmaterialssearch.govtools.us Current Status * Data continues to be collected from DOE funded research.

406

Thermal energy storage for cooling of commercial buildings  

DOE Green Energy (OSTI)

The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

1988-07-01T23:59:59.000Z

407

Performance of a hotel chilled water plant with cool storage  

SciTech Connect

A comprehensive monitoring suite was installed at a large convention hotel located in San Francisco, CA. The instrumentation was used for a research project to evaluate the effectiveness of electricity price based controls that automate response to real time pricing and to characterize the operation and performance of the hotel's chilled water plant that included a newly installed ice cool storage system. The hotel operates under real-time electricity rates. To date, over four years of data have been collected. Data included electricity use for all chillers, secondary coolant, chilled water, condenser pumps, and the cooling tower fans. Thermal flow data were also collected for the storage system, ice chiller, direct cooling chillers, and chilled water load loops. This paper (1) describes the chilled water plant, (2) defines the performance measurement objectives for the project, (3) discusses operational experience with the plant, focusing on the cool storage system, (4) analyzes chilled water plant and cool storage system operation by examining the charge/discharge heat flow data, and (5) evaluates how well the plant as a whole and the cool storage system specifically met cooling loads of the facility, and how this affected their use.

Gillespie, K.L.; Blanc, S.L.; Parker, S.

1999-07-01T23:59:59.000Z

408

Magnetic energy storage  

DOE Green Energy (OSTI)

The fusion program embraces low loss superconductor strand development with integration into cables capable of carrying 50 kA in pulsed mode at high fields. This evolvement has been paralleled with pulsed energy storage coil development and testing from tens of kJ at low fields to a 20 MJ prototype tokamak induction coil at 7.5 T. Energy transfer times have ranged from 0.7 ms to several seconds. Electric utility magnetic storage for prospective application is for diurnal load leveling with massive systems to store 10 GWh at 1.8 K in a dewar structure supported on bedrock underground. An immediate utility application is a 30 MJ system to be used to damp power oscillations on the Bonneville Power Administration electric transmission lines. An off-shoot of this last work is a new program for electric utility VAR control with the potential for use to suppress subsynchronous resonance. This paper presents work in progress, work planned, and recently completed unusual work.

Rogers, J.D.

1980-01-01T23:59:59.000Z

409

Flywheel energy storage workshop  

DOE Green Energy (OSTI)

Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

O`Kain, D.; Carmack, J. [comps.

1995-12-31T23:59:59.000Z

410

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

411

Article for thermal energy storage  

DOE Patents (OSTI)

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

412

Electric storage cell or battery  

SciTech Connect

A lead storage cell comprises a storage jar, an electrolyte contained in the storage jar, negative and positive electrodes within the electrolyte and respectively having a negative electrode metal or active material and a positive electrode active material which are placed in contact with each other preferably a large-meshed woven or non-woven fabric having resistance to the electrolyte and inserted between the negative and positive electrodes.

Kosuga, J.

1981-11-17T23:59:59.000Z

413

Electricity Energy Storage Technology Options  

Science Conference Proceedings (OSTI)

A confluence of industry drivers8212including increased deployment of renewable generation, the high capital cost of managing grid peak demands, and large capital investments in grid infrastructure for reliability8212is creating new interest in electric energy storage systems. New EPRI research offers a current snapshot of the storage landscape and an analytical framework for estimating the benefits of applications and life-cycle costs of energy storage systems. This paper describes in detail 10 key appl...

2010-12-23T23:59:59.000Z

414

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network (OSTI)

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility… (more)

Peng, Dan

2013-01-01T23:59:59.000Z

415

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

416

SGDP Storage System Performance Supplement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (ESS) November 3, 2010 Presenter: Jacquelyn Bean Organization: DOE-National Energy Technology Laboratory (NETL) Funded in part by the Energy Storage Systems Program...

