Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NNSA Defense Programs Inertial Confinement Fusion Ignition and High Yield Campaign  

E-Print Network [OSTI]

Fusion and National Ignition Facility Project Dr. Christopher J. Keane NA-16 Office of Inertial Scott L. Samuelson NA-162 NA-10 * = stationed in Albuquerque #12;5 Militarily Effective Yield Fission concepts (pulsed power fusion, "fast ignition", petawatt lasers) 4. Maintain robust national program

2

Inertial Confinement Fusion Ignition and High Yield Campaign  

E-Print Network [OSTI]

: Provide mission need report for the proposed OMEGA Extended Performance project. · October 2002: NNSA November 21, 2003 #12;2 Statements to FESAC IFE panel 10/28/03 · Ignition is a major goal for NNSA supports OFES's mission and OFES use of NNSA's ICF facilities is accepted · Defense Programs reserves right

3

Processes yielding high superconducting temperatures  

SciTech Connect (OSTI)

It is pointed out that any microscopic description of the new high-T/sub c/ superconductors should take into account a number of important points concerning strong couplings, whatever their nature: absence of the MacMillan limit, absence of a Migdal theorem, and importance of the Brovman-Kagan type of vertices with different singularities depending on the dimensionality. As a consequence, the applicability of standard techniques such as the Eliashberg theory in particular, may be questioned in high-T/sub c/ superconductors.

Beal-Monod, M.T.

1987-12-01T23:59:59.000Z

4

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Seeding Yields High-Power Coherent Terahertz Radiation Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Wednesday, 25 April 2007 00:00 Researchers at...

5

Webinar: Award-Winning LEEP Campaign Sites Demonstrate Big Savings in High Efficiency Parking Lighting  

Broader source: Energy.gov [DOE]

The Lighting Energy Efficiency in Parking (LEEP) Campaign is saving nearly 45 million kilowatt-hours and $4 million annually by upgrading its partners to high efficiency lighting in over 500,000 parking spaces.

6

The high-foot implosion campaign on the National Ignition Facility  

SciTech Connect (OSTI)

The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×10{sup 15}) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidence for the “bootstrapping” associated with alpha-particle self-heating.

Hurricane, O. A., E-mail: hurricane1@llnl.gov; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Barrios Garcia, M. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kervin, P.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Milovich, J. L.; Moody, J.; Pak, A. E.; Patel, P. K.; Park, H.-S.; Remington, B. A.; Robey, H. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); and others

2014-05-15T23:59:59.000Z

7

Simultaneous multi-wavelength campaign on PKS 2005-489 in a high state  

E-Print Network [OSTI]

The high-frequency peaked BL Lac object PKS 2005-489 was the target of a multi-wavelength campaign with simultaneous observations in the TeV gamma-ray (H.E.S.S.), GeV gamma-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) bands. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E>100GeV) spectrum measured with H.E.S.S. with a peak energy between ~5 and 500 GeV. Compared to observations with contemporaneous coverage in the VHE and X-ray bands in 2004, the X-ray flux was ~50 times higher during the 2009 campaign while the TeV gamma-ray flux shows marginal variation over the years. The spectral energy distribution during this multi-wavelength campaign was fit by a one zone synchrotron self-Compton model with a well determined cutoff in X-rays. The parameters of a one zone SSC model ar...

Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Barnacka, A; de Almeida, U Barres; Bazer-Bachi, A R; Becherini, Y; Becker, J; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Borrel, V; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L -M; Clapson, A C; Coignet, G; Conrad, J; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataď, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gallant, Y A; Gast, H; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Hague, J D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzy?ski, K; Katz, U; Kaufmann, S; Keogh, D; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Klochkov, D; Klu?niak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Laffon, H; Lamanna, G; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; Maxted, N; McComb, T J L; Medina, M C; Méhault, J; Nguyen, N; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; Wilhelmi, E de Ońa; Opitz, B; Ostrowski, M; Panter, M; Arribas, M Paz; Pedaletti, G; Pelletier, G; Petrucci, P -O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Ryde, F; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schönwald, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Spengler, G; Stawarz, ?; Steenkamp, R; Stegmann, C; Stinzing, F; Sushch, I; Szostek, A; Tam, P H; Tavernet, J -P; Terrier, R; Tibolla, O; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Viana, A; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; Wierzcholska, A; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S; Abdo, A A; Ackermann, M; Ajello, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cavazzuti, E; Cecchi, C; Çelik, Ö; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cutini, S; Dermer, C D; de Palma, F; Silva, E do Couto e; Drell, P S; Dubois, R; Dumora, D; Escande, L; Favuzzi, C; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S -H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Michelson, P F; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nishino, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainň, S; Rando, R; Razzano, M; Sadrozinski, H F -W; Sanchez, D; Sander, A; Sgrň, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uehara, T; Usher, T L; Vandenbroucke, J; Vianello, G; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Ylinen, T; Ziegler, M

2011-01-01T23:59:59.000Z

8

Low Odor, High Yield Kraft Pulping  

SciTech Connect (OSTI)

In laboratory cooks pure oxygen was profiled into the circulation line of a batch digester during two periods of the cooking cycle: The first injection occurred during the heating steps for the purpose of in-situ generation of polysulfide. This chip treatment was studied to explore stabilization against alkaline induced carbohydrate peeling and to increase pulp yield. Under optimum conditions small amounts of polysulfide were produced with yield increase of about 0.5% These increases fell below earlier reports suggesting that unknown differences in liquor composition may influence the relative amounts of polysulfide and thiosulfate generated during the oxidation. Consequently, further studies are required to understand the factors that influence the ratios of those two sulfur species.

W.T. McKean

2000-12-15T23:59:59.000Z

9

Strontium and barium iodide high light yield scintillators  

E-Print Network [OSTI]

Strontium and barium iodide high light yield scintillators94720, USA Europium-doped strontium and barium iodide areis still chal­ lenging. Strontium and barium iodide doped

Cherepy, Nerine

2008-01-01T23:59:59.000Z

10

Inertial Confinement Fusion Ignition and High Yield Campaign The Inertial Confinement Fusion Ignition and High Yield (ICF) Campaign supports the U.S. Department of Energy's (DOE)  

E-Print Network [OSTI]

, and effective nuclear weapons stockpile without underground testing. It supports stockpile assessment in simulations is essential to having confidence in them. More than 99 percent of the energy from a nuclear criticality is attained. The ICF program operates and conducts experiments in facilities that can create

11

Renewable Energy Executive Summary High-Yield Scenario  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable Energy Executive Summary High-Yield Scenario Workshop Series Report INLEXT-10-18930 December 2009 The 2005 Billion-Ton Study a (BTS) esti- mates the...

12

Very-high-energy blazars: updates from VERITAS observations and multi-wavelength campaigns  

E-Print Network [OSTI]

VERITAS is an array of four 12-m atmospheric Cherenkov telescopes, designed to observe the very-high-energy (VHE; E $\\geq$100 GeV) sky. Since 2007, it has detected more than 20 extra-galactic sources, the majority of which are active-galactic-nuclei of the blazar class. In this paper we present a selection of the most recent results from the VERITAS blazar observing program, in particular in the context of broad-band multi-wavelength campaigns. Four results are highlighted: the detection of the flat-spectrum-radio-quasar PKS 1222+216 (4C +21.35) during March 2014; the $\\gamma$-ray flare from the BL Lac object 1ES 1727+502, observed under bright-moonlight conditions during May 2013; the bright $\\gamma$-ray flare from the BL Lac object 1ES 1011+496 during February 2014; and the long-term campaign on the BL Lac object PKS 1424+240, currently the farthest (z > 0.60), persistent VHE emitter

Cerruti, Matteo

2015-01-01T23:59:59.000Z

13

Neutron emission and fragment yield in high-energy fission  

SciTech Connect (OSTI)

The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of {sup 235}U nuclei.

Grudzevich, O. T., E-mail: ogrudzevich@ippe.ru; Klinov, D. A. [Institute for Physics and Power Engineering (Russian Federation)] [Institute for Physics and Power Engineering (Russian Federation)

2013-07-15T23:59:59.000Z

14

Executive Summary High-Yield Scenario Workshop Series Report  

SciTech Connect (OSTI)

To get a collective sense of the impact of research and development (R&D) on biomass resource availability, and to determine the feasibility that yields higher than baseline assumptions used for past assessments could be achieved to support U.S. energy independence, an alternate “High-Yield Scenario” (HYS) concept was presented to industry experts at a series of workshops held in December 2009. The workshops explored future production of corn/agricultural crop residues, herbaceous energy crops (HECs), and woody energy crops (WECs). This executive summary reports the findings of that workshop.

Leslie Park Ovard; Thomas H. Ulrich; David J. Muth Jr.; J. Richard Hess; Steven Thomas; Bryce Stokes

2009-12-01T23:59:59.000Z

15

The National Ignition Facility National Ignition Campaign Short Pulse Lasers High-Average-Power Laser  

E-Print Network [OSTI]

-Average-Power Laser NIF-1005-11471 07BEW/dj P9765 Agenda #12;P9516NIF-0805-11197 01EIM/dj Stockpile Stewardship #12;P9504NIF-0404-08345r2 27EIM/ld Basic Science and Cosmology #12;NIF-0702-05346rIFSA Fusion Energy Campaign and point design NIF-0305-10564 23MLS/cld P8719 The NIF Laser User Optics Physics Operations

16

Solvothermal-Assisted Exfoliation Process to Produce Graphene with High Yield and High Quality  

E-Print Network [OSTI]

Solvothermal-Assisted Exfoliation Process to Produce Graphene with High Yield and High Quality Wen produced by a solvothermal-assisted exfoliation process in a highly polar organic solvent, acetonitrile interactions between graphene and acetonitrile facilitate the exfoliation and dispersion of graphene

Gao, Hongjun

17

High yield Cu-Co CPP GMR multilayer sensors  

SciTech Connect (OSTI)

We have fabricated and tested GMR magnetic flux sensors that operate in the CPP mode. This work is a continuation of the ultra-high density magnetic sensor research introduced at INTERMAG 96. We have made two significant modifications to the process sequence. First, contact to the sensor is made through a metal conduit deposited in situ with the multilayers. This deposition replaces electroplating. This configuration ensures a good electrical interface between the top of multilayer stack and the top contact, and a continuous, conductive current path to the sensor. The consequences of this modification are an increase in yield of operational devices to {ge}90% per wafer and a significant reduction of the device resistance to {le}560 milliohms and of the uniformity of the device resistance to {le}3%. Second, the as-deposited multilayer structure has been changed from [Cu 30 {angstrom}/Co 20 {angstrom}]{sub 18} (third peak) to [Cu 20.5 {angstrom}/Co 12 {angstrom}]{sub 30} (second peak) to increase the CPP and CIP responses. The sheet film second peak CIP GMR response is 18% and the sensitivity is 0.08 %/Oe. The sheet film third peak CIP GMR response is 8% and the sensitivity is 0. 05 %/Oe. The second peak CPP GMR response averaged over twenty devices on a four inch silicon substrate is 28% {+-} 6%. The response decreases radially from the substrate center. The average response at the center of the substrate is 33% {+-} 4%. The average second peak CPP sensitivity is 0.09 %/Oe {+-} 0.02 %/Oe. The best second peak CPP response from a single device is 39%. The sensitivity of that device is 0.13 %/Oe. The third peak CPP GMR response is approximately 14 %. The third peak CPP response sensitivity is 0.07 %/Oe. 6 refs., 3 figs.

Spallas, J., Mao, M., Law, B., Grabner, F., Cerjan, C., O`Kane, O.

1997-01-15T23:59:59.000Z

18

ARM - Field Campaign - MOPITT Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIRgovCampaignsMASRAD: Pt. Reyes

19

ARM - Field Campaign - MWR Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIRgovCampaignsMASRAD: Pt.

20

ARM - Field Campaign - SITAC Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicator Sonde CampaigngovCampaignsSITAC

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11LargeLaserLaser Seeding Yields

22

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11LargeLaserLaser Seeding YieldsLaser

23

High-Pressure MOF Research Yields Structural Insights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministrationHighHighHigh-Pressure MOF

24

High-Pressure MOF Research Yields Structural Insights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministrationHighHighHigh-Pressure

25

High-Pressure MOF Research Yields Structural Insights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in thein the AssemblyHigh-OrderFlame andHigh-Pressure

26

High-Pressure MOF Research Yields Structural Insights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in thein the AssemblyHigh-OrderFlameHigh-Pressure MOF

27

High-Pressure MOF Research Yields Structural Insights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in thein the AssemblyHigh-OrderFlameHigh-Pressure

28

ARM - Field Campaign - IHOP Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-ArcticShortwaveLaunch

29

ARM - Field Campaign - Photoacoustic Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by MicrotopsParsivel2TEMgovCampaignsPhotoacoustic

30

Critical Review Microbial Electrolysis Cells for High Yield Hydrogen Gas  

E-Print Network [OSTI]

sources such as wind, solar or biomass, but the energy requirements are high (5.6 kWh/ m3H2) and typical A S S E , , § A N D R E N ´E A . R O Z E N D A L | Hydrogen Energy Center, and Department of Civil, The Netherlands, and Advanced Water Management Centre (AWMC), The University of Queensland, Qld 4072, Australia

31

High-Pressure MOF Research Yields Structural Insights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in thein the AssemblyHigh-OrderFlame and

32

High-Pressure MOF Research Yields Structural Insights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in thein the AssemblyHigh-OrderFlame

33

Cotton Yield Mapping and Guidance Systems on the Texas High Plains  

E-Print Network [OSTI]

Cotton Yield Mapping and Guidance Systems on the Texas High Plains Randy Boman, Alan Brashears variability. A yield mapping system measures and records the amount of cotton being harvested at any point in the transport posi- tion. This system has the advantage of directly measuring the harvested cotton in the basket

Mukhtar, Saqib

34

cuny.edu/campaign CUNY CAMPAIGN  

E-Print Network [OSTI]

cuny.edu/campaign 2012 Tomorrow Building Together THE CUNY CAMPAIGN for Voluntary Charitable Giving that assist New Yorkers. The 2012-13 CUNY Campaign, "Building Tomorrow Together," is our opportunity to make click "register me". Now you can login and make a pledge. Next: Make Your Pledge Enter your "NYS EMPLID

Qiu, Weigang

35

Z, ZX, and X-1: A Realistic Path to High Fusion Yield  

SciTech Connect (OSTI)

Z-pinches now constitute the most energetic and powerful sources of x-rays available by a large margin. The Z accelerator at Sandia National Laboratories has produced 1.8 MJ of x-ray energy, 280 TW of power, and hohlraum temperatures of 200 eV. These advances are being applied to inertial confinement fusion (ICF) experiments on Z. The requirements for high fusion yield are exemplified in the target to be driven by the X-1 accelerator. X-1 will drive two z-pinches, each producing 7 MJ of x-ray energy and about 1000 TW of x-ray power. Together, these radiation sources will heat a hohlraum containing the 4-mm diameter ICF capsule to a temperature exceeding 225 eV for about 10 ns, with the pulse shape required to drive the capsule to high fusion yield, in the range of 200--1000 MJ. Since X-1 consists of two identical accelerators, it is possible to mitigate the technical risk of high yield by constructing one accelerator. This accelerator, ZX, will bridge the gap from Z to X-1 by driving an integrated target experiment with a very efficient energy source, ZX will also provide experimental condition that the full specifications of the X-1 accelerator for high yield are achievable, and that a realistic path to high fission yield exists.

COOK, DONALD L.

1999-10-07T23:59:59.000Z

36

Alfalfa is capable of producing high yields of high quality forage for hay, haylage, and pasture. However,  

E-Print Network [OSTI]

Alfalfa is capable of producing high yields of high quality forage for hay, haylage, and pasture are appropriate. Alfalfa requires deep, well-drained soils with a pH >6.5 and high levels of phosphorus (P to alfalfa performance. There are several hundred alfalfa varieties on the mar- ket, and many do well

Liskiewicz, Maciej

37

Mass production of multi-wall carbon nanotubes by metal dusting process with high yield  

SciTech Connect (OSTI)

Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

Ghorbani, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Rashidi, A.M., E-mail: Rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rastegari, S.; Mirdamadi, S. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Alaei, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)] [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

2011-05-15T23:59:59.000Z

38

HIGH YIELD BATCH PACKAGING OF MICRO DEVICES WITH UNIQUELY ORIENTING SELF-ASSEMBLY  

E-Print Network [OSTI]

HIGH YIELD BATCH PACKAGING OF MICRO DEVICES WITH UNIQUELY ORIENTING SELF-ASSEMBLY Jiandong Fang of uniquely orienting self-assembly with 2mm square diced silicon parts. Each silicon part has one hydrophobic shape-directed self-assembly assigns parts to complementary trenches in parallel [2]; (3) capillary

39

Methane Sulfonation A High-Yield Approach to the Sulfonation of  

E-Print Network [OSTI]

Methane Sulfonation A High-Yield Approach to the Sulfonation of Methane to Methanesulfonic Acid Initiated by H2O2 and a Metal Chloride** Sudip Mukhopadhyay and Alexis T. Bell* Methane is abundant reactivity of methane makes it difficult to develop commercially viable processes for methane conversion.[1

Bell, Alexis T.

40

ARM - Field Campaign - Summer UAV Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994govCampaignsSummer UAV Campaign

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Surface studies and implanted helium measurements following NOVA high-yield DT experiments  

SciTech Connect (OSTI)

This paper presents the results of three March 6, 1996 direct-drive high-yield DT NOVA experiments and provides `proof-of-principal` results for the quantitative measurement of energetic He ions. Semiconductor quality Si wafers and an amorphous carbon wafer were exposed to NOVA high-yield implosions. Surface damage was sub-micron in general, although the surface ablation was slightly greater for the carbon wafer than for the Si wafers. Melting of a thin ({approx} 0.1{mu}) layer of Si was evident from microscopic investigation. Electron microscopy indicated melted blobs of many different metals (e.g. Al, Au, Ta, Fe alloys, Cu and even Cd) on the surfaces. The yield measured by determining the numbers of atoms of implanted {sup 4}He and {sup 3}He indicate the number of DT fusions to be 9.1({plus_minus}2.3) X 10{sup 12} and DD fusions to be 4.8({plus_minus}1.0) x 10{sup 10}, respectively. The helium DT fusion yield is slightly lower than that of the Cu activation measurement, which was 1.3({plus_minus}0.l) x 10{sup 13} DT fusions.

Stoyer, M.A.; Hudson, G.B.

1997-02-18T23:59:59.000Z

42

ARM - Field Campaign - Replicator Sonde Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicator Sonde Campaign ARM Data Discovery

43

ARM - Field Campaign - Spring UAV Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single ColumngovCampaignsSpring

44

A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator  

SciTech Connect (OSTI)

We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5x1011 n/s for D-T and ~;;1x1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60x6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

Waldmann, Ole; Ludewigt, Bernhard

2010-10-11T23:59:59.000Z

45

High-Order Harmonic Generation Yielding Tunable Extreme-Ultraviolet Radiation of High Spectral Purity  

E-Print Network [OSTI]

harmonic photon. The universal cutoff in high-order har- monic generation (HHG) processes exists at Ip 3 (ponderomotive) energy of a quasifree electron quivering in the laser field in the neighborhood of the ionic core [9] and for resonance-enhanced wave mixing [10]. In contrast to these studies, in the nonperturbative

46

Public Information Campaigns  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) supports states, local governments, and tribes in their efforts to carry out education campaigns targeting the general public about energy conservation. These...

47

A high liquid yield process for retorting various organic materials including oil shale  

DOE Patents [OSTI]

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

Coburn, T.T.

1988-07-26T23:59:59.000Z

48

High liquid yield process for retorting various organic materials including oil shale  

DOE Patents [OSTI]

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

Coburn, Thomas T. (Livermore, CA)

1990-01-01T23:59:59.000Z

49

High Yield Synthesis of Mesoscopic Conductive and Dispersible Carbon Nanostructures via Ultrasonication of Commercial Precursors  

SciTech Connect (OSTI)

The need to produce large quantities of graphenic materials displaying excellent conductivity, thermal resistance, and tunable properties for industrial applications has spurred interest in new techniques for exfoliating graphite. In this paper, sonication-assisted exfoliation of graphitic precursors in the presence of chloroform is shown to produce chemically and structurally unique exfoliated graphitic materials in high yields. These exfoliated graphites, referred to as mesographite and mesographene, respectively, exhibit unique properties which depend on the number of layers and exfoliation conditions. Structural characterization of mesographene reveals the presence of nanoscale two-dimensional graphene layers, and threedimensional carbon nanostructures sandwiched between layers, similar to those found in ball-milled and intercalated graphites. The conductivities of mesographite and mesographene are 2700 and 2000 S/m, respectively, indicating high conductivity despite flake damage. Optical absorption measurements of mesographite sonicated in various solvents showed significant changes in dispersion characteristics, and also indicated significant changes to mesoscopic colloidal behavior. A mechanism for functionalization and formation of capped carbon nanostructures is proposed by integrating the chemical and structural characterization in relation to the various carbon structures observed by electron microscopy. Composites based on common polymers were prepared by solution processing, and changes in thermal properties indicate improved dispersion of mesographite in polar polymers.

Srivastava, Vikram K [ORNL] [ORNL; Quinlan, Ronald [ORNL] [ORNL; Agapov, Alexander L [ORNL] [ORNL; Kisliuk, Alexander [ORNL] [ORNL; Bhat, Gajanan [ORNL] [ORNL; Mays, Jimmy [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK)

2014-01-01T23:59:59.000Z

50

ARM - Field Campaign - CLASIC - Radiosonde Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWST Cloud ODgovCampaignsCLASIC -

51

ARM - Field Campaign - Nauru99 Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning

52

Fission Yield Measurements from Highly Enriched Uranium Irradiated Inside a Boron Carbide Capsule  

SciTech Connect (OSTI)

A boron carbide capsule was previously designed and tested by Pacific Northwest National Laboratory (PNNL) and Washington State University (WSU) for spectral-tailoring in mixed spectrum reactors. The presented work used this B4C capsule to create a fission product sample from the irradiation of highly enriched uranium (HEU) with a fast fission neutron spectrum. An HEU foil was irradiated inside of the capsule in WSU’s 1 MW TRIGA reactor at full power for 200 min to produce 5.8 × 1013 fissions. After three days of cooling, the sample was shipped to PNNL for radiochemical separations and analysis by gamma and beta spectroscopy. Fission yields for products were calculated from the radiometric measurements and compared to measurements from thermal neutron induced fission (analyzed in parallel with the non-thermal sample at PNNL) and published evaluated fast-pooled and thermal nuclear data. Reactor dosimetry measurements were also completed to fully characterize the neutron spectrum and total fluence of the irradiation.

Metz, Lori A.; Friese, Judah I.; Finn, Erin C.; Greenwood, Lawrence R.; Kephart, Rosara F.; Hines, Corey C.; King, Matthew D.; Henry, Kelley; Wall, Donald E.

2013-05-01T23:59:59.000Z

53

A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass  

SciTech Connect (OSTI)

The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

Agrawal, Rakesh

2014-02-21T23:59:59.000Z

54

ARM - Field Campaigns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsList of Campaigns Additional

55

ARM - Field Campaigns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsList of Campaigns

56

A new device that produces and collects multiple electrons per photon could yield inexpensive, high-efficiency  

E-Print Network [OSTI]

A new device that produces and collects multiple electrons per photon could yield inexpensive, high electron-hole pair) per absorbed high-energy photon, and this device definitively demonstrates-efficiency photovoltaics. A new device developed through research at the National Renewable Energy Laboratory (NREL

57

The ALFALFA "Almost Darks" Campaign: Pilot VLA HI Observations of Five High Mass-to-Light Ratio Systems  

E-Print Network [OSTI]

We present VLA HI spectral line imaging of 5 sources discovered by ALFALFA. These targets are drawn from a larger sample of systems that were not uniquely identified with optical counterparts during ALFALFA processing, and as such have unusually high HI mass to light ratios. These candidate "Almost Dark" objects fall into 4 categories: 1) objects with nearby HI neighbors that are likely of tidal origin; 2) objects that appear to be part of a system of multiple HI sources, but which may not be tidal in origin; 3) objects isolated from nearby ALFALFA HI detections, but located near a gas-poor early-type galaxy; 4) apparently isolated sources, with no object of coincident redshift within ~400 kpc. Roughly 75% of the 200 objects without identified counterparts in the $\\alpha$.40 database (Haynes et al. 2011) fall into category 1. This pilot sample contains the first five sources observed as part of a larger effort to characterize HI sources with no readily identifiable optical counterpart at single dish resolutio...

