Sample records for high velocity sdhv

  1. High-velocity clouds: a diverse phenomenon

    E-Print Network [OSTI]

    B. P. Wakker

    2001-09-13T23:59:59.000Z

    In this contribution the current state of knowledge about the high-velocity clouds (HVCs) is summarized. Recent progress has shown that the HVCs are a diverse phenomenon. The intermediate-velocity clouds (IVCs) are likely to be part of a Galactic Fountain. The Magellanic Stream is a tidal remnant. HVC complex C (possibly complexes A and GCN) are low-metallicity clouds near the Galaxy; they could be remnants of the formation of the Galaxy or old tidal streams extracted from nearby dwarf galaxies. Having a substantial number of HI HVCs dispersed throughout the Local Group seems incompatible with the observed HI mass function of galaxies. Finally, FUSE finds high-velocity OVI, some of which is clearly associated with HI HVCs, but some which is not.

  2. An insitu borescopic quantitative imaging profiler for the measurement of high concentration sediment velocity

    E-Print Network [OSTI]

    Cowen, Edwin A.; Dudley, Russell D.; Liao, Qian; Variano, Evan A.; Liu, Philip L.-F.

    2010-01-01T23:59:59.000Z

    of high concentration sediment velocity Edwin A. Cowen •instantaneous velocity in high sediment concentration ?ows,point reveals the sheet ?ow sediment velocities to be highly

  3. Experimental High Velocity Acid Jetting in Limestone Carbonates

    E-Print Network [OSTI]

    Holland, Christopher

    2014-04-30T23:59:59.000Z

    Acid jetting is a well stimulation technique that is used in carbonate reservoirs. It typically involves injecting acid down hole at high flow rates through small orifices which cause high velocities of acid to strike the borehole wall...

  4. Superconducting spoke cavities for high-velocity applications

    SciTech Connect (OSTI)

    Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB

    2013-10-01T23:59:59.000Z

    To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.

  5. MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD

    SciTech Connect (OSTI)

    Hill, Alex S.; McClure-Griffiths, Naomi M. [CSIRO Astronomy and Space Science, Marsfield, NSW (Australia); Mao, S. A. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI (United States); Benjamin, Robert A. [Department of Physics, University of Wisconsin-Whitewater, Whitewater, WI (United States); Lockman, Felix J., E-mail: alex.hill@csiro.au, E-mail: naomi.mcclure-griffiths@csiro.au, E-mail: mao@astro.wisc.edu, E-mail: benjamir@uww.edu, E-mail: jlockman@nrao.edu [National Radio Astronomy Observatory, Green Bank, WV (United States)

    2013-11-01T23:59:59.000Z

    We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of H? from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ?100 rad m{sup –2} which are generally well correlated with decelerated H? emission. We estimate a lower limit on the line-of-sight component of the field of ?8 ?G along a decelerated filament; this is a lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or H? at the velocity of the Smith Cloud. The smooth H? morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (?1 Rayleigh) H? intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas.

  6. High-Velocity Oxygen Fuel Thermal Spray of Fe-Based Amorphous Alloy: a Numerical and Experimental Study

    E-Print Network [OSTI]

    Ajdelsztajn, L.; Dannenberg, J.; Lopez, J.; Yang, N.; Farmer, J.; Lavernia, E. J.

    2009-01-01T23:59:59.000Z

    High-Velocity Oxygen Fuel Thermal Spray of Fe-Basedusing a high velocity oxygen fuel (HVOF) spray processstructure. [12] High velocity oxygen fuel (HVOF) thermal

  7. Velocity distribution of high-energy particles and the solar neutrino problem

    E-Print Network [OSTI]

    Jian-Miin Liu

    2001-08-18T23:59:59.000Z

    High energy infers high velocity and high velocity is a concept of special relativity. The Maxwellian velocity distribution is corrected to be consistent with special relativity. The corrected distribution reduces to the Maxwellian distribution for small velocities, contains a relatively depleted high-energy tail and vanishes at the velocity of light. This corrected distribution will lower solar neutrino fluxes and change solar neutrino energy spectra but keep solar sound speeds.

  8. Arecibo imaging of compact high-velocity clouds

    E-Print Network [OSTI]

    Burton, W B; Chengalur, J N

    2001-01-01T23:59:59.000Z

    Ten isolated compact high-velocity clouds (CHVCs) of the type cataloged by Braun & Burton (1999) have been imaged with the Arecibo telescope and were found to have a nested core/halo morphology. We argue that a combination of high-resolution filled-aperture and synthesis data is crucial to determining the intrinsic properties of the CHVCs. We identify the halos as Warm Neutral Medium surrounding one or more cores in the Cool Neutral Medium phase. These halos are clearly detected and resolved by the Arecibo filled-aperture imaging, which reaches a limiting sensitivity (1 sigma) of N_H about 2x10^17 cm^-2 over the typical 70 km/s linewidth at zero intensity. The FWHM linewidth of the halo gas is found to be 25 km/s, consistent with a WNM thermal broadening within 10^4 K gas. Substantial asymmetries are found at high N_H (>10^18.5 cm^-2) levels in 60% of our sample. A high degree of reflection-symmetry is found at low N_H (<10^18.5 cm^-2) in all sources studied at these levels. The column-density profiles...

  9. Arecibo imaging of compact high-velocity clouds

    E-Print Network [OSTI]

    W. B. Burton; R. Braun; J. N. Chengalur

    2001-02-06T23:59:59.000Z

    Ten isolated compact high-velocity clouds (CHVCs) of the type cataloged by Braun & Burton (1999) have been imaged with the Arecibo telescope and were found to have a nested core/halo morphology. We argue that a combination of high-resolution filled-aperture and synthesis data is crucial to determining the intrinsic properties of the CHVCs. We identify the halos as Warm Neutral Medium surrounding one or more cores in the Cool Neutral Medium phase. These halos are clearly detected and resolved by the Arecibo filled-aperture imaging, which reaches a limiting sensitivity (1 sigma) of N_H about 2x10^17 cm^-2 over the typical 70 km/s linewidth at zero intensity. The FWHM linewidth of the halo gas is found to be 25 km/s, consistent with a WNM thermal broadening within 10^4 K gas. Substantial asymmetries are found at high N_H (>10^18.5 cm^-2) levels in 60% of our sample. A high degree of reflection-symmetry is found at low N_H (envelopes are described well by the sky-plane projection of a spherical exponential in atomic volume density, which allows estimating the characteristic central halo column density, N_H(0) = 4.1+/-3.2x10^19 cm^-2, and characteristic exponential scale-length, h_B=420+/-90 arcsec. For plausible values of the thermal pressure at the CNM/WNM interface, these edge profiles allow distance estimates to be made for the individual CHVCs studied here which range between 150 and 850 kpc. (abridged)

  10. Distances and Metallicities of High- and Intermediate-Velocity Clouds

    E-Print Network [OSTI]

    B. P. Wakker

    2001-02-08T23:59:59.000Z

    A table is presented that summarizes published absorption line measurements for the high- and intermediate velocity clouds (HVCs and IVCs). New values are derived for N(HI) in the direction of observed probes, in order to arrive at reliable abundances and abundance limits (the HI data are described in Paper II). Distances to stellar probes are revisited and calculated consistently, in order to derive distance brackets or limits for many of the clouds, taking care to properly interpret non-detections. The main conclusions are the following. 1) Absolute abundances have been measured using lines of SII, NI and OI, with the following resulting values: ~0.1 solar for one HVC (complex C), ~0.3 solar for the Magellanic Stream, ~0.5 solar for a southern IVC, and ~ solar for two northern IVCs (the IV Arch and LLIV Arch). Finally, approximate values in the range 0.5-2 solar are found for three more IVCs. 2) Depletion patterns in IVCs are like those in warm disk or halo gas. 3) Most distance limits are based on strong UV lines of CII, SiII and MgII, a few on CaII. Distance limits for major HVCs are >5 kpc, while distance brackets for several IVCs are in the range 0.5-2 kpc. 4) Mass limits for major IVCs are 0.5-8x10^5 M_sun, but for major HVCs they are >10^6 M_sun. 5) The CaII/HI ratio varies by up to a factor 2-5 within a single cloud, somewhat more between clouds. 6) The NaIHI ratio varies by a factor >10 within a cloud, and even more between clouds. Thus, CaII can be useful for determining both lower and upper distance limits, but NaI only yields upper limits.

  11. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOE Patents [OSTI]

    Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1990-10-16T23:59:59.000Z

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  12. Low inlet gas velocity high throughput biomass gasifier

    DOE Patents [OSTI]

    Feldmann, Herman F. (Worthington, OH); Paisley, Mark A. (Upper Arlington, OH)

    1989-01-01T23:59:59.000Z

    The present invention discloses a novel method of operating a gasifier for production of fuel gas from carbonaceous fuels. The process disclosed enables operating in an entrained mode using inlet gas velocities of less than 7 feet per second, feedstock throughputs exceeding 4000 lbs/ft.sup.2 -hr, and pressures below 100 psia.

  13. Pneumatic cleaning of sugarcane utilizing a high velocity air jet

    E-Print Network [OSTI]

    Fisher, John Ray

    2012-06-07T23:59:59.000Z

    - oped to cope with the increased amount of trash present in unburned sugarcane. This research involved the testing and computer simulation of a chopper air jet nozzle assembly. The experimental test setup included a two-stage conveyor. This conveyor... of the system was evaluated. The results of the chopper air jet nozzle assembly tests verified that the air velocity, nozzle size, chopper blade configuration and feed-in rate contributed signifi- cantly to the cleanliness of the billets. The air velo- city...

  14. Hohlraum Designs for High Velocity Implosions on NIF

    SciTech Connect (OSTI)

    Meezan, N B; Hicks, D G; Callahan, D A; Olson, R E; Schneider, M S; Thomas, C A; Robey, H F; Celliers, P M; Kline, J K; Dixit, S N; Michel, P A; Jones, O S; Clark, D S; Ralph, J E; Doeppner, T; MacKinnon, A J; Haan, S W; Landen, O L; Glenzer, S H; Suter, L J; Edwards, M J; Macgowan, B J; Lindl, J D; Atherton, L J

    2011-10-19T23:59:59.000Z

    In this paper, we compare experimental shock and capsule trajectories to design calculations using the radiation-hydrodynamics code HYDRA. The measured trajectories from surrogate ignition targets are consistent with reducing the x-ray flux on the capsule by about 85%. A new method of extracting the radiation temperature as seen by the capsule from x-ray intensity and image data shows that about half of the apparent 15% flux deficit in the data with respect to the simulations can be explained by HYDRA overestimating the x-ray flux on the capsule. The National Ignition Campaign (NIC) point-design target is designed to reach a peak fuel-layer velocity of 370 km/s by ablating 90% of its plastic (CH) ablator. The 192-beam National Ignition Facility laser drives a gold hohlraum to a radiation temperature (T{sub RAD}) of 300 eV with a 20 ns-long, 420 TW, 1.3 MJ laser pulse. The hohlraum x-rays couple to the CH ablator in order to apply the required pressure to the outside of the capsule. In this paper, we compare experimental measurements of the hohlraum T{sub RAD} and the implosion trajectory with design calculations using the code hydra. The measured radial positions of the leading shock wave and the unablated shell are consistent with simulations in which the x-ray flux on the capsule is artificially reduced by 85%. We describe a new method of inferring the T{sub RAD} seen by the capsule from time-dependent x-ray intensity data and static x-ray images. This analysis shows that hydra overestimates the x-ray flux incident on the capsule by {approx}8%.

  15. Variables Affecting Smooth Particle Hydrodynamics Simulation of High-Velocity Flyer Plate Impact Experiments

    SciTech Connect (OSTI)

    Somasundaram, Deepak S [UNLV; Trabia, Mohamed [UNLV; O'Toole, Brendan [UNLV; Hixson, Robert S [NSTec

    2014-01-23T23:59:59.000Z

    This paper describes our work to characterize the variables affecting the smoothed particle hydrodynamics (SPH) method in the LS-DYNA package for simulating high-velocity flyer plate impact experiments. LS-DYNA simulations are compared with one-dimensional experimental data of an oxygen-free high-conductivity (OFHC) copper flyer plate impacting another plate of the same material. The comparison is made by measuring the velocity of a point on the back surface of the impact plate using the velocity interferometer system for any reflector (VISAR) technique.

  16. Doppler-Shift Asymmetry in High-Velocity Maser Emission from Shocks in Circumnuclear Disks

    E-Print Network [OSTI]

    Eyal Maoz; Christopher F. McKee

    1997-04-04T23:59:59.000Z

    SHORT VERSION: The rapidly rotating, masing circumnuclear disk in the central sub-parsec region of the galaxy NGC 4258 is remarkably circular and Keplerian, yet a striking asymmetry appears in the maser spectrum: the red-shifted, high- velocity sources are much more numerous and significantly more intense than the blue-shifted ones. A similar strong asymmetry appears also in the recently discovered, masing, circumnuclear disks in NGC 1068 and NGC 4945, thus suggesting it may be a general phenomenon. We show that the observed Doppler-shift asymmetry can naturally arise due to spiral shocks in circumnuclear disks, independent of the existence of a warp in the disk or the azimuthal direction to the observer. The high velocities of these features reflect the rotational velocities in the disk, and have nothing to do with the shock speed. In NGC 4258 - the currently most well-defined masing disk - the proposed scenario can also account for the intriguing clustering of the high-velocity maser spots in distinct clumps, the restricted spatial distribution of the low-velocity sources, and the dip in the maser spectrum at the systemic velocity of the disk. In this case we infer a disk mass of ~10E4 M_sun and a mass accretion rate of order ~7E-3 M_sun/year, which may be consistent with an advection-dominated accretion flow. The model is consistent with the observed Keplerian rotation, and introduces only negligible corrections to the previously derived black hole mass and galaxy distance. Predictions include slow systematic drifts in the velocity and position of all the high-velocity features, and the existence of circumnuclear disks which are delineated only by high-velocity maser emission.

  17. Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis Systems

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis of catalytically assisted self-propagating high-temperature synthesis (SHS) of the tantalum/carbon material system. © 2001 by The Combustion Institute INTRODUCTION Self-propagating high-temperature combustion synthesis

  18. HIGH-VELOCITY CLOUDS IN THE GALACTIC ALL SKY SURVEY. I. CATALOG

    SciTech Connect (OSTI)

    Moss, V. A.; Kummerfeld, J. K. [Sydney Institute for Astronomy, School of Physics A29, University of Sydney, Sydney, NSW 2006 (Australia); McClure-Griffiths, N. M.; Murphy, T. [CSIRO Astronomy and Space Science, ATNF, P.O. Box 76, Epping, NSW 1710 (Australia); Pisano, D. J. [Department of Physics, West Virginia University, P.O. Box 6315, Morgantown, WV 26506 (United States); Curran, J. R., E-mail: vmoss@physics.usyd.edu.au [School of Information Technologies, University of Sydney, Sydney, NSW 2006 (Australia)

    2013-11-01T23:59:59.000Z

    We present a catalog of high-velocity clouds (HVCs) from the Galactic All Sky Survey (GASS) of southern sky neutral hydrogen, which has 57 mK sensitivity and 1 km s{sup –1} velocity resolution and was obtained with the Parkes Telescope. Our catalog has been derived from the stray-radiation-corrected second release of GASS. We describe the data and our method of identifying HVCs and analyze the overall properties of the GASS population. We catalog a total of 1693 HVCs at declinations <0°, including 1111 positive velocity HVCs and 582 negative velocity HVCs. Our catalog also includes 295 anomalous velocity clouds (AVCs). The cloud line-widths of our HVC population have a median FWHM of ?19 km s{sup –1}, which is lower than that found in previous surveys. The completeness of our catalog is above 95% based on comparison with the HIPASS catalog of HVCs upon which we improve by an order of magnitude in spectral resolution. We find 758 new HVCs and AVCs with no HIPASS counterpart. The GASS catalog will shed unprecedented light on the distribution and kinematic structure of southern sky HVCs, as well as delve further into the cloud populations that make up the anomalous velocity gas of the Milky Way.

  19. High-Velocity Features of Calcium and Silicon in the Spectra of Type Ia Supernovae

    E-Print Network [OSTI]

    Silverman, Jeffrey M; Marion, G H; Wheeler, J Craig; Barna, Barnabas; Szalai, Tamas; Mulligan, Brian; Filippenko, Alexei V

    2015-01-01T23:59:59.000Z

    "High-velocity features" (HVFs) are spectral features in Type Ia supernovae (SNe Ia) that have minima indicating significantly higher (by greater than about 6000 km/s) velocities than typical "photospheric-velocity features" (PVFs). The PVFs are absorption features with minima indicating typical photospheric (i.e., bulk ejecta) velocities (usually ~9000-15,000 km/s near B-band maximum brightness). In this work we undertake the most in-depth study of HVFs ever performed. The dataset used herein consists of 445 low-resolution optical and near-infrared (NIR) spectra (at epochs up to 5 d past maximum brightness) of 210 low-redshift SNe Ia that follow the "Phillips relation." A series of Gaussian functions is fit to the data in order to characterise possible HVFs of Ca II H&K, Si II {\\lambda}6355, and the Ca II NIR triplet. The temporal evolution of the velocities and strengths of the PVFs and HVFs of these three spectral features is investigated, as are possible correlations with other SN Ia observables. We f...

  20. A confirmed location in the Galactic halo for the high-velocity cloud 'chain A'

    E-Print Network [OSTI]

    Hugo van Woerden; Ulrich J. Schwarz; Reynier F. Peletier; Bart P. Wakker; Peter M. W. Kalberla

    1999-07-08T23:59:59.000Z

    The high-velocity clouds of atomic hydrogen, discovered about 35 years ago, have velocities inconsistent with simple Galactic rotation models that generally fit the stars and gas in the Milky Way disk. Their origins and role in Galactic evolution remain poorly understood, largely for lack of information on their distances. The high-velocity clouds might result from gas blown from the Milky Way disk into the halo by supernovae, in which case they would enrich the Galaxy with heavy elements as they fall back onto the disk. Alternatively, they may consist of metal-poor gas -- remnants of the era of galaxy formation, accreted by the Galaxy and reducing its metal abundance. Or they might be truly extragalactic objects in the Local Group of galaxies. Here we report a firm distance bracket for a large high-velocity cloud, Chain A, which places it in the Milky Way halo (2.5 to 7 kiloparsecs above the Galactic plane), rather than at an extragalactic distance, and constrains its gas mass to between 10^5 and 2 times 10^6 solar masses.

  1. A confirmed location in the Galactic halo for the high-velocity cloud "chain A"

    E-Print Network [OSTI]

    Van Woerden, H; Peletier, R F; Wakker, B P; Kalberla, P M W; Woerden, Hugo van; Schwarz, Ulrich J.; Peletier, Reynier F.; Wakker, Bart P.; Kalberla, Peter M.W.

    1999-01-01T23:59:59.000Z

    The high-velocity clouds of atomic hydrogen, discovered about 35 years ago, have velocities inconsistent with simple Galactic rotation models that generally fit the stars and gas in the Milky Way disk. Their origins and role in Galactic evolution remain poorly understood, largely for lack of information on their distances. The high-velocity clouds might result from gas blown from the Milky Way disk into the halo by supernovae, in which case they would enrich the Galaxy with heavy elements as they fall back onto the disk. Alternatively, they may consist of metal-poor gas -- remnants of the era of galaxy formation, accreted by the Galaxy and reducing its metal abundance. Or they might be truly extragalactic objects in the Local Group of galaxies. Here we report a firm distance bracket for a large high-velocity cloud, Chain A, which places it in the Milky Way halo (2.5 to 7 kiloparsecs above the Galactic plane), rather than at an extragalactic distance, and constrains its gas mass to between 10^5 and 2 times 10^...

  2. Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media

    DOE Patents [OSTI]

    Nelson, John Stuart (Laguna Niguel, CA); Milner, Thomas Edward (Irvine, CA); Chen, Zhongping (Irvine, CA)

    1999-01-01T23:59:59.000Z

    Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

  3. Laser Doppler field sensor for high resolution flow velocity imaging without camera

    SciTech Connect (OSTI)

    Voigt, Andreas; Bayer, Christian; Shirai, Katsuaki; Buettner, Lars; Czarske, Juergen

    2008-09-20T23:59:59.000Z

    In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 {mu}m in the x direction and 16 {mu}m in the y direction and a relative velocity resolution of 1x10{sup -3} have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

  4. SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU

    SciTech Connect (OSTI)

    Childress, M. J.; Scalzo, R. A.; Sim, S. A.; Tucker, B. E.; Yuan, F.; Schmidt, B. P. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Cenko, S. B.; Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, J. M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Contreras, C.; Hsiao, E. Y.; Phillips, M.; Morrell, N. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Jha, S. W.; McCully, C. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Anderson, J. P.; De Jaeger, T.; Forster, F. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Benetti, S. [INAF Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122 Padova (Italy); Bufano, F., E-mail: mjc@mso.anu.edu.au [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); and others

    2013-06-10T23:59:59.000Z

    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II {lambda}6355 line that can be cleanly decoupled from the lower velocity ''photospheric'' component. This Si II {lambda}6355 HVF fades by phase -5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of {approx}12,000 km s{sup -1} until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v Almost-Equal-To 12,000 km s{sup -1} with narrow line width and long velocity plateau, as well as an HVF beginning at v Almost-Equal-To 31,000 km s{sup -1} two weeks before maximum. SN 2012fr resides on the border between the ''shallow silicon'' and ''core-normal'' subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the ''low velocity gradient'' group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

  5. Smith's Cloud: A High-velocity Cloud Colliding with the Milky Way

    E-Print Network [OSTI]

    Lockman, Felix J; Heroux, A J; Langston, Glen I

    2008-01-01T23:59:59.000Z

    New 21cm HI observations made with the Green Bank Telescope show that the high-velocity cloud known as Smith's Cloud has a striking cometary appearance and many indications of interaction with the Galactic ISM. The velocities of interaction give a kinematic distance of 12.4 +/-1.3 kpc, consistent with the distance derived from other methods. The Cloud is >3 x 1 kpc in size and its tip at (l,b)=(39 deg,-13 deg) is 7.6 kpc from the Galactic center and 2.9 kpc below the Galactic plane. It has greater than 10^6 M solar masses in HI. Its leading section has a total space velocity near 300 km/s, is moving toward the Galactic plane with a velocity of 73+/-26 km/s, and is shedding material to the Galaxy. In the absence of drag the Cloud will cross the plane in about 27 Myr. Smith's Cloud may be an example of the accretion of gas by the Milky Way needed to explain certain persistent anomalies in Galactic chemical evolution.

  6. Smith's Cloud: A High-velocity Cloud Colliding with the Milky Way

    E-Print Network [OSTI]

    Felix J. Lockman; Robert A. Benjamin; A. J. Heroux; Glen I. Langston

    2008-04-25T23:59:59.000Z

    New 21cm HI observations made with the Green Bank Telescope show that the high-velocity cloud known as Smith's Cloud has a striking cometary appearance and many indications of interaction with the Galactic ISM. The velocities of interaction give a kinematic distance of 12.4 +/-1.3 kpc, consistent with the distance derived from other methods. The Cloud is >3 x 1 kpc in size and its tip at (l,b)=(39 deg,-13 deg) is 7.6 kpc from the Galactic center and 2.9 kpc below the Galactic plane. It has greater than 10^6 M solar masses in HI. Its leading section has a total space velocity near 300 km/s, is moving toward the Galactic plane with a velocity of 73+/-26 km/s, and is shedding material to the Galaxy. In the absence of drag the Cloud will cross the plane in about 27 Myr. Smith's Cloud may be an example of the accretion of gas by the Milky Way needed to explain certain persistent anomalies in Galactic chemical evolution.

  7. Mapping High-velocity H-alpha and Lyman-alpha Emission from Supernova 1987A

    E-Print Network [OSTI]

    France, Kevin; Fransson, Claes; Larsson, Josefin; Frank, Kari A; Burrows, David N; Challis, Peter; Kirshner, Robert P; Chevalier, Roger A; Garnavich, Peter; Heng, Kevin; Lawrence, Stephen S; Lundqvist, Peter; Smith, Nathan; Sonneborn, George

    2015-01-01T23:59:59.000Z

    We present new {\\it Hubble Space Telescope} images of high-velocity H-$\\alpha$ and Lyman-$\\alpha$ emission in the outer debris of SN~1987A. The H-$\\alpha$ images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H$\\alpha$ imaging, we measure the mass flux of hydrogen atoms crossing the reverse shock front, in the velocity intervals ($-$7,500~$<$~$V_{obs}$~$<$~$-$2,800 km s$^{-1}$) and (1,000~$<$~$V_{obs}$~$<$~7,500 km s$^{-1}$), $\\dot{M_{H}}$ = 1.2~$\\times$~10$^{-3}$ M$_{\\odot}$ yr$^{-1}$. We also present the first Lyman-$\\alpha$ imaging of the whole remnant and new $Chandra$ X-ray observations. Comparing the spatial distribution of the Lyman-$\\alpha$ and X-ray emission, we observe that the majority of the high-velocity Lyman-$\\alpha$ emission originates interior to the equatorial...

  8. Revisit of the relationship between the elastic properties and sound velocities at high pressures

    SciTech Connect (OSTI)

    Wang, Chenju; Yan, Xiaozhen [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, PO Box 919-102, Mianyang, Sichuan 621900 (China); Institute of Atomic and Molecular Sciences, Sichuan University, Chengdu 610065 (China); Xiang, Shikai, E-mail: skxiang@caep.ac.cn; Chen, Haiyan [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, PO Box 919-102, Mianyang, Sichuan 621900 (China); Gu, Jianbing; Yu, Yin [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, PO Box 919-102, Mianyang, Sichuan 621900 (China); College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Kuang, Xiaoyu [Institute of Atomic and Molecular Sciences, Sichuan University, Chengdu 610065 (China); International Centre for Materials Physics, Academia Sinica, Shenyang 110016 (China)

    2014-09-14T23:59:59.000Z

    The second-order elastic constants and stress-strain coefficients are defined, respectively, as the second derivatives of the total energy and the first derivative of the stress with respect to strain. Since the Lagrangian and infinitesimal strain are commonly used in the two definitions above, the second-order elastic constants and stress-strain coefficients are separated into two categories, respectively. In general, any of the four physical quantities is employed to characterize the elastic properties of materials without differentiation. Nevertheless, differences may exist among them at non-zero pressures, especially high pressures. Having explored the confusing issue systemically in the present work, we find that the four quantities are indeed different from each other at high pressures and these differences depend on the initial stress applied on materials. Moreover, the various relations between the four quantities depicting elastic properties of materials and high-pressure sound velocities are also derived from the elastic wave equations. As examples, we calculated the high-pressure sound velocities of cubic tantalum and hexagonal rhenium using these nexus. The excellent agreement of our results with available experimental data suggests the general applicability of the relations.

  9. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    SciTech Connect (OSTI)

    Rader, D.J.; Benson, D.A.

    1995-05-01T23:59:59.000Z

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  10. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks

    Broader source: Energy.gov [DOE]

    Improved seismic imaging of geology across high-velocity Earth surfaces will allow more rigorous evaluation of geothermal prospects beneath volcanic outcrops. Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells.

  11. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig

    SciTech Connect (OSTI)

    Marion, G. H.; Foley, Ryan J.; Challis, Peter; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Vinko, Jozsef; Wheeler, J. Craig; Silverman, Jeffrey M. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, 4242 AMU, College Station, TX 77843 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Landsman, Wayne B. [Adnet Systems, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Parrent, Jerod T. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Pritchard, Tyler A.; Roming, Peter W. A. [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802 (United States); Wang, Xiaofeng, E-mail: gmarion@cfa.harvard.edu [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 1,00084 (China)

    2013-11-01T23:59:59.000Z

    We report measurements and analysis of high-velocity (HVF) (>20,000 km s{sup –1}) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between –14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M{sub B} = –19.46 mag and ?m{sub 15}(B) = 0.90 mag). Similarly, the Si II ?6355 velocity at the time of B-max is greater than 'normal' for an SN Ia, but it is not extreme (v{sub Si} = 13,400 km s{sup –1}). The –14 days and –13 days spectra clearly resolve HVF from Si II ?6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From –12 days to –6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s{sup –1}. After –6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before –10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II ?6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF.

  12. A DETAILED KINEMATIC MAP OF CASSIOPEIA A'S OPTICAL MAIN SHELL AND OUTER HIGH-VELOCITY EJECTA

    SciTech Connect (OSTI)

    Milisavljevic, Dan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138 (United States); Fesen, Robert A., E-mail: dmilisav@cfa.harvard.edu [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States)

    2013-08-01T23:59:59.000Z

    We present three-dimensional (3D) kinematic reconstructions of optically emitting material in the young Galactic supernova remnant Cassiopeia A (Cas A). These Doppler maps have the highest spectral and spatial resolutions of any previous survey of Cas A and represent the most complete catalog of its optically emitting material to date. We confirm that the bulk of Cas A's optically bright ejecta populate a torus-like geometry tilted approximately 30 Degree-Sign with respect to the plane of the sky with a -4000 to +6000 km s{sup -1} radial velocity asymmetry. Near-tangent viewing angle effects and an inhomogeneous surrounding circumstellar material/interstellar medium environment suggest that this geometry and velocity asymmetry may not be faithfully representative of the remnant's true 3D structure or the kinematic properties of the original explosion. The majority of the optical ejecta are arranged in several well-defined and nearly circular ring-like structures with diameters between approximately 30'' (0.5 pc) and 2' (2 pc). These ejecta rings appear to be a common phenomenon of young core-collapse remnants and may be associated with post-explosion input of energy from plumes of radioactive {sup 56}Ni-rich ejecta that rise, expand, and compress non-radioactive material. Our optical survey encompasses Cas A's faint outlying ejecta knots and exceptionally high-velocity NE and SW streams of S-rich debris often referred to as ''jets''. These outer knots, which exhibit a chemical make-up suggestive of an origin deep within the progenitor star, appear to be arranged in opposing and wide-angle outflows with opening half-angles of Almost-Equal-To 40 Degree-Sign.

  13. The Ultra Luminous X-ray sources in the High Velocity System of NGC 1275

    E-Print Network [OSTI]

    O. Gonzalez-Martin; A. C. Fabian; J. S. Sanders

    2006-01-09T23:59:59.000Z

    We report the results of a study of X-ray point sources coincident with the High Velocity System (HVS) projected in front of NGC 1275. A very deep X-ray image of the core of the Perseus cluster made with the Chandra Observatory has been used. We find a population of Ultra-Luminous X-ray sources (ULX; 7 sources with LX [0.5-7 keV] > 7x10^39 erg/s). As with the ULX populations in the Antennae and Cartwheel galaxies, those in the HVS are associated with a region of very active star formation. Several sources have possible optical counterparts found on HST images, although the X-ray brightest one does not. Absorbed power-law models fit the X-ray spectra, with most having a photon index between 2 and 3.

  14. E-Print Network 3.0 - activated combustion-high velocity Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    velocity model of an area in the lower part... and complex slope movements in the South French Alps. The landslide associates two styles of activity Source: Ecole Polytechnique,...

  15. The Double Seismic Zone of the Nazca Plate in Northern Chile: High Resolution Velocity Structure, Petrological Implications and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The Double Seismic Zone of the Nazca Plate in Northern Chile: High Resolution Velocity Structure presents an interdisciplinary study of the Northern Chile Double Seismic Zone. First, a high resolution method. The double seismic zone (DSZ) is observed between 80 and 140 km depth and the two seismic planes

  16. High Velocity Interparticle Collisions Driven by Ultrasound Tanya Prozorov, Ruslan Prozorov, and Kenneth S. Suslick*,

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    the liquid at velocities above the speed of sound.1-4 Unusual sonochemical effects are induced by these shock velocity of colliding particles approaches half the speed of sound in the liquid.4 The low melting point@uiuc.edu Ultrasonic irradiation of liquids produces transient cavitation: the formation, growth, and implosive

  17. The Smith Cloud: high-velocity accretion and dark-matter confinement

    E-Print Network [OSTI]

    Nichols, M

    2009-01-01T23:59:59.000Z

    The Smith Cloud is a massive system of metal-poor neutral and ionized gas M_gas >= 2x10^6 M_sun) that is presently moving at high velocity (V_GSR ~300 km s^-1) with respect to the Galaxy at a distance of 12 kpc from the Sun. The kinematics of the cloud's cometary tail indicates that the gas is in the process of accretion onto the Galaxy, as first discussed by Lockman et al. (2008). Here, we re-investigate the cloud's orbit by considering the possibility that the cloud is confined by a dark matter halo. This is required for the cloud to survive its passage through the Galactic corona. We consider three possible models for the dark matter halo (NFW, Einasto, Burkert) including the effects of tidal disruption and ram-pressure stripping during the cloud's infall onto and passage through the Galactic disk. For the NFW and Einasto dark-matter models, we are able to determine reasonable initial conditions for the Smith Cloud, although this is only marginally possible with the Burkert model. For all three models, the...

  18. Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud

    E-Print Network [OSTI]

    Alex Drlica-Wagner; German A. Gomez-Vargas; John W. Hewitt; Tim Linden; Luigi Tibaldo

    2014-06-30T23:59:59.000Z

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially-extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section ($\\sim 3\\times10^{-26}{\\rm cm}^{3}{\\rm s}^{-1}$) for dark matter masses $\\lesssim 30$ GeV annihilating via the $b \\bar b$ or $\\tau^{+}\\tau^{-}$ channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

  19. Energetic neutral atoms as the explanation for the high velocity hydrogen around HD 209458b

    E-Print Network [OSTI]

    M. Holmström; A. Ekenbäck; F. Selsis; T. Penz; H. Lammer; P. Wurz

    2008-02-20T23:59:59.000Z

    Absorption in the stellar Lyman-$\\alpha$ (Ly-$\\alpha$) line observed during the transit of the extrasolar planet HD 209458b reveals high velocity atomic hydrogen at great distances from the planet. This has been interpreted as hydrogen atoms escaping from the exosphere of the planet, possibly undergoing hydrodynamic blow-off, being accelerated by stellar radiation pressure. However, around solar system planets the production of energetic neutral atoms from charge exchange between solar wind protons and neutral hydrogen from the exospheres has been observed, and should also occur at extrasolar planets. Here we show that the measured transit-associated Ly-$\\alpha$ absorption can be explained by the interaction between the exosphere of HD 209458b and the stellar wind, and that radiation pressure alone cannot explain the observation. This is the first observation of energetic neutral atoms outside the solar system. Since the stellar wind protons are the source of the observed energetic neutral atoms, this provides a completely new method of probing stellar wind conditions, and our model suggests a slow and hot stellar wind near HD 209458b at the time of the observation.

  20. Feasibility and preliminary design study for a high velocity, low density wind tunnel utilizing the thermal creep effect

    E-Print Network [OSTI]

    Stephen, Alton Lee

    1968-01-01T23:59:59.000Z

    Average molecular velocity Cartesian length co-ordinate Thermal accomodation co-efficient Constant used in Appendix I Element of volume in velocity space Angular displacement Viscosity co-efficient Gas density cm cm/sec cm/sec cm/sec cm... on spheres in a rarefied gas as a means of making correc- tions to the results of Millikan's oil drop experiment. 4 Sanger's work was followed by a paper in which Tsien out- lined the field of low density, high speed gas dynamics. In this work, Tsien used...

  1. Characterization and Fabrication of Spoke Cavities for High-Velocity Applications

    SciTech Connect (OSTI)

    Hopper, Christopher S. [Old Dominion University, Norfolk, VA (United States); Park, HyeKyoung [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Delayen, Jean R. [Old Dominion University, Norfolk, VA (United States)

    2014-02-01T23:59:59.000Z

    A 500 MHz, velocity-of-light, two-spoke cavity has been designed and optimized for possible use in a compact light source. Here we present the mechanical analysis and steps taken in fabrication of this cavity at Jefferson Lab.

  2. Stochastic simulation for the propagation of high-frequency acoustic waves through a random velocity field

    SciTech Connect (OSTI)

    Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C. [CEA, LIST, F-91191 Gif-sur-Yvette (France); Laboratoire d'Acoustique de l'Universite du Maine (LAUM), UMR CNRS 6613, 72085 Le Mans Cedex 9 (France)

    2012-05-17T23:59:59.000Z

    In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.

  3. High-pressure sound velocities and elasticity of aluminous MgSiO3 perovskite to 45 GPa: Implications for lateral heterogeneity in Earth's

    E-Print Network [OSTI]

    Jackson, Jennifer M.

    High-pressure sound velocities and elasticity of aluminous MgSiO3 perovskite to 45 GPa lateral variations of seismic wave speeds in Earth's lower mantle are due at least in part to a chemical, J. M., J. Zhang, J. Shu, S. V. Sinogeikin, and J. D. Bass (2005), High-pressure sound velocities

  4. Geometry Effects on Multipole Components and Beam Optics in High-Velocity Multi-Spoke Cavities

    SciTech Connect (OSTI)

    Hopper, Christopher S. [ODU, JLAB; Deitrick, Kirsten E. [ODU, JLAB; Delayen, Jean R. [ODU, JLAB

    2013-12-01T23:59:59.000Z

    Velocity-of-light, multi-spoke cavities are being proposed to accelerate electrons in a compact light-source. There are strict requirements on the beam quality which require that the linac have only small non-uniformities in the accelerating field. Beam dynamics simulations have uncovered varying levels of focusing and defocusing in the proposed cavities, which is dependent on the geometry of the spoke in the vicinity of the beam path. Here we present results for the influence different spoke geometries have on the multipole components of the accelerating field and how these components, in turn, impact the simulated beam properties.

  5. A Catalog of Ultra-compact High Velocity Clouds from the ALFALFA Survey: Local Group Galaxy Candidates?

    E-Print Network [OSTI]

    Adams, Elizabeth A K; Haynes, Martha P

    2013-01-01T23:59:59.000Z

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km/s, median angular diameters of 10', and median velocity widths of 23 km/s. We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distribution and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of ~1 Mpc, the UCHVCs have neutral hydrogen (HI) masses of ~10^5 -10^6 M_sun, HI diamet...

  6. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    SciTech Connect (OSTI)

    Hardage, Bob A; DeAngelo, Michael V; Ermolaeva, Elena; Hardage, Bob A; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion

    2013-02-28T23:59:59.000Z

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.

  7. HIGH VELOCITY PRECESSING JETS FROM THE WATER FOUNTAIN IRAS 18286-0959 REVEALED BY VERY LONG BASELINE ARRAY OBSERVATIONS

    SciTech Connect (OSTI)

    Yung, Bosco H. K.; Nakashima, Jun-ichi; Kwok, Sun [Department of Physics, University of Hong Kong, Pokfulam Rd., Hong Kong (Hong Kong); Imai, Hiroshi [Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Deguchi, Shuji [Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Diamond, Philip J. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom)

    2011-11-10T23:59:59.000Z

    We report the results of multi-epoch Very Long Baseline Array observations of the 22.2 GHz H{sub 2}O maser emission associated with the 'water fountain' IRAS 18286-0959. We suggest that this object is the second example of a highly collimated bipolar precessing outflow traced by H{sub 2}O maser emission, the other is W 43A. The detected H{sub 2}O emission peaks are distributed over a velocity range from -50 km s{sup -1} to 150 km s{sup -1}. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (jet 1) extended southeast to northwest; the remaining features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a 'double-helix' pattern which lies across {approx}200 mas. The maser distribution is reasonably fit by a model consisting of two bipolar precessing jets. The three-dimensional velocities of jet 1 and jet 2 are derived to be 138 km s{sup -1} and 99 km s{sup -1}, respectively. The precession period of jet 1 is about 56 years. For jet 2, three possible models are tested and they give different values for the kinematic parameters. We propose that the appearance of two jets is the result of a single driving source with significant proper motion.

  8. Laser-based diagnostics for density, temperature, velocity, and dissociation fraction in high temperature hydrogen flows

    SciTech Connect (OSTI)

    Sappey, A.D.; Funk, D.J.

    1991-01-01T23:59:59.000Z

    This paper is essentially a review of the current state of the art in hydrogen atom and hydrogen molecule diagnostics. This paper contains some of our own results and ideas along with results from many other laboratories. This is not intended to be an exhaustive review; instead it summarizes some techniques which we believe are ideally suited as diagnostics for high temperature hydrogen which are of paramount importance for the Space Exploration Initiative (SEI). 31 refs., 1 fig.

  9. A compact single-camera system for high-speed, simultaneous 3-D velocity and temperature measurements.

    SciTech Connect (OSTI)

    Lu, Louise [University of Michigan, Ann Arbor, MI; Sick, Volker [University of Michigan, Ann Arbor, MI; Frank, Jonathan H.

    2013-09-01T23:59:59.000Z

    The University of Michigan and Sandia National Laboratories collaborated on the initial development of a compact single-camera approach for simultaneously measuring 3-D gasphase velocity and temperature fields at high frame rates. A compact diagnostic tool is desired to enable investigations of flows with limited optical access, such as near-wall flows in an internal combustion engine. These in-cylinder flows play a crucial role in improving engine performance. Thermographic phosphors were proposed as flow and temperature tracers to extend the capabilities of a novel, compact 3D velocimetry diagnostic to include high-speed thermometry. Ratiometric measurements were performed using two spectral bands of laser-induced phosphorescence emission from BaMg2Al10O17:Eu (BAM) phosphors in a heated air flow to determine the optimal optical configuration for accurate temperature measurements. The originally planned multi-year research project ended prematurely after the first year due to the Sandia-sponsored student leaving the research group at the University of Michigan.

  10. THE M81 GROUP DWARF IRREGULAR GALAXY DDO 165. I. HIGH-VELOCITY NEUTRAL GAS IN A POST-STARBURST SYSTEM

    SciTech Connect (OSTI)

    Cannon, John M.; Most, Hans P. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Skillman, Evan D.; Weisz, Daniel R.; Warren, Steven R. [Astronomy Department, University of Minnesota, Minneapolis, MN 55455 (United States); Cook, David [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Kennicutt, Robert C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lee, Janice [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Seth, Anil [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Walter, Fabian, E-mail: jcannon@macalester.edu, E-mail: skillman@astro.umn.edu, E-mail: dweisz@astro.umn.edu, E-mail: warren@astro.umn.edu, E-mail: dcook12@uwyo.edu, E-mail: adolphin@raytheon.com, E-mail: robk@ast.cam.ac.uk, E-mail: jlee@obs.carnegiescience.edu, E-mail: aseth@cfa.harvard.edu, E-mail: walter@mpia.de [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany)

    2011-07-01T23:59:59.000Z

    We present new multi-configuration Very Large Array H I spectral line observations of the M81 group dwarf irregular post-starburst galaxy DDO 165. The H I morphology is complex, with multiple column density peaks surrounding a large region of very low H I surface density that is offset from the center of the stellar distribution. The bulk of the neutral gas is associated with the southern section of the galaxy; a secondary peak in the north contains {approx}15% of the total H I mass. These components appear to be kinematically distinct, suggesting that either tidal processes or large-scale blowout have recently shaped the interstellar medium (ISM) of DDO 165. Using spatially resolved position-velocity maps, we find multiple localized high-velocity gas features. Cross-correlating with radius-velocity analyses, we identify eight shell/hole structures in the ISM with a range of sizes ({approx}400-900 pc) and expansion velocities ({approx}7-11 km s{sup -1}). These structures are compared with narrow- and broadband imaging from the Kitt Peak National Observatory and the Hubble Space Telescope (HST). Using the latter data, recent works have shown that DDO 165's previous 'burst' phase was extended temporally ({approx}>1 Gyr). We thus interpret the high-velocity gas features, H I holes, and kinematically distinct components of the galaxy in the context of the immediate effects of 'feedback' from recent star formation (SF). In addition to creating H I holes and shells, extended SF events are capable of creating localized high-velocity motion of the surrounding interstellar material. A companion paper connects the energetics from the H I and HST data.

  11. Density, porosity, mineralogy, and internal structure of cosmic dust and alteration of its properties during high velocity atmospheric entry

    E-Print Network [OSTI]

    Kohout, T; Suuronen, J -P; Rochette, P; Hutzler, A; Gattacceca, J; Skála, D D Badjukov R; Böhmová, V; ?uda, J

    2014-01-01T23:59:59.000Z

    X-ray microtomography (XMT), X-ray diffraction (XRD) and magnetic hysteresis measurements were used to determine micrometeorite internal structure, mineralogy, crystallography, and physical properties at ~{\\mu}m resolution. The study samples include unmelted, partially melted (scoriaceous) and completely melted (cosmic spherules) micrometeorites. This variety not only allows comparison of the mineralogy and porosity of these three micrometeorite types, but also reveals changes in meteoroid properties during atmospheric entry at various velocities. At low entry velocities, meteoroids do not melt, and their physical properties do not change. The porosity of unmelted micrometeorites varies considerably (0-12%) with one friable example having porosity around 50%. At higher velocities, the range of meteoroid porosity narrows, but average porosity increases (to 16-27%) due to volatile evaporation and partial melting (scoriaceous phase). Metal distribution seems to be mostly unaffected at this stage. At even higher ...

  12. Imaging Molecular Gas in the Luminous Merger NGC 3256 : Detection of High-Velocity Gas and Twin Gas Peaks in the Double Nucleus

    E-Print Network [OSTI]

    Kazushi Sakamoto; Paul T. P. Ho; Alison B. Peck

    2006-03-03T23:59:59.000Z

    Molecular gas in the merging starburst galaxy NGC 3256 has been imaged with the Submillimeter Array at a resolution of 1'' x 2'' (170 x 340 pc at 35 Mpc). This is the first interferometric imaging of molecular gas in the most luminous galaxy within z=0.01. There is a large disk of molecular gas (r > 3 kpc) in the center of the merger with a strong gas concentration toward the double nucleus. The gas disk having a mass of ~3*10^9 Msun in the central 3 kpc rotates around a point between the two nuclei that are 850 pc apart on the sky. The molecular gas is warm and turbulent and shows spatial variation of the intensity ratio between CO isotopomers. High-velocity molecular gas is discovered at the galactic center. Its velocity in our line of sight is up to 420 km/s offset from the systemic velocity of the galaxy; the terminal velocity is twice as large as that due to the rotation of the main gas disk. The high-velocity gas is most likely due to a molecular outflow from the gas disk, entrained by the starburst-driven superwind in the galaxy. The molecular outflow is estimated to have a rate of ~10 Msun/yr and to play a significant role in the dispersal or depletion of molecular gas from the galactic center. A compact gas concentration and steep velocity gradient are also found around each of the twin nuclei. They are suggestive of a small gas disk rotating around each nucleus. If these are indeed mini-disks, their dynamical masses are ~10^9 Msun within a radius of 170 pc.

