Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High West Energy, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformation RhodeWest Energy, Inc Jump to:

2

High West Energy, Inc (Nebraska) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to: navigation,Solar Power PlantWells

3

High West Energy, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformation Rhode

4

Hydrogeological model of a high energy geothermal field (Bouillante area, Guadeloupe, French West Indies)  

E-Print Network [OSTI]

1 Hydrogeological model of a high energy geothermal field (Bouillante area, Guadeloupe, French West, France 3. BRGM, Department of Geothermal Energy 3, Av. Claude Guillemin - 45060 Orléans Cedex 2, France Abstract The Bouillante geothermal field presently provides about 8% of the annual electricity needs

Paris-Sud XI, Université de

5

Proposed Energy Transport Corridors: West-wide energy corridor...  

Broader source: Energy.gov (indexed) [DOE]

Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor...

6

Energy Efficiency Programs in West Virginia: A Partnership Approach  

E-Print Network [OSTI]

West Virginia's successful energy efficiency program relies on the close working relationship between the West Virginia Division of Energy and West Virginia University's energy efficiency programs, Industries of the Future - West Virginia and WVU...

Cullen, K. A.; Crowe, E.; Gopalakrishnan, B.; Chaudhari, S.

2011-01-01T23:59:59.000Z

7

Mid West Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to:Michigan: EnergyChina FinalMicrostaqWest Energy Jump

8

West Virginia University 1 Energy Systems Engineering  

E-Print Network [OSTI]

personnel with advanced training in specialized areas of energy systems and energy supply-chain management in the area of conversion Distribution/storage 3 Examples include: #12;2 Energy Systems Engineering EE 533West Virginia University 1 Energy Systems Engineering The Master of Science in Energy Systems

Mohaghegh, Shahab

9

Energy Sciences Institute Talks at West Campus  

E-Print Network [OSTI]

such as pumped hydroelectric storage, compressed air energy storage (CAES), flywheels, and electrochemical electric storage devices, but viable battery technology able to store large amounts of electric energyEnergy Sciences Institute Talks at West Campus Jaephil Cho Professor at SAMSUNG SDI-UNIST Future

10

West Valley Demonstration Project | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudgetFurnacesLES'Nuclear FacilityWestWest

11

West Point Utility System | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells RuralWest Fargo,West Point

12

Steven Westly | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R.Steven P.

13

UC DAVIS WEST VILLAGE ENERGY INITIATIVE ANNUAL REPORT  

E-Print Network [OSTI]

UC DAVIS WEST VILLAGE ENERGY INITIATIVE ANNUAL REPORT 2012 - 2013 #12;C I T Y O F D A V I S #12 involving electric light. Once he began construction, he produced 368 more. The UC Davis West Village Energy and home to the University's Energy and Transportation innovation center, UC Davis West Village has

Schladow, S. Geoffrey

14

Westly Group | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation,WesternWestley, California: Energy Resources

15

West Valley Demonstration Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTanklessLES' URENCO-USA FacilityofDepartmentWest

16

New West Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to: navigation,0558143° LoadingNorthSuffolk,NewNew West

17

Gateway West Transmission Line | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69.County, North Carolina:GatewayWest

18

West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWellsLoading map...

19

West New York, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,WestNew Jersey: Energy

20

West Coast Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbHWeardale TaskEnergy Ltd Jump to:

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hardy County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,Hardy County, West Virginia: Energy Resources

22

Pinch, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierce County, Nebraska:Pilgrim HotSystemsPinch, West

23

West Windsor-Plainsboro High School South wins regional Science...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

West Windsor-Plainsboro High School South wins regional Science Bowl at PPPL A dramatic ending to High School Bowl sends local team to nationals By Jeanne Jackson DeVoe February...

24

Energy Efficiency Evaluation of Guangzhou West Tower Faade System  

E-Print Network [OSTI]

Guangzhou West Tower is an extremely tall public building. The energy efficiency evaluation of its faade should be different than that of ordinary public buildings. Based on the national code GB50189-2005, Design Standard for Energy efficiency...

Meng, Q.; Zhang, L.

2006-01-01T23:59:59.000Z

25

Alfalfa Production Texas High Plains/Far West Texas  

E-Print Network [OSTI]

Alfalfa Production Texas High Plains/Far West Texas Calvin Trostle Extension Agronomy, Lubbock 806.746.6101 ctrostle@ag.tamu.edu #12;Observations in West Texas · Our best alfalfa producers don't have a massive farm is #12;Alfalfa Quality · This is what will make or break large producers · What is your goal? What

Mukhtar, Saqib

26

Clay County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota: Energy Resources JumpWest

27

West Concord, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: West CentralMinnesota: Energy

28

West Union, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,WestUnion, Ohio: Energy

29

West Sacramento, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells RuralWest

30

Water-Energy Shortages in the West: The New Normal?  

E-Print Network [OSTI]

Water-Energy Shortages in the West: The New Normal? Tuesday, November 19, 2013 12:00 - 1:30 p, Kristen Averyt, director of the Western Water Assessment, a NOAA program based at CIRES, will discuss the connections between climate science and decision- making across the West , in particular, the water

Zhang, Junshan

31

Nicholas County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) JumpOpen Energy Information NichinghsiangWest

32

Coal Fork, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy, -105.3774934° Loading map...Fork, West Virginia:

33

Energy Incentive Programs, West Virginia | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica,Idaho EnergyMontanaOregonTexasWashingtonWest

34

Wood County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County,Bay,°Trap, Virginia: EnergyWest Virginia: Energy

35

Tucker County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation DixieTraverseEnergy.EnergyTucker County, West

36

Lincoln County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)is 109. It is classified as03. ItWest

37

Cross Lanes, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova39.Crockett, California:CrookCross Lanes, West

38

Webster County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing,Webb County, Texas: Energy5707456°,357266°,West

39

Handley, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°, -79.954985°is a town inHandHandley, West

40

Beach Haven West, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers Point Housing,Illinois:CountyNewWest, New Jersey: Energy Resources

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Monroe County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate Zone Subtype A. Places in MonroeMonroe County is aWest

42

South Charleston, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZ Partner Central Energy FundInformationSouth Central PowerWest

43

Marshall County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town inRiver93. ItKansas. Its FIPSMarshall CountyWest

44

West Hill, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee isHill, Ohio: Energy

45

West University Place, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,WestUnion, Ohio: EnergyPlace,

46

West Fargo, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells RuralWest Fargo, ND) Jump

47

West Sacramento, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells RuralWest04609°,

48

Calhoun County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline RockCaldera2 2013Calhoun County, West

49

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrekWest Winds Wind

50

WestStart CALSTART | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrekWest Winds

51

West Virginia University | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject isNovember 07, 2007 Wednesday,West ValleyWest Virginia

52

Electrolysis for Energy Storage & Grid Balancing in West Denmark  

E-Print Network [OSTI]

Electrolysis for Energy Storage & Grid Balancing in West Denmark A possible first step toward. Economic Assessment 30 6. Other Methods for Storing Energy 34 Work Method & Acknowledgements This project between the original stakeholders who were, Dansk Fjenrvarmeværkers Forening (DFF), Norsk Hydro Energy

53

Argus Energy WV, LLC wins 2007 Wetlands West Virginia Award  

SciTech Connect (OSTI)

Argus Energy's Kiah Creek Operation has received the 2007 Wetlands West Virginia Award presented by the West Virginian Coal Association. The operation was originally a 1267 acre underground mine in the Coalburg seam. Underground mining commenced in 2000 until the end of 2003 with more than two million tons of coal being produced. The creation of the wetlands was achieved during the operations. 8 photos.

NONE

2007-07-15T23:59:59.000Z

54

West Central Cooperative | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: West Central Cooperative Place:

55

West Central School Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest Central School Corp Facility

56

West Holt Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest Central School

57

West Stevens Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest Central SchoolPalmConstruction

58

West Virginia University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek MaarOil and Gas

59

West Virginia/Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek MaarOilPolicies

60

FirstEnergy (West Penn Power)- Commercial and Industrial Energy Efficiency Rebate Program (Pennsylvania)  

Broader source: Energy.gov [DOE]

FirstEnergy (West Penn Power) offers various rebates to eligible commercial, industrial, non-profit, local government and institutional customers in Pennsylvania service territory who upgrade to...

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Sciences Institute Talks West Campus  

E-Print Network [OSTI]

are the backbone of many renewable energy strategies. Solar cells, batteries, and fuel cells can utilize in nanostructured materials, we can learn how to design materials with optimal performance and energy conversion

62

West Oregon Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells RuralWest Fargo, ND)West

63

West River Electric Assn Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells RuralWest Fargo,West

64

West Virginia Recovery Act State Memo | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 | Energy Efficiency andWendy CainWestWest

65

FirstEnergy (West Penn Power)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

FirstEnergy (West Penn Power) offers a variety of incentives to Pennsylvania residential customers who are interested in upgrading to more energy efficient appliances and equipment. Rebates are...

66

Energy Efficiency of the 2000 International Energy Conservation Code in West Virginia  

SciTech Connect (OSTI)

The West Virginia State Building Code contains two options for energy efficiency requirements in one- and two-family dwellings. One is the International Code Council?s (ICC) 2000 International Energy Conservation Code (IECC) (ICC 1999a,b) (87-4-4.1.6). The second is an exception (replacement) for Chapter 11 of the ICC International Residential Code (IRC) (87-4-4.1.7). The West Virginia Energy Efficiency Program, West Virginia Development Office, has asked the U.S. Department of Energy (DOE) to compare the energy use resulting from the application of the 2000 IECC code and the IRC code, as amended by West Virginia. The Department's Pacific Northwest National Laboratory (PNNL) compared the energy use from compliance with the 2000 IECC to the exception to Chapter 11 of the IRC known as the ''Alternate Energy Code''.

Lucas, Robert G.

2004-11-30T23:59:59.000Z

67

West Pico Food | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine, Florida: Energy Resources

68

Asia West LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources Jump to: navigation,Ashton-SandyLeibo HydroelectricityLLC

69

Far West Rice | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources Jump4748456°,Fallon NavalFangFar Hills,

70

West Falmouth, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee is a village inWest

71

West Fargo, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee is a village inWestFargo,

72

West Islip, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee isHill,Hurley is aWest

73

West Milton, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,West Milton is a

74

West Modesto, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,West Milton is

75

West Monroe, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,West Milton

76

West Morton, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,West MiltonMorton,

77

West Mountain, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,West

78

West Newbury, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,WestNew Jersey:

79

West Norriton, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,WestNew

80

West Nyack, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,WestNewNyack is a

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

West Orange, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,WestNewNyack is

82

West Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,WestNewNyack

83

West Peavine, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,WestNewNyackPeavine,

84

West Springfield, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,West Sayville isWest

85

West Tisbury, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,West Sayville isWestTisbury,

86

West Chatham, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: West Central Cooperative

87

West Chicago, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: West Central Cooperative847507°,

88

West Compton, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: West Central

89

West Conshohocken, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: West CentralMinnesota:

90

West Covina, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: West CentralMinnesota:Covina,

91

West Dennis, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: West CentralMinnesota:Covina,Dennis,

92

West Des Moines, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: West

93

West Farmington, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee is a village

94

West Hampton Dunes, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee is a

95

West Haverstraw, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee is

96

West Homestead, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee isHill,

97

West Menlo Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee

98

West Millgrove, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°,

99

West Sayville, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,West Sayville is a

100

West Springfield, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,West Sayville is

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

West Turin, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,West Sayville

102

West Union, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,West

103

West Vero Corridor, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,WestUnion, Ohio:

104

West View, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,WestUnion,

105

West Virginia's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,WestUnion,

106

West Valley demonstration project: alternative processes for solidifying the high-level wastes  

SciTech Connect (OSTI)

In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

1981-10-01T23:59:59.000Z

107

Phil West  

Broader source: Energy.gov [DOE]

Phil West is the director of communications for the Department of Energys Office of Energy Efficiency and Renewable Energy.

108

Monongahela Power Co (West Virginia) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawk Municipal CommMonongahela Power Co (West

109

Appalachian Power Co (West Virginia) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump to:Virginia(West

110

REFF West Presentation/Prepared Remarks | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList? | DepartmentEnergy RECOVERY ACTREFF West

111

West Central Electric Coop Inc (South Dakota) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells Rural Electric409329°,West

112

West Kentucky Rural E C C | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells RuralWest Fargo, ND)

113

West Plains Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells RuralWest Fargo,

114

East Bank, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThis article is a stub.1228923°, -102.293303°NewWest

115

West Henrietta, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest Central School CorpHenrietta,

116

West Palm Beach, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest Central SchoolPalm Beach,

117

West Point, Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest Central SchoolPalm

118

West Tisbury, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest Central

119

West Virginia's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek MaarOil and

120

West Virginia's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek MaarOil

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

West Dundee, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee is a village in Kane

122

West Elizabeth, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee is a village in

123

West Feliciana Parish, Louisiana: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee is a villageInformation

124

West Hartford, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee is a620447°, -72.7420399°

125

West Haven, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee is a620447°,

126

West Haven-Sylvan, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee is a620447°,Haven-Sylvan,

127

West Hills, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee isHill, Ohio:

128

West Hollywood, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee isHill, Ohio:Hollywood,

129

West Hurley, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee isHill,Hurley is a

130

West Jefferson, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee isHill,Hurley is

131

West Ken-Lark, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee isHill,Hurley isKen-Lark,

132

West Lake Hills, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee isHill,Hurley

133

West Linn, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee isHill,HurleyLinn, Oregon:

134

West Little River, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee isHill,HurleyLinn,

135

West Miami, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°, -80.297036° Loading

136

West Mifflin, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: WestDundee577°, -80.297036°

137

West Slope, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,West Sayville is aSlope,

138

West Sparta, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,West Sayville is aSlope,New

139

Taylor County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County, New Mexico:Taylor County is a county in West

140

Energy Efficiency of the 2003 International Energy Conservation Code in West Virginia  

SciTech Connect (OSTI)

This report estimate the energy savings, economic impacts, and pollution reduction from adopting the 2003 International Code Councils 2003 International Energy Conservation Code (as the mandatory residential energy efficiency code in the state of West Virginia. The state currently allows a less stringent replacement option. This report addresses the impacts for low-rise residential buildings only.