Cannon, John M; Leisman, Lukas; Haynes, Martha P; Adams, Elizabeth A K; Giovanelli, Riccardo; Hallenbeck, Gregory; Janowiecki, Steven; Jones, Michael; Józsa, Gyula I G; Koopmann, Rebecca A; Nichols, Nathan; Papastergis, Emmanouil; Rhode, Katherine L; Salzer, John J; Troischt, Parker

2014-01-01T23:59:59.000Z

58

INITIATIVES and CAMPAIGN LAUNCH  

E-Print Network [OSTI]

to develop a culture of safety for all our community members · To achieve this, York U has been working1 SAFETY INITIATIVES and CAMPAIGN LAUNCH COMMUNITY SAFETY COUNCIL COMMUNITY UPDATE 30 January 2013 the person per thousand compared to Toronto #12;4 University's Safety Plan · In June 2010, the Metropolitan

59

Advanced Detector Research - Fabrication and Testing of 3D Active-Edge Silicon Sensors: High Speed, High Yield  

SciTech Connect (OSTI)

Development of 3D silicon radiation sensors employing electrodes fabricated perpendicular to the sensor surfaces to improve fabrication yields and increasing pulse speeds.

Parker, Sherwood I

2008-09-01T23:59:59.000Z

60

High-Yield Synthesis and Purification of an -Helical Transmembrane Domain  

E-Print Network [OSTI]

by this small-scale 9-fluorenylme- thoxycarbonyl (Fmoc) strategy is comparable to that of the peptide. Combining these approaches readily yields 10 to 20 mg of pure transmembrane peptide from a small-scale Fmoc limits the approach to specialized facilities. Although a small-scale 9-fluorenylmethoxycarbonyl (Fmoc

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ARM - Other Aircraft Campaigns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane BackgroundFacilityOther Aircraft Campaigns AAF

62

Used Fuel Disposition Campaign Preliminary Quality Assurance...  

Energy Savers [EERE]

Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary...

63

Temperture and composition dependence of the high flux plasma sputtering yield of Cu-Li binary alloys  

SciTech Connect (OSTI)

High flux deuterium plasma sputtering and ion beam experiments have been performed on Cu-Li alloys to determine if the reduction in copper erosion previously predicted and observed in low flux ion beam experiments occurs at particle fluxes representative of an RFP first wall or tokamak limiter. Partial sputtering yields of the copper and lithium components have been measured as a function of alloy composition and sample temperature using optical plasma emission spectroscopy, weight loss and catcher foil techniques. It is found that the lithium sputtering yield increases with increasing sample temperature while the copper yield decreases by as much as two orders of magnitude. The temperature required to obtain the reduction in copper erosion is found to be a function of bulk lithium concentration. Consequences of these experimental results for anticipated erosion/redeposition properties are calculated, and the Cu-Li alloy in found to compare favorably with conventional low-Z materials.

Krauss, A.R.; Mendelsohn, M.H.; Gruen, D.M.; Conn, R.W.; Goebel, D.M.; Hirooka, Y.; Leung, W.K.; Bohdansky, J.

1986-01-01T23:59:59.000Z

64

Advanced Fuels Campaign Execution Plan  

SciTech Connect (OSTI)

The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

Kemal Pasamehmetoglu

2011-09-01T23:59:59.000Z

65

ARM - Field Campaigns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements Media ContactCenterFeaturegovCampaignsARM

66

ARM - Campaign Backgrounders  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |NovemberARMContactsARMFacilitiesCERA COPSMaterialsCampaign

67

ARM - Campaign Journal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love to heartotdngovInstrumentswrf-chem Comments?Campaign Journal

68

ARM - CARES Campaign Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |NovemberARMContactsARM Engineering6,GermanyBlackCampaign

69

ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ethanol Process Using High-Impact Feedstock for Commercialization This pilot-scale integrated biorefinery will produce 250,000 gallons per year of cellulosic ethanol when...

70

Relative yields of U-235 fission products measured in a high level radioactive sludge at Savannah River Site  

SciTech Connect (OSTI)

This paper presents measurements of the concentrations of 42 of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at Savannah River Site. The 42 fision products make up 98% of the waste sludge. We used inductively coupled plasma-mass spectroscopy for the analysis. The relative yields for most of the fission products are in complete agreement with the known relative yields for the beta decay chains of the two asymmetric branches of the slow neutron fission of U-235. Disagreements can be reconciled based on the chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses. This paper presents measurements of the concentrations of 42 (98%) of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at the Savannah River Site. We analyzed the sludge with inductively coupled plasma-mass spectroscopy. The relative yields for most of the fission products agree completely with the known relative vields for the beta decay chains of the two asymmetric: branches of the slow neutron fission of U-235. The chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses explain the differences in the measured and calculated results.

Bibler, N.E.; Coleman, C.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Kinard, W.F. [Charleston Coll., SC (United States). Dept. of Chemistry

1992-10-01T23:59:59.000Z

71

Relative yields of U-235 fission products measured in a high level radioactive sludge at Savannah River Site  

SciTech Connect (OSTI)

This paper presents measurements of the concentrations of 42 of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at Savannah River Site. The 42 fision products make up 98% of the waste sludge. We used inductively coupled plasma-mass spectroscopy for the analysis. The relative yields for most of the fission products are in complete agreement with the known relative yields for the beta decay chains of the two asymmetric branches of the slow neutron fission of U-235. Disagreements can be reconciled based on the chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses. This paper presents measurements of the concentrations of 42 (98%) of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at the Savannah River Site. We analyzed the sludge with inductively coupled plasma-mass spectroscopy. The relative yields for most of the fission products agree completely with the known relative vields for the beta decay chains of the two asymmetric: branches of the slow neutron fission of U-235. The chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses explain the differences in the measured and calculated results.

Bibler, N.E.; Coleman, C.J. (Westinghouse Savannah River Co., Aiken, SC (United States)); Kinard, W.F. (Charleston Coll., SC (United States). Dept. of Chemistry)

1992-01-01T23:59:59.000Z

72

Experimental Determination of DT Yield in High Current DD Dense Plasma Focii  

SciTech Connect (OSTI)

Dense Plasma Focii (DPF), which utilize deuterium gas to produce 2.45 MeV neutrons, may in fact also produce DT fusion neutrons at 14.1 MeV due to the triton production in the DD reaction. If beam-target fusion is the primary producer of fusion neutrons in DPFs, it is possible that ejected tritons from the first pinch will interact with the second pinch, and so forth. The 2 MJ DPF at National Security Technologies’ Losee Road Facility is able to, and has produced, over 1E12 DD neutrons per pulse, allowing an accurate measurement of the DT/DD ratio. The DT/DD ratio was experimentally verified by using the (n,2n) reaction in a large piece of praseodymium metal, which has a threshold reaction of 8 MeV, and is widely used as a DT yield measurement system1. The DT/DD ratio was experimentally determined for over 100 shots, and then compared to independent variables such as tube pressure, number of pinches per shot, total current, pinch current and charge voltage.

Lowe, D. R. [National Security Technologies, LLC; Hagen, E. C. [National Security Technologies, LLC; Meehan, B. T. [National Security Technologies, LLC; Springs, R. K. [University of Nevada, Las Vegas; O'Brien, R. J. [University of Nevada, Las Vegas

2013-06-18T23:59:59.000Z

73

Bishop's Bottled Water Free Campaign  

E-Print Network [OSTI]

water on Earth #12;Environmental Impacts Recycling...or lack there of! · In Toronto alone, as few as 50Bishop's Bottled Water Free Campaign #12;What's the point? Bottled water is deeply embedded not agree with bottled water free campaign, it is important to keep in mind that Bishop's University

74

Quarterly Cybersecurity Awareness Campaigns and Toolkits | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Quarterly Cybersecurity Awareness Campaigns and Toolkits Quarterly Cybersecurity Awareness Campaigns and Toolkits The OCIO coordinates a variety of internal cybersecurity awareness...

75

National Cybersecurity Awareness Month (NCSAM) Campaigns | Department...  

Broader source: Energy.gov (indexed) [DOE]

National Cybersecurity Awareness Month (NCSAM) Campaigns National Cybersecurity Awareness Month (NCSAM) Campaigns Each year the OCIO recognizes October as National Cybersecurity...

76

Field Campaign Guidelines (ARM Climate Research Facility)  

SciTech Connect (OSTI)

The purpose of this document is to establish a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking database tool and are tailored to meet the scope of each specific field campaign.

Voyles, JW

2011-01-17T23:59:59.000Z

77

ARM - Field Campaign - Cloud LAnd Surface Interaction Campaign (CLASIC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWSTCampaign 2govCampaignsCloud IOP

78

Improving Biomass Yields: High Biomass, Low Input Dedicated Energy Crops to Enable a Full Scale Bioenergy Industry  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Ceres is developing bigger and better grasses for use in biofuels. The bigger the grass yield, the more biomass, and more biomass means more biofuel per acre. Using biotechnology, Ceres is developing grasses that will grow bigger with less fertilizer than current grass varieties. Hardier, higher-yielding grass also requires less land to grow and can be planted in areas where other crops can’t grow instead of in prime agricultural land. Ceres is conducting multi-year trials in Arizona, Texas, Tennessee, and Georgia which have already resulted in grass yields with as much as 50% more biomass than yields from current grass varieties.

None

2010-01-01T23:59:59.000Z

79

ARM - Field Campaign - Cloud IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWSTCampaign 2govCampaignsCloud IOP ARM

80

ARM - Field Campaign - Supplemental Sondes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994govCampaignsSummer

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Driving Down HB-LED Costs: Implementation of Process Simulation Tools and Temperature Control Methods of High Yield MOCVD Growth  

SciTech Connect (OSTI)

The overall objective of this multi-faceted program is to develop epitaxial growth systems that meet a goal of 75% (4X) cost reduction in the epitaxy phase of HB-LED manufacture. A 75% reduction in yielded epitaxy cost is necessary in order to achieve the cost goals for widespread penetration of HB-LEDâ??s into back-lighting units (BLU) for LCD panels and ultimately for solid-state lighting (SSL). To do this, the program will address significant improvements in overall equipment Cost of Ownership, or CoO. CoO is a model that includes all costs associated with the epitaxy portion of production. These aspects include cost of yield, capital cost, operational costs, and maintenance costs. We divide the program into three phases where later phases will incorporate the gains of prior phases. Phase one activities are enabling technologies. In collaboration with Sandia National Laboratories we develop a Fluent-compatible chemistry predictive model and a set of mid-infrared and near-ultraviolet pyrometer monitoring tools. Where previously the modeling of the reactor dynamics were studied within FLUENT alone, here, FLUENT and Chemkin are integrated into a comprehensive model of fluid dynamics and the most advanced transport equations developed for Chemkin. Specifically, the Chemkin model offered the key reaction terms for gas-phase nucleation, a key consideration in the optimization of the MOCVD process. This new predictive model is used to design new MOCVD reactors with optimized growth conditions and the newly developed pyrometers are used monitor and control the MOCVD process temperature to within 0.5°C run-to-run and within each wafer. This portion of the grant is in collaboration with partners at Sandia National Laboratories. Phase two activities are continuous improvement projects which extend the current reactor platform along the lines of improved operational efficiency, improved systems control for throughput, and carrier modifications for increased yield. Programmatically, improvements made in Phase I are applied to developments of Phase II when applicable. Phase three is the culmination of the individual tasks from both phases one and two applied to proposed production platforms. We selectively combine previously demonstrated tasks and other options to develop a high-volume production-worthy MOCVD system demonstrating >3x throughput, 1.3x capital efficiency, and 0.7x cost of ownership. In a parallel demonstration we validate the concept of an improved, larger deposition system which utilizes the predictive modeling of chemistry-based flow analysis and extensions of the improvements demonstrated on the current platforms. This validation includes the build and testing of a prototype version of the hardware and demonstration of 69% reduction in the cost of ownership. Also, in this phase we present a stand-alone project to develop a high-temperature system which improves source efficiency by 30% while concurrently increasing growth rate by 1.3x. The material quality is held to the same material quality specifications of our existing baseline processes. The merits of other line item tasks in phase three are discussed for inclusion on next-generation platforms.

William Quinn

2012-04-30T23:59:59.000Z

82

Production management techniques for water-drive gas reservoirs. Field number 1, onshore gulf coast over-pressured, high yield condensate reservoir. Topical report, July 1993  

SciTech Connect (OSTI)

To develop improved completion and reservoir management strategies for water-drive gas reservoirs, the study conducted on an overpressured high yield gas condensate reservoir is reported. The base recovery factor for the field was projected to be only 47.8%, due to high residual gas saturation and a relatively strong aquifer which maintained reservoir pressure.

Hower, T.L.

1993-07-01T23:59:59.000Z

83

Advanced Fuels Campaign 2012 Accomplishments  

SciTech Connect (OSTI)

The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

Not Listed

2012-11-01T23:59:59.000Z

84

Campaign Participation May 27, 2014  

E-Print Network [OSTI]

% 60-School of Nursing 38% 24-Warner School of Education 35% 90-Health Sciences 33% Finance - URMC 100% University Health Service 59% University Communications 57% University Audit 50% Research & Project% Facilities & Services - Utility/Energy Mgmt 11% Career Center 9% Security & Traffic 7% Page 2 #12;Campaign

Portman, Douglas

85

High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon) 044029 (5pp) doi:10.1088/1748-9326/6/4/044029 High-yield oil palm expansion spares land at the expense by industrial-scale high-yield oil palm expansion in the Peruvian Amazon from 2000 to 2010, finding that 72

Uriarte, Maria

86

ARM - Field Campaign - TX-2002 AIRS Validation Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring

87

Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign  

E-Print Network [OSTI]

The Mexico City Metropolitan Area (MCMA) experiences high loadings of atmospheric aerosols from anthropogenic sources, biomass burning and wind-blown dust. This paper uses a combination of measurements and numerical ...

de Foy, B.

88

Update of the Used Fuel Disposition Campaign Implementation Plan  

SciTech Connect (OSTI)

This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

2014-09-01T23:59:59.000Z

89

Sandia National Laboratories: measurement campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is the cumulative timemaximizemeasurement campaign

90

Thermonuclear yield of targets under the action of high-power short-wavelength (lambda< or =1. mu. ) lasers  

SciTech Connect (OSTI)

A unified optimization scheme is used in a numerical calculation of the dependences of the thermonuclear yield of two-layer shell targets on the absorbed laser energy in the range 0.3--10 mJ for lasers emitting radiation of wavelengths shorter than 1 ..mu...

Basov, N.G.; Gus'kov, S.Y.; Danilova, G.V.; Demchenko, N.N.; Zmitrenko, N.V.; Karpov, V.Y.; Mishchenko, T.V.; Rozanov, V.B.; Samarskii, A.A.

1985-06-01T23:59:59.000Z

91

ARM - Field Campaign - Cirrus Clouds and Aerosol Properties Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWSTCampaign 2

92

ARM - Field Campaign - DC-8 Cloud Radar Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD SensorgovCampaignsComplex Layered Cloud

93

ARM - Field Campaign - Radiative Heating in Underexplored Bands Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaignSTations

94

ARM - Historical Field Campaign Statistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [FacilityIndiaGVAX News Outreach HomeField Campaign

95

ARM - Field Campaign - Aerosol IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfrared SpectralgovCampaignsAerosol IOP

96

ARM - Field Campaign - Aircraft Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfraredgovCampaignsAircraft Carbon ARM Data

97

ARM - Field Campaign - PGS Validatation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by MicrotopsParsivel2TEM of AerosolgovCampaignsPGS

98

ISLAND OF THE HIGH YIELDS OF 252Cf(sf) COLLINEAR TRIPARTITION IN THE FRAGMENT MASS SPACE  

E-Print Network [OSTI]

Abstract. Results of three independent experiments aimed at searching for collinear cluster tripartition (CCT) of the 252Cf (sf) are reported. They confirm previously proposed kinematical scheme let to distinguish two CCT partners flying almost in the same direction. A new island of the CCT manifestation in the mass-mass distribution of the decay fragments was revealed. A total yield of the CCT originated events in the island is not less 4*10-3 per binary fission. Presumably, the ternary decay of nuclear molecules based on heavy magic clusters such as isotopes of Ni, Ge, Sn, Te gives rise to the effect observed. Key words: clustering, multibody decays, shell effects, fission 1.

Yu. V. Pyatkov; D. V. Kamanin; W. H. Trzaska; W. Von Oertzen; Yu. E. Peinionzhkevich

99

Peanut Profits and Irrigation Yield Response in the Northern Texas High Plains, A Non-Traditional Production Area.  

E-Print Network [OSTI]

) averaged 5.96 in. Stages of economic production are also indicated in Figure 1. Stage I of economic production indicates the range of irrigation over which average physical prod uct (APP) increases to a maximum. Profits are not yet max imized over... functional relationship explained 88 percent of the yield variation: (5) YP = 190.82 + 109.18 D21R + 75.53 D70R + 208.34 D77R + 95.92 D84R [220.8] [31.3] (0.86) , (3.49) [46.8] 0.61) [72.6] (2.87) [36,2] (2.65) + 147.09 D98R + 509.01 (D112R...

Harman, Wyatte L.; Regier, C.; Petr, F.; Lansford, V.D.

1990-01-01T23:59:59.000Z

100

Quinn for New York campaign Come and intern with the Quinn for New York campaign. The campaign is looking for bright, energetic  

E-Print Network [OSTI]

Quinn for New York campaign Come and intern with the Quinn for New York campaign. The campaign is looking for bright, energetic individuals who want to learn the nuts and bolts of how a campaign works, and help elect the next Mayor of New York City. Hours are completely flexible with a small requirement

Patel, Aniruddh D.

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS  

SciTech Connect (OSTI)

The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

Not Listed

2013-10-01T23:59:59.000Z

102

The Microwave Air Yield Beam Experiment (MAYBE): measurement of GHz radiation for Ultra-High Energy Cosmic Rays detection  

E-Print Network [OSTI]

We present first measurements by MAYBE of microwave emission from an electron beam induced air plasma, performed at the electron Van de Graaff facility of the Argonne National Laboratory. Coherent radio Cherenkov, a major background in a previous beam experiment, is not produced by the 3 MeV beam, which simplifies the interpretation of the data. Radio emission is studied over a wide range of frequencies between 3 and 12 GHz. This measurement provides further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

M. Monasor; M. Bohacova; C. Bonifazi; G. Cataldi; S. Chemerisov; J. R. T. De Mello Neto; P. Facal San Luis; B. Fox; P. W. Gorham; C. Hojvat; N. Hollon; R. Meyhandan; L. C. Reyes; B. Rouille D'Orfeuil; E. M. Santos; J. Pochez; P. Privitera; H. Spinka; V. Verzi; C. Williams; J. Zhou

2011-08-31T23:59:59.000Z

103

Prolongation technologies for campaign life of tall oven  

SciTech Connect (OSTI)

In Kashima Steel Works, 25-year-old 7-meter-high coke ovens have damage on their walls. However, by using new methods of internal in-situ investigation, ceramic welding for the extended central and upper portions of coke ovens has prolonged the campaign life for over 40 years without large-scale hot repair. In this paper, introduction of these new methods, its application in Kashima and the policy of repairing the tall coke oven are reported.

Doko, Yoshiji; Saji, Takafumi; Kitayama, Yoshiteru; Yoshida, Shuhei [Sumitomo Metal Industries, Ltd., Kashima, Ibaraki (Japan). Kashima Steel Works

1997-12-31T23:59:59.000Z

104

Advanced Fuels Campaign FY 2010 Accomplishments Report  

SciTech Connect (OSTI)

The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

Lori Braase

2010-12-01T23:59:59.000Z

105

SEPARATIONS AND WASTE FORMS CAMPAIGN IMPLEMENTATION PLAN  

SciTech Connect (OSTI)

This Separations and Waste Forms Campaign Implementation Plan provides summary level detail describing how the Campaign will achieve the objectives set-forth by the Fuel Cycle Reasearch and Development (FCRD) Program. This implementation plan will be maintained as a living document and will be updated as needed in response to changes or progress in separations and waste forms research and the FCRD Program priorities.

Vienna, John D.; Todd, Terry A.; Peterson, Mary E.

2012-11-26T23:59:59.000Z

106

Crystal Growth and Wafer Processing for High Yield and High Efficiency Solar Cells: Final Report, 1 October 2003 - 15 January 2008  

SciTech Connect (OSTI)

Hardness, elastic modulus, and fracture toughness of low and high carrier-lietime regions in polycrystalline silicon were evaluated using the nanoindentation technique.

Rozgonyi, G. A.; Youssef, K.

2008-11-01T23:59:59.000Z

107

Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.  

SciTech Connect (OSTI)

Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is demonstrated at the SNL Z-IFE LTD laboratory with rep-rates up to 10.3 seconds between shots (this is essentially at the goal of 10 seconds for Z-IFE). (7) A single LTD switch at Tomsk was fired repetitively every 12 seconds for 36,000 shots with no failures. (8) Five 1.0 MA, 100 kV, 100 ns, LTD cavities have been combined into a voltage adder configuration with a test load to successfully study the system operation. (9) The combination of multiple LTD coaxial lines into a tri-plate transmission line is examined. The 3D Quicksilver code is used to study the electron flow losses produced near the magnetic nulls that occur where coax LTD lines are added together. (10) Circuit model codes are used to model the complete power flow circuit with an inductive isolator cavity. (11) LTD architectures are presented for drivers for Z-IFE and high yield. A 60 MA LTD driver and a 90 MA LTD driver are proposed. Present results from all of these power flow studies validate the whole LTD/RTL concept for single-shot ICF high yield, and for repetitive-shot IFE.

Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P. (Kurchatov Institute, Moscow, Russia); Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

2007-01-01T23:59:59.000Z

108

[old]_High Yield Scenario  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoung InventorNothing About

109

The Campaign for McMaster University The Campaign for McMaster University  

E-Print Network [OSTI]

Master University · Financial Procedure for Research Grants · Indirect Costs Associated with Research Funding fromThe Campaign for McMaster University The Campaign for McMaster University Research Integrity Policy Orientation Michelle Bennett University Secretariat Kimberly Mason Office of Academic Integrity Kathy Charters

Hitchcock, Adam P.

110

Hoogovens blast furnace No. 6 -- The first eleven years of a continuing campaign  

SciTech Connect (OSTI)

Blast furnace No. 6 of Hoogovens Steel has just completed its eleventh year of the fourth (running) campaign, with a total production of approx. 23 million metric tonnes of hot metal. During the last reline in 1985 the furnace was equipped with a third taphole and a bell-less top. The lining consists of graphite and semi-graphite and the cooling consists of a dense pattern of copper plate coolers. The current campaign is marked by several important operational events, in particular the high productivity and PCI rates, but also by the remarkable performance of the lining which has shown limited wear in the first four years of the campaign, and hardly any reduction of the lining thickness in the last seven years. This paper discusses the design of the furnace, and the history of the current campaign with respect to its productivity, PCI rates and lining wear.

Tijhuis, G.; Toxopeus, H.; Berg, H. van den; Vliet, C. van der [Hoogovens Steel, IJmuiden (Netherlands)

1997-12-31T23:59:59.000Z

111

ARM - Field Campaign - ARRA AERI Comparison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIIIgovCampaignsARMgovCampaignsARRA

112

ARM - Field Campaign - Cloud Radar IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWSTCampaign 2govCampaignsCloud

113

ARM - Field Campaign - Diffuse Shortwave IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD SensorgovCampaignsComplex LayeredgovCampaignsDiffuse

114

ARM - Field Campaign - Fall 1997 Aerosol IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-Arctic CloudgovCampaignsFall 1997

115

ARM - Field Campaign - Fall 1997 Cloud IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-Arctic CloudgovCampaignsFall

116

ARM - Field Campaign - MASRAD - Aerosol Optical Properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR CloudgovCampaignsLower

117

ARM - Field Campaign - MWR Temporary Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIRgovCampaignsMASRAD:

118

ARM - Field Campaign - RS-90 Transition IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaignSTations (RADAGAST)govCampaignsRS-90

119

ARM - Field Campaign - SGP '97 (Hydrology) IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicator Sonde Campaign ARM

120

ARM - Field Campaign - SGP99 IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicator Sonde Campaign

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ARM - Field Campaign - Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicatorgovCampaignsSingle Column Model

122

ARM - Field Campaign - Spring Cloud IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single Column ModelgovCampaignsSpring

123

ARM - Field Campaign - Summer 1996 SCM IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 SinglegovCampaignsSummer 1995

124

ARM - Field Campaign - Surface Albedo IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994govCampaignsSummer02.09 - 2004.02.13

125

ARM - Field Campaign - Surface Albedo IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994govCampaignsSummer02.09 -

126

ARM - Field Campaign - Surface spectral albedo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994govCampaignsSummer02.09

127

ARM - Field Campaign - UAV Field Test IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring(PROBE)govCampaignsTwo-ColumnEffects

128

ARM - Field Campaign - Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX) govCampaignsVerification ofgovCampaignsWater

129

Transmutation Fuels Campaign FY-09 Accomplishments Report  

SciTech Connect (OSTI)

This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

Lori Braase

2009-09-01T23:59:59.000Z

130

Inside this issue: Energy Campaign 1  

E-Print Network [OSTI]

Inside this issue: Energy Campaign 1 Sustainability Week 2 UAlbany Gets Award 3 Car Share Update 4 Car Pooling and Ride Sharing Service 4 Recycling Field Trip 5 Winter Local Eating 6 Spring Events 7.albany.zipride.org) and our car sharing service (www.connectbyhertz.com). Thursday was Conservation Day. This day we focused

Linsley, Braddock K.