  13. MATTER MIXING IN ASPHERICAL CORE-COLLAPSE SUPERNOVAE: A SEARCH FOR POSSIBLE CONDITIONS FOR CONVEYING {sup 56}Ni INTO HIGH VELOCITY REGIONS

    SciTech Connect (OSTI)

    Ono, Masaomi; Nagataki, Shigehiro; Ito, Hirotaka; Lee, Shiu-Hang; Mao, Jirong; Tolstov, Alexey [Astrophysical Big Bang Laboratory, RIKEN, Saitama 351-0198 (Japan); Hashimoto, Masa-aki, E-mail: masaomi.ono@riken.jp [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan)

    2013-08-20T23:59:59.000Z

    We perform two-dimensional axisymmetric hydrodynamic simulations of matter mixing in aspherical core-collapse supernova explosions of a 16.3 M{sub Sun} star with a compact hydrogen envelope. Observations of SN 1987A have provided evidence that {sup 56}Ni synthesized by explosive nucleosynthesis is mixed into fast moving matter ({approx}>3500 km s{sup -1}) in the exploding star. In order to clarify the key conditions for reproducing such high velocity of {sup 56}Ni, we revisit matter mixing in aspherical core-collapse supernova explosions. Explosions are initiated artificially by injecting thermal and kinetic energies around the interface between the iron core and the silicon-rich layer. Perturbations of 5% or 30% amplitude in the radial velocities are introduced at several points in time. We find that no high velocity {sup 56}Ni can be obtained if we consider bipolar explosions with perturbations (5% amplitude) of pre-supernova origins. If large perturbations (30% amplitude) are introduced or exist due to some unknown mechanism in a later phase just before the shock wave reaches the hydrogen envelope, {sup 56}Ni with a velocity of 3000 km s{sup -1} can be obtained. Aspherical explosions that are asymmetric across the equatorial plane with clumpy structures in the initial shock waves are investigated. We find that the clump sizes affect the penetration of {sup 56}Ni. Finally, we report that an aspherical explosion model that is asymmetric across the equatorial plane with multiple perturbations of pre-supernova origins can cause the penetration of {sup 56}Ni clumps into fast moving matter of 3000 km s{sup -1}. We show that both aspherical explosions with clumpy structures and perturbations of pre-supernova origins may be necessary to reproduce the observed high velocity of {sup 56}Ni. To confirm this, more robust three-dimensional simulations are required.

  14. Velocity centroids as tracers of the turbulent velocity statistics

    E-Print Network [OSTI]

    A. Esquivel; A. Lazarian

    2005-05-28T23:59:59.000Z

    We use the results of magnetohydrodynamic (MHD) simulations to emulate spectroscopic observations and use maps of centroids to study their statistics. In order to assess under which circumstances the scaling properties of the velocity field can be retrieved from velocity centroids, we compare two point statistics (structure functions and power-spectra) of velocity centroids with those of the underlying velocity field and analytic predictions presented in a previous paper (Lazarian & Esquivel 2003). We tested a criterion for recovering velocity spectral index from velocity centroids derived in our previous work, and propose an approximation of the early criterion using only the variances of ``unnormalized'' velocity centroids and column density maps. It was found that both criteria are necessary, however not sufficient to determine if the centroids recover velocity statistics. Both criteria are well fulfilled for subsonic turbulence. We find that for supersonic turbulence with sonic Mach numbers > 2.5 centroids fail to trace the spectral index of velocity. Asymptotically, however, we claim that recovery of velocity statistics is always possible provided that the density spectrum is steep and the observed inertial range is sufficiently extended. In addition, we show that velocity centroids are useful for anisotropy studies and determining the direction of magnetic field, even if the turbulence is highly supersonic, but only if it is sub-Alfvenic. This provides a tool for mapping the magnetic field direction, and testing whether the turbulence is sub-Alfvenic or super-Alfvenic.

  15. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect (OSTI)

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S; Barnsley, R

    2008-02-27T23:59:59.000Z

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  16. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters

    SciTech Connect (OSTI)

    León, Iker; Yang, Zheng; Liu, Hong-Tao; Wang, Lai-Sheng, E-mail: Lai-Sheng-Wang@brown.edu [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States)

    2014-08-15T23:59:59.000Z

    A new velocity-map imaging apparatus equipped with a laser-vaporization supersonic cluster source and a time-of-flight mass spectrometer is described for high-resolution photoelectron spectroscopy studies of size-selected cluster anions. Vibrationally cold anion clusters are produced using a laser-vaporization supersonic cluster source, size-selected by a time-of-flight mass spectrometer, and then focused co-linearly into the interaction zone of the high-resolution velocity-map imaging (VMI) system. The multilens VMI system is optimized via systematic simulations and can reach a resolution of 1.2 cm{sup ?1} (FWHM) for near threshold electrons while maintaining photoelectron kinetic energy resolutions (?KE/KE) of ?0.53% for higher energy electrons. The new VMI lens has superior focusing power over a large energy range, yielding highly circular images with distortions no larger than 1.0025 between the long and short radii. The detailed design, simulation, construction, testing, and performance of the high-resolution VMI apparatus are presented.

  17. Evaluation of asbestos dust concentration in discharge air from a high-velocity low-volume vacuum system

    E-Print Network [OSTI]

    Daniel, Steven Hall

    1977-01-01T23:59:59.000Z

    of high energy particles through polycarbonates) were selected because they have a very smooth surface which causes the fi bers to be easily distinguished under the scanning electron microscope (SEM). The results obtained by Beckett indicate...

  18. QUASI-PERIODIC PROPAGATING SIGNALS IN THE SOLAR CORONA: THE SIGNATURE OF MAGNETOACOUSTIC WAVES OR HIGH-VELOCITY UPFLOWS?

    SciTech Connect (OSTI)

    De Pontieu, Bart [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States); McIntosh, Scott W., E-mail: bdp@lmsal.co, E-mail: mscott@ucar.ed [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2010-10-20T23:59:59.000Z

    Since the discovery of quasi-periodic propagating oscillations with periods of order 3-10 minutes in coronal loops with TRACE and SOHO/EIT (and later with STEREO/EUVI and Hinode/EIS), they have been almost universally interpreted as evidence for propagating slow-mode magnetoacoustic waves in the low plasma {beta} coronal environment. Here we show that this interpretation is not unique, and that for coronal loops associated with plage regions (as opposed to sunspots), the presence of magnetoacoustic waves may not be the only cause for the observed quasi-periodicities. We focus instead on the ubiquitous, faint upflows at 50-150 km s{sup -1} that were recently discovered as blueward asymmetries of spectral line profiles in footpoint regions of coronal loops, and as faint disturbances propagating along coronal loops in EUV/X-ray imaging time series. These faint upflows are most likely driven from below and have been associated with chromospheric jets that are (partially) rapidly heated to coronal temperatures at low heights. These two scenarios (waves versus flows) are difficult to differentiate using only imaging data, but careful analysis of spectral line profiles indicates that faint upflows are likely responsible for some of the observed quasi-periodic oscillatory signals in the corona. We show that recent EIS measurements of intensity and velocity oscillations of coronal lines (which had previously been interpreted as direct evidence for propagating waves) are actually accompanied by significant oscillations in the line width that are driven by a quasi-periodically varying component of emission in the blue wing of the line. This faint additional component of blue-shifted emission quasi-periodically modulates the peak intensity and line centroid of a single Gaussian fit to the spectral profile with the same small amplitudes (respectively a few percent of background intensity and a few km s{sup -1}) that were previously used to infer the presence of slow-mode magnetoacoustic waves. Our results indicate that it is possible that a significant fraction of the quasi-periodicities observed with coronal imagers and spectrographs that have previously been interpreted as propagating magnetoacoustic waves are instead caused by these upflows. The different physical cause for coronal oscillations would significantly impact the prospects of successful coronal seismology using propagating disturbances in coronal loops.

  19. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect (OSTI)

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16T23:59:59.000Z

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  20. The structural and mechanical properties of a Cu??Zr??(at. %) alloy processed by High-Velocity-Injection (HVI)

    E-Print Network [OSTI]

    Hays, Charles C.

    1986-01-01T23:59:59.000Z

    /vacuum coupled pressure gradient. The molten jet rapidly solidifies, as it is in good thermal contact wi th the cir- cular walls of the copper channel. This process (melting and injection) is carried out in inert protective atmospheres (helium). The samples... produced are in the form of cylindrical rods with large length to diameter ratios (40:1). The samples exhibit a good sur- face finish and are of high density. The structural and mechanical characterization of the Cu6 Zr 0(at. %%u) samples produced...

  1. Study of Chelyabinsk LL5 meteorite fragment with a light lithology and its fusion crust using Mössbauer spectroscopy with a high velocity resolution

    SciTech Connect (OSTI)

    Maksimova, Alevtina A.; Petrova, Evgeniya V.; Grokhovsky, Victor I. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Oshtrakh, Michael I., E-mail: oshtrakh@gmail.com; Semionkin, Vladimir A. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation and Department of Experimental Physics, Institute of Physics and Technology, Ura (Russian Federation)

    2014-10-27T23:59:59.000Z

    Study of Chelyabinsk LL5 ordinary chondrite fragment with a light lithology and its fusion crust, fallen on February 15, 2013, in Russian Federation, was carried out using Mössbauer spectroscopy with a high velocity resolution. The Mössbauer spectra of the internal matter and fusion crust were fitted and all components were related to iron-bearing phases such as olivine, pyroxene, troilite, Fe-Ni-Co alloy, and chromite in the internal matter and olivine, pyroxene, troilite, Fe-Ni-Co alloy, and magnesioferrite in the fusion crust. A comparison of the content of different phases in the internal matter and in the fusion crust of this fragment showed that ferric compounds resulted from olivine, pyroxene, and troilite combustion in the atmosphere.

  2. BONA FIDE, STRONG-VARIABLE GALACTIC LUMINOUS BLUE VARIABLE STARS ARE FAST ROTATORS: DETECTION OF A HIGH ROTATIONAL VELOCITY IN HR CARINAE

    SciTech Connect (OSTI)

    Groh, J. H. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Damineli, A.; Moises, A. P.; Teodoro, M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-090, Sao Paulo, SP (Brazil); Hillier, D. J. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, PA 15260 (United States); Barba, R. [Departamento de fisica, Universidad de La Serena, Benavente 980, La Serena (Chile); Fernandez-Lajus, E.; Gamen, R. C.; Solivella, G., E-mail: jgroh@mpifr-bonn.mpg.d [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, and Instituto de Astrofisica de La Plata (CCT La Plata-CONICET), Paseo del Bosque S/N, B1900FWA, La Plata (Argentina)

    2009-11-01T23:59:59.000Z

    We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si IV lambdalambda4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of v{sub rot} approx = 150 +- 20 km s{sup -1} is needed (assuming an inclination angle of 30 deg.), implying that HR Car rotates at approx =0.88 +- 0.2 of its critical velocity for breakup (v{sub crit}). Our results suggest that fast rotation is typical in all strong-variable, bona fide galactic LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the 'LBV minimum instability strip'). We suggest this region corresponds to where v{sub crit} is reached. To the left of this strip, a forbidden zone with v{sub rot}/v{sub crit}>1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low v{sub rot}, we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.

  3. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z$\\gtrsim$2: High velocity dispersions in progenitors of compact quiescent galaxies

    E-Print Network [OSTI]

    Barro, G; Koo, D C; Dekel, A; Kassin, S A; Kocevski, D D; Faber, S M; van der Wel, A; Guo, Y; Perez-Gonzalez, P G; Toloba, E; Fang, J J; Pacifici, C; Simons, R; Campbell, R D; Ceverino, D; Finkelstein, S L; Goodrich, B; Kassis, M; Koekemoer, A M; Konidaris, N P; Livermore, R C; Lyke, J E; Mobasher, B; Nayyeri, H; Peth, M; Primack, J R; Rizzi, L; Somerville, R S; Wirth, G D; Zolotov, A

    2014-01-01T23:59:59.000Z

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift $2\\leq z \\leq2.5$ with star formation rates of SFR$\\sim$100M$_{\\odot}$ y$^{-1}$ and masses of log(M/M$_{\\odot}$)$\\sim10.8$. Their high integrated gas velocity dispersions of $\\sigma_{\\rm{int}}$=230$^{+40}_{-30}$ km s$^{-1}$, as measured from emission lines of H$_{\\alpha}$ and [OIII], and the resultant M$_{\\star}-\\sigma_{\\rm{int}}$ relation and M$_{\\star}$$-$M$_{\\rm{dyn}}$ all match well to those of compact quiescent galaxies at $z\\sim2$, as measured from stellar absorption lines. Since log(M$_{\\star}$/M$_{\\rm{dyn}}$)$=-0.06\\pm0.2$ dex, these compact SFGs appear to be dynamically relaxed and more evolved, i.e., more depleted in gas and dark matter ($infusion of external gas, depletion timescales are short, less than $\\sim$300 Myr. This discovery adds another link to our new dynamical chain of evidence...

  4. Unitaxial constant velocity microactuator

    DOE Patents [OSTI]

    McIntyre, T.J.

    1994-06-07T23:59:59.000Z

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment is disclosed. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-nanometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment. 10 figs.

  5. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A. (Walnut Creek, CA)

    1982-01-01T23:59:59.000Z

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  6. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A. (Walnut Creek, CA)

    1984-01-01T23:59:59.000Z

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  7. Microstructure Development during High-Velocity Deformation P.J. FERREIRA, J.B. VANDER SANDE, M. AMARAL FORTES, and A. KYROLAINEN

    E-Print Network [OSTI]

    Ferreira, Paulo J.

    industries. In the automotive industry, an understanding of the mechanisms occurring dur- ing high was observed without failure in iron, cop- per, and aluminum sheets)[1,2] as well as significant strain

  8. Statistics of Velocity from Spectral Data: Modified Velocity Centroids

    E-Print Network [OSTI]

    A. Lazarian; A. Esquivel

    2003-06-10T23:59:59.000Z

    We address the problem of studying interstellar turbulence using spectral line data. We find a criterion when the velocity centroids may provide trustworthy velocity statistics. To enhance the scope of centroids applications, we construct a measure that we term ``modified velocity centroids'' (MVCs) and derive an analytical solution that relates the 2D spectra of the modified centroids with the underlying 3D velocity spectrum. We test our results using synthetic maps constructed with data obtained through simulations of compressible magnetohydrodynamical (MHD) turbulence. We show that the modified velocity centroids (MVCs) are complementary to the the Velocity Channel Analysis (VCA) technique. Employed together, they make determining of the velocity spectral index more reliable and for wider variety of astrophysical situations.

  9. Turbulence Spectra from Spectral Lines: Tests of the Velocity Channel Analysis and Velocity Coordinate Spectrum Techniques

    E-Print Network [OSTI]

    A. Chepurnov; A. Lazarian

    2007-01-31T23:59:59.000Z

    Turbulence is a key element of the dynamics of astrophysical fluids, including those of interstellar medium, clusters of galaxies and circumstellar regions. Turbulent motions induce Doppler shifts of observable emission and absorption lines and this motivates studies of turbulence using precision spectroscopy. We provide high resolution numerical testing of the two promising techniques, namely, Velocity Channel Analysis and Velocity Coordinate Spectrum. We obtain an expression for the shot noise that the discretization of the numerical data entails and successfully test it. We show that numerical resolution required for recovering the underlying turbulent spectrum from observations depend on the spectral index of velocity fluctuations. Thus the low resolution testing may be misleading.

  10. Apparatus and method for laser velocity interferometry

    DOE Patents [OSTI]

    Stanton, Philip L. (Bernalillo County, NM); Sweatt, William C. (Albuquerque, NM); Crump, Jr., O. B. (Albuquerque, NM); Bonzon, Lloyd L. (Albuquerque, NM)

    1993-09-14T23:59:59.000Z

    An apparatus and method for laser velocity interferometry employing a fixed interferometer cavity and delay element. The invention permits rapid construction of interferometers that may be operated by those non-skilled in the art, that have high image quality with no drift or loss of contrast, and that have long-term stability even without shock isolation of the cavity.

  11. Note: A helical velocity selector for continuous molecular beams

    SciTech Connect (OSTI)

    Szewc, Carola; Collier, James D.; Ulbricht, Hendrik [School of Physics and Astronomy, University of Southampton, Highfield, SO17 1BJ (United Kingdom)

    2010-10-15T23:59:59.000Z

    We report on a modern realization of the classic helical velocity selector for gas phase particle beams. The device operates stably under high vacuum conditions at rotational frequencies limited only by commercial dc motor capabilities. Tuning the rotational frequency allows selective scanning over a broad velocity band. The width of the selected velocity distributions at full-width-half-maximum is as narrow as a few percent of the selected mean velocity and independent of the rotational speed of the selector. The selector generates low vibrational noise amplitudes comparable to mechanically damped state-of-the-art turbo-molecular pumps and is therefore compatible with vibration sensitive experiments like molecule interferometry.

  12. GMTI radar minimum detectable velocity.

    SciTech Connect (OSTI)

    Richards, John Alfred

    2011-04-01T23:59:59.000Z

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  13. Velocity requirements for causality violation

    E-Print Network [OSTI]

    Giovanni Modanese

    2015-01-18T23:59:59.000Z

    We re-examine the "Regge-Tolman paradox" with reference to some recent experimental results. It is straightforward to find a formula for the velocity v of the moving system required to produce causality violation. This formula typically yields a velocity very close to the speed of light (for instance, v/c > 0.97 for X-shaped microwaves), which raises some doubts about the real physical observability of the violations. We then compute the velocity requirement introducing a delay between the reception of the primary signal and the emission of the secondary. It turns out that in principle for any delay it is possible to find moving observers able to produce active causal violation. This is mathematically due to the singularity of the Lorentz transformations for beta to 1. For a realistic delay due to the propagation of a luminal precursor, we find that causality violations in the reported experiments are still more unlikely (v/c > 0.989), and even in the hypothesis that the superluminal propagation velocity goes to infinity, the velocity requirement is bounded by v/c > 0.62. We also prove that if two macroscopic bodies exchange energy and momentum through superluminal signals, then the swap of signal source and target is incompatible with the Lorentz transformations; therefore it is not possible to distinguish between source and target, even with reference to a definite reference frame.

  14. Determination of hydrogen cluster velocities and comparison with numerical calculations

    SciTech Connect (OSTI)

    Täschner, A.; Köhler, E.; Ortjohann, H.-W.; Khoukaz, A. [Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster (Germany)] [Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster (Germany)

    2013-12-21T23:59:59.000Z

    The use of powerful hydrogen cluster jet targets in storage ring experiments led to the need of precise data on the mean cluster velocity as function of the stagnation temperature and pressure for the determination of the volume density of the target beams. For this purpose a large data set of hydrogen cluster velocity distributions and mean velocities was measured at a high density hydrogen cluster jet target using a trumpet shaped nozzle. The measurements have been performed at pressures above and below the critical pressure and for a broad range of temperatures relevant for target operation, e.g., at storage ring experiments. The used experimental method is described which allows for the velocity measurement of single clusters using a time-of-flight technique. Since this method is rather time-consuming and these measurements are typically interfering negatively with storage ring experiments, a method for a precise calculation of these mean velocities was needed. For this, the determined mean cluster velocities are compared with model calculations based on an isentropic one-dimensional van der Waals gas. Based on the obtained data and the presented numerical calculations, a new method has been developed which allows to predict the mean cluster velocities with an accuracy of about 5%. For this two cut-off parameters defining positions inside the nozzle are introduced, which can be determined for a given nozzle by only two velocity measurements.

  15. Velocity Distributions from Nonextensive Thermodynamics

    E-Print Network [OSTI]

    Eric I. Barnes; Liliya L. R. Williams; Arif Babul; Julianne J. Dalcanton

    2006-10-05T23:59:59.000Z

    There is no accepted mechanism that explains the equilibrium structures that form in collisionless cosmological N-body simulations. Recent work has identified nonextensive thermodynamics as an innovative approach to the problem. The distribution function that results from adopting this framework has the same form as for polytropes, but the polytropic index is now related to the degree of nonextensiveness. In particular, the nonextensive approach can mimic the equilibrium structure of dark matter density profiles found in simulations. We extend the investigation of this approach to the velocity structures expected from nonextensive thermodynamics. We find that the nonextensive and simulated N-body rms-velocity distributions do not match one another. The nonextensive rms-velocity profile is either monotonically decreasing or displays little radial variation, each of which disagrees with the rms-velocity distributions seen in simulations. We conclude that the currently discussed nonextensive models require further modifications in order to corroborate dark matter halo simulations. (adapted from TeX)

  16. CO and IRAS detection of an intermediate-velocity cloud

    SciTech Connect (OSTI)

    Desert, F.X.; Bazell, D.; Blitz, L. (Paris Observatoire, Meudon (France) Space Telescope Science Institute, Baltimore, MD (USA) Maryland Univ., College Park (USA))

    1990-06-01T23:59:59.000Z

    In the course of a radio survey of high-Galactic-latitude clouds, CO emission was detected at the position l = 210.8 deg and b = 63.1 deg with an LSR velocity of -39 km/sec. This molecular cloud constitutes the third one with an unusually large absolute velocity at these latitudes, as compared with the 5.4-km/sec cloud-to-cloud velocity dispersion of the high-latitude molecular clouds. The position is coincident with an H I intermediate-velocity cloud (GHL 11, Verschuur H, OLM 268) and the IR-excess cloud 306 in the list by Desert et al. (1988). This cloud is clearly detected at all four IRAS wavelengths and has warmer colors than the local ISM. 27 refs.

  17. Low Velocity Boron Micro-Pellet Injector For Edge And Core Impurity Transport Measurements

    E-Print Network [OSTI]

    1 Low Velocity Boron Micro-Pellet Injector For Edge And Core Impurity Transport Measurements H. W, Baltimore, Maryland 21218 Abstract A simple Low Velocity Boron Micro-Pellet Injector has been under High velocity, pneumatic, pellet injection systems are applied routinely for injecting frozen pellets

  18. Turbulence Spectra from Doppler-broadened Spectral Lines: Tests of the Velocity Channel Analysis and Velocity Coordinate Spectrum Techniques

    E-Print Network [OSTI]

    A. Chrupnov; A. Lazarian

    2008-11-07T23:59:59.000Z

    Turbulent motions induce Doppler shifts of observable emission and absorption lines motivating studies of turbulence using precision spectroscopy. We provide the numerical testing of the two most promising techniques, Velocity Channel Analysis (VCA) and Velocity Coordinate Spectrum (VCS). We obtain an expression for the shot noise that the discretization of the numerical data entails and successfully test it. We show that the numerical resolution required for recovering the underlying turbulent spectrum from observations depend on the spectral index of velocity fluctuations, which makes low resolution testing misleading. We demonstrate numerically that, dealing with absorption lines, sampling of turbulence along just a dozen directions provides a high quality spectrum with the VCS technique.

  19. BENCAP, LLC: CAPSULE VELOCITY TEST

    SciTech Connect (OSTI)

    Meidinger, Brian

    2005-09-07T23:59:59.000Z

    Ben Cap, LLC, has a technology that utilizes bebtonite to plug wells. The bentonite is encapsulated in a cardboard capsule, droped down to the bottom of the well where it is allowed to hydrate, causing the bentonite to expand and plug the well. This method of plugging a well is accepted in some, but not all states. This technology can save a significant amount of money when compared to cementing methods currently used to plug and abandon wells. The test objective was to obtain the terminal velocity of the capsule delivery system as it drops through a column of water in a wellbore. Once the terminal velocity is known, the bentonite swelling action can be timed not to begin swelling until it reaches the bottom of the well bore. The results of the test showed that an average speed of 8.93 plus or minus 0.12 ft/sec was achieved by the capsule as it was falling through a column of water. Plotting the data revealed a very linear function with the capsules achieving terminal velocity shortly after being released. The interference of the capsule impacting the casing was not readily apparent in any of the runs, but a siginal sampling anomaly was present in one run. Because the anomaly was so brief and not present in any of the other runs, no solid conclusions could be drawn. Additional testing would be required to determine the effects of capsules impacting a fluid level that is not at surface.

  20. The Systemic Velocity of Eta Carinae

    E-Print Network [OSTI]

    Nathan Smith

    2004-06-23T23:59:59.000Z

    High-resolution spectra of molecular hydrogen in the Homunculus nebula allow for the first direct measurement of the systemic velocity of Eta Carinae. Near-infrared long-slit data for H2 1-0 S(1) lambda 21218 obtained with the Phoenix spectrometer on the Gemini South telescope give Vsys=-8.1pm1 km/s (heliocentric), or VLSR=-19.7pm1 km/s, from the average of the near and far sides of the Homunculus. This measurement considerably improves the precision for the value of -7pm10 km/s inferred from neighboring O-type stars in the Carina nebula. New near-infrared spectra also provide a high-resolution line profile of [Fe II] lambda 16435 emission from gas condensations known as the Weigelt objects without contamination from the central star, revealing a line shape with complex kinematic structure. Previously, uncertainty in the Weigelt knots' kinematics was dominated by the adopted systemic velocity of Eta Car.

  1. Supersonic relative velocity effect on the baryonic acoustic oscillation measurements

    SciTech Connect (OSTI)

    Yoo, Jaiyul; Seljak, Uroš [Institute for Theoretical Physics, University of Zürich, CH-8057 Zürich (Switzerland); Dalal, Neal, E-mail: jyoo@physik.uzh.ch, E-mail: neal@cita.utoronto.ca, E-mail: seljak@physik.uzh.ch [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Ontario, M5S 3H8 (Canada)

    2011-07-01T23:59:59.000Z

    We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum analysis to constrain dark energy models with high precision.

  2. Effects of increasing tip velocity on wind turbine rotor design.

    SciTech Connect (OSTI)

    Resor, Brian Ray; Maniaci, David Charles; Berg, Jonathan Charles; Richards, Phillip William

    2014-05-01T23:59:59.000Z

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  3. PRECISION RADIAL VELOCITIES WITH CSHELL

    SciTech Connect (OSTI)

    Crockett, Christopher J.; Prato, L. [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States); Mahmud, Naved I.; Johns-Krull, Christopher M. [Department of Physics and Astronomy, Rice University, MS-108, 6100 Main Street, Houston, TX 77005 (United States); Jaffe, Daniel T. [Department of Astronomy, University of Texas, R.L. Moore Hall, Austin, TX 78712 (United States); Beichman, Charles A., E-mail: crockett@lowell.edu, E-mail: lprato@lowell.edu, E-mail: naved@rice.edu, E-mail: cmj@rice.edu, E-mail: dtj@astro.as.utexas.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2011-07-10T23:59:59.000Z

    Radial velocity (RV) identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near-infrared RV techniques. We present our methodology for achieving 58 m s{sup -1} precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3 m NASA Infrared Telescope Facility. We also demonstrate our ability to recover the known 4 M{sub JUP} exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.

  4. Newberry EGS Seismic Velocity Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  5. Newberry EGS Seismic Velocity Model

    SciTech Connect (OSTI)

    Templeton, Dennise

    2013-10-01T23:59:59.000Z

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  6. Noise pair velocity and range echo location system

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-02-16T23:59:59.000Z

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution is disclosed. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna. 46 figs.

  7. Constraints on Neutrino Velocities Revisited

    E-Print Network [OSTI]

    Yunjie Huo; Tianjun Li; Yi Liao; Dimitri V. Nanopoulos; Yonghui Qi

    2012-01-27T23:59:59.000Z

    With a minimally modified dispersion relation for neutrinos, we reconsider the constraints on superluminal neutrino velocities from bremsstrahlung effects in the laboratory frame. Employing both the direct calculation approach and the virtual Z-boson approach, we obtain the generic decay width and energy loss rate of a superluminal neutrino with general energy. The Cohen-Glashow's analytical results for neutrinos with a relatively low energy are confirmed in both approaches. We employ the survival probability instead of the terminal energy to assess whether a neutrino with a given energy is observable or not in the OPERA experiment. Moreover, using our general results we perform systematical analyses on the constraints arising from the Super-Kamiokande and IceCube experiments.

  8. Seismic Velocity Estimation from Time Migration Velocities M. K. Cameron, S. B. Fomel, J. A. Sethian

    E-Print Network [OSTI]

    Sethian, James A.

    Seismic Velocity Estimation from Time Migration Velocities M. K. Cameron, S. B. Fomel, J. A the problem of estimating seismic velocities inside the earth which is necessary for obtaining seismic images in regular Cartesian coordinates. We derive a relation between the true seismic velocities and the routinely

  9. Wave VelocityWave Velocity Diff t f ti l l itDifferent from particle velocity

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Wave VelocityWave Velocity v=/T =f Diff t f ti l l itDifferent from particle velocity Depends on the medium in which the wave travelsDepends on the medium in which the wave travels stringaonvelocity F v of Waves11-8. Types of Waves Transverse wave Longitudinal wave Liu UCD Phy1B 2014 37 #12;Sound Wave

  10. Impact of Phase Transitions on P Wave Velocities

    SciTech Connect (OSTI)

    D Weidner; L Li

    2011-12-31T23:59:59.000Z

    In regions where a high pressure phase is in equilibrium with a low pressure phase, the bulk modulus defined by the P-V relationship is greatly reduced. Here we evaluate the effect of such transitions on the P wave velocity. A model, where cation diffusion is the rate limiting factor, is used to project laboratory data to the conditions of a seismic wave propagating in the two-phase region. We demonstrate that for the minimum expected effect there is a significant reduction of the seismic velocity, as large as 10% over a narrow depth range.

  11. Local Energy Velocity of Classical Fields

    E-Print Network [OSTI]

    I. V. Drozdov; A. A. Stahlhofen

    2007-04-19T23:59:59.000Z

    It is proposed to apply a recently developed concept of local wave velocities to the dynamical field characteristics, especially for the canonical field energy density. It is shown that local energy velocities can be derived from the lagrangian directly. The local velocities of zero- and first- order for energy propagation has been obtained for special cases of scalar and vector fields. Some important special cases of these results are discussed.

  12. Field comparison of the point velocity probe with other groundwater velocity measurement methods

    E-Print Network [OSTI]

    Labaky, W.; Devlin, J. F.; Gillham, R. W.

    2009-03-14T23:59:59.000Z

    Field testing of a new tool for measuring groundwater velocities at the centimeter scale, the point velocity probe (PVP), was undertaken at Canadian Forces Base, Borden, Ontario, Canada. The measurements were performed in ...

  13. Precision reconstruction of the dark matter-neutrino relative velocity from N-body simulations

    E-Print Network [OSTI]

    Inman, Derek; Pen, Ue-Li; Farchi, Alban; Yu, Hao-Ran; Harnois-Deraps, Joachim

    2015-01-01T23:59:59.000Z

    Discovering the mass of neutrinos is a principle goal in high energy physics and cosmology. In addition to cosmological measurements based on two-point statistics, the neutrino mass can also be estimated by observations of neutrino wakes resulting from the relative motion between dark matter and neutrinos. Such a detection relies on an accurate reconstruction of the dark matter-neutrino relative velocity which is affected by non-linear structure growth and galaxy bias. We investigate our ability to reconstruct this relative velocity using large N-body simulations where we evolve neutrinos as distinct particles alongside the dark matter. We find that the dark matter velocity power spectrum is overpredicted by linear theory whereas the neutrino velocity power spectrum is underpredicted. The magnitude of the relative velocity observed in the simulations is found to be lower than what is predicted in linear theory. Since neither the dark matter nor the neutrino velocity fields are directly observable from galaxy ...

  14. Modeling velocity dispersion In Gypsy site, Oklahoma

    E-Print Network [OSTI]

    Alsaadan, Sami Ibrahim

    2010-01-01T23:59:59.000Z

    Discrepancies in interval velocities estimated from vertical well measurements made with different source central frequencies at Gypsy site could be primarily explained in terms of intrinsic attenuation. Four intervals ...

  15. Acoustic measurement of potato cannon velocity

    E-Print Network [OSTI]

    Courtney, M; Courtney, Amy; Courtney, Michael

    2006-01-01T23:59:59.000Z

    This article describes measurement of potato cannon velocity with a digitized microphone signal. A microphone is attached to the potato cannon muzzle and a potato is fired at an aluminum target about 10 m away. The potato's flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply the flight distance divided by the flight time.

  16. GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND

    SciTech Connect (OSTI)

    Katz, Harley; McGaugh, Stacy; Teuben, Peter [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Angus, G. W., E-mail: hkatz@astro.umd.edu, E-mail: stacy.mcgaugh@case.edu, E-mail: teuben@astro.umd.edu, E-mail: angus.gz@gmail.com [Astrophysics, Cosmology and Gravity Centre, University of Cape Town, Private Bag X3, Rondebosch 7700 (South Africa)

    2013-07-20T23:59:59.000Z

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {Lambda}CDM simulations. The bulk motions of clusters attain {approx}1000 km s{sup -1} by low redshift, comparable to observations whereas {Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {Lambda}CDM, potentially providing an explanation for ''pink elephants'' like El Gordo. However, it is not obvious that the cluster mass function can be recovered.

  17. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    SciTech Connect (OSTI)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)] [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)

    2014-04-15T23:59:59.000Z

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ? log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.

  18. Sandia National Laboratories: high-resolution velocity measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfull moduleresourcesperform-ance

  19. Lagrangian reconstruction of cosmic velocity fields

    E-Print Network [OSTI]

    G. Lavaux

    2008-01-28T23:59:59.000Z

    We discuss a Lagrangian reconstruction method of the velocity field from galaxy redshift catalog that takes its root in the Euler equation. This results in a ``functional'' of the velocity field which must be minimized. This is helped by an algorithm solving the minimization of cost-flow problems. The results obtained by applying this method to cosmological problems are shown and boundary effects happening in real observational cases are then discussed. Finally, a statistical model of the errors made by the reconstruction method is proposed.

  20. Sound velocity bound and neutron stars

    E-Print Network [OSTI]

    Paulo F. Bedaque; Andrew W. Steiner

    2015-01-25T23:59:59.000Z

    It has been conjectured that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by $\\sqrt{3}$. Simple arguments support this bound in non-relativistic and/or weakly coupled theories. The bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. We point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at "low" densities is in strong tension with this bound.

  1. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    SciTech Connect (OSTI)

    Hughes, James S.; Deng, Zhiqun; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong

    2011-11-22T23:59:59.000Z

    Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by providing a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if they become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) at the Bonneville Dam second powerhouse (B2) intended to increase the guidance of juvenile salmonids into the juvenile bypass system (JBS) have resulted in high mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters (ADV) in the gatewell slot at Units 12A and 14A of B2. From the measurements collected the average approach velocity, sweep velocity, and the root mean square (RMS) value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS varied but were mostly less than 0.3 m/s. The sweep velocities also showed large variances across the face of the VBS with most measurements being less than 1.5 m/s. This study revealed that the approach velocities exceeded criteria recommended by NOAA Fisheries and Washington State Department of Fish and Wildlife intended to improve fish passage conditions.

  2. Threshold velocity for environmentally-assisted cracking in low alloy steels

    SciTech Connect (OSTI)

    Wire, G.L.; Kandra, J.T.

    1997-04-01T23:59:59.000Z

    Environmentally Assisted Cracking (EAC) in low alloy steels is generally believed to be activated by dissolution of MnS inclusions at the crack tip in high temperature LWR environments. EAC is the increase of fatigue crack growth rate of up to 40 to 100 times the rate in air that occurs in high temperature LWR environments. A steady state theory developed by Combrade, suggested that EAC will initiate only above a critical crack velocity and cease below this same velocity. A range of about twenty in critical crack tip velocities was invoked by Combrade, et al., to describe data available at that time. This range was attributed to exposure of additional sulfides above and below the crack plane. However, direct measurements of exposed sulfide densities on cracked specimens were performed herein and the results rule out significant additional sulfide exposure as a plausible explanation. Alternatively, it is proposed herein that localized EAC starting at large sulfide clusters reduces the calculated threshold velocity from the value predicted for a uniform distribution of sulfides. Calculations are compared with experimental results where the threshold velocity has been measured, and the predicted wide range of threshold values for steels of similar sulfur content but varying sulfide morphology is observed. The threshold velocity decreases with the increasing maximum sulfide particle size, qualitatively consistent with the theory. The calculation provides a basis for a conservative minimum velocity threshold tied directly to the steel sulfur level, in cases where no details of sulfide distribution are known.

  3. PERFORMANCE EFFECTS OF AIR VELOCITY PROFILES IN

    E-Print Network [OSTI]

    PERFORMANCE EFFECTS OF AIR VELOCITY PROFILES IN A RESIDENTIAL HEAT PUMP By NATHAN ANDREW WEBER PROFILES IN A RESIDENTIAL HEAT PUMP Thesis Approved: _______________________________________ Thesis Advisor the air speed transducer mount and the Plexiglas model of the heat pump. Ipseng Iu and myself worked side

  4. 3D REGULARIZED VELOCITY FROM 3D DOPPLER RADIAL VELOCITY X. Chen, J.L. Barron, R.E. Mercer

    E-Print Network [OSTI]

    Barron, John

    3D REGULARIZED VELOCITY FROM 3D DOPPLER RADIAL VELOCITY X. Chen, J.L. Barron, R.E. Mercer Dept, Ontario, M3H 5T4 Paul.Joe@ec.gc.ca ABSTRACT The recent availability of sequences of 3D Doppler radial velocity datasets provides sufficient information to estimate the 3D velocity of Doppler storms. We present

  5. Seismicity and Improved Velocity Structure in Kuwait

    SciTech Connect (OSTI)

    Gok, R M; Rodgers, A J; Al-Enezi, A

    2006-01-26T23:59:59.000Z

    The Kuwait National Seismic Network (KNSN) began operation in 1997 and consists of nine three-component stations (eight short-period and one broadband) and is operated by the Kuwait Institute for Scientific Research. Although the region is largely believed to be aseismic, considerable local seismicity is recorded by KNSN. Seismic events in Kuwait are clustered in two main groups, one in the south and another in the north. The KNSN station distribution is able to capture the southern cluster within the footprint of the network but the northern cluster is poorly covered. Events tend to occur at depths ranging from the free surface to about 20 km. Events in the northern cluster tend to be deeper than those in south, however this might be an artifact of the station coverage. We analyzed KNSN recordings of nearly 200 local events to improve understanding of seismic events and crustal structure in Kuwait, performing several analyses with increasing complexity. First, we obtained an optimized one-dimensional (1D) velocity model for the entire region using the reported KNSN arrival times and routine locations. The resulting model is consistent with a recently obtained model from the joint inversion of receiver functions and surface wave group velocities. Crustal structure is capped by the thick ({approx} 7 km) sedimentary rocks of the Arabian Platform underlain by normal velocities for stable continental crust. Our new model has a crustal thickness of 44 km, constrained by an independent study of receiver functions and surface wave group velocities by Pasyanos et al (2006). Locations and depths of events after relocation with the new model are broadly consistent with those reported by KISR, although a few events move more than a few kilometers. We then used a double-difference tomography technique (tomoDD) to jointly locate the events and estimate three-dimensional (3D) velocity structure. TomoDD is based on hypoDD relocation algorithm and it makes use of both absolute and relative arrival times. We obtained {approx}1500 absolute P and S arrival times and {approx}3200 P and S wave arrival time differences. Event locations do not change greatly when 3D velocity structure is included. Three-dimensional velocity structure, where resolvable, does not differ greatly from our optimized 1D model, indicating that the improved 1D model is adequate for routine event location. Finally, we calculated moment magnitudes, MW, for nearly 155 events using the coda magnitude technique of Mayeda et al., (2003). The fact that most of the relocated events occur below the known sedimentary structures extending to 7 km suggests that they are tectonic in origin. Shallow events within the sedimentary crust in the (southern) Minagish region may be related to oil field activities, although the current study cannot unambiguously determine the source of current seismicity in Kuwait. The improved velocity model reduces the scatter of travel time residuals relative to the locations reported in the KNSN bulletin and may be used for ground motion prediction and hazard estimate studies in Kuwait.

  6. Velocity coordinate spectrum: geometrical aspects of observations

    E-Print Network [OSTI]

    A. Chepurnov; A. Lazarian

    2007-01-31T23:59:59.000Z

    We analyze a technique of obtaining turbulence power spectrum using spectral line data along the velocity coordinate, which we refer to as Velocity Coordinate Spectrum (VCS). We formalize geometrical aspects of observation through a single factor, "geometric term". We find that all variety of particular observational configurations can be described using correspondent variants of this term, which we explicitly calculate. This allows us to obtain asymptotics for both parallel lines of sight and crossing lines of sight. The latter case is especially important for studies of turbulence within diffuse ISM in Milky Way. For verification of our results, we use direct calculation of VCS spectra, while the numerical simulations are presented in a companion paper.

  7. Relativistic equilibrium velocity distribution, nuclear fusion reaction rate and the solar neutrino problem

    E-Print Network [OSTI]

    Jian-Miin Liu

    2003-07-07T23:59:59.000Z

    In solar interior, it is the equilibrium velocity distribution of few high-energy protons and nuclei that participates in determining nuclear fusion reaction rates. So, it is inappropriate to use the Maxwellian velocity distribution to calculate the rates of solar nuclear fusion reactions. We have to use the relativistic equilibrium velocity distribution for the purpose. The nuclear fusion reaction rate based on the relativistic equilibrium velocity distribution has a reduction factor with respect to that based on the Maxwellian distribution. The reduction factor depends on the temperature, reduced mass and atomic numbers of the studied nuclear fusion reactions, in other words, it varies with the sort of neutrinos. Substituting the relativistic equilibrium velocity distribution for the Maxwellian distribution is not important for the calculation of solar sound speeds. The relativistic equilibrium velocity distribution, if adopted in standard solar models, will lower solar neutrino fluxes and change solar neutrino energy spectra but maintain solar sound speeds. This velocity distribution is possibly a solution to the solar neutrino problem.

  8. Ann. Geophysicae 14, 1480--1486 (1996) EGS --Springer-Verlag 1996 Errors due to random noise in velocity measurement

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in velocity measurement using incoherent-scatter radar P. J. S. Williams, A. Etemadi, I. W. McCrea, H. Todd- scatter measurements for high signal levels and empha- sised the effect of significant correlation between in measuring a component of ion velocity with an incoherent-scattar radar using a simple long

  9. The nuclear fusion reaction rate based on relativistic equilibrium velocity distribution

    E-Print Network [OSTI]

    Jian-Miin Liu

    2002-10-20T23:59:59.000Z

    The Coulomb barrier is in general much higher than thermal energy. Nuclear fusion reactions occur only among few protons and nuclei with higher relative energies than Coulomb barrier. It is the equilibrium velocity distribution of these high-energy protons and nuclei that participates in determining the rate of nuclear fusion reactions. In the circumstance it is inappropriate to use the Maxwellian velocity distribution for calculating the nuclear fusion reaction rate. We use the relativistic equilibrium velocity distribution for this purpose. The rate based on the relativistic equilibrium velocity distribution has a reduction factor with respect to that based on the Maxwellian distribution, which factor depends on the temperature, reduced mass and atomic numbers of the studied nuclear fusion reactions. This signifies much to the solar neutrino problem.

  10. On the Velocity and Intensity Line Asymmetries

    E-Print Network [OSTI]

    M. Gabriel

    1997-10-01T23:59:59.000Z

    We show that, if solar 5 min. oscillations are excited by convection in the upper layers of the convective envelope, it is impossible to explain the opposite line asymmetries observed in the velocity and intensity spectra with assumptions on the dissipations which reduce the problem to a second order one. The interpretation of that observation requires to solve the full non-adiabatic problem which is of the fourth or sixth order. We also analyze the causes of line asymmetries in the frame of the general problem and we show that to locate the source, it is better to study line asymmetries not too far from line centers.

  11. Orthogonal-Phase-Velocity Propagation of Electromagnetic Plane Waves

    E-Print Network [OSTI]

    Tom G. Mackay; Akhlesh Lakhtakia

    2005-11-30T23:59:59.000Z

    In an isotropic, homogeneous, nondissipative, dielectric-magnetic medium that is simply moving with respect to an inertial reference frame, planewave solutions of the Maxwell curl postulates can be such that the phase velocity and the time-averaged Poynting vector are mutually orthogonal. Orthogonal-phase-velocity propagation thus adds to the conventional positive-phase-velocity propagation and the recently discovered negative-phase-velocity propagation that is associated with the phenomenon of negative refraction.

  12. Seismic Velocity Estimation from Time Migration Maria Kourkina Cameron

    E-Print Network [OSTI]

    Cameron, Maria Kourkina

    Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron Diplom (Moscow Institute Dung-Hai Lee Spring 2007 #12;Seismic Velocity Estimation from Time Migration Copyright c 2007 by Maria Kourkina Cameron #12;Abstract Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron

  13. LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL

    E-Print Network [OSTI]

    Boyer, Edmond

    1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 (2014) 162-169" DOI : 10.1016/j.fuel.2013.07.015 #12;2 LAMINAR BURNING VELOCITY OF GASOLINES, Sweden Abstract The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n

  14. On Approximating the Translational Velocity of Vortex Rings

    E-Print Network [OSTI]

    Mohseni, Kamran

    from this configuration and the system scaling. Here, the accuracy of this approximation is presented orifice in a flat plate contain a converging radial component of velocity. For both configurations. By this definition, the piston velocity is the average jet velocity passing through the orifice independent

  15. Observations of Velocity Conditions near a Hydroelectric Turbine Draft Tube Exit using ADCP Measurements

    SciTech Connect (OSTI)

    Cook, Christopher B.; Richmond, Marshall C.; Serkowski, John A.

    2007-10-01T23:59:59.000Z

    Measurement of flow characteristics near hydraulic structures is an ongoing challenge because of the need to obtain rapid measurements of time-varying velocity over a relatively large spatial domain. This paper discusses use of an acoustic Doppler current profiler (ADCP) to measure the rapidly diverging flow exiting from an operating hydroelectric turbine draft tube exit. The resolved three-dimensional velocity vectors show a highly complex and helical flow pattern developed near to and downstream of the exit. Velocity vectors were integrated across the exit and we computed an uneven percentage of flow (67%/33%) passing through the two draft tube barrels at a mid-range turbine discharge, consistent with physical model results. In addition to the three-dimensional velocity vectors, the individual one-dimensional velocities measured by each of the four ADCP beams can be separately used as calibration and validation datasets for numerical and physical models. This technique is demonstrated by comparing along-beam ADCP velocity measurements to data collected in a scaled physical model.

  16. Force-velocity relations for multiple molecular motor transportation

    E-Print Network [OSTI]

    Wang, Ziqing

    2009-01-01T23:59:59.000Z

    A transition rate model of cargo transportation by N effective molecular motors is proposed. Under the assumption of steady state, the force-velocity curve of multi-motor system can be derived from the force-velocity curve of single motor. Our work shows, in the case of low load, the velocity of multi-motor system can decrease or increase with increasing motor number, which is dependent on the single motor force-velocity curve. And most commonly, the velocity decreases. This gives a possible explanation to some recent experimental observations.

  17. Force-velocity relations for multiple-molecular-motor transport

    E-Print Network [OSTI]

    Ziqing Wang; Ming Li

    2009-10-01T23:59:59.000Z

    A transition rate model of cargo transport by $N$ molecular motors is proposed. Under the assumption of steady state, the force-velocity curve of multi-motor system can be derived from the force-velocity curve of single motor. Our work shows, in the case of low load, the velocity of multi-motor system can decrease or increase with increasing motor number, which is dependent on the single motor force-velocity curve. And most commonly, the velocity decreases. This gives a possible explanation to some recent

  18. Filament velocity scaling laws for warm ions

    SciTech Connect (OSTI)

    Manz, P. [Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany) [Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Carralero, D.; Birkenmeier, G.; Müller, H. W.; Scott, B. D. [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany)] [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Müller, S. H. [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego 92093 (United States)] [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego 92093 (United States); Fuchert, G. [Insitut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität Stuttgart, 70569 Stuttgart (Germany)] [Insitut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität Stuttgart, 70569 Stuttgart (Germany); Stroth, U. [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany) [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany)

    2013-10-15T23:59:59.000Z

    The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.

