Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Syngas Enhanced High Efficiency Low Temperature Combustion for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant...

2

High Temperature Syngas Cleanup Technology Scale-up  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RECOVERY ACT: Scale-Up of RECOVERY ACT: Scale-Up of High-Temperature Syngas Cleanup Technology Background Coal gasification generates a synthesis gas (syngas)-predominantly a mixture of carbon monoxide (CO) and hydrogen (H 2 )-that can be used for chemical production of hydrogen, methanol, substitute natural gas (SNG), and many other industrial chemicals, or for electric power generation. Conventional integrated gasification combined cycle (IGCC) power plants use this syngas as a fuel for a combustion

3

NETL: Gasification - Recovery Act: High Temperature Syngas Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas Processing Systems Syngas Processing Systems Recovery Act: High Temperature Syngas Cleanup Technology Scale-Up and Demonstration Project Research Triangle Institute Project Number: FE0000489 Project Description Research Triangle Institute (RTI) is designing, building, and testing the Warm Temperature Desulfurization Process (WDP) at pre-commercial scale (50 megawatt electric equivalent [MWe]) to remove more than 99.9 percent of the sulfur from coal-derived synthesis gas (syngas). RTI is integrating this WDP technology with an activated methyl diethanolamine (aMDEA) solvent technology to separate 90% of the carbon dioxide (CO2) from shifted syngas. The Polk Power Station, an integrated gasification combined cycle (IGCC) power plant, will supply approximately 20% of its coal-derived syngas as a slipstream to feed into the pre-commercial scale technologies being scaled-up.

4

High temperature electrolysis for syngas production  

DOE Patents [OSTI]

Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.

Stoots, Carl M. (Idaho Falls, ID); O'Brien, James E. (Idaho Falls, ID); Herring, James Stephen (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID); Hawkes, Grant L. (Sugar City, ID); Hartvigsen, Joseph J. (Kaysville, UT)

2011-05-31T23:59:59.000Z

5

THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION  

SciTech Connect (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

M. G. McKellar; G. L. Hawkes; J. E. O'Brien

2008-11-01T23:59:59.000Z

6

EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk  

Broader source: Energy.gov (indexed) [DOE]

7: Scale-up of High-Temperature Syngas Cleanup Technology, 7: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida Summary This EA evaluates the environmental impacts of a proposal to provide cost-shared funding to RTI International (RTI) for its proposed project to demonstrate the precommercial scale-up of RTI's high-temperature syngas cleanup and carbon capture and sequestration technologies. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download October 13, 2011 EA-1867: Finding of No Significant Impact RTI International Scale-Up of High-Temperature Syngas Cleanup and Carbon Capture and Sequestration Technologies, Polk County, Florida (October 2011)

7

NETL: Gasification - Recovery Act: High Temperature Syngas Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Background and Project Benefits Program Background and Project Benefits Gasification is used to convert a solid feedstock, such as coal, petcoke, or biomass, into a gaseous form, referred to as synthesis gas or syngas, which is primarily hydrogen and carbon monoxide. With gasification-based technologies, pollutants can be captured and disposed of or converted to useful products. Gasification can generate clean power by adding steam to the syngas in a water-gas-shift reactor to convert the carbon monoxide to carbon dioxide (CO2) and to produce additional hydrogen. The hydrogen and CO2 are separated-the hydrogen is used to make power and the CO2 is sent to storage, converted to useful products or used for EOR. In addition to efficiently producing electric power, a wide range of transportation fuels and chemicals can be produced from the cleaned syngas, thereby providing the flexibility needed to capitalize on the changing economic market. As a result, gasification provides a flexible technology option for using domestically available resources while meeting future environmental emission standards. Polygeneration plants that produce multiple products are uniquely possible with gasification technologies. The Gasification Systems program is developing technologies in three key areas to reduce the cost and increase the efficiency of producing syngas: (1) Feed Systems, (2) Gasifier Optimization and Plant Supporting Systems, and (3) Syngas Processing Systems.

8

HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION  

SciTech Connect (OSTI)

Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via a gas analyser, and their relationship to conversion efficiencies will be presented. These measurements will be compared to predictions obtained from chemical equilibrium computer codes. Better understanding of the feasibility of producing syngas using high-temperature electrolysis will initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

Stoots, C.M.