417

Breakthrough Materials for Energy Storage  

Title: Breakthrough Materials for Energy Storage Subject: A presentation at the 22nd NREL Industry Growth Forum by Amprius about its lithium ion battery technology

418

NREL: Energy Storage - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Photo of an ultracapacitor. Electrochemical energy storage devices provide the power for many everyday devices-from cars, trains, and laptops to personal digital...

419

Nanoarchitecture Electrodes for Energy Storage  

Science Conference Proceedings (OSTI)

New materials such as Si nanowires anodes and high-energy layered-layered composite cathode materials have increased the energy storage, but are low in ...

420

LPG storage vessel cracking experience  

SciTech Connect

In order to evaluate liquefied petroleum gas (LPG) handling and storage hazards, Caltex Petroleum Corp. (Dallas) surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one-third of the storage vessels. In most cases, the cracking appeared to be due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems found were due to exposure to wet hydrogen sulfide. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. This article's recommendations concern minimizing cracking on new and existing LPG storage vessels.

Cantwell, J.E. (Caltex Petroleum Corp., P.O. Box 619500, Dallas, TX (US))

1988-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

LPG storage vessel cracking experience  

SciTech Connect

As part of an overall company program to evaluate LPG handling and storage hazards the authors surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one third of the storage vessels. In most cases the cracking appeared due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems due to exposure to wet hydrogen sulfide were found. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. Recommendations are made to minimize cracking on new and existing LPG storage vessels.

Cantwell, J.E.

1988-01-01T23:59:59.000Z

422

Heat storage materials. Final report  

DOE Green Energy (OSTI)

The properties of various alloys, eutectics, and salts in respect to their usefulness for latent and sensible heat storage are surveyed and reported. (TFD)

Birchenall, C.E.

1977-12-01T23:59:59.000Z

423

Energy storage in carbon nanoparticles.  

E-Print Network (OSTI)

??Hydrogen (H2) and methane (CH4) are clean energy sources, and their storage in carbonaceous materials is a promising technology for safe and cost effective usage… (more)

Guan, Cong.

2009-01-01T23:59:59.000Z

424

Advanced Concepts for Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Framework", Nature, 402, 276-279 (1999). Mesoporous Organosilica Material benzene-silica hybrid material Hydrogen storage behavior? S. Inagaki, S. Guan, T. Ohsuna, and...

425

Hydrogen Storage in Carbon Nanotubes  

NLE Websites -- All DOE Office Websites (Extended Search)

STORAGE IN CARBON NANOTUBES JOHN E. FISCHER UNIVERSITY OF PENNSYLVANIA * SOME BASIC NOTIONS * BINDING SITES AND ENERGIES * PROCESSING TO ENHANCE CAPACITY: EX: ELECTROCHEMICAL Li...

426

The Fermilab data storage infrastructure  

SciTech Connect

Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework.

Jon A Bakken et al.

2003-02-06T23:59:59.000Z

427

HTGR spent fuel storage study  

SciTech Connect

This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification.

Burgoyne, R.M.; Holder, N.D.

1979-04-01T23:59:59.000Z

428

Carbon Capture & Storage in Canada  

NLE Websites -- All DOE Office Websites (Extended Search)

- Canada - Carbon Storage Program Infrastructure Annual Review Meeting Pittsburgh, PA November 16, 2011 Dr. Frank Mourits Office of Energy Research and Development Natural...

429

Powertech: Hydrogen Expertise Storage Needs  

NLE Websites -- All DOE Office Websites (Extended Search)

- Stations 700 bar Retail Stations 700 bar Retail Stations (Shell Newport Beach) Hydrogen Energy Storage Projects (BC Hydro Renewable Power - HARP) Lightweight Transport Trailers...

430

CalCharge Prepares for Launch  

NLE Websites -- All DOE Office Websites (Extended Search)

is home to more than 95 battery and electrochemical storage (energy storage) companies, ranging from startups to global corporations focused on the technologies and...