  19. CONVERGENT FLOWS AND LOW-VELOCITY SHOCKS IN DR21(OH)

    SciTech Connect (OSTI)

    Csengeri, T. [Max Planck Institute for Radioastronomy, Auf dem Huegel 69, 53121 Bonn (Germany); Bontemps, S. [OASU/LAB-UMR5804, CNRS, Universite Bordeaux 1, 33270 Floirac (France); Schneider, N.; Motte, F. [Laboratoire AIM Paris Saclay, CEA-INSU/CNRS-Universite Paris Diderot, IRFU/SAp CEA-Saclay, 91191 Gif-sur-Yvette (France); Gueth, F. [IRAM, 300 rue de la piscine, 38406, Saint Martin d'Heres (France); Hora, J. L., E-mail: ctimea@mpifr-bonn.mpg.de [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-65, Cambridge, MA 02138 (United States)

    2011-10-10T23:59:59.000Z

    DR21(OH) is a pc-scale massive, {approx}7000 M{sub sun} clump hosting three massive dense cores (MDCs) at an early stage of their evolution. We present a high angular resolution mosaic, covering {approx}70'' x 100'', with the IRAM Plateau de Bure Interferometer at 3 mm to trace the dust continuum emission and the N{sub 2}H{sup +} (J = 1-0) and CH{sub 3}CN (J = 5-4) molecular emission. The cold, dense gas traced by the compact emission in N{sub 2}H{sup +} is associated with the three MDCs and shows several velocity components toward each MDC. These velocity components reveal local shears in the velocity fields which are best interpreted as convergent flows. Moreover, we report the detection of weak extended emission from CH{sub 3}CN at the position of the N{sub 2}H{sup +} velocity shears. We propose that this extended CH{sub 3}CN emission is tracing warm gas associated with the low-velocity shocks expected at the location of convergence of the flows where velocity shears are observed. This is the first detection of low-velocity shocks associated with small (subparsec) scale convergent flows which are proposed to be at the origin of the densest structures and of the formation of (high-mass) stars. In addition, we propose that MDCs may be active sites of star formation for more than a crossing time as they continuously receive material from larger scale flows as suggested by the global picture of dynamical, gravity-driven evolution of massive clumps which is favored by the present observations.

  20. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    SciTech Connect (OSTI)

    Morrissey, Timothy G [ORNL; Fox, Ethan E [ORNL; Wereszczak, Andrew A [ORNL; Ferber, Mattison K [ORNL

    2012-06-01T23:59:59.000Z

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) sphere impact testing of two materials from the lithium aluminosilicate family reinforced with different amounts of ceramic particulate, i.e., glass-ceramic materials, SCHOTT Resistan{trademark}-G1 and SCHOTT Resistan{trademark}-L. Both materials are provided by SCHOTT Glass (Duryea, PA). This work is a follow-up to similar sphere impact studies completed by the authors on PPG's Starphire{reg_sign} soda-lime silicate glass and SCHOTT BOROFLOAT{reg_sign} borosilicate glass. A gas gun or a sphere-drop test setup was used to produce controlled velocity delivery of silicon nitride (Si{sub 3}N{sub 4}) spheres against the glass ceramic tile targets. Minimum impact velocities to initiate fracture in the glass-ceramics were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between sphere and target material. Quasistatic spherical indentation was also performed on both glass ceramics and their contact damage responses were compared to those of soda-lime silicate and borosilicate glasses. Lastly, variability of contact damage response was assessed by performing spherical indentation testing across the area of an entire glass ceramic tile. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Resistan{trademark}-L glass ceramic required the highest velocity of sphere impact for damage to initiate. Starphire{reg_sign} soda-lime silicate glass was second best, then Resistan{trademark}-G1 glass ceramic, and then BOROFLOAT{reg_sign} borosilicate glass. (2) Glass-ceramic Resistan{trademark}-L also required the largest force to initiate ring crack from quasi-static indentation. That ranking was followed, in descending order, by Starphire{reg_sign} soda-lime silicate glass, Resistan{trademark}-G1 glass ceramic, and BOROFLOAT{reg_sign} borosilicate glass. (3) Spheres with a lower elastic modulus require less force to initiate fracture in Resistan{trademark}-G1 from quasi-static spherical indentation. This indicates that friction is affecting ring crack initiation in Resistan{trademark}-G1. Friction also affected ring crack initiation in Starphire{reg_sign} soda-lime silicate and BOROFLOAT{reg_sign} borosilicate glasses. Among these three materials, friction was the most pronounced (largest slope in the RCIF-elastic modulus graph) in the Starphire{reg_sign} and least pronounced in the BOROFLOAT{reg_sign}. The reason for this is not understood, but differences in deformation behavior under high contact stresses could be a cause or contributor to this. (4) The force necessary to initiate contact-induced fracture is higher under dynamic conditions than it is under quasi-static conditions in Resistan{trademark}-L and Resistan{trademark}-G1 glass ceramics. This is a trend observed too in Starphire{reg_sign} and BOROFLOAT{reg_sign}. (5) There is a subtle indication there was intra-tile differences in spherical indentation-induced ring crack initiation forces. This is not a material property nor is it exclusive to glass-ceramic Resistan{trademark}-G1 glass ceramic, rather, it is a statistical mechanical response to an accumulated history of processing and handling of that specific tile.

  1. Coherence, Strain, and Phase Velocity of Strong Ground Motions in the Mississippi Charles A. Langston

    E-Print Network [OSTI]

    Langston, Charles A.

    ground motions in the deep, unconsolidated Mississippi embayment sediments since there are no comparable within the thick, unconsolidated sedimentary column, the high velocity basement rocks, and small is the existence of thick, unconsolidated sediments that blanket the area and attain thicknesses of up to kilometer

  2. Natural discharge after pulse and cooperative electrodes to enhance droplet velocity in digital microfluidics

    SciTech Connect (OSTI)

    Chen, Tianlan; Dong, Cheng; Gao, Jie; Jia, Yanwei; Mak, Pui-In, E-mail: pimak@umac.mo; Vai, Mang-I; Martins, Rui P. [State Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE, University of Macau, Macao (China)] [State Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE, University of Macau, Macao (China)

    2014-04-15T23:59:59.000Z

    Digital Microfluidics (DMF) is a promising technology for biological/chemical micro-reactions due to its distinct droplet manageability via electronic automation, but the limited velocity of droplet transportation has hindered DMF from utilization in high throughput applications. In this paper, by adaptively fitting the actuation voltages to the dynamic motions of droplet movement under real-time feedback monitoring, two control-engaged electrode-driving techniques: Natural Discharge after Pulse (NDAP) and Cooperative Electrodes (CE) are proposed. They together lead to, for the first time, enhanced droplet velocity with lower root mean square voltage value.

  3. Time-resolved particle velocity measurements at impact velocities of 10 km/s

    SciTech Connect (OSTI)

    Furnish, M.D.; Chhabildas, L.C.; Reinhart, W.D.

    1998-08-01T23:59:59.000Z

    Hypervelocity launch capabilities (9--16 km/s) with macroscopic plates have become available in recent years. It is now feasible to conduct instrumented plane-wave tests using this capability. Successfully conducting such tests requires a planar launch and impact at hypervelocities, appropriate triggering for recording systems, and time-resolved measurements of motion or stress at a particular point or set of points within the target or projectile during impact. The authors have conducted the first time-resolved wave-profile experiments using velocity interferometric techniques at impact velocities of 10 km/s. These measurements show that aluminum continues to exhibit normal release behavior to 161 GPa shock pressure, with complete loss of strength of the shocked state. These experiments have allowed a determination of shock-wave window transparency in conditions produced by a hypervelocity impact. In particular, lithium fluoride appears to lose transparency at a shock stress of 200 GPa; this appears to be the upper limit for conventional wave profile measurements using velocity interferometric techniques.

  4. Out-of-plane ultrasonic velocity measurement

    DOE Patents [OSTI]

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14T23:59:59.000Z

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  5. Out-of-plane ultrasonic velocity measurement

    DOE Patents [OSTI]

    Hall, Maclin S. (Marietta, GA); Brodeur, Pierre H. (Smyrna, GA); Jackson, Theodore G. (Atlanta, GA)

    1998-01-01T23:59:59.000Z

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  6. True Masses of Radial-Velocity Exoplanets

    E-Print Network [OSTI]

    Brown, Robert A

    2015-01-01T23:59:59.000Z

    We explore the science power of space telescopes used to estimate the true masses of known radial-velocity exoplanets by means of astrometry on direct images. We translate a desired mass accuracy (+/10% in our example) into a minimum goal for the signal-to-noise ratio, which implies a minimum exposure time. When the planet is near a node, the mass measurement becomes difficult if not impossible, because the apparent separation becomes decoupled from the inclination angle of the orbit. The combination of this nodal effect with considerations of solar and anti-solar pointing restrictions, photometric and obscurational completeness, and image blurring due to orbital motion, severely limits the observing opportunities, often to only brief intervals in a five-year mission. We compare the science power of four missions, two with external star shades, EXO-S and WFIRST-S, and two with internal coronagraphs, EXO-C and WFIRST-C. The star shades out-perform the coronagraph in this science program by about a factor of th...

  7. High-Current Accelerators

    E-Print Network [OSTI]

    Lawrence, Ernest O.

    1955-01-01T23:59:59.000Z

    F i g . 13 F i g . 14 A 48 ACCELERATOR F i g . 25 F i g . 16supply. Extrapolation of accelerator energy and current9 . A-48 high-current accelerator, low-velocity end. Fig.

  8. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery

    E-Print Network [OSTI]

    Sedarsky, David; Blaisot, Jean-Bernard; Rozé, Claude

    2013-01-01T23:59:59.000Z

    This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ~100 m/s can be observed between the 'fast' and 'slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the 'fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization b...

  9. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles...

    Open Energy Info (EERE)

    Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera, New Mexico- Results from the Jemez Teleseismic Tomography Experiment Jump to: navigation, search OpenEI...

  10. P wave velocity variations in the Coso region, California, derived...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: P wave velocity variations in the Coso region, California, derived from local earthquake...

  11. A novel photonic Doppler velocimetry for transverse velocity measurement

    SciTech Connect (OSTI)

    Chen Guanghua; Wang Detian; Liu Jun; Meng Jianhua; Liu Shouxian; Yang Qingguo [Institute of Fluid Physics, CAEP, P.O. Box 919-109, Mianyang, Sichuan 621900 (China)

    2013-01-15T23:59:59.000Z

    A fiber interferometry for transverse velocity measurement has been developed. This diagnostic is similar to photonic Doppler velocimetry in the way in which laser propagates and couples. The interferometer mainly consists of a fiber coupler, an emitting probe, and two receiving probes. A pair of scattered laser beams mix in the coupler and generates fringes with frequency proportional to transverse velocity. Measurement of transverse velocity is independent of longitudinal velocity. The feasibility of the technique has been verified by rotating wheel experiment and shock loading experiment.

  12. Determination of Surface Exciton Energies by Velocity Resolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exciton Energies by Velocity Resolved Atomic Desorption. Abstract: We have developed a new method for determining surface exciton band energies in alkali halides based on...

  13. Modified definition of group velocity and electromagnetic energy conservation equation

    E-Print Network [OSTI]

    Changbiao Wang

    2015-01-19T23:59:59.000Z

    The classical definition of group velocity has two flaws: (a) the group velocity can be greater than the phase velocity in a non-dispersive, lossless, non-conducting, anisotropic uniform medium; (b) the definition is not consistent with the principle of relativity for a plane wave in a moving isotropic uniform medium. To remove the flaws, a modified definition is proposed. A criterion is set up to identify the justification of group velocity definition. A "superluminal power flow" is constructed to show that the electromagnetic energy conservation equation cannot uniquely define the power flow if the principle of Fermat is not taken into account.

  14. USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...

    Open Energy Info (EERE)

    USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI...

  15. Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Conference Paper: Using Micro-Seismicity and Seismic Velocities to Map Subsurface Geologic and Hydrologic Structure Within the Coso...

  16. Effective velocities in fractured media: a numerical study using the ...

    E-Print Network [OSTI]

    2002-03-18T23:59:59.000Z

    and precise numerical study of effective velocities in fractured structures. ... In this paper, we ..... A final result is that our numerical simulations of P-, SV- and.

  17. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25T23:59:59.000Z

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.

  18. Nonlinear peculiar-velocity analysis and PCA

    SciTech Connect (OSTI)

    Dekel, A. [and others

    2001-02-20T23:59:59.000Z

    We allow for nonlinear effects in the likelihood analysis of peculiar velocities, and obtain {approximately}35%-lower values for the cosmological density parameter and for the amplitude of mass-density fluctuations. The power spectrum in the linear regime is assumed to be of the flat {Lambda}CDM model (h = 0:65, n = 1) with only {Omega}{sub m} free. Since the likelihood is driven by the nonlinear regime, we break the power spectrum at k{sub b} {approximately} 0.2 (h{sup {minus}1} Mpc){sup {minus}1} and fit a two-parameter power-law at k > k{sub b} . This allows for an unbiased fit in the linear regime. Tests using improved mock catalogs demonstrate a reduced bias and a better fit. We find for the Mark III and SFI data {Omega}{sub m} = 0.35 {+-} 0.09 with {sigma}{sub 8}{Omega}P{sub m}{sup 0.6} = 0.55 {+-} 0.10 (90% errors). When allowing deviations from {Lambda}CDM, we find an indication for a wiggle in the power spectrum in the form of an excess near k {approximately} 0.05 and a deficiency at k {approximately} 0.1 (h{sup {minus}1} Mpc){sup {minus}1}--a cold flow which may be related to a feature indicated from redshift surveys and the second peak in the CMB anisotropy. A {chi}{sup 2} test applied to principal modes demonstrates that the nonlinear procedure improves the goodness of fit. The Principal Component Analysis (PCA) helps identifying spatial features of the data and fine-tuning the theoretical and error models. We address the potential for optimal data compression using PCA.

  19. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    DOE Patents [OSTI]

    Moos, Daniel (Houston, TX)

    2010-03-09T23:59:59.000Z

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  20. Comparing Glider Observed Velocities and Geostrophic Currents Regina Yopak

    E-Print Network [OSTI]

    Kurapov, Alexander

    offshore and brings cold, deep water to fill it's place. The upwelling regime creates a unique coastal. This project endeavors to compare calculated geostrophic velocities to the water velocities measured which the net vertical volume of water is transferred 90° to the right which forces warm, surface waters

  1. A laser Doppler method for noninvasive measurement of flow velocity

    SciTech Connect (OSTI)

    Biggs, G.L.

    1986-11-25T23:59:59.000Z

    Laser Doppler velocimetry is a powerful optical technique for noninvasively obtaining experimental flow-velocity data. This paper describes the principle of operation and various optical configurations of the laser Doppler velocimeter. As a sample application, we describe an experimental apparatus for measuring the velocity flow field around a cylinder, and give our experimental results.

  2. Tsallis Entropy Based Velocity Distribution in Open Channel Flows

    E-Print Network [OSTI]

    Luo, Hao

    2010-07-14T23:59:59.000Z

    ............................................................. 94 32 Dimensionless velocity distribution and parameter M ............................... 96 33 um/ umax versus various M ........................................................................... 99 34 Upper Tiber River basin with location... velocity distribution with different m ... 68 9 Computation of M, ?1 and ?V based on um and umax measured on the Po river (Italy) for different verticals at Pontelagoscuro gauged section during flood event that occurred on February 2, 1985...

  3. Discrimination of porosity and fluid saturation using seismic velocity analysis

    DOE Patents [OSTI]

    Berryman, James G. (Danville, CA)

    2001-01-01T23:59:59.000Z

    The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.

  4. A comparison of light and velocity variations in Semiregular variables

    E-Print Network [OSTI]

    T. Lebzelter; L. L. Kiss; K. H. Hinkle

    2000-09-21T23:59:59.000Z

    NIR velocity variations are compared with simultaneous visual light curves for a sample of late-type semiregular variables (SRV). Precise radial velocity measurements are also presented for the SRV V450 Aql. Our aim is to investigate the nature of the irregular light changes found in these variables. Light and velocity variations are correlated in all stars of our sample. Based on these results we discuss several possibilities to explain the observed behavior. We find that pulsation is responsible for large amplitude variations. In a recent paper Lebzelter (1999) invoked large convective cells to understand observed velocity variations. This possibility is discussed with respect to the observed correlation between light and velocity changes. In the light of these results we investigate the origin of the semiregular variations.

  5. Measuring Oscillatory Velocity Fields Due to Swimming Algae

    E-Print Network [OSTI]

    Guasto, Jeffrey S; Gollub, J P

    2010-01-01T23:59:59.000Z

    In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.

  6. On the Representation of Intermediate States in the Velocity Basis

    E-Print Network [OSTI]

    B. A. Tay; S. Wickramasekara

    2008-01-08T23:59:59.000Z

    Unstable state furnishes a semigroup irreducible representation of the Poincar\\'e group. The state vector is represented by a superposition of energy eigenkets. As a consequence of this superposition, the state vector can be transformed into the rest frame through {\\it a} Lorentz transformation only when the eigenkets are labeled by velocity variable, but not momentum variable. We also clarify the meaning of the velocity variable in the state vector with respect to the velocity derived from kinematical consideration of the scattering process.

  7. Two-stream instability with time-dependent drift velocity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qin, Hong [PPPL; Davidson, Ronald C. [PPPL

    2014-01-01T23:59:59.000Z

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. Stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  8. Stellar Velocity Dispersion of the Leo A Dwarf Galaxy

    E-Print Network [OSTI]

    Warren R. Brown; Margaret J. Geller; Scott J. Kenyon; Michael J. Kurtz

    2007-05-08T23:59:59.000Z

    We measure the first stellar velocity dispersion of the Leo A dwarf galaxy, \\sigma = 9.3 +- 1.3 km/s. We derive the velocity dispersion from the radial velocities of ten young B supergiants and two HII regions in the central region of Leo A. We estimate a projected mass of 8 +- 2.7 x10^7 solar masses within a radius of 2 arcmin, and a mass to light ratio of at least 20 +- 6 M_sun/L_sun. These results imply Leo A is at least ~80% dark matter by mass.

  9. artery peak velocity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The time series analysis of Doppler velocity maps show enhanced power in the sunspot umbra at higher frequencies and in the penumbra at lower frequencies. We find that the peak...

  10. Seismic Velocity And Attenuation Structure Of The Geysers Geothermal...

    Open Energy Info (EERE)

    issue at this field is the distribution of fluid in the matrix of the reservoir rock. In this paper, we interpret seismic compressional-wave velocity and quality quotient...

  11. Superluminal Velocity of Photons in a Gravitational Background

    E-Print Network [OSTI]

    I. B. Khriplovich

    1994-11-20T23:59:59.000Z

    The influence of radiative corrections on the photon propagation in a gravitational background is investigated without the low-frequency approximation $\\omega \\ll m$. The conclusion is made in this way that the velocity of light can exceed unity.

  12. GPS velocity field for the Tien Shan and surrounding regions

    E-Print Network [OSTI]

    Zubovich, Alexander V.

    Measurements at ?400 campaign-style GPS points and another 14 continuously recording stations in central Asia define variations in their velocities both along and across the Kyrgyz and neighboring parts of Tien Shan. They ...

  13. LOW VELOCITY SHPERE IMPACT OF SODA LIME SILICATE GLASS

    SciTech Connect (OSTI)

    Morrissey, Timothy G [ORNL; Fox, Ethan E [ORNL; Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL

    2012-01-01T23:59:59.000Z

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity ( 30 m/s or 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations.

  14. Estimating propagation velocity through a surface acoustic wave sensor

    SciTech Connect (OSTI)

    Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)

    2010-03-16T23:59:59.000Z

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  15. Vertical velocity in oceanic convection off tropical Australia

    E-Print Network [OSTI]

    Lucas, Christopher

    2012-06-07T23:59:59.000Z

    . . . . . . . v Vl Vl I I 1 3 6 10 Description of the Data Data Processing . . Event Criteria 10 15 21 III RESULTS . . . 26 Cores. Environment 26 34 IV COMPARISON WITH OTHER STUDIES . . . . . 40 Cores... Variations with altitude of median and strongest 10'/o-level statistics of (a) average vertical velocity, (b) maximum vertical velocity, (c) mass flux per unit length normal to the flight track and (d) diameter 32 Figure Page Reconstructed temperature...

  16. Velocity of sound in solid methane near melting temperatures

    E-Print Network [OSTI]

    Whitehead, John Martin

    1968-01-01T23:59:59.000Z

    VELOCITY OF SOUND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1968 Ma)or Sub)ect: Physics VELOCITY OF SOVND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Approved as to style and content by& (Chairman of Committee) (Head of Departsmnt) (Mem er (Member) May 1968...

  17. Temperature and velocity effects in naphthenic acid corrosion

    SciTech Connect (OSTI)

    Craig, H.L. Jr. [Corrosion Prevention and Control, Richmond, VA (United States)

    1996-08-01T23:59:59.000Z

    The effects of temperature and velocity were studied with respect to alloy selection for corrosion resistant service. The amount of molybdenum in the austenitic stainless steel alloys is critical in conferring corrosion resistance on the alloy as the temperature of the environment increases. Velocity effects have been studied in a closed loop hot oil circuit where the stream impinges on the target specimen. Film breakdown is prevented by increasing the molybdenum content.

  18. Interrelationships between air velocity and globe thermometer response

    E-Print Network [OSTI]

    Thornton, James Robert

    1973-01-01T23:59:59.000Z

    INTERRELATIONSHIPS BE~ AIR VELOCITY ANIl GLOBE THERMOMETER RESPONSE A Thesis JANES ROBERT THORNTON Submitted to the Graduate College of Texas ARAN University in partial fulfillment of the requirement for the degree of NASTER OF SCIENCE... August 197$ Najor Subject: Industrial Hygiene INTERRELATIONSHIPS BETWEEZ AIR VELOCITY AND GLOBE THERMOMETER RESPONSE A Thesis JAMES ROBERT THORNTON Approved as to style and content by: h z. an o ommmt ee ad o partmen Me er August 1$7$ ABSTRACT...

  19. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect (OSTI)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01T23:59:59.000Z

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  20. Uppermost mantle P wave velocities beneath Turkey and Iran

    SciTech Connect (OSTI)

    Chen, C.; Chen, W.; Molnar, P.

    1980-01-01T23:59:59.000Z

    The uppermost mantle P wave velocities beneath Turkey and Iran were estimated by applying the conventional travel time-distance relation method to arrival times of well located earthquakes recorded at a few stations. The average uppermost mantle P wave velocity under Turkey is estimated from two stations of the World Wide Standardized Seismograph Network (WWSSN), Istanbul and Tabriz. The data are consistent with a crust of uniform, but poorly determined, thickness and an uppermost mantle P wave velocity of 7.73 +- 0.08 km/s. This velocity is very similar to that for the Aegean Sea and suggests that its structure could be closely related to that beneath Turkey. For Iran, the results calculated from travel times to three WWSSN stations, Meshed, Shiraz, and Tabriz, can be explained by a crust dipping toward the south-southeast at about 1/sup 0/ with an uppermost mantle P wave velocity of 8.0 +- 0.1 km/s. If the crustal thickness were 34 km in the north it would reach about 49 km in the south. Based on these uppermost mantle velocities, the temperature at Moho beneath Turkey is probably close to the melting temperature of peridotite but that beneath Iran is probably lower.

  1. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    SciTech Connect (OSTI)

    Anderson, John

    2008-01-17T23:59:59.000Z

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  2. VELOCITY ANISOTROPY AND SHAPE BIAS IN THE CAUSTIC TECHNIQUE

    SciTech Connect (OSTI)

    Gifford, Daniel; Miller, Christopher J. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States)

    2013-05-10T23:59:59.000Z

    We use the Millennium Simulation to quantify the statistical accuracy and precision of the escape-velocity technique for measuring cluster-sized halo masses at z {approx} 0.1. We show that in three dimensions one can measure nearly unbiased (<4%) halo masses (>1.5 Multiplication-Sign 10{sup 14} M{sub Sun} h {sup -1}) with 10%-15% scatter. Line-of-sight projection effects increase the scatter to {approx}25%, where we include the known velocity anisotropies. The classical ''caustic'' technique incorporates a calibration factor that is determined from N-body simulations. We derive and test a new implementation that eliminates the need for calibration and utilizes only the observables: the galaxy velocities with respect to the cluster mean v, the projected positions r{sub p} , an estimate of the Navarro-Frenk-White (NFW) density concentration, and an estimate of the velocity anisotropies {beta}. We find that differences between the potential and density NFW concentrations induce a 10% bias in the caustic masses. We also find that large (100%) systematic errors in the observed ensemble average velocity anisotropies and concentrations translate to small (5%-10%) biases in the inferred masses.

  3. Analytic solutions for seismic travel time and ray path geometry through simple velocity models.

    SciTech Connect (OSTI)

    Ballard, Sanford

    2007-12-01T23:59:59.000Z

    The geometry of ray paths through realistic Earth models can be extremely complex due to the vertical and lateral heterogeneity of the velocity distribution within the models. Calculation of high fidelity ray paths and travel times through these models generally involves sophisticated algorithms that require significant assumptions and approximations. To test such algorithms it is desirable to have available analytic solutions for the geometry and travel time of rays through simpler velocity distributions against which the more complex algorithms can be compared. Also, in situations where computational performance requirements prohibit implementation of full 3D algorithms, it may be necessary to accept the accuracy limitations of analytic solutions in order to compute solutions that satisfy those requirements. Analytic solutions are described for the geometry and travel time of infinite frequency rays through radially symmetric 1D Earth models characterized by an inner sphere where the velocity distribution is given by the function V (r) = A-Br{sup 2}, optionally surrounded by some number of spherical shells of constant velocity. The mathematical basis of the calculations is described, sample calculations are presented, and results are compared to the Taup Toolkit of Crotwell et al. (1999). These solutions are useful for evaluating the fidelity of sophisticated 3D travel time calculators and in situations where performance requirements preclude the use of more computationally intensive calculators. It should be noted that most of the solutions presented are only quasi-analytic. Exact, closed form equations are derived but computation of solutions to specific problems generally require application of numerical integration or root finding techniques, which, while approximations, can be calculated to very high accuracy. Tolerances are set in the numerical algorithms such that computed travel time accuracies are better than 1 microsecond.

  4. SUBSTRUCTURE IN BULK VELOCITIES OF MILKY WAY DISK STARS

    SciTech Connect (OSTI)

    Carlin, Jeffrey L.; DeLaunay, James; Newberg, Heidi Jo; Gole, Daniel; Grabowski, Kathleen [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)] [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Deng, Licai; Liu, Chao; Luo, A-Li; Zhang, Haotong; Zhao, Gang; Zhao, Yongheng [Key Lab for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)] [Key Lab for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Jin, Ge [University of Science and Technology of China, Hefei 230026 (China)] [University of Science and Technology of China, Hefei 230026 (China); Liu, Xiaowei; Yuan, Haibo, E-mail: carlij@rpi.edu [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)] [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2013-11-01T23:59:59.000Z

    We find that Galactic disk stars near the anticenter exhibit velocity asymmetries in both the Galactocentric radial and vertical components across the midplane as well as azimuthally. These findings are based on Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) spectroscopic velocities for a sample of ?400, 000 F-type stars, combined with proper motions from the PPMXL catalog for which we have derived corrections to the zero points based in part on spectroscopically discovered galaxies and QSOs from LAMOST. In the region within 2 kpc outside the Sun's radius and ±2 kpc from the Galactic midplane, we show that stars above the plane exhibit net outward radial motions with downward vertical velocities, while stars below the plane have roughly the opposite behavior. We discuss this in the context of other recent findings, and conclude that we are likely seeing the signature of vertical disturbances to the disk due to an external perturbation.

  5. Planar velocity analysis of diesel spray shadow images

    E-Print Network [OSTI]

    Sedarsky, David; Blaisot, J-B; Rozé, C

    2012-01-01T23:59:59.000Z

    The focus of this work is to demonstrate how spatially resolved image information from diesel fuel injection events can be obtained using a forward-scatter imaging geometry, and used to calculate the velocities of liquid structures on the periphery of the spray. In order to obtain accurate velocities directly from individual diesel spray structures, those features need to be spatially resolved in the measurement. The distributed structures measured in a direct shadowgraphy arrangement cannot be reliably analyzed for this kind of velocity information. However, by utilizing an intense collimated light source and adding imaging optics which modify the signal collection, spatially resolved optical information can be retrieved from spray edge regions within a chosen object plane. This work discusses a set of measurements where a diesel spray is illuminated in rapid succession by two ultrafast laser pulses generated by a mode-locked Ti-Sapphire oscillator seeding a matched pair of regenerative amplifiers. Light fro...

  6. E-Print Network 3.0 - average settling velocity Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is on the enhancement of the mean particle settling velocity... in a turbulent carrier fluid, as compared to the settling velocity ... Source: Meiburg, Eckart H. - Department of...

  7. St. Stephen powerhouse tailrace velocity measurement. Final report

    SciTech Connect (OSTI)

    Fagerburg, T.L.

    1986-09-01T23:59:59.000Z

    Tests were conducted to provide a prototype evaluation of the operating conditions of the project and to evaluate the adequacy of the repairs and remedial work performed in the channel downstream of the tailrace. Prototype measurements were made to define the relative magnitudes of velocities and the surface flow patterns in the channel downstream of the tailrace and the displacement, if any, of the stone protection material resulting from various turbine operations and tailwater conditions. Results of the data collection included determination of (a) velocity distribution at various ranges across the channel; (b) velocity profiles at the toe of the slope and at the observed location of highest velocity; and (c) unusual surface flow patterns that are produced by different combinations of turbine operations. Recommendations for start-up and shut-down procedures for the turbine operations that would produce the most acceptable. The depth soundings revealed that the stone protection material was quite stable (District surveys reveal that no appreciable displacement has occurred during the subsequent months of operation of the powerhouse.) The flow velocities were found to concentrate along the right side of the channel as a result of uneven flow distribution from the draft tube bays and the asymmetrical geometry along the left side of the tailrace. Return flows were observed and found to concentrate along the left side of the channel except when all three turbines were operating. Operating recommendations for the turbines are made based on tailwater conditions, length of time of nonoperation of the powerhouse, and the velocity data obtained from the tests.

  8. Edge Turbulence Velocity Changes with Lithium Coating on NSTX

    SciTech Connect (OSTI)

    Cao, A.; Zweben, S. J.; Stotler, D. P.; Bell, M.; Diallo, A.; Kaye, S. M.; LeBlanc, B.

    2012-08-10T23:59:59.000Z

    Lithium coating improves energy confinement and eliminates edge localized modes in NSTX, but the mechanism of this improvement is not yet well understood. We used the gas-puff-imaging (GPI) diagnostic on NSTX to measure the changes in edge turbulence which occurred during a scan with variable lithium wall coating, in order to help understand the reason for the confinement improvement with lithium. There was a small increase in the edge turbulence poloidal velocity and a decrease in the poloidal velocity fluctuation level with increased lithium. The possible effect of varying edge neutral density on turbulence damping was evaluated for these cases in NSTX. __________________________________________________

  9. ELECTROSTATIC MODE ASSOCIATED WITH PINCH VELOCITY IN RFPS

    SciTech Connect (OSTI)

    DELZANNO, GIAN LUCA [Los Alamos National Laboratory; FINN, JOHN M. [Los Alamos National Laboratory; CHACON, LUIS [Los Alamos National Laboratory

    2007-02-08T23:59:59.000Z

    The existence of a new electrostatic instability is shown for RFP (reversed field pinch) equilibria. This mode arises due to the non-zero equilibrium radial flow (pinch flow). In RFP simulations with no-stress boundary conditions on the tangential velocity at the radial wall, this electrostatic mode is unstable and dominates the nonlinear dynamics, even in the presence of the MHD modes typically responsible for the reversal of the axial magnetic field at edge. Nonlinearly, this mode leads to two beams moving azimuthally towards each other, which eventually collide. The electrostatic mode can be controlled by using Dirichlet (no-slip) boundary conditions on the azimuthal velocity at the radial wall.

  10. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  11. Clutter in the GMTI range-velocity map.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2009-04-01T23:59:59.000Z

    Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

  12. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27T23:59:59.000Z

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  13. Source shape determination with directional fragment-fragment velocity correlations

    E-Print Network [OSTI]

    Lefèvre, A; Auger, G; Begemann-Blaich, M L; Bellaize, N; Bittiger, R; Bocage, F; Borderie, B; Bougault, R; Bouriquet, B; Charvet, J L; Chbihi, A; Dayras, R; Durand, D; Frankland, J D; Galíchet, E; Gourio, D; Guinet, D; Hudan, S; Lautesse, P; Lavaud, F; Legrain, R; López, O; Lukasik, J; Lynen, U; Müller, W F J; Nalpas, L; Orth, H; Plagnol, E; Rosato, E; Saija, A; Sfienti, C; Tamain, B; Trautmann, W; Trzcinski, A; Turzó, K; Vient, E; Vigilante, M; Volant, C; Zwieglinski, B

    2008-01-01T23:59:59.000Z

    Correlation functions, constructed from directional projections of the relative velocities of fragments, are used to determine the shape of the breakup volume in coordinate space. For central collisions of 129Xe + natSn at 50 MeV per nucleon incident energy, measured with the 4pi multi-detector INDRA at GSI, a prolate shape aligned along the beam direction with an axis ratio of 1:0.7 is deduced. The sensitivity of the method is discussed in comparison with conventional fragment-fragment velocity correlations.

  14. Dynamic optical properties in graphene: Length versus velocity gauge

    SciTech Connect (OSTI)

    Dong, H. M.; Han, K., E-mail: han6409@263.net [Department of Physics, China University of Mining and Technology, Xuzhou 221116 (China); Xu, W. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Department of Physics, Yunnan University, Kunming 650091 (China)

    2014-02-14T23:59:59.000Z

    The dynamic optical properties of graphene are theoretically investigated in both length gauge and velocity gauge in the presence of ultrafast optical radiation field. The two gauges present different results of dynamic photo-induced carriers and optical conductance due to distinct dependencies on electric field and non-resonant optical absorption, while the two gauges give identical results in the steady state time. It shows that the choice of gauge affects evidently the dynamic optical properties of graphene. The velocity gauge represents an outcome of a real physical experiment.

  15. Backpulse and filter feed velocity effects on Norton filter performance

    SciTech Connect (OSTI)

    Siler, J.L.

    1990-05-08T23:59:59.000Z

    A series of tests have been conducted using the 2.2 ft{sup 2} Norton filter to solve the fouling problems observed with the ETF Norton system. The objective of these tests was to determine filter efficiency as a function of backpulse strength and feed velocity. Based on experimental results, it is recommend that the filters should be operated at the following conditions: (1) Backpulse Transmembrane Pressure/FeedTransmembrane Pressure (BP/FP) > 1.5, preferably 2 or 3. (2) Feed crossflow velocity = 6--8 f/s. It is expected that operation at these conditions should improve performance by 30--60%.

  16. Fermi velocity renormalization and dynamical gap generation in graphene

    E-Print Network [OSTI]

    C. Popovici; C. S. Fischer; L. von Smekal

    2015-01-12T23:59:59.000Z

    We study the renormalization of the Fermi velocity by the long-range Coulomb interactions between the charge carriers in the Dirac-cone approximation for the effective low-energy description of the electronic excitations in graphene at half filling. Solving the coupled system of Dyson-Schwinger equations for the dressing functions in the corresponding fermion propagator with various approximations for the particle-hole polarization we observe that Fermi velocity renormalization effects generally lead to a considerable increase of the critical coupling for dynamical gap generation and charge-density wave formation at the semimetal-insulator transition.

  17. The Light Velocity Casimir Effect Does the Velocity of Light Increase when Propagating Between the Casimir Plates?

    E-Print Network [OSTI]

    Ostoma, T; Ostoma, Tom; Trushyk, Mike

    1999-01-01T23:59:59.000Z

    We propose experiments that might be set up to detect the increase in the velocity of light in a vacuum in the laboratory frame for photons travelling between (and perpendicular to) the Casimir plates in a vacuum. The Casimir plates are two closely spaced, conductive plates, where an attractive force is observed to exist between the plates called the 'Casimir Force'. We propose that the velocity of light in a vacuum increases when propagating between two transparent Casimir Plates. We call this effect the 'Light Velocity Casimir Effect' or LVC effect. The LVC effect happens because the vacuum energy density in between the plates is lower than that outside the Casimir plates. The conductive plates disallow certain frequencies of electrically charged virtual particles to exist inside the plates, thus lowering the inside vacuum particle density, compared to the density outside the plates. The reduced (electrically charged) virtual particle density results in fewer photon scattering events inside the plates, whic...

  18. Velocity Interferometer blanking due to preheating in a double pulse planar experiment

    SciTech Connect (OSTI)

    Laffite, S.; Combis, P.; Clerouin, J.; Recoules, V.; Rousseaux, C.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Baton, S. D.; Koenig, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France)

    2014-08-15T23:59:59.000Z

    Optical diagnostics, such as VISAR (Velocity Interferometer System for Any Reflector) or SOP (Streaked Optical Pyrometry), have become essential in shock timing experiments. Their high precision allows for accurate measurements of shock velocities, chronometry, and brightness temperature. However, in some instances, these measurements can be compromised. In planar shock coalescence experiments recently performed at the LULI facility [Baton et al., Phys. Rev. Lett. 108, 195002 (2012)], VISAR signal loss was observed. In these experiments, a strong shock launched by a high-intensity spike catches up with a previously shock launched by an earlier, low-intensity beam. The disappearance of the VISAR signal is attributed to a preheating of the coronal plasma by x-rays generated by the high intensity spike. The signal does not disappear if the high-intensity spike starts after VISAR probe beam begins to reflect off of the first shock. The VISAR diagnostic, modeled using an assessment of the optical index in quartz, compares favorably to experimental results. This provides evidence that x-ray preheating can cause blanking of the VISAR signal in quartz.

  19. Effect of the q-nonextensive electron velocity distribution on a magnetized plasma sheath

    SciTech Connect (OSTI)

    Safa, N. Navab, E-mail: n-navabsafa@sbu.ac.ir; Ghomi, H.; Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of)

    2014-08-15T23:59:59.000Z

    In this work, a sheath model has been developed to investigate the effect of the q-nonextensive electron velocity distribution on the different characteristics of a magnetized plasma. By using Segdeev potential method, a modified Bohm criterion for a magnetized plasma with the nonextensive electron velocity distribution is derived. The sheath model is then used to analyze numerically the sheath structure under different q, the parameter quantifying the nonextensivity degree of the system. The results show that as the q-parameter decreases, the floating potential becomes more negative. The sheath length increases at the lower values of the q-parameter due to the increase in the electron population at the high-energy tail of the distribution function. As q-parameter decreases, the effective temperature of the electrons increases which results in a more extended plasma sheath. The ion velocity and density profiles for the different nonextensivity degrees of the system reflect the gyro-motion of the ions in the presence of the magnetic field. Furthermore, the results coincide with those given by the Maxwellian electron distribution function, when q tends to 1.

  20. Measurement of turbulent wind velocities using a rotating boom apparatus

    SciTech Connect (OSTI)

    Sandborn, V.A.; Connell, J.R.

    1984-04-01T23:59:59.000Z

    The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

  1. THE VELOCITY DEPENDENCE OF AERODYNAMIC DRAG: A PRIMER FOR MATHEMATICIANS

    E-Print Network [OSTI]

    THE VELOCITY DEPENDENCE OF AERODYNAMIC DRAG: A PRIMER FOR MATHEMATICIANS LYLE N. LONG and HOWARD­entry of the space shuttle into the earth's atmosphere. Dimensional analysis is an important tool in aerodynamics­T E X 1 #12; For detailed information on the aerodynamics and fluid mechanics pertinent to this paper

  2. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mellors, Robert J.

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  3. Velocity Autocorrelation Functions and Diffusion of Dusty Plasma

    SciTech Connect (OSTI)

    Ramazanov, T. S.; Dzhumagulova, K. N.; Daniyarov, T. T.; Dosbolayev, M. K.; Jumabekov, A. N. [IETP, al-Farabi Kazakh National University, 96a, Tole bi St., Almaty, 050012 (Kazakhstan)

    2008-09-07T23:59:59.000Z

    The velocity autocorrelation functions and square displacements were calculated on the basis of experimental data obtained on experimental setup with dc discharge. Computer simulation of the system of dust particles by the method of the Langevin dynamics was performed. The comparisons of experimental and theoretical results are given.

  4. Brady 1D seismic velocity model ambient noise prelim

    SciTech Connect (OSTI)

    Mellors, Robert J.

    2013-10-25T23:59:59.000Z

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  5. Measurements of Laminar Flame Velocity for Components of Natural Gas

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , BP 20451, 1 Rue Grandville, 54001 Nancy, France 2 Division of Combustion Physics, Lund University flame velocity of components of natural gas, methane, ethane, propane, and nbutane as well as of binary performed by the heat flux method using a newly built flat flame adiabatic burner at atmospheric pressure

  6. Harmonic analysis of the Ha velocity field of NGC 4254

    E-Print Network [OSTI]

    Laurent Chemin; Olivier Hernandez; Chantal Balkowski; Claude Carignan; Philippe Amram

    2005-12-20T23:59:59.000Z

    The ionized gas kinematics of the Virgo Cluster galaxy NGC 4254 (Messier 99) is analyzed by an harmonic decomposition of the velocity field into Fourier coefficients. The aims of this study are to measure the kinematical asymmetries of Virgo cluster galaxies and to connect them to the environment. The analysis reveals significant $m=1,2,4$ terms which origins are discussed.

  7. Feedback on vertical velocity. Rotation, convection, self-sustaining process.

    E-Print Network [OSTI]

    Lebovitz, Norman

    Feedback on vertical velocity. Rotation, convection, self-sustaining process. Fabian Waleffe the mechanisms involved in the nonlinear feedback from u to v, yielding a self-sustaining process for shear flows feedback from the streak instability into the rolls sufficient to lead to a self-sustaining process

  8. Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 12518

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2012-07-01T23:59:59.000Z

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. In 2010 Washington River Protection Solutions and the Pacific Northwest National Laboratory began evaluating the ultrasonic PulseEcho instrument to accurately identify critical velocities in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of >50 micrometers. In 2011 the PulseEcho instrument was further evaluated to identify critical velocities for slurries containing fast-settling, high-density particles with a mean particle diameter of <15 micrometers. This two-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  9. Low Velocity Sphere Impact of a Soda Lime Silicate Glass

    SciTech Connect (OSTI)

    Wereszczak, Andrew A [ORNL; Fox, Ethan E [ORNL; Morrissey, Timothy G [ORNL; Vuono, Daniel J [ORNL

    2011-10-01T23:59:59.000Z

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.

  10. Near-Surface Shear-Wave Velocity Measurements in Unlithified Sediment

    E-Print Network [OSTI]

    Rickards, Benjamin Thomas

    2011-05-31T23:59:59.000Z

    with an average S-wave velocity of 600 ft/sec in the top 30 meters as having a relatively high risk for amplifying destructive earthquake waves (Hunter et al., 2010). S-wave studies have also been used to identify subsidence and liquefaction risks for wind-turbine... the method is more challenging geometrically (Kanli, 2008). In fact, it has become common practice to run geological core samples through CAT scans to help determine composition and image bedforms for oil exploration (Stewart, 1991). Medical...

  11. Velocity and void distribution in a counter-current two-phase flow

    SciTech Connect (OSTI)

    Gabriel, S.; Schulenberg, T. [Karlsruhe Inst. of Technologies KIT, Inst. for Nuclear and Energy Technologies IKET, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Laurien, E. [Univ. of Stuttgart, Inst. for Nuclear Technology and Energy Systems IKE, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2012-07-01T23:59:59.000Z

    Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities from flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)

  12. THE RADIAL VELOCITY EXPERIMENT (RAVE): FOURTH DATA RELEASE

    SciTech Connect (OSTI)

    Kordopatis, G.; Gilmore, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Steinmetz, M.; Williams, M. E. K.; Piffl, T.; Enke, H.; Carrillo, I. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Boeche, C.; Roeser, S. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Seabroke, G. M. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Siebert, A. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l'Université, F-67000 Strasbourg (France); Zwitter, T. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Binney, J. [Rudolf Peierls Centre for Theoretical Physics, Keble Road, Oxford, OX1 3NP (United Kingdom); De Laverny, P.; Recio-Blanco, A.; Bijaoui, A. [Laboratoire Lagrange, UMR 7293, Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, BP4229, F-06304 Nice (France); Wyse, R. F. G. [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Freeman, K. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Munari, U. [INAF National Institute of Astrophysics, Astronomical Institute of Padova, I-36012 Asiago (VI) (Italy); Anguiano, B., E-mail: gkordo@ast.cam.ac.uk [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); and others

    2013-11-01T23:59:59.000Z

    We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar atmospheric parameters are computed using a new pipeline, based on the algorithms of MATISSE and DEGAS. The spectral degeneracies and the Two Micron All Sky Survey photometric information are now better taken into consideration, improving the parameter determination compared to the previous RAVE data releases. The individual abundances for six elements (magnesium, aluminum, silicon, titanium, iron, and nickel) are also given, based on a special-purpose pipeline that is also improved compared to that available for the RAVE DR3 and Chemical DR1 data releases. Together with photometric information and proper motions, these data can be retrieved from the RAVE collaboration Web site and the Vizier database.

  13. Measuring In-Situ Mdf Velocity Of Detonation

    DOE Patents [OSTI]

    Horine, Frank M. (Albuquerque, NM); James, Jr., Forrest B. (Albuquerque, NM)

    2005-10-25T23:59:59.000Z

    A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.

  14. Velocity renormalization in graphene from lattice Monte Carlo

    E-Print Network [OSTI]

    Joaquín E. Drut; Timo A. Lähde

    2014-03-26T23:59:59.000Z

    We compute the Fermi velocity of the Dirac quasiparticles in clean graphene at the charge neutrality point for strong Coulomb coupling alpha_g. We perform a Lattice Monte Carlo calculation within the low-energy Dirac theory, which includes an instantaneous, long-range Coulomb interaction. We find a renormalized Fermi velocity v_FR > v_F, where v_F = c/300. Our results are consistent with a momentum-independent v_FR which increases approximately linearly with alpha_g, although a logarithmic running with momentum cannot be excluded at present. At the predicted critical coupling alpha_gc for the semimetal-insulator transition due to excitonic pair formation, we find v_FR/v_F = 3.3, which we discuss in light of experimental findings for v_FR/v_F at the charge neutrality point in ultra-clean suspended graphene.

  15. The critical velocity in the BEC-BCS crossover

    E-Print Network [OSTI]

    Wolf Weimer; Kai Morgener; Vijay Pal Singh; Jonas Siegl; Klaus Hueck; Niclas Luick; Ludwig Mathey; Henning Moritz

    2014-08-22T23:59:59.000Z

    We map out the critical velocity in the crossover from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer superfluidity with ultracold $^{6}$Li gases. A small attractive potential is dragged along lines of constant column density. The rate of the induced heating increases steeply above a critical velocity $v_c$. In the same samples, we measure the speed of sound $v_s$ by exciting density waves and compare the results to the measured values of $v_c$. We perform numerical simulations in the BEC regime and find very good agreement, validating the approach. In the strongly correlated regime, where theoretical predictions only exist for the speed of sound, our measurements of $v_c$ provide a testing ground for theoretical approaches.