Lucas, Robert G.

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Energy Science Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering...

142

Olde West Chester, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCoMaine: Energy Resources Jump

143

West Valley Demonstration Project High-Level Waste Management  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department ofEnergy Is Everywhere! Webinar: EnergyDRAFT_19507_1 High-Level

144

CONSOL Energy invests in West Virginia CTL plant  

SciTech Connect (OSTI)

Working with Synthesis Energy Systems (SES), America's leading bituminous coal producer assists with the engineering design package for a coal gasification and liquefaction plant to be located near Benwood in West Virginia. Coal will be converted to syngas using SES's proprietary U-GAS technology. The syngas is expected to be used to produce about 720,000 metric tons per year of methanol. The U-GAS technology is licensed from the Gas Technology Institute (GTI). The article explains how the GTI gasification process works. It is based on a surge-stage fluidised bed for production of low-to-medium calorific value synthesis gas from a variety of feedstocks, including coal. 2 figs.

NONE

2008-10-15T23:59:59.000Z

145

Ohio County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy Resources

146

Key West, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood, Michigan: EnergyKesona Power

147

Berkeley County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: Energy Resources Jump

148

Braxton County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar EnergyBradbury,

149

Mineral County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine: Energy Resources8.4863963° Loading map...57. It

150

Grant County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon,Granite Springs637754°, It is1042079°,

151

Granville, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon,Granite6459146°, -79.9872866° Loading map...

152

Greenbrier County, West Virginia: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V Jump to:Greenbox Technology Jump

153

Pratt, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder RiverPratt, Kansas: Energy Resources

154

Putnam County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaski County, Kentucky:County, Georgia: Energy79. It is classified

155

Proposed Energy Transport Corridors: West-wide energy corridor programmatic  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3 ProgramIDPromotingNo. 154 -EIS,

156

Greenport West, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V Jump506384°,AES GE EFSGreenlineGreenport

157

Brooke County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area SolarConnecticut:659243°BroadwindEnergy

158

Mingo County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine: Energy Resources8.4863963°Minerva Park,Mingo

159

Marmet, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town inRiver93. It isEnergy InformationMarmet,

160

Pleasants County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierceJump81647°Pleak,3.1237276°, -96.2730347°Pleasants

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Jackson County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) |JMalucelliIowa Andrew,Jackson County is35. It

162

Clendenin, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouthSolarClearPathEdwardsville, Jump

163

Summers County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: EnergySubletteTexas:Open Energy InformationSummers

164

Tornado, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperations JumpTooele County, Utah: EnergyTopTopsun Energy

165

EECBG Success Story: Energy Savings, Improved Comfort for West...  

Broader source: Energy.gov (indexed) [DOE]

HVAC system. | Photo courtesy of Deborah Hammond The Dunn Building in Martinsburg, West Virginia replaced its HVAC system with a new chiller system fan coil units and...

166

West Virginia Advances Energy Efficiency: Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

West Virginia demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

167

Lewis County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville,LeightonLeola,Meadow,Levy County,41. It isLewis

168

Logan County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown, Arizona:Lockland, Ohio: It isCashion,

169

Wayne County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing, New York: Energy2479453°,Tennessee:

170

West Brooklyn, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing,WebbWellsboro,InformationIllinois: Energy

171

Hancock County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°, -79.954985°

172

Harrison County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,HardyIowa Dunlap, Iowa Little

173

Montgomery, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate Zone SubtypeSereno,Butler, Illinois7.1803833°,

174

Morgan County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose, Wisconsin:MorelandBethany,Tennessee:County

175

Morgantown, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose,Stanley Capital Grp Inc Jump to:Morgantown,

176

Mercer County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald isMelletteEnclosed and StripMercer

177

West Perrine, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine, Florida: Energy Resources Jump

178

West Pleasant View, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine, Florida: Energy

179

West Point, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine, Florida: EnergyPoint

180

Wetzel County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to:Westview, Florida: Energy Resources JumpWetherington,Wetzel

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Gilmer County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation MexicoLLCGilchrist

182

Glasgow, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformationGilroy, California:Gladeview,Glascock2153814°,

183

Roane County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia BlueRiverwoods, Illinois: Energy

184

Pendleton County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,OrleansPassadumkeag, Maine:PawneeASPemiscotPender County,Pendleton

185

Preston County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimate Action ProjectWister Area (DOE

186

Jefferson County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen

187

West Seneca, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells

188

Cassville, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade Sierra Solutions CSSCass County is

189

Indeck West Enfield Energy Center Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigationDesert

190

Nitro, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) JumpOpenJV Jump to: navigation, searchNite

191

Wind Energy Systems Technologies LLC WEST | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbHWeardale TaskEnergyLtd Jump

192

Upton-West Upton, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401Upson County, Georgia: Energy Resources

193

West Cape May, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing,WebbWellsboro,InformationIllinois: EnergyCape

194

Hampshire County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a270136°, -75.5446238°Hampshire County is a

195

Barbour County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers Point Housing, Hawaii: Energy Resources Jump to:Barbour01. It is

196

Belle, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers PointEnergyJingneng861° Loading map...Isle, Florida:Vernon,Belle,

197

Blacksville, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form ViewBlack Diamond PowerBlacklick

198

Boone County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombay Beach,Bonner Springs,EMCBoone County,

199

Brookhaven, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in Cook County, Illinois. ItBrookhavenBrookhaven,

200

Monongalia County, West Virginia: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe Wind FarmInformation Monongalia

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Marion County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town inRiver93. It is classified asMarion91. It It49.

202

Mason County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoading map...(Redirected25. It isB. Places53. It

203

Addison (Webster Springs), West Virginia: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-Venta JumpAddieville, Illinois:Information

204

Save Energy Now West Virginia | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the Gridwise Global Forum Round-UpSTATEof Energy Save (More)South

205

West Puente Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine, Florida: EnergyPointValley,

206

Pocahontas County, West Virginia: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc Jump to: navigation,Information is 075. It is

207

Kendall West, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 ClimateKamas,Kelsey North Geothermal259. It is7089842°,

208

West Caldwell, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells Rural Electric409329°,

209

Cabell County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline Rock -COPPE IncubatorCSU -b:Cabell County,

210

Cedar Glen West, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV Economics ByCavendish,County,

211

Cedar Grove, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV Economics ByCavendish,County,34511°,278534°,

212

Cheat Lake, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV2009Information17. It

213

Chesapeake, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon EnterprisesGrove,

214

Tyler County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformationTulsa,TuscarawasFallon | Open EnergyTwombly,Tyler

215

Elkview, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classifiedProject) | OpenTexas: EnergyElkhartOpen

216

Fayette County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources44795°,Fauquier County,4 Climate Zone1.

217

DOE West Kentucky Regional Science Bowl | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Technical College, 4810 Alben Barkley Dr, Paducah, KY 42001 DOE West Kentucky Regional Science Bowl Contact Regional Co-Coordinator - Buz Smith, DOE Public Affairs 270-441-6821...

218

High energy astrophysical processes  

E-Print Network [OSTI]

We briefly review the high energy astrophysical processes that are related to the production of high energy $\\gamma$-ray and neutrino signals and are likely to be important for the energy loss of high and ultrahigh energy cosmic rays. We also give examples for neutrino fluxes generated by different astrophysical objects and describe the cosmological link provided by cosmogenic neutrinos.

Todor Stanev

2005-04-18T23:59:59.000Z

219

FirstEnergy (West Penn Power)- Residential Solar Water Heating Program (Pennsylvania)  

Broader source: Energy.gov [DOE]

West Penn Power, a First Energy utility, provides rebates to residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a rebate of up...

220

FirstEnergy (Mon Power and Potomac Edison)- Business Lighting Incentive Program (West Virginia)  

Broader source: Energy.gov [DOE]

FirstEnergy's West Virginias utilities (Mon Power and Potomac Edison) offer the Business Lighting Incentive Program in accordance with the December 30, 2011, order issued by the Public Service...

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Storage Testing and Analysis High Power and High Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

222

West Coast Paper Mills Ltd WCPML | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name: West Central Cooperative847507°,West

223

High resolution gamma ray spectroscopy of flares on the east and west limbs of the Sun  

E-Print Network [OSTI]

A new generation of Ge-based high-resolution gamma-ray spectrometers has allowed accurate measurements to be made of the profiles, widths and energies of the gamma-ray lines emitted in the impulsive phases of solar flares. Here we present measurements in two flares of the energies of the de-excitation lines of 12C and 16O at 4.4 and 6.1 MeV respectively by the Ge spectrometer SPI on board INTEGRAL, from which Doppler shifts are derived and compared with those expected from the recoil of 12C and 16O nuclei which were excited by the impacts of flare-accelerated ions. An anomalous Doppler measurement (in terms of recoil theory) has been reported by the Ge spectrometer RHESSI in a flare near the east limb, and explained by a tilt of the magnetic field lines at the footpoint of a magnetic loop away from the vertical, and towards the observer. This might be interpreted to imply a significant difference between the Doppler shifts on the east and west limbs, if it is a general phenomenon. SPI observed both east and west limb flares and found no significant difference in Doppler shifts. We also measured the shapes and fluences of these lines, and their fluence ratio to the 2.2 MeV line from the capture of flare-generated neutrons. Analyses of both quantities using thick-target models parametrized by solar physical and geometric quantities suggest that the two flares studied here also have magnetic fields tilted towards the observer, though the significance of the measurements is not high.

M. J. Harris; V. Tatischeff; J. Kiener; M. Gros; G. Weidenspointner

2006-10-29T23:59:59.000Z

224

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 HEPlogo.jpg The NERSC Program Requirements Review "Large Scale Computing and Storage...

225

MaxWest Environmental Systems | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermal System,WindMaxWest Environmental Systems

226

Craig-Botetourt Electric Coop (West Virginia) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to:Information NewAdvisorsCosmosCoteCEQ'sWest

227

West Virginia - Compare - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c :0.17.1Year3 MeetingBOE ReserveDistillateWest

228

West Virginia - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c :0.17.1Year3 MeetingBOEWest Virginia West

229

West Ford Flat Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest Central School Corp

230

West Ukinrek Maar Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek Maar Geothermal

231

West Valley Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek Maar

232

West Virginia Office of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek MaarOil and Gas

233

West Virginia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek

234

USAID West Africa Climate Program | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 et seq. - UtahAsiaEnviroFuels LLCOpen| OpenforWest

235

Ultra High Energy Fermions  

E-Print Network [OSTI]

The LHC in Geneva is already operating at a total energy of $7 TeV$ and hopefully after a pause in 2012, it will attain its full capacity of $14 TeV$ in 2013. These are the highest energies achieved todate in any accelerator. It is against this backdrop that it is worthwhile to revisit very high energy collisions of Fermions (Cf. also \\cite{bgspp}). We will in fact examine their behaviour at such energies.

Burra G. Sidharth

2015-04-07T23:59:59.000Z

236

Perceived Socioeconomic Impacts of Wind Energy in West Texas  

E-Print Network [OSTI]

Wind power is a fast growing alternative energy source. Since 2000, wind energy capacity has increased 24 percent per year with Texas leading the U.S. in installed wind turbine capacity. Most socioeconomic research in wind energy has focused...

Persons, Nicole D.

2010-07-14T23:59:59.000Z

237

U.S. West: The Next Energy Nexus  

E-Print Network [OSTI]

Hopkins, B. (2003) Renewable Energy and State Economics.Expanding Role us U.S. State Renewable Portfolio Standards.promote conventional and renewable energy policies. Our

Davis, Sandra K.; Kear, Andrew R.

2014-01-01T23:59:59.000Z

238

Realizing Clean Energy's Potential: Lessons Learned in the U.S. West (Technical Report)  

SciTech Connect (OSTI)

NREL Analysis Insights connects the dots between NREL studies, pulling big picture insights from a larger body of work. In the premiere issue of our new periodical Analysis Insights, we explore lessons learned from experience in the U.S. West for realizing clean energy's potential.

Not Available

2014-05-01T23:59:59.000Z

239

Ultra High Energy Behaviour  

E-Print Network [OSTI]

We reexamine the behaviour of particles at Ultra Highe energies in the context of the fact that the LHC has already touched an energy of $7 TeV$ and is likely to attain $14 TeV$ by 2013/2014.Consequences like a possible new shortlived interaction within the Compton scale are discussed.