431

Battery charging and testing circuit  

SciTech Connect

A constant current battery charging circuit is provided by which the battery receives a full charge until the battery voltage reaches a threshold. When the battery voltage is above the threshold, the battery receives a trickle charge. The actual battery voltage is compared with a reference voltage to determine whether the full charge circuit should be in operation. Hysteresis is provided for preventing a rapid on/off operation around the threshold. The reference voltage is compensated for temperature variations. The hysteresis system and temperature compensation system are independent of each other. A separate test circuit is provided for testing the battery voltage. During testing of the battery, the full charge circuit is inoperative.

Wicnienski, M. F.; Charles, D. E.

1984-01-17T23:59:59.000Z

432

Excess charges in semiconductor nanocrystallites  

Science Conference Proceedings (OSTI)

The authors explore in this report the effects of excess electrons on the edge of the absorption spectrum of small semiconductor particles. The presence of these charges leads to strong bleaching of the absorption at the exciton region and to slight enhancement of the absorption on both sides of the bleaching. They show that the effect is independent of the origin of the charge; it occurs whether the charge is injected into the particle or only attached to its surface, and it appears even when the charge is deeply localized within the band gap. They conclude that the effect arises from the electric field associated with the charge and not from its presence in the band.

Laungdilok, C.; Lawless, D.; Cook, A.R.; Meisel, D. [Argonne National Lab., IL (United States). Chemistry Div.

1995-06-01T23:59:59.000Z

433

Thermal energy storage for space cooling. Technology for reducing on-peak electricity demand and cost  

DOE Green Energy (OSTI)

Cool storage technology can be used to significantly reduce energy costs by allowing energy intensive, electrically driven cooling equipment to be predominantly operated during off-peak hours when electricity rates are lower. In addition, some system configurations may result in lower first costs and/or lower operating costs. Cool storage systems of one type or another could potentially be cost-effectively applied in most buildings with a space cooling system. A survey of approximately 25 manufacturers providing cool storage systems or components identified several thousand current installations, but less than 1% of these were at Federal facilities. With the Federal sector representing nearly 4% of commercial building floor space and 5% of commercial building energy use, Federal utilization would appear to be lagging. Although current applications are relatively few, the estimated potential annual savings from using cool storage in the Federal sector is $50 million. There are many different types of cool storage systems representing different combinations of storage media, charging mechanisms, and discharging mechanisms. The basic media options are water, ice, and eutectic salts. Ice systems can be further broken down into ice harvesting, ice-on-coil, ice slurry, and encapsulated ice options. Ice-on-coil systems may be internal melt or external melt and may be charged and discharged with refrigerant or a single-phase coolant (typically a water/glycol mixture). Independent of the technology choice, cool storage systems can be designed to provide full storage or partial storage, with load-leveling and demand-limiting options for partial storage. Finally, storage systems can be operated on a chiller-priority or storage priority basis whenever the cooling load is less than the design conditions. The first section describes the basic types of cool storage technologies and cooling system integration options. The next three sections define the savings potential in the Federal sector, present application advice, and describe the performance experience of specific Federal users. A step-by-step methodology illustrating how to evaluate cool storage options is presented next, followed by a case study of a GSA building using cool storage. Latter sections list manufacturers, selected Federal users, and reference materials. Finally, the appendixes give Federal life-cycle costing procedures and results for a case study.

None

2000-12-01T23:59:59.000Z

434

THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER  

SciTech Connect

Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

PROJECT STAFF

2011-10-31T23:59:59.000Z

435

NIAGARA FALLS STORAGE SITE  

Office of Legacy Management (LM)