  16. Velocity and charge reconstruction with the AMS/RICH detector

    E-Print Network [OSTI]

    Arruda, Luísa; Borges, João; Carmo, Fernando; Gonçalves, Patrícia; Pimenta, Mário

    2008-01-01T23:59:59.000Z

    The Alpha Magnetic Spectrometer (AMS), to be installed on the International Space Station (ISS) in 2008, will be equipped with a proximity focusing Ring Imaging CHerenkov detector (RICH). This detector will be equipped with a dual radiator (aerogel+NaF), a lateral conical mirror and a detection plane made of 680 photomultipliers and light-guides, enabling measurements of particle electric charge and velocity. A likelihood method for the Cherenkov angle reconstruction was applied leading to a velocity determination for protons with a resolution around 0.1%. The electric charge reconstruction is based on the counting of the number of photoelectrons and on an overall efficiency estimation on an event-by-event basis. Results from the application of both methods are presented.

  17. The AMS-RICH velocity and charge reconstruction

    E-Print Network [OSTI]

    Barão, F; Arruda, L; Baret, B; Barrau, A; Barreira, G; Belmont, E; Berdugo, J; Borges, J; Buénerd, M; Casadei, D; Casaus, J; Cortina, E; Costado, M; Crespo, D; Delgado, C; Díaz, C; Derome, L; Gonçalves, P; Garcia-Lopez, R; de la Guia, C; Herrero, A; Lanciotti, E; Laurenti, G; Malinin, A; Maña, C; Marin, J; Mangin-Brinet, M; Martínez, G; Menchaca-Rocha, A; Palomares, C; Pereira, R; Pimenta, M; Putze, A; Sallaz-Damaz, Y; Seo, E S; Sevilla, I; Torrento, A; Vargas-Trevino, M; Veziant, O

    2007-01-01T23:59:59.000Z

    The AMS detector, to be installed on the International Space Station, includes a Ring Imaging Cerenkov detector with two different radiators, silica aerogel (n=1.05) and sodium fluoride (n=1.334). This detector is designed to provide very precise measurements of velocity and electric charge in a wide range of cosmic nuclei energies and atomic numbers. The detector geometry, in particular the presence of a reflector for acceptance purposes, leads to complex Cerenkov patterns detected in a pixelized photomultiplier matrix. The results of different reconstruction methods applied to test beam data as well as to simulated samples are presented. To ensure nominal performances throughout the flight, several detector parameters have to be carefully monitored. The algorithms developed to fulfill these requirements are presented. The velocity and charge measurements provided by the RICH detector endow the AMS spectrometer with precise particle identification capabilities in a wide energy range. The expected performance...

  18. Low velocity ion stopping in binary ionic mixtures

    SciTech Connect (OSTI)

    Tashev, Bekbolat; Baimbetov, Fazylkhan [Department of Physics, Kazakh National University, Tole Bi 96, Almaty 480012 (Kazakhstan); Deutsch, Claude [LPGP (UMR-CNRS 8578), Universite Paris XI, 91405 Orsay (France); Fromy, Patrice [Direction de l'Informatique, Universite Paris XI, 91405 Orsay (France)

    2008-10-15T23:59:59.000Z

    Attention is focused on the low ion velocity stopping mechanisms in multicomponent and dense target plasmas built of quasiclassical electron fluids neutralizing binary ionic mixtures, such as, deuterium-tritium of current fusion interest, proton-heliumlike iron in the solar interior or proton-helium ions considered in planetology, as well as other mixtures of fiducial concern in the heavy ion beam production of warm dense matter at Bragg peak conditions. The target plasma is taken in a multicomponent dielectric formulation a la Fried-Conte. The occurrence of projectile ion velocities (so-called critical) for which target electron slowing down equals that of given target ion components is also considered. The corresponding multiquadrature computations, albeit rather heavy, can be monitored analytical through a very compact code operating a PC cluster. Slowing down results are systematically scanned with respect to target temperature and electron density, as well as ion composition.

  19. The AMS-RICH velocity and charge reconstruction

    E-Print Network [OSTI]

    F. Barao; M. Aguilar-Benitez; L. Arruda; B. Baret; A. Barrau; G. Barreira; E. Belmont; J. Berdugo; J. Borges; M. Buenerd; D. Casadei; J. Casaus; E. Cortina; M. Costado; D. Crespo; C. Delgado; C. Diaz; L. Derome; P. Goncalves; R. Garcia-Lopez; C. de la Guia; A. Herrero; E. Lanciotti; G. Laurenti; A. Malinin; C. Mana; J. Marin; M. Mangin-Brinet; G. Martinez; A. Menchaca-Rocha; C. Palomares; R. Pereira; M. Pimenta; A. Putze; Y. Sallaz-Damaz; E. S. Seo; I. Sevilla; A. Torrento; M. Vargas-Trevino; O. Veziant

    2007-09-13T23:59:59.000Z

    The AMS detector, to be installed on the International Space Station, includes a Ring Imaging Cerenkov detector with two different radiators, silica aerogel (n=1.05) and sodium fluoride (n=1.334). This detector is designed to provide very precise measurements of velocity and electric charge in a wide range of cosmic nuclei energies and atomic numbers. The detector geometry, in particular the presence of a reflector for acceptance purposes, leads to complex Cerenkov patterns detected in a pixelized photomultiplier matrix. The results of different reconstruction methods applied to test beam data as well as to simulated samples are presented. To ensure nominal performances throughout the flight, several detector parameters have to be carefully monitored. The algorithms developed to fulfill these requirements are presented. The velocity and charge measurements provided by the RICH detector endow the AMS spectrometer with precise particle identification capabilities in a wide energy range. The expected performances on light isotope separation are discussed.

  20. Boltzmann Solver with Adaptive Mesh in Velocity Space

    SciTech Connect (OSTI)

    Kolobov, Vladimir I.; Arslanbekov, Robert R. [CFD Research Corporation, 215 Wynn Dr, Huntsville, AL, 35803 (United States); Frolova, Anna A. [Dorodnicyn Computing Centre of the Russian Academy of Sciences, Vavilova Str., 40, Moscow, 119333 (Russian Federation)

    2011-05-20T23:59:59.000Z

    We describe the implementation of direct Boltzmann solver with Adaptive Mesh in Velocity Space (AMVS) using quad/octree data structure. The benefits of the AMVS technique are demonstrated for the charged particle transport in weakly ionized plasmas where the collision integral is linear. We also describe the implementation of AMVS for the nonlinear Boltzmann collision integral. Test computations demonstrate both advantages and deficiencies of the current method for calculations of narrow-kernel distributions.

  1. Extracting Fish and Water Velocity from Doppler Profiler Data

    E-Print Network [OSTI]

    deYoung, Brad

    Extracting Fish and Water Velocity from Doppler Profiler Data �º Ð 1 ¸ � � �¹ � Ý�¹� � 2 1 to measure fish swimming speeds. This is possible when fish form schools that are large enough so that the multiple Doppler sonar beams are sampling the fish speeds at the same time. In situations where fish

  2. Studies of the velocity fields near a submerged rectangular object

    E-Print Network [OSTI]

    Kim, Young-Ki

    2012-06-07T23:59:59.000Z

    of the time periodic waves past a submerged rectangular object. For sotne wave conditions, large energy dissipation occurred at the submerged object due to vortex generation. The amount of energy dissipation was examined by comparing incident wave energy... object. A two component laser-Doppler anemometer (LDA) was used to obtain detailed measurements of the instantaneous velocity field and flow visualization was conducted to study the vortex structure around the submerged object. The measured wave...

  3. Obtaining anisotropic velocity data for proper depth seismic imaging

    SciTech Connect (OSTI)

    Egerev, Sergey; Yushin, Victor; Ovchinnikov, Oleg; Dubinsky, Vladimir; Patterson, Doug [Andreyev Acoustics Institute, Moscow, 117036 (Russian Federation); Baker Hughes, Inc, 2001 Rankin Road, Houston, TX, 77073 (United States)

    2012-05-24T23:59:59.000Z

    The paper deals with the problem of obtaining anisotropic velocity data due to continuous acoustic impedance-based measurements while scanning in the axial direction along the walls of the borehole. Diagrams of full conductivity of the piezoceramic transducer were used to derive anisotropy parameters of the rock sample. The measurements are aimed to support accurate depth imaging of seismic data. Understanding these common anisotropy effects is important when interpreting data where it is present.

  4. Time, Distance, Velocity, Redshift: a personal guided tour

    E-Print Network [OSTI]

    T. Kiang

    2003-08-01T23:59:59.000Z

    An attempt to answer the question 'Can we observe galaxies that recede faster than light ?' led to a re-examination of the notions of time, distance, velocity and redshift as they occur in newtonian physics, special relativity, general relativity and cosmology. A number of misconceptions were uncovered. It was found that, once freed of special relativity preconceptions, the above question is easily and unequivocally answered

  5. Design of regulated velocity flow assurance device for petroleum industry

    E-Print Network [OSTI]

    Yardi, Chaitanya Narendra

    2005-02-17T23:59:59.000Z

    flowmeter, which monitors the bypass flow. A motorized butterfly valve is used for actually controlling the bypass flow. In addition to cleaning, the proposed pig utilizes on-board electronics like accelerom- eter and pressure transducers to store the data... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 B. Concept 1 : Governor Pig . . . . . . . . . . . . . . . . . . . . 35 vii CHAPTER Page C. Concept 2 : Pig Velocity Control Using Mechanical Braking . 39 D. Concept 3 : Bypass Control Using Motorized Butterfly Valve . 40 E. Conclusion...

  6. Experimental investigation of velocity biasing in laser Doppler anemometry

    E-Print Network [OSTI]

    Wiedner, Brian Gregory

    1988-01-01T23:59:59.000Z

    Tech University; Chair of Advisory Commettee: Dr. Gerald L. Morrison The effects of several velocity bias reduction schemes were invest- igated using a 3-D laser Doppler anemometer and counter type (burst) signal processors. Amongst these schemes... was the McLaughlin Tiederman 3-D weighting factor, time between data weighting factor, equal time interval sampling and analogue instrumentation measurements. The ana- logue instrumentation measurements were obtained from the analogue frequency outputs...

  7. TURBULENCE-INDUCED RELATIVE VELOCITY OF DUST PARTICLES. I. IDENTICAL PARTICLES

    SciTech Connect (OSTI)

    Pan, Liubin [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Padoan, Paolo, E-mail: lpan@cfa.harvard.edu, E-mail: ppadoan@icc.ub.edu [ICREA and ICC, University of Barcelona, Marti i Franquès 1, E-08028 Barcelona (Spain)

    2013-10-10T23:59:59.000Z

    We study the relative velocity of inertial particles suspended in turbulent flows and discuss implications for dust particle collisions in protoplanetary disks. We simulate a weakly compressible turbulent flow, evolving 14 particle species with friction timescale, ?{sub p}, covering the entire range of scales in the flow. The particle Stokes numbers, St, measuring the ratio of ?{sub p} to the Kolmogorov timescale, are in the range 0.1 ?< St ?< 800. Using simulation results, we show that the model by Pan and Padoan gives satisfactory predictions for the rms relative velocity between identical particles. The probability distribution function (PDF) of the relative velocity is found to be highly non-Gaussian. The PDF tails are well described by a 4/3 stretched exponential function for particles with ?{sub p} ? 1-2 T{sub L}, where T{sub L} is the Lagrangian correlation timescale, consistent with a prediction based on PP10. The PDF approaches Gaussian only for very large particles with ?{sub p} ?> 54 T{sub L}. We split particle pairs at given distances into two types with low and high relative speeds, referred to as continuous and caustic types, respectively, and compute their contributions to the collision kernel. Although amplified by the effect of clustering, the continuous contribution vanishes in the limit of infinitesimal particle distance, where the caustic contribution dominates. The caustic kernel per unit cross section rises rapidly as St increases toward ? 1, reaches a maximum at ?{sub p} ? 2 T{sub L}, and decreases as ?{sub p}{sup -1/2} for ?{sub p} >> T{sub L}.

  8. RVSAO 2.0: Digital Redshifts and Radial Velocities

    E-Print Network [OSTI]

    Michael J. Kurtz; Douglas J. Mink

    1998-03-25T23:59:59.000Z

    RVSAO is a set of programs to obtain redshifts and radial velocities from digital spectra. RVSAO operates in the IRAF(Tody 1986, 1993) environment. The heart of the system is xcsao, which implements the cross-correlation method, and is a direct descendant of the system built by Tonry and Davis (1979). emsao uses intelligent heuristics to search for emission lines in spectra, then fits them to obtain a redshift. sumspec shifts and sums spectra to build templates for cross-correlation. linespec builds synthetic spectra given a list of spectral lines. bcvcorr corrects velocities for the motion of the earth. We discuss in detail the parameters necessary to run xcsao and emsao properly. We discuss the reliability and error associated with xcsao derived redshifts. We develop an internal error estimator, and we show how large, stable surveys can be used to develop more accurate error estimators. We develop a new methodology for building spectral templates for galaxy redshifts. We show how to obtain correlation velocities using emission line templates. Emission line correlations are substantially more efficient than the previous standard technique, automated emission line fitting. We compare the use of RVSAO with new methods, which use Singular Value Decomposition and $\\chi^2$ fitting techniques.

  9. Measurements of Spatially Resolved Velocity Variations in Shock Compressed Heterogeneous Materials Using a Line-Imaging Velocity Interferometer

    SciTech Connect (OSTI)

    ASAY,JAMES R.; CHHABILDAS,LALIT C.; KNUDSON,MARCUS D.; TROTT,WAYNE M.

    1999-09-01T23:59:59.000Z

    Relatively straightforward changes in the optical design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging velocity interferometer wherein both temporal and spatial resolution can be adjusted over a wide range. As a result line-imaging ORVIS can be tailored to a variety of specific applications involving dynamic deformation of heterogeneous materials as required by the characteristic length scale of these materials (ranging from a few {micro}m for ferroelectric ceramics to a few mm for concrete). A line-imaging ORVIS has been successfully interfaced to the target chamber of a compressed gas gun driver and fielded on numerous tests in combination with simultaneous measurements using a dual delay-leg, ''push-pull'' VISAR system. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Comparison of detailed spatially-resolved material response to the spatially averaged VISAR measurements will be discussed.

  10. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    SciTech Connect (OSTI)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Bolte, N. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Marsili, P. [Department of Physics, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Roche, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Wessel, F. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2010-10-15T23:59:59.000Z

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  11. Low Velocity Sphere Impact of a Borosilicate Glass

    SciTech Connect (OSTI)

    Morrissey, Timothy G [ORNL; Ferber, Mattison K [ORNL; Wereszczak, Andrew A [ORNL; Fox, Ethan E [ORNL

    2012-05-01T23:59:59.000Z

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Borofloat borosilicate glass, and is a follow-up to a similar study completed by the authors on Starphire soda-lime silicate glass last year. The response of the borosilicate glass to impact testing at different angles was also studied. The Borofloat glass was supplied by the US Army Research Laboratory and its tin-side was impacted or indented. The intent was to better understand low velocity impact response in the Borofloat. Seven sphere materials were used whose densities bracket that of rock: borosilicate glass, soda-lime silicate glass, silicon nitride, aluminum oxide, zirconium oxide, carbon steel, and a chrome steel. A gas gun or a ball-drop test setup was used to produce controlled velocity delivery of the spheres against the glass tile targets. Minimum impact velocities to initiate fracture in the Borofloat were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the seven sphere-Borofloat-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) BS glass responded similarly to soda-lime silicate glass when spherically indented but quite differently under sphere impact conditions; (2) Frictional effects contributed to fracture initiation in BS glass when it spherically indented. This effect was also observed with soda-lime silicate glass; (3) The force necessary to initiate fracture in BS glass under spherical impact decreases with increasing elastic modulus of the sphere material. This trend is opposite to what was observed with soda-lime silicate glass. Friction cannot explain this trend and the authors do not have a legitimate explanation for it yet; (4) The force necessary to initiate contact-induced fracture is higher under dynamic conditions than under quasi-static conditions. That difference decreases with increasing elastic modulus mismatch between the sphere material and borosilicate This trend was opposite in soda-lime silicate glass; (5) Fracture in borosilicate glass occurs at lower velocities (i.e., easier) at 24{sup o} than at 0{sup o} (orthogonal) and 46{sup o} of impact for the same probability of failure. Though not analyzed yet, this suggests that a convolution of kinetic energy and friction is contributing to that trend; (6) There is a subtle indication there was intra-tile differences in spherical indentation RCIF. This likely is not a material property nor exclusive to borosilicate glass, rather, it is a statistical response of a combination of local, surface-located flaw and imposed tensile stress. Understanding of the surface flaw population and flaw positioning can likely enable prediction of spherical indentation RCIF; and (7) Contact-induced fracture did not initiate in the Borofloat BS for impact kinetic energies up to {approx} 20 mJ. For kinetic energies between {approx} 20-150 mJ, fracture sometimes initiated. Contact-induced fracture would always occur for impact energies > 150 mJ. The energy values, and their boundaries, were much lower for BS glass than they were for soda-lime silicate glass.

  12. An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles

    SciTech Connect (OSTI)

    Meng, Jianxin; Mei, Deqing, E-mail: meidq-127@zju.edu.cn; Yang, Keji; Fan, Zongwei [State Key Lab of Fluid Power Transmission and Control, Department of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-08-14T23:59:59.000Z

    In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, an approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.

  13. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect (OSTI)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10T23:59:59.000Z

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  14. The radial velocity profile of the filament galaxies in the vicinity of the Virgo cluster as a test of gravity

    E-Print Network [OSTI]

    Lee, Jounghun; Rey, Soo-Chang

    2015-01-01T23:59:59.000Z

    The radial velocities of the galaxies in the vicinity of a massive cluster shows deviation from the pure Hubble flow due to their gravitational interaction with the cluster. According to a recent study of Falco et al. with a high-resolution N-body simulation based on General Relativity (GR), the radial velocity profile of the galaxies located at distances larger than three times the virial radius of a neighbour cluster has a universal shape and could be reconstructed from direct observables provided that the galaxies are distributed along one dimensional filament. Analyzing the narrow filamentary structure identified by Kim et al. in the vicinity of the Virgo cluster from the NASA-Sloan-Atlas catalog, we reconstruct the radial velocity profile of the Virgo filament galaxies and compare it with the universal formula derived by Falco et al. It is found that unless the virial mass of the Virgo cluster exceeds $10^{15}\\,h^{-1}M_{\\odot}$ the universal formula fails to describe the reconstructed radial velocity pro...

  15. Velocity bunching in travelling wave accelerator with low acceleration gradient

    E-Print Network [OSTI]

    Huang, Rui-Xuan; Li, Wei-Wei; Jia, Qi-Ka

    2013-01-01T23:59:59.000Z

    We present the analytical and simulated results concerning the influences of the acceleration gradient in the velocity bunching process, which is a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. Our study shows that the bunch compression application with low acceleration gradient is more tolerant to phase jitter and more successful to obtain compressed electron beam with symmetrical longitudinal distribution and low energy spread. We also present a transverse emittance compensation scheme to compensate the emittance growth caused by the increasing of the space charge force in the compressing process that is easy to be adjusted for different compressing factors.

  16. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    SciTech Connect (OSTI)

    Shupe, Matthew

    2013-05-22T23:59:59.000Z

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  17. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  18. Property:Maximum Velocity(m/s) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOffice Jump to: navigation,Velocity(m/s)

  19. E-Print Network 3.0 - a-type hyper-velocity star Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hyper-velocity star Search Powered by Explorit Topic List Advanced Search Sample search results for: a-type hyper-velocity star Page: << < 1 2 3 4 5 > >> 1 Jahresbericht 2008...

  20. E-Print Network 3.0 - additional radial velocity Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Sample search results for: additional radial velocity Page: << < 1 2 3 4 5 > >> 1 3D Least Squares Velocity from 3D Doppler Radial X. Chen, J.L. Barron, R.E. Mercer Summary:...

  1. Evidence for a critical velocity in a Bose-Einstein condensed gas

    E-Print Network [OSTI]

    C. Raman; M. Kohl; R. Onofrio; D. S. Durfee; C. E. Kuklewicz; Z. Hadzibabic; W. Ketterle

    1999-09-07T23:59:59.000Z

    We have studied dissipation in a Bose--Einstein condensed gas by moving a blue detuned laser beam through the condensate at different velocities. Strong heating was observed only above a critical velocity.

  2. Cosmic density and velocity fields in Lagrangian perturbation theory

    E-Print Network [OSTI]

    Mikel Susperregi; Thomas Buchert

    1997-08-04T23:59:59.000Z

    A first- and second-order relation between cosmic density and peculiar-velocity fields is presented. The calculation is purely Lagrangian and it is derived using the second-order solutions of the Lagrange-Newton system obtained by Buchert & Ehlers. The procedure is applied to two particular solutions given generic initial conditions. In this approach, the continuity equation yields a relation between the over-density and peculiar-velocity fields that automatically satisfies Euler's equation because the orbits are derived from the Lagrange-Newton system. This scheme generalizes some results obtained by Nusser et al. (1991) in the context of the Zel'dovich approximation. As opposed to several other reconstruction schemes, in this approach it is not necessary to truncate the expansion of the Jacobian given by the continuity equation in order to calculate a first- or second-order expression for the density field. In these previous schemes, the density contrast given by (a) the continuity equation and (b) Euler's equation are mutually incompatible. This inconsistency arises as a consequence of an improper handling of Lagrangian and Eulerian coordinates in the analysis. Here, we take into account the fact that an exact calculation of the density is feasible in the Lagrangian picture and therefore an accurate and consistent description is obtained.

  3. Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities

    SciTech Connect (OSTI)

    Giangrande S. E.; Luke, E. P.; Kollias, P.

    2012-02-01T23:59:59.000Z

    Extended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation from three diverse Atmospheric Radiation Measurement Program (ARM) locations [Lamont, Oklahoma, Southern Great Plains site (SGP); Niamey, Niger; and Black Forest, Germany] are presented. The analysis indicates a weak (0-10 cm{sup -1}) downward air motion beneath the melting layer for all three regions, a magnitude that is to within the typical uncertainty of the retrieval methods. On average, the hourly estimated standard deviation of the vertical air motion is 0.25 m s{sup -1} with no pronounced vertical structure. Profiles of D0 vary according to region and rainfall rate. The standard deviation of 1-min-averaged D0 profiles for isolated rainfall rate intervals is 0.3-0.4 mm. Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that gamma functions better explain paired velocity observations and radar retrievals for the Oklahoma dataset. This study will be useful in assessing uncertainties introduced in the measurement of precipitation parameters from ground-based and spaceborne remote sensors that are due to small-scale variability.

  4. Real-time planar flow velocity measurements using an optical flow algorithm implemented on GPU

    E-Print Network [OSTI]

    Gautier, N

    2013-01-01T23:59:59.000Z

    This paper presents a high speed implementation of an optical flow algorithm which computes planar velocity fields in an experimental flow. Real-time computation of the flow velocity field allows the experimentalist to have instantaneous access to quantitative features of the flow. This can be very useful in many situations: fast evaluation of the performances and characteristics of a new setup, design optimization, easier and faster parametric studies, etc. It can also be a valuable measurement tool for closed-loop flow control experiments where fast estimation of the state of the flow is needed. The algorithm is implemented on a Graphics Processing Unit (GPU). The accuracy of the computation is shown. Computation speed and scalability are highlighted along with guidelines for further improvements. The system architecture is flexible, scalable and can be adapted on the fly in order to process higher resolutions or achieve higher precision. The set-up is applied on a Backward-Facing Step (BFS) flow in a hydro...

  5. Effects of neutral interactions on velocity-shear-driven plasma waves

    SciTech Connect (OSTI)

    Enloe, C. L. [Physics Department, US Air Force Academy, Colorado Springs, Colorado 80840 (United States); Tejero, E. M.; Amatucci, W. E.; Crabtree, C.; Ganguli, G. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Sotnikov, V. [Sensors Directorate, Air Force Research Laboratory, Dayton, Ohio 45433 (United States)

    2014-06-15T23:59:59.000Z

    In a laboratory experiment, we demonstrate the substantial effects that collisions between charged and neutral particles have on low-frequency (?{sub i}????????{sub e}) shear-driven electrostatic lower hybrid waves in a plasma. We establish a strong (up to 2.5?kV/m) highly localized electric field with a length scale shorter than the ion gyroradius, so that the ions in the plasma, unlike the electrons, do not develop the full E?×?B drift velocity. The resulting shear in the particle velocities initiates the electron-ion hybrid (EIH) instability, and we observe the formation of strong waves in the vicinity of the shear with variations in plasma densities of 10% or greater. Our experimental configuration allows us to vary the neutral background density by more than a factor of two while holding the charged particle density effectively constant. Not surprisingly, increasing the neutral density decreases the growth rate/saturation amplitude of the waves and increases the threshold electric field necessary for wave formation, but the presence of neutrals affects the dominant wave frequency as well. We show that a 50% increase in the neutral density decreases the wave frequency by 20% while also suppressing the electric field dependence of the frequency that is observed when fewer neutrals are present. The majority of these effects, as well as the values of the frequencies we observe, closely match the predictions of previously developed linear EIH instability theory, for which we present the results of a numerical solution.

  6. Holographic and time-resolving ability of pulse-pair two-dimensional velocity interferometry

    SciTech Connect (OSTI)

    Erskine, David J., E-mail: erskine1@llnl.gov; Smith, R. F.; Celliers, P. M.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bolme, C. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ali, S. J. [Department of Chemistry, University of California, Berkeley, California 94720 (United States)

    2014-06-15T23:59:59.000Z

    Previous velocity interferometers used at research laboratories for shock physics experiments measured target motion at a point or many points on a line on the target. Recently, a two-dimensional (2d) version (2d-velocity interferometer system for any reflector) has been demonstrated using a pair of ultrashort (3 ps) pulses for illumination, separated by 268 ps. We have discovered new abilities for this instrument, by treating the complex output image as a hologram. For data taken in an out of focus configuration, we can Fourier process to bring narrow features such as cracks into sharp focus, which are otherwise completely blurred. This solves a practical problem when using high numerical aperture optics having narrow depth of field to observe moving surface features such as cracks. Furthermore, theory predicts that the target appearance (position and reflectivity) at two separate moments in time are recorded by the main and conjugate images of the same hologram, and are partially separable during analysis for narrow features. Hence, for the cracks we bring into refocus, we can make a two-frame movie with a subnanosecond frame period. Longer and shorter frame periods are possible with different interferometer delays. Since the megapixel optical detectors we use have superior spatial resolution over electronic beam based framing cameras, this technology could be of great use in studying microscopic three-dimensional-behavior of targets at ultrafast times scales. Demonstrations on shocked silicon are shown.

  7. Kr II and Xe II axial velocity distribution functions in a cross-field ion source

    SciTech Connect (OSTI)

    Lejeune, A.; Bourgeois, G.; Mazouffre, S. [ICARE, CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orlans Cedex 2 (France)

    2012-07-15T23:59:59.000Z

    Laser induced fluorescence measurements were carried out in a cross-field ion source to examine the behaviour of the axial ion velocity distribution functions (VDFs) in the expanding plasma. In the present paper, we focus on the axial VDFs of Kr II and Xe II ions. We examine the contourplots in a 1D-phase space (x,v{sub x}) representation in front of the exhaust channel and along the centerline of the ion source. The main ion beam, whose momentum corresponds to the ions that are accelerated through the whole potential drop, is observed. A secondary structure reveals the ions coming from the opposite side of the channel. We show that the formation of the neutralized ion flow is governed by the annular geometry. The assumption of a collisionless shock or a double layer due to supersonic beam interaction is not necessary. A non-negligible fraction of slow ions originates in local ionization or charge-exchange collision events between ions of the expanding plasma and atoms of the background residual gas. Slow ions that are produced near the centerline in the vicinity of the exit plane are accelerated toward the source body with a negative velocity leading to a high sputtering of front face. On the contrary, the ions that are produced in the vicinity of the channel exit plane are partially accelerated by the extended electric field.

  8. Investigation of the Moessbauer Spectrum Quality as a Dependence on the Frequency of the Velocity Signal

    SciTech Connect (OSTI)

    Pechousek, J. [Centre for Nanomaterial Research, Faculty of Science, Palacky University, Slechtitelu 11, 783 71, Olomouc (Czech Republic); Department of Experimental Physics, Faculty of Science, Palacky University, 17, listopadu 1192/12, 771 46, Olomouc (Czech Republic); Prochazka, R.; Cuda, J.; Frydrych, J.; Jancik, D. [Centre for Nanomaterial Research, Faculty of Science, Palacky University, Slechtitelu 11, 783 71, Olomouc (Czech Republic)

    2010-07-13T23:59:59.000Z

    This paper is focused on a quality characterizing the Moessbauer spectra measured for various frequencies of the velocity signal. Standard electromechanical double-loudspeaker drive and digital PID velocity controller were used for calibration spectra measurement in the frequency interval from 4 up to 100 Hz. Several parameters were evaluated for recommendation of the suitable velocity signal frequency.

  9. Nested Velocity Feedback Control -1 Presented at CS 2007 Dr Richard Mitchell 2007

    E-Print Network [OSTI]

    Mitchell, Richard

    Nested Velocity Feedback Control - 1 Presented at CS 2007 © Dr Richard Mitchell 2007 Nested tolerant to changes in the plant under control #12;Nested Velocity Feedback Control - 2 Presented at CS path #12;Nested Velocity Feedback Control - 3 Presented at CS 2007 © Dr Richard Mitchell 2007 Cherry

  10. Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review

    E-Print Network [OSTI]

    Li, Mingheng; Christofides, Panagiotis D.

    2009-01-01T23:59:59.000Z

    2700 (Sulzer Metco, Westbury, NY) and the Praxair-TafaJP-5000 (Praxair Surface Technolo- gies, Indianapolis, IN)),pro- cessing using a Praxair-TAFA JP-5000 HVOF thermal spray

  11. Measurement and modelling of high-resolution flow-velocity data under simulated rainfall on a

    E-Print Network [OSTI]

    solves the Saint- Venant equations in 2D, MAHLERAN uses a 1D kinematic wave in the slope direction 0022 in revised form 5 July 2007; accepted 23 July 2007 KEYWORDS Rainfall-simulation; Water erosion; Erosion algorithm that is close in principle to the diffusion-wave equation in 2D. The Darcy­ Weisbach friction

  12. Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review

    E-Print Network [OSTI]

    Li, Mingheng; Christofides, Panagiotis D.

    2009-01-01T23:59:59.000Z

    Size Distribution in Aerosol Processes with Simulta- neous Reaction, Nucleation, Condensation and Coagulation,

  13. Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review

    E-Print Network [OSTI]

    Li, Mingheng; Christofides, Panagiotis D.

    2009-01-01T23:59:59.000Z

    vs. Fuzzy Logic: Simple Tools to Predict and Control Complexfuzzy logic (Ref 73, 74). For the HVOF thermal spray process, a feedback control

  14. Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review

    E-Print Network [OSTI]

    Li, Mingheng; Christofides, Panagiotis D.

    2009-01-01T23:59:59.000Z

    Spray Technology Volume 18(5-6) Mid-December 2009—765 Oxygenoxygen and fuel are available, a previously developed approach (Ref 11) can Journal of Thermal Spray TechnologyTechnology Peer Reviewed Substrate properties Gas mass flow rate Fuel/oxygen

  15. The effect of rainfall on the velocity distribution in shallow channel flow

    E-Print Network [OSTI]

    Glass, Larry Joe

    1965-01-01T23:59:59.000Z

    , gave the following equation for uniform two-dimensional open channel f low v v max ~2. Iog y Ve~~ in which v is the velocity at any distance, y, above the channel bed, v Is the maximum velocity, g is the acceleration of gravity, d is the Illa X... piezometer located at the same longi- tudinal position along the flume at the tip of the ve'locity probe. The velocity coefficient of the total head probe was obtained by two methods. 29 One method was determining the velocity by observing the time...

  16. Validation of velocity map imaging conditions over larger areas

    SciTech Connect (OSTI)

    Reid, Mike; Koehler, Sven P. K. [School of Chemistry, University of Manchester, M13 9PL Manchester (United Kingdom); Photon Science Institute, University of Manchester, M13 9PL Manchester (United Kingdom); Dalton Cumbrian Facility, University of Manchester, Moor Row, CA24 3HA Whitehaven (United Kingdom)

    2013-04-15T23:59:59.000Z

    We have established through simulations and experiments the area over which Velocity Map Imaging (VMI) conditions prevail. We designed a VMI setup in which we can vary the ionization position perpendicular to the center axis of the time-of-flight spectrometer. We show that weak extraction conditions are far superior over standard three-plate setups if the aim is to increase the ionization volume without distorting VMI conditions. This is important for a number of crossed molecular beam experiments that already utilize weak extraction conditions, but to a greater extent for surface studies where fragments are desorbed or scattered off a surface in all directions. Our results on the dissociation of NO{sub 2} at 226 nm show that ionization of the fragments can occur up to {+-}5.5 mm away from the center axis of the time-of-flight spectrometer without affecting resolution or arrival position.

  17. Acoustic velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, Edwin F. (Alamo, CA)

    1986-01-01T23:59:59.000Z

    Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  18. Acoustic-velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, E.F.

    1982-09-30T23:59:59.000Z

    Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  19. Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F.; Thien, Michael G.; Wooley, Theodore A.

    2012-04-01T23:59:59.000Z

    Laboratory (PNNL) conducted an extensive evaluation of the ability of three ultrasonic instruments to detect critical velocity for a broad range of simulated Hanford nuclear waste streams containing particles with mean particle sizes of >50 microns. Evaluations were perform using the pipe loop at the Process Development Laboratory – East (PDL-E) at PNNL that was designed and built to evaluate the pipeline plugging issue during slurry transfer operations at the Hanford Waste Treatment Plant. In 2011 the ability of the ultrasonic PulseEcho system to detect critical velocity continued to be evaluated using the PDL-E flow loop and new simulants containing high-density particles with a mean particle size of < 15 microns. The PDL-E flow loop was modified for the 2011 testing to include a new test section that contained 5-MHz and 10-MHz ultrasonic transducers non-invasively mounted to schedule 40 pipe. The test section also contained reference instrumentation to facilitate direct comparison of the real-time PulseEcho transducer responses with experimentally observed critical velocities. This paper presents the results from the 2011 PulseEcho evaluation using a variety of simulated Hanford nuclear waste streams that were selected to encompass the expected high-level waste feed properties.

  20. Horizontal-Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Yelena L.; Banta, Robert M.; Kelley, Neil D.; Jonkman, Bonnie J.; Tucker, Sara C.; Newsom, Rob K.; Brewer, W. A.

    2008-08-01T23:59:59.000Z

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--has been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA’s High Resolution Doppler Lidar (HRDL), which have been shown to be numerically equivalent to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance ?u2 were computed from HRDL measurements of the line-of-sight (LOS) velocity using a technique described in Banta, et al. (2002). The technique was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. It then describes several series of averaging tests that produced the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal velocity variance ?u2. The results show high correlation (0.71-0.97) of the mean U and average wind speed measured by sodar and in-situ instruments, independent of sampling strategies and averaging procedures. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging techniques.

  1. Nonlinear Landau damping and formation of Bernstein-Greene-Kruskal structures for plasmas with q-nonextensive velocity distributions

    SciTech Connect (OSTI)

    Raghunathan, M. [Indian Institute of Science Education and Research (IISER), Pune 411021 (India); Ganesh, R. [Institute for Plasma Research, Gandhinagar 382428 (India)

    2013-03-15T23:59:59.000Z

    In the past, long-time evolution of an initial perturbation in collisionless Maxwellian plasma (q = 1) has been simulated numerically. The controversy over the nonlinear fate of such electrostatic perturbations was resolved by Manfredi [Phys. Rev. Lett. 79, 2815-2818 (1997)] using long-time simulations up to t=1600{omega}{sub p}{sup -1}. The oscillations were found to continue indefinitely leading to Bernstein-Greene-Kruskal (BGK)-like phase-space vortices (from here on referred as 'BGK structures'). Using a newly developed, high resolution 1D Vlasov-Poisson solver based on piecewise-parabolic method (PPM) advection scheme, we investigate the nonlinear Landau damping in 1D plasma described by toy q-distributions for long times, up to t=3000{omega}{sub p}{sup -1}. We show that BGK structures are found only for a certain range of q-values around q = 1. Beyond this window, for the generic parameters, no BGK structures were observed. We observe that for values of q<1 where velocity distributions have long tails, strong Landau damping inhibits the formation of BGK structures. On the other hand, for q>1 where distribution has a sharp fall in velocity, the formation of BGK structures is rendered difficult due to high wave number damping imposed by the steep velocity profile, which had not been previously reported. Wherever relevant, we compare our results with past work.

  2. Distributions of velocity and turbulence in a parallel flow along an asymmetric rod bundle

    SciTech Connect (OSTI)

    Rehme, K.

    1982-10-01T23:59:59.000Z

    An experimental investigation was performed to obtain detailed information on the velocity and turbulence distributions in a parallel turbulent flow through an asymmetric rod bundle. The rod bundle consisted of four parallel rods arranged asymmetrically in a rectangular channel. The pitch-to-diameter (P/D) ratio of the rods was P/D = 1.072. Experimental results were obtained in two wall subchannels with wall-to-diameter (W/D) ratios of W/D = 1.096 and 1.048, respectively. The experimental results showed high anisotropy of the momentum transport, particularly in the gaps of the rod bundle. Comparisons between the measured wall shear stresses and data computed by the VELASCO code show considerable differences, particularly for the wall subchannel with W/D = 1.048.

  3. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOE Patents [OSTI]

    Benjamin, R.F.

    1983-10-18T23:59:59.000Z

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  4. Particle in cell simulations of Buneman instability of a current-driven plasma with q-nonextensive electron velocity distribution

    SciTech Connect (OSTI)

    Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Roozbahani, H.; Komaizi, D. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Hashemzadeh, M. [Faculty of Physics, Shahrood University, Shahrood (Iran, Islamic Republic of)

    2014-09-15T23:59:59.000Z

    The nonlinear evolution of low frequency Buneman instability in an unmagnetized current-driven plasma with q-nonextensive electron velocity distribution is investigated using particle in cell simulation. Simulation results show that the generation of electron phase space holes and the counter-streaming current induced in the plasma strongly depend on the q-parameter. It is found that by increasing the nonextensive parameter, the distribution of electron density becomes highly peaked. This density steepening or grating-like pattern occurs at the saturation time. In addition, a generalized dispersion relation is obtained using the kinetic theory. Analysis of the dispersion relation and the temporal evolution of the electric field energy density reveal that the growth rate of instability increases by increasing the q-parameter. Finally, the results of Maxwellian and q-nonextensive velocity distributions have been compared and discussed.

  5. Radiation Hydrodynamics Test Problems with Linear Velocity Profiles

    SciTech Connect (OSTI)

    Hendon, Raymond C. [Los Alamos National Laboratory; Ramsey, Scott D. [Los Alamos National Laboratory

    2012-08-22T23:59:59.000Z

    As an extension of the works of Coggeshall and Ramsey, a class of analytic solutions to the radiation hydrodynamics equations is derived for code verification purposes. These solutions are valid under assumptions including diffusive radiation transport, a polytropic gas equation of state, constant conductivity, separable flow velocity proportional to the curvilinear radial coordinate, and divergence-free heat flux. In accordance with these assumptions, the derived solution class is mathematically invariant with respect to the presence of radiative heat conduction, and thus represents a solution to the compressible flow (Euler) equations with or without conduction terms included. With this solution class, a quantitative code verification study (using spatial convergence rates) is performed for the cell-centered, finite volume, Eulerian compressible flow code xRAGE developed at Los Alamos National Laboratory. Simulation results show near second order spatial convergence in all physical variables when using the hydrodynamics solver only, consistent with that solver's underlying order of accuracy. However, contrary to the mathematical properties of the solution class, when heat conduction algorithms are enabled the calculation does not converge to the analytic solution.

  6. Impact of boundaries on velocity profiles in bubble rafts

    E-Print Network [OSTI]

    Yuhong Wang; Kapilanjan Krishan; Michael Dennin

    2006-01-31T23:59:59.000Z

    Under conditions of sufficiently slow flow, foams, colloids, granular matter, and various pastes have been observed to exhibit shear localization, i.e. regions of flow coexisting with regions of solid-like behavior. The details of such shear localization can vary depending on the system being studied. A number of the systems of interest are confined so as to be quasi-two dimensional, and an important issue in these systems is the role of the confining boundaries. For foams, three basic systems have been studied with very different boundary conditions: Hele-Shaw cells (bubbles confined between two solid plates); bubble rafts (a single layer of bubbles freely floating on a surface of water); and confined bubble rafts (bubbles confined between the surface of water below and a glass plate on top). Often, it is assumed that the impact of the boundaries is not significant in the ``quasi-static limit'', i.e. when externally imposed rates of strain are sufficiently smaller than internal kinematic relaxation times. In this paper, we directly test this assumption for rates of strain ranging from $10^{-3}$ to $10^{-2} {\\rm s^{-1}}$. This corresponds to the quoted quasi-static limit in a number of previous experiments. It is found that the top plate dramatically alters both the velocity profile and the distribution of nonlinear rearrangements, even at these slow rates of strain.

  7. Design of a hypersonic waterjet apparatus driven by high explosives

    SciTech Connect (OSTI)

    Weeks, Brandon L.; Klosterman, John; Worsey, Paul N.

    2001-08-01T23:59:59.000Z

    The design and construction of a hypersonic waterjet apparatus is described. Jet velocities from 0.5 to 5 km/s have been achieved using a high explosive charge. Images are obtained in situ on various target substrates using a high-speed framing camera. Experimental results are shown for the impact of high velocity waterjets on propellants and high explosive samples. By observing the impact of the waterjet at a wide range of velocities a safety threshold can be determined where no reaction takes place.

  8. A numerical study of geometry dependent errors in velocity, temperature, and density measurements from single grid planar retarding potential analyzers

    SciTech Connect (OSTI)

    Davidson, R. L.; Earle, G. D.; Heelis, R. A. [William B. Hanson Center for Space Sciences, University of Texas at Dallas, 800 W. Campbell Road, WT15, Richardson, Texas 75080 (United States); Klenzing, J. H. [Space Weather Laboratory/Code 674, Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2010-08-15T23:59:59.000Z

    Planar retarding potential analyzers (RPAs) have been utilized numerous times on high profile missions such as the Communications/Navigation Outage Forecast System and the Defense Meteorological Satellite Program to measure plasma composition, temperature, density, and the velocity component perpendicular to the plane of the instrument aperture. These instruments use biased grids to approximate ideal biased planes. These grids introduce perturbations in the electric potential distribution inside the instrument and when unaccounted for cause errors in the measured plasma parameters. Traditionally, the grids utilized in RPAs have been made of fine wires woven into a mesh. Previous studies on the errors caused by grids in RPAs have approximated woven grids with a truly flat grid. Using a commercial ion optics software package, errors in inferred parameters caused by both woven and flat grids are examined. A flat grid geometry shows the smallest temperature and density errors, while the double thick flat grid displays minimal errors for velocities over the temperature and velocity range used. Wire thickness along the dominant flow direction is found to be a critical design parameter in regard to errors in all three inferred plasma parameters. The results shown for each case provide valuable design guidelines for future RPA development.

  9. Recommended Tritium Oxide Deposition Velocity For Use In Savannah River Site Safety Analyses

    SciTech Connect (OSTI)

    Lee, P. L.; Murphy, C. E.; Viner, B. J.; Hunter, C. H.

    2012-07-31T23:59:59.000Z

    This report documents the results of examining the deposition velocity of water to forests, the residence time of HTO in forests, and the relation between deposition velocity and residence time with specific consideration given to the topography and experimental work performed at SRS. A simple mechanistic model is used to obtain plausible deposition velocity and residence time values where experimental data are not available and recommendations are made for practical application in a safety analysis model.

  10. CALIBRATING STELLAR VELOCITY DISPERSIONS BASED ON SPATIALLY RESOLVED H-BAND SPECTRA FOR IMPROVING THE M{sub BH}-{sigma}{sub *} RELATION

    SciTech Connect (OSTI)

    Kang, Wol-Rang; Woo, Jong-Hak; Park, Daeseong [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 151-742 (Korea, Republic of)] [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 151-742 (Korea, Republic of); Schulze, Andreas [Kavli Institute for Astronomy and Astrophysics, Peking University, 100871 Beijing (China)] [Kavli Institute for Astronomy and Astrophysics, Peking University, 100871 Beijing (China); Riechers, Dominik A. [Astronomy Department, Cornell University, 220 Space Science Building, Ithaca, NY 14853 (United States)] [Astronomy Department, Cornell University, 220 Space Science Building, Ithaca, NY 14853 (United States); Kim, Sang Chul [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)] [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Smolcic, Vernesa, E-mail: woo@astro.snu.ac.kr [Physics Department, University of Zagreb, Bijenicka cesta 32, 10002 Zagreb (Croatia)] [Physics Department, University of Zagreb, Bijenicka cesta 32, 10002 Zagreb (Croatia)

    2013-04-10T23:59:59.000Z

    To calibrate stellar velocity dispersion measurements from optical and near-IR stellar lines, and to improve the black hole mass (M{sub BH})-stellar velocity dispersion ({sigma}{sub *}) relation, we measure {sigma}{sub *} based on high-quality H-band spectra for a sample of 31 nearby galaxies, for which dynamical M{sub BH} is available in the literature. By comparing velocity dispersions measured from stellar lines in the H-band with those measured from optical stellar lines, we find no significant difference, suggesting that optical and near-IR stellar lines represent the same kinematics and that dust effect is negligible for early-type galaxies. Based on the spatially resolved rotation and velocity dispersion measurements along the major axis of each galaxy, we find that a rotating stellar disk is present for 80% of galaxies in the sample. For galaxies with a rotation component, {sigma}{sub *} measured from a single aperture spectrum can vary by up to {approx}20%, depending on the size of the adopted extraction aperture. To correct for the rotational broadening, we derive luminosity-weighted {sigma}{sub *} within the effective radius of each galaxy, providing uniformly measured velocity dispersions to improve the M{sub BH}-{sigma}{sub *} relation.

  11. asymmetric m-b velocity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consistent with Asymmetric M-B Velocity Distributions-Implications on Direct Dark Matter Searches General Relativity & Quantum Cosmology (arXiv) Summary: In the present paper...

  12. E-Print Network 3.0 - air stream velocities Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Environment GIS Lab Collection: Engineering 11 1 Copyright 1997 by ASME 1997 ASME Fluids Engineering Division Summer Meeting Summary: or structure velocity u Streamwise...

  13. E-Print Network 3.0 - acoustic particle velocity Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Mathematics, Purdue University Collection: Mathematics 44 AIAA 2001-2961 The Rijke Tube Revisited via Laboratory Summary: product of acoustic velocity and pressure, known as...

  14. AN ASSESSMENT OF THE ACCURACY OF MAGENTIC RESONANCE PHASE VELOCITY MAPPING IN TURBULENT FLOW THROUGH ORIFICES.

    E-Print Network [OSTI]

    Pidaparthi, Sahitya

    2011-01-01T23:59:59.000Z

    ?? Magnetic resonance phase velocity mapping (MRPVM) is an established clinical technique to measure blood flow. The acquired information can be used to diagnose a… (more)

  15. Test Loop Demonstration and Evaluation of Slurry Transfer Line Critical Velocity Measurement Instruments

    SciTech Connect (OSTI)

    Bontha, Jagannadha R.; Jenks, Jeromy WJ; Morgen, Gerald P.; Peters, Timothy J.; Wilcox, Wayne A.; Adkins, Harold E.; Burns, Carolyn A.; Greenwood, Margaret S.; MacFarlan, Paul J.; Denslow, Kayte M.; Schonewill, Philip P.; Blanchard, Jeremy; Baer, Ellen BK

    2010-07-31T23:59:59.000Z

    This report presents the results of the evaluation of three ultrasonic sensors for detecting critical velocity during slurry transfer between the Hanford tank farms and the WTP.