2006-11-01T23:59:59.000Z

9

SYNGAS PRODUCTION VIA HIGH-TEMPERATURE COELECTROLYSIS OF STEAM AND CARBON DIOXIDE  

SciTech Connect (OSTI)

This paper presents results of recent experiments on simultaneous high-temperature electrolysis (coelectrolysis) of steam and carbon dioxide using solid-oxide electrolysis cells. Coelectrolysis is complicated by the fact that the reverse shift reaction occurs concurrently with the electrolytic reduction reactions. All reactions must be properly accounted for when evaluating results. Electrochemical performance of the button cells and stacks were evaluated over a range of temperatures, compositions, and flow rates. The apparatus used for these tests is heavily instrumented, with precision mass-flow controllers, on-line dewpoint and CO2 sensors, and numerous pressure and temperature measurement stations. It also includes a gas chromatograph for analyzing outlet gas compositions. Comparisons of measured compositions to predictions obtained from a chemical equilibrium coelectrolysis model are presented, along with corresponding polarization curves. Results indicate excellent agreement between predicted and measured outlet compositions. Cell area-specific resistance values were found to be similar for steam electrolysis and coelectrolysis. Coelectrolysis significantly increases the yield of syngas over the reverse water gas shift reaction equilibrium composition. The process appears to be a promising technique for large-scale syngas production.

Carl M. Stoots; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2009-02-01T23:59:59.000Z

10

PROCESS MODEL FOR THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE CO-ELECTROLYSIS  

SciTech Connect (OSTI)

A process model has been developed to evaluate the potential performance of a large-scale high-temperature coelectrolysis plant for the production of syngas from steam and carbon dioxide. The coelectrolysis process allows for direct electrochemical reduction of the steam carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the HYSYS systems analysis code. Using this code, a detailed process flowsheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard HYSYS component, a custom one-dimensional coelectrolysis model was developed for incorporation into the overall HYSYS process flowsheet. The 1-D coelectrolysis model assumes local chemical equilibrium among the four process-gas species via the shift reaction. The electrolyzer model allows for the determination of coelectrolysis outlet temperature, composition (anode and cathode sides), mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully 3-D computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the HYSYS flowsheet model for a 300 MW coelectrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the entire process would be climate neutral.

M. G. McKellar; J. E. O'Brien; C. M. Stoots; G. L. Hawkes

2007-11-01T23:59:59.000Z

11

Parametric Study Of Large-Scale Production Of Syngas Via High Temperature Co-Electrolysis  

SciTech Connect (OSTI)

A process model has been developed to evaluate the potential performance of a largescale high-temperature co-electrolysis plant for the production of syngas from steam and carbon dioxide. The co-electrolysis process allows for direct electrochemical reduction of the steam carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the Honeywell UniSim systems analysis code. Using this code, a detailed process flow sheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard UniSim component, a custom one-dimensional co-electrolysis model was developed for incorporation into the overall UniSim process flow sheet. The one dimensional co-electrolysis model assumes local chemical equilibrium among the four process-gas species via the gas shift reaction. The electrolyzer model allows for the determination of co-electrolysis outlet temperature, composition (anode and cathode sides); mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully three dimensional computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the UniSim flow sheet model for a 300 MW co-electrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the overall process, from production through utilization, would be climate neutral.

J. E. O'Brien; M. G. McKellar; C. M. Stoots; J. S. Herring; G. L. Hawkes

2007-11-01T23:59:59.000Z

12

Idaho National Laboratory Experimental Research In High Temperature Electrolysis For Hydrogen And Syngas Production  

SciTech Connect (OSTI)

The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO2 feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to ~15 kW testing capacity (H2 production rate based upon lower heating value).

Carl M. Stoots; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2008-09-01T23:59:59.000Z

13

Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines  

Broader source: Energy.gov [DOE]

A significant potential exists for clean diesel combustion by recouping exhaust energy to generate syngas either with a dedicated reformer or in-cylinder fuel reforming.