131

Competitive Energy Reduction (CER) Campaign at the University of Texas  

E-Print Network [OSTI]

1 Competitive Energy Reduction (CER) Campaign at the University of Texas Scientists and Engineers Reduction Campaign at the University of Texas Energy Reduced by Enlisting Volunteers and Promoting .................................................................................................................................................10 Appendix A ­ Lab Energy Audit Checklist

Hofmann, Hans A.

132

Energy Department Notifies State of New Mexico that 3706 Campaign...  

Broader source: Energy.gov (indexed) [DOE]

Notifies State of New Mexico that 3706 Campaign Will Not Meet June Deadline Energy Department Notifies State of New Mexico that 3706 Campaign Will Not Meet June Deadline May 30,...

133

National Ignition Campaign Hohlraum Energetics  

SciTech Connect (OSTI)

The first series of experiments on the National Ignition Facility (NIF) [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, 'The National Ignition Facility: ushering in a new age for high energy density science,' Phys. Plasmas 16, 041006 (2009)] tested ignition hohlraum 'energetics,' a term described by four broad goals: (1) Measurement of laser absorption by the hohlraum; (2) Measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) Quantitative understanding of the laser absorption and resultant x-ray flux; and (4) Determining whether initial hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.

Meezan, N B; Atherton, L J; Callahan, D A; Dewald, E L; Dixit, S N; Dzenitis, E G; Edwards, M J; Haynam, C A; Hinkel, D E; Jones, O S; Landen, O; London, R A; Michel, P A; Moody, J D; Milovich, J L; Schneider, M B; Thomas, C A; Town, R J; Warrick, A L; Weber, S V; Widmann, K; Glenzer, S H; Suter, L J; MacGowan, B J; Kline, J L; Kyrala, G A; Nikroo, A

2009-11-16T23:59:59.000Z

134

Introduction to the RTU Campaign SWEEP Webinar  

E-Print Network [OSTI]

· Who: Campaign organizers, supporters, and DOE ­ Organizers: ASHRAE, RILA, and others to be announced energy use by up to 50% compared with Standard 90.1 #12;RTU Efficiencies 90.1-1999 90.1-2001 90.1-2004 (90.1-2010 CEE (1/6/2012) RTU ChallengeTier 1 Tier 2 Type Btu/h SEER EER SEER EER SEER EER

California at Davis, University of

135

2013 NCSAM Campaign | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker Registry Summary 2013Evaluation3 NCSAM Campaign 2013

136

Power Systems Development Facility Gasification Test Campaign TC16  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

Southern Company Services

2004-08-24T23:59:59.000Z

137

Power Systems Development Facility Gasification Test Campaign TC17  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

Southern Company Services

2004-11-30T23:59:59.000Z

138

EUREM 12, Brno, Czech Republic, July 9-14, 2000 P 257 High yield incorporation of ZrCl4 into single wall carbon nanotubes  

E-Print Network [OSTI]

in a furnace, held at temperature for 1hr and then furnace cooled. The specimens were characterised using) show the filling product obtained from as-supplied ZrCl4. Figure 1(a) shows an empty SWNT tip. Below beam. The average filling yield for `as-supplied' ZrCl4 was estimated to be between 20-30%. #12;P 258

Dunin-Borkowski, Rafal E.

139

Power Systems Development Facility Gasification Test Campaign TC25  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

Southern Company Services

2008-12-01T23:59:59.000Z

140

Estimating Corn Grain Yields  

E-Print Network [OSTI]

can collect samples from a corn field and use this data to calculate the yield estimate. An interactive grain yield calculator is provided in the Appendix of the pdf version of this publication. The calculator is also located in the publication.... Plan and prepare for sample and data collection. 2. Collect field samples and record data. 3. Analyze the data using the interactive grain yield calculator in the Appendix. Plan and prepare for sample and data collection Predetermine sample locations...

Blumenthal, Jurg M.; Thompson, Wayne

2009-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

White Wind Farms Strategic Communications Campaign  

E-Print Network [OSTI]

power and brand loyalty creates a major shift in how alcohol is marketed. Recent successful ad campaigns for wine have been centered on occasion-based usage rather than the old, yet familiar, picturesque scenes of vineyards and landscapes. Ads show... and to be environmentally friendly. It houses baby doll sheep, which can’t eat anything above 26 inches, to prevent the use of herbicides and to reduce the use of mowers in the vineyard. The sheep eat broadleaf weeds, grass and the portion of the vines that require...

Ford, Gina; Noulles, Mary; James, Jessica

2014-09-03T23:59:59.000Z

142

Advanced Fuels Campaign Cladding & Coatings Meeting Summary  

SciTech Connect (OSTI)

The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) organized a Cladding and Coatings operational meeting February 12-13, 2013, at Oak Ridge National Laboratory (ORNL). Representatives from the U.S. Department of Energy (DOE), national laboratories, industry, and universities attended the two-day meeting. The purpose of the meeting was to discuss advanced cladding and cladding coating research and development (R&D); review experimental testing capabilities for assessing accident tolerant fuels; and review industry/university plans and experience in light water reactor (LWR) cladding and coating R&D.

Not Listed

2013-03-01T23:59:59.000Z

143

ARM - Field Campaign - ARESE II IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIII ARM DatagovCampaignsARESE II IOP

144

ARM - Field Campaign - ARM LBNL Carbon Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIII ARMgovCampaignsARM LBNL Carbon

145

ARM - Field Campaign - Boundary Layer Cloud IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWST Cloud OD SensorgovCampaignsBoundary

146

ARM - Field Campaign - CLASIC - SAM Support  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWST Cloud ODgovCampaignsCLASIC

147

ARM - Field Campaign - Fall 1995 UAV IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-Arctic Cloud

148

ARM - Field Campaign - Fall 1997 SCM IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-Arctic

149

ARM - Field Campaign - Fall 1997 Shortwave IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-ArcticShortwave IOP ARM Data

150

ARM - Field Campaign - Fall 1997 UAV IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-ArcticShortwave IOP ARM DataUAV IOP

151

ARM - Field Campaign - Fall 2002 SCM IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-ArcticShortwave IOP ARM

152

ARM - Field Campaign - ISDAC - Hemispheric Flux Spectroradiometer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR Cloud Camera Feasibility Study ARM-

153

ARM - Field Campaign - International Pyrgeometer Intercomparison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR Cloud Camera

154

ARM - Field Campaign - Microwave Radiometer Profiler Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARM Data DiscoverygovCampaignsMicrowave

155

ARM - Field Campaign - NSA Scanning Radar IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning Radar IOP ARM

156

ARM - Field Campaign - NSA Snow IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning Radar IOP

157

ARM - Field Campaign - Spring 1994 UAV IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single Column Model IOP ARM

158

ARM - Field Campaign - Spring 1996 SCM IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single Column Model IOPSCM IOP ARM

159

ARM - Field Campaign - Spring 1996 UAV IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single Column Model IOPSCM IOP ARMUAV

160

ARM - Field Campaign - Spring 1997 SCM IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single Column Model IOPSCM IOP

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ARM - Field Campaign - Spring 2002 SCM IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single Column Model IOPSCM

162

ARM - Field Campaign - Spring SCM IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single Column

163

ARM - Field Campaign - Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX) govCampaignsVerification

164

ARM - Field Campaign - Winter SCM IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWinter SCM IOP ARM Data Discovery

165

Indirect and Semi-Direct Aerosol Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Name LastNews ArchiveCampaign

166

The Air-Fluorescence Yield  

E-Print Network [OSTI]

Detection of the air-fluorescence radiation induced by the charged particles of extensive air showers is a well-established technique for the study of ultra-high energy cosmic rays. Fluorescence telescopes provide a nearly calorimetric measure of the primary energy. Presently the main source of systematic uncertainties comes from our limited accuracy in the fluorescence yield, that is, the number of fluorescence photons emitted per unit of energy deposited in the atmosphere by the shower particles. In this paper the current status of our knowledge on the fluorescence yield both experimental an theoretical will be discussed.

F. Arqueros; F. Blanco; D. Garcia-Pinto; M. Ortiz; J. Rosado

2008-07-30T23:59:59.000Z

167

Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF  

SciTech Connect (OSTI)

The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator/photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y{sub n}) measurements from below 10{sup 9} (DD) to nearly 10{sup 15} (DT). The detectors initially demonstrated detector-to-detector Y{sub n} precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of {+-}10% and precision of {+-}1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y{sub n} measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.

Moran, M. J.; Bond, E. J.; Clancy, T. J.; Eckart, M. J.; Khater, H. Y. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Glebov, V. Yu. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States)

2012-10-15T23:59:59.000Z

168

Transmutation Fuel Campaign Description and Status  

SciTech Connect (OSTI)

This report contains a technical summary package in response to a Level 2 milestone in the transmutation fuel campaign (TFC) management work-package calling for input to the Secretarial decision. At present, the form of the Secretarial decision package is not fully defined, and it is not clear exactly what will be required from the TFC as a final input. However, it is anticipated that a series oftechnical and programmatic documents will need to be provided in support of a wider encompassing document on GNEP technology development activities. The TFC technical leadership team provides this report as initial input to the secretarial decision package which is being developed by the Technical Integration Office (TIO) in support of Secretarial decision. This report contains a summary of the TFC execution plan with a work breakdown structure, highlevel schedule, major milestones, and summary description of critical activities in support of campaign objectives. Supporting documents referenced in this report but provided under separate cover include: • An updated review of the state-of-the art for transmutation fuel development activities considering national as well as international fuel research and development testing activities. • A definition of the Technology Readiness Level (TRL) used to systematically define and execute the transmutation fuel development activities.

Jon Carmack; Kemal O. Pasamehmetoglu

2008-01-01T23:59:59.000Z

169

The Indirect and Semi-Direct Aerosol Campaign  

ScienceCinema (OSTI)

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-06-12T23:59:59.000Z

170

The Indirect and Semi-Direct Aerosol Campaign  

SciTech Connect (OSTI)

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-03-24T23:59:59.000Z

171

Creating an Energy Awareness Campaign - A Handbook for Federal...  

Broader source: Energy.gov (indexed) [DOE]

to reduce energy shortages and reduce America's dependence on foreign oil. Creating an Energy Awareness Campaign: A Handbook for Federal Energy Managers More Documents &...

172

aerosol campaign isdac: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

driven process where already-detached, larger particles investigation The mineral dust size distribution was compared to aircraft measurements from the SAMUM campaign Oxford,...

173

SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms  

SciTech Connect (OSTI)

The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

2007-06-01T23:59:59.000Z

174

Anisotropic yielding of rocks at high temperatures and pressures: Technical progress report No. 2, 16 December 1987--15 December 1988  

SciTech Connect (OSTI)

Progress has been made towards the quantitative determination of anisotropic yield criteria for several foliated and lineated rocks, towards developing models for their mechanical properties based upon interactions between deformation mechanisms and preexisting fabric elements, and towards the characterization of fabrics resulting from diapiric emplacement of magma bodies within shallow portion of the earth's crust. The suite of extension and compression experiments on Four-mile gneiss is nearly complete. Samples cored along six different orientations have been tested at temperatures ranging from 25/degree/ to 800/degree/C and confining pressures of 0 to 400 MPa at a strain rate of 10/sup /minus/5//s, and we are currently investigating the influence of strain rate on yield strength over the range 10/sup /minus/4/less than or equal to/dot /var epsilon//less than or equal to10/sup /minus/6//s. We have examined deformation microstructures of deformed gneiss samples and identified those processes at the grain scale which are associated with its inelastic response. The orthorhombic anisotropy of fracture strength exhibited by the gneiss may be explained by a simple model involving localized slip within micas and microcracking within the stronger, surrounding framework silicates. Micas appear to interact in much the same way as do Mode II shear cracks, and their density, distribution, and preferred orientation affect the nucleation of microcracks which ultimately lead to failure. Ten material parameters of a generalized anisotropic yield function for Four-mile gneiss at room temperature have been determined using nonlinear fitting methods applied to the completed room temperature data. 45 refs.

Kronenberg, A.K.; Russell, J.E.; Carter, N.L.; Handin, C.J.; Gottschalk, R.R.; Shea, W.T.

1989-01-01T23:59:59.000Z

175

Review of the National Ignition Campaign 2009-2012  

SciTech Connect (OSTI)

The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked almost all the diagnostics and infrastructure required for ignition experiments. About half of the 3 yr period covered in this review was taken up by the effort required to install and performance qualify the equipment and experimental platforms needed for ignition experiments. Ignition on the NIF is a grand challenge undertaking and the results presented here represent a snapshot in time on the path toward that goal. The path forward presented at the end of this review summarizes plans for the Ignition Campaign on the NIF, which were adopted at the end of 2012, as well as some of the key results obtained since the end of the NIC.

Lindl, John; Landen, Otto; Edwards, John; Moses, Ed [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Collaboration: NIC Team

2014-02-15T23:59:59.000Z

176

Advanced Fuels Campaign FY 2011 Accomplishments Report  

SciTech Connect (OSTI)

One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

Not Listed

2011-11-01T23:59:59.000Z

177

Status Report on the Development of Research Campaigns  

SciTech Connect (OSTI)

Research campaigns were conceived as a means to focus EMSL research on specific scientific questions. Campaign will help fulfill the Environmental Molecular Sciences Laboratory (EMSL) strategic vision to develop and integrate, for use by the scientific community, world leading capabilities that transform understanding in the environmental molecular sciences and accelerate discoveries relevant to the Department of Energy’s (DOE’s) missions. Campaigns are multi-institutional multi-disciplinary projects with scope beyond those of normal EMSL user projects. The goal of research campaigns is to have EMSL scientists and users team on the projects in the effort to accelerate progress and increase impact in specific scientific areas by focusing user research, EMSL resources, and expertise in those areas. This report will give a history and update on the progress of those campaigns.

Baer, Donald R.; Baker, Scott E.; Washton, Nancy M.; Linggi, Bryan E.

2013-06-30T23:59:59.000Z

178

Power Systems Development Facility Gasification Test Campaign TC22  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

Southern Company Services

2008-11-01T23:59:59.000Z

179

E-Print Network 3.0 - ahip awareness campaigns Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials, referralsleads from NYSERDA's public awareness campaigns, and co-operative advertising... effort is effective at driving the market. NYSERDA's advertising campaign...

180

Revenue impacts of airline yield management  

E-Print Network [OSTI]

In the highly competitive airline industry today, Yield or Revenue Management is extremely important to the survival of any carrier. Since fares are generally matched by all carriers to be competitive, the ability of an ...

Mak, Chung Yu

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ARM - Field Campaign - MWR Inter-Comparison Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIRgovCampaignsMASRAD: Pt.govCampaignsMWR

182

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecision GasCampaign

183

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecisionCampaign

184

ARM - Field Campaign - SGP Ice Nuclei Characterization Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicator Sonde Campaign ARMgovCampaignsSGP

185

ARM - Field Campaign - Indirect and Semi-Direct Aerosol Campaign (ISDAC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR Cloud Camera Feasibility

186

DOE Charitable Giving Campaign Home | Department of Energy  

Energy Savers [EERE]

to donate to CFC through MyPay. 2014 Energy Campaign You can find news and photos from DOE CFC events on this page. Who's Involved Learn about the Core Team and Senior...

187

Simulation for ARPI and the Air Campaign Simulator Scott Anderson  

E-Print Network [OSTI]

' #12;Simulation for ARPI and the Air Campaign Simulator Paul Cohen Scott Anderson David Westbrook will be satis ed, and so forth. Nevertheless, such evaluation is critical to a sci- enti c understanding of how

Southern California, University of

188

Detecting Social Spam Campaigns on Twitter , Indra Widjaja2  

E-Print Network [OSTI]

by users. Unfortunately, Twitter has at- tracted spammers to post spam content which pollutes the community (e.g., advertising a spam site or selling counterfeit goods). Detecting spam campaigns

Wang, Haining

189

Combined Federal Campaign Opening Event Hits a High Note | Department...  

Broader source: Energy.gov (indexed) [DOE]

hope to raise 1,525,000 to aid local, national and international charities that provide health care, medical research, disaster relief and housing assistance, among many other...

190

Conceptual Design - Polar Drive Ignition Campaign  

SciTech Connect (OSTI)

The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain to be defined. In all cases, the facility modifications represent functional changes to existing systems or capabilities. The bulk of the scope yet to be identified is associated with the DPR's and MultiFM beam smoothing. Detailed development plans for these two subsystems are provided in Appendices H and I; additional discussion of subsystem requirements based on the physics of PD ignition is given in Section 3. Accordingly, LLE will work closely with LLNL to develop detailed conceptual designs for the PD-specific facility modifications, including assessments of the operational impact of implementation (e.g., changing optics for direct rather than indirect-drive illumination and swapping from a hohlraum-based ITIC to one that supports PD). Furthermore, the experimental implementation plan represents the current best understanding of the experimental campaigns required to achieve PD ignition. This plan will evolve based on the lessons learned from the National Ignition Campaign (NIC) and ongoing indirect-drive ignition experiments. The plan does not take the operational realities of the PD configuration into account; configuration planning for the proposed PD experiments is beyond the scope of this document.

Hansen, R

2012-04-05T23:59:59.000Z

191

Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)  

SciTech Connect (OSTI)

This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

Not Available

2012-07-01T23:59:59.000Z

192

The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments is planned for summer 2009. This paper summarizes the design, performance, and status of NIF and plans for the NIF ignition experimental program. A brief summary of the overall NIF experimental program is also presented.

Moses, E

2009-09-17T23:59:59.000Z

193

What makes some campaigns more effective than others?: An analysis of three mass media PSI HIV/AIDS campaigns in Kenya.  

E-Print Network [OSTI]

This study included interviews with campaign planners at a major social marketing organization in Kenya and an examination of three comprehensive HIV/AIDS health campaigns produced by the planners. Thematic and qualitative content analysis...

Mabachi, Natabhona Marianne

2008-12-15T23:59:59.000Z

194

SUMMARY REPORT OF THE DOE DIRECT LIQUEFACTION PROCESS DEVELOPMENT CAMPAIGN OF THE LATE TWENTIETH CENTURY  

SciTech Connect (OSTI)

Following the petroleum price and supply disruptions of 1973, the U.S. government began a substantial program to fund the development of alternative fuels. Direct coal liquefaction was one of the potential routes to alternative fuels. The direct coal liquefaction program was funded at substantial levels through 1982, and at much lower levels thereafter. Those processes that were of most interest during this period were designed to produce primarily distillate fuels. By 1999, U.S. government funding for the development of direct coal liquefaction ended. Now that the end of this campaign has arrived, it is appropriate to summarize the process learnings derived from it. This report is a summary of the process learnings derived from the DOE direct coal liquefaction process development campaign of the late twentieth century. The report concentrates on those process development programs that were designed to produce primarily distillate fuels and were largely funded by DOE and its predecessors in response to the petroleum supply and price disruptions of the 1970s. The report is structured as chapters written by different authors on most of the major individual DOE-funded process development programs. The focus of the report is process learnings, as opposed to, say, fundamental coal liquefaction science or equipment design. As detailed in the overview (Chapter 2), DOE's direct coal liquefaction campaign made substantial progress in improving the process yields and the quality of the distillate product. Much of the progress was made after termination by 1983 of the major demonstration programs of the ''first generation'' (SRC-II, H-Coal, EDS) processes.

F.P. Burke; S.D. Brandes; D.C. McCoy; R.A. Winschel; D. Gray; G. Tomlinson

2001-07-01T23:59:59.000Z

195

SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan  

SciTech Connect (OSTI)

The Cloud and Land Surface Interaction Campaign is a field experiment designed to collect a comprehensive data set that can be used to quantify the interactions that occur between the atmosphere, biosphere, land surface, and subsurface. A particular focus will be on how these interactions modulate the abundance and characteristics of small and medium size cumuliform clouds that are generated by local convection. These interactions are not well understood and are responsible for large uncertainties in global climate models, which are used to forecast future climate states. The campaign will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of Cloud and Land Surface Interaction Campaign includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations.

MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; T Jackson; B.Kustas; PJ Lamb; GM McFarquhar; Q Min; B Schmid; MS Torn; DD Turner

2007-06-30T23:59:59.000Z

196

ARM - Expectations for Campaign Implementation and Close Out  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborne Visible/InfraredProductsMicroPulseCampaignsExpectations for Campaign

197

ARM - Field Campaign - Enhanced Soundings for Local Coupling Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD SensorgovCampaignsComplexgovCampaignsEnhanced

198

ARM - Field Campaign - Ganges Valley Aerosol Experiment (GVAX)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-ArcticShortwave IOPgovCampaignsGanges

199

ARM - Field Campaign - LASIC: Layered Atlantic Smoke Interactions with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR Cloud CameraClouds govCampaignsLASIC:

200

ARM - Field Campaign - Lower Atmospheric Boundary Layer Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR CloudgovCampaignsLower Atmospheric

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ARM - Field Campaign - M-PACE - Polarization Diversity Lidar (PDL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR CloudgovCampaignsLower Atmospheric-

202

ARM - Field Campaign - M-PACE HSR Lidar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR CloudgovCampaignsLower Atmospheric-HSR

203

ARM - Field Campaign - MASRAD: Cloud Condensate Nuclei Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR CloudgovCampaignsLowerMeasurements

204

ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIRgovCampaignsMASRAD: Pt. Reyes Stratus

205

ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIRgovCampaignsMASRAD:(MICRE)

206

ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds (MAGIC):  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIRgovCampaignsMASRAD:(MICRE)Marine Ice

207

ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds (MAGIC):  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIRgovCampaignsMASRAD:(MICRE)Marine

208

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecision Gas Sampling (PGS)

209

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecision Gas Sampling

210

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecision Gas

211

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecision

212

ARM - Field Campaign - Radon Measurements of Atmospheric Mixing (RAMIX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaignSTations2008) govCampaignsRadon

213

ARM - Field Campaign - Routine AAF CLOWD Optical Radiative Observations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicator Sonde Campaign ARM Data

214

ARM - Field Campaign - Semi-Continuous OCEC Particulate Measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicator SondegovCampaignsSemi-Continuous

215

ARM - Field Campaign - Single Frequency GPS Water Vapor Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicatorgovCampaignsSingle Column

216

ARM - Field Campaign - Small Particles in Cirrus (SPartICus)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicatorgovCampaignsSingle

217

ARM - Field Campaign - Spring Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single ColumngovCampaignsSpring Single

218

ARM - Field Campaign - Summer 1995 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 SinglegovCampaignsSummer 1995 Single

219

ARM - Field Campaign - Summer Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 SinglegovCampaignsSummer

220

ARM - Field Campaign - Supplement to Arctic Lower Troposphere Observed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994govCampaignsSummer UAV

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ARM - Field Campaign - The ARM Pilot Radiation Observation Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring(PROBE) govCampaignsThe ARM Pilot

222

ARM - Field Campaign - The MOSAiC Atmosphere  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring(PROBE) govCampaignsThe ARM

223

ARM - Field Campaign - Thin Cloud Rotating Shadowband Radiometer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring(PROBE) govCampaignsThe

224

ARM - Field Campaign - Tropical Ocean Global Atmosphere Coupled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring(PROBE) govCampaignsTheOcean-Atmosphere

225

ARM - Field Campaign - Two-Column Aerosol Project (TCAP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring(PROBE)govCampaignsTwo-Column Aerosol

226

ARM - Field Campaign - Whole Sky Imager Cloud Fraction Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX) govCampaignsVerificationgovCampaignsWhole

227

Campaign 2 Level 2 Milestone Review 2009: Milestone # 3132 Determine Sustainable TATB Source and Processing Options, and Potential Binder Options  

SciTech Connect (OSTI)

A presentation was made to the Milestone review committee on September 18, 2009 that outlined the efforts making up the achievement of the Campaign 2, Level 2 Milestone No.3132. After the presentation and review of the collective work, the committee determined that the milestone was successfully completed. Highlights from this review are discussed here. A brief summary of the discussion points includes: (1) It was clear that this work represents a comprehensive collection of experimental, modeling, literature review, and analysis activities with a thorough attention to the details. The deliverables include 2 technical presentations and 5 written reports describing this work. (2) This is a joint LLNL/LANL milestone led by Campaign 2 with leveraging effort from other campaigns and activities at LLNL: (a) The contributing programs included Enhanced Surveillance Campaign (ESC) and Readiness Campaign. Key technical elements of this work were built on scientific advances from the Laboratory Directed Research and Development (LDRD) program. (b) Part of this work covers activities associated with the Enhanced Collaboration (EC) with the Atomic Weapons Establishment (AWE). (3) This Milestone work has supported a high-level Directed Stockpile Work (DSW) Joint DoD/DOE TATB Production Initiative. This is an example of the strong relevance of this Milestone research to current stockpile issues. A summary of the future direction in this research area includes: (1) The Ionic Liquid (IL) re-crystallization process has been demonstrated to improve the performance of recrystallized TATB molecule. However, lower thermal stability of the IL crystallized material (compared to conventional TATB) warrants further study to understand the source of this effect. (2) The compatibility issue needs to be addressed in upcoming work. One concern is how the new solvent and ionic liquid used in the formulation process might behave in the nuclear explosive assembly. Similarly, compatibility studies for the candidate binder must be performed. The future focus on R&D and additional scientific tools to address these areas is technically sound. (3) Currently there is no defined process for advancing this milestone's research and development successes into a production scale effort. The committee recognizes that other campaigns (Readiness Campaign, Enhanced Surveillance Campaign) will need to consider additional leverage resources for that scale-up effort. (4) We recommend that this effort continues to use modeling and experiment as complimentary paths to strengthen the scientific approach.