  16. E-Print Network 3.0 - ambient transverse velocity Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Radially Anisotropic Crustal Velocity Structure of NW Canada with Ambient-Noise Tomography M. E. Daigle1; C... -component records and Love waves on the transverse components....

  17. E-Print Network 3.0 - air velocity temperature Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Medicine ; Environmental Sciences and Ecology 66 Water Modeling of Steel Flow, Air Entrainment and Filtration Summary: . In general, a certain minimum velocity has to be...

  18. Horizontal Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Y. L.; Banta, R. M.; Kelley, N. D.; Jonkman, B. J.; Tucker, S. C.; Newsom, R. K.; Brewer, W. A.

    2008-08-01T23:59:59.000Z

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--have been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA's high-resolution Doppler lidar (HRDL), which have been shown to be approximately equal to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance {sigma}2u were computed from HRDL measurements of the line-of-sight (LOS) velocity using a method described by Banta et al., which uses an elevation (vertical slice) scanning technique. The method was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. The results for the mean U and mean wind speed measured by sodar and in situ instruments for all nights of LLLJP show high correlation (0.71-0.97), independent of sampling strategies and averaging procedures, and correlation coefficients consistently >0.9 for four high-wind nights, when the low-level jet speeds exceeded 15 m s{sup -1} at some time during the night. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging parameters. Several series of averaging tests are described, to find the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal-velocity variance {sigma}{sup 2}{sub u}. Because of the nonstationarity of the SBL data, the best results were obtained when the velocity data were first averaged over intervals of 1 min, and then further averaged over 3-15 consecutive 1-min intervals, with best results for the 10- and 15-min averaging periods. For these cases, correlation coefficients exceeded 0.9. As a part of the analysis, Eulerian integral time scales ({tau}) were estimated for the four high-wind nights. Time series of {tau} through each night indicated erratic behavior consistent with the nonstationarity. Histograms of {tau} showed a mode at 4-5 s, but frequent occurrences of larger {tau} values, mostly between 10 and 100 s.

  19. Deeply-scaled GaN high electron mobility transistors for RF applications

    E-Print Network [OSTI]

    Lee, Dong Seup

    2014-01-01T23:59:59.000Z

    Due to the unique combination of large critical breakdown field and high electron velocity, GaN-based high electron mobility transistors (HEMTs) have great potential for next generation high power RF amplifiers. The ...

  20. A Virtual Velocity Attractor, Harmonic Potential Approach for Joint planning and control of a UAV

    E-Print Network [OSTI]

    Masoud, Ahmad A.

    A Virtual Velocity Attractor, Harmonic Potential Approach for Joint planning and control of a UAV vehicles (UAVs). The method indirectly controls the trajectory of a UAV by regulating its velocity using planner into a well-behaved control signal that can be fed to the actuator of the UAV. I. Introduction

  1. Shirokov's contracting lifetimes and the interpretation of velocity eigenstates for unstable quantons

    E-Print Network [OSTI]

    Gordon N. Fleming

    2009-11-02T23:59:59.000Z

    This paper is concerned with the interpretation of velocity eigenstates for unstable quantons, their relationship to space like momentum eigenstates for such quantons and the explanation of Shirokovs contracting lifetimes for such velocity eigenstates. It is an elaboration of a portion of the authors earlier study.

  2. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    SciTech Connect (OSTI)

    Song Hongwei; Wu Xianqian; Huang Chenguang; Wei Yangpeng; Wang Xi [Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15T23:59:59.000Z

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  3. The effects of inlet velocity and barrel diameter on cyclone performance

    E-Print Network [OSTI]

    Faulkner, William Brock

    2006-08-16T23:59:59.000Z

    geometric proportions. The Texas A&M Cyclone Design (TCD) method is a simple method for designing cyclones based on an inlet design velocity. The TCD method specifies �ideal� inlet velocities of 975 ± 120 m/min (3200 ± 400 fpm) and 914 ± 120 m/min (3000...

  4. Sound velocities of ferropericlase in the Earth's lower mantle Jung-Fu Lin,1

    E-Print Network [OSTI]

    Lin, Jung-Fu "Afu"

    . Introduction [2] The speed of seismic waves in the Earth's lower mantle is governed by the elastic properties a dramatic increase in the isothermal bulk modulus (KT) and bulk sound velocity (VF) at the electronic spinSound velocities of ferropericlase in the Earth's lower mantle Jung-Fu Lin,1 Steven D. Jacobsen,2

  5. Static Friction Phenomena The following static friction phenomena have a direct dependency on velocity.

    E-Print Network [OSTI]

    Simpkins, Alex

    Coulomb Friction Viscous Friction Stribeck Friction Static Friction Phenomena The following static friction phenomena have a direct dependency on velocity. Static Friction Model: Friction force opposes the direction of motion when the sliding velocity is zero. Coulomb Friction Model: Friction force

  6. The Effect of Slip Velocity on Saturation for Multiphase Condensing Mixtures in a PEM Fuel Cell

    E-Print Network [OSTI]

    Stockie, John

    The Effect of Slip Velocity on Saturation for Multiphase Condensing Mixtures in a PEM Fuel Cell in computed results reported in the fuel cell literature, but which has not yet received a satisfactory to treat the slip velocity between phases. Keywords: Condensation ­ Two Phase Flow ­ PEM Fuel Cell ­ Slip

  7. Acoustic holography for piston sound radiation with non-uniform velocity profiles

    E-Print Network [OSTI]

    Acoustic holography for piston sound radiation with non-uniform velocity profiles Ronald M. Aarts results for the radiation of sound due to a non-uniformly moving, baffled, circular piston for estimating the radially symmetric part of a velocity profile (baffled- piston radiation) from on

  8. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    SciTech Connect (OSTI)

    Bin Mohamad, Edy Tonnizam; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia [Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai. Johor (Malaysia); Saad, Rosli [Universiti Sains Malaysia, Penang (Malaysia)

    2010-12-23T23:59:59.000Z

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  9. Interferometric velocity analysis using physical and nonphysical energy Simon King1

    E-Print Network [OSTI]

    Interferometric velocity analysis using physical and nonphysical energy Simon King1 , Andrew Curtis as apparent energy that could not have propagated between receiver locations -- so-called nonphysical energy. We have developed a novel method of velocity analysis that uses both the physical and nonphysical

  10. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines P. Guio1 , J. Lilensten2 , W. Kofman2 arbitrary velocity distribution function with cylindrical symmetry along the magnetic ®eld. The electron

  11. ccsd00000648 Damping rates of the atomic velocity in Sisyphus cooling

    E-Print Network [OSTI]

    decades have witnessed an impressive progress in laser cooling techniques, and nowdays it is possibleccsd­00000648 (version 1) : 29 Sep 2003 Damping rates of the atomic velocity in Sisyphus cooling and experimental study of the damping process of the atomic velocity in Sisyphus cooling. The relaxation rates

  12. Arctic sea ice velocity field: General circulation and turbulent-like fluctuations

    E-Print Network [OSTI]

    Boyer, Edmond

    Arctic sea ice velocity field: General circulation and turbulent-like fluctuations P. Rampal,1,2 J the Arctic sea ice velocity field as the superposition of a mean field and fluctuations. We study how subtracting the mean field, are analyzed in terms of diffusion properties. Although the Arctic sea ice cover

  13. Monetary circulation, the paradox of profits, and the velocity of money1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Monetary circulation, the paradox of profits, and the velocity of money1 Olivier ALLAIN Université of money is higher than one because some monetary units are used in several transactions of goods. Key words: paradox of profits, circulation, endogenous money, velocity of money, stock-flow consistent

  14. Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures Eric Abstract Global burning velocities of methane-air-steam mixtures are measured on prismatic laminar Bunsen flames and lifted turbulent V-flames for various preheating temperatures, equivalence ratios and steam

  15. Discovery of an Unbound Hyper-Velocity Star in the Milky Way Halo

    E-Print Network [OSTI]

    Warren R. Brown; Margaret J. Geller; Scott J. Kenyon; Michael J. Kurtz

    2005-01-11T23:59:59.000Z

    We have discovered a star, SDSS J090745.0+024507, leaving the Galaxy with a heliocentric radial velocity of +853+-12 km/s, the largest velocity ever observed in the Milky Way halo. The star is either a hot blue horizontal branch star or a B9 main sequence star with a heliocentric distance ~55 kpc. Corrected for the solar reflex motion and to the local standard of rest, the Galactic rest-frame velocity is +709 km/s. Because its radial velocity vector points 173.8 deg from the Galactic center, we suggest that this star is the first example of a hyper-velocity star ejected from the Galactic center as predicted by Hills and later discussed by Yu & Tremaine. The star has [Fe/H]~0, consistent with a Galactic center origin, and a travel time of <80 Myr from the Galactic center, consistent with its stellar lifetime. If the star is indeed traveling from the Galactic center, it should have a proper motion of 0.3 mas/yr observable with GAIA. Identifying additional hyper-velocity stars throughout the halo will constrain the production rate history of hyper-velocity stars at the Galactic center.

  16. Superluminal, subluminal, and negative velocities in free-space electromagnetic propagation

    E-Print Network [OSTI]

    Budko, Neil V

    2010-01-01T23:59:59.000Z

    In this Chapter the time-domain analysis of the velocity of the electromagnetic field pulses generated by a spatially compact source in free space is presented. Recent simulations and measurements of anomalous superluminal, subluminal, and negative velocities are discussed. It is shown that such velocities are local and instantaneous in nature and do not violate either causality or special relativity. Although these effects are mainly confined to the near- and intermediate-field zones, some of them seem paradoxical and still lack adequate physical interpretation.

  17. Precision measurement of transverse velocity distribution of a Strontium atomic beam

    E-Print Network [OSTI]

    Gao, F; Xu, P; Tian, X; Wang, Y; Ren, J; Wu, Haibin; Chang, Hong

    2013-01-01T23:59:59.000Z

    We measure precisely the transverse velocity distribution in a thermal Sr atomic beam with a velocity selective saturated fluorescence spectroscopy. By using the ultrastable laser system and narrow intercombination transition line of Sr atoms, the resolution of the velocity measured can be reached 0.13m/s, corresponding to 90$\\mu K$ in energy unit. The experimental results are agreement very well with a theoretical calculation. With the spectroscopic techniques, the absolute frequency of the intercombination transition of $^{88}$Sr is measured by an optical-frequency comb generator referenced to the SI second through an H maser, which is given by 434 829 121 318(10)kHz.

  18. Ensemble velocity of non-processive molecular motors with multiple chemical states

    E-Print Network [OSTI]

    Andrej Vilfan

    2014-09-27T23:59:59.000Z

    We study the ensemble velocity of non-processive motor proteins, described with multiple chemical states. In particular, we discuss the velocity as a function of ATP concentration. Even a simple model which neglects the strain-dependence of transition rates, reverse transition rates and nonlinearities in the elasticity can show interesting functional dependencies, which deviate significantly from the frequently assumed Michaelis-Menten form. We discuss how the oder of events in the duty cycle can be inferred from the measured dependence. The model also predicts the possibility of velocity reversal at a certain ATP concentration if the duty cycle contains several conformational changes of opposite directionalities.

  19. Design, fabrication, and characterization of germanium MOSFETs with high-k gate dielectric stacks based on the nitride interfacial layers

    E-Print Network [OSTI]

    Ritenour, Andrew P. (Andrew Paul), 1974-

    2007-01-01T23:59:59.000Z

    To improve source injection velocity, and consequently MOSFET performance, high mobility semiconductors are being explored as possible replacements for silicon. Germanium offers enhanced electron mobility and superior hole ...

  20. Inversion for subbottom sound velocity profiles in the deep and shallow ocean

    E-Print Network [OSTI]

    Souza, Luiz Alberto Lopes de

    2005-01-01T23:59:59.000Z

    This thesis investigates the application of acoustic measurements in the deep and shallow ocean to infer the sound velocity profile (svp) in the seabed. For the deep water ocean, an exact method based on the Gelfand-Levitan ...

  1. The radial velocity signature of tides raised in stars hosting exoplanets

    E-Print Network [OSTI]

    Arras, Phil

    Close-in, massive exoplanets raise significant tides in their stellar hosts. We compute the radial velocity (RV) signal due to this fluid motion in the equilibrium tide approximation. The predicted RVs in the observed ...

  2. Site-Specific Velocity and Density Model for the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect (OSTI)

    Rohay, Alan C.; Brouns, Thomas M.

    2007-06-27T23:59:59.000Z

    This report documents the work conducted under the SBP to develop a shear wave and compressional wave velocity and density model specific to the WTP site. Section 2 provides detailed background information on the WTP site and its underlying geology as well as on the Seismic Boreholes Project activities leading up to the Vs and Vp measurements. In Section 3, methods employed and results obtained are documented for measurements of Vs and Vp velocities in basalts and interbeds. Section 4 provides details on velocity measurements in the sediments underlying the WTP. Borehole gravity measurements of density of the subsurface basalt and sediments are described in Section 5. Section 6 describes the analysis of data presented in section 3-5, and presents the overall velocity and density model for the WTP site.

  3. Influence of Shelves on Air Temperature and Velocity in a Supermarket

    E-Print Network [OSTI]

    Song, C.; Fang, X.; Tan, Y.

    2006-01-01T23:59:59.000Z

    In the sales area of a supermarket, the airflow pattern is different from the general marketplace due to its particularity in shelf layout and system zones. When something generates heat, the influence on velocity fields and temperature fields...

  4. E-Print Network 3.0 - angular velocity Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    momentum and its kinetic energy... A and sticks to it. Find expressions for the angular velocity, the angular momentum and the kinetic energy... of the assembly. 2. A cylinder of...

  5. E-Print Network 3.0 - annular systolic velocity Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    << < 1 2 3 4 5 > >> 1 Characterization of Mitral Valve Annular Dynamics in the Beating Heart MANUEL K. RAUSCH,1 Summary: the annular velocity as the temporal derivative of the...

  6. Ring diagram analysis of velocity fields within the solar convection zone

    E-Print Network [OSTI]

    Sarbani Basu; H. M. Antia; S. C. Tripathy

    1998-06-23T23:59:59.000Z

    Ring diagram analysis of solar oscillation power spectra obtained from MDI data is performed to study the velocity fields within the solar convection zone. The three dimensional power spectra are fitted to a model with a Lorentzian profile in frequency and includes the advection of the wave front by horizontal flows to obtain the two horizontal components of flows as a function of the horizontal wave number and radial order of the oscillation modes. This information is then inverted using the OLA and RLS techniques to infer the variation in flow velocity with depth. The resulting velocity fields yield the mean rotation velocity at different latitudes which agrees reasonably with helioseismic estimates. The zonal flow inferred in the outermost layers also appears to be in agreement with other measurements. A meridional flow from equator polewards is found to have an amplitude of about 25 m/s near the surface and the amplitude appears to increase with depth.

  7. Full wavefield inversion methods for monitoring time-lapse subsurface velocity changes

    E-Print Network [OSTI]

    Yang, Di, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Quantitative measurements of seismic velocity changes from time-lapse seismic experiments provide dynamic information about the subsurface that improves the understanding of the geology and reservoir properties. In this ...

  8. E-Print Network 3.0 - aggregate sound velocities Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page: << < 1 2 3 4 5 > >> 1 VII THINKING OF SOLUTIONS: measures to mitigate night time wind turbine noise Summary: sound levels can be aggregated in 1 ms wind velocity classes...

  9. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect (OSTI)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09T23:59:59.000Z

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  10. Shear wave seismic velocity profiling and depth to water table earthquake site

    E-Print Network [OSTI]

    Barrash, Warren

    ..................................................................................................... 6 Summary of seismic refraction/reflection methodsShear wave seismic velocity profiling and depth to water table ­ earthquake site response measurements for Valley County, Idaho Lee M. Liberty and Gabriel M. Gribler, Boise State University Center

  11. Microbial Activity during Biodegradation and its Effects on Groundwater Velocity in a Contaminated Aquifer

    E-Print Network [OSTI]

    Schillig, Peter C.

    2008-03-26T23:59:59.000Z

    , toluene, ethylbenzene, and xylene isomers (BTEX) (Yerushalmi et al., 1999; Landmeyer and Bradley 2003). Such passive methods rely on the ambient groundwater velocity to deliver contaminants to the reactive zone. Biostimulation techniques operate... Microbial Activity during Biodegradation and its Effects on Groundwater Velocity in a Contaminated Aquifer by Copyright 2008 Peter Curtis Schillig B.S. (Dept. Hons), Ohio University, 2005 Submitted to the Department...

  12. Time dependent ellipsoidal residual velocity distributions for self-gravitating systems of collisionless particles

    E-Print Network [OSTI]

    Simms, Frank Robert

    1973-01-01T23:59:59.000Z

    TIME DEPENDENT ELLIPSOIDAL RESIDUAL VELOCITY DISTRIBUTIONS FOR SELF-GRAVITATING SYSTEMS OF COLLISIONLESS PARTICLES A Thesis by FRANK ROBERT SINS Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 1973 Major Subject: Physi cs TIME DEPENDENT ELLIPSOIDAL RESIDUAL VELOCITY DISTRIBUTIONS FOR SELF-GRAVITATING SYSTEMS OF COLLISIONLESS PARTICLES A Thesis by FRANK ROBERT SIMMS Approved as to style...

  13. Velocity models, material balance and solution convergence in streamline-based simulation

    E-Print Network [OSTI]

    Sabir, Kamran

    2002-01-01T23:59:59.000Z

    FOR THE QUARTER FIVE-SPOT PATTERN . . . . . . . . 2. 1 Introduction . . 2. 2 Five-Spot Waterflooding Pattern. . . . . III VELOCITY MODELS IN RECTANGULAR AND CORNER POINT CELLS . . 17 3. 1 Inn oduction1 3. 2 Literature Survey 1 . 3. 3 Velocity Models... . . . . . . . . . . . . APPENDIX A . . . . . . . . . . . . . VITA 148 150 153 158 LIST OF FIGURES FIGURE Page 2. 1 The 3D view of the pressure distribution in the quarter five-spot waterflooding pattern . 10 2. 2 The contour plot of the pressure (or potential...

  14. A model of the near-surface seismic velocity: southern San Joaqin Valley, California

    E-Print Network [OSTI]

    Ferry, James Gerard

    2012-06-07T23:59:59.000Z

    , representative hydrograph for the central valley Figure 1. (a. ) Sea-level correctional velocity the from preliminary study estimated for the 1980's. Page 3 3 3. Preliminary test data plotted for the model of constant velocity above and below the water... variations, a major problem is to determine the static corrections for seismic data which were surveyed during the last 20 years. Because of the limited number of traveltime measurements, it would be desirable to use all ot the measurements which were...

  15. Extension of the operating parameters of the two stage light gas gun to velocities below 2 km/sec.

    SciTech Connect (OSTI)

    Thoe, R S

    2007-08-28T23:59:59.000Z

    The Joint Actinide Shock Physics Experimental Facility (JASPER) located in area 27 at the Nevada Test Site Has been tasked with providing high accuracy information on the Equation Of State (EOS) and other dynamic properties of weapons grade plutonium and other actinides important to the stockpile stewardship program. In the past 5 years this facility has provided dozens of experimental data points for the accurate determination of pressure density relationship for these materials over a broad pressure range. In order to complete this survey it is necessary to extend the low pressure region to include projectile velocities below 2 km/s. For most gas gun facilities this would present not too great a difficulty, one could simply decrease the amount of propellant along with a decrease in the strength of the petal valve, However JASPER requires that the piston be securely embedded in the Acceleration Reservoir (AR) as part of the containment system. The projectile must remain flat and undistorted. This requirement makes the attainment of slow velocities problematic. This talk will discuss the JASPER Facility, A finite difference code developed to give predictive capability for two stage gas guns, and a set of experiments performed to demonstrate this capability.

  16. Determination of elastic properties of a MnO{sub 2} coating by surface acoustic wave velocity dispersion analysis

    SciTech Connect (OSTI)

    Sermeus, J.; Glorieux, C., E-mail: christ.glorieux@fys.kuleuven.be [Laboratory for Acoustics and Thermal Physics, KU Leuven, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Sinha, R.; Vereecken, P. M. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Center for Surface Chemistry and Catalysis, KU Leuven, University of Leuven, Kasteelpark Arenberg 23, B-3001 Leuven (Belgium); Vanstreels, K. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2014-07-14T23:59:59.000Z

    MnO{sub 2} is a material of interest in the development of high energy-density batteries, specifically as a coating material for internal 3D structures, thus ensuring rapid energy deployment. Its electrochemical properties have been mapped extensively, but there are, to the best of the authors' knowledge, no records of the elastic properties of thin film MnO{sub 2}. Impulsive stimulated thermal scattering (ISTS), also known as the heterodyne diffraction or transient grating technique, was used to determine the Young's modulus (E) and porosity (?) of a 500?nm thick MnO{sub 2} coating on a Si(001) substrate. ISTS is an all optical method that is able to excite and detect surface acoustic waves (SAWs) on opaque samples. From the measured SAW velocity dispersion, the Young's modulus and porosity were determined to be E?=?25?±?1?GPa and ?=42±1%, respectively. These values were confirmed by independent techniques and determined by a most-squares analysis of the carefully fitted SAW velocity dispersion. This study demonstrates the ability of the presented technique to determine the elastic parameters of a thin, porous film on an anisotropic substrate.

  17. ECG Denoising using Angular Velocity as a State and an Observation in an Extended Kalman Filter Framework

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ECG Denoising using Angular Velocity as a State and an Observation in an Extended Kalman Filter of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one Terms-- Extended Kalman Filter (EKF), Angular velocity, Electrocardiogram (ECG), ECG Dynamical Model

  18. E-Print Network 3.0 - alto high-resolution search Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . CARMENES, Calar Alto high-Resolution search for M dwarfs with Exo-earths with a Near-infrared Echelle... -velocity noise. As a high-resolution ... Source: Gutirrez,...

  19. THEORY OF DISPERSED FIXED-DELAY INTERFEROMETRY FOR RADIAL VELOCITY EXOPLANET SEARCHES

    SciTech Connect (OSTI)

    Van Eyken, Julian C.; Ge Jian; Mahadevan, Suvrath, E-mail: vaneyken@ipac.caltech.ed, E-mail: jge@astro.ufl.ed, E-mail: suvrath@astro.psu.ed [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611-2055 (United States)

    2010-07-15T23:59:59.000Z

    The dispersed fixed-delay interferometer (DFDI) represents a new instrument concept for high-precision radial velocity (RV) surveys for extrasolar planets. A combination of a Michelson interferometer and a medium-resolution spectrograph, it has the potential for performing multi-object surveys, where most previous RV techniques have been limited to observing only one target at a time. Because of the large sample of extrasolar planets needed to better understand planetary formation, evolution, and prevalence, this new technique represents a logical next step in instrumentation for RV extrasolar planet searches, and has been proven with the single-object Exoplanet Tracker (ET) at Kitt Peak National Observatory, and the multi-object W. M. Keck/MARVELS Exoplanet Tracker at Apache Point Observatory. The development of the ET instruments has necessitated fleshing out a detailed understanding of the physical principles of the DFDI technique. Here we summarize the fundamental theoretical material needed to understand the technique and provide an overview of the physics underlying the instrument's working. We also derive some useful analytical formulae that can be used to estimate the level of various sources of error generic to the technique, such as photon shot noise when using a fiducial reference spectrum, contamination by secondary spectra (e.g., crowded sources, spectroscopic binaries, or moonlight contamination), residual interferometer comb, and reference cross-talk error. Following this, we show that the use of a traditional gas absorption fiducial reference with a DFDI can incur significant systematic errors that must be taken into account at the precision levels required to detect extrasolar planets.

  20. VELOCITY CHARACTERISTICS OF EVAPORATED PLASMA USING HINODE/EUV IMAGING SPECTROMETER

    SciTech Connect (OSTI)

    Milligan, Ryan O.; Dennis, Brian R. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2009-07-10T23:59:59.000Z

    This paper presents a detailed study of chromospheric evaporation using the EUV Imaging Spectrometer (EIS) onboard Hinode in conjunction with hard X-ray (HXR) observations from Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The advanced capabilities of EIS were used to measure Doppler shifts in 15 emission lines covering the temperature range T = 0.05-16 MK during the impulsive phase of a C-class flare on 2007 December 14. Blueshifts indicative of the evaporated material were observed in six emission lines from Fe XIV-XXIV (2-16 MK). Upflow velocity (v{sub up}) was found to scale with temperature as v{sub up} (km s{sup -1}) {approx} 8-18T(MK). Although the hottest emission lines, Fe XXIII and Fe XXIV, exhibited upflows of >200 km s{sup -1}, their line profiles were found to be dominated by a stationary component in contrast to the predictions of the standard flare model. Emission from O VI-Fe XIII lines (0.5-1.5 MK) was found to be redshifted by v{sub down} (km s{sup -1}) {approx} 60-17T (MK) and was interpreted as the downward-moving 'plug' characteristic of explosive evaporation. These downflows occur at temperatures significantly higher than previously expected. Both upflows and downflows were spatially and temporally correlated with HXR emission observed by RHESSI that provided the properties of the electron beam deemed to be the driver of the evaporation. The energy flux of the electron beam was found to be {approx}>5 x 10{sup 10} erg cm{sup -2} s{sup -1}, consistent with the value required to drive explosive chromospheric evaporation from hydrodynamic simulations.

  1. Measurements of Outflow Velocities in On-Disk Plumes from EIS Hinode Observations

    E-Print Network [OSTI]

    Fu, Hui; Li, Bo; Huang, Zhenghua; Jiao, Fangran; Mou, Chaozhou

    2014-01-01T23:59:59.000Z

    The contribution of plumes to the solar wind has been subject to hot debate in the past decades. The EUV Imaging Spectrometer (EIS) on board Hinode provides a unique means to deduce outflow velocities at coronal heights via direct Doppler shift measurements of coronal emission lines. Such direct Doppler shift measurements were not possible with previous spectrometers. We measure the outflow velocity at coronal heights in several on-disk long-duration plumes, which are located in coronal holes and show significant blue shifts throughout the entire observational period. In one case, a plume is measured 4 hours apart. The deduced outflow velocities are consistent, suggesting that the flows are quasi-steady. Furthermore, we provide an outflow velocity profile along the plumes, finding that the velocity corrected for the line-of-sight effect can reach 10 km s$^{-1}$ at 1.02 $R_{\\odot}$, 15 km s$^{-1}$ at 1.03 $R_{\\odot}$, and 25 km s$^{-1}$ at 1.05 $R_{\\odot}$. This clear signature of steady acceleration, combined...

  2. Precision measurement of transverse velocity distribution of a strontium atomic beam

    SciTech Connect (OSTI)

    Gao, F.; Liu, H.; Tian, X. [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600 (China) [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, P.; Wang, Y.; Ren, J. [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600 (China)] [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600 (China); Wu, Haibin, E-mail: hbwu@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China)] [State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China); Chang, Hong, E-mail: changhong@ntsc.ac.cn [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600 (China) [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600 (China); State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2014-02-15T23:59:59.000Z

    We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90 ?K in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques used here, the absolute frequency of the intercombination transition of {sup 88}Sr is measured using an optical-frequency comb generator referenced to the SI second through an H maser, and is given as 434 829 121 318(10) kHz.

  3. Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    SciTech Connect (OSTI)

    Jacobsen, A. S., E-mail: Ajsen@fysik.dtu.dk; Salewski, M.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.; Rasmussen, J.; Stejner, M. [Association Euratom - DTU, Technical University of Denmark, Department of Physics, Kgs. Lyngby (Denmark); Eriksson, J.; Ericsson, G.; Hjalmarsson, A. [Association Euratom - VR, Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden)

    2014-11-15T23:59:59.000Z

    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR.

  4. The {ital b} Distribution and the Velocity Structure of Absorption Peaks in the Ly{alpha} Forest

    SciTech Connect (OSTI)

    Hui, L. [NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)] [NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Rutledge, R.E. [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1603, D-85740 Garching (Germany)] [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1603, D-85740 Garching (Germany)

    1999-06-01T23:59:59.000Z

    A theory is developed that relates the observed {ital b} parameter of a Ly{alpha} absorption line to the velocity curvature of the corresponding peak in the optical depth fluctuation. Its relation to the traditional interpretation of {ital b} as the thermal broadening width is discussed. It is demonstrated that, independent of the details of the cosmological model, the differential {ital b} distribution has a high-{ital b} asymptote of dN/db{proportional_to}b{sup {minus}m}, where m{ge}5, when we make the reasonable assumption that low-curvature fluctuations are statistically favored over high-curvature ones. There in general always exist lines much broader than the thermal width. We develop a linear perturbative analysis of the optical depth fluctuation, which yields a single-parameter prediction for the full {ital b} distribution. In addition to exhibiting the high-velocity tail, it qualitatively explains the observed sharp low-{ital b} cutoff{emdash}a simple reflection of the fact that high-curvature fluctuations are relatively rare. Although the existence of the high-{ital b} asymptote, which is independent of the validity of the linear expansion, is consistent with the observed {ital b} distribution, a detailed comparison of the linear prediction with six observational data sets indicates that higher order corrections are not negligible. The perturbative analysis nonetheless offers valuable insights into the dependence of the {ital b} distribution on cosmological parameters such as {Omega} and the power spectrum. A key parameter is the effective smoothing scale of the optical depth fluctuation, which is in turn determined by three scales: the thermal broadening width, the baryon smoothing scale (approximately the Jeans scale), and the observation/simulation resolution. The first two are determined by reionization history, but are comparable in general, whereas the third varies by about an order of magnitude in current hydrodynamic simulations. Studies with non{endash}resolution-dominated {ital b} distributions can be used to probe the reionization history of the universe. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  5. The [ital b] Distribution and the Velocity Structure of Absorption Peaks in the Ly[alpha] Forest

    SciTech Connect (OSTI)

    Hui, L. (NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)); Rutledge, R.E. (Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1603, D-85740 Garching (Germany))

    1999-06-01T23:59:59.000Z

    A theory is developed that relates the observed [ital b] parameter of a Ly[alpha] absorption line to the velocity curvature of the corresponding peak in the optical depth fluctuation. Its relation to the traditional interpretation of [ital b] as the thermal broadening width is discussed. It is demonstrated that, independent of the details of the cosmological model, the differential [ital b] distribution has a high-[ital b] asymptote of dN/db[proportional to]b[sup [minus]m], where m[ge]5, when we make the reasonable assumption that low-curvature fluctuations are statistically favored over high-curvature ones. There in general always exist lines much broader than the thermal width. We develop a linear perturbative analysis of the optical depth fluctuation, which yields a single-parameter prediction for the full [ital b] distribution. In addition to exhibiting the high-velocity tail, it qualitatively explains the observed sharp low-[ital b] cutoff[emdash]a simple reflection of the fact that high-curvature fluctuations are relatively rare. Although the existence of the high-[ital b] asymptote, which is independent of the validity of the linear expansion, is consistent with the observed [ital b] distribution, a detailed comparison of the linear prediction with six observational data sets indicates that higher order corrections are not negligible. The perturbative analysis nonetheless offers valuable insights into the dependence of the [ital b] distribution on cosmological parameters such as [Omega] and the power spectrum. A key parameter is the effective smoothing scale of the optical depth fluctuation, which is in turn determined by three scales: the thermal broadening width, the baryon smoothing scale (approximately the Jeans scale), and the observation/simulation resolution. The first two are determined by reionization history, but are comparable in general, whereas the third varies by about an order of magnitude in current hydrodynamic simulations. Studies with non[endash]resolution-dominated [ital b] distributions can be used to probe the reionization history of the universe. [copyright] [ital [copyright] 1999.] [ital The American Astronomical Society

  6. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A. (Fremont, CA)

    1994-01-01T23:59:59.000Z

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  7. Seismic velocity structure and microearthquake source properties at The Geysers, California, geothermal area

    SciTech Connect (OSTI)

    O'Connell, D.R.

    1986-12-01T23:59:59.000Z

    The method of progressive hypocenter-velocity inversion has been extended to incorporate S-wave arrival time data and to estimate S-wave velocities in addition to P-wave velocities. S-wave data to progressive inversion does not completely eliminate hypocenter-velocity tradeoffs, but they are substantially reduced. Results of a P and S-wave progressive hypocenter-velocity inversion at The Geysers show that the top of the steam reservoir is clearly defined by a large decrease of V/sub p//V/sub s/ at the condensation zone-production zone contact. The depth interval of maximum steam production coincides with minimum observed V/sub p//V/sub s/, and V/sub p//V/sub s/ increses below the shallow primary production zone suggesting that reservoir rock becomes more fluid saturated. The moment tensor inversion method was applied to three microearthquakes at The Geysers. Estimated principal stress orientations were comparable to those estimated using P-wave firstmotions as constraints. Well constrained principal stress orientations were obtained for one event for which the 17 P-first motions could not distinguish between normal-slip and strike-slip mechanisms. The moment tensor estimates of principal stress orientations were obtained using far fewer stations than required for first-motion focal mechanism solutions. The three focal mechanisms obtained here support the hypothesis that focal mechanisms are a function of depth at The Geysers. Progressive inversion as developed here and the moment tensor inversion method provide a complete approach for determining earthquake locations, P and S-wave velocity structure, and earthquake source mechanisms.

  8. DETERMINATION OF NON-THERMAL VELOCITY DISTRIBUTIONS FROM SERTS LINEWIDTH OBSERVATIONS

    SciTech Connect (OSTI)

    Coyner, Aaron J. [Department of Physics, Catholic University of America, 620 Michigan Avenue, Washington, DC 20064 (United States); Davila, Joseph M., E-mail: aaron.j.coyner@nasa.gov [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2011-12-01T23:59:59.000Z

    Non-thermal velocities obtained from the measurement of coronal Extreme Ultraviolet (EUV) linewidths have been consistently observed in solar EUV spectral observations and have been theorized to result from many plausible scenarios including wave motions, turbulence, or magnetic reconnection. Constraining these velocities can provide a physical limit for the available energy resulting from unresolved motions in the corona. We statistically determine a series of non-thermal velocity distributions from linewidth measurements of 390 emission lines from a wide array of elements and ionization states observed during the Solar Extreme Ultraviolet Research Telescope and Spectrograph 1991-1997 flights covering the spectral range 174-418 A and a temperature range from 80,000 K to 12.6 MK. This sample includes 248 lines from active regions, 101 lines from quiet-Sun regions, and 41 lines were observed from plasma off the solar limb. We find a strongly peaked distribution corresponding to a non-thermal velocity of 19-22 km s{sup -1} in all three of the quiet-Sun, active region, and off-limb distributions. For the possibility of Alfven wave resonance heating, we find that velocities in the core of these distributions do not provide sufficient energy, given typical densities and magnetic field strengths for the coronal plasma, to overcome the estimated coronal energy losses required to maintain the corona at the typical temperatures working as the sole mechanism. We find that at perfect efficiency 50%-60% of the needed energy flux can be produced from the non-thermal velocities measured.

  9. Bayesian Reconstruction of the Velocity Distribution of Weakly Interacting Massive Particles from Direct Dark Matter Detection Data

    E-Print Network [OSTI]

    Chung-Lin Shan

    2014-08-04T23:59:59.000Z

    In this paper, we extended our earlier work on the reconstruction of the (time-averaged) one-dimensional velocity distribution of Galactic Weakly Interacting Massive Particles (WIMPs) and introduce the Bayesian fitting procedure to the theoretically predicted velocity distribution functions. In this reconstruction process, the (rough) velocity distribution reconstructed by using raw data from direct Dark Matter detection experiments directly, i.e. measured recoil energies, with one or more different target materials, has been used as "reconstructed-input" information. By assuming a fitting velocity distribution function and scanning the parameter space based on the Bayesian analysis, the astronomical characteristic parameters, e.g. the Solar and Earth's Galactic velocities, will be pinned down as the output results. Our Monte-Carlo simulations show that this Bayesian scanning procedure could reconstruct the true (input) WIMP velocity distribution function pretty precisely with negligible systematic deviations of the reconstructed characteristic Solar and Earth's velocities and 1 sigma statistical uncertainties of <~ 20 km/s. Moreover, for the use of an improper fitting velocity distribution function, our reconstruction process could still offer useful information about the shape of the velocity distribution. In addition, by comparing these estimates to theoretical predictions, one could distinguish different (basic) functional forms of the theoretically predicted one-dimensional WIMP velocity distribution function with 2 sigma to 4 sigma confidence levels.

  10. Ultra-high-speed optical and electronic distributed devices

    SciTech Connect (OSTI)

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01T23:59:59.000Z

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  11. Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines

    SciTech Connect (OSTI)

    Poloski, Adam P.; Adkins, Harold E.; Abrefah, John; Casella, Andrew M.; Hohimer, Ryan E.; Nigl, Franz; Minette, Michael J.; Toth, James J.; Tingey, Joel M.; Yokuda, Satoru T.

    2009-03-25T23:59:59.000Z

    The WTP pipe plugging issue, as stated by the External Flowsheet Review Team (EFRT) Executive Summary, is as follows: “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” A strategy was employed to perform critical-velocity tests on several physical simulants. Critical velocity is defined as the point where a stationary bed of particles deposits on the bottom of a straight horizontal pipe during slurry transport operations. Results from the critical velocity testing provide an indication of slurry stability as a function of fluid rheological properties and transport conditions. The experimental results are compared to the WTP design guide on slurry transport velocity in an effort to confirm minimum waste velocity and flushing velocity requirements as established by calculations and critical line velocity correlations in the design guide. The major findings of this testing is discussed below. Experimental results indicate that the use of the Oroskar and Turian (1980) correlation in the design guide is conservative—Slurry viscosity has a greater affect on particles with a large surface area to mass ratio. The increased viscous forces on these particles result in a decrease in predicted critical velocities from this traditional industry derived equations that focus on particles large than 100 ?m in size. Since the Hanford slurry particles generally have large surface area to mass ratios, the reliance on such equations in the Hall (2006) design guide is conservative. Additionally, the use of the 95% percentile particle size as an input to this equation is conservative. However, test results indicate that the use of an average particle density as an input to the equation is not conservative. Particle density has a large influence on the overall result returned by the correlation. Lastly, the viscosity correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 ?m or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.

  12. Computation of Weakly-Compressible Highly-Viscous Polymeric Liquid Flows

    E-Print Network [OSTI]

    Grant, P. W.

    such circumstances, the speed of sound is much larger than the velocity of the liquid, resulting in fast pressure, the ratio of fluid velocity to the speed of sound ( cuMa /= ), characterises the influence1 Computation of Weakly-Compressible Highly-Viscous Polymeric Liquid Flows M. F. Webster 1*, I. J

  13. Laser induced fluorescence measurements of ion velocity and temperature of drift turbulence driven sheared plasma flow in a linear helicon plasma device

    SciTech Connect (OSTI)

    Chakraborty Thakur, S.; Fedorczak, N.; Manz, P.; Tynan, G. R.; Xu, M. [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego, California 92093 (United States); Center for Energy Research, University of California at San Diego, San Diego, California 92093 (United States); McCarren, D.; Scime, E. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Lee, T. [Center for Energy Research, University of California at San Diego, San Diego, California 92093 (United States)

    2012-08-15T23:59:59.000Z

    Using laser induced fluorescence (LIF), radial profiles of azimuthal ion fluid velocity and ion temperature are measured in the controlled shear de-correlation experiment (CSDX) linear helicon plasma device. Ion velocities and temperatures are derived from the measured Doppler broadened velocity distribution functions of argon ions. The LIF system employs a portable, high power (>300 mW), narrowband ({approx}1 MHz) tunable diode laser-based system operating at 668.614 nm. Previous studies in CSDX have shown the existence of a radially sheared azimuthal flow as measured with time delay estimation methods and Mach probes. Here, we report the first LIF measurements of sheared plasma fluid flow in CSDX. Above a critical magnetic field, the ion fluid flow profile evolves from radially uniform to peaked on axis with a distinct reversed flow region at the boundary, indicating the development of a sheared azimuthal flow. Simultaneously, the ion temperature also evolves from a radially uniform profile to a profile with a gradient. Measurements in turbulent and coherent drift wave mode dominated plasmas are compared.

  14. Effect of dynamic level in drumming: Measurements of striking velocity, force, and

    E-Print Network [OSTI]

    Hansen, René Rydhof

    a drumstick equipped with strain gauges, and the bending deformation of the stick provided an estimate of the contact force between drumstick and drumhead. The data shows close relationship between the height to which the drumstick is lifted before a stroke, and its striking velocity. The players' different control

  15. Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments

    SciTech Connect (OSTI)

    Arima, Takashi, E-mail: tks@stat.nitech.ac.jp [Center for Social Contribution and Collaboration, Nagoya Institute of Technology (Japan); Mentrelli, Andrea, E-mail: andrea.mentrelli@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna (Italy); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna (Italy)

    2014-06-15T23:59:59.000Z

    Molecular extended thermodynamics of rarefied polyatomic gases is characterized by two hierarchies of equations for moments of a suitable distribution function in which the internal degrees of freedom of a molecule is taken into account. On the basis of physical relevance the truncation orders of the two hierarchies are proven to be not independent on each other, and the closure procedures based on the maximum entropy principle (MEP) and on the entropy principle (EP) are proven to be equivalent. The characteristic velocities of the emerging hyperbolic system of differential equations are compared to those obtained for monatomic gases and the lower bound estimate for the maximum equilibrium characteristic velocity established for monatomic gases (characterized by only one hierarchy for moments with truncation order of moments N) by Boillat and Ruggeri (1997) (?{sub (N)}{sup E,max})/(c{sub 0}) ??(6/5 (N?1/2 )),(c{sub 0}=?(5/3 k/m T)) is proven to hold also for rarefied polyatomic gases independently from the degrees of freedom of a molecule. -- Highlights: •Molecular extended thermodynamics of rarefied polyatomic gases is studied. •The relation between two hierarchies of equations for moments is derived. •The equivalence of maximum entropy principle and entropy principle is proven. •The characteristic velocities are compared to those of monatomic gases. •The lower bound of the maximum characteristic velocity is estimated.

  16. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah

    E-Print Network [OSTI]

    Christopher S. Magirl,1 Jeffrey W. Gartner,2 Graeme M. Smart,3 and Robert H. Webb2 Received 13 January 2009-surface velocity and depth soundings alone. Citation: Magirl, C. S., J. W. Gartner, G. M. Smart, and R. H. Webb quantitative data on rapids. [3] Tinkler [1997] used an electromagnetic current meter to measure flow in a fast

  17. A comparison of velocity measurements from the CUTLASS Finland radar and the EISCAT UHF system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A comparison of velocity measurements from the CUTLASS Finland radar and the EISCAT UHF system J. A January 1999 Abstract. The CUTLASS Finland radar, which com- prises an integral part of the Super irregularities within a ®eld-of- view which extends over some four million square kilometres. Within the Finland

  18. A New Global Rayleigh and Love Wave Group Velocity Dataset For Constraining Lithosphere Properties

    E-Print Network [OSTI]

    Laske, Gabi

    A New Global Rayleigh and Love Wave Group Velocity Dataset For Constraining Lithosphere Properties features and fit our data very well. This dataset will be used to constrain lithospheric structure globally the global datasets used in Ritzwoller et al. (2002) already consist of more than 100,000 paths, the nature

  19. Collisionless magnetic reconnection in the presence of a sheared velocity field

    SciTech Connect (OSTI)

    Faganello, M. [Ecole Polytechnique, LPP, Palaiseau, 91128 (France); Pegoraro, F.; Califano, F. [Department of Physics, University of Pisa and CNISM, Pisa, 56127 (Italy); Marradi, L. [Department of Physics, University of Pisa and CNISM, Pisa, 56127 (Italy)] [Universite de Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, 06304 Nice (France)

    2010-06-15T23:59:59.000Z

    The linear theory of magnetic field lines reconnection in a two-dimensional configuration in the presence of a (Kelvin-Helmholtz stable) sheared velocity field is investigated within a single fluid model, where the onset of magnetic field line reconnection is made possible by the effect of electron inertia in the so called large DELTA{sup '} regime.

  20. Wind Velocities at the Chajnantor and Mauna Kea Sites and the Effect on MMA Pointing

    E-Print Network [OSTI]

    Groppi, Christopher

    Wind Velocities at the Chajnantor and Mauna Kea Sites and the Effect on MMA Pointing M.A. Holdaway email: (mholdawa, sfoster, demerson, jcheng, fschwab)@nrao.edu August 9, 1996 Abstract We analyze wind April 1996 for the purposes of understanding the effects of the winds on pointing errors. Both

  1. Standard practice for measuring the ultrasonic velocity in polyethylene tank walls using lateral longitudinal (LCR) waves

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2011-01-01T23:59:59.000Z

    1.1 This practice covers a procedure for measuring the ultrasonic velocities in the outer wall of polyethylene storage tanks. An angle beam lateral longitudinal (LCR) wave is excited with wedges along a circumferential chord of the tank wall. A digital ultrasonic flaw detector is used with sending-receiving search units in through transmission mode. The observed velocity is temperature corrected and compared to the expected velocity for a new, unexposed sample of material which is the same as the material being evaluated. The difference between the observed and temperature corrected velocities determines the degree of UV exposure of the tank. 1.2 The practice is intended for application to the outer surfaces of the wall of polyethylene tanks. Degradation typically occurs in an outer layer approximately 3.2-mm (0.125-in.) thick. Since the technique does not interrogate the inside wall of the tank, wall thickness is not a consideration other than to be aware of possible guided (Lamb) wave effects or reflection...

  2. Methods for determining infrasound phase velocity direction with an array of line sensors

    E-Print Network [OSTI]

    Vernon, Frank

    Methods for determining infrasound phase velocity direction with an array of line sensors to the number of these point sensors; additional sensors help attenuate noise and improve direction resolution. An alternative approach is to form an array of directional line sensors, each of which emulates a line of many

  3. ATLAS MOTION PLATFORM MECANUM WHEEL JACOBIAN IN THE VELOCITY AND STATIC FORCE DOMAINS

    E-Print Network [OSTI]

    Hayes, John

    ATLAS MOTION PLATFORM MECANUM WHEEL JACOBIAN IN THE VELOCITY AND STATIC FORCE DOMAINS Jonathan J applications. Atlas is a six degree of freedom vehicle op- erating training simulator motion platform where and static force Jacobians; normal forces. JACOBIAN DES ROUES MECANUM DU PLATFORME DE MOTION ATLAS DANS LES

  4. ATLAS MOTION PLATFORM MECANUM WHEEL JACOBIAN IN THE VELOCITY AND STATIC FORCE DOMAINS

    E-Print Network [OSTI]

    Hayes, John

    ATLAS MOTION PLATFORM MECANUM WHEEL JACOBIAN IN THE VELOCITY AND STATIC FORCE DOMAINS Jonathan J. Atlas is a six degree of freedom vehicle op- erating training simulator motion platform where orienting force Jacobians; normal forces. MATRICE JACOBIENNE DES ROUES MECANUM SIMULATOUR DE MOUVEMENT ATLAS DANS

  5. Velocity-Difference Induced Focusing of Nucleotides in Capillary Electrophoresis with a

    E-Print Network [OSTI]

    Chen, David D.Y.