Burra G. Sidharth

2011-03-18T23:59:59.000Z

240

High Energy Photoproduction  

E-Print Network [OSTI]

The experimental and phenomenological status of high energy photoproduction is reviewed. Topics covered include the structure of the photon, production of jets, heavy flavours and prompt photons, rapidity gaps, energy flow and underlying events. The results are placed in the context of the current understanding of QCD, with particular application to present and future hadron and lepton colliders.

J. M. Butterworth; M. Wing

2005-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

West KY Regional Middle School Science Bowl | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department ofEnergy Is Everywhere! Webinar: Energy IsWelcomeWendy CainKY

242

High Energy Neutrino Telescopes  

E-Print Network [OSTI]

This paper presents a review of the history, motivation and current status of high energy neutrino telescopes. Many years after these detectors were first conceived, the operation of kilometer-cubed scale detectors is finally on the horizon at both the South Pole and in the Mediterranean Sea. These new detectors will perhaps provide us the first view of high energy astrophysical objects with a new messenger particle and provide us with our first real glimpse of the distant universe at energies above those accessible by gamma-ray instruments. Some of the topics that can be addressed by these new instruments include the origin of cosmic rays, the nature of dark matter, and the mechanisms at work in high energy astrophysical objects such as gamma-ray bursts, active galactic nuclei, pulsar wind nebula and supernova remnants.

K. D. Hoffman

2008-12-18T23:59:59.000Z

243

High-energy detector  

DOE Patents [OSTI]

The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

Bolotnikov, Aleksey E. (South Setauket, NY); Camarda, Giuseppe (Farmingville, NY); Cui, Yonggang (Upton, NY); James, Ralph B. (Ridge, NY)

2011-11-22T23:59:59.000Z

244

West Village Renewable-Based Energy Secure Community  

E-Print Network [OSTI]

stations . · How to optimize each specific DER technology, especially the biogas digester, so, advanced energy storage, SmartGrid technology, biogas digester, biomethane upgrade system, and biofuels

245

Iowa: West Union Green Transformation Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentat Larger Scale || Department

246

West Valley Accomplishments: Year in Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTanklessLES' URENCO-USA Facility

247

West KY Regional Middle School Science Bowl | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudgetFurnacesLES'

248

SeaWest do Brasil Ltda | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaScira Offshore EnergyLLC Jump

249

SeaWest Northwest Asset Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaScira Offshore EnergyLLC Jump to:

250

SeaWest WindPower Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaScira Offshore EnergyLLC Jump to:WindPower

251

Air Pollution Control Act (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospectiveMichigan ProgramDeveloper Fed.

252

Energy Savings, Improved Comfort for West Virginia County Government |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebThese case studiesEnergyHVAC ||

253

Coalition on West Valley Nuclear Wastes | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4CenterPointChristinaClayCoal to Liquids » CoalCoalition on

254

Design and Implementation of Geothermal Energy Systems at West Chester University  

SciTech Connect (OSTI)

West Chester University is launching a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution is in the process of designing and implementing this project to build well fields, a pumping station and install connecting piping to provide the geothermal heat/cooling source for campus buildings. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply. For this grant, WCU will extend piping for its geo-exchange system. The work involves excavation of a trench approximately 8 feet wide and 10-12 feet deep located about 30 feet north of the curb along the north side of West Rosedale for a distance of approximately 1,300 feet. The trench will then turn north for the remaining distance (60 feet) to connect into the mechanical room in the basement of the Francis Harvey Green Library. This project will include crossing South Church Street near its intersection with West Rosedale, which will involve coordination with the Borough of West Chester. After installation of the piping, the trench will be backfilled and the surface restored to grass as it is now. Because the trench will run along a heavily-used portion of the campus, it will be accomplished in sections to minimize disruption to the campus as much as possible.

Greg Cuprak

2011-08-31T23:59:59.000Z

255

Category:Economic Community of West African States | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm JumpBLM)Development

256

BLM West Desert District Office | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenterUkiah

257

West Central Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells Rural

258

City of Due West, South Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyoming

259

City of West Point, Mississippi (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy NebraskaStanhope, Iowa (UtilityWaseca,

260

West Coast Wind Farms Scotland Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbHWeardale TaskEnergy Ltd Jump to:Wind

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Appalachian Power Co (West Virginia) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Energy Co Ltd Jump to:SummariesApi NovaVirginia)

262

Air Pollution Control Rules (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed. Government CommercialProgram andDetrimentalUtility

263

West Point Treatment Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine, Florida: EnergyPoint Treatment

264

K-25 West Wing Demolition Completed | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhen I thinkJulyTable ofWebinar

265

West Coast Port Closure Enforcement Policy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 | Energy Efficiency andWendy Cain

266

City of New Martinsville, West Virginia (Utility Company) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Nebraska (UtilityGeorgia (Utility Company)Information New

267

City of West Plains, Missouri (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy NebraskaStanhope, Iowa (UtilityWaseca, MinnesotaWaynoka,Missouri (Utility

268

City of West Point, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy NebraskaStanhope, Iowa (UtilityWaseca, MinnesotaWaynoka,Missouri

269

West Palm Beach-Better Buildings Challenge & PACE | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTanklessLES' URENCO-USA Facility JanuaryWendyWest

270

Theoretical High Energy Physics  

SciTech Connect (OSTI)

we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

Christ, Norman H.; Weinberg, Erick J.

2014-07-14T23:59:59.000Z

271

Evaluation of West Valley High-Level Waste Tank Lay-Up Strategies  

SciTech Connect (OSTI)

The primary objective of the task summarized in this paper was to demonstrate a methodology for evaluating alternative strategies for preclosure lay-up of the two high-level waste (HLW) storage tanks at the West Valley Demonstration Project (WVDP). Lay-up is defined as the period between operational use of tanks for waste storage and final closure. The U.S. Department of Energy (DOE) is planning to separate the environmental impact statement (EIS) for completion of closure of the WVDP into two separate EISs. The first EIS will cover only waste management and decontamination. DOE expects to complete this EIS in about 18 months. The second EIS will cover final decommissioning and closure and may take up to five years to complete. This approach has been proposed to expedite continued management of the waste and decontamination activities in advance of the final EIS and its associated Record of Decision on final site closure. Final closure of the WVDP site may take 10 to 15 years; therefore, the tanks need to be placed in a safe, stable condition with minimum surveillance during an extended lay-up period. The methodology developed for ranking the potential strategies for lay-up of the WVDP tanks can be used to provide a basis for a decision on the preferred path forward. The methodology is also applicable to determining preferred lay-up approaches at other DOE sites. Some of the alternative strategies identified for the WVDP should also be considered for implementation at the other DOE sites. Each site has unique characteristics that would require unique considerations for lay-up.

McClure, L. W.; Henderson, J. C.; Elmore, M. R.

2002-02-25T23:59:59.000Z

272

HighEnergy International  

E-Print Network [OSTI]

Jet Production at HERA Sascha Caron, I. Phys. Institut, RWTH Aachen High­Energy Physics r ) and d?? # e,i = # # n=1 # n s (µ r )C n (µ r ) # extract # s , pdfs? QCD Montpellier 2002, Sascha­jets above E T treshhold. DIS: find jets in ``Breit frame'': 2xP + q = 0 p r q g # maximal separation between

273

Design and operating features of the high-level waste vitrification system for the West Valley demonstration project  

SciTech Connect (OSTI)

A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered.

Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

1986-03-01T23:59:59.000Z

274

Investigation into the high percentage of positive CG lightning along the west coast of the United States  

E-Print Network [OSTI]

INVESTIGATION INTO THE HIGH PERCENTAGE OF POSITIVE CG LIGHTNING ALONG THE WEST COAST OF THE UNITED STATES A Thesis by BRANDON LEE ELY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2002 Major Subject: Atmospheric Sciences INVESTIGATION INTO THK HIGH PERCENTAGE OF POSITIVE CG LIGHTNING ALONG THE WEST COAST OF THK UNITED STATES A Thesis by BRANDON LEE ELY Submitted to Texas...

Ely, Brandon Lee

2012-06-07T23:59:59.000Z

275

West Windsor-Plainsboro High School South wins regional Science Bowl at  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun Deng Associate Research PhysicistWestNA

276

West Penn Power SEF Commercial Loan Program  

Broader source: Energy.gov [DOE]

The West Penn Power Sustainable Energy Fund (WPPSEF) promotes the use of renewable energy and clean energy among commercial, industrial, institutional and residential customers in the West Penn...

277

Why it will take more than a west-east pipeline to improve energy security in Atlantic Canada  

E-Print Network [OSTI]

the supply or price of crude oil could prove detrimental to energy security in Atlantic Canada. With over 701 Why it will take more than a west-east pipeline to improve energy security in Atlantic Canada, would contribute to Canadian energy security." Joe Oliver, Canada's Minister of Natural Resources, April

Hughes, Larry

278

FSU High Energy Physics  

SciTech Connect (OSTI)

The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the groups theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the non-zero neutrino masses or the overwhelming astrophysical evidence for an invisible form of matter, called dark matter, that has had a marked effect on the evolution of structure in the universe. The report highlights the main, recent, experimental achievements of the experimental group, which include the investigation of properties of the W and Z bosons; the search for new heavy stable charged particles and the search for a proposed property of nature called supersymmetry in proton-proton collisions that yield high energy photons. In addition, we report a few results from a more general search for supersymmetry at the LHC, initiated by the group. The report also highlights the group's significant contributions, both theoretical and experimental, to the 2012 discovery of the Higgs boson and the measurement of its properties.

Prosper, Harrison B. [Florida State University; Adams, Todd [Florida State University; Askew, Andrew [Florida State University; Berg, Bernd [Florida State University; Blessing, Susan K. [Florida State University; Okui, Takemichi [Florida State University; Owens, Joseph F. [Florida State University; Reina, Laura [Florida State University; Wahl, Horst D. [Florida State University

2014-12-01T23:59:59.000Z

279

Jefferson West High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Jump to:Jamestown,Jefferson City,Offshore2°,

280

The paradox of federal energy and defense installations in the West  

SciTech Connect (OSTI)

Most planners working west of the 100th meridian are aware that federal lands make up a large portion of the lands in the western states. In fact, federal lands comprise nearly 49% of the area of the fourteen states that make up the WPR family. These lands are usually under the Department of Agriculture (USFS) and the Department of Interior (BLM and NPS), but the Departments of Defense (DOD) and Energy (DOE) are also federal stewards of western lands. These federal military and energy installations play an important role in local and regional western communities and economies. They also play an important role in regional ecologies. It is a paradox that some of these sites have their share of legacy contamination from earlier missions, but they also include some of the most pristine remaining western ecosystems. In some cases, the sites are located near or surrounded by encroaching urbanization, making them particularly valuable lands both for recreation and habitat preservation.

Pava, Daniel S [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Operating experience during high-level waste vitrification at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

Valenti, P.J.; Elliott, D.I.

1999-01-01T23:59:59.000Z

282

High Energy Density Capacitors  

SciTech Connect (OSTI)

BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of todays best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

None

2010-07-01T23:59:59.000Z

283

Results from high energy accelerators  

E-Print Network [OSTI]

We review some of the recent experimental results obtained at high-energy colliders with emphasis on LEP and SLC results.

G. Giacomelli; B. Poli

2002-02-11T23:59:59.000Z

284

High energy photon emission  

E-Print Network [OSTI]

photons, neutrons, charged particles, and fission fragments were used to study the reaction 160 + 238 U at a projectile energy of 50 MeV/u. Inverse slope values of the photon spectra were extracted for inclusive data and data of higher multiplicities...

Jabs, Harry

1997-01-01T23:59:59.000Z

285

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministration | National Nuclear

286

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministration | National Nuclear Large

287

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministration | National Nuclear Large

288

High Energy Physics Jobs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministration | National

289

Department of Energy Seeks Public Comment on Designation of Energy Corridors in the West  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) announced that it and several other federal agencies will host eleven public meetings to discuss the designation of multi-purpose energy corridors on federal lands in the western United States.

290

High-energy Cosmic Rays  

E-Print Network [OSTI]

After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the `knee' above $10^{15}$ eV and the `ankle' above $10^{18}$ eV. An important question is whether the highest energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

Thomas K. Gaisser; Todor Stanev

2005-10-11T23:59:59.000Z

291

High-Level Waste Tank Cleaning and Field Characterization at the West Valley Demonstration Project  

SciTech Connect (OSTI)

The West Valley Demonstration Project (WVDP) is nearing completion of radioactive high-level waste (HLW) retrieval from its storage tanks and subsequent vitrification of the HLW into borosilicate glass. Currently, 99.5% of the sludge radioactivity has been recovered from the storage tanks and vitrified. Waste recovery of cesium-137 (Cs-137) adsorbed on a zeolite media during waste pretreatment has resulted in 97% of this radioactivity being vitrified. Approximately 84% of the original 1.1 x 1018 becquerels (30 million curies) of radioactivity was efficiently vitrified from July 1996 to June 1998 during Phase I processing. The recovery of the last 16% of the waste has been challenging due to a number of factors, primarily the complex internal structural support system within the main 2.8 million liter (750,000 gallon) HLW tank designated 8D-2. Recovery of this last waste has become exponentially more challenging as less and less HLW is available to mobilize and transfer to the Vitrification Facility. This paper describes the progressively more complex techniques being utilized to remove the final small percentage of radioactivity from the HLW tanks, and the multiple characterization technologies deployed to determine the quantity of Cs-137, strontium-90 (Sr-90), and alpha-transuranic (alpha-TRU) radioactivity remaining in the tanks.