Schwartz, A J

2009-09-28T23:59:59.000Z

228

Power Systems Development Facility Gasification Test Campaign TC24  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

Southern Company Services

2008-03-30T23:59:59.000Z

229

Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign  

SciTech Connect (OSTI)

The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R; Cerjan, C; Dylla-Spears, R; Mapoles, E; Munro, D; Salmonson, J; Sepke, S; Weber, S; Hatchett, S; Haan, S; Springer, P; Moses, E; Mapoles, E; Munro, D; Salmonson, J; Sepke, S

2011-12-16T23:59:59.000Z

230

Learning to Identify Regular Expressions that Describe Email Campaigns  

E-Print Network [OSTI]

be used to blacklist the bulk of emails of that campaign at virtually no risk of covering any other messages. Language identification has a rich history in the al- gorithmic learning theory community (see Section 6). Our problem setting differs from the problem of lan- guage identification in the learner

Scheffer, Tobias

231

THE CAMPAIGN FOR UC SANTA CRUZ THE GENOMICS  

E-Print Network [OSTI]

THE CAMPAIGN FOR UC SANTA CRUZ THE GENOMICS INSTITUTE #12;OVERVIEW The UC Santa Cruz Genomics Institute provides the framework for the next great leap in the science of genomics. ensured it would genomic science and speed the benefits of discoveries that improve and save lives. Cancer, autoimmune

California at Santa Cruz, University of

232

1-pin blanket mockup: Results of the extended test campaign  

SciTech Connect (OSTI)

Following a preliminary test campaign (200 thermal cycles) on a solid breeder blanket mockup, an extended test campaign (about 1000 thermal cycles) has been carried out by ENEA. The duration of the test campaign represents a significant fraction of the blanket module lifetime in the ITER device. In particular, these out-of-pile experiments have been performed in order to test (both functional and endurance testing) the thermal-hydraulic and thermo-mechanical performance of a water cooled breeder-in-tube blanket mockup (1-PIN) using Li{sub 2}ZrO{sub 3} pebbles as a breeder material. The test campaign has been completed and the resulting data concerning thermal and thermal-hydraulic parameters have been elaborated and analyzed by means of a comparison with theoretical predictions based on a proper thermal-hydraulic model. The post test examination of the pebbles is in progress in order to investigate the thermo-mechanical behavior of the breeder material under cycling. The paper deals with the first part of the results. 6 refs., 11 figs., 1 tab.

Ferrari, M.; Talarico, C. [EURATOM-ENEA, Frascati (Italy); Furrer, M.; Simbolotti, G. [ENEA, S. Maria in Galeria (Italy)

1996-12-31T23:59:59.000Z

233

Recycling Campaign Prizes for best project proposal to  

E-Print Network [OSTI]

coffee cups into the paper bin; which makes us come to the conclusion that communication around, but prevention and raising awareness is better. There are new posters being utilized, what other ways can that is described below. Register Each coordinator is asked to send an e-mail (subject: Recycling Campaign Award

van der Torre, Leon

234

Author's personal copy Performance analysis of keyword advertising campaign using  

E-Print Network [OSTI]

image. Our results establishes that positive brand reputation creates dramatic influence on consumer highlights that gender is a key predictor of purchase intent, and the notion of positive brand image enhancesAuthor's personal copy Performance analysis of keyword advertising campaign using gender-brand

Jansen, James

235

Recycling Campaign Award Prizes for best project proposal to improve  

E-Print Network [OSTI]

Recycling Campaign Award Prizes for best project proposal to improve waste recycling. Recycling bins contain inappropriate waste that cannot be recycled and thus are not picked up. THE REASON for picking up the waste. 60% of the waste budget. Your task: - To develop a new project to improve recycling

van der Torre, Leon

236

CAMPAIGNING, CANVASSING AND PETITION DRIVES ON THE MICHIGAN STATE UNIVERSITY CAMPUS  

E-Print Network [OSTI]

CAMPAIGNING, CANVASSING AND PETITION DRIVES ON THE MICHIGAN STATE UNIVERSITY CAMPUS - GUIDELINES - Michigan State University encourages students to be informed about and participate in the political process campaigning, canvassing and petitioning drives on the Michigan State University campus. These statements

Liu, Taosheng

237

SUPPLEMENTARY MATERIALS Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns  

E-Print Network [OSTI]

values. #12;Figure S2: Scatter plot of observed acetonitrile and OA concentrations for seven campaigns in black. 80th percentile acetonitrile concentrations for each campaign are indicated with a dashed line

Meskhidze, Nicholas

238

A versatile detector for total fluorescence and electron yield experiments  

SciTech Connect (OSTI)

The combination of a non-coated silicon photodiode with electron repelling meshes makes a versatile detector for total fluorescence yield and electron yield techniques highly suitable for x-ray absorption spectroscopy. In particular, a copper mesh with a bias voltage allows to suppress or transmit the electron yield signal. The performance of this detection scheme has been characterized by near edge x-ray absorption fine structure studies of thermal oxidized silicon and sapphire. The results show that the new detector probes both electron yield and for a bias voltage exceeding the maximum photon energy the total fluorescence yield.

Thielemann, N. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, 12489 Berlin (Germany); Hoffmann, P. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Foehlisch, A. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam (Germany)

2012-09-15T23:59:59.000Z

239

Struggling to set the campaign agenda: candidates, the media, and interest groups in elections  

E-Print Network [OSTI]

come from three primary sources: twenty-eight Senate campaigns, fourteen newspapers, and the National Journal website (which archives campaign advertisements). Data collection and content analysis... (Kahn and Kenney 1999), media reports from newspapers (Petrocik 1996), and campaign summaries in specialty publications such as Congressional Quarterly, Roll Call, Cook Political Report (Dalager 1996). Each...

Campbell, Kristin Lynn

2005-02-17T23:59:59.000Z

240

Spent Nuclear Fuel Trasportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository (if licensed) in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge--to develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned. The objective of this lessons learned study was to identify successful, best-in-class trends and commonalities from past shipping campaigns, which OCRWM could consider when planning for the development and operation of a repository transportation system. Note: this paper is for analytical and discussion purposes only, and is not an endorsement of, or commitment by, OCRWM to follow any of the comments or trends. If OCRWM elects to make such commitments at a future time, they will be appropriately documented in formal programmatic policy statements, plans and procedures. Reviewers examined an extensive study completed in 2003 by DOE's National Transportation Program (NTP), Office of Environmental Management (EM), as well as plans and documents related to SNF shipments since issuance of the NTP report. OCRWM examined specific planning, business, institutional and operating practices that have been identified by DOE, its transportation contractors, and stakeholders as important issues that arise repeatedly. In addition, the review identifies lessons learned or activities/actions which were found not to be productive to the planning and conduct of SNF shipments (i.e., negative impacts). This paper is a 'looking back' summary of lessons learned across multiple transportation campaigns. Not all lessons learned are captured here, and participants in some of the campaigns have divergent opinions and perspectives about which lessons are most critical. This analysis is part of a larger OCRWM benchmarking effort to identify best practices to consider in future transportation of radioactive materials ('looking forward'). Initial findings from this comprehensive benchmarking analysis are expected to be available in late fall 2006.

M. Keister; K, McBride

2006-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign

242

ARM - Field Campaign - Shortwave Radiation and Aerosol Intensive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicator

243

ARM - Field Campaign - Summer 1994 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single

244

ARM - Field Campaign - Summer Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994

245

ARM - Field Campaign - Tropical Warm Pool - International Cloud Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring(PROBE)

246

The 2nd campaign of Pohang No. 2 B.F. and its relining plan for the 3rd campaign  

SciTech Connect (OSTI)

Pohang No. 2 blast furnace will be relined on April 1997. This project will spend 105 days in preparation for the next campaign. Pohang No. 2 blast furnace started all-coke consuming operation from the birth of the 2nd campaign, and started PCI operation 10 years later in 1993 in pursuit of energy-saving and cut-down manufacturing cost. However, in 1994, the furnace condition got worse than ever before due to unbalanced gas flow in the blast furnace. The main reason was that worn-out refractories disturbed the gas flow in the upper shaft wall area. There was no choice but to repair the worn-out refractories by castable gunning with pre-inserted supporting bars (POSCO-originated). The paper describes the process.

Lee, Y. [POSCO, Pohang (Korea, Republic of). Ironmaking Dept.

1997-12-31T23:59:59.000Z

247

Correlation of grain sorghum yield to nitrogen as measured by various soil test methods  

E-Print Network [OSTI]

Nitrogen vs. Percent Relative Yield. . . 23 B. Humic Acid vs. Percent Relative Yield 26 C. Organic Matter vs. Percent Relative Yield D. Organic Matter vs. Nitrifiable Nitrogen E. Organic Matter vs. Hurnic Acid . 30 V. SUMMARY AND CONCLUSION VI... Regression of Percent Relative Yield Nitrogen (High Plains Soil) . on Nitrifiable 34 Regression of Percent Relative Yield on Nitrifiable Nitrogen (Blackland Prairie Soils) Regression of Percent Relative Yield on Humic Acid (All Soils) Regression...

Idris, Md

1963-01-01T23:59:59.000Z

248

Weather-based forecasts of California crop yields  

SciTech Connect (OSTI)

Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over the 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.

Lobell, D B; Cahill, K N; Field, C B

2005-09-26T23:59:59.000Z

249

Yield  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2 ContinuingYan Mei Wang YanMet and

250

Multiwavelength campaign on the HBL PKS~2155-304 : A new insight on its spectral energy distribution  

E-Print Network [OSTI]

The blazar PKS~2155-304 was the target of a multiwavelength campaign from June to October 2013 which widely improves our knowledge of its spectral energy distribution. This campaign involved the NuSTAR satellite (3-79 keV), the Fermi Large Area Telescope (LAT, 100~MeV-300~GeV) and the High Energy Stereoscopic System (H.E.S.S.) array phase II (with an energy threshold of few tens of GeV). While the observations with NuSTAR extend the X-ray spectrum to higher energies than before, H.E.S.S. phase II, together with the use of the LAT PASS 8, enhance the coverage of the $\\gamma$-ray regime with an unprecedented precision. In this work, preliminary results from the multi-wavelength analysis are presented.

Sanchez, D A; Zaborov, D; Parson, D; Madejski, G M; NuSTAR, A Furniss On behalf of the; Fermi,

2015-01-01T23:59:59.000Z

251

Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge—to develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned.

Marsha Keister; Kathryn McBride

2006-08-01T23:59:59.000Z

252

Status of fission yield evaluations  

SciTech Connect (OSTI)

Very few yield compilations are also evaluations, and very few contain an extensive global library of measured data and extensive models for unmeasured data. The earlier U.K. evaluations and US evaluations were comparable up to the retirements of the primary evaluators. Only the effort in the US has been continued and expanded. The previous U.K. evaluations have been published. In this paper we summarize the current status of the US evaluation, philosophy, and various integral yield tests for 34 fissioning nuclides at one or more neutron incident energies and/or for spontaneous fission. Currently there are 50 yield sets and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized, the recommended data will become part of the next version of the US Evaluated Nuclear Data File (ENDF/B-VI). The complete set of data, including the basic input of measured yields, will be issued as a sequel to the General Electric evaluation reports (better known by the authors' names: Rider - or earlier - Meek and Rider). 16 references.

England, T.R.; Rider, B.F.

1983-01-01T23:59:59.000Z

253

Scientific system for high-resolution measurement of the circumsolar radiation  

SciTech Connect (OSTI)

We developed a camera based system for measurements of the circumsolar radiation with a high angular resolution of 0.1 mrad. Subsequent measurements may be taken at intervals as short as 15 s. In this publication we describe the optical system in detail and discuss some aspects of the measurement method. First results from two days of measurement at Freiburg i. Br., Germany, are presented and compared to data from literature. The good results encourage us to perform longer measurement campaigns in future to better understand the influence of circumsolar radiation on the power yield of concentrating photovoltaic systems.

Schrott, Simeon, E-mail: thomas.schmidt@ise.fraunhofer.de; Schmidt, Thomas, E-mail: thomas.schmidt@ise.fraunhofer.de; Hornung, Thorsten, E-mail: thomas.schmidt@ise.fraunhofer.de; Nitz, Peter, E-mail: thomas.schmidt@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

2014-09-26T23:59:59.000Z

254

The NIF x-ray spectrometer calibration campaign at Omega  

SciTech Connect (OSTI)

The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the OMEGA laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2–18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

Pérez, F.; Kemp, G. E.; Barrios, M. A.; Pino, J.; Scott, H.; Ayers, S.; Chen, H.; Emig, J.; Colvin, J. D.; Fournier, K. B., E-mail: fournier2@llnl.gov [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551 (United States); Regan, S. P.; Bedzyk, M.; Shoup, M. J.; Agliata, A.; Yaakobi, B.; Marshall, F. J.; Hamilton, R. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Jaquez, J.; Farrell, M.; Nikroo, A. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)

2014-11-15T23:59:59.000Z

255

The Arctic Lower Troposphere Observed Structure (ALTOS) Campaign  

SciTech Connect (OSTI)

The ALTOS campaign focuses on operating a tethered observing system for routine in situ sampling of low-level (< 2 km) Arctic clouds. It has been a long-term hope to fly tethered systems at Barrow, Alaska, but it is clear that the Federal Aviation Administration (FAA) will not permit in-cloud tether systems at Barrow, even if unmanned aerial vehicle (UAV) operations are allowed in the future. We have provided the scientific rationale for long-term, routine in situ measurements of cloud and aerosol properties in the Arctic. The existing restricted air space at Oliktok offers an opportunity to do so.

Verlinde, J

2010-10-18T23:59:59.000Z

256

ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements Media ContactCenterFeaturegovCampaignsARM Cloud

257

ARM - Steps for Submitting Field Campaign Data and Metadata  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScienceSteering Committee Related LinksCampaignsSteps

258

ARM - Field Campaign - Year of Tropical Convection (YOTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News]JanuarygovCampaignsYear of Tropical

259

ARM - Field Campaign - AIRS Validation Soundings - Phases 6 and 7  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15,October 6,2govCampaignsAIRS

260

ARM - Field Campaign - AIRS Validation Soundings Phase III  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15,OctobergovCampaignsAIRS

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ARM - Field Campaign - ARM MJO Investigation Experiment on Gan Island  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIII ARMgovCampaignsARM LBNL

262

ARM - Field Campaign - ARM West Antarctic Radiation Experiment - AWARE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIIIgovCampaignsARM West Antarctic

263

ARM - Field Campaign - ARM-FIRE Water Vapor Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIIIgovCampaignsARM West

264

ARM - Field Campaign - ARM-UAV Fall 2002  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIIIgovCampaignsARM

265

ARM - Field Campaign - Aerosol Lidar Validation Experiment - ALIVE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfrared SpectralgovCampaignsAerosol

266

ARM - Field Campaign - Arctic Lower Troposphere Observed Structure (ALTOS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfraredgovCampaignsAircraft Carbon

267

ARM - Field Campaign - Arctic Winter Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfraredgovCampaignsAircraft

268

ARM - Field Campaign - Azores: Clouds, Aerosol and Precipitation in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfraredgovCampaignsAircraftIslandMarine

269

ARM - Field Campaign - Chile: Radiative Heating in Underexplored Bands  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWSTCampaign 2 (RHUBC-II)

270

ARM - Field Campaign - Cloudiness Inter-Comparison IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWSTCampaign

271

ARM - Field Campaign - Complex Layered Cloud Experiment (CLEX)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD SensorgovCampaignsComplex Layered Cloud Experiment

272

ARM - Field Campaign - Deep Convective Clouds and Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD SensorgovCampaignsComplex Layered

273

ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-Arctic Cloud Experiment/SHEBA ARM

274

ARM - Field Campaign - Fall 1994 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-Arctic Cloud Experiment/SHEBA

275

ARM - Field Campaign - Fall 1995 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-Arctic Cloud Experiment/SHEBASingle

276

ARM - Field Campaign - Fall 1997 Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-ArcticShortwave IOP ARM DataUAV

277

ARM - Field Campaign - IR Cloud Camera Feasibility Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR Cloud Camera Feasibility Study ARM Data

278

ARM - Field Campaign - IRSI Inter-Comparison Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR Cloud Camera Feasibility Study ARM

279

ARM - Field Campaign - ISDAC - NASA ARCTAS Coordination with ARM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR Cloud Camera Feasibility Study ARM-- NASA

280

ARM - Field Campaign - ISDAC / RISCAM - Humidified Tandem Differential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR Cloud Camera Feasibility Study ARM--

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARM - Field Campaign - Lidar support for ICECAPS at Summit, Greenland  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR Cloud CameraClouds

282

ARM - Field Campaign - Long-Term Microwave Radiometer Intercomparison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR Cloud

283

ARM - Field Campaign - Mixed-Phase Arctic Cloud Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARM Data(MC3E)govCampaignsMixed-Phase

284

ARM - Field Campaign - NSF-Sponsored Aerosonde Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning Radar

285

ARM - Field Campaign - PGS Validation 2011-2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by MicrotopsParsivel2TEM ofgovCampaignsPGS

286

ARM - Field Campaign - RAdiative Divergence using AMF, GERB and AMMA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaignSTations (RADAGAST)

287

ARM - Field Campaign - Radon Measurements of Atmospheric Mixing (RAMIX)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaignSTations2008)

288

ARM - Field Campaign - Rain Microphysics Study with Disdrometer and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaignSTations2008)Polarization Radar

289

ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaignSTations2008)Polarization

290

ARM - Field Campaign - SUbsonic Aircraft: Contrail & Cloud Effects Special  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicator Sonde

291

ARM - Field Campaign - Spring 1994 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single Column Model IOP ARM Data

292

ARM - Field Campaign - Spring 1995 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single Column Model IOP

293

ARM - Field Campaign - Spring 2014 Nocturnal Avian Migration Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994 Single Column Model

294

ARM - Field Campaign - Water Cycle Pilot Study Intensive Observations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX) govCampaignsVerification of

295

ARM - Field Campaign - Winter Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWinter SCM IOP ARM Data

296

Microsoft Word - Research Campaign_Peden et al.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 -3 Subject: TankINL busingIsoprene fromCampaign:

297

Used fuel disposition campaign international activities implementation plan.  

SciTech Connect (OSTI)

The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

Nutt, W. M. (Nuclear Engineering Division)

2011-06-29T23:59:59.000Z

298

Direct drive heavy-ion-beam inertial fusion at high coupling efficiency  

E-Print Network [OSTI]

M J of fusion yield. This NIF capsule design ab- sorbs 200capsules the size of the NIF capsule with heavy-ion beams (designs emerge, and, if the NIF's ignition campaign is also

Logan, B.G.

2008-01-01T23:59:59.000Z

299

Direct Drive Heavy-Ion-Beam Inertial Fusion at High Coupling Efficiency  

E-Print Network [OSTI]

of fusion yield [16]. This NIF capsule design absorbs 200 kJcapsules the size of the NIF capsule with heavy ion beams (designs emerge, and, i f the NIF's ignition campaign is also

Logan, B. Grant

2008-01-01T23:59:59.000Z

300

UNCONVENTIONAL METHODS FOR YIELD IMPROVEMENT  

E-Print Network [OSTI]

methods (active heating and cooling, directional solidifi- cation) Novel yield improvement techniques through a vari- ety of active heating and cooling schemes. It is envisioned that the techniques will allow techniques for decreasing the size and number of risers re- quired to produce quality castings

Beckermann, Christoph

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Genome sequence of the Brown Norway rat yields insights into  

E-Print Network [OSTI]

Genome sequence of the Brown Norway rat yields insights into mammalian evolution Rat Genome Norway (BN) rat strain. The sequence represents a high-quality `draft' covering over 90% of the genome

Pachter, Lior

302

E-Print Network 3.0 - aggressive media campaigns Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Corporations, Capitalists, and Campaign Finance* Financial contributions to political parties and candidates are an important source of Summary: , nomination by party...

303

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract: A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic...

304

E-Print Network 3.0 - advertising campaigns Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

26 Online Effects of Offline Ads Diane Lambert Summary: searching for the ad- vertiser's brand or visiting the advertiser's websites, even if the ad campaign... . On the other...

305

E-Print Network 3.0 - ad campaign aims Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Biology and Medicine 20 THE SOLARIZE GUIDEBOOK: A community guide to collective purchasing of residential PV systems Summary: of Portland. The Solarize campaigns were...

306

ace-asia field campaign: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

both local and remote, on the West- ern Arctic atmospheric 2013-01-01 184 CLOUD LIFE CYCLE OBSERVED DURING THE 2009 CLOUD TOMOGRAPHY FIELD CAMPAIGN Environmental Sciences...

307

The Swift X-ray monitoring campaign of the center of the Milky Way  

E-Print Network [OSTI]

In 2006 February, shortly after its launch, Swift began monitoring the center of the Milky Way with the onboard X-Ray Telescope using short 1-ks exposures performed every 1-4 days. Between 2006 and 2014, over 1200 observations have been obtained, amounting to ~1.2 Ms of exposure time. This has yielded a wealth of information about the long-term X-ray behavior of the supermassive black hole Sgr A*, and numerous transient X-ray binaries that are located within the 25'x25' region covered by the campaign. In this review we highlight the discoveries made during these first nine years, which includes 1) the detection of seven bright X-ray flares from Sgr A*, 2) the discovery of the magnetar SGR J1745-29, 3) the first systematic analysis of the outburst light curves and energetics of the peculiar class of very-faint X-ray binaries, 4) the discovery of three new transient X-ray sources, 5) exposing low-level accretion in otherwise bright X-ray binaries, and 6) the identification of a candidate X-ray binary/millisecon...

Degenaar, N; Miller, J M; Reynolds, M T; Kennea, J; Gehrels, N

2015-01-01T23:59:59.000Z

308

Even if it's not Bribery: The Case for Campaign Finance Reform  

E-Print Network [OSTI]

Even if it's not Bribery: The Case for Campaign Finance Reform Brendan Daley Erik Snowberg Duke reform alleviates this phenomenon and improves voter welfare at the expense of politicians. Thus, we expect successful politicians to oppose true campaign finance reform. We also show our model

Jensen, Grant J.

309

USE OF UNIVERSITY OF MICHIGAN NAME AND MARKS IN POLITICAL CAMPAIGNS OR BY POLITICAL ORGANIZATIONS  

E-Print Network [OSTI]

USE OF UNIVERSITY OF MICHIGAN NAME AND MARKS IN POLITICAL CAMPAIGNS OR BY POLITICAL ORGANIZATIONS and political organizations may not use the trademarks of the University of Michigan as part of their campaign materials or communications. For instance, they may not use the Block-M, the University seal, the Michigan

Kamat, Vineet R.