    Articles Velocity-Difference Induced Focusing of Nucleotides in Capillary Electrophoresis (CE) with UV detection. The influence of specific analyte properties, such as nucleotide base improvement in concentration sensitiv- ity. The detection limit of 4.0 Ã? 10-8 M for nucleotides can

  6. PRVS-PLA-00005-0001 Executive Summary.doc PRECISION RADIAL VELOCITY

    E-Print Network [OSTI]

    Crowther, Paul

    PRVS-PLA-00005-0001 Executive Summary.doc PRECISION RADIAL VELOCITY SPECTROMETER Document Title Executive Summary Document Number PRVS-PLA-00005-0001 Issue 1.0 Date 21st September 2006 Document Prepared and Date Ian Bryson 21st September 2006 #12;Document Number: PRVS-PLA-00005-0001 Issue: 1.0 Category

  7. Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia)

    E-Print Network [OSTI]

    Snieder, Roel

    Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia) U. Wegler,1 of the edifice of Merapi volcano (Java, Indonesia) before its eruption in 1998 by analyzing multiply scattered eruption of Merapi volcano (Indonesia), Geophys. Res. Lett., 33, L09303, doi:10.1029/2006GL025928. 1

  8. The power spectrum of the Milky Way: Velocity fluctuations in the Galactic disk

    E-Print Network [OSTI]

    Bovy, Jo; Pérez, Ana E García; Zasowski, Gail

    2014-01-01T23:59:59.000Z

    We investigate the kinematics of stars in the mid-plane of the Milky Way on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen Survey (GCS). Using red-clump stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc)^2 bins. The solar motion is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V_sun = 24+/-1 (ran.)+/-2 (syst [V_c])+/-5 (syst. [large-scale]) km/s, where the systematic uncertainty is due to (a) a conservative 20 km/s uncertainty in V_c and (b) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with red-clump stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the Mi...

  9. Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal

    E-Print Network [OSTI]

    Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal Matthew J. Kohna, Tri-Chandra Campus, Ghantaghar, Kathmandu, Nepal, United States Received 7 April 2004; received (MCT) and affiliated faults in central Nepal. Inferred rates were 1.5F0.9 cm/yr (Langtang Thrust, ~19

  10. Seismic Velocity Inversion with Genetic Algorithms Sushil J. Louis Qinxue Chen Satish Pullammanappallil

    E-Print Network [OSTI]

    Louis, Sushil J.

    Seismic Velocity Inversion with Genetic Algorithms Sushil J. Louis Qinxue Chen Satish to compute travel times for seismic waves. However, in practice, we have to solve the inverse problem: travel synthetic seismic models shows that large population sizes are crit- ical to generating good seismic

  11. Seismic Velocity Inversion with Genetic Algorithms Sushil J. Louis Qinxue Chen

    E-Print Network [OSTI]

    Louis, Sushil J.

    Seismic Velocity Inversion with Genetic Algorithms Sushil J. Louis Qinxue Chen Genetic Adaptive­surface models from seismic travel­time data. Given a sub­surface model, the physics of wave propagation through refractive media can be used to compute travel times for seismic waves. How­ ever, in practice, we have

  12. The ion experiment onboard the Interball-Aurora satellite; initial results on velocity-dispersed structures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The ion experiment onboard the Interball-Aurora satellite; initial results on velocity / Accepted: 10 March 1998 Abstract. The Toulouse ION experiment ¯own on the Russian Interball-Aurora mission perform measurements in the energy range $10 eV±20 000 eV. The Interball- Aurora spacecraft was launched

  13. Gas Density Fluctuations in the Perseus Cluster: Clumping Factor and Velocity Power Spectrum

    E-Print Network [OSTI]

    Zhuravleva, I; Arevalo, P; Schekochihin, A A; Allen, S W; Fabian, A C; Forman, W R; Sanders, J S; Simionescu, A; Sunyaev, R; Vikhlinin, A; Werner, N

    2015-01-01T23:59:59.000Z

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analyzed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 8 to 12 per cent on scales of ~10-30 kpc within radii of 30-160 kpc from the cluster center and from 9 to 7 per cent on scales of ~20-30 kpc in an outer, 60-220 kpc annulus. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90-140 km/s on ~20-30 kpc scales and 70-100 km/s on smaller scales ~7-10 kpc. The velocity power spectrum is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the power spectrum of the density fluctuations is low...

  14. Vorticity and Divergence of Surface Velocities Near Shore JEROME A. SMITH

    E-Print Network [OSTI]

    Smith, Jerome A.

    Vorticity and Divergence of Surface Velocities Near Shore JEROME A. SMITH Scripps Institution, and nearshore mixing-scale motions are generally undersampled (but see, e.g., Smith and Largier 1995; Johnson m 300 m on a side (Smith 2002a,b). Thus, these data focus more toward the small end of the range

  15. Optimization of the structural Gabor functions in a homogeneous velocity model

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Optimization of the structural Gabor functions in a homogeneous velocity model for a zero-o#11;set functions should be optimized, and the Gabor functions should form a frame. We present a simple attempt functions and the space{wavenumber lattice of their central points are optimized analytically

  16. Joint inversion for three dimensional S velocity mantle structure along the Tethyan margin

    E-Print Network [OSTI]

    van der Lee, Suzan

    construct a new three dimensional S velocity model and Moho map by jointly inverting regional S and Rayleigh and overlapping nature of the different data sets' resolving power has reduced disparities in resolving power that exist for individual data sets, for example between resolving power for crustal and lower mantle

  17. CALTECH ASCI TECHNICAL REPORT 129 On Velocity Structure Functions and the Spherical Vortex Model for

    E-Print Network [OSTI]

    Barr, Al

    the stretched-spiral vortex has been suc- cessfully applied to the calculation of the energy spectrum,6 and some for larger scales is perhaps questionable. Most quantitative vortex-based models have utilized tube and sheetCALTECH ASCI TECHNICAL REPORT 129 On Velocity Structure Functions and the Spherical Vortex Model

  18. Two-Phase Isentropic Compressibility and Two-Phase Sonic Velocity for

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    and sonic velocity are used for a wide range of problems in the production and exploration of hydrocarbon in well testing, metering, and seismic exploration. In this work, a thermo- dynamic model is presented defined on the basis of the thermody- namic path. For an isothermal process, the compressibility relates

  19. Neoproterozoic tectonothermal evolution of the Central Eastern Desert, Egypt: a slow velocity tectonic process

    E-Print Network [OSTI]

    Fritz, Harald

    Neoproterozoic tectonothermal evolution of the Central Eastern Desert, Egypt: a slow velocity, University of Assiut, Egypt Received 10 January 2001; received in revised form 24 October 2001; accepted 25 in the Central Eastern Desert of Egypt is constraint by 40 Ar/39 Ar ages of hornblende and muscovite from Meatiq

  20. Lithospheric Velocity Structure of the Anatolain plateau-Caucasus-Caspian Regions

    SciTech Connect (OSTI)

    Gok, R; Mellors, R J; Sandvol, E; Pasyanos, M; Hauk, T; Yetirmishli, G; Teoman, U; Turkelli, N; Godoladze, T; Javakishvirli, Z

    2009-04-15T23:59:59.000Z

    Anatolian Plateau-Caucasus-Caspian region is an area of complex structure accompanied by large variations in seismic wave velocities. Despite the complexity of the region little is known about the detailed lithospheric structure. Using data from 29 new broadband seismic stations in the region, a unified velocity structure is developed using teleseismic receiver functions and surface waves. Love and Rayleigh surface waves dispersion curves have been derived from event-based analysis and ambient-noise correlation. We jointly inverted the receiver functions with the surface wave dispersion curves to determine absolute shear wave velocity and important discontinuities such as sedimentary layer, Moho, lithospheric-asthenospheric boundary. We combined these new station results with Eastern Turkey Seismic Experiment results (29 stations). Caspian Sea and Kura basin underlained by one of the thickest sediments in the world. Therefore, short-period surface waves are observed to be very slow. The strong crustal multiples in receiver functions and the slow velocities in upper crust indicate the presence of thick sedimentary unit (up to 20 km). Crustal thickness varies from 34 to 52 km in the region. The thickest crust is in Lesser Caucasus and the thinnest is in the Arabian Plate. The lithospheric mantle in the Greater Caucasus and the Kura depression is faster than the Anatolian Plateau and Lesser Caucasus. This possibly indicates the presence of cold lithosphere. The lower crust is slowest in the northeastern part of the Anatolian Plateau where Holocene volcanoes are located.

  1. Average crack front velocity during subcritical fracture propagation in a heterogeneous medium

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Average crack front velocity during subcritical fracture propagation in a heterogeneous medium relaxation tests, exploring subcritical to critical regimes. Transparency of the material (PMMA) allows kinetic crack propagation is usually referred to as sub-critical crack growth or sub- critical regime

  2. THE VELOCITY CENTROID PERIODICITY OF L2 PUPPIS' SiO MASER EMISSION

    SciTech Connect (OSTI)

    McIntosh, Gordon C. [Division of Science and Mathematics, University of Minnesota, Morris, Morris, MN 56267 (United States); Indermuehle, Balthasar [Australia Telescope National Facility, Locked Bag 194, Narrabri, NSW 2390 (Australia)

    2013-09-01T23:59:59.000Z

    We report the first short term velocity centroid (VC) periodicity derived from SiO maser emission. L2 Puppis, a semi-regular AGB star, was observed using the Mopra radio telescope of the Australia Telescope National Facility in the SiO v = 1, J = 1-0 and v = 1, J = 2-1 transitions. It exhibits a 139 day period in its SiO maser VC based on a period folding analysis and a Lomb Scargle analysis. L2 Pup's SiO maser emission has an unusually large velocity range and an unusual three-peaked spectrum. To create the change in VC the entire spectrum does not shift in velocity, but changes in the relative emission of the peaks generate the variation. The changes in the VC may be due to differential illumination, an asymmetric circumstellar distribution of material, or a mixture of causes. The unusual velocity structure, similar to that observed in Orion source 1, may be due to revolution of the circumstellar material or asymmetries in the circumstellar environment.

  3. Group-velocity tomography of South America and the surrounding oceans

    E-Print Network [OSTI]

    Ritzwolle, Mike

    Group-velocity tomography of South America and the surrounding oceans Oleg Vdovin,1 Jose¨ A. Rial,2 propagating across South America and the surrounding oceans. Broad-band waveform data from about 765 events and show that the average resolution across South America is about 60^80 for Rayleigh waves and 70

  4. $ ^T)) \\ ^ / f l \\ Rise-M-2597 of Mass and Velocity Measurements

    E-Print Network [OSTI]

    in flight without use of optical equipment has been tested. The mass is measured by a microwave system, control of density profile, diagnostic purposes, etc.. In any case it is imports it to be able to measureh- $ ^T)) \\ ^ / f l \\ Rise-M-2597 of Mass and Velocity Measurements on Pellets in Flight

  5. Vertically Loaded Anchor: Drag Coefficient, Fall Velocity, and Penetration Depth using Laboratory Measurements

    E-Print Network [OSTI]

    Cenac, William

    2011-08-08T23:59:59.000Z

    anchor point. Values such as drag coefficient and terminal velocity are vital in predicting embedment depth to obtain the mooring capacity required by the floating facility. Two scaled models of the Mark I OMNI-Max anchor were subjected to a series...

  6. Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process. Larribau 64018 Pau Cedex, France Oil and Gas Science and Technology 2012, 67 (6), 1029-1039, doi:10 pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated

  7. Parameter estimation of permanent magnet stepper motors without position or velocity sensors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    theory I. INTRODUCTION Permanent Magnet Stepper Motors (PMSM's) are widely used in industry for position control, especially in manu- facturing applications. PMSM's are more robust than brush DC motors the question of parameter identification without position or velocity sensors. The es- timation of PMSM

  8. Bifractality of the Devil's staircase appearing in the Burgers equation with Brownian initial velocity

    E-Print Network [OSTI]

    E. Aurell; U. Frisch; A. Noullez; M. Blank

    1996-11-20T23:59:59.000Z

    It is shown that the inverse Lagrangian map for the solution of the Burgers equation (in the inviscid limit) with Brownian initial velocity presents a bifractality (phase transition) similar to that of the Devil's staircase for the standard triadic Cantor set. Both heuristic and rigorous derivations are given. It is explained why artifacts can easily mask this phenomenon in numerical simulations.

  9. Lateral diffusive migration of massive particles in high-velocity vertical pipe flow of moderately dense gas-solid suspensions

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    , Lappeenranta University of Technology, Lappeenranta, Finland John C. Chen Department of Chemical Engineering

  10. Isokinetic vs still air sampling of asbestos fiber emission from high-velocity, low-volume vacuum systems

    E-Print Network [OSTI]

    Grabowski, John S

    1979-01-01T23:59:59.000Z

    these types of asbestos is found in Table I. Archeological findings in Finland have shown that man used asbestos as early as 2500 B. C. It was used as a filler to hold pottery together before baking. Although the modern knowledge of 11 asbestos dates back...

  11. Seismic surface waves and associated phenomena in a system involving a shallow, thin, high-velocity layer

    E-Print Network [OSTI]

    Egar, Joseph Michael

    1959-01-01T23:59:59.000Z

    Dissertation by JOSEPH MICHAEL EGAR Approved as to style and content by: A ' 1 \\ Co-Chairmen of Committee __ ____________ C 'l .____________________ H??ad of Department of Geology and Geophysics May, 1959 i ii 1 2 3 4 5 7 8 11 13 15 25 25..., p. 193): \\ c o s rH + r H ) + 2 ^ n # V s i o s H - ^ ^ 5s/4 ) f2.-c^ *)(^v/oesi*H + kjf-2sm vH)+ %(Xsin sB -s/&ycossff) \\ = (Z-tffpycfcwcos sH+ % ? s i * s H ) - l - 2 l&(Xsir'ir' H - |r?A-/o?rH) ^ X co s s H + S'A Vsm s h ) 1 2 vkfflk...

  12. Size-velocity correlations in high order moment methods for polydisperse evaporating sprays: modelling and numerical issues

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , such as internal combustion engine ([1, 2] and references therein), gas turbine [3] or rocket booster [4]. Those, Laboratoire d'Energ´etique mol´eculaire et macroscopique, combustion, Grande Voie des Vignes, 92295 Chatenay emissions...). The description of a disperse phase may rely on a population balance equation (PBE

  13. Interpreting Velocities from Heat-Based Flow Sensors by NumericalSimulation

    SciTech Connect (OSTI)

    Su, Grace W.; Freifeld, Barry M.; Oldenburg, Curtis M.; Jordan,Preston D.; Daley, Paul F.

    2005-06-13T23:59:59.000Z

    We have carried out numerical simulations of three-dimensional non-isothermal flow around an in situ heat-based flow sensor to investigate how formation heterogeneities can affect the interpretation of ground water flow velocities from this instrument. The flow sensor operates by constant heating of a 0.75 m long, 5 cm diameter cylindrical probe, which contains 30 thermistors in contact with the formation. The temperature evolution at each thermistor can be inverted to obtain an estimate of the ground water flow velocity vector using the standard interpretive method, which assumes that the formation is homogeneous. Analysis of data from heat-based flow sensors installed in a sand aquifer at the Former Fort Ord Army Base near Monterey, California suggested an unexpected component of downward flow. The magnitudes of the vertical velocities were expected to be much less than the horizontal velocities at this site because the sensors were installed just above a clay aquitard. Numerical simulations were conducted to examine how differences in thermal conductivities may lead to spurious indications of vertical flow velocities. We found that a decrease in the thermal conductivity near the bottom of the sensor can perturb the temperature profiles along the instrument in such a manner that analyses assuming homogeneous thermal conductivity could indicate a vertical flow component even though flow is actually horizontal. This work demonstrates how modeling can be used to simulate instrument response to formation heterogeneity, and shows that caution must be used in interpreting data from such devices using overly simplistic assumptions.

  14. Seismic velocity estimation and time to depth conversion of time-migrated images Maria Cameron, University of California at Berkeley, Sergey Fomel, University of Texas at Austin, and

    E-Print Network [OSTI]

    Sethian, James A.

    Seismic velocity estimation and time to depth conversion of time-migrated images Maria Cameron migrated seismic images and show that the Dix velocities estimated from time migration velocities are the true seismic velocities divided by the ge- ometrical spreading of image rays. We pose an inverse

  15. Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa

    SciTech Connect (OSTI)

    Bradley, D.; Lawes, M.; Liu, Kexin; Woolley, R. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Verhelst, S. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium)

    2007-04-15T23:59:59.000Z

    Values of laminar burning velocity, u{sub l}, and the associated strain rate Markstein number, Ma{sub sr}, of H{sub 2}-air mixtures have been obtained from measurements of flame speeds in a spherical explosion bomb with central ignition. Pressures ranged from 0.1 to 1.0 MPa, with values of equivalence ratio between 0.3 and 1.0. Many of the flames soon became unstable, with an accelerating flame speed, due to Darrieus-Landau and thermodiffusive instabilities. This effect increased with pressure. The flame wrinkling arising from the instabilities enhanced the flame speed. A method is described for allowing for this effect, based on measurements of the flame radii at which the instabilities increased the flame speed. This enabled u{sub l} and Ma{sub sr} to be obtained, devoid of the effects of instabilities. With increasing pressure, the time interval between the end of the ignition spark and the onset of flame instability, during which stable stretched flame propagation occurred, became increasingly small and very high camera speeds were necessary for accurate measurement. Eventually this time interval became so short that first Ma{sub sr} and then u{sub l} could not be measured. Such flame instabilities throw into question the utility of u{sub l} for high pressure, very unstable, flames. The measured values of u{sub l} are compared with those predicted by detailed chemical kinetic models of one-dimensional flames. (author)

  16. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 26, NO. 6, DECEMBER 1998 1635 Velocity Distributions in Magnetron Sputter

    E-Print Network [OSTI]

    Lee, Hae June

    by LG Electronics, the Basic Science Research Institute Program, Ministry of Education 1997, Project 97 profiles of plasma density, potential, and velocity distribution function, along with the electron and the global model. The velocity distribution function of electrons is Maxwellian, but that of ions is non

  17. Boundary problems for the one-dimensional kinetic equation with the collisional frequence proportional to the module velocity of molecules

    E-Print Network [OSTI]

    A. V. Latyshev; A. A. Yushkanov

    2014-06-08T23:59:59.000Z

    For the one-dimensional linear kinetic equations with collisional frequency of the molecules, proportional to the module velocity of molecules, analytical solutions of problems about temperature jump and weak evaporation (condensation) in rarefied gas are received. Quantities of temperature and concentration jumps are found. Distributions of concentration, mass velocity and temperature are constructed. Necessary numerical calculations and graphic researches are done.

  18. Influence of orographic and canopy conditions on friction velocities observed during frontal events using Doppler sodar observations

    SciTech Connect (OSTI)

    Kotroni, V.; Amory-Mazaudier, C. (CRPE, Saint-Maur des Fosses (France))

    1993-03-01T23:59:59.000Z

    Sodar friction velocities, obtained during frontal events traversing areas characterized by different orographic and canopy conditions (flat, bare ground, small hills and valleys with agricultural crops and trees, agricultural crops and forest on a flat ground, bare ground on the side of a mountain), are compared in order to identify the influence of topography on this parameter. For some case studies, sounding and sodar data are combined in order to provide a relation between the friction velocity and the low-level jet presence. For the cases analyzed in this paper, the following results are obtained: the frontal passage is associated with a decrease of the horizontal wind speed (about 50% in magnitude) in the surface layer, and an increase of the friction velocity before the frontal passage followed by a decrease just at the time of the frontal passage or with a little delay. Friction velocity is more intense in the cold side of the low-level jet and its maximum represents 2% of the low-level jet maximum magnitude. As it concerns the influence of the terrain conditions on friction velocity, mountain effects yield to more intense friction-velocity values and to a superposition of an oscillating behavior on the time variation of friction velocity, while forest effects induce a shift of the frontal signature on the time variation of friction velocity at higher height levels. 25 refs., 18 figs., 3 tabs.

  19. Measurement of shear wave velocity of heavy oil De-hua Han, Jiajin Liu, University of Houston

    E-Print Network [OSTI]

    for measurement of fluid velocity is to measure the travel time of the transmission wave and then the velocity can water, has been used and is good for P-wave measurement for a lot of fluid samples. But the transmission the principle of this method. The shear wave transducer is coupled with a buffer made of some kind of plastic

  20. Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves

    E-Print Network [OSTI]

    van der Lee, Suzan

    Upper mantle structure of South America from joint inversion of waveforms and fundamental mode tomographic S wave velocity model for the upper mantle beneath South America is presented. We developed three-dimensional (3-D) upper mantle S velocity model and a Moho depth model for South America, which

  1. Constraints on H_0 from the Central Velocity Dispersions of Lens Galaxies

    E-Print Network [OSTI]

    Aaron J. Romanowsky; Christopher S. Kochanek

    1998-11-21T23:59:59.000Z

    We employ Schwarzschild's method of orbit modeling to constrain the mass profiles of the central lens galaxies in Q0957+561 and PG 1115+080. We combine the measured central projected stellar velocity dispersions of these galaxies with the self-similar radial profiles of the rms velocity and of the Gauss-Hermite moment h_4 observed in nearby galaxies for 0 < R < 2 R_eff. For Q0957+561, we find a 16% uncertainty in the galaxy mass, and formal 2-sigma limits on the Hubble constant of H_0 = (61 +13/-15) km/s/Mpc. For PG 1115+080, we find that none of the viable lens models can be ruled out, so that H_0 is not yet strongly constrained by this system.

  2. Wave Packet for Massless Fermions and its Implication to the Superluminal Velocity Statistics of Neutrino

    E-Print Network [OSTI]

    Kelin Wang; Zexian Cao

    2012-01-06T23:59:59.000Z

    Non-dispersive wave packet for massless fermions is formulated on the basis of squeezed coherent states that are put in a form of common eigenfunction for the Hamiltonian and the helicity operator, starting from the Dirac equation. The wave packet thus constructed is demonstrated to propagate at a constant velocity as that of light. This explicit expression of wave packet for the massless fermions can facilitate theoretical analysis of problems where a wave packet is of formal significance. Furthermore, extensive wave packet may result in a superluminal velocity statistics if determined from the time-of-flight measurement, as recently done on muon neutrinos, when a threshold particle flux or energy transfer, which is eventually referred to the propagation of wave packet, to invoke a detection event is assumed.

  3. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    SciTech Connect (OSTI)

    Allen, M.G.; Davis, S.J.; Kessler, W.J.; Sonnenfroh, D.M. (Physical Sciences, Inc., Andover, MA (United States))

    1992-07-01T23:59:59.000Z

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties. 13 refs.

  4. Electron velocity distribution instability in magnetized plasma wakes and artificial electron mass

    E-Print Network [OSTI]

    Hutchinson, I H

    2011-01-01T23:59:59.000Z

    The wake behind a large object (such as the moon) moving rapidly through a plasma (such as the solar wind) contains a region of depleted density, into which the plasma expands along the magnetic field, transverse to the flow. It is shown here that (in addition to any ion instability) a bump-on-tail which is unstable appears on the electrons' parallel velocity distribution function because of the convective non-conservation of parallel energy. It arises regardless of any non-thermal features on the external electron velocity distribution. The detailed electron distribution function throughout the wake is calculated by integration along orbits; and the substantial energy level of resulting electron plasma (Langmuir) turbulence is evaluated quasilinearly. It peaks near the wake axis. If the mass of the electrons is artificially enhanced, for example in order to make numerical simulation feasible, then much more unstable electron distributions arise; but these are caused by the unphysical mass ratio.

  5. Particle velocity based universal algorithm for numerical simulation of hydraulic fractures

    E-Print Network [OSTI]

    Wrobel, Michal

    2014-01-01T23:59:59.000Z

    In the paper, we propose a new effective mathematical formulation and resulting universal numerical algorithm capable of tackling various HF models in the framework of a unified approach. The presented numerical scheme is not limited to any particular elasticity model or crack propagation regime. Its basic assumptions are: i) proper choice of independent and dependent variables (with the direct utilization of a new one - the reduced particle velocity), ii) tracing the fracture front by use of the speed equation which can be integrated in a closed form and sets an explicit relation between the crack propagation speed and the coefficients in the asymptotic expansion of the crack opening, iii) proper regularization techniques, iv) improved temporal approximation, v) modular algorithm architecture. The application of the new dependent variable, the reduced particle velocity, instead of the usual fluid flow rate, facilitates the computation of the crack propagation speed from the local relation based on the speed ...

  6. Vectorial velocity filter for ultracold neutrons based on a surface-disordered mirror system

    E-Print Network [OSTI]

    L. A. Chizhova; S. Rotter; T. Jenke; G. Cronenberg; P. Geltenbort; G. Wautischer; H. Filter H. Abele; J. Burgdörfer

    2014-03-19T23:59:59.000Z

    We perform classical three-dimensional Monte Carlo simulations of ultracold neutrons scattering through an absorbing-reflecting mirror system in the Earth's gravitational field. We show that the underlying mixed phase space of regular skipping motion and random motion due to disorder scattering can be exploited to realize a vectorial velocity filter for ultracold neutrons. The absorbing-reflecting mirror system proposed allows beams of ultracold neutrons with low angular divergence to be formed. The range of velocity components can be controlled by adjusting the geometric parameters of the system. First experimental tests of its performance are presented. One potential future application is the investigation of transport and scattering dynamics in confined systems downstream of the filter.

  7. The Prevalence of Similarity of the Turbulent Wall-bounded Velocity Profile

    E-Print Network [OSTI]

    Weyburne, David

    2014-01-01T23:59:59.000Z

    In a now very influential paper, Luciano Castillo and William George used a flow governing equation approach for the outer boundary layer region to seek similarity solutions for the mean velocity and Reynolds shear stress profiles. The development led to a less-constrained version of Clauser's pressure gradient constraint parameter. Using their new pressure gradient constraint parameter equal to a constant as a search criterion, Castillo and George claim to have found many turbulent boundary layer experimental datasets that exhibited velocity profile similarity. In fact Castillo, George, and coworkers examined an extensive set of experimental datasets and claim that most turbulent boundary layers appear to be equilibrium similarity boundary layers. This is in direct contradiction to the classical belief that equilibrium similarity flows are special flows and are difficult to achieve in experiments, a contradiction that Castillo and George themselves acknowledge. The importance of this observation cannot be ov...

  8. Electrical impedance string probes for two-phase void and velocity measurements. [PWR

    SciTech Connect (OSTI)

    Hardy, J E; Hylton, J O

    1982-05-01T23:59:59.000Z

    An instrumentation scheme has been developed to measure two-phase flow velocity and void fraction during the refill/reflood stages of a loss-of-coolant accident in experimental test facilities. The instrumentation's principle of operation was based on measurement of the electrical impedance of two-phase mixtures. Two-phase velocity is estimated by time-of-flight analysis of signals from two spatially separate sensors. A relative capacitive technique was employed to measure void fraction. The impedance sensor consists of a pair of stainless steel wires strung back and forth across a stainless steel frame. This sensor was dubbed string probe for this reason. The string probe was designed to withstand temperatures of 350/sup 0/C, thermal transients of approx. 300/sup 0/C/s, and severe fluid- and condensation-induced shocks.

  9. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    SciTech Connect (OSTI)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29T23:59:59.000Z

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  10. Variables and units in Ocean 420 u zonal velocity (east-west) m/s

    E-Print Network [OSTI]

    Thompson, LuAnne

    speed m/s Cg group velocity m/s k wave number 1/m frequency 1/s wavelength m T period s kinematic mixed-layer and water below C E Energy density in surface gravity wave J/m 2 #12;Some constants k Von surface height m g gravitational constant m/s 2 a amplitude of wave in sea surface height m f Coriolis

  11. Constraining the Mass Profiles of Stellar Systems: Schwarzschild Modeling of Discrete Velocity Datasets

    E-Print Network [OSTI]

    Julio Chanamé; Jan Kleyna; Roeland van der Marel

    2008-04-21T23:59:59.000Z

    (ABRIDGED) We present a new Schwarzschild orbit-superposition code designed to model discrete datasets composed of velocities of individual kinematic tracers in a dynamical system. This constitutes an extension of previous implementations that can only address continuous data in the form of (the moments of) velocity distributions, thus avoiding potentially important losses of information due to data binning. Furthermore, the code can handle any combination of available velocity components, i.e., only line-of-sight velocities, only proper motions, or a combination of both. It can also handle a combination of discrete and continuous data. The code finds the distribution function (DF, a function of the three integrals of motion E, Lz, and I3) that best reproduces the available kinematic and photometric observations in a given axisymmetric gravitational potential. The fully numerical approach ensures considerable freedom on the form of the DF f(E,Lz,I3). This allows a very general modeling of the orbital structure, thus avoiding restrictive assumptions about the degree of (an)isotropy of the orbits. We describe the implementation of the discrete code and present a series of tests of its performance based on the modeling of simulated datasets generated from a known DF. We find that the discrete Schwarzschild code recovers the original orbital structure, M/L ratios, and inclination of the input datasets to satisfactory accuracy, as quantified by various statistics. The code will be valuable, e.g., for modeling stellar motions in Galactic globular clusters, and those of individual stars, planetary nebulae, or globular clusters in nearby galaxies. This can shed new light on the total mass distributions of these systems, with central black holes and dark matter halos being of particular interest.

  12. Numerical analysis of liquid-solids suspension velocities and concentrations obtained by NMR imaging.

    SciTech Connect (OSTI)

    Ding, J.; Lyczkowski, R. W.; Sha, W. T.; Altobelli, S. A.; Fukushima, E.; Lovelace Medical Foundation

    1993-01-01T23:59:59.000Z

    Analyses of some of the steady-state, fully developed, and isothermal carrier fluid velocity and solids concentration data of Altobelli et al. and Sinton and Chow obtained using three-dimensional time-of-flight nuclear magnetic (NMR) imaging techniques are presented. NMR imaging offers powerful techniques to nonintrusively determine three-dimensional time-dependent velocity and concentration fields to assist development and validation of the constitutive models and the computer programs describing concentrated suspensions. These experiments were carefully performed and probably represent the best available open literature data of their kind. COMMIX-M, a three-dimensional transient and steady-state computer program written in Cartesian and cylindrical coordinates, has been used to analyze the NMR data. This computer program is capable of analyzing multiphase flow and heat transfer and utilizes the separate phases model wherein each phase has its own mass, momentum, and energy equations. COMMIX-M contains constitutive relationships for interfacial drag, solids viscosities and stresses to describe the solids rheology, and virtual mass and shear lift forces extended to a continuum from the single particle literature. Also included is a solids partial-slip boundary condition to allow nonzero tangential velocity at the tube walls. This computer program is being developed at Argonne National Laboratory for application to test various interphase interaction models and to predict design and processing of dense fluid-solids suspension systems. Comparisons of computed and measured concentration and velocity profiles provide some insights into the mechanisms governing the observed phenomena. Recommendations for model improvement are given. To the authors knowledge, these are the first such comparisons of theory and experiment

  13. Analysis of liquid-solids suspension velocities and concentrations obtained by NMR imaging

    SciTech Connect (OSTI)

    Ding, J.; Lyczkowski, R.W.; Sha, W.T. [Argonne National Lab., IL (United States); Altobelli, S.A.; Fukushima, E. [Lovelace Medical Foundation, Albuquerque, NM (United States)

    1992-09-01T23:59:59.000Z

    COMMIX-M, a three-dimensional transient and steady-state computer program written in Cartesian and cylindrical coordinates, has been developed by Argonne National Laboratory. This computer program is capable of analyzing multiphase flow and heat transfer and utilizes the separate phases model wherein each phase has its own mass, momentum, and energy equations. This computer program is in its early stages of development for application to test various interphase interaction models and to predict design and processing of dense fluid-solids suspension systems. COMMIX-M contains preliminary constitutive relationships for interfacial drag, solids viscosities and stresses to describe the solids rheology, and shear lift forces from the literature. Also included is a solids partial slip boundary condition to allow non-zero tangential velocity at the tube walls. Analyses of some of the steady-state, fully-developed isothermal carrier fluid velocity and solids concentration data of Altobelli et al. and Sinton and Chow are presented. These experimental data obtained using three-dimensional time-of-flight nuclear magnetic (NMR) imaging techniques were carefully performed and represent some of the best available open literature data of their kind. NMR imaging offers powerful techniques to non-intrusively determine three-dimensional time-dependent velocity and concentration fields to assist development and validation of the constitutive models and the computer programs describing concentrated suspensions. Analyses of these NMR data, together with comparisons of computed and measured concentration and velocity profiles provide some insights into the mechanisms governing the observed phenomena. Recommendations for future research are given. To the authors` knowledge, these are the first such comparisons of theory and experiment.

  14. Analysis of liquid-solids suspension velocities and concentrations obtained by NMR imaging

    SciTech Connect (OSTI)

    Ding, J.; Lyczkowski, R.W.; Sha, W.T. (Argonne National Lab., IL (United States)); Altobelli, S.A.; Fukushima, E. (Lovelace Medical Foundation, Albuquerque, NM (United States))

    1992-09-01T23:59:59.000Z

    COMMIX-M, a three-dimensional transient and steady-state computer program written in Cartesian and cylindrical coordinates, has been developed by Argonne National Laboratory. This computer program is capable of analyzing multiphase flow and heat transfer and utilizes the separate phases model wherein each phase has its own mass, momentum, and energy equations. This computer program is in its early stages of development for application to test various interphase interaction models and to predict design and processing of dense fluid-solids suspension systems. COMMIX-M contains preliminary constitutive relationships for interfacial drag, solids viscosities and stresses to describe the solids rheology, and shear lift forces from the literature. Also included is a solids partial slip boundary condition to allow non-zero tangential velocity at the tube walls. Analyses of some of the steady-state, fully-developed isothermal carrier fluid velocity and solids concentration data of Altobelli et al. and Sinton and Chow are presented. These experimental data obtained using three-dimensional time-of-flight nuclear magnetic (NMR) imaging techniques were carefully performed and represent some of the best available open literature data of their kind. NMR imaging offers powerful techniques to non-intrusively determine three-dimensional time-dependent velocity and concentration fields to assist development and validation of the constitutive models and the computer programs describing concentrated suspensions. Analyses of these NMR data, together with comparisons of computed and measured concentration and velocity profiles provide some insights into the mechanisms governing the observed phenomena. Recommendations for future research are given. To the authors' knowledge, these are the first such comparisons of theory and experiment.

  15. The Effects of Indoor Air Velocity on Occupant Thermal Comfort in Winter

    E-Print Network [OSTI]

    Wang, J.; Chen, L.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity, and IAQ, Vol. I-2-5 The Effects of Indoor Air Velocity on Occupant Thermal Comfort in Winter Jiaolin Wang Lu Chen Postgrauate Master... surface temperature decline to reduce the body?s heat loss. Meanwhile shudder will promote the body?s heat production. So the temperature of organism doesn?t drop with decline of the environmental temperature. But if organism stays at cool environment...

  16. Estimation of Velocity Distribution and Suspended Sediment Discharge in Open Channels Using Entropy

    E-Print Network [OSTI]

    Cui, Huijuan

    2011-08-08T23:59:59.000Z

    of entropy.?????.?...??????? 99 7.1.4 Cumulative distribution function.?????.?????.. 100 7.1.5 General sediment concentration distribution?.?????.. 102 7.1.6 Dimensionless parameter N?.???????????? 103 7.2 Application of sediment distribution...?????..??????...?????... 44 vii Page 4.2.1 Setting a coordinate system?..??????...????? 44 4.2.2 Cumulative distribution function?????...?????. 44 4.2.3 Verification of cumulative distribution function?????. 45 5 . DERIVATION OF VELOCITY DISTRIBUTION...

  17. Variation of seismic-wave velocities in westerly granite under stress

    E-Print Network [OSTI]

    Al-Shaibani, Abdulaziz Muhareb

    1994-01-01T23:59:59.000Z

    -wave Results. S-wave Results. SUMMARY. REFERENCES. . . . :. 10 . . . . 13 . . . . . . . . 17 . . . . . 21 . . . . . 24 . . . . . 24 . . . . . 28 . . . . . 35 . . . . . . . 36 LIST OF TABLES Page TABLE la. Compressional-wave velocities, Vp.... . 17 Figure 7 Crosscorrelation between two P-wave traces along one direction at two different pressure levels to determine the relative time delays. . . . . 20 Figure 8. (a, b and c). P-wave traces measured at the center of the faces along x-, y...

  18. Relativistic velocity addition law derived from a machine gun analogy and time dilation only

    E-Print Network [OSTI]

    Bernhard Rothenstein; Stefan Popescu

    2007-03-15T23:59:59.000Z

    We consider a scenario that involves a machine gun, the bullets it fires and a moving target, considered from the rest frame of the machine gun and from the rest frame of the target respectively. Involving the special relativity via its two postulates and the time dilation formula we derive the relativistic velocity addition law showing that it leads to the Lorentz transformations for the space-time coordinates of the same event.

  19. Critical Superfluid Velocity in a Trapped Dipolar Gas Ryan M. Wilson,* Shai Ronen,

    E-Print Network [OSTI]

    Wilson, Ryan M.

    of sound in liquid helium, but is smaller due to the existence of an anomalously low-energy roton mode. In particular, their critical velocity is nomi- nally given by the speed of sound in the center of the gas numbers: 67.85.Ã?d, 03.75.Kk, 47.37.+q Liquid 4 He was the first experimentally accessible sys- tem

  20. Velocity determination from multireceiver full-waveform acoustic-logging data

    E-Print Network [OSTI]

    Ramanlal, Kirti Kumar

    2012-06-07T23:59:59.000Z

    &IOGRAVI A. The Sonic-Logging Tool B. KVaveform Characteristics III DETECTION OF ARRIVALS AND VELOCITY ?IEASURE'CLIENTS . Velocitv Determination illethods B. Semblance Processing C. Selection of Parameters for Semblance Processing D. Comparison... CONCLUSIONS REFERENCES. VITA Page 92 100 LIST OF TABLES Table 1. Input parameters for synthetic sonic waveforms. 2. Values of semblance at the compressional, shear and Stoneley peaks with and without energy normalization. 3. 'Aleasurements...

  1. Bifractality of the Devil’s staircase appearing in the Burgers equation with Brownian initial velocity

    E-Print Network [OSTI]

    E. Aurell; U. Frisch; A. Noullez; M. Blank

    1997-01-01T23:59:59.000Z

    Submitted to J. Stat. Phys. It is shown that the inverse Lagrangian map for the solution of the Burgers equation (in the inviscid limit) with Brownian initial velocity presents a bifractality (phase transition) similar to that of the Devil’s staircase for the standard triadic Cantor set. Both heuristic and rigorous derivations are given. It is explained why artifacts can easily mask this phenomenon in numerical simulations. 1

  2. Interrelationships between air velocity and natural wet-bulb thermometer response

    E-Print Network [OSTI]

    Jones, Nathan Glenn

    1983-01-01T23:59:59.000Z

    INTERRELATIONSHIPS BETWEEN AIR VFLOCITY ANO NATURAL WET-BULB THERMOMETER RESPONSE A Thesis by NATHAN GLENN JONES Submitted to the Graduate Colleqe of Texas ASM University i n partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE AUGUST 1983 Major Subject: Industrial Hygiene INTERRELATIONSHIPS BETWEEN AIR VELOCITY AND NATURAL WET-BULB THERMOMETER RESPONSE A Thesis by NATHAN GLENN JONES Approved as to style an content by: airman o ommittee er Member ~~' A~ Member...

  3. Electrostatic mode associated with the pinch velocity in reversed field pinch simulations

    SciTech Connect (OSTI)

    Delzanno, Gian Luca [Los Alamos National Laboratory (LANL); Chacon, Luis [Oak Ridge National Laboratory (ORNL); Finn, John M. [Los Alamos National Laboratory (LANL)

    2008-01-01T23:59:59.000Z

    The existence of a new phenomenon in reversed field pinch (RFP) simulations related to the equilibrium pinch flow is discussed. This behavior is due to the inward equilibrium flow, but is strongly affected by boundary conditions on the perturbed azimuthal flow. It is important to understand and control this mechanism in single helicity simulations of RFPs. This mechanism can be explained in terms of an electrostatic instability related to a mode which can occur in fluid dynamics. In a simple linear model, it is shown that the mode, which is related to the inward advection of angular momentum from the edge, can be stabilized by using homogeneous Dirichlet (no-slip) boundary conditions at the wall. Behavior due to this mode is present in nonlinear simulations with zero-viscous-stress boundary conditions on the tangential velocity at the wall and, even in the presence of the usual magnetohydrodynamic modes, this mode can dominate the nonlinear dynamics of the velocity. In nonlinear simulations with Dirichlet boundary conditions on the tangential velocity, behavior associated with this electrostatic mode is not observed.

  4. Electrostatic mode associated with the pinch velocity in reversed field pinch simulations

    SciTech Connect (OSTI)

    Delzanno, Gian Luca; Finn, John M. [T-15 Plasma Theory Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chacon, Luis [T-15 Plasma Theory Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2008-12-15T23:59:59.000Z

    The existence of a new phenomenon in reversed field pinch (RFP) simulations related to the equilibrium pinch flow is discussed. This behavior is due to the inward equilibrium flow, but is strongly affected by boundary conditions on the perturbed azimuthal flow. It is important to understand and control this mechanism in single helicity simulations of RFPs. This mechanism can be explained in terms of an electrostatic instability related to a mode which can occur in fluid dynamics. In a simple linear model, it is shown that the mode, which is related to the inward advection of angular momentum from the edge, can be stabilized by using homogeneous Dirichlet (no-slip) boundary conditions at the wall. Behavior due to this mode is present in nonlinear simulations with zero-viscous-stress boundary conditions on the tangential velocity at the wall and, even in the presence of the usual magnetohydrodynamic modes, this mode can dominate the nonlinear dynamics of the velocity. In nonlinear simulations with Dirichlet boundary conditions on the tangential velocity, behavior associated with this electrostatic mode is not observed.

  5. Ion velocities in direct current arc plasma generated from compound cathodes

    SciTech Connect (OSTI)

    Zhirkov, I.; Rosen, J. [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)] [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Eriksson, A. O. [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden) [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Oerlikon Balzers Coating AG, Iramali 18, 9496 Balzers (Liechtenstein)

    2013-12-07T23:59:59.000Z

    Arc plasma from Ti-C, Ti-Al, and Ti-Si cathodes was characterized with respect to charge-state-resolved ion energy. The evaluated peak velocities of different ion species in plasma generated from a compound cathode were found to be equal and independent on ion mass. Therefore, measured difference in kinetic energies can be inferred from the difference in ion mass, with no dependence on ion charge state. The latter is consistent with previous work. These findings can be explained by plasma quasineutrality, ion acceleration by pressure gradients, and electron-ion coupling. Increasing the C concentration in Ti-C cathodes resulted in increasing average and peak ion energies for all ion species. This effect can be explained by the “cohesive energy rule,” where material and phases of higher cohesive energy generally result in increasing energies (velocities). This is also consistent with the here obtained peak velocities around 1.37, 1.42, and 1.55 (10{sup 4} m/s) for ions from Ti{sub 0.84}Al{sub 0.16}, Ti{sub 0.90}Si{sub 0.10}, and Ti{sub 0.90}C{sub 0.10} cathodes, respectively.

  6. Thermal conduction by dark matter with velocity and momentum-dependent cross-sections

    E-Print Network [OSTI]

    Aaron C. Vincent; Pat Scott

    2014-04-23T23:59:59.000Z

    We use the formalism of Gould and Raffelt to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients $\\alpha$ and $\\kappa$ for cross-sections that go as $v_{\\rm rel}^2$, $v_{\\rm rel}^4$, $v_{\\rm rel}^{-2}$, $q^2$, $q^4$ and $q^{-2}$, where $v_{\\rm rel}$ is the relative DM-nucleus velocity and $q$ is the momentum transferred in the collision. We find that a $v_{\\rm rel}^{-2}$ dependence can significantly enhance energy transport from the inner solar core to the outer core. The same can true for any $q$-dependent coupling, if the dark matter mass lies within some specific range for each coupling. This effect can complement direct searches for dark matter; combining these results with state-of-the-art Solar simulations should greatly increase sensitivity to certain DM models. It also seems possible that the so-called Solar Abundance Problem could be resolved by enhanced energy transport in the solar core due to such velocity- or momentum-dependent scatterings.

  7. Effect of ion excape velocity and conversion surface material on H- production

    SciTech Connect (OSTI)

    Johnson, Kenneth F [Los Alamos National Laboratory; Tarvainen, Olli A [Los Alamos National Laboratory; Geros, E. [Los Alamos National Laboratory; Stelzer, J. [Los Alamos National Laboratory; Rouleau, G. [Los Alamos National Laboratory; Kalvas, T. [UNIV OF JYVASKYLA; Komppula, J. [UNIV OF JYASKYLA; Carmichael, J. [ORNL

    2010-10-05T23:59:59.000Z

    According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H{sup -} production. A converter-type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was changed by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H{sup -} no direct gain of extracted beam current can be achieved by increasing the converter voltage. At the same time the conversion efficiency of H{sup -} was observed to vary with converter voltage and follow the existing theories in qualitative manner. We discuss the role of surface material on H{sup -} formation probability and present calculations predicting relative H{sup -} yields from different cesiated surfaces. These calculations are compared with experimental observations from different types of H{sup -} ion sources. The effects caused by varying cesium coverage are also discussed. Finally, we present a novel idea of utilizing materials exhibiting so-called negative electron affinity in H{sup -}/D{sup -} production under UV-light exposure.

  8. AN AFFINE-INVARIANT SAMPLER FOR EXOPLANET FITTING AND DISCOVERY IN RADIAL VELOCITY DATA

    SciTech Connect (OSTI)

    Hou Fengji; Hogg, David W. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Goodman, Jonathan; Weare, Jonathan [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 (United States); Schwab, Christian, E-mail: fh417@nyu.edu [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States)

    2012-02-01T23:59:59.000Z

    Markov chain Monte Carlo (MCMC) proves to be powerful for Bayesian inference and in particular for exoplanet radial velocity fitting because MCMC provides more statistical information and makes better use of data than common approaches like chi-square fitting. However, the nonlinear density functions encountered in these problems can make MCMC time-consuming. In this paper, we apply an ensemble sampler respecting affine invariance to orbital parameter extraction from radial velocity data. This new sampler has only one free parameter, and does not require much tuning for good performance, which is important for automatization. The autocorrelation time of this sampler is approximately the same for all parameters and far smaller than Metropolis-Hastings, which means it requires many fewer function calls to produce the same number of independent samples. The affine-invariant sampler speeds up MCMC by hundreds of times compared with Metropolis-Hastings in the same computing situation. This novel sampler would be ideal for projects involving large data sets such as statistical investigations of planet distribution. The biggest obstacle to ensemble samplers is the existence of multiple local optima; we present a clustering technique to deal with local optima by clustering based on the likelihood of the walkers in the ensemble. We demonstrate the effectiveness of the sampler on real radial velocity data.