Drake, J. L.; McMahon, C. L.; Meess, D. C.

2002-02-26T23:59:59.000Z

292

High energy physics  

SciTech Connect (OSTI)

Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

Kernan, A.; Shen, B.C.; Ma, E.

1997-07-01T23:59:59.000Z

293

Research in High Energy Physics  

SciTech Connect (OSTI)

This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

Conway, John S.

2013-08-09T23:59:59.000Z

294

A retrospective tiered environmental assessment of the Mount Storm Wind Energy Facility, West Virginia,USA  

SciTech Connect (OSTI)

Bird and bat fatalities from wind energy projects are an environmental and public concern, with post-construction fatalities sometimes differing from predictions. Siting facilities in this context can be a challenge. In March 2012 the U.S. Fish and Wildlife Service (USFWS) released Land-based Wind Energy Guidelines to assess collision fatalities and other potential impacts to species of concern and their habitats to aid in siting and management. The Guidelines recommend a tiered approach for assessing risk to wildlife, including a preliminary site evaluation that may evaluate alternative sites, a site characterization, field studies to document wildlife and habitat and to predict project impacts, post construction studies to estimate impacts, and other post construction studies. We applied the tiered assessment framework to a case study site, the Mount Storm Wind Energy Facility in Grant County, West Virginia, USA, to demonstrate the use of the USFWS assessment approach, to indicate how the use of a tiered assessment framework might have altered outputs of wildlife assessments previously undertaken for the case study site, and to assess benefits of a tiered ecological assessment framework for siting wind energy facilities. The conclusions of this tiered assessment for birds are similar to those of previous environmental assessments for Mount Storm. This assessment found risk to individual migratory tree-roosting bats that was not emphasized in previous preconstruction assessments. Differences compared to previous environmental assessments are more related to knowledge accrued in the past 10 years rather than to the tiered structure of the Guidelines. Benefits of the tiered assessment framework include good communication among stakeholders, clear decision points, a standard assessment trajectory, narrowing the list of species of concern, improving study protocols, promoting consideration of population-level effects, promoting adaptive management through post-construction assessment and mitigation, and sharing information that can be used in other assessments.

Efroymson, Rebecca Ann [ORNL; Day, Robin [No Affiliation; Strickland, M. Dale [Western EcoSystems Technology

2012-11-01T23:59:59.000Z

295

High flux solar energy transformation  

DOE Patents [OSTI]

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

1991-04-09T23:59:59.000Z

296

High flux solar energy transformation  

DOE Patents [OSTI]

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

1991-04-09T23:59:59.000Z

297

PRACTICAL NEUTRON DOSIMETRY AT HIGH ENERGIES  

E-Print Network [OSTI]

of High-Energy Accelerators, New York, April, 1957. USAECShielding of High-Energy Accelerators, New York, April 1957.Shielding of High-Energy Accelerators, New York, April 1957.

McCaslin, J.B.

2010-01-01T23:59:59.000Z

298

Proposal for a High Energy Nuclear Database  

E-Print Network [OSTI]

Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munitys ?compilations of high-energy nuclear data for applications

Brown, David A.; Vogt, Ramona

2005-01-01T23:59:59.000Z

299

Energy Secretary Bodman Heads to West Virginia to Promote Energy Bill |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting Jobs andHVAC | Department of|Department

300

McDowell County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald is a borough in Allegheny County andPower47. It

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

302

West Valley Seeks Comment on Draft Waste Evaluation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee onsupports high impact projectsMatt8Use #GridWeek

303

Enforcement Documents - West Valley Demonstration Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

Services - EA-1999-09 Issued to West Valley Nuclear Services, related to a High-Level Radioactive Waste Contamination Event at the West Valley Demonstration...

304

High Country Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a new page Jump| OpenHidroelectricaHigh

305

High Energy Density Ultracapacitors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| -4 Energy1 DOE

306

High Energy Density Ultracapacitors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| -4 Energy1 DOE0

307

High Energy Density Ultracapacitors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| -4 Energy1

308

Cosmology for high energy physicists  

SciTech Connect (OSTI)

The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs.

Albrecht, A.

1987-11-01T23:59:59.000Z

309

Proceedings of the 8th high energy heavy ion study  

SciTech Connect (OSTI)

This was the eighth in a series of conferences jointly sponsored by the Nuclear Science Division of LBL and the Gesellschaft fuer Schwerionenforschung in West Germany. Sixty papers on current research at both relativistic and intermediate energies are included in this report. Topics covered consisted of: Equation of State of Nuclear Matter, Pion and High Energy Gamma Emission, Theory of Multifragmentation, Intermediate Energies, Fragmentation, Atomic Physics, Nuclear Structure, Electromagnetic Processes, and New Facilities planned for SIS-ESR. The latest design parameters of the Bevalac Upgrade Proposal were reviewed for the user community. Also, the design of a new electronic 4..pi.. detector, a time projection chamber which would be placed at the HISS facility, was presented.

Harris, J.W. (ed.); Wozniak, G.J. (ed.)

1988-01-01T23:59:59.000Z

310

ACEEE Summer Study on Energy in Industry, West Point, NY, July 19-22. 1 Benchmarking Approaches: An Alternate Method to Determine Best  

E-Print Network [OSTI]

: An Alternate Method to Determine Best Practice by Examining Plant-Wide Energy Signatures Yogesh Patil and JohnACEEE Summer Study on Energy in Industry, West Point, NY, July 19-22. 1 Benchmarking Approaches Seryak, Energy & Resource Solutions, Inc. Kelly Kissock, University of Dayton ABSTRACT Baselining

Kissock, Kelly

311

Strongly Interacting Matter at Very High Energy Density  

SciTech Connect (OSTI)

The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.

McLerran, L.

2011-06-05T23:59:59.000Z

312

High Energy Gas Fracturing Test  

SciTech Connect (OSTI)

The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

Schulte, R.

2001-02-27T23:59:59.000Z

313

Get to Know SunWest Financial PowerSaver Webinar | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance forGeospatial AppendicesDepartmentSunWest

314

High Impact Technology Catalyst | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

energy-efficient commercial building technologies. Through the High Impact Technology Catalyst program, initiated in 2014, the U.S. Department of Energy (DOE) identifies...

315

Imaging the High Energy Cosmic Ray Sky  

E-Print Network [OSTI]

Imaging the High Energy Cosmic Ray Sky PETTER HOFVERBERG Licentiate Thesis Stockholm, Sweden 2006 #12;#12;Licentiate Thesis Imaging the High Energy Cosmic Ray Sky Petter Hofverberg Particle

Haviland, David

316

Department of Physics High Energy Physics Group  

E-Print Network [OSTI]

Department of Physics High Energy Physics Group Electrical Engineer (Job ref: 0004) The High Energy and experience. A job description and an application form can be obtained from http

317

Energy Star Helps Manufacturers To Achieve High Energy Performance  

E-Print Network [OSTI]

From personal electronic devices to homes and office buildings, ENERGY STAR is a recognized symbol of high quality energy performance which enables consumers, home buyers, and businesses to make informed energy decisions. Now, the U...

Dutrow, E.; Hicks, T.

318

Oxides having high energy densities  

DOE Patents [OSTI]

Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

Ceder, Gerbrand; Kang, Kisuk

2013-09-10T23:59:59.000Z

319

Magnetotellurics At U.S. West Region (Aiken & Ander, 1981) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson,McgeeInformation U.S. West

320

High Energy Efficiency Air Conditioning  

SciTech Connect (OSTI)

This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

Edward McCullough; Patrick Dhooge; Jonathan Nimitz

2003-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solenergi p Nordvstra Kungsholmen; Solar Energy at North-West of Kungsholmen.  

E-Print Network [OSTI]

?? The energy that the earth receives from the sun hourly has potential to cover a years energy demand in the world. Further, this type (more)

Regnr, Linn

2013-01-01T23:59:59.000Z

322

High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context  

E-Print Network [OSTI]

High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context 1 Some references The following set of volumes is an outstanding summary of the field of High Energy Astrophysics and its relation to the rest of Astrophysics High Energy Astrophysics, Vols. 1,2 and 3. M.S. Longair, Cam- bridge University

Bicknell, Geoff

323

West Valley Demonstration Project Prepares to Relocate High-Level Waste |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTanklessLES' URENCO-USA FacilityofDepartment of

324

High Energy Cost Grants | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health and Productivity Questionnaire (HPQ) SurveyHelpHelping

325

The Acoustic Detection of Ultra High Energy Neutrinos  

E-Print Network [OSTI]

Attempts have been made to parameterise the thermoacoustic emission of particle cascades induced by EeV neutrinos interacting in the sea. Understanding the characteristic radiation from such an event allows us to predict the pressure pulse observed by underwater acoustic sensors distributed in kilometre scale arrays. We find that detectors encompassing thousands of cubic kilometres are required, with a minimum of 100 hydrophones per kilometre cubed, in order to observe the flux of neutrinos predicted by the attenuation of ultra high energy cosmic rays on cosmic microwave background photons. The pressure threshold of such an array must be in the range 5-10 mPa and the said detector will have to operate for five years or more. Additionally a qualitative analysis of the first acoustic data recorded by the Rona hydrophone array off the north-west coast of Scotland is reported.

J. Perkin

2008-01-07T23:59:59.000Z

326

High-Pulse-Energy Ultrafast Laser for  

E-Print Network [OSTI]

High-Pulse-Energy Ultrafast Laser for Spectroscopy & Micromachining PROBLEM THIS TECHNOLOGY SOLVES. In addition to the OPO, a custom designed ultrafast pump source, provides high pulse energy (.res.hw.ac.uk Professor Derryck Reid (Principal Investigator) www.ultrafast.hw.ac.uk BENEFITS & APPLICATIONS: · High pulse

Painter, Kevin

327

High-mass star formation triggered by collision between CO filaments in N159 West in the Large Magellanic Cloud  

E-Print Network [OSTI]

We have carried out 13CO (J=2-1) observations of the active star-forming region N159 West in the LMC with ALMA. We have found that the CO distribution at a sub-pc scale is highly elongated with a small width. These elongated clouds called "filaments" show straight or curved distributions with a typical width of 0.5-1.0 pc and a length of 5-10 pc. All the known infrared YSOs are located toward the filaments. We have found broad CO wings of two molecular outflows toward young high-mass stars in N159W-N and N159W-S, whose dynamical timescale is ~10^4 yrs. This is the first discovery of protostellar outflow in external galaxies. For N159W-S which is located toward an intersection of two filaments we set up a hypothesis that the two filaments collided with each other ~10^5 yrs ago and triggered formation of the high-mass star having ~37Mo. The colliding clouds show significant enhancement in linewidth in the intersection, suggesting excitation of turbulence in the shocked interface layer between them as is consist...

Fukui, Yasuo; Tokuda, Kazuki; Morioka, Yuuki; Onishi, Toshikazu; Torii, Kazufumi; Ohama, Akio; Nayak, Omnarayani; Meixner, Margaret; Sewilo, Marta; Indebetouw, Remy; Kawamura, Akiko; Saigo, Kazuya; Yamamoto, Hiroaki; Tachihara, Kengo; Minamidani, Tetsuhiro; Inoue, Tsuyoshi; Madden, Suzanna; Galametz, Maud; Lebouteiller, Vianney; Mizuno, Norikazu; Chen, Rosie

2015-01-01T23:59:59.000Z

328

Federal Agencies to Assist with Clean Energy Development in the West |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrial HygieneEnergyLead-acidPrimusContinued72

329

The high energy emission from black holes  

E-Print Network [OSTI]

The origin of the high energy emission (X-rays and gamma-rays) from black holes is still a matter of debate. We present new evidence that hard X-ray emission in the low/hard state may not be dominated by thermal Comptonization. We present an alternative scenario for the origin of the high energy emission that is well suited to explain the high energy emission from GRO J1655-40.

M. D. Caballero-Garcia; J. M. Miller; E. Kuulkers

2007-11-06T23:59:59.000Z

330

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

331

Better Buildings Challenge & PACEWest Palm Beach  

Broader source: Energy.gov [DOE]

Overview of Better Buildings Challenge and property assessed clean energy - West Palm Beach. Author: U. S. Department of Energy

332

High-Energy Neutrino Astronomy  

E-Print Network [OSTI]

Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 10^{20} and 10^{13} eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by neutrinos with energies similar to those of the highest energy cosmic rays.

F. Halzen

2005-01-26T23:59:59.000Z

333

Laser Fusion Energy The High Average Power  

E-Print Network [OSTI]

Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

334

Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive SummitEnergyGeothermalEnergyTRIBAL

335

U.S. Department of Energy 2013 Annual Inspection - Parkersburg, West Virginia  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx- .3 Annual

336

U.S. Department of Energy 2014 Annual Inspection Report November 2014 Parkersburg, West Virginia  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx- .3 Annual4

337

Leisure Village West-Pine Lake Park, New Jersey: Energy Resources | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville,Leighton Contractors Pty Ltd Jump to:Knoll,Energy

338

Isotopic Analysis At U.S. West Region (Krohn, Et Al., 1993) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy Information

339

Isotopic Analysis At U.S. West Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy InformationInformation Laney, 2005) Jump to:

340

Isotopic Analysis At U.S. West Region (Welhan, Et Al., 1988) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy InformationInformation Laney, 2005) Jump

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

West Berkeley Public Library  

High Performance Buildings Database

Berkeley, CA The West Berkeley Public Library, first opened in December 2013, is the first publicly funded Zero Net Energy public library in California. The library takes advantage of many innovative technologies and passive design strategies to achieve its Zero Net Energy goals. The project's Building Team, led by Harley Ellis Deveraux, partnered with PG&E's Savings By Design program to perform early-stage design analyses including climate modeling, computational fluid dynamics, daylighting, solar modeling, and energy simulations.