14

Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode  

SciTech Connect (OSTI)

Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

2012-07-01T23:59:59.000Z

15

SYNGAS PRODUCTION VIA HIGH-TEMPERATURE CO-ELECTROLYSIS OF STEAM AND CARBON DIOXIDE IN A SOLID-OXIDE STACK  

SciTech Connect (OSTI)

This paper presents results of recent experiments conducted at the INL studying coelectrolysis of steam and carbon dioxide in a 10-cell high-temperature solid-oxide electrolysis stack. Coelectrolysis is complicated by the fact that the reverse shift reaction occurs concurrently with the electrolytic reduction reactions. All reactions must be properly accounted for when evaluating results. Electrochemical performance of the stack was evaluated over a range of temperatures, compositions, and flow rates. The apparatus used for these tests is heavily instrumented, with precision mass-flow controllers, on-line dewpoint and CO2 sensors, and numerous pressure and temperature measurement stations. It also includes a gas chromatograph for analyzing outlet gas compositions. Comparisons of measured compositions to predictions obtained from a chemical equilibrium co-electrolysis model are presented, along with corresponding polarization curves. Results indicate excellent agreement between predicted and measured outlet compositions. Coelectrolysis significantly increases the yield of syngas over the reverse water gas shift reaction equilibrium composition. The process appears to be a promising technique for large-scale syngas production.

Carl M. Stoots; James E. O'Brien; Joseph J. Hartvigsen

2007-06-01T23:59:59.000Z

16

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY SYSTEM SIMULATION AND ECONOMICS  

SciTech Connect (OSTI)

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

17

Carbon Neutral Production Of Syngas Via High Temperature Electrolytic Reduction Of Steam And CO2  

SciTech Connect (OSTI)

This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying coelectrolysis of steam and carbon dioxide in solid-oxide electrolysis stacks. Two 10-cell planar stacks were tested under various gas compositions, operating voltages, and operating temperatures. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. Measured outlet compositions, open cell potentials, and coelectrolysis thermal neutral voltages compared reasonably well with a coelectrolysis computer model developed at the INL. Stack ASRs did not change significantly when switching from electrolysis to coelectrolysis operation.

C. Stoots; J. O'Brien; J. Hartvigsen

2007-11-01T23:59:59.000Z

18

Recent Progress At The Idaho National Laboratory In High Temperature Electrolysis For Hydrogen And Syngas Production  

SciTech Connect (OSTI)

This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying electrolysis of steam and coelectrolysis of steam / carbon dioxide in solid-oxide electrolysis stacks. Single button cell tests as well as multi-cell stack testing have been conducted. Multi-cell stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec, Inc (Salt Lake City, Utah, USA) and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to 15 kW testing capacity (H2 production rate based upon lower heating value).

C. Stoots; J. O'Brien; J. Herring; J. Hartvigsen

2008-11-01T23:59:59.000Z

19

Regenerable MgO-based sorbent for high temperature CO2 removal from syngas: 3. CO2 capture and sorbent enhanced water gas shift reaction  

Science Journals Connector (OSTI)

Abstract Regenerable MgO-based sorbent, which was prepared and evaluated in the thermogravimetric analyzer (TGA) in part 1, was also evaluated in high-pressure packed-bed unit in CO2/N2/H2O mixture and simulated pre-combustion syngas environment. In CO2/N2/H2O environment, the CO2 absorption capacity of the sorbent increases with increasing temperatures from 6.7% at 350C to 9.5% 450C. The sorbent is capable of achieving over 95% CO2 capture and 40% conversion in the water gas shift (WGS) reaction, which should be attributed to positive effect of WGS reaction in producing CO2 during the process. The sorbent reactivity and absorption capacity toward CO2, as well as its WGS catalytic activity decreases with increasing temperature. The maximum pre-breakthrough WGS conversion occurs at 350C, which diminishes as the sorbent is carbonated. The variable diffusivity shrinking core reaction model coupled with the two-fluid computational fluid dynamics (CFD) model was shown to accurately predict the break-through gas compositions at different operating conditions.

Emadoddin Abbasi; Armin Hassanzadeh; Shahin Zarghami; Hamid Arastoopour; Javad Abbasian

2014-01-01T23:59:59.000Z

20

Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S  

SciTech Connect (OSTI)

High-entropy alloys are formed by synthesizing five or more principal elements in equimolar or near equimolar concentrations. Microstructure of the CoCrCuFeNiAl{sub 0.5}B{sub x} (x = 0, 0.2, 0.6, 1) high-entropy alloys under investigation is composed of a mixture of disordered bcc and fcc phases and borides. These alloys were tested gravimetrically for their corrosion resistance in simulated syngas containing 0, 0.01, 0.1, and 1 % H{sub 2}S at 500 C. The exposed coupons were characterized using XRD and SEM. No significant corrosion was detected at 500 C in syngas containing 0 and 0.01 % H{sub 2}S while significant corrosion was observed in syngas containing 0.1 and 1 % H{sub 2}S. Cu{sub 1.96}S was the primary sulfide in the external corrosion scale on the low-boron high-entropy alloys, whereas FeCo{sub 4}Ni{sub 4}S{sub 8} on the high-boron high-entropy alloys. Multi-phase Cu-rich regions in the low-B high-entropy alloys were vulnerable to corrosive attack.