  9. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01T23:59:59.000Z

    cost direct plasma MHD direct conversion [38], as well as toT-lean targets and direct conversion for heavy ion fusion. [conversion loss of beam energy into x-rays. High ablation velocities with heavy ion direct

  10. Measuring water velocity using DIDSON and image cross-correlation techniques

    SciTech Connect (OSTI)

    Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

    2009-08-01T23:59:59.000Z

    To design or operate hydroelectric facilities for maximum power generation and minimum ecological impact, it is critical to understand the biological responses of fish to different flow structures. However, information is still lacking on the relationship between fish behavior and flow structures despite many years of research. Existing field characterization approaches conduct fish behavior studies and flow measurements separately and coupled later using statistical analysis. These types of studies, however, lack a way to determine the specific hydraulic conditions or the specific causes of the biological response. The Dual-Frequency Identification Sonar (DIDSON) has been in wide use for fish behavior studies since 1999. The DIDSON can detect acoustic targets at long ranges in dark or turbid dark water. PIV is a state-of-the-art, non-intrusive, whole-flow-field technique, providing instantaneous velocity vector measurements in a whole plane using image cross-correlating techniques. There has been considerable research in the development of image processing techniques associated with PIV. This existing body of knowledge is applicable and can be used to process the images taken by the DIDSON. This study was conducted in a water flume which is 9 m long, 1.2 m wide, and 1.2 m deep when filled with water. A lab jet flow was setup as the benchmark flow to calibrate DIDSON images. The jet nozzle was 6.35 cm in diameter and core jet velocity was 1.52 m/s. Different particles were used to seed the flow. The flow was characterized based on the results using Laser Doppler Velocimetry (LDV). A DIDSON was mounted about 5 meters away from the jet nozzle. Consecutive DIDSON images with known time delay were divided into small interrogation spots after background was subtracted. Across-correlation was then performed to estimate the velocity vector for each interrogation spot. The estimated average velocity in the core zone was comparable to that obtained using a LDV. This proof-of-principle project demonstrated the feasibility of extracting water flow velocity information from underwater DIDSON images using image cross-correlation techniques.

  11. Deposition Velocities of Non-Newtonian Slurries in Pipelines: Complex Simulant Testing

    SciTech Connect (OSTI)

    Poloski, Adam P.; Bonebrake, Michael L.; Casella, Andrew M.; Johnson, Michael D.; Toth, James J.; Adkins, Harold E.; Chun, Jaehun; Denslow, Kayte M.; Luna, Maria; Tingey, Joel M.

    2009-07-01T23:59:59.000Z

    One of the concerns expressed by the External Flowsheet Review Team (EFRT) is about the potential for pipe plugging at the Waste Treatment and Immobilization Plant (WTP). Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, deposition-velocity tests were performed on several physical simulants to determine whether the design approach is conservative. Deposition velocity is defined as the velocity below which particles begin to deposit to form a moving bed of particles on the bottom of a straight horizontal pipe during slurry-transport operations. The deposition velocity depends on the system geometry and the physical properties of the particles and fluid. An experimental program was implemented to test the stability-map concepts presented in WTP-RPT-175 Rev. 01. Two types of simulant were tested. The first type of simulant was similar to the glass-bead simulants discussed in WTP-RPT-175 Rev. 0 ; it consists of glass beads with a nominal particle size of 150 µm in a kaolin/water slurry. The initial simulant was prepared at a target yield stress of approximately 30 Pa. The yield stress was then reduced, stepwise, via dilution or rheological modifiers, ultimately to a level of <1 Pa. At each yield-stress step, deposition-velocity testing was performed. Testing over this range of yield-stress bounds the expected rheological operating window of the WTP and allows the results to be compared to stability-map predictions for this system. The second simulant was a precipitated hydroxide that simulates HLW pretreated sludge from Hanford waste tank AZ-101. Testing was performed in a manner similar to that for the first simulant over a wide range of yield stresses; however, an additional test of net-positive suction-head required (NPSHR) was performed at each yield stress condition. Unlike the previous simulant, the sizes and densities of the particles that can deposit in the piping are a result of the simulant precipitation process; there is expected to be a complex mixture of particles of various sizes and densities that make it difficult to predict a stability map. The objective of the testing is to observe whether behavior consistent with the stability-map concept occurs in complex simulants with mixtures of different sizes and densities.

  12. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07T23:59:59.000Z

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  13. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D. (Los Alamos, NM); Bounds, John A. (Los Alamos, NM); Rawool-Sullivan, Mohini W. (Los Alamos, NM)

    1996-01-01T23:59:59.000Z

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  14. THE STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI. I. RECONSTRUCTED VELOCITY-DELAY MAPS

    SciTech Connect (OSTI)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; De Rosa, G.; Martini, Paul; Kochanek, C. S.; Zu, Y.; Shappee, B.; Beatty, T. G.; Salvo, C. Araya; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 W 18th Ave, Columbus, OH 43210 (United States)] [Department of Astronomy, The Ohio State University, 140 W 18th Ave, Columbus, OH 43210 (United States); Horne, Keith [SUPA Physics and Astronomy, University of St. Andrews, Fife, KY16 9SS Scotland (United Kingdom)] [SUPA Physics and Astronomy, University of St. Andrews, Fife, KY16 9SS Scotland (United Kingdom); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States)] [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Denney, K. D. [Marie Curie Fellow at the Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)] [Marie Curie Fellow at the Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Siverd, R. [Department of Physics and Astronomy, Vanderbilt University, 5301 Stevenson Center, Nashville, TN 37235 (United States)] [Department of Physics and Astronomy, Vanderbilt University, 5301 Stevenson Center, Nashville, TN 37235 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 98409 (Ukraine)] [Crimean Astrophysical Observatory, P/O Nauchny Crimea 98409 (Ukraine); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)] [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Bord, D. J. [Department of Natural Sciences, The University of Michigan - Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128 (United States)] [Department of Natural Sciences, The University of Michigan - Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128 (United States); Che, X. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 41809 (United States)] [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 41809 (United States); and others

    2013-02-10T23:59:59.000Z

    We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C 120, and PG 2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the H{beta} emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C 120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He II {lambda}4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG 2130+099 show signs of infalling gas, but the He II emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C 120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.

  15. Solar rotation inferred from radial velocities of the sun-as-a-star during the 2012 May 21 eclipse

    E-Print Network [OSTI]

    Takeda, Yoichi; Kambe, Eiji; Toda, Hiroyuki; Koyano, Hisashi; Sato, Bun'ei; Nakamura, Yasuhisa; Narita, Norio; Sekii, Takashi

    2014-01-01T23:59:59.000Z

    With an aim to examine how much information of solar rotation can be obtained purely spectroscopically by observing the sun-as-a-star during the 2012 May 21 eclipse at Okayama Astrophysical Observatory, we studied the variation of radial velocities (V_r), which were derived by using the iodine-cell technique based on a set of 184 high-dispersion spectra consecutively obtained over the time span of ~4 hours. The resulting V_r(t) was confirmed to show the characteristic variation (Rossiter-McLaughlin effect) caused by time-varying visibility of the solar disk. By comparing the observed V_r(t) curve with the theoretical ones, which were simulated with the latitude (psi) dependent solar rotation law omega(psi) = A + B sin^2(psi) (deg/day), we found that the relation B = -5.5 A + 77 gives the best fit, though separate determinations of A and B were not possible. Since this relationship is consistent with the real values known for the sun (A = 14.5, B = -2.8), we may state that our analysis yielded satisfactory res...

  16. The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for MaxBCG Galaxy Clusters

    SciTech Connect (OSTI)

    Becker, M.R.; McKay, T.A.; /Michigan U.; Koester, B.; /Chicago U., Astron. Astrophys. Ctr.; Wechsler, R.H.; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.; Rozo, E.; /Ohio State U.; Evrard, A.; /Michigan U. /Michigan U., MCTP; Johnston, D.; /Caltech, JPL; Sheldon, E.; /New York U.; Annis, J.; /Fermilab; Lau, E.; /Chicago U., Astron. Astrophys. Ctr.; Nichol, R.; /Portsmouth U., ICG; Miller, C.; /Michigan U.

    2007-06-05T23:59:59.000Z

    The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog identified from imaging data obtained in the Sloan Digital Sky Survey, we study the BCG--galaxy velocity correlation function. By modeling its non-Gaussianity, we measure the mean and scatter in velocity dispersion at fixed richness. The mean velocity dispersion increases from 202 {+-} 10 km s{sup -1} for small groups to more than 854 {+-} 102 km s{sup -1} for large clusters. We show the scatter to be at most 40.5{+-}3.5%, declining to 14.9{+-}9.4% in the richest bins. We test our methods in the C4 cluster catalog, a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2 spectroscopic sample, and in mock galaxy catalogs constructed from N-body simulations. Our methods are robust, measuring the scatter to well within one-sigma of the true value, and the mean to within 10%, in the mock catalogs. By convolving the scatter in velocity dispersion at fixed richness with the observed richness space density function, we measure the velocity dispersion function of the maxBCG galaxy clusters. Although velocity dispersion and richness do not form a true mass--observable relation, the relationship between velocity dispersion and mass is theoretically well characterized and has low scatter. Thus our results provide a key link between theory and observations up to the velocity bias between dark matter and galaxies.

  17. Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging

    SciTech Connect (OSTI)

    Tang, Xiaofeng [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China) [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zhou, Xiaoguo, E-mail: xzhou@ustc.edu.cn, E-mail: yanbing@jlu.edu.cn; Liu, Shilin [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China) [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Sun, Zhongfa [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China)] [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Liu, Fuyi; Sheng, Liusi [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)] [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yan, Bing, E-mail: xzhou@ustc.edu.cn, E-mail: yanbing@jlu.edu.cn [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China)] [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China)

    2014-01-28T23:59:59.000Z

    Dissociative photoionization of methyl bromide (CH{sub 3}Br) in an excitation energy range of 10.45–16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X{sup 2}E of CH{sub 3}Br{sup +} is stable, and both A{sup 2}A{sub 1} and B{sup 2}E ionic excited states are fully dissociative to produce the unique fragment ion of CH{sub 3}{sup +}. From TPEPICO 3D time-sliced velocity images of CH{sub 3}{sup +} dissociated from specific state-selected CH{sub 3}Br{sup +} ion, kinetic energy release distribution (KERD) and angular distribution of CH{sub 3}{sup +} fragment ion are directly obtained. Both spin-orbit states of Br({sup 2}P) atom can be clearly observed in fast dissociation of CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion along C–Br rupture, while a KERD of Maxwell-Boltzmann profile is obtained in dissociation of CH{sub 3}Br{sup +}(B{sup 2}E) ion. With the aid of the re-calculated potential energy curves of CH{sub 3}Br{sup +} including spin-orbit coupling, dissociation mechanisms of CH{sub 3}Br{sup +} ion in A{sup 2}A{sub 1} and B{sup 2}E states along C–Br rupture are revealed. For CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion, the CH{sub 3}{sup +} + Br({sup 2}P{sub 1/2}) channel is occurred via an adiabatic dissociation by vibration, while the Br({sup 2}P{sub 3/2}) formation is through vibronic coupling to the high vibrational level of X{sup 2}E state followed by rapid dissociation. C–Br bond breaking of CH{sub 3}Br{sup +}(B{sup 2}E) ion can occur via slow internal conversion to the excited vibrational level of the lower electronic states and then dissociation.

  18. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread

    SciTech Connect (OSTI)

    Kong, Ling-Bao, E-mail: konglingbao@gmail.com [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China) [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Hong-Yu [School of Physics, Anshan Normal University, Anshan 114005 (China)] [School of Physics, Anshan Normal University, Anshan 114005 (China); Hou, Zhi-Ling, E-mail: houzl@mail.buct.edu.cn [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China) [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Jin, Hai-Bo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)] [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Du, Chao-Hai [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)] [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15T23:59:59.000Z

    The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained.

  19. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect (OSTI)

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-08-01T23:59:59.000Z

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  20. The use of particle tracking to obtain planar velocity measurements in an unsteady laminar diffusion flame

    SciTech Connect (OSTI)

    Lewis, G.S.; Cantwell, B.J.; Lecuona, A.

    1987-01-01T23:59:59.000Z

    An investigation of the flame-flow interaction in an unsteady laminar co-flowing jet diffusion flame is underway. The flame is made periodic by acoustic excitation of the fuel stream. The objective of the research is to develop a better understanding of the relationship between the flowfield and combustion process by superimposing measurements of the vector velocity field on planar measurements of reactive and passive scalars. In this connection a technique is being developed to obtain instantaneous two-dimensional velocity measurements from multiply-exposed photographic images of scattered light from speed particles in the flow. The technique involves simple photographic images taken at a right angle to a thin laser sheet on the diametric center of the jet. The illumination source is pulsed Cu vapor laser. The important issues considered have included the particle type and size as they relate to the particle's ability to follow the flow and to withstand combustion temperatures. Also of concern is the effect of thermophoretic forces on the measurement accuracy. Both Al/sub 2/O/sub 3/ and TiO/sub 2/ have been used successfully and detailed information about the size and geometry of TiO/sub 2/ particles has been obtained through scanning electron microscope photographs. The TiO/sub 2/ particles have been produced from the reaction of TiCl/sub 4/ and water. The technique has been successfully demonstrated by measuring a cold laminar jet exit velocity profile. Also, good particle images have been obtained in a pulsed diffusion flame.

  1. EVALUATION OF THREE ULTRASONIC INSTRUMENTS FOR CRITICAL VELOCITY DETERMINATION DURING HANFORD TANK WASTE TRANSFER OPERATIONS - 11121

    SciTech Connect (OSTI)

    Bontha, Jagannadha R.; Denslow, Kayte M.; Adkins, Harold E.; Jenks, Jeromy WJ; Burns, Carolyn A.; Schonewill, Philip P.; Morgen, Gerald P.; Greenwood, Margaret S.; Wooley, Theodore A.

    2011-06-01T23:59:59.000Z

    Three ultrasonic instruments were evaluated by the Pacific Northwest National Laboratory (PNNL) to determine their ability to detect critical velocities for solids settling during slurry transfer operation between the Hanford Tank farms and the Waste Treatment and Immobilization Plant (WTP). The evaluation was conducted in a flow loop using prototypic transfer piping and a suite of simulants that encompass a broad range of waste physical and rheological properties that are likely encountered during Hanford tank waste transfer operations. The results from the evaluation are presented in this paper.

  2. Effects of a sheared ion velocity on the linear stability of ITG modes

    SciTech Connect (OSTI)

    Lontano, M.; Lazzaro, E. [Istituto di Fisica del Plasma, C.N.R., Euratom-ENEA-CNR Association, Milan (Italy); Varischetti, M. C. [Istituto di Fisica del Plasma, C.N.R., Euratom-ENEA-CNR Association, Milan (Italy); Dipartimento di Fisica, Universita degli Studi di Milano, Milan (Italy)

    2006-11-30T23:59:59.000Z

    The linear dispersion of the ion temperature gradient (ITG) modes, in the presence of a non uniform background ion velocity U(parallel sign) U(parallel sign)(x) ez, in the direction of the sheared equilibrium magnetic field B0 = B0(x) ez, has been studied in the frame of the two-fluid guiding center approximation, in slab geometry. Generally speaking, the presence of an ion flow destabilizes the oscillations. The role of the excited K-H instability is discussed.

  3. Complex-optical-field lidar system for range and vector velocity measurement

    E-Print Network [OSTI]

    Gao, Shuang; Sullivan, Maurice O.; Hui, Rongqing

    2012-11-01T23:59:59.000Z

    Complex-optical-field lidar system for range and vector velocity measurement Shuang Gao,1,2 Maurice O’Sullivan,3 and Rongqing Hui2,* 1Department of Electronic Engineering and Information Science, University of Science and Technology of China... lidar system based on the measurement of complex optical field is demonstrated for the first time. An electro-optic in- phase/quadrature (I/Q) modulator is used in the lidar transmitter to realize carrier-suppressed complex optical field modulation...

  4. Plasma Velocity Profile During The Pulsed Poloidal Current Drive In The MST RFP Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory andVelocity Profile During The Pulsed Poloidal

  5. VELOCITY MEASUREMENTS FOR A SOLAR ACTIVE REGION FAN LOOP FROM HINODE/EIS OBSERVATIONS

    SciTech Connect (OSTI)

    Young, P. R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); O'Dwyer, B.; Mason, H. E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2012-01-01T23:59:59.000Z

    The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s{sup -1} up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of 'strands'-one cooler and downflowing, the other hotter and stationary-is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 Multiplication-Sign 10{sup 9} cm{sup -3} at the loop base, to 5.0 Multiplication-Sign 10{sup 8} cm{sup -3} at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s{sup -1} in Fe XII {lambda}195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s{sup -1} at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.

  6. METAL ABUNDANCES, RADIAL VELOCITIES, AND OTHER PHYSICAL CHARACTERISTICS FOR THE RR LYRAE STARS IN THE KEPLER FIELD

    SciTech Connect (OSTI)

    Nemec, James M. [Department of Physics and Astronomy, Camosun College, Victoria, British Columbia, V8P 5J2 (Canada); Cohen, Judith G.; Sesar, Branimir [Department of Physics and Astronomy, Caltech, Pasadena, CA (United States); Ripepi, Vincenzo [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Derekas, Aliz [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest (Hungary); Moskalik, Pawel [Copernicus Astronomical Centre, ul.Bartycka 18, 00-716, Warsaw (Poland); Chadid, Merieme [Observatoire de la Cote d'Azur, Universite de Nice, Sophia-Antipolis, UMR 6525, Parc Valrose, F-06108 Nice Cedex 02 (France); Bruntt, Hans, E-mail: nemec@camosun.ca, E-mail: jmn@isr.bc.ca, E-mail: jlc@astro.caltech.edu, E-mail: bsesar@astro.caltech.edu, E-mail: ripepi@na.astro.it, E-mail: derekas@konkoly.hu, E-mail: pam@camk.edu.pl, E-mail: chadid@marseille.fr, E-mail: bruntt@phys.au.dk [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)

    2013-08-20T23:59:59.000Z

    Spectroscopic iron-to-hydrogen ratios, radial velocities, atmospheric parameters, and new photometric analyses are presented for 41 RR Lyrae stars (and one probable high-amplitude {delta} Sct star) located in the field-of-view of the Kepler space telescope. Thirty-seven of the RR Lyrae stars are fundamental-mode pulsators (i.e., RRab stars) of which sixteen exhibit the Blazhko effect. Four of the stars are multiperiodic RRc pulsators oscillating primarily in the first-overtone mode. Spectroscopic [Fe/H] values for the 34 stars for which we were able to derive estimates range from -2.54 {+-} 0.13 (NR Lyr) to -0.05 {+-} 0.13 dex (V784 Cyg), and for the 19 Kepler-field non-Blazhko stars studied by Nemec et al. the abundances agree will with their photometric [Fe/H] values. Four non-Blazhko RR Lyrae stars that they identified as metal-rich (KIC 6100702, V2470 Cyg, V782 Cyg and V784 Cyg) are confirmed as such, and four additional stars (V839 Cyg, KIC 5520878, KIC 8832417, KIC 3868420) are also shown here to be metal-rich. Five of the non-Blazhko RRab stars are found to be more metal-rich than [Fe/H] {approx}-0.9 dex while all of the 16 Blazhko stars are more metal-poor than this value. New P-{phi}{sub 31}{sup s}-[Fe/H] relationships are derived based on {approx}970 days of quasi-continuous high-precision Q0-Q11 long- and short-cadence Kepler photometry. With the exception of some Blazhko stars, the spectroscopic and photometric [Fe/H] values are in good agreement. Several stars with unique photometric characteristics are identified, including a Blazhko variable with the smallest known amplitude and frequency modulations (V838 Cyg)

  7. Green's Functions for Surface Waves in a Generic Velocity Structure 1 Victor C. Tsai and Sarun Atiganyanun* 3

    E-Print Network [OSTI]

    1 Green's Functions for Surface Waves in a Generic Velocity Structure 1 and Green's functions have been well established 14 for many decades. However, or Green's function surface displacement. We address this gap in the 19 literature

  8. THE USE OF RADIAL VELOCITY DERIVATIVE TO DIAGNOSE ROTATION AND DIVERGENCE Travis M. Smith1,2, *

    E-Print Network [OSTI]

    Smith, Travis

    P5.6 THE USE OF RADIAL VELOCITY DERIVATIVE TO DIAGNOSE ROTATION AND DIVERGENCE Travis M. Smith1 was implemented in NSSL's Damaging Downburst Prediction and Detection Algorithm (Smith et al. 2004) for detecting

  9. REINTERPRETATION OF SLOWDOWN OF SOLAR WIND MEAN VELOCITY IN NONLINEAR STRUCTURES OBSERVED UPSTREAM OF EARTH'S BOW SHOCK

    SciTech Connect (OSTI)

    Parks, G. K.; Lin, N. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Lee, E.; Hong, J. [School of Space Research, Kyung Hee University, Yongin, Gyeonggi (Korea, Republic of); Fu, S. Y. [School of Earth and Space Sciences, Peking University, Beijing (China); McCarthy, M. [Earth and Space Sciences, University of Washington, Seattle, WA (United States); Cao, J. B. [Beijing University of Aeronautics and Astronautics, 100190, Beijing (China); Liu, Y.; Shi, J. K. [Space Weather, National Space Science Center, Beijing (China); Goldstein, M. L. [NASA, Goddard Space Flight Center, Greenbelt, MD (United States); Canu, P. [Laboratory for Plasma Physics, Ecole Polytechnique, Paris (France); Dandouras, I. [CNRS, IRAP, 9 Ave. Colonel Roche, Toulouse (France); Reme, H., E-mail: parks@ssl.berkeley.edu [CNRS, IRAP, University of Toulouse, UPS-OMP, Toulouse (France)

    2013-07-10T23:59:59.000Z

    Two of the many features associated with nonlinear upstream structures are (1) the solar wind (SW) mean flow slows down and deviates substantially and (2) the temperature of the plasma increases in the structure. In this Letter, we show that the SW beam can be present throughout the entire upstream event maintaining a nearly constant beam velocity and temperature. The decrease of the velocity is due to the appearance of new particles moving in the opposite direction that act against the SW beam and reduce the mean velocity as computed via moments. The new population, which occupies a larger velocity space, also contributes to the second moment, increasing the temperature. The new particles include the reflected SW beam at the bow shock and another population of lower energies, accelerated nearby at the shock or at the boundary of the nonlinear structures.

  10. Images of the lines under the MS transformations and the Concept of Velocity in the DSR theories

    E-Print Network [OSTI]

    Jafari, Nosrtollah

    2015-01-01T23:59:59.000Z

    The effect of the Maguejo-Smolin (MS) transformations on a straight line in the energy- momentum space will be studied. We will interpret the slope of this line as velocity $dE/dp$, which can leads to addition rule for the velocities in the MS doubly special relativity (DSR) case. Relation between two expressions $dE/dp$ and $p/E$ for velocity in the momentum space will be investigated more and the energy dependency of the velocities in the DSR theories is related to the geometrical properties of the lines under DSR transformations. The images of two parallel lines under the MS transformations will be studied and we will compute crossing point of these lines under the MS transformations in the energy-momentum space. The linear-fractional transformations don't keep parallelism. The crossing point is on a line in the energy-momentum space with a constant momentum $E_p/c$.

  11. Images of the lines under the MS transformations and the Concept of Velocity in the DSR theories

    E-Print Network [OSTI]

    Nosrtollah Jafari

    2015-01-30T23:59:59.000Z

    The effect of the Maguejo-Smolin (MS) transformations on a straight line in the energy- momentum space will be studied. We will interpret the slope of this line as velocity $dE/dp$, which can leads to addition rule for the velocities in the MS doubly special relativity (DSR) case. Relation between two expressions $dE/dp$ and $p/E$ for velocity in the momentum space will be investigated more and the energy dependency of the velocities in the DSR theories is related to the geometrical properties of the lines under DSR transformations. The images of two parallel lines under the MS transformations will be studied and we will compute crossing point of these lines under the MS transformations in the energy-momentum space. The linear-fractional transformations don't keep parallelism. The crossing point is on a line in the energy-momentum space with a constant momentum $E_p/c$.

  12. Verification and Validation of Carbon-Fiber Laminate Low Velocity Impact Simulations.

    SciTech Connect (OSTI)

    English, Shawn Allen; Nelson, Stacy Michelle; Briggs, Timothy; Brown, Arthur

    2014-10-01T23:59:59.000Z

    Presented is a model verification and validation effort using low - velocity impact (LVI) of carbon fiber reinforced polymer laminate experiments. A flat cylindrical indenter impacts the laminate with enough energy to produce delamination, matrix cracks and fiber breaks. Included in the experimental efforts are ultrasonic scans of the damage for qualitative validation of the models. However, the primary quantitative metrics of validation are the force time history measured through the instrumented indenter and initial and final velocities. The simulations, whi ch are run on Sandia's Sierra finite element codes , consist of all physics and material parameters of importance as determined by a sensitivity analysis conducted on the LVI simulation. A novel orthotropic damage and failure constitutive model that is cap able of predicting progressive composite damage and failure is described in detail and material properties are measured, estimated from micromechanics or optimized through calibration. A thorough verification and calibration to the accompanying experiment s are presented. Specia l emphasis is given to the four - point bend experiment. For all simulations of interest, the mesh and material behavior is verified through extensive convergence studies. An ensemble of simulations incorporating model parameter unc ertainties is used to predict a response distribution which is then compared to experimental output. The result is a quantifiable confidence in material characterization and model physics when simulating this phenomenon in structures of interest.

  13. Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets

    E-Print Network [OSTI]

    Pouransari, Z; Johansson, A V

    2015-01-01T23:59:59.000Z

    The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar and reactive species fields are studied using their probability density functions (PDF) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damkohler number are examined and the comparison revealed that the Damkohler number effects are most dominant in the near-wall region, where the wall cooli...

  14. Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets

    E-Print Network [OSTI]

    Z. Pouransari; L. Biferale; A. V. Johansson

    2015-02-21T23:59:59.000Z

    The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar and reactive species fields are studied using their probability density functions (PDF) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damkohler number are examined and the comparison revealed that the Damkohler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow.

  15. Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations

    SciTech Connect (OSTI)

    Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

    1999-07-01T23:59:59.000Z

    The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

  16. The jump-off velocity of an impulsively loaded spherical shell

    SciTech Connect (OSTI)

    Chabaud, Brandon M. [Los Alamos National Laboratory; Brock, Jerry S. [Los Alamos National Laboratory

    2012-04-13T23:59:59.000Z

    We consider a constant temperature spherical shell of isotropic, homogeneous, linearly elastic material with density {rho} and Lame coefficients {lambda} and {mu}. The inner and outer radii of the shell are r{sub i} and r{sub o}, respectively. We assume that the inside of the shell is a void. On the outside of the shell, we apply a uniform, time-varying pressure p(t). We also assume that the shell is initially at rest. We want to compute the jump-off time and velocity of the pressure wave, which are the first time after t = 0 at which the pressure wave from the outer surface reaches the inner surface. This analysis computes the jump-off velocity and time for both compressible and incompressible materials. This differs substantially from [3], where only incompressible materials are considered. We will consider the behavior of an impulsively loaded, exponentially decaying pressure wave p(t) = P{sub 0{sup e}}{sup -{alpha}t}, where {alpha} {ge} 0. We notice that a constant pressure wave P(t) = P{sub 0} is a special case ({alpha} = 0) of a decaying pressure wave. Both of these boundary conditions are considered in [3].

  17. Study on creating hydraulic tomography for crystalline rock using frequency dependent elastic wave velocity

    SciTech Connect (OSTI)

    Yoshimura, K.; Sakashita, S. [Radioactive Waste Management Funding and Research Center, Tokyo (Japan); Ando, K.; Bruines, P. [Civil Engineering Technical Division, Obayashi Corporation, Tokyo (Japan); Blechschmidt, I. [National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Kickmaier, W. [University of Applied Sciences, Northern Switzerland, Brugg (Switzerland); Onishi, Y.; Nishiyama, S. [Graduate School of Engineering, Kyoto University, Kyoto (Japan)

    2007-07-01T23:59:59.000Z

    The objective of this study is to establish a technique to obtain hydraulic conductivity distribution in granite rock masses using seismic tomography. We apply the characteristic that elastic wave velocity disperses in fully saturated porous media on frequency and this velocity dispersion is governed by the hydraulic conductivity - this characteristic has been confirmed in laboratory experiments. The feasibility and design of the field experiment was demonstrated in a first step with numerical simulations. In a second step we applied the technique to the fractured granite at the Grimsel Test Site in Switzerland. The emphasis of the field campaign was on the evaluation of the range of applicability of this technique. The field campaign was structured in three steps, each one corresponding to a larger spatial scale. First, the seismic tomography was applied to a small area - the two boreholes were located at a distance of 1.5 m. In the following step, we selected a larger area, in which the distance of the boreholes amounts to 10 m and the field corresponds to a more complex geology. Finally we applied the testing to a field where the borehole distance was of the order of 75 m. We also drilled a borehole to confirm hydraulic characteristic and reviewed hydraulic model in the 1.5 m cross-hole location area. The results from the field campaign are presented and their application to the various fields are discussed and evaluated. (authors)

  18. Linear and nonlinear studies of velocity shear driven three dimensional electron-magnetohydrodynamics instability

    SciTech Connect (OSTI)

    Gaur, Gurudatt; Das, Amita [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2012-07-15T23:59:59.000Z

    The study of electron velocity shear driven instability in electron magnetohydrodynamics (EMHD) regime in three dimensions has been carried out. It is well known that the instability is non-local in the plane defined by the flow direction and that of the shear, which is the usual Kelvin-Helmholtz mode, often termed as the sausage mode in the context of EMHD. On the other hand, a local instability with perturbations in the plane defined by the shear and the magnetic field direction exists which is termed as kink mode. The interplay of these two modes for simple sheared flow case as well as that when an external magnetic field exists has been studied extensively in the present manuscript in both linear and nonlinear regimes. Finally, these instability processes have been investigated for the exact 2D dipole solutions of EMHD equations [M. B. Isichenko and A. N. Marnachev, Sov. Phys. JETP 66, 702 (1987)] for which the electron flow velocity is sheared. It has been shown that dipoles are very robust and stable against the sausage mode as the unstable wavelengths are typically longer than the dipole size. However, we observe that they do get destabilized by the local kink mode.

  19. Analyzing intramolecular vibrational energy redistribution via the overlap intensity-level velocity correlator

    E-Print Network [OSTI]

    Srihari Keshavamurthy; Nicholas R. Cerruti; Steven Tomsovic

    2002-02-02T23:59:59.000Z

    Numerous experimental and theoretical studies have established that intramolecular vibrational energy redistribution (IVR) in isolated molecules has a heirarchical tier structure. The tier structure implies strong correlations between the energy level motions of a quantum system and its intensity-weighted spectrum. A measure, which explicitly accounts for this correaltion, was first introduced by one of us as a sensitive probe of phase space localization. It correlates eigenlevel velocities with the overlap intensities between the eigenstates and some localized state of interest. A semiclassical theory for the correlation is developed for systems that are classically integrable and complements earlier work focusing exclusively on the chaotic case. Application to a model two dimensional effective spectroscopic Hamiltonian shows that the correlation measure can provide information about the terms in the molecular Hamiltonian which play an important role in an energy range of interest and the character of the dynamics. Moreover, the correlation function is capable of highlighting relevant phase space structures including the local resonance features associated with a specific bright state. In addition to being ideally suited for multidimensional systems with a large density of states, the measure can also be used to gain insights into the phase space transport and localization. It is argued that the overlap intensity-level velocity correlation function provides a novel way of studying vibrational energy redistribution in isolated molecules. The correlation function is ideally suited to analyzing the parametric spectra of molecules in external fields.

  20. A note on the effects of nonuniform spreading velocity of submarine slumps and slides on the near-eld tsunami amplitudes

    E-Print Network [OSTI]

    Southern California, University of

    A note on the effects of nonuniform spreading velocity of submarine slumps and slides on the near Accepted 9 February 2002 Abstract The effects of variable speeds of spreading of submarine slides slides and slumps must consider time variations in the spreading velocities, when these velocities

  1. Group velocities in coplanar strip transmission lines on Si and Si/SiO2 /Si substrates measured using differential electro-optic sampling

    E-Print Network [OSTI]

    Group velocities in coplanar strip transmission lines on Si and Si/SiO2 /Si substrates measured 1996; accepted for publication 26 August 1996 The group velocities in coplanar strip transmission lines-9 Velocity measurements have been previously carried out for coplanar transmission lines on a variety

  2. System and method for determining coolant level and flow velocity in a nuclear reactor

    DOE Patents [OSTI]

    Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd

    2013-09-10T23:59:59.000Z

    A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.

  3. Magnetohydrodynamic dynamo in reversed field pinch plasmas: Electrostatic drift nature of the dynamo velocity field

    SciTech Connect (OSTI)

    Cappello, S.; Bonfiglio, D.; Escande, D.F. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, 35127 Padova (Italy); Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, 35127 Padova (Italy); UMR 6633, CNRS-Universite de Provence, Marseille (France)

    2006-05-15T23:59:59.000Z

    Within the framework of magnetohydrodynamic (MHD) numerical modeling, the reversed field pinch (RFP) has been found to develop turbulent or laminar regimes switching from the former to the latter in a continuous way when the strength of dissipative forces increases. The laminar solution corresponds to a simple global helical deformation of the current channel and is associated with an electrostatic dynamo field. The related electrostatic drift yields the main component of the dynamo velocity field. While quite natural in the stationary helical state, this analysis is shown to extend also to the dynamic turbulent regime for an Ohmic RFP. The continuity of the transition between the two regimes suggests that the simple helical symmetric solution can provide a fruitful intuitive description of the RFP dynamo in general. Many of the MHD predictions are in good agreement with experimental findings.

  4. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry

    SciTech Connect (OSTI)

    Winter, B.; King, S. J.; Vallance, C., E-mail: claire.vallance@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA (United Kingdom); Brouard, M., E-mail: mark.brouard@chem.ox.ac.uk [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Rd, Oxford OX1 3QZ (United Kingdom)

    2014-02-15T23:59:59.000Z

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  5. Modelling Viscoelastic Behaviour of Polymer by A Mixed Velocity, Displacement Formulation - Numerical and Experimental Results

    SciTech Connect (OSTI)

    Pham, VT.; Silva, L.; Digonnet, H.; Combeaud, C.; Billon, N.; Coupez, T. [Centre for Material Forming (CEMEF), MINES ParisTech, Rue Claude Daunesse, Sophia Antipolis cedex (France)

    2011-05-04T23:59:59.000Z

    The objective of this work is to model the viscoelastic behaviour of polymer from the solid state to the liquid state. With this objective, we perform experimental tensile tests and compare with simulation results. The chosen polymer is a PMMA whose behaviour depends on its temperature. The computation simulation is based on Navier-Stokes equations where we propose a mixed finite element method with an interpolation P1+/P1 using displacement (or velocity) and pressure as principal variables. The implemented technique uses a mesh composed of triangles (2D) or tetrahedra (3D). The goal of this approach is to model the viscoelastic behaviour of polymers through a fluid-structure coupling technique with a multiphase approach.

  6. EFFICIENT FITTING OF MULTIPLANET KEPLERIAN MODELS TO RADIAL VELOCITY AND ASTROMETRY DATA

    SciTech Connect (OSTI)

    Wright, J. T. [226 Space Sciences Building, Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Howard, A. W. [601 Campbell Hall, Astronomy Department, University of California, Berkeley, CA 94720 (United States)], E-mail: jtwright@astro.cornell.edu

    2009-05-15T23:59:59.000Z

    We describe a technique for solving for the orbital elements of multiple planets from radial velocity (RV) and/or astrometric data taken with 1 m s{sup -1} and {mu}as precision, appropriate for efforts to detect Earth-massed planets in their stars' habitable zones, such as NASA's proposed Space Interferometry Mission. We include details of calculating analytic derivatives for use in the Levenberg-Marquardt (LM) algorithm for the problems of fitting RV and astrometric data separately and jointly. We also explicate the general method of separating the linear and nonlinear components of a model fit in the context of an LM fit, show how explicit derivatives can be calculated in such a model, and demonstrate the speed up and convergence improvements of such a scheme in the case of a five-planet fit to published RV data for 55 Cnc.

  7. Dry Deposition Velocity Estimation for the Savannah River Site: Part 1 – Parametric Analysis

    SciTech Connect (OSTI)

    Napier, Bruce A.

    2012-01-16T23:59:59.000Z

    Values for the dry deposition velocity of airborne particles were estimated with the GENII Version 2.10 computer code for the Savannah River site using assumptions about surface roughness parameters and particle size and density. Use of the GENII code is recommended by the U.S. Department of Energy for this purpose. Meteorological conditions evaluated include atmospheric stability classes D, E, and F and wind speeds of 0.5, 1.0, 1.5, and 3.0 m/s. Local surface roughness values ranging from 0.03 to 2 meters were evaluated. Particles with mass mean diameters of 1, 5, and 10 microns and densities of 1, 3, and 5 g/cm3 were evaluated.

  8. A Wiener-Laguerre model of VIV forces given recent cylinder velocities

    E-Print Network [OSTI]

    Maincon, Philippe

    2010-01-01T23:59:59.000Z

    Slender structures immersed in a cross flow can experience vibrations induced by vortex shedding (VIV), which cause fatigue damage and other problems. VIV models in engineering use today tend to operate in the frequency domain. A time domain model would allow to capture the chaotic nature of VIV and to model interactions with other loads and non-linearities. Such a model was developed in the present work: for each cross section, recent velocity history is compressed using Laguerre polynomials. The compressed information is used to enter an interpolation function to predict the instantaneous force, allowing to step the dynamic analysis. An offshore riser was modeled in this way: Some analyses provided an unusually fine level of realism, while in other analyses, the riser fell into an unphysical pattern of vibration. It is concluded that the concept is promissing, yet that more work is needed to understand orbit stability and related issues, in order to further progress towards an engineering tool.

  9. Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process

    E-Print Network [OSTI]

    Nauroy, Jean-François; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

    2013-01-01T23:59:59.000Z

    In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

  10. Investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations

    SciTech Connect (OSTI)

    Armitage, C.A.; Mastorakos, E.; Cant, R.S. [Department of Engineering, Trumpington Street, University of Cambridge, Cambridge, CB2 1PZ (United Kingdom); Balachandran, R. [Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)

    2006-08-15T23:59:59.000Z

    Acoustically forced lean premixed turbulent bluff-body stabilized flames are investigated using turbulent combustion CFD. The calculations simulate aspects of the experimental investigation by Balachandran et al. [R. Balachandran, B. Ayoola, C. Kaminski, A. Dowling, E. Mastorakos, Combust. Flame 143 (2005) 37-55] and focus on the amplitude dependence of the flame response. For the frequencies of interest in this investigation an unsteady Reynolds-averaged Navier-Stokes (URANS) approach is appropriate. The combustion is represented using a modified laminar flamelet approach with an algebraic representation of the flame surface density. The predictions are compared with flame surface density (FSD) and OH* chemiluminescence measurements. In the experiments the response of the flame has been quantified by means of a number of single-frequency, amplitude-dependent transfer functions. The predicted flame shape and position are in good agreement with the experiment. The dynamic response of the flame to inlet velocity forcing is also well captured by the calculations. At moderate frequencies nonlinear behavior of the transfer functions is observed as the forcing amplitude is increased. In the experiments this nonlinearity was attributed in part to the rollup of the reacting shear layer into vortices and in part to the collision of the inner and outer flame sheets. This transition to nonlinearity is also observed in the transfer functions obtained from the predictions. Furthermore, the vortex shedding and flame-sheet collapse may be seen in snapshots of the predicted flow field taken throughout the forcing cycle. The URANS methodology successfully predicts the behavior of the forced premixed turbulent flames and captures the effects of saturation in the transfer function of the response of the heat release to velocity fluctuations. (author)

  11. CHROMOSPHERICALLY ACTIVE STARS IN THE RADIAL VELOCITY EXPERIMENT (RAVE) SURVEY. I. THE CATALOG

    SciTech Connect (OSTI)

    Žerjal, M.; Zwitter, T. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Matijevi?, G. [Department of Astronomy and Astrophysics, Villanova University, 800 E Lancaster Avenue, Villanova, PA 19085 (United States); Strassmeier, K. G.; Siviero, A.; Steinmetz, M. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Bienaymé, O. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, 11 rue de l'Université, F-67000 Strasbourg (France); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, Sydney, NSW 2006 (Australia); Boeche, C.; Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Freeman, K. C. [Research School of Astronomy and Astrophysics, Australia National University, Weston Creek, Canberra, ACT 2611 (Australia); Kordopatis, G. [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Munari, U. [INAF Osservatorio Astronomico di Padova, I-36012 Asiago (Italy); Navarro, J. F. [Department of Physics and Astronomy, University of Victoria, Victoria BC, V8P 5C2 (Canada); Parker, Q. A.; Reid, W. [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Seabroke, G. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, RH5 6NT (United Kingdom); Wyse, R. F. G., E-mail: marusa.zerjal@fmf.uni-lj.si [Johns Hopkins University, Homewood Campus, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2013-10-20T23:59:59.000Z

    RAVE, the unbiased magnitude limited survey of southern sky stars, contained 456,676 medium-resolution spectra at the time of our analysis. Spectra cover the Ca II infrared triplet (IRT) range, which is a known indicator of chromospheric activity. Our previous work classified all spectra using locally linear embedding. It identified 53,347 cases with a suggested emission component in calcium lines. Here, we use a spectral subtraction technique to measure the properties of this emission. Synthetic templates are replaced by the observed spectra of non-active stars to bypass the difficult computations of non-local thermal equilibrium profiles of the line cores and stellar parameter dependence. We derive both the equivalent width of the excess emission for each calcium line on a 5 Å wide interval and their sum EW{sub IRT} for ?44,000 candidate active dwarf stars with signal-to-noise ratio >20, with no cuts on the basis of the source of their emission flux. From these, ?14,000 show a detectable chromospheric flux with at least a 2? confidence level. Our set of active stars vastly enlarges previously known samples. Atmospheric parameters and, in some cases, radial velocities of active stars derived from automatic pipelines suffer from systematic shifts due to their shallower calcium lines. We re-estimate the effective temperature, metallicity, and radial velocities for candidate active stars. The overall distribution of activity levels shows a bimodal shape, with the first peak coinciding with non-active stars and the second with the pre-main-sequence cases. The catalog will be made publicly available with the next RAVE public data releases.

  12. Ion Bernstein waves in a plasma with a kappa velocity distribution

    SciTech Connect (OSTI)

    Nsengiyumva, F.; Mace, R. L.; Hellberg, M. A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)] [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2013-10-15T23:59:59.000Z

    Using a Vlasov-Poisson model, a numerical investigation of the dispersion relation for ion Bernstein waves in a kappa-distributed plasma has been carried out. The dispersion relation is found to depend significantly on the spectral index of the ions, ?{sub i}, the parameter whose smallness is a measure of the departure from thermal equilibrium of the distribution function. Over all cyclotron harmonics, the typical Bernstein wave curves are shifted to higher wavenumbers (k) if ?{sub i} is reduced. For waves whose frequency lies above the lower hybrid frequency, ?{sub LH}, an increasing excess of superthermal particles (decreasing ?{sub i}) reduces the frequency, ?{sub peak}, of the characteristic peak at which the group velocity vanishes, while the associated k{sub peak} is increased. As the ratio of ion plasma to cyclotron frequency (?{sub pi}/?{sub ci}) is increased, the fall-off of ? at large k is smaller for lower ?{sub i} and curves are shifted towards larger wavenumbers. In the lower hybrid frequency band and harmonic bands above it, the frequency in a low-?{sub i} plasma spans only a part of the intraharmonic space, unlike the Maxwellian case, thus exhibiting considerably less coupling between adjacent bands for low ?{sub i}. It is suggested that the presence of the ensuing stopbands may be a useful diagnostic for the velocity distribution characteristics. The model is applied to the Earth's plasma sheet boundary layer in which waves propagating perpendicularly to the ambient magnetic field at frequencies between harmonics of the ion cyclotron frequency are frequently observed.

  13. A High-Order Finite-Volume Algorithm for Fokker-Planck Collisions in Magnetized Plasmas

    SciTech Connect (OSTI)

    Xiong, Z; Cohen, R H; Rognlien, T D; Xu, X Q

    2007-04-18T23:59:59.000Z

    A high-order finite volume algorithm is developed for the Fokker-Planck Operator (FPO) describing Coulomb collisions in strongly magnetized plasmas. The algorithm is based on a general fourth-order reconstruction scheme for an unstructured grid in the velocity space spanned by parallel velocity and magnetic moment. The method provides density conservation and high-order-accurate evaluation of the FPO independent of the choice of the velocity coordinates. As an example, a linearized FPO in constant-of-motion coordinates, i.e. the total energy and the magnetic moment, is developed using the present algorithm combined with a cut-cell merging procedure. Numerical tests include the Spitzer thermalization problem and the return to isotropy for distributions initialized with velocity space loss cones. Utilization of the method for a nonlinear FPO is straightforward but requires evaluation of the Rosenbluth potentials.

  14. 2011 Spring : Highly Distinguished Honors Highly Distinguished

    E-Print Network [OSTI]

    Kasman, Alex

    Elizabeth Campbell Highly Distinguished Bowker Ripley Eden Highly Distinguished Brandfass Lara Rose Highly Distinguished Brotherton Cara Price Highly Distinguished Brown Anna Laughlin Highly Distinguished Brown Chloe Alix Highly Distinguished Brown Kelsey Michelle Highly Distinguished Brown Kyle Truman Highly

  15. SFI++ II: A New I-band Tully-Fisher Catalog, Derivation of Peculiar Velocities and Dataset Properties

    E-Print Network [OSTI]

    Christopher M. Springob; Karen L. Masters; Martha P. Haynes; Riccardo Giovanelli; Christian Marinoni

    2007-05-04T23:59:59.000Z

    We present the SFI++ dataset, a homogeneously derived catalog of photometric and rotational properties and the Tully-Fisher distances and peculiar velocities derived from them. We make use of digital optical images, optical long-slit spectra, and global HI line profiles to extract parameters of relevance to disk scaling relations, incorporating several previously published datasets as well as a new photometric sample of some 2000 objects. According to the completeness of available redshift samples over the sky area, we exploit both a modified percolation algorithm and the Voronoi-Delaunay method to assign individual galaxies to groups as well as clusters, thereby reducing scatter introduced by local orbital motions. We also provide corrections to the peculiar velocities for both homogeneous and inhomogeneous Malmquist bias, making use of the 2MASS Redshift Survey density field to approximate large scale structure. We summarize the sample selection criteria, corrections made to raw observational parameters, the grouping techniques, and our procedure for deriving peculiar velocities. The final SFI++ peculiar velocity catalog of 4861 field and cluster galaxies is large enough to permit the study not just of the global statistics of large scale flows but also of the {\\it details} of the local velocity field.

  16. Plasma screening effects on the energies of hydrogen atom under the influence of velocity-dependent potential

    SciTech Connect (OSTI)

    Bahar, M. K. [Department of Physics, Karamanoglu Mehmetbey University, 70100 Karaman (Turkey)

    2014-07-15T23:59:59.000Z

    In order to examine the plasma screening and velocity-dependent potential effects on the hydrogen atom, the Schrödinger equation including a more general exponential cosine screened Coulomb and velocity-dependent potential is solved numerically in the framework asymptotic iteration method. The more general exponential cosine screened Coulomb potential is used to model Debye and quantum plasma for the specific values of the parameters in its structure. However, in order to examine effects of velocity-dependent potential on energy values of hydrogen atom in Debye and quantum plasma, the isotropic form factor of velocity-dependent potential is given as harmonic oscillator type, ?(r)=?{sub o}r{sup 2}. Then, the energies of s and p states are calculated numerically without any approximation. In order to investigate thoroughly plasma screening effects and contribution of velocity-dependent potential on energy values of hydrogen atom, the corresponding calculations are carried out by using different values of parameters of more general exponential cosine screened Coulomb potential and isotropic dependence, results of which are discussed.

  17. CVD POLYCRYSTALLINE DIAMOND HIGH-Q MICROMECHANICAL RESONATORS Jing Wang, James E. Butler*, D. S. Y. Hsu*, and Clark T.-C. Nguyen

    E-Print Network [OSTI]

    Nguyen, Clark T.-C.