:i" :i" _,, ' _~" ORISE 95/C-70 :E : i:; :' l,J : i.: RADIOLOGICAL SURVEY Op BUILDINGS 401, ' 403, AND ' m HITTMAN BUILDING $ <,' 2:. NIAGARA FALLS STORAGE SITE I .~~ ; " LEWISTON, ' NEW YORK : f? j:,:i I ,.J- ;b f" /: Li _e.*. ~,, I ,,~, ,:,,;:, Prepared by T. .I. Vitkus i,c Environmental Survey and Site Assessment Program Energy/Environment Systems Division ;>::; Oak Ridge Institute for Science and Education .,:, "Oak Ridge, Temressee 37831-0117 .F P ., ? :_ &,d ,,,, ;<:x,, Prepared for the 3 I. Office of Environmental Restoration I, U.S. Department of Energy i gy i. ~: ,,, "! ? ' :' : "' ,//, FINAL REPORT ".$ :,a ,,, MARCH 1995 ; m L ,, ,, ,,,. ., ,,. ' 1 jq ,Ij:,., .,~ _,I_ 1 This report is based on work performed under contract number DE-AC05-760R00033 with the

436

Superconducting energy storage  

DOE Green Energy (OSTI)

This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

Giese, R.F.

1993-10-01T23:59:59.000Z

437

The Silver Bullet: Storage!  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Philly High X-prize PHEV The Silver Bullet... Storage! Terry Boston President & CEO PJM Interconnection July 12, 2011 PJM©2011 2 United States PJM Eastern Interconnection PJM as Part of the Eastern Interconnection KEY STATISTICS PJM member companies 700+ millions of people served 58 peak load in megawatts 158,448 MWs of generating capacity 180,400 miles of transmission lines 61,200 GWh of annual energy 794,335 generation sources 1,365 square miles of territory 211,000 area served 13 states + DC Internal/external tie lines 142 * 24% of generation in Eastern Interconnection * 27% of load in Eastern Interconnection * 19% of transmission assets in Eastern Interconnection 20% of U.S. GDP produced in PJM www.pjm.com As of 6/1/2011 PJM©2011 3 43,623 0 5,000 10,000 15,000

438

Capacitive charging system for high power battery charging  

DOE Green Energy (OSTI)

This document describes a project to design, build, demonstrate, and document a Level 3 capacitive charging system, and it will be based on the existing PEZIC prototype capacitive coupler. The capacitive coupler will be designed to transfer power at a maximum of 600 kW, and it will transfer power by electric fields. The power electronics will transfer power at 100 kW. The coupler will be designed to function with future increases in the power electronics output power and increases in the amp/hours capacity of sealed batteries. Battery charging algorithms will be programmed into the control electronics. The finished product will be a programmable battery charging system capable of transferring 100 kW via a capacitive coupler. The coupler will have a low power loss of less than 25 watts when transferring 240 kW (400 amps). This system will increase the energy efficiency of high power battery charging, and it will enhance mobility by reducing coupler failures. The system will be completely documented. An important deliverable of this project is information. The information will be distributed to the Army`s TACOM-TARDEC`s Advanced Concept Group, and it will be distributed to commercial organizations by the Society of Automotive Engineers. The information will be valuable for product research, development, and specification. The capacitive charging system produced in this project will be of commercial value for future electric vehicles. The coupler will be designed to rapid charge batteries that have a capacity of several thousand amp/hours at hundreds of volts. The charging system built here will rapid charge batteries with several hundred amp/hours capacity, depending on the charging voltage.

NONE

1998-12-31T23:59:59.000Z

439

Chemical Hydrogen Storage Center Center of Excellence  

E-Print Network (OSTI)

Source Hydrogen H2 storage Hydrogen Stored Energy Point-of-use Chemical hydrogen storage #12;5 ChemicalChemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY

Carver, Jeffrey C.