310

A network-based modeling framework for stakeholder analysis of China's energy conservation campaign  

E-Print Network [OSTI]

A network-based modeling framework for stakeholder analysis of China's energy conservation campaign Available online 13 July 2011 Keywords: Energy conservation Policy-making Stakeholder analysis Network, the stakeholder analysis of China's energy conservation campaign still has been under-developed. This paper

de Weck, Olivier L.

311

Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planet’s remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energy’s GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities’ pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

312

Ashland's new process could boost gasoline yield  

SciTech Connect (OSTI)

According to O. E. Atkins (Ashland Oil Co.), Ashland's new fluid catalytic cracking process will convert heavy residual oil to (% by vol) 11% fuel gas, 4.8% LNG, 75.7% gasoline (if all the produced olefins are converted to gasoline), 9% distillates, and 8.1% heavy fuel oil. Ashland is building a $70 million, 40,000 bbl/day unit at its 215,000 bbl/day Catlettsburg, Ky., refinery which will increase the present 90,000 bbl/day gasoline yield by 25,000 bbl/day for the same amount of feedstock. The increased gasoline yield (no-lead octane rating of 94) is expected to increase the net margin on a barrel of feed from $8 up to $12, at the present prices of $11.50/bbl of residual oil and $40/bbl of gasoline. Ashland has not disclosed detailed information on the new process, which: can accommodate atmospheric residua that are high in sulfur and metals; is a high temperature, low (about 1 atm) pressure process; does not use hydrogen; uses a proprietary new crystalline silica-alumina microspherical (zeolite) catalyst which, via a proprietary passivating technique, will demetalize crude oil fractions of vanadium and nickel. Residuum cracking processes developed by other companies are briefly discussed.

Atkins, O.E.

1980-04-07T23:59:59.000Z

313

Determination of thermal neutron capture gamma yields  

E-Print Network [OSTI]

A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

Harper, Thomas Lawrence

1969-01-01T23:59:59.000Z

314

Determination of thermal neutron capture gamma yields.  

E-Print Network [OSTI]

A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

Harper, Thomas Lawrence

1969-01-01T23:59:59.000Z

315

Modeling the Spectral Energy Distribution and Variability of 3C 66A during the WEBT campaign of 2003 -- 2004  

E-Print Network [OSTI]

The BL Lac object 3C 66A was observed in an extensive multiwavelength monitoring campaign from July 2003 till April 2004. The spectral energy distribution (SED) was measured over the entire electromagnetic spectrum, with flux measurements from radio to X-ray frequencies and upper limits in the very high energy (VHE) gamma-ray regime. Here, we use a time-dependent leptonic jet model to reproduce the SED and optical spectral variability observed during our multiwavelength campaign. Our model simulations could successfully reproduce the observed SED and optical light curves and predict an intrinsic cutoff value for the VHE gamma-ray emission at ~ 4 GeV. The effect of the optical depth due to the intergalactic infrared background radiation (IIBR) on the peak of the high-energy component of 3C 66A was found to be negligible. Also, the presence of a broad line region (BLR) in the case of 3C 66A may play an important role in the emission of gamma-ray photons when the emission region is very close to the central engine, but further out, the production mechanism of hard X-ray and gamma-ray photons becomes rapidly dominated by synchrotron self-Compton emission. We further discuss the possibility of an observable X-ray spectral variability pattern. The simulated results do not predict observable hysteresis patterns in the optical or soft X-ray regimes for major flares on multi-day time scales.

M. Joshi; M. Boettcher

2007-04-03T23:59:59.000Z

316

Oscillations in Procyon A: First results from a multi-site campaign  

E-Print Network [OSTI]

Procyon A is a bright F5IV star in a binary system. Although the distance, mass and angular diameter of this star are all known with high precision, the exact evolutionary state is still unclear. Evolutionary tracks with different ages and different mass fractions of hydrogen in the core pass, within the errors, through the observed position of Procyon A in the Hertzsprung-Russell diagram. For more than 15 years several different groups have studied the solar-like oscillations in Procyon A to determine its evolutionary state. Although several studies independently detected power excess in the periodogram, there is no agreement on the actual oscillation frequencies yet. This is probably due to either insufficient high-quality data (i.e. aliasing) or due to intrinsic properties of the star (i.e. short mode lifetimes). Now a spectroscopic multi-site campaign using 10 telescopes world-wide (minimising aliasing effects) with a total time span of nearly 4 weeks (increase the frequency resolution) is performed to id...

Hekker, S; Bedding, T R; Bruntt, H; Butler, R P; Kiss, L L; O'Toole, S J; Kambe, E; Ando, H; Izumiura, H; Sato, B; Hartmann, M; Hatzes, A P; Appourchaux, T; Barban, C; Berthomieu, G; Bouchy, F; Catala, C; García, R A; Lebrun, J-C; Martic, M; Michel, E; Mosser, B; Nghiem, P A P; Provost, J; Samadi, R; Thévenin, F; Turck-Chiez, S; Bonanno, S A; Benatti, S; Claudi, R U; Cosentino, R; Leccia, S; Frandsen, S; Brogaard, K; Grundahl, F; Kjeldsen, H; Stempels, H C; Arentoft, T; Bazot, M; Christensen-Dalsgaard, J; Dall, T H; Carrier, F; Eggenberger, P; Sosnowska, D; Wittenmeyer, R A; Endl, M; Metcalfe, T S

2007-01-01T23:59:59.000Z

317

Integrated DWPF Melter System (IDMS) campaign report: Hanford Waste Vitrification Plan (HWVP) process demonstration  

SciTech Connect (OSTI)

Vitrification facilities are being developed worldwide to convert high-level nuclear waste to a durable glass form for permanent disposal. Facilities in the United States include the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the West Valley Demonstration Project (WVDP) at West Valley, NY. At each of these sites, highly radioactive defense waste will be vitrified to a stable borosilicate glass. The DWPF and WVDP are near physical completion while the HWVP is in the design phase. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. Because of the similarities of the DWPF and HWVP processes, the IDMS facility has also been used to characterize the processing behavior of a reference NCAW simulant. The demonstration was undertaken specifically to determine material balances, to characterize the evolution of offgas products (especially hydrogen), to determine the effects of noble metals, and to obtain general HWVP design data. The campaign was conducted from November, 1991 to February, 1992.

Hutson, N.D.

1992-08-10T23:59:59.000Z

318

Evaluation of WRF mesoscale simulations and particle trajectory analysis for the MILAGRO field campaign  

E-Print Network [OSTI]

Accurate numerical simulations of the complex wind flows in the Mexico City Metropolitan Area (MCMA) can be an invaluable tool for interpreting the MILAGRO field campaign results. This paper uses three methods to evaluate ...

de Foy, B.

319

Impacts of HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign  

E-Print Network [OSTI]

The contribution of HONO sources to the photochemistry in Mexico City is investigated during the MCMA-2006/MILAGO Campaign using the WRF-CHEM model. Besides the homogeneous reaction of NO with OH, four additional HONO ...

Li, Guohui

320

Ozone response to emission changes: a modeling study during the MCMA-2006/MILAGRO Campaign  

E-Print Network [OSTI]

The sensitivity of ozone production to precursor emissions was investigated under five different meteorological conditions in the Mexico City Metropolitan Area (MCMA) during the MCMA-2006/MILAGRO field campaign using the ...

Song, Jihee

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign  

E-Print Network [OSTI]

In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-2006/MILAGRO campaign. An aerosol radiative module ...

Li, Guohui

322

Data Transfer Nodes Yield Results!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

time. In fact, we recently moved an 80 terabyte dataset from the high performance storage system at Oak Ridge to NERSC in just two months, without the DTNs this would have taken...

323

The communicative strategies of Church of Christ campaigning missionaries: an ethnography and comparative analysis  

E-Print Network [OSTI]

divided into five parts: recruitment, selection, training, on-site adjustment and productivity, and reentry (Austin l 988: 73). This is little more than the same three steps of the traditional rite of passage cast in the language of the community... in which it is being described. Recruitment and selection refer to the separation of the campaigner from the community as the campaigner agrees to participate in the mission experience. Training, on-site adjustment, and productivity refer...

McCormick, Charlie Taylor

1994-01-01T23:59:59.000Z

324

Energy efficiency campaign for residential housing at the Fort Lewis army installation  

SciTech Connect (OSTI)

In FY1999, Pacific Northwest National Laboratory conducted an energy efficiency campaign for residential housing at the Fort Lewis Army Installation near Tacoma, Washington. Preliminary weather-corrected calculations show energy savings of 10{percent} from FY98 for energy use in family housing. This exceeded the project's goal of 3{percent}. The work was funded by the U.S. DOEs Federal Energy Management Program (FEMP), Office of Energy Efficiency and Renewable Energy. The project adapted FEMP's national ``You Have the Power Campaign'' at the local level, tailoring it to the military culture. The applied research project was designed to demonstrate the feasibility of tailored, research-based strategies to promote energy conservation in military family housing. In contrast to many energy efficiency efforts, the campaign focused entirely on actions residents could take in their own homes, as opposed to technology or housing upgrades. Behavioral change was targeted because residents do not pay their own utility bills; thus other motivations must drive personal energy conservation. This campaign augments ongoing energy savings from housing upgrades carried out by Fort Lewis. The campaign ran from September 1998 through August 1999. The campaign strategy was developed based on findings from previous research and on input from residents and officials at Fort Lewis. Energy use, corrected to account for weather differences, was compared with the previous year's use. Survey responses from 377 of Fort Lewis residents of occupied housing showed that the campaign was moderately effective in promoting behavior change. Of those who were aware of the campaign, almost all said they were now doing one or more energy-efficient things that they had not done before. Most people were motivated by the desire to do the right thing and to set a good example for their children. They were less motivated by other factors.

AH McMakin; RE Lundgren; EL Malone

2000-02-23T23:59:59.000Z

325

Recommendations for Tritium Science and Technology Research and Development in Support of the Tritium Readiness Campaign, TTP-7-084  

SciTech Connect (OSTI)

Between 2006 and 2012 the Tritium Readiness Campaign Development and Testing Program produced significant advances in the understanding of in-reactor TPBAR performance. Incorporating these data into existing TPBAR performance models has improved permeation predictions, and the discrepancy between predicted and observed tritium permeation in the WBN1 coolant has been decreased by about 30%. However, important differences between predicted and observed permeation still remain, and there are significant knowledge gaps that hinder the ability to reliably predict other aspects of TPBAR performance such as tritium distribution, component integrity, and performance margins. Based on recommendations from recent Tritium Readiness Campaign workshops and reviews coupled with technical and programmatic priorities, high-priority activities were identified to address knowledge gaps in the near- (3-5 year), middle- (5-10 year), and long-term (10+ year) time horizons. It is important to note that there are many aspects to a well-integrated research and development program. The intent is not to focus exclusively on one aspect or another, but to approach the program in a holistic fashion. Thus, in addition to small-scale tritium science studies, ex-reactor tritium technology experiments such as TMED, and large-scale in-reactor tritium technology experiments such as TMIST, a well-rounded research and development program must also include continued analysis of WBN1 performance data and post-irradiation examination of TPBARs and lead use assemblies to evaluate model improvements and compare separate-effects and integral component behavior.

Senor, David J.

2013-10-30T23:59:59.000Z

326

Yield criteria for quasibrittle and frictional materials  

E-Print Network [OSTI]

A new yield/damage function is proposed for modelling the inelastic behaviour of a broad class of pressure-sensitive, frictional, ductile and brittle-cohesive materials. The yield function allows the possibility of describing a transition between the shape of a yield surface typical of a class of materials to that typical of another class of materals. This is a fundamental key to model the behaviour of materials which become cohesive during hardening (so that the shape of the yield surface evolves from that typical of a granular material to that typical of a dense material), or which decrease cohesion due to damage accumulation. The proposed yield function is shown to agree with a variety of experimental data relative to soil, concrete, rock, metallic and composite powders, metallic foams, porous metals, and polymers. The yield function represents a single, convex and smooth surface in stress space approaching as limit situations well-known criteria and the extreme limits of convexity in the deviatoric plane. The yield function is therefore a generalization of several criteria, including von Mises, Drucker-Prager, Tresca, modified Tresca, Coulomb-Mohr, modified Cam-clay, and --concerning the deviatoric section-- Rankine and Ottosen. Convexity of the function is proved by developing two general propositions relating convexity of the yield surface to convexity of the corresponding function. These propositions are general and therefore may be employed to generate other convex yield functions.

Davide Bigoni; Andrea Piccolroaz

2010-10-09T23:59:59.000Z

327

Used Fuel Disposition Campaign Phase I Ring Compression Testing...  

Broader source: Energy.gov (indexed) [DOE]

of the technical basis for extended storage and transportation of high-burnup fuel. This report highlights the results of completed Phase I testing of high-burnup M5...

328

Yield Strength as a Thermodynamic Consequence of Information Erasure  

E-Print Network [OSTI]

We observe that the yield strength of a variety of materials, including highly structured and densely packed metals, alloys and semi-crystalline polymers is reasonably approximated by the thermal energy density of the material. This suggests that it is related to the entropic cost of the irreversible work done during plastic deformation rather than the enthalpic cost that depends on the elastic modulus of the material. Here we propose that the entropic cost of material rearrangement in crystalline solids arises from the difference in the uncertainty in building block positions before and after yielding and estimate it using Landauer's principle for information processing. The yield strength thus obtained in given by the thermal energy density of the material multiplied by ln(2) and provides a guidepost in estimating the strength of materials complementary to the "theoretical strength of solids".

Katira, Parag

2015-01-01T23:59:59.000Z

329

TIF film, substrates and nonfumigant soil disinfestation maintain fruit yields  

E-Print Network [OSTI]

soil disinfestation maintain fruit yields Steve Fennimore bystrawberry production sea- son, fruit yields on substrateswere com- parable to fruit yields using conventional

2013-01-01T23:59:59.000Z

330

Crowdfunding Astronomy Outreach Projects: Lessons Learned from the UNAWE Crowdfunding Campaign  

E-Print Network [OSTI]

In recent years, crowdfunding has become a popular method of funding new technology or entertainment products, or artistic projects. The idea is that people or projects ask for many small donations from individuals who support the proposed work, rather than a large amount from a single source. Crowdfunding is usually done via an online portal or platform which handles the financial transactions involved. The Universe Awareness (UNAWE) programme decided to undertake a Kickstarter crowdfunding campaign centring on the resource Universe in a Box2. In this article we present the lessons learned and best practices from that campaign.

Ashton, Abi J; Heenatigala, Thilina

2014-01-01T23:59:59.000Z

331

ARM - Field Campaign - ARM Radiosondes for NPOESS/NPP Validation - SGP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIII ARMgovCampaignsARMgovCampaignsARM

332

ARM - Field Campaign - MASRAD: Pt. Reyes Stratus Cloud and Drizzle Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIRgovCampaignsMASRAD: Pt. Reyes Stratus Cloud

333

ARM - Field Campaign - Surface Observation in Support of in-situ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring 1994govCampaignsSummer02.09 -Observations

334

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Airborne HSRL and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring(PROBE)govCampaignsTwo-Column AerosolRSP

335

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Ground-Based  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring(PROBE)govCampaignsTwo-Column

336

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Winter Aerosol  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical DepthgovCampaignsSpring(PROBE)govCampaignsTwo-ColumnEffects on

337

High yield fusion in a staged Z-pinch  

E-Print Network [OSTI]

and N. Rostoker. Thermonuclear fusion by a z-? pinch. Inof 3.0 × 10 19 and a thermonuclear energy of 84 MJ, that is,that the neutrons are thermonuclear [20]. The configuration

RAHMAN, H. U; WESSEL, F. J; ROSTOKER, N.; NEY, P. H

2009-01-01T23:59:59.000Z

338

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a...

339

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11LargeLaser EnablesLaserLaserLaser

340

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11LargeLaser

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nitrogen Allocation in High Yielding Bollgard II® Cotton  

E-Print Network [OSTI]

a sympodial branch of cotton. Journal of Plant Nutrition 15:on potassium nutrition in cotton. Special Report - Arkansaspotassium nutrition of cotton. Special Report - Agricultural

Errington, Meredith A; Campbell, Lindsay C; Rochester, Ian; Tan, Daniel

2009-01-01T23:59:59.000Z

342

High-Pressure MOF Research Yields Structural Insights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in thein the

343

Olefins from High Yield Autothermal Reforming Process - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy's 10 OfficeOil-Fired

344

Renewable Energy Executive Summary High-Yield Scenario  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051Soil Vapor ExtractionRenae Efficiency

345

Sandia National Laboratories: high quantum yield under blue excitation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfull moduleresources gridstandby

346

Microbes Produce High Yields of Fatty Alcohols From Glucose - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichael M. May,Vehicles andThru

347

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValuesRevolutionizingLaserLaser

348

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space

349

Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The recent ship-based MAGIC (Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the Horizon Lines cargo container M/V Spirit provided nearly 200 days of intraseasonal high-resolution observations of clouds, precipitation, and marine boundary layer (MBL) structure on multiple legs between Los Angeles, California, and Honolulu, Hawaii. During the deployment, MBL clouds exhibited a much higher frequency of occurrence than other cloud types and occurred more often in the warm season than in the cold season. MBL clouds demonstrated a propensity to produce precipitation, which often evaporated before reaching the ocean surface. The formation of stratocumulus is strongly correlated to a shallow MBL with a strong inversion and a weak transition, while cumulus formation is associated with a much weaker inversion and stronger transition. The estimated inversion strength is shown to depend seasonally on the potential temperature at 700 hPa. The location of the commencement of systematic MBL decoupling always occurred eastward of the locations of cloud breakup, and the systematic decoupling showed a strong moisture stratification. The entrainment of the dry warm air above the inversion appears to be the dominant factor triggering the systematic decoupling, while surface latent heat flux, precipitation, and diurnal circulation did not play major roles. MBL clouds broke up over a short spatial region due to the changes in the synoptic conditions, implying that in real atmospheric conditions the MBL clouds do not have enough time to evolve as in the idealized models. (auth)

Zhou, Xiaoli [McGill Univ., Montreal, Quebec (Canada); Dept. of Atmospheric and Oceanic Sciences; Kollias, Pavlos [McGill Univ., Montreal, Quebec (Canada); Dept. of Atmospheric and Oceanic Sciences; Lewis, Ernie R. [Brookhaven National Lab., Upton, NY (United States). Biological, Environmental, and Climate Sciences Dept.

2015-03-01T23:59:59.000Z

350

Rhetorical strategies in the campaign for the Superconducting Super Collider  

E-Print Network [OSTI]

particle accelerator to be built in northern Texas. The SSC represents an unusual opportunity to investigate the intersection of scientific and political rhetoric. Aristotle defined rhetoric as "the art of finding the available means of persuasion... generation of high ? energy particle accelerators. Like Fermilab's Tevatron, the SSC was designed to accelerate protons to very high energies and smash them head-on into each other. These collisions, in theory, would reveal information about quarks (the...

Taylor, Karen Michelle

1996-01-01T23:59:59.000Z

351

Evaluation and compilation of fission product yields 1993  

SciTech Connect (OSTI)

This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

England, T.R.; Rider, B.F.

1995-12-31T23:59:59.000Z

352

Fitzwilliam Museum set to acquire Poussin masterpiece as joint 3.9m fundraising campaign with the Art Fund  

E-Print Network [OSTI]

Fitzwilliam Museum set to acquire Poussin masterpiece as joint £3.9m fundraising campaign (1594 ­ 1665), Extreme Unction, oil on canvas, 95.5 x 121cm A campaign by the Fitzwilliam Museum and the Art Fund to raise £3.9m to enable the museum to acquire Nicolas Poussin's masterpiece Extreme Unction

Zeki, Semir

353

CAMPAIGN CASE D-R-A-F-T KNOWLEDGE IS POWER  

E-Print Network [OSTI]

, and to transform the course of learning and inquiry, all at the same time. We invite alumni, parents, and friends on the generosity of alumni, parents, and friends. The purpose of this campaign, however, is not simply to replace lost state revenues, which currently fund slightly more than 8 percent of the University's $2 billion

Acton, Scott

354

Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow  

E-Print Network [OSTI]

on snow albedo and arctic atmospheric chemistry. During the OASIS field campaign, in March and April 2009, Elemental Carbon (EC), Water insoluble Organic Carbon (WinOC) and Dissolved Organic Carbon (DOC) were hoar layers due to specific wind related formation mechanisms in the early season. Apart from

Sheldon, Nathan D.

355

Federal Managers Update on the National Ignition Campaign (NIC) February 14, 2012  

E-Print Network [OSTI]

, Sean Finnegan (SC) and Sam Brinker (LSO) were briefed by the National Ignition Campaign (NIC) team properties (velocity and thickness) of the capsule ablator and of neutron and x-ray images of the compressed technique, registration of x-ray images, fusion neutron images, and down-scattered neutron images

356

Political Campaigning and Other Non-University Events on Game Days or Major Event Days  

E-Print Network [OSTI]

Political Campaigning and Other Non-University Events on Game Days or Major Event Days This Policy of this is the prohibition of any political signage implanted in, posted on, or otherwise affixed to University property in the political process, subject to other governing policies and procedures. Students: http

Oklahoma, University of

357

CLOUD CONDENSATION NUCLEI IN CUMULUS HUMILIS --SELECTED CASE STUDY DURING THE CHAPS CAMPAIGN  

E-Print Network [OSTI]

CLOUD CONDENSATION NUCLEI IN CUMULUS HUMILIS -- SELECTED CASE STUDY DURING THE CHAPS CAMPAIGN X and condensation as well as activation and impact scavenging. The U.S. Department of Energy (DOE) G-1 aircraft and residuals of activated condensation cloud nuclei were conducted simultaneously. The interstitial aerosols

358

CLOUD CONDENSATION NUCLEI IN CUMULUS HUMILIS SELECTED CASE STUDY DURING THE CHAPS CAMPAIGN  

E-Print Network [OSTI]

CLOUD CONDENSATION NUCLEI IN CUMULUS HUMILIS ­ SELECTED CASE STUDY DURING THE CHAPS CAMPAIGN Xiao and particles can partition to cloud droplets by absorption and condensation as well as activation and impact of Oklahoma City. Measurements of interstitial aerosols and residuals of activated condensation cloud nuclei

359

Grandparents Climate Campaign Leader Halfdan Wiik, vre Kyvik 94, 5414 Stord, Norway  

E-Print Network [OSTI]

Stord, Norway Stord, April 17th 2012 Open letter to the Board of Statoil ASA, by chair Svein Campaign Leader Halfdan Wiik, Ă?vre Kyvik 94, 5414 Stord, Norway 3. Extraction that Statoil's continued exploitation of tar sands is contradictory to the long-term interest of Norway

Hansen, James E.

360

White-nose Syndrome Communications Outreach Campaign Principal Investigator: Rebecca A. Christoffel  

E-Print Network [OSTI]

White-nose Syndrome Communications Outreach Campaign Principal Investigator: Rebecca A. Christoffel target audiences of white-nose syndrome (WNS) in bats and its rapid spread toward Iowa, and to gain one cave or bat population to another, with an ultimate goal of keeping white-nose syndrome from

Koford, Rolf R.