    CVD POLYCRYSTALLINE DIAMOND HIGH-Q MICROMECHANICAL RESONATORS Jing Wang, James E. Butler*, D. S. Y one variant of approach (3), in which CVD polycrystalline diamond material, with an acoustic velocity@engin.umich.edu ABSTRACT Chemical Vapor Deposited (CVD) polycrystalline dia- mond material, with an acoustic velocity

  18. 2009 Spring : Highly Distinguished Honors Highly Distinguished

    E-Print Network [OSTI]

    Kasman, Alex

    Armstrong Anna P Highly Distinguished Armstrong Jack Ray Highly Distinguished Armstrong Sarah Rose Highly

  19. High Mass Triple Systems: The Classical Cepheid Y Car

    E-Print Network [OSTI]

    N. R. Evans; K. G. Carpenter; R. Robinson; F. Kienzle; A. E. Dekas

    2005-04-07T23:59:59.000Z

    We have obtained an HST STIS ultraviolet high dispersion Echelle mode spectrum the binary companion of the double mode classical Cepheid Y Car. The velocity measured for the hot companion from this spectrum is very different from reasonable predictions for binary motion, implying that the companion is itself a short period binary. The measured velocity changed by 7 km/ s during the 4 days between two segments of the observation confirming this interpretation. We summarize "binary" Cepheids which are in fact members of triple system and find at least 44% are triples. The summary of information on Cepheids with orbits makes it likely that the fraction is under-estimated.

  20. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    SciTech Connect (OSTI)

    Auluck, S. K. H., E-mail: skhauluck@gmail.com, E-mail: skauluck@barc.gov.in [Physics Group, Bhabha Atomic Research Center, Mumbai (India)

    2014-09-15T23:59:59.000Z

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  1. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    E-Print Network [OSTI]

    Auluck, S K H

    2014-01-01T23:59:59.000Z

    Experimental data compiled over five decades of dense plasma focus research is consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and wind pressure resisting its motion. The resulting sheath velocity, or the numerically proportional drive parameter, is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  2. MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    PETERSON SW

    2010-10-08T23:59:59.000Z

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1, 2009 for 7 wells in the 200-PO-1 OU and Gable Gap regions (see Figure 3 and Figure 4); and March 22, 2010 and April 19, 2010 for 17 wells in the 200 East, The initial scope of survey work was planned for Wells 299-EI8-1, 699-2-E14, 699-12-18, 699-16-51, 699-42-30, 699-53-55B, 699-54-18D, and 699-84-34B. Well 299-E18-1 could not be entered due to bent casing (prevented removal of the pump), wells 699-12-18 and 699-42-30 could not be safely reached by the logging truck, Well 699-16-51 was decommissioned prior to survey start, Well 699-53-55B did not have its pump pulled, and Wells 699-2-EI4, 699-54-18D, and 699-84-34B are artesian and capped with an igloo structure. Table 1 provides a list of wells that were surveyed and Figure 1 through Figure 5 show the well locations relative to the Hanford Site.

  3. THE EFFECT OF THE PRE-DETONATION STELLAR INTERNAL VELOCITY PROFILE ON THE NUCLEOSYNTHETIC YIELDS IN TYPE Ia SUPERNOVA

    SciTech Connect (OSTI)

    Kim, Yeunjin; Jordan, G. C. IV; Graziani, Carlo; Lamb, D. Q.; Truran, J. W. [Astronomy Department, University of Chicago, Chicago, IL 60637 (United States); Meyer, B. S. [Physics and Astronomy Department, Clemson University, Clemson, SC 29634 (United States)

    2013-07-01T23:59:59.000Z

    A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects of the pre-detonation stellar internal velocity profile and the post-detonation velocity of expansion on the production of {alpha}-particle nuclei, including {sup 56}Ni, which are the primary nuclei produced by the detonation wave. We perform one-dimensional hydrodynamic simulations of the explosion phase of the white dwarf for center and off-center detonations with five different stellar velocity profiles at the onset of the detonation. In order to follow the complex flows and to calculate the nucleosynthetic yields, approximately 10,000 tracer particles were added to every simulation. We observe two distinct post-detonation expansion phases: rarefaction and bulk expansion. Almost all the burning to {sup 56}Ni occurs only in the rarefaction phase, and its expansion timescale is influenced by pre-existing flow structure in the star, in particular by the pre-detonation stellar velocity profile. We find that the mass fractions of the {alpha}-particle nuclei, including {sup 56}Ni, are tight functions of the empirical physical parameter {rho}{sub up}/v{sub down}, where {rho}{sub up} is the mass density immediately upstream of the detonation wave front and v{sub down} is the velocity of the flow immediately downstream of the detonation wave front. We also find that v{sub down} depends on the pre-detonation flow velocity. We conclude that the properties of the pre-existing flow, in particular the internal stellar velocity profile, influence the final isotopic composition of burned matter produced by the detonation.

  4. An evaluation of a prototype laboratory fume hood for use in a variable air volume, face velocity reducing system

    E-Print Network [OSTI]

    Vickery, Cynthia Schoonmaker

    2012-06-07T23:59:59.000Z

    ) 108 ( 8. 591) 76 ( 65. 101) 113 ( 14. 450) ill ( 8. 977) 111 ( 9. 934) 129 ( 18. 786) 120 ( 41. 070) 115 ( 20. 011) Run 2 Average Face Velocity, FPM, (Standard Deviation) 121 ( 21. 774) 113 ( 16. 257) 93 ( 22. 040) 118 ( 20. 418) 97... ( 35. 694) 110 ( 24. 857) 127 ( 10. 134) 97 ( 17. 972) 101 ( 14. 036) 99 ( 24. 976) 102 ( 15. 183) 96 ( 27. 524) 100 ( 17. 483) 121 ( 20. 246) 108 ( 17. 072) Run 2 Average Face Velocity, FPM, (Standard Deviation) OFF OFF OFF OFF 119...

  5. Simple Magnetic Flux Balance as an Indicator of Neon VIII Doppler Velocity Partitioning in an Equatorial Coronal Hole

    E-Print Network [OSTI]

    Scott W. McIntosh; Alisdair R. Davey; Scott W. McIntosh

    2006-05-22T23:59:59.000Z

    We present a novel investigation into the relationship between simple estimates of magnetic flux balance and the Ne VIII Doppler velocity partitioning of a large equatorial coronal hole observed by the Solar Ultraviolet Measurements of Emitted Radiation spectrometer (SUMER) on the Solar and Heliospheric Observatory (SOHO) in November 1999. We demonstrate that a considerable fraction of the large scale Doppler velocity pattern in the coronal hole can be qualitatively described by simple measures of the local magnetic field conditions, i.e., the relative unbalance of magnetic polarities and the radial distance required to balance local flux concentrations with those of opposite polarity.

  6. Phase control of group velocity in a dielectric slab doped with three-level ladder-type atoms

    SciTech Connect (OSTI)

    Jafari, D. [Department of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sahrai, M. [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Motavalli, H. [Department of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mahmoudi, M. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

    2011-12-15T23:59:59.000Z

    Propagation of an electromagnetic pulse through a dielectric slab doped with three-level ladder-type atomic systems is discussed. It is shown that the group velocity of the reflected and transmitted pulses can be switched from subluminal to superluminal light propagation by the thickness of the slab or the intensity of the coupling field. Furthermore, it is found that, in the presence of quantum interference, the reflected and transmitted pulses are completely phase dependent. So, the group velocity of the reflected and transmitted pulses can only be switched from subluminal to superluminal by adjusting the relative phase of the applied fields.

  7. 2012 Fall : Highly Distinguished Honors Highly Distinguished

    E-Print Network [OSTI]

    Kasman, Alex

    Distinguished Andersen Meredith Esther Highly Distinguished Anderson Anna Kathleen Highly Distinguished Anderson Leah Ellen Highly Distinguished Anderson Lucy Paige Highly Distinguished Andrews James Matheson Highly Distinguished Aquino Jeri-Lynn Highly Distinguished Armistead Mary Chandler Highly Distinguished Armstrong Jessa

  8. Determination of the electron velocity distribution from the soft and hard x-ray emission during lower-hybrid current drive on PLT

    SciTech Connect (OSTI)

    von Goeler, S.; Stevens, J.; Karney, C.

    1983-06-01T23:59:59.000Z

    During lower-hybrid heating in low-density-tokamak discharges, a nonMaxwellian tail of high-energy electrons is formed. This tail carries the plasma current. Utilizing the fact that relativistic electrons emit bremsstrahlung predominantly in the forward direction, we investigate the shape of the electron distribution by measuring the dependence of the x-ray emission on the angle between the magnetic field and the line of sight. The experimental data indicate that the distribution function is predominantly peaked in the forward direction, although a small fraction of the electrons is in the backward cone. The energy dependence of the x-ray spectra is consistent with that of a velocity distribution which has a plateau extending out to several hundred kiloelectron volts. Radial profiles show that the hot electrons are located in the central plasma region and form a high-conductivity plasma with the current profile frozen in. The slope of the spectrum depends on the rf power and on the phasing of the waveguide grill, but not on the externally applied plasma voltage. Relaxation oscillations occur shortly after switching the rf off. They also appear during the rf for low rf power and at the high-density limit of the lower-hybrid current drive. The x-ray spectra confirm that parallel energy is transferred to perpendicular energy during the instability, suggesting an instability due to the anomalous Doppler effect.

  9. TEMPORAL EVOLUTION OF VELOCITY AND MAGNETIC FIELD IN AND AROUND UMBRAL DOTS

    SciTech Connect (OSTI)

    Watanabe, Hiroko [Unit of Synergetic Studies for Space, Kyoto University, 17 Kitakazan Ohmine-cho, Yamashina-ku, Kyoto 607-8417 (Japan); Bellot Rubio, Luis R. [Instituto de Astrofisica de Andalucia (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); De la Cruz Rodriguez, Jaime [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Rouppe van der Voort, Luc, E-mail: watanabe@kwasan.kyoto-u.ac.jp [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)

    2012-09-20T23:59:59.000Z

    We study the temporal evolution of umbral dots (UDs) using measurements from the CRISP imaging spectropolarimeter at the Swedish 1 m Solar Telescope. Scans of the magnetically sensitive 630 nm iron lines were performed under stable atmospheric conditions for 71 minutes with a cadence of 63 s. These observations allow us to investigate the magnetic field and velocity in and around UDs at a resolution approaching 0.''13. From the analysis of 339 UDs, we draw the following conclusions: (1) UDs show clear hints of upflows, as predicted by magnetohydrodynamic simulations. By contrast, we could not find systematic downflow signals. Only in very deep layers, we detect localized downflows around UDs, but they do not persist in time. (2) We confirm that UDs exhibit weaker and more inclined fields than their surroundings, as reported previously. However, UDs that have strong fields above 2000 G or are in the decay phase show enhanced and more vertical fields. (3) There are enhanced fields at the migration front of UDs detached from penumbral grains, as if their motion were impeded by the ambient field. (4) Long-lived UDs travel longer distances with slower proper motions. Our results appear to confirm some aspects of recent numerical simulations of magnetoconvection in the umbra (e.g., the existence of upflows in UDs), but not others (e.g., the systematic weakening of the magnetic field at the position of UDs).

  10. Introduction of longitudinal and transverse Lagrangian velocity increments in homogeneous and isotropic turbulence

    E-Print Network [OSTI]

    Emmanuel Leveque; Aurore Naso

    2014-12-01T23:59:59.000Z

    Based on geometric considerations, longitudinal and transverse Lagrangian velocity increments are introduced as components along, and perpendicular to, the displacement of fluid particles during a time scale {\\tau}. It is argued that these two increments probe preferentially the stretching and spinning of material fluid elements, respectively. This property is confirmed (in the limit of vanishing {\\tau}) by examining the variances of these increments conditioned on the local topology of the flow. Interestingly, these longitudinal and transverse Lagrangian increments are found to share some qualitative features with their Eulerian counterparts. In particular, direct numerical simulations at turbulent Reynolds number up to 300 show that the distributions of the longitudinal increment are negatively skewed at all {\\tau}, which is a signature of time irreversibility of turbulence in the Lagrangian framework. Transverse increments are found more intermittent than longitudinal increments, as quantified by the comparison of their respective flatnesses and scaling laws. Although different in nature, standard Lagrangian increments (projected on fixed axis) exhibit scaling properties that are very close to transverse Lagrangian increments.

  11. Cosmic ray velocity and electric charge measurements with the AMS/RICH detector: prototype results

    E-Print Network [OSTI]

    Arruda, Luísa; Gonçalves, Patrícia; Pereira, Rui

    2008-01-01T23:59:59.000Z

    The Alpha Magnetic Spectrometer (AMS) to be installed on the International Space Station (ISS) will measure charged cosmic ray spectra of elements up to iron, in the rigidity range from 1 GV to 1 TV, for at least three years. AMS is a large angular spectrometer composed of different subdetectors, including a proximity focusing Ring Imaging CHerenkov (RICH) detector. This will be equipped with a mixed radiator made of aerogel and sodium fluoride (NaF), a lateral conical mirror and a detection plane made of 680 photomultipliers coupled to light guides. The RICH detector allows measurements of particle's electric charge up to iron, and particle's velocity. Two possible methods for reconstructing the Cherenkov angle and the electric charge with the RICH will be discussed. A RICH prototype consisting of a detection matrix with 96 photomultipliers, a segment of a conical mirror and samples of the radiator materials was built and its performance was evaluated using ion beam data. Results from the last test beam perf...

  12. Cosmic ray velocity and electric charge measurements with the AMS/RICH detector: prototype results

    E-Print Network [OSTI]

    Luísa Arruda; Fernando Barão; Patrícia Gonçalves; Rui Pereira

    2008-01-31T23:59:59.000Z

    The Alpha Magnetic Spectrometer (AMS) to be installed on the International Space Station (ISS) will measure charged cosmic ray spectra of elements up to iron, in the rigidity range from 1 GV to 1 TV, for at least three years. AMS is a large angular spectrometer composed of different subdetectors, including a proximity focusing Ring Imaging CHerenkov (RICH) detector. This will be equipped with a mixed radiator made of aerogel and sodium fluoride (NaF), a lateral conical mirror and a detection plane made of 680 photomultipliers coupled to light guides. The RICH detector allows measurements of particle's electric charge up to iron, and particle's velocity. Two possible methods for reconstructing the Cherenkov angle and the electric charge with the RICH will be discussed. A RICH prototype consisting of a detection matrix with 96 photomultipliers, a segment of a conical mirror and samples of the radiator materials was built and its performance was evaluated using ion beam data. Results from the last test beam performed with ion fragments resulting from the collision of a 158 GeV/c/nucleon primary beam of indium ions (CERN SPS) on a lead target are reported. The large amount of collected data allowed to test and characterize different aerogel samples and the NaF radiator. In addition, the reflectivity of the mirror was evaluated. The data analysis confirms the design goals.

  13. High-nitrogen explosives

    SciTech Connect (OSTI)

    Naud, D. (Darren); Hiskey, M. A. (Michael A.); Kramer, J. F. (John F.); Bishop, R. L. (Robert L.); Harry, H. H. (Herbert H.); Son, S. F. (Steven F.); Sullivan, G. K. (Gregg K.)

    2002-01-01T23:59:59.000Z

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAzF is equal to that of hexanitrostilbene (HNS), yet it has a greater CJ pressure and detonation velocity. In an effort to reduce the critical diameter of TATB without sacrificing its insensitivity, we have studied the explosive performances of TATB mixed with DAAzlF (X-0561) and TATB mixed with DAAF (X-0563).

  14. Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities C. B. Schroeder, E. Esarey, and B. A. Shadwick

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities C. B. Schroeder, E, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave

  15. On-board Velocity Estimation and Closed-loop Control of a Quadrotor UAV based on Optical Flow

    E-Print Network [OSTI]

    On-board Velocity Estimation and Closed-loop Control of a Quadrotor UAV based on Optical Flow an efficient fall back routine for any kind of UAV (Unmanned Aerial Vehicles) since we rely solely. The results show that our approach is able to recover the ego-motion of a flying UAV in realistic conditions

  16. Green's Functions for Surface Waves in a Generic Velocity Structure by Victor C. Tsai and Sarun Atiganyanun*

    E-Print Network [OSTI]

    Short Note Green's Functions for Surface Waves in a Generic Velocity Structure by Victor C. Tsai displacement/stress eigenfunctions and Green's functions have been well established for many decades. However on frequency, or Green's function surface displacement. We address this gap in the liter- ature and here

  17. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the

    E-Print Network [OSTI]

    Bahrami, Majid

    and zdirections can be calculated. The total net force vector, due to pressure, is: Notice that the termFluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure the element is at rest, summation of all forces must equal zero. 0 0 1 2 From geometry, . After

  18. Estimating near-surface shear wave velocities in Japan by applying seismic interferometry to KiK-net data

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Estimating near-surface shear wave velocities in Japan by applying seismic interferometry to KiK-net throughout Japan by applying seismic interferometry to the data recorded with KiK-net, a strong motion network in Japan. Each KiK-net station has two receivers; one receiver on the surface and the other

  19. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite

    E-Print Network [OSTI]

    Matthews, Adrian

    Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct of copepod fecal pellets egested by Temora longicornis were measured using a nanoflagellate (Rhodomonas sp pellet production varied between 0.8 pellets ind21 h21 and 3.8 pellets ind21 h21 and was significantly

  20. Boundary problems for the one-dimensional kinetic equation with frequency of collisions, affine depending on the module velocity

    E-Print Network [OSTI]

    A. L. Bugrimov; A. V. Latyshev; A. A. Yushkanov

    2014-03-24T23:59:59.000Z

    For the one-dimensional linear kinetic equation analytical solutions of problems about temperature jump and weak evaporation (condensation) over flat surface are received. The equation has integral of collisions BGK (Bhatnagar, Gross and Krook) and frequency of collisions of molecules, affine depending on the module molecular velocity.

  1. MIE and Flame velocity of partially oxidised aluminium dust Stphane Bernard, Philippe Gillard, Fabrice Foucher, Christine Mounam-Rousselle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    present dust explosion hazards. The prevention of these hazards can be achieved by the characterisation in the oxide shell which increases the reactivity of the oxidised aluminium dust. Keywords : DUST EXPLOSIONSMIE and Flame velocity of partially oxidised aluminium dust Stéphane Bernard, Philippe Gillard

  2. Effect of time-dependent piston velocity program on vortex ring formation in a piston/cylinder arrangement

    E-Print Network [OSTI]

    Dabiri, John O.

    Effect of time-dependent piston velocity program on vortex ring formation in a piston An analytical model describing laminar vortex ring formation in a nozzle flow generator piston/ cylinder.1063/1.2188918 I. INTRODUCTION Vortex rings are usually generated in the laboratory by the motion of a piston

  3. Development of a measurement system able to determine the ow velocity eld on models of hydraulic turbines

    E-Print Network [OSTI]

    Diggavi, Suhas

    . Antoine Bombenger Probing strategy in a Kaplan Turbine Such a probe typically has a spherical head with 5 turbines Christian Landry Motivations & Objectives The project was driven by the need to improve the measurement of velocity elds and pressures in a hydraulic turbine. The development of a new probing system

  4. Energy-Optimal Velocity Profiles for Car-Like Robots Pratap Tokekar, Nikhil Karnad and Volkan Isler

    E-Print Network [OSTI]

    Isler, Ibrahim Volkan

    to optimize their motion so as to minimize energy consumption. The driving motors are a major source of power for energy consumption of DC motors. We present closed form solutions for the unconstrained case and for the case where there is a bound on maximum velocity. We also study a general problem where the robot's path

  5. Seismic velocity and Q anisotropy in fractured poroelastic media Juan E. Santos a,b,c,n

    E-Print Network [OSTI]

    Santos, Juan

    , knowledge of fracture orientation, densities and sizes is essential since these factors control hydrocarbon (fractal) skeleton with fractures. We show that fractures induce strong seismic velocity and Q anisotropy subject in hydrocarbon exploration geophysics, mining and reser- voir characterization and production [1

  6. 436 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 9, NO. 2, JUNE 2004 Torque and Velocity Ripple Elimination of AC

    E-Print Network [OSTI]

    Qiu, Li

    Elimination of AC Permanent Magnet Motor Control Systems Using the Internal Model Principle Wai-Chuen Gan and velocity ripple elimination in AC permanent magnet (PM) motor control systems. The torque ripples caused-free output response. Index Terms--AC permanent magnet motor, gain scheduled (GS) speed regulators, internal

  7. PHYSICAL REVIEW E 84, 036104 (2011) Average crack-front velocity during subcritical fracture propagation in a heterogeneous medium

    E-Print Network [OSTI]

    Schmittbuhl, Jean

    PHYSICAL REVIEW E 84, 036104 (2011) Average crack-front velocity during subcritical fracture]. In consequence the slow kinetic crack propagation is usually referred to as subcritical crack growth or the subcritical regime. Statistical physics models suggest that this subcritical regime is governed by a thermally

  8. Thermo-mechanical behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles at different temperatures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    on the transformation kinetics of TRIP and dual phase steels has been analyzed by many researchers, for example Al are responsible for the deformation pro cess taking place in TRIP steels during and after the phase transforThermo-mechanical behaviour of TRIP 1000 steel sheets subjected to low velocity perforation

  9. Generation of large-scale vorticity in a homogeneous turbulence with a mean velocity shear Tov Elperin,* Nathan Kleeorin,

    E-Print Network [OSTI]

    Elperin, Tov

    Generation of large-scale vorticity in a homogeneous turbulence with a mean velocity shear Tov by the gradient of the Reynolds stresses is studied. Generation of a mean vorticity in a homogeneous-induced'' deflection of equilibrium mean vorticity and ``Reynolds stress-induced'' generation of perturbations of mean

  10. Approximate analytical method and its use for calculation of phase velocities of acoustic plane waves in crystals for example LiNbO3

    E-Print Network [OSTI]

    A. A. Golubeva

    2010-07-26T23:59:59.000Z

    By means of the offered analytical method the determinant relation for a phase velocities of elastic waves for an arbitrary propagation directions in a piezoelectric crystal are received. The phase velocities of three normal elastic waves for the crystal of LiNbO3 are calculated. Results of this calculation for each of waves are presented graphically in the form of the cards allowing easily to define phase velocities in any given direction in crystal.

  11. THE STELLAR VELOCITY DISPERSION OF A COMPACT MASSIVE GALAXY AT z = 1.80 USING X-SHOOTER: CONFIRMATION OF THE EVOLUTION IN THE MASS-SIZE AND MASS-DISPERSION RELATIONS {sup ,}

    SciTech Connect (OSTI)

    Van de Sande, Jesse; Franx, Marijn; Labbe, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Kriek, Mariska [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Van Dokkum, Pieter G.; Bezanson, Rachel; Whitaker, Katherine E. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Brammer, Gabriel [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Groot, Paul J. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Kaper, Lex [Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2011-07-20T23:59:59.000Z

    Recent photometric studies have shown that early-type galaxies at fixed stellar mass were smaller and denser at earlier times. In this Letter, we assess that finding by deriving the dynamical mass of such a compact quiescent galaxy at z = 1.8. We have obtained a high-quality spectrum with full UV-NIR wavelength coverage of galaxy NMBS-C7447 using X-Shooter on the Very Large Telescope. We determined a velocity dispersion of 294 {+-} 51 km s{sup -1}. Given this velocity dispersion and the effective radius of 1.64 {+-} 0.15 kpc (as determined from Hubble Space Telescope Wide Field Camera 3 F160W observations) we derive a dynamical mass of (1.7 {+-} 0.5) x 10{sup 11} M{sub sun}. Comparison of the full spectrum with stellar population synthesis models indicates that NMBS-C774 has a relatively young stellar population (0.40 Gyr) with little or no star formation and a stellar mass of M{sub *} {approx} 1.5 x 10{sup 11} M{sub sun}. The dynamical and photometric stellar masses are in good agreement. Thus, our study supports the conclusion that the mass densities of quiescent galaxies were indeed higher at earlier times, and this earlier result is not caused by systematic measurement errors. By combining available spectroscopic measurements at different redshifts, we find that the velocity dispersion at fixed dynamical mass was a factor of {approx}1.8 higher at z = 1.8 compared with z = 0. Finally, we show that the apparent discrepancies between the few available velocity dispersion measurements at z > 1.5 are consistent with the intrinsic scatter of the mass-size relation.

  12. Covariance statistics of turbulence velocity components for wind-energy-conversion system design-homogeneous, isotropic case

    SciTech Connect (OSTI)

    Fichtl, G.H.

    1983-09-01T23:59:59.000Z

    When designing a wind energy converison system (WECS), it may be necessary to take into account the distribution of wind across the disc of rotation. The specific engineering applications include structural strength, fatigue, and control. This wind distribution consists of two parts, namely that associated with the mean wind profile and that associated with the turbulence velocity fluctuation field. The work reported herein is aimed at the latter, namely the distribution of turbulence velocity fluctuations across the WECS disk of rotation. A theory is developed for the two-time covariance matrix for turbulence velocity vector components for wind energy conversion system (WECS) design. The theory is developed for homogeneous and iotropic turbulance with the assumption that Taylor's hypothesis is valid. The Eulerian turbulence velocity vector field is expanded about the hub of the WECS. Formulae are developed for the turbulence velocity vector component covariance matrix following the WECS blade elements. It is shown that upon specification of the turbulence energy spectrum function and the WECS rotation rate, the two-point, two-time covariance matrix of the turbulent flow relative to the WECS bladed elements is determined. This covariance matrix is represented as the sum of nonstationary and stationary contributions. Generalized power spectral methods are used to obtain two-point, double frequency power spectral density functions for the turbulent flow following the blade elements. The Dryden turbulence model is used to demonstrate the theory. A discussion of linear system response analysis is provided to show how the double frequency turbulence spectra might be used to calculate response spectra of a WECS to turbulent flow. Finally the spectrum of the component of turbulence normal to the WECS disc of rotation, following the blade elements, is compared with experimental results.

  13. Shear Wave Velocity Structure of Southern African Crust: Evidence for Compositional Heterogeneity within Archaean and Proterozoic Terrains

    SciTech Connect (OSTI)

    Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E

    2008-11-11T23:59:59.000Z

    Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.

  14. Horizontal velocities in the central and eastern United States from GPS surveys during the 1987-1996 interval

    SciTech Connect (OSTI)

    Snay, R.A.; Strange, W.E.

    1997-12-01T23:59:59.000Z

    The National Geodetic Survey and the Nuclear Regulatory Commission jointly organized GPS surveys in 1987, 1990, 1993, and 1996 to search for crustal deformation in the central and eastern United States (east of longitude 108{degrees}W). We have analyzed the data of these four surveys in combination with VLBI data observed during the 1979-1995 interval and GPS data for 22 additional surveys observed during the 1990-1996 interval. These latter GPS surveys served to establish accurately positioned geodetic marks in various states. Accordingly, we have computed horizontal velocities for 64 GPS sites and 12 VLBI sites relative to a reference frame for which the interior of the North American plate is considered fixed on average. None of our derived velocities exceeds 6 mm/yr in magnitude. Moreover, the derived velocity at each GPS site is statistically zero at the 95% confidence level except for the site BOLTON in central Ohio and the site BEARTOWN in southeastern Pennsylvania. However, as statistical theory would allow approximately 5% of the 64 GPS sites to fall our zero-velocity hypothesis, we are uncertain whether or not these estimated velocities for BOLTON and BEARTOWN reflect actual motion relative to the North American plate. We also computed horizontal strain rates for the cells formed by a 1{degrees} by 1{degrees} grid spanning the central and eastern United States. Corresponding shearing rates are everywhere less than 60 nanoradians/yr in magnitude, and no shearing rate differs statistically from zero at the 95% confidence level except for a grid cell near BEARTOWN whose rate is 57 {+-} 26 nanoradians/yr. Also corresponding areal dilatation rates are everywhere less than 40 nanostrain/yr in magnitude, and no dilatation rate differs statistically from zero at the 95% confidence level.

  15. High Speed AB-Solar Sail

    E-Print Network [OSTI]

    Bolonkin, A

    2007-01-01T23:59:59.000Z

    The Solar sail is a large thin film used to collect solar light pressure for moving of space apparatus. Unfortunately, the solar radiation pressure is very small about 9 mkN/sq.m at Earth's orbit. However, the light force significantly increases up to 0.2 - 0.35 N/sq.m near the Sun. The author offers his research on a new revolutionary highly reflective solar sail which flyby (after special maneuver) near Sun and attains velocity up to 400 km/sec and reaching far planets of the Solar system in short time or enable flights out of Solar system. New, highly reflective sail-mirror allows avoiding the strong heating of the solar sail. It may be useful for probes close to the Sun and Mercury and Venus. Key words: AB-solar sail, highly reflective solar sail, high speed propulsion.

  16. High Speed AB-Solar Sail

    E-Print Network [OSTI]

    A. Bolonkin

    2007-01-08T23:59:59.000Z

    The Solar sail is a large thin film used to collect solar light pressure for moving of space apparatus. Unfortunately, the solar radiation pressure is very small about 9 mkN/sq.m at Earth's orbit. However, the light force significantly increases up to 0.2 - 0.35 N/sq.m near the Sun. The author offers his research on a new revolutionary highly reflective solar sail which flyby (after special maneuver) near Sun and attains velocity up to 400 km/sec and reaching far planets of the Solar system in short time or enable flights out of Solar system. New, highly reflective sail-mirror allows avoiding the strong heating of the solar sail. It may be useful for probes close to the Sun and Mercury and Venus. Key words: AB-solar sail, highly reflective solar sail, high speed propulsion.

  17. 2013 Fall : Highly Distinguished Honors Highly Distinguished

    E-Print Network [OSTI]

    Kasman, Alex

    Anderson Chelsea Mariah Highly Distinguished Anderson Madison Olivia Highly Distinguished Andrews James Askew Mary Frances Highly Distinguished Augustine Andrew William Highly Distinguished Austin Adrian Bailes Mary Elizabeth Highly Distinguished Bailey Erika Leigh Highly Distinguished Bailey Margaret

  18. A NEW MULTI-BAND RADIAL VELOCITY TECHNIQUE FOR DETECTING EXOPLANETS AROUND ACTIVE STARS

    SciTech Connect (OSTI)

    Ma Bo; Ge Jian, E-mail: boma@astro.ufl.edu, E-mail: jge@astrto.ufl.edu [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States)

    2012-05-10T23:59:59.000Z

    The radial velocity (RV) technique is one of the most efficient ways of detecting exoplanets. However, large RV jitters induced by starspots on an active star can inhibit detection of any exoplanet present or even lead to a false positive detection. This paper presents a new multi-band RV technique capable of substantially reducing starspot-induced RV jitters from stellar RV measurements to allow efficient and accurate extraction of RV signals caused by exoplanets. It takes full advantage of the correlation of RV jitters at different spectral bands and the independence of exoplanet signals at the corresponding bands. Simulations with a single-spot model and a multi-spot model have been conducted to investigate the RV jitter reduction capability of this method. The results show that this method can reduce the RV jitter amplitude by at least an order of magnitude, allowing detection of weaker exoplanet signals without significantly increasing RV observation time and cadence. This method can greatly reduce the observation time required to detect Earth-like planets around solar type stars with {approx}0.1 m s{sup -1} long term Doppler precision if spot-induced jitter is the dominant astrophysical noise source for RV measurements. This method can work efficiently for RV jitter removal if: (1) all the spots on a target star have approximately the same temperature during RV observations; (2) the RV jitter amplitude changes with wavelength, i.e., the RV jitter amplitude ratio, {alpha}, between two different spectral bands is not close to one; (3) the spot-induced RV jitter dominates the RV measurement error.

  19. Generation of lower hybrid and whistler waves by an ion velocity ring distribution

    SciTech Connect (OSTI)

    Winske, D.; Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-15T23:59:59.000Z

    Using fully kinetic simulations in two and three spatial dimensions, we consider the generation and nonlinear evolution of lower hybrid waves produced by a cold ion ring velocity distribution in a low beta plasma. We show that the initial development of the instability is very similar in two and three dimensions and not significantly modified by electromagnetic effects, consistent with linear theory. At saturation, the level of electric field fluctuations is a small fraction of the background thermal energy; the electric field and corresponding density fluctuations consist of long, field-aligned striations. Energy extracted from the ring goes primarily into heating the background ions and the electrons at comparable rates. The initial growth and saturation of the magnetic components of the lower hybrid waves are related to the electric field components, consistent with linear theory. As the growing electric field fluctuations saturate, parallel propagating whistler waves develop by the interaction of two lower hybrid waves. At later times, these whistlers are replaced by longer wavelength, parallel propagating whistlers that grow through the decay of the lower hybrid fluctuations. Wave matching conditions demonstrate these conversion processes of lower hybrid waves to whistler waves. The conversion efficiency (=ratio of the whistler wave energy to the energy in the saturated lower hybrid waves) is computed and found to be significant ({approx}15%) for the parameters of the three-dimensional simulation (and even larger in the two-dimensional simulation), although when normalized in terms of the initial kinetic energy in the ring ions the overall efficiency is very small (<10{sup -4}). The results are compared with relevant linear and nonlinear theory.

  20. Spin crossover equation of state and sound velocities of (Mg0.65Fe0.35)O ferropericlase to 140 GPa

    E-Print Network [OSTI]

    Jackson, Jennifer M.

    Spin crossover equation of state and sound velocities of (Mg0.65Fe0.35)O ferropericlase to 140 GPa August 2012. [1] We have determined the elastic and vibrational properties of periclase-structured (Mg0 in diamond-anvil cells at 300 K. Combining with in situ XRD measurements, the Debye sound velocity of FP35

  1. Pn Tomographic Velocity and Anisotropy beneath the Iran Region by Yan L, Bin Liu, Shunping Pei, Youshun Sun, M. Nafi Toksz, and Xiangfang Zeng

    E-Print Network [OSTI]

    Sun, Youshun

    Short Note Pn Tomographic Velocity and Anisotropy beneath the Iran Region by Yan Lü, Bin Liu and anisotropy models of the upper- most mantle beneath the Iran region. A total of 74,375 Pn phase readings from). The tomography results show some interesting anomalies. The average Pn velocity under the Iran region

  2. Dry Deposition Velocity Estimation for the Savannah River Site: Part 2 -- Parametric and Site-Specific Analysis

    SciTech Connect (OSTI)

    Napier, Bruce A.; Rishel, Jeremy P.; Cook, Kary M.

    2013-09-12T23:59:59.000Z

    Values for the dry deposition velocity of airborne particles were estimated with the GENII Version 2.10.1 computer code for the Savannah River site using assumptions about surface roughness parameters and particle size and density. Use of the GENII code is recommended by the U.S. Department of Energy for this purpose. Meteorological conditions evaluated include atmospheric stability classes D, E, and F and wind speeds of 0.5, 1.0, 1.5, and 2.0 m/s. Local surface roughness values ranging from 0.03 to 2 meters were evaluated. Particles with mass mean diameters of 1, 5, and 10 microns and densities of 1, 3, 4, and 5 g/cm3 were evaluated. Site specific meteorology was used to predict deposition velocity for Savannah River conditions for a range of distances from 670 to 11,500 meters.

  3. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoXonic crystal with defects

    SciTech Connect (OSTI)

    Amoudache, Samira [Institut d'Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d'Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Djafari Rouhani, Bahram [Institut d'Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d'Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans UMR 6283 CNRS, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2014-04-07T23:59:59.000Z

    We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.

  4. Velocity map imaging as a tool for gaining mechanistic insight from closed-loop control studies of molecular fragmentation

    SciTech Connect (OSTI)

    Jochim, Bethany; Averin, R.; Gregerson, Neal; Wells, E. [Department of Physics, Augustana College, Sioux Falls, South Dakota 57197 (United States); McKenna, J.; De, S.; Ray, D.; Zohrabi, M.; Carnes, K. D.; Ben-Itzhak, I. [J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Bergues, B. [Max Planck Institute of Quantum Optics, Hans-Kopfermann Strasse 1, D-85748 Garching (Germany); Kling, M. F. [J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Max Planck Institute of Quantum Optics, Hans-Kopfermann Strasse 1, D-85748 Garching (Germany)

    2011-04-15T23:59:59.000Z

    Strong-field closed-loop control schemes using shaped ultrafast laser pulses have been used to selectively fragment a variety of molecules in recent years. The resulting pulses are often complex and resist an easy mechanistic interpretation. We report on the use of velocity map imaging to study the dissociative ionization of CO molecules by optimally-shaped ultrafast laser pulses. Using this technique, a mechanism is identified for the optimized CO{sup +} {yields} C + O{sup +} dissociation, and some of the observed control over the CO{sup +} dissociation branching ratio is ascribed to an angular discrimination effect. Furthermore, we demonstrate that the acquisition of two-dimensional velocity map images is rapid enough to incorporate directly into the adaptive control loop.

  5. Relativistic derivations of the electric and magnetic fields generated by an electric point charge moving with constant velocity

    E-Print Network [OSTI]

    Bernhard Rothenstein; Stefan Popescu; George J. Spix

    2006-01-05T23:59:59.000Z

    We propose a simple relativistic derivation of the electric and the magnetic fields generated by an electric point charge moving with constant velocity. Our approach is based on the radar detection of the point space coordinates where the fields are measured. The same equations were previously derived in a relatively complicated way2 based exclusively on general electromagnetic field equations and without making use of retarded potentials or relativistic equations

  6. Superharmonic nonlinear lateral vibrations of a segmented driveline incorporating a tuned damper excited by non-constant velocity joints

    E-Print Network [OSTI]

    Browne, Michael

    2010-07-14T23:59:59.000Z

    SUPERHARMONIC NONLINEAR LATERAL VIBRATIONS OF A SEGMENTED DRIVELINE INCORPORATING A TUNED DAMPER EXCITED BY NON-CONSTANT VELOCITY JOINTS A Dissertation by MICHAEL SCOTT BROWNE Submitted to the Office of Graduate Studies... of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2009 Major Subject: Mechanical Engineering SUPERHARMONIC NONLINEAR LATERAL VIBRATIONS OF A SEGMENTED DRIVELINE INCORPORATING A...

  7. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOE Patents [OSTI]

    Hall, M.S.; Jackson, T.G.; Knerr, C.

    1998-02-17T23:59:59.000Z

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

  8. Unusual behavior of sound velocity of a Bose gas in an optical superlattice at quasi-one-dimension

    E-Print Network [OSTI]

    Lei Chen; Zhu Chen; Wu Li; Zhidong Zhang; Zhaoxin Liang

    2014-12-20T23:59:59.000Z

    A Bose gas trapped in a one-dimensional optical superlattice has emerged as a novel superfluid characterized by tunable lattice topologies and tailored band structures. In this work, we focus on the propagation of sound in such a novel system and have found new features on sound velocity, which arises from the interplay between the two lattices with different periodicity and is not present in the case of a condensate in a monochromatic optical lattice. Particularly, this is the first time that the sound velocity is found to first increase and then decrease as the superlattice strength increases even at one dimension. Such unusual behavior can be analytically understood in terms of the competition between the decreasing compressibility and the increasing effective mass due to the increasing superlattice strength. This result suggests a new route to engineer the sound velocity by manipulating the superlattice's parameters. All the calculations based on the mean-field theory are justified by checking the exponent $\\gamma$ of the off-diagonal one-body density matrix that is much smaller than 1. Finally, the conditions for possible experimental realization of our scenario are also discussed.

  9. The orientation and magnitude of the orbital precession velocity of a binary pulsar system with double spins

    E-Print Network [OSTI]

    B. P. Gong

    2003-08-18T23:59:59.000Z

    The measurability of the spin--orbit (S--L) coupling induced orbital effect is dependent on the orientation and magnitude of the orbital precession velocity, ${\\bf \\Omega}_0$. This paper derives ${\\bf \\Omega}_0$ in the case that both spins in the binary system contribute to the spin--orbit (S--L) coupling, which is suitable for the most popular binary pulsars, Neutron star--White Dwarf star (NS--WD) binaries (as well as for NS--NS binaries). This paper shows that from two constraints, the conservation of the total angular momentum and the triangle formed by the orbital angular momentum, ${\\bf L}$, the sum the spin angular momenta of the two stars, ${\\bf S}$, and the total angular momentum, ${\\bf J}$, the orbital precession velocity, ${\\bf \\Omega}_0$, along ${\\bf J}$ is inevitable. Moreover, by the relation, $S/L\\ll 1$, which is satisfied for a general binary pulsar, a significant ${\\bf \\Omega}_0$ (in magnitude) is inevitable, 1.5 Post Newtonian order (PN). Which are similar to the case of one spin as discussed by many authors. However unlike the one spin case, the magnitude of the precession velocity of ${\\bf \\Omega}_0$ varies significantly due to the variation of the sum the spin angular momenta of the two stars, ${\\bf S}$, which can lead to significant secular variabilities in binary pulsars.

  10. Predicting the Velocity and Azimuth of Fragments Generated by the Range Destruction or Random Failure of Rocket Casings and Tankage

    SciTech Connect (OSTI)

    Eck, Marshall B.; Mukunda, Meera

    1988-10-01T23:59:59.000Z

    The details of a predictive analytical modeling process as well as the development of normalized relations for momentum partition as a function of SRM burn time and initial geometry are discussed in this paper. Methods for applying similar modeling techniques to liquid-tankage-over-pressure failures are also discussed. These methods have been calibrated against observed SRM ascent failures and on-orbit tankage failures. Casing-quadrant sized fragments with velocities exceeding 100 m/s resulted from Titan 34D-SRM range destruct actions at 10 sec mission elapsed time (MET). Casing-quadrant sized fragments with velocities of approximately 200 m/s resulted from STS-SRM range destruct actions at 110 sec MET. Similar sized fragments for Ariane third stage and Delta second stage tankage were predicted to have maximum velocities of 260 m/s and 480 m/s respectively. Good agreement was found between the predictions and observations for five specific events and it was concluded that the methods developed have good potential for use in predicting the fragmentation process of a number of generically similar casing and tankage systems. There are three copies in the file, one of these is loose.

  11. Detection, photometry and slitless radial velocities of 535 planetary nebulae in the flattened elliptical galaxy NGC 4697

    E-Print Network [OSTI]

    Méndez, R H; Kudritzki, R P; Matthias, M; Freeman, K C; Arnaboldi, M; Capaccioli, M; Gerhard, O E

    2001-01-01T23:59:59.000Z

    We have detected 535 planetary nebulae (PNs) in NGC 4697, using the classic on-band, off-band filter technique with the Focal Reducer and Spectrograph (FORS) at the Cassegrain focus of the first 8-meter telescope unit of the ESO Very Large Telescope. From our photometry we have built the [O III] 5007 planetary nebula luminosity function (PNLF) of NGC 4697. It indicates a distance of 10.5 Mpc, substantially smaller than a previous estimate of 24 Mpc used in earlier dynamical studies. The PNLF also provides an estimate of the specific PN formation rate. Combining the information from on-band images with PN positions on dispersed, slitless grism images, we have obtained radial velocities for 531 of the 535 PNs. They provide kinematic information up to a distance of almost three effective radii from the nucleus. Some rotation is detected in the outer regions, but the rotation curve of this galaxy appears to drop beyond one effective radius. Assuming an isotropic velocity distribution, the velocity dispersion prof...

  12. 2-dimensional ion velocity distributions measured by laser-induced fluorescence above a radio-frequency biased silicon wafer

    SciTech Connect (OSTI)

    Moore, Nathaniel B.; Gekelman, Walter; Pribyl, Patrick [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Zhang, Yiting; Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)] [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

    2013-08-15T23:59:59.000Z

    The dynamics of ions traversing sheaths in low temperature plasmas are important to the formation of the ion energy distribution incident onto surfaces during microelectronics fabrication. Ion dynamics have been measured using laser-induced fluorescence (LIF) in the sheath above a 30 cm diameter, 2.2 MHz-biased silicon wafer in a commercial inductively coupled plasma processing reactor. The velocity distribution of argon ions was measured at thousands of positions above and radially along the surface of the wafer by utilizing a planar laser sheet from a pulsed, tunable dye laser. Velocities were measured both parallel and perpendicular to the wafer over an energy range of 0.4–600 eV. The resulting fluorescence was recorded using a fast CCD camera, which provided resolution of 0.4 mm in space and 30 ns in time. Data were taken at eight different phases during the 2.2 MHz cycle. The ion velocity distributions (IVDs) in the sheath were found to be spatially non-uniform near the edge of the wafer and phase-dependent as a function of height. Several cm above the wafer the IVD is Maxwellian and independent of phase. Experimental results were compared with simulations. The experimental time-averaged ion energy distribution function as a function of height compare favorably with results from the computer model.

  13. Propagation direction reversal of ionization zones in the transition between high and low current magnetron sputtering

    SciTech Connect (OSTI)

    School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA; Yang, Yuchen; Liu, Jason; Liu, Lin; Anders, André

    2014-12-11T23:59:59.000Z

    Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.

  14. Statistical analysis of the sizes and velocities of laser hot spots of smoothed beams

    E-Print Network [OSTI]

    Garnier, Josselin

    to the speckle patterns generated by optical smoothing techniques for uniform irradiation in plasma physics for uniform irradiation in plasma physics.1 This paper is a contribution to the study of optical smoothing for application to inertial confinement fusion ICF , which requires a high level of irradiation uniformity

  15. Statistical analysis of the sizes and velocities of laser hot spots of smoothed beams

    E-Print Network [OSTI]

    Garnier, Josselin

    to the speckle patterns generated by optical smoothing techniques for uniform irradiation in plasma physics for uniform irradiation in plasma physics. 1 This paper is a contribution to the study of optical smoothing for application to inertial confinement fusion ~ICF!, which requires a high level of irradiation uniformity

  16. Experimental constraints on the thermodynamics and sound velocities of hcp-Fe to core pressures

    E-Print Network [OSTI]

    Jackson, Jennifer M.

    -ray scattering and in situ X-ray diffraction experiments at 300 K. Long data collection times, high-energy.70 Ã? 0.05 MPa/K at 300 K. Finally, from the low-energy region of each phonon DOS, we determine al., 1996; Dubrovinsky et al., 1998; Dewaele et al., 2006; Sola et al., 2009; Sha and Cohen, 2010

  17. S-Store: A Streaming NewSQL System for Big Velocity Applications

    E-Print Network [OSTI]

    Sandholm, Tuomas W.

    attention to state management via ACID transactions (e.g., [3, 4]). S-Store is a data management system. INTRODUCTION Managing high-speed data streams generated in real time is an integral part of today's big data some or all of this data into a persistent store for on-demand transaction or analyt- ical processing

  18. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W., E-mail: khill@pppl.gov; Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lu, J. [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Beiersdorfer, P.; Chen, H.; Magee, E. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15T23:59:59.000Z

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/?E of order 10?000 and spatial resolution better than 10 ?m. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  19. The effect of velocity and porosity profiles on the performance of fixed bed reactors

    E-Print Network [OSTI]

    Amin, Kaushik

    2012-06-07T23:59:59.000Z

    reactors. The reaction systems chosen offered a variety of reaction situations, including highly exothermic reactions, multiple and complex reaction schemes. A comparison of the calculated results by the two dimensional plug flow mcdel and the results... to be independent of axial direction in a bed packed with uniform size cylindrical or spherical particles. Martin(1978), using this data proposed a model for the porosity profile. Catalytic reactors are usually packed by uniform size spherical or cylindrical...

  20. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11T23:59:59.000Z

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.