342

High Temperature | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to: navigation,Solar Power Plant

343

Improving Collision Induced Dissociation (CID), High Energy Collision...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collision Induced Dissociation (CID), High Energy Collision Dissociation (HCD), and Electron Transfer Dissociation Improving Collision Induced Dissociation (CID), High Energy...

344

DR Resources for Energy and Ancillary Services in the West (Presentation)  

SciTech Connect (OSTI)

Demand response (DR) resources present a potentially important source of grid flexibility however, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado "test system". We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating reserves: frequency regulation, contingency reserve, and flexibility (or ramping) reserve. There are significant variations in the availabilities of different types of DR resources, which affect both the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves.

Hummon, M.; Kiliccote, S.

2014-04-01T23:59:59.000Z

345

Cuttings Analysis At U.S. West Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergy Information Mountain

346

Field Mapping At U.S. West Region (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg| Open Energy InformationThe NeedlesU.S.

347

Precision Crystal Calorimeters in High Energy Physics  

ScienceCinema (OSTI)

Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal?s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

Ren-Yuan Zhu

2010-01-08T23:59:59.000Z

348

LANL | Physics | High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2Recovery Act Job FairDynamic

349

High Mesa | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut: EnergyMesa Jump to:

350

Advancing a New Era of Energy Delivery in the West (Fact Sheet)  

SciTech Connect (OSTI)

This 2-page fact sheet provides a high-level overview of the Western Area Power Administration's Transmission Infrastructure Program, including background, purpose, goals, eligibility criteria, and current projects.

Not Available

2014-11-01T23:59:59.000Z

351

High-energy cosmic ray interactions  

SciTech Connect (OSTI)

Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

Engel, Ralph [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Orellana, Mariana [Instituto Argentino de Radioastronomia (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina); Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque, 1900 La Plata (Argentina); Reynoso, Matias M. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Instituto de Investigaciones Fisicas de Mar del Plata, (UNMdP-CONICET) (Argentina); Vila, Gabriela S. [Instituto Argentino de Radioastronomia (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina)

2009-04-30T23:59:59.000Z

352

High Energy Evolution with Pomeron Loops  

E-Print Network [OSTI]

The high energy/density QCD has been widely used for DIS phenomenology with a projectile particle considered as perturbative and dilute. We review some recent attempts to derive a high energy evolution kernel which treats targets and projectiles in a symmetric manner. From theoretical point of view the problem is tightly related to inclusion of Pomeron loops in the evolution. The ultimate goal is to consider high energy scatterings with both projectile and target being dense, the situation faced at RHIC and the LHC.

Michael Lublinsky

2006-05-02T23:59:59.000Z

353

High Energy Physics Research at Louisiana Tech  

SciTech Connect (OSTI)

The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D? experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

2013-06-28T23:59:59.000Z

354

High-Energy Neutrino Astronomy  

E-Print Network [OSTI]

Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of $10^{20}$ and $10^{13}$ eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos.

F. Halzen

2004-02-03T23:59:59.000Z

355

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network [OSTI]

Revisit of Energy Use and Technologies of High PerformanceEnvironmental Energy Technologies Division May 2014 ThisRevisit of Energy Use and Technologies of High Performance

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

356

Cosmic absorption of ultra high energy particles  

E-Print Network [OSTI]

This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering appropriate interactions we derive the mean free path for ultra high energy photons, protons and neutrinos. For photons the relevant processes are the Breit-Wheeler process as well as the double pair production process. For protons the relevant reactions are the photopion production and the Bethe-Heitler process. We discuss the interplay between the energy loss length and mean free path for the Bethe-Heitler process. Neutrino opacity is determined by its scattering off the cosmic background neutrino. We compute for the first time the high energy neutrino horizon as a function of its energy.

Ruffini, R; Xue, S -S

2015-01-01T23:59:59.000Z

357

Core Analysis At U.S. West Region (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, Inc Jump to:1983)Laney, 2005)

358

Harvesting the Sun at the West Tennessee Solar Farm | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9

359

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers Point Housing, Hawaii: Energy Resources Jump to:Barbour

360

Department.of Energy Southwestern Power Administration One West Third Street  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINLNuclear262About Us > Hanford Site

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Quadrennial Energy Review Public Meeting #5: Electricity Transmission, Storage and Distribution - West  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | DepartmentDepartmentHatch, Maryanne5 Updates available Bismarck,Meeting

362

Microsoft Word - Agencies Publish Final Environmental Impact Statement on Energy Corridor Designation in the West  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping RichlandScatteringWater Vapor Continuum in1 Work ProposalLESFOR

363

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary  

SciTech Connect (OSTI)

This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

Hurlbut, D. J.; McLaren, J.; Gelman, R.

2013-08-01T23:59:59.000Z

364

West Virginia Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC  

SciTech Connect (OSTI)

The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for West Virginia homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost effective over a 30-year life cycle. On average, West Virginia homeowners will save $1,996 over 30 years under the 2009 IECC, with savings still higher at $7,301 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for both the 2009 and 2012 IECC. Average annual energy savings are $135 for the 2009 IECC and $480 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-06-15T23:59:59.000Z

365

Terrestrial Effects of High Energy Cosmic Rays  

E-Print Network [OSTI]

On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. ...

Atri, Dimitra

2011-04-26T23:59:59.000Z

366

Environmental Survey preliminary report, Morgantown Energy Technology Center, Morgantown, West Virginia  

SciTech Connect (OSTI)

This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Morgantown Energy Technology Center (METC) conducted November 30 through December 4, 1987. In addition, the preliminary findings of the Laramie Project Office (LPO) Survey, which was conducted as part of the METC Survey on January 25 through 29, 1988, are presented in Appendices E and F. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with METC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at METC, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities at METC. The Sampling and Analysis Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the results will be incorporated into the METC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey METC. 60 refs., 28 figs., 43 tabs.

Not Available

1988-06-01T23:59:59.000Z

367

Nuclear diffractive structure functions at high energies  

E-Print Network [OSTI]

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

2008-05-30T23:59:59.000Z

368

NET-ZERO ENERGY HIGH PERFORMANCE  

E-Print Network [OSTI]

, University of Nebraska­Lincoln · Denise Kuehn, Manager, Demand Side and Sustainable Management, Omaha Public was that the largest potential for enhancing energy supplies in this country is making buildings more efficient. "-- Harvey Perlman, UNL Chancellor #12;Net-Zero Energy, High-Performance Green Buildings | 1 INTRODUCTION

Farritor, Shane

369

Utilization of Wind Energy at High Altitude  

E-Print Network [OSTI]

Ground based, wind energy extraction systems have reached their maximum capability. The limitations of current designs are: wind instability, high cost of installations, and small power output of a single unit. The wind energy industry needs of revolutionary ideas to increase the capabilities of wind installations. This article suggests a revolutionary innovation which produces a dramatic increase in power per unit and is independent of prevailing weather and at a lower cost per unit of energy extracted. The main innovation consists of large free-flying air rotors positioned at high altitude for power and air stream stability, and an energy cable transmission system between the air rotor and a ground based electric generator. The air rotor system flies at high altitude up to 14 km. A stability and control is provided and systems enable the changing of altitude. This article includes six examples having a high unit power output (up to 100 MW). The proposed examples provide the following main advantages: 1. Large power production capacity per unit - up to 5,000-10,000 times more than conventional ground-based rotor designs; 2. The rotor operates at high altitude of 1-14 km, where the wind flow is strong and steady; 3. Installation cost per unit energy is low. 4. The installation is environmentally friendly (no propeller noise). -- * Presented in International Energy Conversion Engineering Conference at Providence., RI, Aug. 16-19. 2004. AIAA-2004-5705. USA. Keyword: wind energy, cable energy transmission, utilization of wind energy at high altitude, air rotor, windmills, Bolonkin.

Alexander Bolonkin

2007-01-10T23:59:59.000Z

370

Proposal for a High Energy Nuclear Database  

E-Print Network [OSTI]

We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and ...

Vogt, D A B R

2005-01-01T23:59:59.000Z

371

High Energy Particles in the Solar Corona  

E-Print Network [OSTI]

Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

Widom, A; Larsen, L

2008-01-01T23:59:59.000Z

372

High Energy Particles in the Solar Corona  

E-Print Network [OSTI]

Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

A. Widom; Y. N. Srivastava; L. Larsen

2008-04-16T23:59:59.000Z

373

Astronomy with ultra high-energy particles  

E-Print Network [OSTI]

Recent measurements of the properties of cosmic rays above 10^17 eV are summarized and implications on our contemporary understanding of their origin are discussed. Cosmic rays with energies exceeding 10^20 eV have been measured, they are the highest-energy particles in the Universe. Particles at highest energies are expected to be only marginally deflected by magnetic fields and they should point towards their sources on the sky. Recent results of the Pierre Auger Observatory have opened a new window to the Universe - astronomy with ultra high-energy particles.

Joerg R. Hoerandel

2008-03-20T23:59:59.000Z

374

High Brightness Beam Applications: Energy Recovered Linacs  

SciTech Connect (OSTI)

In the first part of the paper some general statements are made regarding applications suitable for utilizing energy recovered linacs (ERLs) by contrasting their potential performance to that of single pass linacs and storage rings. As a result of their potential for extremely good beam quality in combination with high average beam current, ERLs have been used and considered as drivers of both free electron laser and partially coherent photon sources, from THz through X-rays; as a suitable technology for high energy electron cooling; and as a continuous or semi-continuous electron beam source for high energy colliders. At present, beam requirements tend to be highly matched to end use requirements. By reviewing some of the many examples which have either been reduced to practice, or are being explored presently, one can develop an appreciation for the wide range of parameters being considered in ERL applications.

Geoffrey A. Krafft

2005-09-01T23:59:59.000Z

375

Extremely High Current, High-Brightness Energy Recovery Linac  

SciTech Connect (OSTI)

Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; D.M. Gassner; J.G. Grimes; H. Hahn; A. Hershcovitch; H.-C. Hseuh; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; G.T. McIntyre; W. Meng; T.C.N. Nehring; T. Nicoletti; B. Oerter; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; Z. Segalov; K. Smith; N.W.W. Williams; K.-C. Wu; V. Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; J.R. Delayen; L. W. Funk; P. Kneisel; H.L. Phillips; J.P. Preble

2005-05-16T23:59:59.000Z

376

Future high energy colliders symposium. Summary report  

SciTech Connect (OSTI)

A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

Parsa, Z. [Univ. of California, Santa Barbara, CA (United States). Institute for Theoretical Physics]|[Brookhaven National Lab., Upton, CA (United States)

1996-12-31T23:59:59.000Z

377

High-energy electron beam technology  

SciTech Connect (OSTI)

A high-energy electron beam (HEEB) technology was developed under the US Department of Defense (DOD) charged-particle-beam (CPB) directed-energy program. The program's objective was advanced military weapon systems. For the past two decades, charged-particle-beam research focused on producing intense beams and the vehicles to deliver large amounts of electrical energy. The charged-particle beams of interest for weapon systems had particle energies up to 100 MeV, beam currents of tens of kiloamperes, and propagation distances in excess of 100 m. However, such high energy levels are not required for industrial uses of the technology. It is anticipated that these less-aggressive beams will provide an electrical heat source suitable for a variety of materials processing applications, including surface treatment, joining, shock hardening, phase-transformation hardening, peening, shock-wave compaction, and melting. Much more R and D is needed to transfer to industry the high-energy electron beam technology developed in the CPB program. For example, its power as a materials processing tool must be convincingly demonstrated. Also required are compact, reliable accelerators that are relatively simple to use and reasonably priced.

Danko, J.C.; Lundin, C.D. (Univ. of Tennessee, Knoxville, TN (United States)); Nolting, E.E. (Naval Surface Warfare Center, White Oak, MD (United States))

1994-09-01T23:59:59.000Z

378

West Africa Emerges as Leading Region in Africa for Renewable...  

Open Energy Info (EERE)

West Africa Emerges as Leading Region in Africa for Renewable Energy and Energy Efficiency Home > Groups > Clean and Renewable Energy Dc's picture Submitted by Dc(107) Contributor...

379

A high energy photon polarimeter for astrophysics  

E-Print Network [OSTI]

A high-energy photon polarimeter for astrophysics studies in the energy range from 20 MeV to 1000 MeV is considered. The proposed concept uses a stack of silicon micro-strip detectors where they play the roles of both a converter and a tracker. The purpose of this paper is to outline the parameters of such a polarimeter and to estimate the productivity of measurements. Our study supported by a Monte Carlo simulation shows that with a one-year observation period the polarimeter will provide 5.5 % accuracy of the polarization degree for a photon energy of 100 MeV, which would be a significant advance relative to the currently explored energy range of a few MeV. The proposed polarimeter design could easily be adjusted to the specific photon energy range to maximize efficiency if needed.

Eingorn, Maxim; Vlahovic, Branislav; Wojtsekhowski, Bogdan; Urciuoli, Guido Maria; De Persio, Fulvio; Meddi, Franco

2015-01-01T23:59:59.000Z

380

Innovative High Energy Density Capacitor Design Offers Potential...  