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

TULSA JEANS "SPIRIT" PASS Support the Campus Campaign by purchasing a  

E-Print Network [OSTI]

TULSA JEANS "SPIRIT" PASS Support the Campus Campaign by purchasing a "Spirit" Pass and receive purchasing a spirit pass. Yes! I want to be ALL IN and purchase a Jeans "Spirit" Pass in support of Campus_________________________________________________________ Campus Add/Bldg___________________________________________________ Office Phone Number

Oklahoma, University of

362

A synthesis of the Air Pollution Over the Paris Region (ESQUIF) field campaign  

E-Print Network [OSTI]

: Constituent sources and sinks; 0345 Atmospheric Composition and Structure: Pollution--urban and regional (0305A synthesis of the Air Pollution Over the Paris Region (ESQUIF) field campaign Robert Vautard,1 2003. [1] Tropospheric photooxidant pollution was investigated in detail for the first time over

Menut, Laurent

363

WINTER 2007 VOL 32 NO 1 Motorcycle Awareness Campaign Launches in  

E-Print Network [OSTI]

WINTER 2007 VOL 32 NO 1 Motorcycle Awareness Campaign Launches in Texas To address an alarming upward trend in motorcycling fatalities, the Texas Department of Transportation teamed with the Texas Department of Public Safety and the Center for Transportation Safety to develop a new statewide motorcycle

364

Used Fuel Disposition Campaign Phase I Ring Compression Testing of High  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track|SolarDepartment of Energy Use of

365

We are all part of the equation. Campaign for  

E-Print Network [OSTI]

not deliver distinguished overall results. Life expectancy at birth in the United States is 78 years, placing laggard to a global leader in health gain per dollar invested. The Stanford Clinical Excellence Research with less money. As a leader in transforming electrical engineering research into high value informa- tion

Puglisi, Joseph

366

Neutron source capability assessment for cumulative fission yields measurements  

SciTech Connect (OSTI)

A recent analysis of high-quality cumulative fission yields data for Pu-239 published in the peer-reviewed literature showed that the quoted experimental uncertainties do not allow a clear statement on how the fission yields vary as a function of energy. [Prussin2009] To make such a statement requires a set of experiments with well 'controlled' and understood sources of experimental errors to reduce uncertainties as low as possible, ideally in the 1 to 2% range. The Inter Laboratory Working Group (ILWOG) determined that Directed Stockpile Work (DSW) would benefit from an experimental program with the stated goal to reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Following recent discussions between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), there is a renewed interest in developing a concerted experimental program to measure fission yields in a neutron energy range from thermal energy (0.025 eV) to 14 MeV with an emphasis on discrete energies from 0.5 to 4 MeV. Ideally, fission yields would be measured at single energies, however, in practice there are only 'quasi-monoenergetic' neutrons sources of finite width. This report outlines a capability assessment as of June 2011 of available neutron sources that could be used as part of a concerted experimental program to measure cumulative fission yields. In a framework of international collaborations, capabilities available in the United States, at the Atomic Weapons Establishment (AWE) in the United Kingdom and at the Commissariat Energie Atomique (CEA) in France are listed. There is a need to develop an experimental program that will reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Fission and monoenergetic neutron sources are available that could support these fission yield experiments in the US, as well as at AWE and CEA. Considerations that will impact the final choice of experimental venues are: (1) Availability during the timeframe of interest; (2) Ability to accommodate special nuclear materials; (3) Cost; (4) Availability of counting facilities; and (5) Expected experimental uncertainties.

Descalle, M A; Dekin, W; Kenneally, J

2011-04-06T23:59:59.000Z

367

Comparison Of Expected Yields For Light Radioactive Beams At SPIRAL-1 And 2  

E-Print Network [OSTI]

Comparison Of Expected Yields For Light Radioactive Beams At SPIRAL-1 And 2 Saint-Laurent M of this contribution is the comparison of yields expected for light radioactive beams at SPIRAL-1 and after an upgrade, Switzerland. Abstract. Light-particles stable high-intensity beams (p, d, 3,4 He...) will be available from

Paris-Sud XI, Université de

368

Program Mission Campaigns are multi-year, multi-functional efforts involving, to varying degrees, every site in the nuclear  

E-Print Network [OSTI]

and reliability of aged and remanufactured weapons in the absence of nuclear testing. This technology base must with the cessation of underground nuclear testing. · Inertial Confinement Fusion Ignition and High Yield (ICF degrees, every site in the nuclear weapons complex. They provide specialized scientific knowledge

369

Yield Stress Materials in Soft Condensed Matter  

E-Print Network [OSTI]

We present a comprehensive review of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of soft materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear response to an external mechanical forcing, which results from the existence of a finite force threshold for flow to occur, the yield stress. We discuss both the physical origin and the rheological consequences associated with this nonlinear behavior. We give an overview of the different experimental techniques developed to measure the yield stress. We discuss extensively the recent progress concerning a microscopic description of the flow dynamics of yield stress materials, emphasizing in particular the role played by relaxation timescales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and non-local effects in confined geometries. We finally review the status of modeling of the shear rheology of yield stress materials in the framework of continuum mechanics.

Daniel Bonn; Jose Paredes; Morton M. Denn; Ludovic Berthier; Thibaut Divoux; Sébastien Manneville

2015-02-18T23:59:59.000Z

370

Original article Enhancement of yield and persistence  

E-Print Network [OSTI]

endophyte isolate in France Catherine Ravela François Balfouriera Jean Jacques Guillauminb aUnité d March 1999; accepted 6 July 1999) Abstract - The contribution of Neotyphodium endophytes the yield and persistence of three endophyte-infected (E.I.) and endophyte-free (E.F.) perennial ryegrass

Paris-Sud XI, Université de

371

Yield learning model for integrated circuit package  

E-Print Network [OSTI]

, the Plastic Quad Flat Pack and the Ceramic Ball Grid Array at IBM, and the Plastic Ball Grid Array at Motorola. This model has been used as a management toot for making yield predictions, resource allocations, understanding operating practices and provide what...

Balasubramaniam, Gaurishankar

1996-01-01T23:59:59.000Z

372

Engineering design automation tool for yield learning model for IC packaging  

E-Print Network [OSTI]

The leading edge of semiconductor manufacturing is the high yield production of semiconductor devices of which integrated circuit packaging has a continuous increasing demand along with integrated circiut functionality. IC packaging manufacturing...

Sarwar, Abul Kalam

2012-06-07T23:59:59.000Z

373

Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids  

E-Print Network [OSTI]

this yield stress; above the yield stress they behave as liquids, and their flow behavior is usually well more complex at the approach of the transition between the liquid and the solid regimes [Coussot (2005 and Jorrot (2001)], a cement paste [Geiker et al. (2002)], a foam [Cohen-Addad et al. (2007)] or coal

Paris-Sud XI, Université de

374

A self-inflicted wound: the Confederacy's guerrilla campaign in Arkansas, 1862-1865  

E-Print Network [OSTI]

University Press, 1994), 109, 111, 124-25, 132. 6. William L. Shea, "1862: A Continual Thunder, " in Mark E. Christ, ed. , Ru ed and Sublime The Civil 'n Arkansas (Fayetteville, Ark. : University of 25 Arkansas Press, 1995), 39, 58; Daniel E. Sutherland...A SELF-INFLICTED WOUND: THE CONFEDERACY'S GUERRILLA CAMPAIGN IN ARKANSAS, 1862-1865 A Thesis by ROBERT RUSSELL MACKEY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Mackey, Robert Russell

1997-01-01T23:59:59.000Z

375

Public assistance in Texas: an analysis of an issue-oriented campaign  

E-Print Network [OSTI]

. The use of historical materials, including inter- views of the chief participants in the campaign, will be collated with electoral results of both the 1968 and 1969 elections. The vote of the urban counties, as Dallas and Harris counties... for confederate veterans; and one each for epileptic, the 12 tubercular, the feeble-minded, and crippled children. According to estimates in 1932, the state provided 11. Texas Almanac (Dallas: A. H. Belo Corporation& 1970), p. 490. 12. Re ort of the Joint Le...

O'Connor, John Francis

2012-06-07T23:59:59.000Z

376

ARM - Field Campaign - MASRAD: Cloud Study from the 2NFOV at Pt. Reyes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR

377

Appendix I1-2 to Wind HUI Initiative 1: Field Campaign Report  

SciTech Connect (OSTI)

This report is an appendix to the Hawaii WindHUI efforts to dev elop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET field campaign deployment experiences and challenges. As part of the WindNET project on the Big Island of Hawaii, AWS Truepower (AWST) conducted a field campaign to assess the viability of deploying a network of monitoring systems to aid in local wind energy forecasting. The data provided at these monitoring locations, which were strategically placed around the Big Island of Hawaii based upon results from the Oahu Wind Integration and Transmission Study (OWITS) observational targeting study (Figure 1), provided predictive indicators for improving wind forecasts and developing responsive strategies for managing real-time, wind-related system events. The goal of the field campaign was to make measurements from a network of remote monitoring devices to improve 1- to 3-hour look ahead forecasts for wind facilities.

John Zack; Deborah Hanley; Dora Nakafuji

2012-07-15T23:59:59.000Z

378

Excitation-emission spectra and fluorescence quantum yields for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols. Excitation-emission spectra and fluorescence quantum yields for...

379

WHO'S AFRAID OF MICHELLE: FORCING THE FEMININE STYLE TO RECAST OBAMA'S IDENTITY DURING THE 2008 PRESIDENTIAL CAMPAIGN  

E-Print Network [OSTI]

In 2008 Michelle Obama faced a crisis of identity in the midst of her husband's campaign to become the president of the United States. We know from polling data that Michelle Obama effectively managed that crisis, successfully reformulated her...

Weaver, Ryan

2013-05-31T23:59:59.000Z

380

The British Air Campaign during the Battle of the Somme, April-November, 1916: A Pyrrhic Victory  

E-Print Network [OSTI]

The British Air CampaigndDuring the Battle of the Somme, April-November, 1916: A Pyrrhic Victory The Battle of the Somme was Britain's first major offensive of the First World War. Just about every facet of the campaign ...

Bradbeer, Thomas George

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF GIANT PLANETS AROUND YOUNG B AND A STARS  

SciTech Connect (OSTI)

We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (?1.5-2.5 M{sub ?}) conducted to date and includes the planet hosts ? Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58{sup +21}{sub -20} M{sub Jup} and 55{sup +20}{sub -19} M{sub Jup}, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M{sub ?} stars can have giant planets greater than 4 M{sub Jup} between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M{sub Jup} between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M{sub Jup}, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.

Nielsen, Eric L.; Liu, Michael C.; Chun, Mark; Ftaclas, Christ [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Wahhaj, Zahed [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago (Chile); Biller, Beth A. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Hayward, Thomas L.; Hartung, Markus [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Close, Laird M.; Males, Jared R.; Skemer, Andrew J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Alencar, Silvia H. P. [Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 30270-901 Belo Horizonte, MG (Brazil); Artymowicz, Pawel [University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4 (Canada); Boss, Alan [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, N.W., Washington, DC 20015 (United States); Clarke, Fraser [Department of Astronomy, University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); De Gouveia Dal Pino, Elisabete; Gregorio-Hetem, Jane [Departamento de Astronomia, Universidade de Sao Paulo, IAG/USP, Rua do Matao 1226, 05508-900 Sao Paulo, SP (Brazil); Ida, Shigeru [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Kuchner, Marc [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Greenbelt, MD 20771 (United States); Lin, Douglas N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); and others

2013-10-10T23:59:59.000Z

382

Yield improvement and defect reduction in steel casting  

SciTech Connect (OSTI)

This research project investigated yield improvement and defect reduction techniques in steel casting. Research and technology development was performed in the following three specific areas: (1) Feeding rules for high alloy steel castings; (2) Unconventional yield improvement and defect reduction techniques--(a) Riser pressurization; and (b) Filling with a tilting mold; and (3) Modeling of reoxidation inclusions during filling of steel castings. During the preparation of the proposal for this project, these areas were identified by the High Alloy Committee and Carbon and Low Alloy Committee of the Steel Founders' Society of America (SFSA) as having the highest research priority to the steel foundry industry. The research in each of the areas involved a combination of foundry experiments, modeling and simulation. Numerous SFSA member steel foundries participated in the project through casting trials and meetings. The technology resulting from this project will result in decreased scrap and rework, casting yield improvement, and higher quality steel castings produced with less iteration. This will result in considerable business benefits to steel foundries, primarily due to reduced energy and labor costs, increased capacity and productivity, reduced lead-time, and wider use and application of steel castings. As estimated using energy data provided by the DOE, the technology produced as a result of this project will result in an energy savings of 2.6 x 10{sup 12} BTU/year. This excludes the savings that were anticipated from the mold tilting research. In addition to the energy savings, and corresponding financial savings this implies, there are substantial environmental benefits as well. The results from each of the research areas listed above are summarized.

Kent Carlson

2004-03-16T23:59:59.000Z

383

Can Naked Singularities Yield Gamma Ray Bursts?  

E-Print Network [OSTI]

Gamma-ray bursts are believed to be the most luminous objects in the Universe. There has been some suggestion that these arise from quantum processes around naked singularities. The main problem with this suggestion is that all known examples of naked singularities are massless and hence there is effectively no source of energy. It is argued that a globally naked singularity coupled with quantum processes operating within a distance of the order of Planck length of the singularity will probably yield energy burst of the order of M_pc^2\\approx2\\times 10^{16} ergs, where M_p is the Planck mass.

H. M. Antia

1998-07-09T23:59:59.000Z

384

Potential Yield Mapping of Dedicated Energy Crops  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers | DepartmentSiteMaryland | Yield Mapping of

385

ARM - Field Campaign - BDRF Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,

386

Chemical Abundances in AGN Environment: X-Ray/UV Campaign on the MRK 279 Outflow  

E-Print Network [OSTI]

We present the first reliable determination of chemical abundances in an AGN outflow. The abundances are extracted from the deep and simultaneous FUSE and HST/STIS observations of Mrk 279. This data set is exceptional for its high signal-to-noise, unblended doublet troughs and little Galactic absorption contamination. These attributes allow us to solve for the velocity-dependent covering fraction, and therefore obtain reliable column densities for many ionic species. For the first time we have enough such column densities to simultaneously determine the ionization equilibrium and abundances in the flow. Our analysis uses the full spectral information embedded in these high-resolution data. Slicing a given trough into many independent outflow elements yields the extra constraints needed for a physically meaningful abundances determination. We find that relative to solar the abundances in the Mrk 279 outflow are (linear scaling): carbon 2.2+/-0.7, nitrogen 3.5+/-1.1 and oxygen 1.6+/-0.8. Our UV-based photoionization and abundances results are in good agreement with the independent analysis of the simultaneous Mrk 279 X-ray spectra. This is the best agreement between the UV and X-ray analyses of the same outflow to date.

Nahum Arav; Jack R. Gabel; Kirk T. Korista; Jelle S. Kaastra; Gerard A. Kriss; Ehud Behar; Elisa Costantini; C. Martin Gaskell; Ari Laor; Nalaka Kodituwakku; Daniel Proga; Masao Sako; Jennifer E. Scott; Katrien C. Steenbrugge

2006-11-29T23:59:59.000Z

387

The development of the Dardanelles Campaign of 1915: a study in political failure  

E-Print Network [OSTI]

a full-time mother--well--full time for at least a day or two. He may never understand the sacrifices he has made to get this thesis into print, but I thank him for them all. ABSTRACT. DEDICATION. ACKNOWLEDGMENT. TABLE OF CONTENTS... . ABBREVIATIONS CHAPTER TABLE OF CONTENTS Page V V1 V111 I INTRODUCTION. I I OPTIONS AND OPERATIONS. Campaign Alternatives The Operations. I I I DOOMED TO FAILURE. Silence on the Day of Decision. Understanding the Problems of Geography I V...

Olds, Sara Van Orden

1991-01-01T23:59:59.000Z

388

ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM-ACME III)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIII ARM DatagovCampaignsARESE II

389

ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM-ACME V)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIII ARM DatagovCampaignsARESE IIV)

390

ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM-ACME VI)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIII ARM DatagovCampaignsARESE IIV)VI)

391

ARM - Field Campaign - ARM Airborne Carbon Measurements IV (ARM-ACME IV)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIII ARM DatagovCampaignsARESE

392

ARM - Field Campaign - ARM Radiosondes for NPOESS/NPP Validation - NSA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIII ARMgovCampaignsARM

393

ARM - Field Campaign - Application of the ARM Mobile Facility (AMF) to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfraredgovCampaignsAircraft Carbon ARM

394

ARM - Field Campaign - Azores: Above-Cloud Radiation Budget near Graciosa  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfraredgovCampaignsAircraftIsland

395

ARM - Field Campaign - Co-ordinated Airborne Studies in the Tropics - CAST  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWSTCampaigngovCampaignsCo-ordinated

396

ARM - Field Campaign - Colorado: SP2 Deployment at StormVEx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWSTCampaigngovCampaignsCo-ordinatedSP2

397

ARM - Field Campaign - DigiCORA-III transition and AIRS preparation IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD SensorgovCampaignsComplex

398

ARM - Field Campaign - Fall SCM/NBL IOP in Support of CASES-99  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-ArcticShortwave IOP

399

ARM - Field Campaign - Ground-based Cloud Tomography Experiment at SGP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-ArcticShortwave

400

ARM - Field Campaign - IASI (METOP-A)/ AIRS (AQUA) Validation Radiosonde  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-ArcticShortwaveLaunch Support

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Field Campaign - In-situ Aerosol Profiles (Cessna Aerosol Flights)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR Cloud Camera Feasibility Study

402

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning- Hi-Vol Filter

403

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning- Hi-Vol

404

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning- Hi-VolAerosol

405

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning-

406

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning-CCN Activity

407

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning-CCN

408

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning-CCNHarvard

409

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA

410

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSALaser Luminescence

411

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSALaser

412

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSALaserNPSD NPSD

413

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSALaserNPSD

414

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSALaserNPSDOHCIMS

415

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSALaserNPSDOHCIMS

416

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by MicrotopsParsivel2 Parsivel2 Related Campaigns

417

ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by MicrotopsParsivel2 Parsivel2SKIP Pre-campaign

418

ARM - Field Campaign - Verification of the Origins of Rotation in Tornadoes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX) govCampaignsVerification of the Origins of

419

ARM - Field Campaign - WB57 Midlatitude Cirrus Cloud Experiment (WB57  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX) govCampaignsVerification of the Origins

420

ARM - Field Campaign - Warm-Season Data Assimilation and ISS Test  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX) govCampaignsVerification of the

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Name LastNews ArchiveCampaignClouds

422

Department of Energy Spent Fuel Shipping Campaigns: Comparisons of Transportation Plans and Lessons Learned  

SciTech Connect (OSTI)

Over the last 30 years, the U.S. Department of Energy (DOE) has successfully and safely transported shipments of spent nuclear fuel over America's highways and railroads. During that time, an exemplary safety record has been established with no identifiable fatalities, injuries, or environmental damage caused by the radioactive nature of the shipments. This paper evaluates some rail and truck shipping campaigns, planning processes, and selected transportation plans to identify lessons learned in terms of planning and programmatic activities. The intent of this evaluation is to document best practices from current processes and previous plans for DOE programs preparing or considering future plans. DOE's National Transportation Program (NTP) reviewed 13 plans, beginning with core debris shipments from Three Mile Island to current, ongoing fuel campaigns. This paper describes lessons learned in the areas of: emergency planning, planning information, security, shipment prenotification, emergency notification/response, terrorism/sabotage risk, and recovery and cleanup, as well as routing, security, carrier/driver requirements, transportation operational contingencies, tracking, inspections and safe parking.

Holm, Judith A.; Thrower, Alex W.; Antizzo, Karen

2003-02-27T23:59:59.000Z

423

Uncertainty in Simulating Wheat Yields Under Climate Change  

SciTech Connect (OSTI)

Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments1,2. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change has been increasingly described in the literature3,4 while assessments of the uncertainty in crop responses to climate change are very rare. Systematic and objective comparisons across impact studies is difficult, and thus has not been fully realized5. Here we present the largest coordinated and standardized crop model intercomparison for climate change impacts on wheat production to date. We found that several individual crop models are able to reproduce measured grain yields under current diverse environments, particularly if sufficient details are provided to execute them. However, simulated climate change impacts can vary across models due to differences in model structures and algorithms. The crop-model component of uncertainty in climate change impact assessments was considerably larger than the climate-model component from Global Climate Models (GCMs). Model responses to high temperatures and temperature-by-CO2 interactions are identified as major sources of simulated impact uncertainties. Significant reductions in impact uncertainties through model improvements in these areas and improved quantification of uncertainty through multi-model ensembles are urgently needed for a more reliable translation of climate change scenarios into agricultural impacts in order to develop adaptation strategies and aid policymaking.

Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, Jerry; Ruane, Alex; Boote, K. J.; Thorburn, Peter; Rotter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, AJ; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, Robert; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, Roberto C.; Kersebaum, K.C.; Mueller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.O.; Olesen, JE; Osborne, T.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stockle, Claudio O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

2013-09-01T23:59:59.000Z

424

Infrared scintillation yield in gaseous and liquid argon  

E-Print Network [OSTI]

The study of primary and secondary scintillations in noble gases and liquids is of paramount importance to rare-event experiments using noble gas media. In the present work, the scintillation yield in gaseous and liquid Ar has for the first time been measured in the near infrared (NIR) and visible region, both for primary and secondary (proportional) scintillations, using Geiger-mode avalanche photodiodes (G-APDs) and pulsed X-ray irradiation. The primary scintillation yield of the fast component was measured to be 17000 photon/MeV in gaseous Ar in the NIR, in the range of 690-1000 nm, and 510 photon/MeV in liquid Ar, in the range of 400-1000 nm. Proportional NIR scintillations (electroluminescence) in gaseous Ar have been also observed; their amplification parameter at 163 K was measured to be 13 photons per drifting electron per kV. Possible applications of NIR scintillations in high energy physics experiments are discussed.

A. Buzulutskov; A. Bondar; A. Grebenuk

2011-04-19T23:59:59.000Z

425

Free ion yields in liquids: Molecular structure and track effects  

SciTech Connect (OSTI)

The signal generated in a liquid-filled ionization chamber is proporational to the ions that escape, the free ion yield or, G{sub fi}. Recent results show how molecular structure, rate of energy loss (dE/dx) and pressure affect G{sub fi} and give further insight into the ionization process in liquids. As a consequence of the passage of high energy charged particles through a liquid, molecules are ionized and excited. The electrons have kinetic energy initially which allow them to travel some distance away from their geminate cations. The electrons may lose energy to vibrational modes but a significant fraction of the separation occurs while the electrons have subvibrational (near thermal) energy. When the electron finally thermalizes it is within the coulombic field of its parent cation and the two ions constitute a geminate pair. The free ion yield is determined by the fraction of geminate pairs which separate to form free ions as against those that recombine to form excited states.

Holroyd, R.

1992-05-01T23:59:59.000Z

426

Free ion yields in liquids: Molecular structure and track effects  

SciTech Connect (OSTI)

The signal generated in a liquid-filled ionization chamber is proporational to the ions that escape, the free ion yield or, G{sub fi}. Recent results show how molecular structure, rate of energy loss (dE/dx) and pressure affect G{sub fi} and give further insight into the ionization process in liquids. As a consequence of the passage of high energy charged particles through a liquid, molecules are ionized and excited. The electrons have kinetic energy initially which allow them to travel some distance away from their geminate cations. The electrons may lose energy to vibrational modes but a significant fraction of the separation occurs while the electrons have subvibrational (near thermal) energy. When the electron finally thermalizes it is within the coulombic field of its parent cation and the two ions constitute a geminate pair. The free ion yield is determined by the fraction of geminate pairs which separate to form free ions as against those that recombine to form excited states.

Holroyd, R.

1992-01-01T23:59:59.000Z

427

Melter performance during surrogate vitrification campaigns at the DOE/Industrial Center for Vitrification Research at Clemson University  

SciTech Connect (OSTI)

This report summarizes the results from seven melter campaigns performed at the DOE/Industrial Center for Vitrification Research at Clemson University. A brief description of the EnVitco EV-16 Joule heated glass melter and the Stir-Melter WV-0.25 stirred melter are included for reference. The report discusses each waste stream examined, glass formulations developed and utilized, specifics relating to melter operation, and a synopsis of the results from the campaigns. A `lessons learned` section is included for each melter to emphasize repeated processing problems and identify parameters which are considered extremely important to successful melter operation

Marra, J.C. [Westinghouse Savannah River Company, AIKEN, SC (United States); Overcamp, T.J.

1995-10-05T23:59:59.000Z

428

Fusion yield: Guderley model and Tsallis statistics  

E-Print Network [OSTI]

The reaction rate probability integral is extended from Maxwell-Boltzmann approach to a more general approach by using the pathway model introduced by Mathai [Mathai A.M.:2005, A pathway to matrix-variate gamma and normal densities, Linear Algebra and Its Applications}, 396, 317-328]. The extended thermonuclear reaction rate is obtained in closed form via a Meijer's G-function and the so obtained G-function is represented as a solution of a homogeneous linear differential equation. A physical model for the hydrodynamical process in a fusion plasma compressed and laser-driven spherical shock wave is used for evaluating the fusion energy integral by integrating the extended thermonuclear reaction rate integral over the temperature. The result obtained is compared with the standard fusion yield obtained by Haubold and John in 1981.[Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 23, 399-...

Haubold, H J

2010-01-01T23:59:59.000Z

429

Method and apparatus for sampling low-yield wells  

DOE Patents [OSTI]

An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.