440

Nanostructured materials for hydrogen storage  

DOE Patents (OSTI)

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reversible Seeding in Storage Rings  

Science Conference Proceedings (OSTI)

We propose to generate steady-state microbunching in a storage ring with a reversible seeding scheme. High gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) are two promising methods for microbunching linac electron beams. Because both schemes increase the energy spread of the seeded beam, they cannot drive a coherent radiator turn-by-turn in a storage ring. However, reversing the seeding process following the radiator minimizes the impact on the electron beam and may allow coherent radiation at or near the storage ring repetition rate. In this paper we describe the general idea and outline a proof-of-principle experiment. Electron storage rings can drive high average power light sources, and free-electron lasers (FELs) are now producing coherent light sources of unprecedented peak brightness While there is active research towards high repetition rate FELs (for example, using energy recovery linacs), at present there are still no convenient accelerator-based sources of high repetition rate, coherent radiation. As an alternative avenue, we recently proposed to establish steady-state microbunching (SSMB) in a storage ring. By maintaining steady-state coherent microbunching at one point in the storage ring, the beam generates coherent radiation at or close to the repetition rate of the storage ring. In this paper, we propose a method of generating a microbunched beam in a storage ring by using reversible versions of linac seeding schemes.

Ratner, Daniel; Chao, Alex; /SLAC

2011-12-14T23:59:59.000Z

442

Commercial Cool Storage Design Guide  

Science Conference Proceedings (OSTI)

This state-of-the-art handbook provides comprehensive guidance for designing ice and chilled-water storage systems for commercial buildings. HVAC engineers can take advantage of attractive rates and incentives offered by utilities to increase the market for cool storage systems.

1985-05-01T23:59:59.000Z

443

Forecourt Storage and Compression Options  

E-Print Network (OSTI)

pressure, capacity ­ Compressor output, power, electric demand ­ Station and dispenser load profiles Pro > Station demand profiles > Operational analysis results ­ Compressor-storage relationships and On-Board Storage Analysis Workshop DOE Headquarters 25 January 2006 Mark E. Richards Gas Technology

444

Phase Change Thermal Energy Storage and Recovery in a ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage III: Materials, Systems and Applications Symposium ... storage (LHTES) devices, particularly for solar energy storage applications.

445

U.S. Weekly Natural Gas Storage Data  

U.S. Energy Information Administration (EIA)

... Production and Net Imports Natural Gas Storage Storage Reservoirs by Type Underground Natural Gas Storage Facilities in the ... (written copies ...

446

Complex Hydrides for Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrides for Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories G. J. Thomas Efficient onboard hydrogen storage is a critical enabling technology for the use of hydrogen in vehicles * The low volumetric density of gaseous fuels requires a storage method which densifies the fuel. - This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels. * Storage methods result in additional weight and volume above that of the fuel. How do we achieve adequate stored energy in an efficient, safe and cost-effective system? G. J. Thomas However, the storage media must meet certain requirements: - reversible hydrogen uptake/release - lightweight - low cost - cyclic stability - rapid kinetic properties - equilibrium properties (P,T) consistent

447

NETL: Carbon Storage - Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Overview Program Overview Carbon Storage Program Overview The Carbon Storage Program involves three key elements for technology development: Core Research and Development (Core R&D), Infrastructure, and Global Collaborations. The image below displays the relationship among the three elements and provides a means for navigation throughout NETL's Storage Program Website. Click on Image to Navigate Storage Website Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player NETL's Carbon Storage Program Structure CORE R&D Core R&D is driven by industry's technology needs and segregates those needs into focus areas to more efficiently obtain solutions that can then be tested and deployed in the field. The Core R&D Element contains four

448

A new battery energy storage system control method based on SOC and variable filter time constant  

Science Conference Proceedings (OSTI)

Because of large fluctuations and strong randomness of active power generated by renewable energy resources, taking into account the constraints such as battery life cycle, a new battery energy storage system control method based on real-time state-of-charge ...

Li Guo; Ye Zhang; Cheng Shan Wang

2012-01-01T23:59:59.000Z

449

Overview of Carbon Storage Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Carbon Storage Research Overview of Carbon Storage Research The Carbon Storage Program is focused on ensuring the safe and permanent storage andor utilization of CO2...

450

Electrochemical Energy Storage for the Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid More...

451

Grid Storage and the Energy Frontier Research Centers | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

452

Energy Storage Systems 2007 Peer Review - International Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems...