Broader source: Energy.gov (indexed) [DOE]

like TroyCap's High Density Energy Nanolaminate Capacitor (HEDCAP) that may offer new clean energy applications to meet the nation's strategic energy goals and secure...

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Interface Modifications by Anion Acceptors for High Energy Lithium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Abstract: Li-rich, Mn-rich...

382

Designing Silicon Nanostructures for High Energy Lithium Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

383

Vehicle Technologies Office Merit Review 2014: High Energy Lithium...  

Broader source: Energy.gov (indexed) [DOE]

High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

384

Additives and Cathode Materials for High-Energy Lithium Sulfur...  

Broader source: Energy.gov (indexed) [DOE]

Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

385

Novel and Optimized Materials Phases for High Energy Density...  

Broader source: Energy.gov (indexed) [DOE]

Novel and Optimized Materials Phases for High Energy Density Batteries Novel and Optimized Materials Phases for High Energy Density Batteries 2013 DOE Hydrogen and Fuel Cells...

386

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. Abstract: We will...

387

Energy Efficiency Opportunities in Federal High Performance Computing...  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study...

388

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

389

USABC Energy Storage Testing - High Power and PHEV Development...  

Energy Savers [EERE]

Energy Storage Testing - High Power and PHEV Development USABC Energy Storage Testing - High Power and PHEV Development Presentation from the U.S. DOE Office of Vehicle...

390

Energy-Efficient Melting and Direct Delivery of High Quality...  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum itmdelivery.pdf More...

391

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

392

Highly Energy Efficient Directed Green Liquor Utilization (D...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping This factsheet describes a...

393

High Energy Density Laboratory Plasmas Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program...

394

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...  

Energy Savers [EERE]

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

395

HIGH ENERGY PHYSICS SEMINAR, 19931996 1993 Seminars  

E-Print Network [OSTI]

HIGH ENERGY PHYSICS SEMINAR, 1993­1996 1993 Seminars 10/4 Joseph Boudreau Measuring the Z 0 from ZEUS University of Wisconsin 10/25 Thomas E. Browder Unsolved Problems in B Physics Cornell Ecole Normale Superieure 4/4 Naoya Hata Solar Neutrinos: Hint for Neutrino Mass University

396

Density Estimation Trees in High Energy Physics  

E-Print Network [OSTI]

Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.

Anderlini, Lucio

2015-01-01T23:59:59.000Z

397

Heavy Flavors in High Energy ep Collisions  

E-Print Network [OSTI]

Most recent measurements of open charm and beauty production in high energy ep collisions at HERA are reviewed. The measurements explored the different aspects of quantum chromodynamics involved in the process of heavy flavor production. The results are compared with perturbative theoretical calculations at next-to-leading order.

Meng Wang

2005-10-14T23:59:59.000Z

398

Correlations in the high-energy photoeffect  

SciTech Connect (OSTI)

We examine correlations in high-energy photoeffect, utilizing a perturbative treatment of the effects beyond the independent particle approximation (IPA) in the high-energy photoionization of states with arbitrary values of the angular momenta l. The dominant mechanism of IPA breaking is discussed. The dependence of IPA breaking contributions on the parameters 1/Z and {alpha}Z is analyzed. In the general case the amplitude is expressed as a linear combination of IPA amplitudes. The development of precise experiments, together with the demonstration that there is substantial cancellation among the nonrelativistic partial correlations amplitudes in many cases, particularly for ground-state atoms, makes a relativistic approach to the problem desirable, even at relatively low values of photon energy.

Drukarev, E. G. [Petersburg Nuclear Physics Institute, St. Petersburg 188300 (Russian Federation); Pratt, R. H. [University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States)

2005-12-15T23:59:59.000Z

399

High Energy Studies of Pulsar Wind Nebulae  

E-Print Network [OSTI]

The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

Patrick Slane

2008-11-12T23:59:59.000Z

400

High Energy Studies of Pulsar Wind Nebulae  

E-Print Network [OSTI]

The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

Slane, Patrick

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

University of California Davis West Village: The Largest Planned Net Zero Energy Community in the United States  

Office of Energy Efficiency and Renewable Energy (EERE)

U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy (CommRE) success stories UC Davis net zero energy community; energy efficiency in buildings; PV and photovoltaics.

402

Proposal for a High Energy Nuclear Database  

SciTech Connect (OSTI)

We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

Brown, David A.; Vogt, Ramona

2005-03-31T23:59:59.000Z

403

High Energy Polarization of Blazars : Detection Prospects  

E-Print Network [OSTI]

Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (wit...

Chakraborty, Nachiketa; Fields, Brian

2015-01-01T23:59:59.000Z

404

High energy photon-photon collisions  

SciTech Connect (OSTI)

The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

Brodsky, S.J. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

1994-07-01T23:59:59.000Z

405

Census Snapshot: West Virginia  

E-Print Network [OSTI]

WEST VIRGINIA Adam P. Romero, Public Policy Fellow Cliffordraising children in West Virginia. We compare same-sex sex married couples in West Virginia. 1 JANUARY 2008 In many

Romero, Adam P.; Rosky, Clifford J; Badgett, M.V. Lee; Gates, Gary J

2008-01-01T23:59:59.000Z

406

Engineering of High Energy Cathode Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste HeatStructuresHigh Energy

407

New High-Energy Nanofiber Anode Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergyDepartmentEnergyHigh

408

New High-Energy Nanofiber Anode Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergyDepartmentEnergyHigh0 DOE

409

New INL High Energy Battery Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergyDepartmentEnergyHigh0

410

High-Energy Neutrinos from Cosmic Rays  

E-Print Network [OSTI]

We introduce neutrino astronomy from the observational fact that Nature accelerates protons and photons to energies in excess of 10^{20} and 10^{13} eV, respectively. Although the discovery of cosmic rays dates back close to a century, we do not know how and where they are accelerated. We review the facts as well as the speculations about the sources. Among these gamma ray bursts and active galaxies represent well-motivated speculations because these are also the sources of the highest energy gamma rays, with emission observed up to 20 TeV, possibly higher. We discuss why cosmic accelerators are also expected to be cosmic beam dumps producing high-energy neutrino beams associated with the highest energy cosmic rays. Cosmic ray sources may produce neutrinos from MeV to EeV energy by a variety of mechanisms. The important conclusion is that, independently of the specific blueprint of the source, it takes a kilometer-scale neutrino observatory to detect the neutrino beam associated with the highest energy cosmic rays and gamma rays. The technology for commissioning such instruments exists.

F. Halzen

2002-06-17T23:59:59.000Z

411

West Virginia Direct Loan Program (West Virginia)  

Broader source: Energy.gov [DOE]

The West Virginia Direct Loan Program, provides up to 45 percent in financing fixed assets through low-interest, direct loans to businesses expanding or locating in West Virginia. Proceeds from the...

412

Constraints of Dark Energy at High Redshift  

E-Print Network [OSTI]

Constrains of dark energy (DE) at high redshift from current and mock future observational data are obtained. It is found that present data give poor constraints of DE even beyond redshift z=0.4, and mock future 2298 type Ia supernove data only give a little improvement of the constraints. We analyze in detail why constraints of DE decrease rapidly with the increasing of redshift. Then we try to improve the constraints of DE at high redshift. It is shown that the most efficient way is to improve the error of observations.

Qiping Su; Rong-Gen Cai

2014-08-24T23:59:59.000Z

413

High Risk Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many| Department HIGH PERFORMANCE andHigh Risk

414

High Temperature Superconductivity Partners | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many| Department HIGH PERFORMANCEThe HighMap

415

High energy density redox flow device  

DOE Patents [OSTI]

Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

2014-05-13T23:59:59.000Z

416

STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS  

E-Print Network [OSTI]

1 STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS - High Energy Physics Energy Physics" BNPI, Novosibirsk, September 2010 #12;2 STATE RESEARCH CENTER OF RUSSIA INSTITUTE

417

UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM  

SciTech Connect (OSTI)

The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

Rutherfoord, John P. [University of Arizona] [University of Arizona; Johns, Kenneth A. [University of Arizona] [University of Arizona; Shupe, Michael A. [University of Arizona] [University of Arizona; Cheu, Elliott C. [University of Arizona] [University of Arizona; Varnes, Erich W. [University of Arizona] [University of Arizona; Dienes, Keith [University of Arizona] [University of Arizona; Su, Shufang [University of Arizona] [University of Arizona; Toussaint, William Doug [University of Arizona] [University of Arizona; Sarcevic, Ina [University of Arizona] [University of Arizona

2013-07-29T23:59:59.000Z

418

Viscosity of High Energy Nuclear Fluids  

E-Print Network [OSTI]

Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

2007-03-15T23:59:59.000Z

419

Data Preservation in High Energy Physics  

E-Print Network [OSTI]

Data from high-energy physics experiments are collected with significant financial and human effort and are mostly unique. However, until recently no coherent strategy existed for data preservation and re-use, and many important and complex data sets have simply been lost. While the current focus is on the LHC at CERN, in the current period several important and unique experimental programs at other facilities are coming to an end, including those at HERA, b-factories and the Tevatron. To address this issue, an inter-experimental study group on HEP data preservation and long-term analysis (DPHEP) was convened at the end of 2008. The group now aims to publish a full and detailed review of the present status of data preservation in high energy physics. This contribution summarises the results of the DPHEP study group, describing the challenges of data preservation in high energy physics and the group's first conclusions and recommendations. The physics motivation for data preservation, generic computing and preservation models, technological expectations and governance aspects at local and international levels are examined.

Roman Kogler; David M. South; Michael Steder

2011-11-11T23:59:59.000Z

420

High energy resolution, high angular acceptance crystal monochromator  

DOE Patents [OSTI]

A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

Alp, Ercan E. (Bolingbrook, IL); Mooney, Timothy M. (Westmont, IL); Toellner, Thomas (Green Bay, WI)

1996-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

West Village Student Housing Phase I: Apartment Monitoring and Evaluation  

SciTech Connect (OSTI)

Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis (UC Davis) and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village, the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated in the design contribute to source energy reductions of 37% over the B10 Benchmark. The energy efficiency measures that are incorporated into these apartments include increased wall & attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. Results discuss how measured energy use compares to modeling estimates over a 10 month monitoring period and includes a cost effective evaluation.

German, A.; Bell, C.; Dakin, B.; Hoeschele, M.

2014-06-01T23:59:59.000Z

422

Pursuing Energy Efficiency as a Hedge against Carbon Regulatory Risks: Current Resource Planning Practices in the West  

E-Print Network [OSTI]

The Potential for Energy Efficiency. San Francisco, Calif. :Economics. National Action Plan for Energy Efficiency. 2007.Guide for Conducting Energy Efficiency Potential Studies.

Barbose, Galen

2009-01-01T23:59:59.000Z

423

Pursuing Energy Efficiency as a Hedge against Carbon Regulatory Risks: Current Resource Planning Practices in the West  

E-Print Network [OSTI]

The Potential for Energy Efficiency. San Francisco, Calif. :Economics. National Action Plan for Energy Efficiency. 2007.Guide for Conducting Energy Efficiency Potential Studies.

Barbose, Galen

2008-01-01T23:59:59.000Z

424

Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG  

E-Print Network [OSTI]

This article presents the physics case for a new high-energy, ultra-high statistics neutrino scattering

Adams, T.

425

Photoresist integrity during high energy implant  

SciTech Connect (OSTI)

Photoresist integrity was evaluated on a commercial high-energy ion implanter operated up to the specified energy (1.7 MeV B or 3.0 MeV P) and power (1.0 MeV B at 1000 p{mu}A or 2.0 MeV P at 500 p{mu}A) limits. SEM Cross-sectional analysis of several photoresists showed that the proper cooling was maintained to avoid significant photoresist degradation. Photoresist shrinkage was observed, resulting in thickness reductions up to 22% and significant changes in sidewall slope. Little asymmetry was observed when photoresist was implanted at a 7{degrees} tilt. At the specified power limits, photoresist outgassing prevented smooth implant operation unless pressure compensation was implemented.

Parrill, T.M. [Texas Instruments Productization, Dallas, TX (United States); Jones, M. [Eaton Corporation, Beverly, MA (United States); Jain, A. [Texas Indstruments Semiconductor Process and Development Center, Dallas, TX (United States)

1996-12-31T23:59:59.000Z

426

West Virginia Graduate Catalog  

E-Print Network [OSTI]

1 West Virginia University 2000-2002 Graduate Catalog West Virginia University, Morgantown, WV 26506 · www.wvu.edu West Virginia University is a land-grant, research institution founded in 1867. WVU is a student-centered learning community meeting the changing needs of West Virginia and the nation through

Mohaghegh, Shahab

427

West Virginia Graduate Catalog  

E-Print Network [OSTI]

1 West Virginia University 1998-2000 Graduate Catalog West Virginia University, Morgantown, WV 26506 · www.wvu.edu West Virginia University is a land grant research institution founded in 1867. WVU. West Virginia University is an equal opportunity/affirmative action institution. The University does

Mohaghegh, Shahab

428

WEST VIRGINIA ECONOMIC OUTLOOK  

E-Print Network [OSTI]

WEST VIRGINIA ECONOMIC OUTLOOK 2009 BUREAU OF BUSINESS AND ECONOMIC RESEARCH College of Business and Economics West Virginia University #12;West Virginia Economic Outlook 2009 George W. Hammond, Associate Director, BBER, and Associate Professor of Economics West Virginia Economic Outlook 2009 is published

Mohaghegh, Shahab

429

High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitora battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy densityhigh energy density means more energy storage. FastCAP is redesigning the ultracapacitors internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAPs ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitors electrode, increasing the overall efficiency and energy density of the device.