Last, George V. (Richland, WA); Lanigan, David C. (Kennewick, WA)

2003-04-15T23:59:59.000Z

430

Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration  

SciTech Connect (OSTI)

For DOE's Used Fuel Disposition Campaign (UFDC), international collaboration is a beneficial and cost-effective strategy for advancing disposal science with regards to multiple disposal options and different geologic environments. While the United States disposal program focused solely on Yucca Mountain tuff as host rock over the past decades, several international programs have made significant progress in the characterization and performance evaluation of other geologic repository options, most of which are very different from the Yucca Mountain site in design and host rock characteristics. Because Yucca Mountain was so unique (e.g., no backfill, unsaturated densely fractured tuff), areas of direct collaboration with international disposal programs were quite limited during that time. The decision by the U.S. Department of Energy to no longer pursue the disposal of high-level radioactive waste and spent fuel at Yucca Mountain has shifted UFDC's interest to disposal options and geologic environments similar to those being investigated by disposal programs in other nations. Much can be gained by close collaboration with these programs, including access to valuable experience and data collected over recent decades. Such collaboration can help to efficiently achieve UFDC's long-term goals of conducting 'experiments to fill data needs and confirm advanced modeling approaches' (by 2015) and of having a 'robust modeling and experimental basis for evaluation of multiple disposal system options' (by 2020). This report discusses selected opportunities of active international collaboration, with focus on both Natural Barrier System (NBS) and Engineered Barrier System (EBS) aspects and those opportunities that provide access to field data (and respective interpretation/modeling) or allow participation in ongoing field experiments. This discussion serves as a basis for the DOE/NE-53 and UFDC planning process for FY12 and beyond.

Birkholzer, J.T.

2011-06-01T23:59:59.000Z

431

Solvent dehydration system cuts energy use, improves dewaxed oil yield  

SciTech Connect (OSTI)

A recent development can be applied in solvent dewaxing plants to reduce energy requirements, simplify operations, reduce maintenance, improve oil yields, and offer capacity gains. Known as the Nofsinger Solvent Dehydration System, this development is being successfully utilized by Ashland Oil Inc. in its Catlettsburg, Ky., refinery to achieve several of these goals. A net savings of approximately $490,000/year was calculated at design throughput. This yields a return on investment of approximately 20% without consideration of any yield effects. Improvements in yield were not included because simultaneous design changes in the unit did not permit Ashland to quantify any yield savings that may have occurred.

Scalise, J.M.; Button, H.O.; Graves, D.C.

1984-08-27T23:59:59.000Z

432

The practices for long campaign of BF No. 1 at Baosteel  

SciTech Connect (OSTI)

There are three large scale blast furnace with 4,000 m{sup 3} class inner volume at Baoshan Steel Co. As of Sept. 15, 1995, the service life of BF No. 1 has been ten years, and accumulated production of hot metal has amounted to 31.0 millions ton. As the production developed, related technical and economical indices have made steady improvements. In addition to that, technology for BF maintenance has also progressed. This paper describes the features of equipment and technologies for prolonging BF service life at Baosteel. It is stressed that operation and maintenance are more important for efficiency in stable runs as well as long campaigns of the blast furnace. Repair and maintenance technology for shaft and hearth lining is introduced based on the practice at Baoshan Steel.

Cai Xianglin; Tao Rongyao; Guo Kezhong

1996-12-31T23:59:59.000Z

433

EXPERIMENTAL STUDY TO EVALUATE CORROSION OF THE F-CANYON DISSOLVER DURING THEUNIRRADIATED MARK-42 CAMPAIGN  

SciTech Connect (OSTI)

Unirradiated Mark 42 fuel tubes are to be dissolved in an upcoming campaign in F-canyon. Savannah River Technology Center (SRTC)/Chemical & Hydrogen Technology Section (CHTS) identified a flow sheet for the dissolution of these Mark 42 fuel tubes which required a more aggressive dissolver solution than previously required for irradiated Mark 42 fuel tubes. Subsequently, SRTC/MTS was requested to develop and perform a corrosion testing program to assess the impact of new flow sheets on corrosion of the dissolver wall. The two primary variables evaluated were the fluoride and aluminum concentrations of the dissolver solution. Fluoride was added as Calcium Fluoride (CaF{sub 2}) while the aluminum was added either as metallic aluminum, which was subsequently dissolved, or as the chemical aluminum nitrate (Al(NO{sub 3}){sub 3}). The dissolved aluminum metal was used to simulate the dissolution of the aluminum from the Mark 42 cladding and fuel matrix. Solution composition for the corrosion tests bracketed the flow sheet for the Mark 42. Corrosion rates of AISI Type 304 stainless steel coupons, both welded and non-welded coupons, were calculated from measured weight losses and post-test concentrations of soluble Fe, Cr and Ni. The corrosion rates, which ranged between 2.7 and 32.5 mpy, were calculated from both the one day and the one week weight losses. These corrosion rates indicated a relatively mild corrosion on the dissolver vessel. The welded coupons consistently had a higher corrosion rate than the non-welded coupons. The difference between the two decreased as the solution aggressiveness decreased. In these test solutions, aggressiveness corresponded with the fluoride concentration. Based on the results of this study, any corrosion occurring during the Mark 42 Campaign is not expected to have a deleterious effect on the dissolver vessel.

Mickalonis, J; Kerry Dunn, K

1999-08-01T23:59:59.000Z

434

07.03.01.M1: Political Campaign Events and Partisan Political Activities on Texas A&M University Property Page 1 of 2 UNIVERSITY RULE  

E-Print Network [OSTI]

07.03.01.M1: Political Campaign Events and Partisan Political Activities on Texas A&M University Property Page 1 of 2 UNIVERSITY RULE 07.03.01.M1 Political Campaign Events and Partisan Political partisan political activity. Texas A&M Universitycannot endorse, support or promote any political candidate

435

High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground HawaiiWaste Heat Recovery:| Department of|a d e b

436

First GPS Campaign, JUNE 2007 This project is realized within the cooperative research between ENS and ITB, with the  

E-Print Network [OSTI]

campaign which consist of 5 points existings (IPA, IPC, IPF, IPG, et IPI) , 9 of Bako points (TOBO, K117, K in each sites, except (BMG1 padangpanjang measured continuously for at least 10 days, SCCN 4 days, IPA 4 of these existing sites were the concrete beton type, 1. IPA CODE : IPA0 NAME : IPA LOCATION : M. Djamil Hospital

Vigny, Christophe

437

Investigations of Possible Low-Level Temperature and Moisture Anomalies During the AMIE Field Campaign on Manus Island  

SciTech Connect (OSTI)

This document discusses results stemming from the investigation of near-surface temperature and moisture “oddities” that were brought to light as part of the Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment (AMIE), Dynamics of the Madden-Julian Oscillation (DYNAMO), and Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns.

Long, CN; Holdridge, DJ

2012-11-19T23:59:59.000Z

438

Florida Keys "Got Your Bags?" Program Campaign Overview: When is the perfect time to adopt best business practices for the  

E-Print Network [OSTI]

business can be trained in green office standards, energy efficiency, recycling, and more. If you the knowledge about plastic bags and their negative impacts on the environment with the "Got Your Bags" campaign to support the reduction and voluntary elimination of single-use plastic bags in the Florida Keys and reduce

Florida, University of

439

J. Messerschmidt et al.: The IMECC campaign: Results for CO2 7 3.6 Uncertainty discussion  

E-Print Network [OSTI]

and their solar tracker were optimized prior the IMECC campaign, and hence systematic effects by the pointing shape of the a priori profiles can be wrong. Sec- ondly the sun tracker pointing at the middle by Equation 1 reduces some of the effects that are common to both gases (solar tracking point- ing errors

Meskhidze, Nicholas

440

Asymmetric Yield Function Based on the Stress Invariants for Pressure Sensitive Metals  

SciTech Connect (OSTI)

A general asymmetric yield function is proposed with dependence on the stress invariants for pressure sensitive metals. The pressure sensitivity of the proposed yield function is consistent with the experimental result of Spitzig and Richmond (1984) for steel and aluminum alloys while the asymmetry of the third invariant is preserved to model strength differential (SD) effect of pressure insensitive materials. The proposed yield function is transformed in the space of the stress triaxaility, the von Mises stress and the normalized invariant to theoretically investigate the possible reason of the SD effect. The proposed plasticity model is further extended to characterize the anisotropic behavior of metals both in tension and compression. The extension of the yield function is realized by introducing two distinct fourth-order linear transformation tensors of the stress tensor for the second and third invariants, respectively. The extended yield function reasonably models the evolution of yield surfaces for a zirconium clock-rolled plate during in-plane and through-thickness compression reported by Plunkett et al. (2007). The extended yield function is also applied to describe the orthotropic behavior of a face-centered cubic metal of AA 2008-T4 and two hexagonal close-packed metals of high-purity-titanium and AZ31 magnesium alloy. The orthotropic behavior predicted by the generalized model is compared with experimental results of these metals. The comparison validates that the proposed yield function provides sufficient predictability on SD effect and anisotropic behavior both in tension and compression. When it is necessary to consider r-value anisotropy, the proposed function is efficient to be used with nonassociated flow plasticity by introducing a separate plastic potential for the consideration of r-values as shown in Stoughton & Yoon (2004, 2009).

Jeong Wahn Yoon; Yanshan Lou; Jong Hun Yoon; Michael V. Glazoff

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Exploiting Historical Data and Diverse Germplasm to Increase Maize Grain Yield in Texas  

E-Print Network [OSTI]

..................................................................................................................... 7 Drought stress and lipid peroxidation ........................................................................ 8 Production of ROS species during drought stress and scavenging mechanisms ....... 9 Role of lipoxygenases in drought stress... for the top five hybrids per year tested in the Texas AgriLife Corn Performance trials from 2000 to 2010 .......................... 44 3.7. Genotypic BLUPs for grain yield for all the hybrids tested in the High Plains...

Barrero Farfan, Ivan D.

2013-06-25T23:59:59.000Z

442

Effects on milk yield and composition of infusions of volatile fatty acids and caseinate into  

E-Print Network [OSTI]

Effects on milk yield and composition of infusions of volatile fatty acids and caseinate isoenergetic infusions of either a low (17 mol/day of 64% acetic, 21% propionic and 15% butyric acids) or high that with infusions, energy and nitrogen needs were met and consisted of 60% maize silage, 10% hay, 21.5% energy

Paris-Sud XI, Université de

443

B{yields}{pi}K puzzle and new physics  

SciTech Connect (OSTI)

The present B{yields}{pi}K data is studied in the context of the standard model (SM) and with new physics (NP). We confirm that the SM has difficulties explaining the B{yields}{pi}K measurements. By adopting an effective-lagrangian parametrization of NP effects, we are able to rule out several classes of NP. Our model-independent analysis shows that the B{yields}{pi}K data can be accommodated by NP in the electroweak penguin sector.

Baek, Seungwon; Hamel, Philippe; London, David; Datta, Alakabha; Suprun, Denis A. [Laboratoire Rene J.-A. Levesque, Universite de Montreal, C.P. 6128, succ. centre-ville, Montreal, QC, H3C 3J7 (Canada); Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7 (Canada); Physics Department, Brookhaven National Laboratory, Upton, New York, USA, 11973 (United States)

2005-03-01T23:59:59.000Z

444

Increasing Sugar Yields with IL-final-sm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ionic Liquid Processing Increasing sugar yields from diverse biomass feedstock with ionic liquid processing and cultivation of renewable ionic liquids Liberating Sugars from...

445

Robust Diamond-Based RF Switch Yields Enhanced Communication...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Robust Diamond-Based RF Switch Yields Enhanced Communication Capabilities Technology available for licesning: A radio frequency (RF) microelectromechanical system (MEMS) switch...

446

Structures for Three Membrane Transport Proteins Yield Functional...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate...

447

Profitable Biodiesel Potential from Increased Agricultural Yields Country Name  

E-Print Network [OSTI]

Profitable Biodiesel Potential from Increased Agricultural Yields Country Name Production Cost ($/liter) Potential Biodiesel Volume (liters) Total Export Profits ($) HDI Rank GDP/ cap Corrupt Rank FDI

Wisconsin at Madison, University of

448

Search for the decays J/{psi}{yields}{gamma}{rho}{phi} and J/{psi}{yields}{gamma}{rho}{omega}  

SciTech Connect (OSTI)

Using 58x10{sup 6} J/{psi} events collected with the Beijing Spectrometer (BESII) at the Beijing Electron-Positron Collider, the decays J/{psi}{yields}{gamma}{phi}{rho} and J/{psi}{yields}{gamma}{omega}{rho} are searched for, and upper limits on their branching fractions are reported at the 90% C.L. No clear structures are observed in the {gamma}{rho}, {gamma}{phi}, or {rho}{phi} mass spectra for J/{psi}{yields}{gamma}{phi}{rho} nor in the {gamma}{rho}, {gamma}{omega}, or {rho}{omega} mass spectra for J/{psi}{yields}{gamma}{omega}{rho}.

Ablikim, M.; Bai, J. Z.; Cai, X.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chu, Y. P.; Deng, Z. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Gao, C. S.; Gu, S. D.; Guo, Y. N.; He, K. L.; Heng, Y. K.; Hu, H. M.; Hu, T. [Institute of High Energy Physics, Beijing 100049 (China)] (and others)

2008-01-01T23:59:59.000Z

449

Airline price discrimination: A practice of yield management or customer  

E-Print Network [OSTI]

Airline price discrimination: A practice of yield management or customer profiling? Rasha H.h.j.dierckx@student.utwente.nl ABSTRACT Prices of airline tickets frequently change, which is traditionally caused by yield management as price discrimination practice. In more recent times however, customer information is easily obtainable

Twente, Universiteit

450

LIGHT-INDUCED CHANGES IN THE FLUORESCENCE YIELD OF  

E-Print Network [OSTI]

LIGHT-INDUCED CHANGES IN THE FLUORESCENCE YIELD OF CHLOROPHYLL a IN VIVO II. CHLORELLA PYRENOIDOSA in Chlorella pyrenoidosa consists of a fast rise of the fluorescence yield from the level S (of the first wave photophosphorylation. INTRODUCTION The long-term fluorescence induction in Chlorella pyrenoidosa (second wave

Govindjee

451

Metabolic Engineering for Improved Biofuel Yield in a Marine  

E-Print Network [OSTI]

Metabolic Engineering for Improved Biofuel Yield in a Marine Cyanobacterium/conclusion · future work that will be done to increase biofuel yield #12;Problems? · Many na@al renewable source of energy -Biofuel produc@on from aqua@c photoautotroph

Petta, Jason

452

Macroscopic yield criteria for plastic anisotropic materials containing spheroidal  

E-Print Network [OSTI]

Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids Vincent-Leblond-Devaux's (GLD) analysis of an rigid-ideal plastic (von Mises) spheroidal volume containing a confocal spheroidal of the proposed approximate yield criterion for plastic anisotropic media containing non-spherical voids

Paris-Sud XI, Université de

453

RESEARCH ARTICLE Climate change model predicts 33 % rice yield decrease  

E-Print Network [OSTI]

RESEARCH ARTICLE Climate change model predicts 33 % rice yield decrease in 2100 in Bangladesh parameters on rice. The effects of climate change on yield of a popular winter rice cultivar in Bangladesh online: 12 June 2012 # INRA and Springer-Verlag, France 2012 Abstract In Bangladesh, projected climate

Boyer, Edmond

454

assessing yield optimization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assessing yield optimization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Sensitivity of Yield...

455

The Effect of Sulphur on Yield of Certain Crops.  

E-Print Network [OSTI]

. These small differences in sld are not regarded as significant. Sulphur did not increase the yield corn, ~vhich would indicate that the Lake Charles soils are not at ?sent deficient in sulphur. Table 8. Yield per acre of corn and cowpeas in experiment...

Reynolds, E. B. (Elbert Brunner)

1930-01-01T23:59:59.000Z

456

Introducing the Canadian Crop Yield Forecaster Aston Chipanshi1  

E-Print Network [OSTI]

for crop yield forecasting and risk analysis. Using the Census Agriculture Region (CAR) as the unit Climate Decision Support and Adaptation, Agriculture and Agri-Food Canada, 1011, Innovation Blvd, Saskatoon, SK S7V 1B7, Canada The Canadian Crop Yield Forecaster (CCYF) is a statistical modelling tool

Miami, University of

457

JOYO-1 Irradiation Test Campaign Technical Close-out, For Information  

SciTech Connect (OSTI)

The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long term microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.

G. Borges

2006-01-31T23:59:59.000Z

458

Yield enhancement of reconfigurable microfluidics-based biochips using interstitial redundancy  

E-Print Network [OSTI]

Microfluidics-based biochips for biochemical analysis are currently receiving much attention. They automate highly repetitive laboratory procedures by replacing cumbersome equipment with miniaturized and integrated systems. As these microfluidics-based microsystems become more complex, manufacturing yield will have significant influence on production volume and product cost. We propose an interstitial redundancy approach to enhance the yield of biochips that are based on droplet-based digital microfluidics. In this design method, spare cells are placed in the interstitial sites within the microfluidic array, and they replace neighboring faulty cells via local reconfiguration. The proposed design method is evaluated using a set of concurrent real-life bioassays. The defect-tolerant design approach based on space redundancy and local reconfiguration is expected to facilitate yield enhancement of microfluidics-based biochips, especially for the emerging marketplace.

Fei Su; Krishnendu Chakrabarty

2006-01-01T23:59:59.000Z

459

Mexico City Aerosol Analysis During Milagro Using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0) - Part 1: Fine Particle Composition and Organic Source Apportionment.  

E-Print Network [OSTI]

Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive ...

Aiken, A. C.

460

Comparative Analysis of the Effect of Different Alkaline Catalysts on Biodiesel Yield  

E-Print Network [OSTI]

Abstract: A major challenge in the biodiesel industry is the comparatively high cost of raw materials for production. A cost build-up analysis of biodiesel production from J. curcas oil shows that catalyst alone contributes about 50.9 % of the total production cost. This paper aims at highlighting the effects of two different commonly used catalysts on the yield of biodiesel. Samples of biodiesel were produced by three different methods namely single stage transesterification (SST), double stage transesterification (DST) and foolproof (FP) processes in which sodium hydroxide (NaOH) and potassium hydroxide (KOH) were used. The effects of each catalyst on the production yield were analyzed and compared. NaOH gave production yields of 79%, 81% and 84 % for the SST, DST and FP processes respectively. KOH produced comparatively lower yields of 68%, 71 % and 75 % for SST, DST and fool proof processes respectively. Although the use of KOH slightly raises the cost of biodiesel production as compared to NaOH, the local production of KOH from cocoa husks could minimize the production cost. Abbreviations: BDF = Biodiesel fuel; PDF = Petroleum diesel fuel; DF = Diesel fuel Key words: Transesterification Alkaline catalysts Biodiesel yield Biodiesel KOH NaOH

Cynthia Ofori-boateng; Ebenezer M. Kwofie; Moses Y. Mensah

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Optical spectroscopic observations of gamma-ray blazar candidates IV. Results of the 2014 follow-up campaign  

E-Print Network [OSTI]

The extragalactic gamma-ray sky is dominated by the emission arising from blazars, one of the most peculiar classes of radio-loud active galaxies. Since the launch of Fermi several methods were developed to search for blazars as potential counterparts of unidentified gamma-ray sources (UGSs). To confirm the nature of the selected candidates, optical spectroscopic observations are necessary. In 2013 we started a spectroscopic campaign to investigate gamma-ray blazar candidates selected according to different procedures. The main goals of our campaign are: 1) to confirm the nature of these candidates, and 2) whenever possible determine their redshifts. Optical spectroscopic observations will also permit us to verify the robustness of the proposed associations and check for the presence of possible source class contaminants to our counterpart selection. This paper reports the results of observations carried out in 2014 in the Northern hemisphere with Kitt Peak National Observatory (KPNO) and in the Southern hemi...

Ricci, F; Landoni, M; D'Abrusco, R; Milisavljevic, D; Stern, D; Masetti, N; Paggi, A; Smith, Howard A; Tosti, G

2015-01-01T23:59:59.000Z

462

Campaign-style titanite UPb dating by laser-ablation ICP: Implications for crustal flow, phase transformations and titanite closure  

E-Print Network [OSTI]

Campaign-style titanite U­Pb dating by laser-ablation ICP: Implications for crustal flow, phase transformations and titanite closure K.J. Spencer a , B.R. Hacker a, , A.R.C. Kylander-Clark a , T.B. Andersen b Editor: K. Mezger Keywords: Titanite Ultrahigh-pressure U­Pb Norway U­Pb dates of titanite from >150

Hacker, Bradley R.

463

Pyrolysis of polyolefins for increasing the yield of monomers' recovery  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Thermal and catalytic pyrolysis of mixed polyolefins in fluidized bed has been studied. Black-Right-Pointing-Pointer We tested applicability of a commercial Ziegler-Natta catalyst (Z-N: TiCl{sub 4}/MgCl{sub 2}). Black-Right-Pointing-Pointer The catalyst has a strong influence on product distribution, increasing gas fraction. Black-Right-Pointing-Pointer At 650 Degree-Sign C the monomer generation increased by 55% when the catalyst was used. Black-Right-Pointing-Pointer We showed the concept of treatment of mixed polyolefins without a need of separation. - Abstract: Pyrolysis of plastic waste is an alternative way of plastic recovery and could be a potential solution for the increasing stream of solid waste. The objective of this work was to increase the yield the gaseous olefins (monomers) as feedstock for polymerization process and to test the applicability of a commercial Ziegler-Natta (Z-N): TiCl{sub 4}/MgCl{sub 2} for cracking a mixture of polyolefins consisted of 46% wt. of low density polyethylene (LDPE), 30% wt. of high density polyethylene (HDPE) and 24% wt. of polypropylene (PP). Two sets of experiments have been carried out at 500 and 650 Degree-Sign C via catalytic pyrolysis (1% of Z-N catalyst) and at 650 and 730 Degree-Sign C via only-thermal pyrolysis. These experiments have been conducted in a lab-scale, fluidized quartz-bed reactor of a capacity of 1-3 kg/h at Hamburg University. The results revealed a strong influence of temperature and presence of catalyst on the product distribution. The ratios of gas/liquid/solid mass fractions via thermal pyrolysis were: 36.9/48.4/15.7% wt. and 42.4/44.7/13.9% wt. at 650 and 730 Degree-Sign C while via catalytic pyrolysis were: 6.5/89.0/4.5% wt. and 54.3/41.9/3.8% wt. at 500 and 650 Degree-Sign C, respectively. At 650 Degree-Sign C the monomer generation increased by 55% up to 23.6% wt. of total pyrolysis products distribution while the catalyst was added. Obtained yields of olefins were compared with the naphtha steam cracking process and other potentially attractive processes for feedstock generation. The concept of closed cycle material flow for polyolefins has been discussed, showing the potential benefits of feedstock recycling in a plastic waste management.

Donaj, Pawel J., E-mail: pawel@mse.kth.se [Royal Institute of Technology, School of Industrial Engineering and Management, Division of Energy and Furnace Technology, Brinellvagen 23, 100-44 Stockholm (Sweden); Kaminsky, W. [University of Hamburg, Institute of Technical and Macromolecular Chemistry, Martin-Luther-King Platz 6, 20146 Hamburg (Germany); Buzeto, F. [State University of Campinas - UNICAMP, College of Chemical Engineering, Department of Polymer Science - Av. Albert Einstein 13083-852 Campinas (Brazil); Yang, W. [Royal Institute of Technology, School of Industrial Engineering and Management, Division of Energy and Furnace Technology, Brinellvagen 23, 100-44 Stockholm (Sweden)

2012-05-15T23:59:59.000Z

464

Search for B{sup +}{yields}X(3872)K{sup +}, X(3872){yields}J/{psi}{gamma}  

SciTech Connect (OSTI)

In a study of B{sup +}{yields}J/{psi}{gamma}K{sup +} decays, we find evidence for the radiative decay X(3872){yields}J/{psi}{gamma} with a statistical significance of 3.4{sigma}. We measure the product of branching fractions B(B{sup +}{yields}X(3872)K{sup +}){center_dot}B(X(3872){yields}J/{psi}{gamma})=(3.3{+-}1.0{+-}0.3)x10{sup -6}, where the uncertainties are statistical and systematic, respectively. We also measure the branching fraction B(B{sup +}{yields}{chi}{sub c1}K{sup +})=(4.9{+-}0.2{+-}0.4)x10{sup -4}. These results are obtained from (287{+-}3) million BB decays collected at the {upsilon}(4S) resonance with the BABAR detector at the PEP-II B Factory at SLAC.