453

Carbon Capture and Storage Research | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Research Carbon Capture and Storage Research Clean Coal Carbon Capture and Storage Capture Storage Utilization MVA Regional Partnerships Oil & Gas Atlas...

454

Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes  

E-Print Network (OSTI)

The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by super-capacitors, water desalination and purification by capacitive deionization (or desalination), and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory in the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes wi...

Biesheuvel, P M

2009-01-01T23:59:59.000Z

455

The Energy of Charged Matter  

E-Print Network (OSTI)

In this talk I will discuss some of the techniques that have been developed over the past 35 years to estimate the energy of charged matter. These techniques have been used to solve stability of (fermionic) matter in different contexts, and to control the instability of charged bosonic matter. The final goal will be to indicate how these techniques with certain improvements can be used to prove Dyson's 1967 conjecture for the energy of a charged Bose gas--the sharp $N^{7/5}$ law.

Jan Philip Solovej

2004-04-16T23:59:59.000Z

456

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

between heat storage costs and capacity can be determineda given kWh of heat storage capacity is worth to a typicalequation (22) sets the heat storage capacity to the maximum

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

457

Carbon Capture and Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and...

458

The Solar Storage Company | Open Energy Information  

Open Energy Info (EERE)

Storage Company Place Palo Alto, California Zip 1704 Product US-based start-up developing energy production and storage systems. References The Solar Storage Company1 LinkedIn...

459

Conventional Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conventional Storage Water Heaters Conventional Storage Water Heaters July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the...

460

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

ground water was pumped into the storage tank from the well,be withdrawn from storage, HTW is pumped from the hot well,storage well. However, both wells are capable of being pumped and

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-density charge storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of electricity and natural gas DER No Heat Storage: thefired natural gas AC (a) Capacity of heat storage unit (but no heat storage, a 200 kW natural gas reciprocating

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

462

Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

463

Space Charges Can Significantly Affect the Dynamics of Accelerator Maps  

E-Print Network (OSTI)

Space charge effects can be very important for the dynamics of intense particle beams, as they repeatedly pass through nonlinear focusing elements, aiming to maximize the beam's luminosity properties in the storage rings of a high energy accelerator. In the case of hadron beams, whose charge distribution can be considered as "frozen" within a cylindrical core of small radius compared to the beam's dynamical aperture, analytical formulas have been recently derived \\cite{BenTurc} for the contribution of space charges within first order Hamiltonian perturbation theory. These formulas involve distribution functions which, in general, do not lead to expressions that can be evaluated in closed form. In this paper, we apply this theory to an example of a charge distribution, whose effect on the dynamics can be derived explicitly and in closed form, both in the case of 2--dimensional as well as 4--dimensional mapping models of hadron beams. We find that, even for very small values of the "perveance" (strength of the space charge effect) the long term stability of the dynamics changes considerably. In the flat beam case, the outer invariant "tori" surrounding the origin disappear, decreasing the size of the beam's dynamical aperture, while beyond a certain threshold the beam is almost entirely lost. Analogous results in mapping models of beams with 2-dimensional cross section demonstrate that in that case also, even for weak tune depressions, orbital diffusion is enhanced and many particles whose motion was bounded now escape to infinity, indicating that space charges can impose significant limitations on the beam's luminosity.

T. Bountis; Ch. Skokos

2006-05-10T23:59:59.000Z

464

Energy transfer through a multi-layer liner for shaped charges  

DOE Patents (OSTI)

This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

Skolnick, Saul (Albuquerque, NM); Goodman, Albert (Albuquerque, NM)

1985-01-01T23:59:59.000Z

465

taking charge : optimizing urban charging infrastructure for shared electric vehicles; Optimizing urban charging infrastructure for shared electric vehicles.  