None

2010-04-01T23:59:59.000Z

430

Future high energy colliders. Formal report  

SciTech Connect (OSTI)

This Report includes copies of transparencies and notes from the presentations made at the Symposium on Future High Energy Colliders, October 21-25, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

Parsa, Z. [ed.] [ed.

1996-12-31T23:59:59.000Z

431

High energy neutron Computed Tomography developed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministrationHigh

432

High Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to: navigation,Solar Power PlantWells GeothermalHigh

433

High Energy Physics Division, ANL Lattice QCD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in the Madison SymmetricHigh Carbon Fly

434

High Performance Valve Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHighMetalEnergyMaterials

435

High Plains Power Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformation Rhode IslandInformationHigh

436

Engineering of High Energy Cathode Material | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste HeatStructures |DonHigh

437

Engineering of high energy cathode material | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste HeatStructuresHigh

438

Search for High Energy Density Cathode Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram| Department1Scott MinosHigh Energy Density

439

High Bridge, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut: Energy ResourcesHigh

440

High Energy Laser for Space Debris Removal  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored pulse designed for high transmission through the atmosphere, as well as efficient ablative coupling to the target. The main amplifier would use either diode-pumped or flashlamp-pumped solid state gain media, depending on budget constraints of the project. A continuously operating system would use the gas-cooled amplifier technology developed for Mercury, while a burst-mode option would use the heat capacity laser technology. The ground-based system that we propose is capable of rapid engagement of targets whose orbits cross over the site, with potential for kill on a single pass. Very little target mass is ablated per pulse so the potential to create additional hazardous orbiting debris is minimal. Our cost estimates range from $2500 to $5000 per J depending on choices for laser gain medium, amplifier pump source, and thermal management method. A flashlamp-pumped, Nd:glass heat-capacity laser operating in the burst mode would have costs at the lower end of this spectrum and would suffice to demonstrate the efficacy of this approach as a prototype system. A diode-pumped, gas-cooled laser would have higher costs but could be operated continuously, and might be desirable for more demanding mission needs. Maneuverability can be incorporated in the system design if the additional cost is deemed acceptable. The laser system would need to be coupled with a target pointing and tracking telescope with guide-star-like wavefront correction capability.

Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

2009-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Design Guidelines for High Performance Schools: Hot and...  

Energy Savers [EERE]

Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around the country are finding that the smart energy choices can help them...

442

University of Oklahoma - High Energy Physics  

SciTech Connect (OSTI)

The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest distances, or at the very highest energies. The outcomes of the group's combined experimental and theoretical research will be an improved understanding of nature, at the highest energies reachable, from which applications to technological innovation will surely result, as they always have from such studies in the past.

Skubic, Patrick L. [University of Oklahoma] [University of Oklahoma

2013-07-31T23:59:59.000Z

443

WEST PROJECT AND OPPORTUNITIES FOR US-  

E-Print Network [OSTI]

/extracted energy in a tokamak (1GJ) Several generations of carbon PFCs designed, manufactured and operated Tore loops 15 MW of HF plasma heating Fuelling systems Diagnostics WEST project ~ few days of ITER operation BECOMES WEST Limiter configuration Carbon Two symmetric divertor coils and supporting structures Plasma

444

New High-Energy Nanofiber Anode Materials  

SciTech Connect (OSTI)

The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 ?m or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

2013-11-15T23:59:59.000Z

445

West Valley  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudgetFurnacesLES'Nuclear Facility Coalition

446

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

as cathode materials for Li-ion battery. Physica B-CondensedHigh Energy High Power Li-ion Battery Cathode Materials AHigh Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

447

Development of High Energy Lithium Batteries for Electric Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Kasei * Focused on High Capacity Manganese Rich (HCMR TM ) cathodes & Silicon-Carbon composite anodes for Lithium ion batteries * Envia's high energy Li-ion battery materials...

448

Vehicle Technologies Office Merit Review 2014: High Energy Density...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EV's Based on Novel, High Voltage Cathode Material Systems Vehicle Technologies Office Merit...

449

High Speed Flywheels for Integrated Energy Storage and Attitude Control  

E-Print Network [OSTI]

High Speed Flywheels for Integrated Energy Storage and Attitude Control Christopher D. Hall. Decomposition of the space of internal torques separates the attitude control functionfrom the energy storage simultaneously performing energy storage and extraction operations. 1 Introduction The power engineering

Hall, Christopher D.

450

Mitigating Performance Degradation of High-Energy Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Mitigating Performance Degradation of High-Energy Lithium-Ion Cells 2013 DOE Hydrogen and Fuel Cells Program and...

451

Vehicle Technologies Office Merit Review 2014: High Energy, Long...  

Broader source: Energy.gov (indexed) [DOE]

High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV...

452

New Funding Boosts Carbon Capture, Solar Energy and High Gas...  

Office of Environmental Management (EM)

Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 -...

453

High Energy Resummation in Quantum ChromoDynamics  

E-Print Network [OSTI]

In this thesis I discuss different aspects of high energy resummation in Quantum Chromo-Dynamics and its relevance for precision physics at hadron colliders. The high energy factorisation theorem is presented and discussed ...

Marzani, Simone

2008-01-01T23:59:59.000Z

454

West Virginia Venture Capital (West Virginia)  

Broader source: Energy.gov [DOE]

The West Virginia Venture Capital provides investment funds to eligible businesses stimulating economic growth and providing or retaining jobs within the state through qualified venture capital...

455

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office...

456

Fast Search Techniques for High Energy Pulsars  

E-Print Network [OSTI]

Modified versions of two "standard" pulsar search techniques are presented that allow large-scale searches for pulsations in long duration high-energy data sets using relatively modest amounts of computer time. For small numbers of photons (N_phot <~ 10^4), optimized brute-force epoch folding searches are preferred. For larger numbers of photons, advanced Fourier domain acceleration searches are used. Using these techniques, my collaborators and I have searched Chandra observations of the CasA supernova remnant (SNR) point source and the isolated neutron star RX J1856.5-3754 for pulsations, and confirmed the 65.6 ms pulsar in the 3C 58 SNR during a blind search of archival RXTE data.

Scott M. Ransom

2001-12-01T23:59:59.000Z

457

Physics of intense, high energy radiation effects.  

SciTech Connect (OSTI)

This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the continuum calculations and the experiments.

Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

2011-02-01T23:59:59.000Z

458

Data mining in high energy physics Bertrand Brelier  

E-Print Network [OSTI]

Bertrand Brelier (SOSCIP) Data mining in high energy physics July 3, 2014 5 / 8 #12;Jobs User submit job if failing Output of job downloaded on local computer Bertrand Brelier (SOSCIP) Data mining in high energyData mining in high energy physics Bertrand Brelier SOSCIP July 3, 2014 Bertrand Brelier (SOSCIP

Prodiæ, Aleksandar

459

High energy activation data library (HEAD-2009)  

SciTech Connect (OSTI)

A proton activation data library for 682 nuclides from 1 H to 210Po in the energy range from 150 MeV up to 1 GeV was developed. To calculate proton activation data, the MCNPX 2.6.0 and CASCADE/INPE codes were chosen. Different intranuclear cascade, preequilibrium, and equilibrium nuclear reaction models and their combinations were used. The optimum calculation models have been chosen on the basis of statistical correlations for calculated and experimental proton data taken from the EXFOR library of experimental nuclear data. All the data are written in ENDF-6 format. The library is called HEPAD-2008 (High-Energy Proton Activation Data). A revision of IEAF-2005 neutron activation data library has been performed. A set of nuclides for which the cross-section data can be (and were) updated using more modern and improved models is specified, and the corresponding calculations have been made in the present work. The new version of the library is called IEAF-2009. The HEPAD-2008 and IEAF-2009 are merged to the final HEAD-2009 library.

Mashnik, Stepan G [Los Alamos National Laboratory; Korovin, Yury A [NON LANL; Natalenko, Anatoly A [NON LANL; Konobeyev, Alexander Yu [NON LANL; Stankovskiy, A Yu [NON LANL

2010-01-01T23:59:59.000Z

460

NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS  

E-Print Network [OSTI]

· NATIONAL AND GLOBAL FORECASTS · WEST VIRGINIA PROFILES AND FORECASTS · ENERGY · HEALTHCARE Research West Virginia University College of Business and Economics P.O. Box 6527, Morgantown, WV 26506 EXPERT OPINION PROVIDED BY Keith Burdette Cabinet Secretary West Virginia Department of Commerce

Mohaghegh, Shahab

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The High Energy Telescope on EXIST  

E-Print Network [OSTI]

The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed next generation multi-wavelength survey mission. The primary instrument is a High Energy telescope (HET) that conducts the deepest survey for Gamma-ray Bursts (GRBs), obscured-accreting and dormant Supermassive Black Holes and Transients of all varieties for immediate followup studies by the two secondary instruments: a Soft X-ray Imager (SXI) and an Optical/Infrared Telescope (IRT). EXIST will explore the early Universe using high redshift GRBs as cosmic probes and survey black holes on all scales. The HET is a coded aperture telescope employing a large array of imaging CZT detectors (4.5 m^2, 0.6 mm pixel) and a hybrid Tungsten mask. We review the current HET concept which follows an intensive design revision by the HET imaging working group and the recent engineering studies in the Instrument and Mission Design Lab at the Goddard Space Flight Center. The HET will locate GRBs and transients quickly (<10-30 sec) and accurately (< 20") f...

Hong, J; Allen, B; Barthelmy, S D; Skinner, G K; Gehrels, N

2009-01-01T23:59:59.000Z

462

Calibration in High-Energy Astrophysics Statistical Computation  

E-Print Network [OSTI]

: Effective area records sensitivity as a function of energy Energy redistribution matrix can vary with energy/location Point Spread Functions can vary with energy and location Exposure Map shows how effective area variesCalibration in High-Energy Astrophysics Statistical Computation Back to Calibration Uncertainty

van Dyk, David

463

West Virginia Consumers Have Appliance Rebate 'Trifecta'  

Broader source: Energy.gov [DOE]

West Virginians didnt waste any time in taking advantage of the Energy Efficient Appliance Rebate Program. Only three months in, and almost half of the available $1.7 million is already spoken for.

464

West Virginia  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales

465

Oklahoma Center for High Energy Physics (OCHEP)  

SciTech Connect (OSTI)

The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma?¢????s impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging from the search for new phenomena at the Fermilab Tevatron and the CERN Large Hadron Collider to theoretical modeling, computer simulation, detector development and testing, and physics analysis. OCHEP faculty members participating on the D0 collaboration at the Fermilab Tevatron and on the ATLAS collaboration at the CERN LHC have made major impact on the Standard Model (SM) Higgs boson search, top quark studies, B physics studies, and measurements of Quantum Chromodynamics (QCD) phenomena. The OCHEP Grid computing facility consists of a large computer cluster which is playing a major role in data analysis and Monte Carlo productions for both the D0 and ATLAS experiments. Theoretical efforts are devoted to new ideas in Higgs bosons physics, extra dimensions, neutrino masses and oscillations, Grand Unified Theories, supersymmetric models, dark matter, and nonperturbative quantum field theory. Theory members are making major contributions to the understanding of phenomena being explored at the Tevatron and the LHC. They have proposed new models for Higgs bosons, and have suggested new signals for extra dimensions, and for the search of supersymmetric particles. During the seven year period when OCHEP was partially funded through the DOE EPSCoR implementation grant, OCHEP members published over 500 refereed journal articles and made over 200 invited presentations at major conferences. The Center is also involved in education and outreach activities by offering summer research programs for high school teachers and college students, and organizing summer workshops for high school teachers, sometimes coordinating with the Quarknet programs at OSU and OU. The details of the Center can be found in http://ochep.phy.okstate.edu.

S. Nandi; M.J. Strauss; J. Snow; F. Rizatdinova; B. Abbott; K. Babu; P. Gutierrez; C. Kao; A. Khanov; K.A. Milton; H. Neaman; H. Severini, P. Skubic

2012-02-29T23:59:59.000Z

466

Data Preservation in High Energy Physics  

SciTech Connect (OSTI)

Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

Mount, Richard; Brooks, Travis; /SLAC; Le Diberder, Francois; /Orsay, LAL; Dubois-Felsmann, Gregory; Neal, Homer; /SLAC; Bellis, Matt; /Stanford U.; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; /Fermilab; Konigsberg, Jacobo; /Florida U.; Roser, Robert; Snider, Rick; /Fermilab; Lucchesi, Donatella; /INFN, Padua; Denisov, Dmitri; /Fermilab; Soldner-Rembold, Stefan; /Manchester U.; Li, Qizhong; /Fermilab; Varnes, Erich; /Arizona U.; Jonckheere, Alan; /Fermilab; Gasthuber, Martin; Gulzow, Volker; /DESY /Marseille, CPPM /Dortmund U. /DESY /Gent U. /DESY, Zeuthen /KEK, Tsukuba /CC, Villeurbanne /CERN /INFN, Bari /Gjovik Coll. Engineering /Karlsruhe, Forschungszentrum /Beijing, Inst. High Energy Phys. /Carleton U. /Cornell U. /Rutherford

2012-04-03T23:59:59.000Z

467

Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics  

E-Print Network [OSTI]

The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system ...

Pilawa-Podgurski, R. C. N.