Aubert, B.; Barate, R.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Tisserand, V.; Zghiche, A. [Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux (France); Grauges, E. [Universitat de Barcelona, Facultat de Fisica Departamento ECM, E-08028 Barcelona (Spain); Palano, A. [Universita di Bari, Dipartimento di Fisica and INFN, I-70126 Bari (Italy); Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S. [Institute of High Energy Physics, Beijing 100039 (China); Eigen, G.; Ofte, I.; Stugu, B. [University of Bergen, Institute of Physics, N-5007 Bergen (Norway)] (and others)

2006-10-01T23:59:59.000Z

465

Development of Yield and Tensile Strength Design Curves for Alloy 617  

SciTech Connect (OSTI)

The U.S. Department of Energy Very High Temperature Reactor Program is acquiring data in preparation for developing an Alloy 617 Code Case for inclusion in the nuclear section of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code. A draft code case was previously developed, but effort was suspended before acceptance by ASME. As part of the draft code case effort, a database was compiled of yield and tensile strength data from tests performed in air. Yield strength and tensile strength at temperature are used to set time independent allowable stress for construction materials in B&PV Code, Section III, Subsection NH. The yield and tensile strength data used for the draft code case has been augmented with additional data generated by Idaho National Laboratory and Oak Ridge National Laboratory in the U.S. and CEA in France. The standard ASME Section II procedure for generating yield and tensile strength at temperature is presented, along with alternate methods that accommodate the change in temperature trends seen at high temperatures, resulting in a more consistent design margin over the temperature range of interest.

Nancy Lybeck; T. -L. Sham

2013-10-01T23:59:59.000Z

466

Fabrication of control rods for the High Flux Isotope Reactor  

SciTech Connect (OSTI)

The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

Sease, J.D.

1998-03-01T23:59:59.000Z

467

Hit from both sides: tracking industrial and volcanic plumes in Mexico City with surface measurements and OMI SO2 retrievals during the MILAGRO field campaign  

E-Print Network [OSTI]

Large sulfur dioxide plumes were measured in the Mexico City Metropolitan Area (MCMA) during the MILAGRO field campaign. This paper seeks to identify the sources of these plumes and the meteorological processes that affect ...

de Foy, B.

468

Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry  

SciTech Connect (OSTI)

Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

2009-11-01T23:59:59.000Z

469

Observation of J/{psi}{yields}3{gamma}  

SciTech Connect (OSTI)

We report the first observation of the decay J/{psi}{yields}3{gamma}. The signal has a statistical significance of 6{sigma} and corresponds to a branching fraction of B(J/{psi}{yields}3{gamma})=(1.2{+-}0.3{+-}0.2)x10{sup -5}, in which the errors are statistical and systematic, respectively. The measurement uses {psi}(2S){yields}{pi}{sup +}{pi}{sup -}J/{psi} events acquired with the CLEO-c detector operating at the CESR e{sup +}e{sup -} collider.

Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J. [Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F. [University of Rochester, Rochester, New York 14627 (United States); Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K. [Syracuse University, Syracuse, New York 13244 (United States)] (and others)

2008-09-05T23:59:59.000Z

470

Plasmonic light yield enhancement of a liquid scintillator  

SciTech Connect (OSTI)

We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

Bignell, Lindsey J.; Jackson, Timothy W. [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia)] [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Mume, Eskender [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia) [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Center of Excellence in Anti-matter Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia); Lee, George P. [Department of Materials Engineering, Monash University, Melbourne (Australia)] [Department of Materials Engineering, Monash University, Melbourne (Australia)

2013-05-27T23:59:59.000Z

471

Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report  

SciTech Connect (OSTI)

ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.

1996-03-01T23:59:59.000Z

472

Study of B{yields}X(3872)K, with X(3872){yields}J/{psi}{pi}{sup +}{pi}{sup -}  

SciTech Connect (OSTI)

We present measurements of the decays B{sup +}{yields}X(3872)K{sup +} and B{sup 0}{yields}X(3872)K{sup 0} with X(3872){yields}J/{psi}{pi}{sup +}{pi}{sup -}. The data sample used, collected with the BABAR detector at the PEP-II e{sup +}e{sup -} asymmetric-energy storage ring, corresponds to 455x10{sup 6}BB pairs. Branching fraction measurements of B(B{sup +}{yields}X(3872)K{sup +})xB(X(3872){yields}J/{psi}{pi}{sup +}{pi}{sup -})=(8.4{+-}1.5{+-}0.7)x10{sup -6} and B(B{sup 0}{yields}X(3872)K{sup 0})xB(X(3872){yields}J/{psi}{pi}{sup +}{pi}{sup -})=(3.5{+-}1.9{+-}0.4)x10{sup -6} are obtained. We set an upper limit on the natural width of the X(3872) of {gamma}<3.3 MeV/c{sup 2} at the 90% confidence level.

Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V. [Laboratoire de Physique des Particules, IN2P3/CNRS et Universite de Savoie, F-74941 Annecy-Le-Vieux (France); Garra Tico, J.; Grauges, E. [Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona (Spain); Lopez, L.; Palano, A.; Pappagallo, M. [Universita di Bari, Dipartimento di Fisica and INFN, I-70126 Bari (Italy); Eigen, G.; Stugu, B.; Sun, L. [University of Bergen, Institute of Physics, N-5007 Bergen (Norway); Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J. [Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720 (United States)] (and others)

2008-06-01T23:59:59.000Z

473

analysis yields potential: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the a3 R u and 13 R g states of Li2 has yielded accurate analytic potential energy functions for both states. The recommended M3LR8:0 5;33? potential for the a3...

474

Yield Enhancement of Reconfigurable Microfluidics-Based Biochips Using  

E-Print Network [OSTI]

Yield Enhancement of Reconfigurable Microfluidics-Based Biochips Using Interstitial Redundancy FEI SU and KRISHNENDU CHAKRABARTY Duke University Microfluidics-based biochips for biochemical analysis cumbersome equipment with minia- turized and integrated systems. As these microfluidics-based microsystems

Chakrabarty, Krishnendu

475

Future Yield Growth: What Evidence from Historical Data?  

E-Print Network [OSTI]

The potential future role of biofuels has become an important topic in energy legislation as it is seen as a potential low carbon alternative to conventional fuels. Hence, future yield growth is an important topic from ...

Gitiaux, Xavier

476

A Computational Study of Feeding Rules and Yield Improvement Techniques  

E-Print Network [OSTI]

A Computational Study of Feeding Rules and Yield Improvement Techniques Christoph Beckermann improvement techniques is presented. The computer simulations were performed using a commercial solidification chills (termed passive methods), and active heating and cooling are presented and compared. The benefits

Beckermann, Christoph

477

Dynamic and rate-dependent yielding in model cohesive suspensions  

E-Print Network [OSTI]

An experimental system has been found recently, a coagulated CaCO3 suspension, that shows very different yield behaviour depending upon how it is tested and at what rate it is strained. At P\\'eclet number Pe > 1 it behaves as a simple Herschel Bulkley liquid, whereas at Pe it shows hysteresis and shear-banding and in the usual type of sweep used to measure flow curves in controlled stress mode routinely, it shows very erratic and irreproducible behaviour. All of these features can be attributed to a dependence of yield stress on rate of strain. Stress growth curves obtained from step strain-rate testing showed that the rate-dependence of the yield stress was a consequence of rate-dependent strain-softening. At very low Pe yield was cooperative and the yield strain was order-one, whereas as the Pe approached unity, the yield strain reduced to that needed to break interparticle bonds and the yield stress decayed to a minimal value. For example, at 40%v/v it dropped from ca. 200 Pa to It is suspected that the rich behaviour seen for the CaCO3 system could well be the rule rather than the exception for cohesive suspensions, the importance or otherwise of the rate dependence being a matter of scale or degree. If so, then the Herschel-Bulkley equation could usefully be generalised to read (in simple shear). The proposition that rate-dependent yield might be general, for cohesive suspensions at least, is amenable to further rigorous experimental testing by a range of means and along lines suggested.

Richard Buscall; Peter J Scales; Anthony D Stickland; Hui-En Teo; Tiara E Kusuma; Daniel R Lester

2014-10-01T23:59:59.000Z

478

Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases  

SciTech Connect (OSTI)

We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

Ave, M.; /Karlsruhe, Inst. Technol.; Bohacova, M.; /Chicago U., EFI; Daumiller, K.; /Karlsruhe, Inst. Technol.; Di Carlo, P.; /INFN, Aquila; Di Giulio, C.; /INFN, Rome; Luis, P.Facal San; /Chicago U., EFI; Gonzales, D.; /Karlsruhe U., EKP; Hojvat, C.; /Fermilab; Horandel, J.R.; /Nijmegen U., IMAPP; Hrabovsky, M.; /Palacky U.; Iarlori, M.; /INFN, Aquila /Karlsruhe, Inst. Technol.

2011-01-01T23:59:59.000Z

479

Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008  

SciTech Connect (OSTI)

The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and ice nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary conditions are likely to be very different because of the much more extensive ocean water during M-PACE. The uniformity of the surface conditions during ISDAC greatly simplifies the objective analysis (surface fluxes and precipitation are very weak), so that it can largely rely on the European Centre for Medium-Range Weather Forecasts analysis. The aerosol measurements can also be used as input to the cloud models and to evaluate the aerosol retrievals. By running the cloud models with and without solar absorption by the aerosols, we can determine the semidirect effect of the aerosol on the clouds.

SJ Ghan; B Schmid; JM Hubbe; CJ Flynn; A Laskin; AA Zelenyuk; DJ Czizco; CN Long; G McFarquhar; J Verlinde; J Harrington; JW Strapp; P Liu; A Korolev; A McDonald; M Wolde; A Fridlind; T Garrett; G Mace; G Kok; S Brooks; D Collins; D Lubin; P Lawson; M Dubey; C Mazzoleni; M Shupe; S Xie; DD Turner; Q Min; EJ Mlawer; D Mitchell

2007-11-01T23:59:59.000Z

480

A viscoplasticity model with an enhanced control of the yield surface distortion  

E-Print Network [OSTI]

A new model of metal viscoplasticity, which takes combined isotropic, kinematic, and distortional hardening into account, is presented. The basic modeling assumptions are illustrated using a new two-dimensional rheological analogy. This demonstrative rheological model is used as a guideline for the construction of constitutive relations. The nonlinear kinematic hardening is captured using the well-known Armstrong-Frederick approach. The distortion of the yield surface is described with the help of a so-called distortional backstress. A distinctive feature of the model is that any smooth convex saturated form of the yield surface which is symmetric with respect to the loading direction can be captured. In particular, an arbitrary sharpening of the saturated yield locus in the loading direction combined with a flattening on the opposite side can be covered. Moreover, the yield locus evolves smoothly and its convexity is guaranteed at each hardening stage. A strict proof of the thermodynamic consistency is provided. Finally, the predictive capabilities of the material model are verified using the experimental data for a very high work hardening annealed aluminum alloy 1100 Al.

A. V. Shutov; J. Ihlemann

2012-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "high yield campaign" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Stress localization, stiffening and yielding in a model colloidal gel  

E-Print Network [OSTI]

We use numerical simulations and an athermal quasi-static shear protocol to investigate the yielding of a model colloidal gel. Under increasing deformation, the elastic regime is followed by a significant stiffening before yielding takes place. A space-resolved analysis of deformations and stresses unravel how the complex load curve observed is the result of stress localization and that the yielding can take place by breaking a very small fraction of the network connections. The stiffening corresponds to the stretching of the network chains, unbent and aligned along the direction of maximum extension. It is characterized by a strong localization of tensile stresses, that triggers the breaking of a few network nodes at around 30% of strain. Increasing deformation favors further breaking but also shear-induced bonding, eventually leading to a large-scale reorganization of the gel structure at the yielding. At low enough shear rates, density and velocity profiles display significant spatial inhomogeneity during yielding in agreement with experimental observations.

Jader Colombo; Emanuela Del Gado

2014-06-16T23:59:59.000Z

482

Compilation of fission product yields Vallecitos Nuclear Center  

SciTech Connect (OSTI)

This document is the ninth in a series of compilations of fission yield data made at Vallecitos Nuclear Center in which fission yield measurements reported in the open literature and calculated charge distributions have been utilized to produce a recommended set of yields for the known fission products. The original data with reference sources, as well as the recommended yields are presented in tabular form for the fissionable nuclides U-235, Pu-239, Pu-241, and U-233 at thermal neutron energies; for U-235, U-238, Pu-239, and Th-232 at fission spectrum energies; and U-235 and U-238 at 14 MeV. In addition, U-233, U-236, Pu-240, Pu-241, Pu-242, Np-237 at fission spectrum energies; U-233, Pu-239, Th-232 at 14 MeV and Cf-252 spontaneous fission are similarly treated. For 1979 U234F, U237F, Pu249H, U234He, U236He, Pu238F, Am241F, Am243F, Np238F, and Cm242F yields were evaluated. In 1980, Th227T, Th229T, Pa231F, Am241T, Am241H, Am242Mt, Cm245T, Cf249T, Cf251T, and Es254T are also evaluated.

Rider, B.F.

1980-01-01T23:59:59.000Z

483

Analytical services: 222-S characterization of 242-A Evaporator Slurry, Campaign 94-1. Addendum 1A  

SciTech Connect (OSTI)

During the 242-A Evaporator`s 94-1 campaign, five process samples were collected from the slurry stream for waste characterization. The five samples were collected over a 36 day time span, respectively on May 4, May 9, May 16, May 23, and June 9, 1994. Sample collections were performed per the protocol described in 242-A Evaporator Waste Analysis Plan, WHC-SD-WM-EV-060, Rev. 3 and in 242-A Evaporator Quality Assurance Project Plan, WHC-SD-WM-QAPP-009, Rev. 0. Slurry waste was characterized chemically and radiochemically by the Westinghouse Hanford Company, 222-S Laboratory as directed.

Not Available

1994-09-13T23:59:59.000Z

484

ICRF heating at JET: From operations with a metallic wall to the long term perspective of a DT campaign  

SciTech Connect (OSTI)

The first series of experiments with the ITER-like wall (ILW) will start mid-2011 with D plasmas and will continue through 2012-13 with H, {sup 4}He and D plasmas, and up to 2014-15, when a DT campaign is proposed. In this paper, the previous experience at JET is reviewed to set the scene for the future challenges of ICRF operation including change in the ICRF coupling, W impurity production and evaluation of localized power loads due the RF sheaths. development in a Beryllium/Tungsten environment of ICRF heating schemes for the non activated and the DT phases of ITER.

Mayoral, M.-L.; Graham, M.; Jacquet, Ph.; Monakhov, I.; Riccardo, V. [Euratom/CCFE Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Eriksson, L.-G. [European Commission, Brussels, B-1049 (Belgium); Lerche, E.; Van Eester, D. [LPP-ERM/KMS, Association Euratom-'Belgian State' (Belgium)

2011-12-23T23:59:59.000Z

485

Sputtering yield of Pu bombarded by fission Fragments from Cf  

SciTech Connect (OSTI)

We present results on the yield of sputtering of Pu atoms from a Pu foil, bombarded by fission fragments from a {sup 252}Cf source in transmission geometry. We have found the number of Pu atoms/incoming fission fragments ejected to be 63 {+-} 1. In addition, we show measurements of the sputtering yield as a function of distance from the central axis, which can be understood as an angular distribution of the yield. The results are quite surprising in light of the fact that the Pu foil is several times the thickness of the range of fission fragment particles in Pu. This indicates that models like the binary collision model are not sufficient to explain this behavior.

Danagoulian, Areg [Los Alamos National Laboratory; Klein, Andreas [Los Alamos National Laboratory; Mcneil, Wendy V [Los Alamos National Laboratory; Yuan, Vincent W [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

486

Bushland Management For Water Yield: Prospects for Texas.  

E-Print Network [OSTI]

TDOC Z TA245.7 B873 no.1569 LIBRARY :JUNo 91987 I 1 Texas A&M University Brushland Management for Water Yield: Prospects for Texas THE TEXAS AGRICULTURAL EXPERIMENT STATION/Neville P. Clarke, Director/The Texas A&M University System.../College Station, Texas B-1569 May 1987 [Blank Page in Original Bulletin] BRUSHLAND MANAGEMENT FOR WATER YIELD: PROSPECTS FOR TEXAS Bruce A. McCarl Professor- Agricultural Economics Ronald C. Griffin Associate Professor- Agricultural Economics Ronald A...

McCarl, Bruce A.; Griffin, Ronald C.; Kaiser, Ronald A.; Freeman, Lansingh S.; Blackburn, Wilbert H.; Jordan, Wayne R.

1987-01-01T23:59:59.000Z

487

Effect of methionine consumption on egg component yield and composition  

E-Print Network [OSTI]

Production Weight (%) . 30 . 33 . 37 . 40 (g/HD') 107' 106cb 105ab 104" (mg/HD) 328' 354' 392' 423' (%) 77. 5' 77. 7' 78 7' 78. 3' (g) 63. 3" 63. 0' 63. 0' 63, 1' x ~ SEIvf 106 b 19 374 + 77 78. 1 + 7. 7 63. 1 ~ 4. 6 '"~Means within... are identified by these mg/HD intake levels. Yield of albumen and yolk were not significantly different among treatments on either a mass or percentage basis (Table 4). Shell component yield was not significantly different among treatments. Significant...

Shafer, Daniel John

2012-06-07T23:59:59.000Z

488

Summary of Conclusions and Recommendations Drawn from the DeepCWind Scaled Floating Offshore Wind System Test Campaign: Preprint  

SciTech Connect (OSTI)

The DeepCwind consortium is a group of universities, national labs, and companies funded under a research initiative by the U.S. Department of Energy (DOE) to support the research and development of floating offshore wind power. The two main objectives of the project are to better understand the complex dynamic behavior of floating offshore wind systems and to create experimental data for use in validating the tools used in modeling these systems. In support of these objectives, the DeepCwind consortium conducted a model test campaign in 2011 of three generic floating wind systems, a tension-leg platform (TLP), a spar-buoy (spar), and a semisubmersible (semi). Each of the three platforms was designed to support a 1/50th-scale model of a 5 MW wind turbine and was tested under a variety of wind/wave conditions. The focus of this paper is to summarize the work done by consortium members in analyzing the data obtained from the test campaign and its use for validating the offshore wind modeling tool, FAST.

Robertson, A. N.; Jonkman, J. M.; Masciola, M. D.; Molta, P.; Goupee, A. J.; Coulling, A. J.; Prowell, I.; Browning, J.

2013-07-01T23:59:59.000Z

489

A New Seismic Data System for Determining Nuclear Test Yields At the Nevada Test Site  

SciTech Connect (OSTI)

An important capability in conducting underground nuclear tests is to be able to determine the nuclear test yield accurately within hours after a test. Due to a nuclear test moratorium, the seismic method that has been used in the past has not been exercised since a non-proliferation high explosive test in 1993. Since that time, the seismic recording system and the computing environment have been replaced with modern equipment. This report describes the actions that have been taken to preserve the capability for determining seismic yield, in the event that nuclear testing should resume. Specifically, this report describes actions taken to preserve seismic data, actions taken to modernize software, and actions taken to document procedures. It concludes with a summary of the current state of the data system and makes recommendations for maintaining this system in the future.

LEE, JONATHAN W.

2001-11-01T23:59:59.000Z

490

RESEARCH ARTICLE Impact of water stress on citrus yield  

E-Print Network [OSTI]

October 2011 # INRA and Springer-Verlag, France 2011 Abstract Water shortage is becoming a severe problemRESEARCH ARTICLE Impact of water stress on citrus yield Iván García-Tejero & Victor Hugo Durán in arid and semi-arid regions worldwide, reducing the avail- ability of agricultural land and water

Paris-Sud XI, Université de

491

TOWARDS STANDARDIZATION OF CSP YIELD ASSESSMENTS Richard Meyer  

E-Print Network [OSTI]

. In the field of concentrating solar power (CSP) standardized procedures for the assessment of energy yields German Aerospace Center (DLR), Inst. f. Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany 4 Oldenburg University, Department of Energy and Semiconductor Research, 26111 Oldenburg, Germany

Heinemann, Detlev

492

2005 Nature Publishing Group Photosynthesis genes in marine viruses yield  

E-Print Network [OSTI]

© 2005 Nature Publishing Group Photosynthesis genes in marine viruses yield proteins during host­6 probably influences the genetic and functional diversity of both. For example, photosynthesis genes period. We also show that the expression of host photosynthesis genes declines over the course

Church, George M.

493

A new yield function for geomaterials. Davide Bigoni , Andrea Piccolroaz  

E-Print Network [OSTI]

and frictional materials, including soils, rocks, concrete, metallic and composite powders, metallic foams, porous metals, and polymers. The yield func- tion represents a single, convex and smooth surface of quasibrittle and frictional materials (a collective denom- ination for soil, concrete, rock, granular media

Bigoni, Davide

494

Femoral neck fracture prediction by anisotropic yield criteria  

E-Print Network [OSTI]

Femoral neck fracture prediction by anisotropic yield criteria M. Tellache a , b , M. Pithioux and increases its porosity. Hip fractures are the more recurrent consequences of osteoporosis, and are the cause of morbidity and increase the rate of mortality. The fracture risk due to osteoporosis, is undertaken with Dual

Paris-Sud XI, Université de

495

Shear-induced sedimentation in yield stress fluids Guillaume Ovarlez  

E-Print Network [OSTI]

if a given material will remain ho- mogeneous during a flow. Using MRI techniques, we study the time the local shear rate in the interstitial fluid. Keywords: Sedimentation; Yield stress fluid; Suspension; MRI some lift or dispersion forces to the particles. This principle is typically used in fluidization

Paris-Sud XI, Université de

496

The Impacts and Benefits Yielded from the Sport of Quidditch  

E-Print Network [OSTI]

grounded theory approach and examined the impact and benefits for volunteers who chose to work for the IQA. Findings suggested the unique atmosphere of quidditch was able to produce an environment that yielded positive impact on the volunteers. It was found...

Cohen, Adam

2013-08-06T23:59:59.000Z

497

MFR PAPER 1132 The ocean's yield of seafood  

E-Print Network [OSTI]

- termine how we ought to be farming these cold seas? What crops will be best? How can we cultivate for the least cost in energy and materials. From bottle gardens to national parks, most of our garden designs provided immense yields of food crops ; other ex- amples are flower gardens in the man- grove swamps

498

Understanding the Genetic Interactions that Regulate Heat and Drought Tolerance in Relation to Wax Deposition and Yield Stability in Wheat (Tricticum Aestivum L.)  

E-Print Network [OSTI]

.......................................................................................................... 94 ix CHAPTER IV QTL MAPPING OF LEAF EPICUTICULAR WAX LOAD, AND ITS INFLUENCE ON CANOPY TEMPERATURE AND YIELD STABILITY IN A RECOMBINANT INBRED LINE POPULATION OF HALBERD/LEN IN TRITICUM AESTIVUM L. UNDER WATER DEFICIT AND HIGH TEMPERATURE...

Huggins, Trevis D

2014-04-08T23:59:59.000Z

499

Using Legumes to Enhance Sustainability of Sorghum Cropping Systems in the East Texas Pineywoods Ecoregion: Impacts on Soil Nitrogen, Soil Carbon, and Crop Yields  

E-Print Network [OSTI]

bicolor (L.) Moench], high-biomass sorghum [Sorghum bicolor (L.) Moench], and annual forage cropping systems. These studies quantified legume soil moisture usage and C and N contributions to the soil and subsequent crop yields in East Texas. Primary...

Neely, Clark B

2013-05-03T23:59:59.000Z

500

Effect of soil acidity factors on yields and foliar composition of tropical root crops  

SciTech Connect (OSTI)

Tropical root crops, a major source of food for subsistence farmers, varied in their sensitivity to soil acidity factors. Tolerance to soil acidity is an important characteristic of crops for the humid tropics where soils are often very acid and lime-scarce and expensive. Experiments on two Ultisols and an Oxisol showed that three tropical root crops differed markedly in sensitivity to soil acicity factors. Yams (Dioscorea alata L.) were very sensitive to soil acidity with yields on a Ultisol decreasing from 70% of maximum when Al saturation of the effective cation exchange capacity of the soil was 10 to 25% of maximum when Al saturation was 40%. On the other hand, cassava (Manihot esculenta Crantz) was very tolerant to high levels of soil acidity, yielding about 85% of maximum with 60% Al saturation. Taniers (Xanthosoma sp.) were intermediate between yams and cassava in their tolerance to soil acidity yielding about 60% of maximum with 50% Al saturation of the soil. Foliar composition of cassava was not affected by soil acidity levels and that of yams and taniers was also unaffected except for Ca content which decreased with decreasing soil pH and increasing Al saturation.Response of these tropical root crops to soil acidity components was far more striking on Ultisols than on the Oxisol. For yams, soils should be limed to about pH 5.5 with essentially no exhangeable Al/sup 3 +/ present whereas high yields of taniers can be obtained at about pH 4.8 with 20% exchangeable Al/sup 3 +/ and of cassava at pH as low as 4.5 with 60% exchangeable Al/sup 3 +/.

Abruna-Rodriguez, F.; Vicente-Chandler, J.I. Rivera, E.; Rodriguez, J.

1982-09-01T23:59:59.000Z