E-Print Network (OSTI)

??This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately… (more)

Subramani, Praveen

2012-01-01T23:59:59.000Z

466

Hydrogen storage via metal hydrides for utility and automotive energy storage applications. [HCl electrolysis for H/sub 2/--Cl/sub 2/ fuel cells  

DOE Green Energy (OSTI)

Brookhaven National Laboratory is currently supported by ERDA to develop the technology and techniques for storing hydrogen via metal hydrides. Hydrogen is able to react with a wide variety of metal and metal alloy materials to form hydride compounds of hydrogen and metals. These compounds differ in stability--some are relatively unstable and can be readily formed and decomposed at low temperatures. The use of these systems for hydrogen storage involves the design of heat exchanger and mass transfer systems, i.e., removal of heat during the charging reaction and addition of heat during the discharge reaction. The most notable example of a metal hydride material is iron titanium which shows promise of being economical for a number of near term hydrogen storage applications. Recent work and progress on the development of metal hydrides for hydrogen storage connected with utility energy storage applications and natural gas supplementation are discussed and electric-to-electric storage system is described in some detail. A system of energy storage involving the electrolysis of hydrochloric acid is described which would utilize metal hydrides to store the hydrogen. In addition, the use of metal hydrides for hydrogen storage in automotive systems is described.

Salzano, F J; Braun, C; Beaufrere, A; Srinivasan, S; Strickland, G; Reilly, J J; Waide, C

1976-08-01T23:59:59.000Z

467

Chemical heat pump and chemical energy storage system  

DOE Patents (OSTI)

A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

1985-08-06T23:59:59.000Z

468

Car Charging Group Inc | Open Energy Information  

Open Energy Info (EERE)

Car Charging Group Inc Jump to: navigation, search Name Car Charging Group, Inc. Place Miami Beach, Florida Product Miami Beach, USA based installer of plug-in vehicle charge...

469

Energy Storage Computational Tool | Open Energy Information  

Open Energy Info (EERE)

Energy Storage Computational Tool Energy Storage Computational Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Storage Computational Tool Agency/Company /Organization: Navigant Consulting Sector: Energy Focus Area: Grid Assessment and Integration Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Country: United States Web Application Link: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Cost: Free Northern America Language: English Energy Storage Computational Tool Screenshot References: Energy Storage Computational Tool[1] SmartGrid.gov[2] Logo: Energy Storage Computational Tool This tool is used for identifying, quantifying, and monetizing the benefits

470

Policy Questions on Energy Storage Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy Questions on Energy Storage Technologies Policy Questions on Energy Storage Technologies Memorandum from the Electricity Advisory Committee to Secretary Chu and Assistant...

471

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

... (see Table 1), and why any given week's storage ... Demonstrated maximum working gas volume is the sum of the highest storage inventory levels of ...

472

NETL: Carbon Storage - Monitoring, Verification, and Accounting...  

NLE Websites -- All DOE Office Websites (Extended Search)

MVA Carbon Storage Monitoring, Verification, and Accounting (MVA) Focus Area An MVA program is designed to confirm permanent storage of carbon dioxide (CO2) in geologic formations...

473

Subsea Pumped Hydro Storage -A Technology Assessment.  

E-Print Network (OSTI)

??A novel technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources… (more)

Falk, Johan

2013-01-01T23:59:59.000Z

474

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects created with...

475

DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

476

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Update Conference Presentations - Day 1, Session 2 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 2 The U.S. DOE Energy Storage Systems Program...

477

Ultrafine hydrogen storage powders - Energy Innovation Portal  

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage ...

478

Smart Storage Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

"Smart Storage Pty Ltd" Retrieved from "http:en.openei.orgwindex.php?titleSmartStoragePtyLtd&oldid351195" Categories: Clean Energy Organizations Companies...

479

High Capacity Hydrogen Storage Nanocomposite - Energy ...  

Energy Storage Advanced Materials High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity ...

480

Ultrafine Hydrogen Storage Powders - Energy Innovation Portal  

Patent 6,074,453: Ultrafine hydrogen storage powders A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the ...