468

Nuclear and High-Energy Astrophysics  

E-Print Network [OSTI]

There has never been a more exciting time in the overlapping areas of nuclear physics, particle physics and relativistic astrophysics than today. Orbiting observatories such as the Hubble Space Telescope, Rossi X-ray Timing Explorer (RXTE), Chandra X-ray satellite, and the X-ray Multi Mirror Mission (XMM) have extended our vision tremendously, allowing us to see vistas with an unprecedented clarity and angular resolution that previously were only imagined, enabling astrophysicists for the first time ever to perform detailed studies of large samples of galactic and extragalactic objects. On the Earth, radio telescopes (e.g., Arecibo, Green Bank, Parkes, VLA) and instruments using adaptive optics and other revolutionary techniques have exceeded previous expectations of what can be accomplished from the ground. The gravitational wave detectors LIGO, LISA VIRGO, and Geo-600 are opening up a window for the detection of gravitational waves emitted from compact stellar objects such as neutron stars and black holes. Together with new experimental forefront facilities like ISAC, ORLaND and RIA, these detectors provide direct, quantitative physical insight into nucleosynthesis, supernova dynamics, accreting compact objects, cosmic-ray acceleration, and pair-production in high energy sources which reinforce the urgent need for a strong and continuous feedback from nuclear and particle theory and theoretical astrophysics. In my lectures, I shall concentrate on three selected topics, which range from the behavior of superdense stellar matter, to general relativistic stellar models, to strange quark stars and possible signals of quark matter in neutron stars.

Fridolin Weber

2002-07-01T23:59:59.000Z

469

Aspen Winter Conferences on High Energy  

SciTech Connect (OSTI)

The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, ?New Data From the Energy Frontier.? There were 54 formal talks, and a considerable number of informal discussions held during the week. The week?s events included a public lecture (?The Hunt for the Elusive Higgs Boson? given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics caf? geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was ?Indirect and Direct Detection of Dark Matter.? It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled ?What Makes Up Dark Matter.? There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics caf? to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

multiple speakers, presenters listed on link below

2011-02-12T23:59:59.000Z

470

Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators  

E-Print Network [OSTI]

The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

Blanco Sancho, Juan; Schmidt, R

471

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission  

E-Print Network [OSTI]

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission R. P. fla B. Dennis, G mission is to investigate the physics of particle acceleration and energy release in solar flares, through-ray/gamma-ray spectroscopy 1. INTRODUCTION The primary scientific objective of the Reuven Ramaty High Energy Solar

California at Berkeley, University of

472

Microsoft Word - 2014 DOE Science Bowl-high schools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feb. 21, 2014 Robert.Smith@lex.doe.gov Calloway County High School Wins DOE Regional Science Bowl PADUCAH, KY - Calloway County High School won the U.S. Department of Energy's West...

473

West Valley Demonstration Project - North Plateau Strontium-90...  

Office of Environmental Management (EM)

Demonstration Project - North Plateau Strontium-90 West Valley Demonstration Project - North Plateau Strontium-90 January 1, 2014 - 12:00pm Addthis US Department of Energy...

474

Case Study - The Department of Veterans Affairs West Haven Campus...  

Broader source: Energy.gov (indexed) [DOE]

The West Haven (Connecticut) Campus of the Veterans Affairs Connecticut Health Care System was the first Veteran's Hospital to award a shared energy savings (SES) contract (now...

475

Governors Guaranteed Work Force Program (West Virginia)  

Broader source: Energy.gov [DOE]

Small, medium and large West Virginia private-for-profit businesses, including but not limited to: Energy, Technology, Aerospace, Automotive, Business Services, Chemicals/Plastics, Metals, Tourist...

476

akashiwo ccmp452 west: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W. 82 Energy Sciences Institute Talks at West Campus Chemistry Websites Summary: electric storage devices, but viable battery technology able to store large amounts of...

477

Dr. Bhaskaran Gopalakrishnan Extends the Reach of the West Virginia...  

Broader source: Energy.gov (indexed) [DOE]

Dr. Bhaskaran Gopalakrishnan (left) and Dr. Ed Crowe (right, Engineering Scientist at West Virginia University) discuss some of the findings of an energy audit of a small...

478

Technical Services Contract Awarded for West Valley Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

- The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley...

479

Phase conjugation of high energy lasers.  

SciTech Connect (OSTI)

In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 - 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

Bliss, David Emery; Valley, Michael T.; Atherton, Briggs W.; Bigman, Verle; Boye, Lydia Ann; Broyles, Robin Scott; Kimmel, Mark W.; Law, Ryan J.; Yoder, James R.

2013-01-01T23:59:59.000Z

480

Phosphate glass useful in high energy lasers  

DOE Patents [OSTI]

In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

Hayden, Yuiko T. (Clarks Summit, PA); Payne, Stephen A. (Castro Valley, CA); Hayden, Joseph S. (Clarks Summit, PA); Campbell, John H. (Livermore, CA); Aston, Mary Kay (Moscow, PA); Elder, Melanie L. (Dublin, CA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high west energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Phosphate glass useful in high energy lasers  

DOE Patents [OSTI]

In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.

1996-06-11T23:59:59.000Z

482

Analyzing High Energy Physics Data Using Databases: A Case Study  

E-Print Network [OSTI]

Analyzing High Energy Physics Data Using Databases: A Case Study R. Grossman, X. &in, D. Valsamis. Nixdorf, B. Scipioni, T. Song Superconducting Supercollider Laboratory Abstract We describe the initial experimental data from high energy physics. At this time, we have designed two proto- types to analyze high

Grossman, Robert

483

A methodology for assessing alternative water acquisition and use strategies for energy facilities in the American West  

E-Print Network [OSTI]

This report develops a method for assessing alternative strategies for acquiring and using water at western energy plants. The method has been tested in a case study of cooling water use for a hypothetical steam electric ...

Shaw, John J.

1981-01-01T23:59:59.000Z

484

Renewable Energy Executive Summary High-Yield Scenario  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable Energy Executive Summary High-Yield Scenario Workshop Series Report INLEXT-10-18930 December 2009 The 2005 Billion-Ton Study a (BTS) esti- mates the...

485

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Electricity & Solar Thermal HW Module Electricity Solar thermal space heating Baseline Solar Thermal Inverte r To Grid 2012 GMZ Energy, Proprietary and Confidential Bosch -...

486

High-Order Energy Stable WENO Schemes  

E-Print Network [OSTI]

A third-order Energy Stable Weighted Essentially Non--Oscillatory (ESWENO) finite difference scheme developed by the authors of the paper [N. K. Yamaleev...

487

High density behaviour of nuclear symmetry energy  

E-Print Network [OSTI]

Role of the isospin asymmetry in nuclei and neutron stars, with an emphasis on the density dependence of the nuclear symmetry energy, is discussed. The symmetry energy is obtained using the isoscalar as well as isovector components of the density dependent M3Y effective interaction. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. Implications for the density dependence of the symmetry energy in case of a neutron star are discussed, and also possible constraints on the density dependence obtained from finite nuclei are compared.

D. N. Basu; Tapan Mukhopadhyay

2006-12-27T23:59:59.000Z

488

Pursuing Energy Efficiency as a Hedge against Carbon Regulatory Risks: Current Resource Planning Practices in the West  

SciTech Connect (OSTI)

Uncertainty surrounding the nature and timing of future carbon regulations poses a fundamental and far-reaching financial risk for electric utilities and their ratepayers. Long-term resource planning provides a potential framework within which utilities can assess carbon regulatory risk and evaluate options for mitigating exposure to this risk through investments in energy efficiency and other low-carbon resources. In this paper, we examine current resource planning practices related to managing carbon regulatory risk, based on a comparative analysis of the most-recent long-term resource plans filed by fifteen major utilities in the Western U.S. First, we compare the assumptions and methods used by utilities to assess carbon regulatory risk and to evaluate energy efficiency as a risk mitigation option. Although most utilities have made important strides in beginning to address carbon regulatory risk within their resource plan, we also identify a number of opportunities for improvement and offer recommendations for resource planners and state regulators to consider. We also summarize the composition and carbon intensity of the preferred resource portfolios selected by the fifteen Western utilities, highlighting the contribution of energy efficiency and its impact on the carbon intensity of utilities' proposed resource strategies. Energy efficiency and renewables are the dominant low-carbon resources included in utilities' preferred portfolios. Across the fifteen utilities, energy efficiency constitutes anywhere from 6percent to almost 50percent of the preferred portfolio energy resources, and represents 22percent of all incremental resources in aggregate.

Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

2008-07-11T23:59:59.000Z

489

Pursuing Energy Efficiency as a Hedge against Carbon Regulatory Risks: Current Resource Planning Practices in the West  

SciTech Connect (OSTI)

Uncertainty surrounding the nature and timing of future carbon regulations poses a fundamental and far-reaching financial risk for electric utilities and their ratepayers. Long-term resource planning provides a potential framework within which utilities can assess carbon regulatory risk and evaluate options for mitigating exposure to this risk through investments in energy efficiency and other low-carbon resources. In this paper, we examine current resource planning practices related to managing carbon regulatory risk, based on a comparative analysis of the most-recent long-term resource plans filed by fifteen major utilities in the Western U.S. First, we compare the assumptions and methods used by utilities to assess carbon regulatory risk and to evaluate energy efficiency as a risk mitigation option. Although most utilities have made important strides in beginning to address carbon regulatory risk within their resource plan, we also identify a number of opportunities for improvement and offer recommendations for resource planners and state regulators to consider. We also summarize the composition and carbon intensity of the preferred resource portfolios selected by the fifteen Western utilities, highlighting the contribution of energy efficiency and its impact on the carbon intensity of utilities' proposed resource strategies. Energy efficiency and renewables are the dominant low-carbon resources included in utilities' preferred portfolios. Across the fifteen utilities, energy efficiency constitutes anywhere from 6percent to almost 50percent of the preferred portfolio energy resources, and represents 22percent of all incremental resources in aggregate.

Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

2008-08-01T23:59:59.000Z

490

HiResHiRes Mapping the HighMapping the High Energy UniverseEnergy Universe  

E-Print Network [OSTI]

HiResHiRes ­­ Mapping the HighMapping the High Energy UniverseEnergy Universe Stefan Westerhoff Columbia University HiRes Collaboration Fermilab Wine & Cheese Seminar 24 October 2003 #12;Particle-rays · Gamma-ray Astronomy ­ photons from MeV to TeV · Cosmic Rays ­ protons and heavier nuclei with energies

491

Low Cost Components: Advanced High Power & High Energy Battery...  

Energy Savers [EERE]

DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08amine2.pdf More Documents & Publications Engineering of High...

492

Energy spectrum of ultra high energy cosmic rays  

E-Print Network [OSTI]

The construction of the southern site of the Pierre Auger Observatory is almost completed. Three independent measurements of the flux of the cosmic rays with energies larger than 1 EeV have been performed during the construction phase. The surface detector data collected until August 2007 have been used to establish a flux suppression at the highest energies with a 6 sigma significance. The observations of cosmic rays by the fluorescence detector allowed the extension of the energy spectrum to lower energies, where the efficiency of the surface detector is less than 100% and a change in the spectral index is expected.

Ioana C. Maris; for the Pierre Auger Collaboration

2008-08-12T23:59:59.000Z

493

West Virginia Loan Insurance Program (West Virginia)  

Broader source: Energy.gov [DOE]

The West Virginia Loan Insurance Program, provides a loan insurance program in cooperation with third party lenders to assist firms that cannot obtain conventional bank financing. Up to 80% of the...

494

High energy particles from gamma-ray bursts  

E-Print Network [OSTI]

A review is presented of the fireball model of gamma-ray bursts (GRBs), and of the production in GRB fireballs of high energy protons and neutrinos. Constraints imposed on the model by recent afterglow observations, which support the association of GRB and ultra-high energy cosmic-ray (UHECR) sources, are discussed. Predictions of the GRB model for UHECR production, which can be tested with planned large area UHECR detectors and with planned high energy neutrino telescopes, are reviewed.

Eli Waxman

2001-03-13T23:59:59.000Z

495

Comment on the $?^+$-production at high energy  

E-Print Network [OSTI]

We show that the cross sections of the $\\Theta^+$-pentaquark production in different processes decrease with energy faster than the cross sections of production of the conventional three-quark hyperons. Therefore, the threshold region with the initial energy of a few GeV or less seemsto be more favorable for the production and experimental study of $\\Theta^+$-pentaquark.

A. I. Titov; A. Hosaka; S. Date'; Y. Ohashi

2004-09-15T23:59:59.000Z

496

Service Members Aim High-- for Energy Savings  

Broader source: Energy.gov [DOE]

Service members are helping reduce our dependency on oil, and saving taxpayers' money, with their energy-saving efforts. Operation Change Out has cut $26.3 million in total energy costs and helped prevent more than 396 lbs. of carbon dioxide.

497

The origin of ultra high energy cosmic rays  

E-Print Network [OSTI]

We briefly discuss some open problems and recent developments in the investigation of the origin and propagation of ultra high energy cosmic rays (UHECRs).

Pasquale Blasi

2005-12-16T23:59:59.000Z

498

Future scientific applications for high-energy lasers  

SciTech Connect (OSTI)

This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

Lee, R.W. [comp.

1994-08-01T23:59:59.000Z

499

Development of Novel Electrolytes for Use in High Energy Lithium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes...

500

Development of High Energy Lithium Batteries for Electric Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...