Dogan, Omer N.; Nielsen, Benjamin C.; Hawk, Jeffrey A.

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production Southern Research Institute (SRI) Project Number: FE0012054 Project Description The focus of the project will be to develop, test, and optimize steam-reforming catalysts for converting tars, C2+ hydrocarbons, NH3, and CH4 in high-temperature and sulfur environments, increasing the ratio of hydrogen in syngas, as part of a modified, advanced gasification platform for the conversion of low-rank coals to syngas for coal-to-liquid and integrated gasification combined cycle applications. Project Details Program Background and Project Benefits Project Scope and Technology Readiness Level Accomplishments Contacts, Duration, and Cost Project Images Abstract Performer website: Southern Research Institute

22

Effects of Inert Dilution and Preheating Temperature on Lean Flammability Limit of Syngas  

Science Journals Connector (OSTI)

Lean flammability limits (LFL) of syngas mixtures were measured at different levels of inert dilution and unburned gas preheating temperatures using a counter-flow flame burner. ... The syngas and air are then premixed within a mixing chamber before being injected into the counter-flow burners. ... (45) Multicomponent transport was used in the calculation to account for the Soret effect, which generally enhance the burning intensity of lean syngas flame. ...

Suhui Li; Yang Zhang; Xiaolong Qiu; Bo Li; Hai Zhang

2014-04-24T23:59:59.000Z

23

High-Temperature Co-electrolysis of Steam and Carbon Dioxide for Direct Production of Syngas; Equilibrium Model and Single-Cell Tests  

SciTech Connect (OSTI)

An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850C in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Cell area-specific resistance values were similar for steam electrolysis and coelectrolysis.

O'Brien, J. E.; Stoots, C. M.; Herring, J. S.; Hartvigsen, J. J.

2007-07-01T23:59:59.000Z

24

High-Temperature Co-electrolysis of Carbon Dioxide and Steam for the Production of Syngas; Equilibrium Model and Single-Cell Tests  

SciTech Connect (OSTI)

An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850C in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Area-specific resistance values were similar for steam electrolysis and coelectrolysis.

J. E. O'Brien; C. M. Stoots; G. L. Hawkes; J. S. Herring; J. J. Hartvigsen

2007-06-01T23:59:59.000Z

25

Effect of air preheat temperature on the MILD combustion of syngas  

Science Journals Connector (OSTI)

Abstract The effect of air preheat temperature on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using numerical simulations and on global flame signatures, OH? radicals distribution and exhaust emissions using experiments. The discrete and high speed air/fuel injections into the combustor is necessary for the establishment of MILD conditions, because they cause strong gas recirculation and form large mixing region between the air and fuel jets. The critical equivalence ratio above which MILD combustion occurred was identified. The MILD regime was established for syngas fuel under air preheating conditions with lean operational limit and suppressed \\{NOx\\} and CO emissions. In the MILD combustion regime, the air preheating resulted in higher \\{NOx\\} but lower CO emissions, while the increase of equivalence ratio led to the increase of \\{NOx\\} and the decrease of CO emissions.

Mingming Huang; Zhedian Zhang; Weiwei Shao; Yan Xiong; Yan Liu; Fulin Lei; Yunhan Xiao

2014-01-01T23:59:59.000Z

26

Syngas Oxidation Mechanism  

Science Journals Connector (OSTI)

A comprehensive analysis of synthesis gas (syngas) oxidation kinetics in wide ranges of temperature ... on the basis of the reaction mechanism of syngas ignition and combustion in air. A vast set of experimental ...

A. M. Starik; N. S. Titova; A. S. Sharipov

2010-09-01T23:59:59.000Z

27

Highly Active Steam Reforming Catalyst for Hydrogen and Syngas Production  

Science Journals Connector (OSTI)

Toyo Engineering Corporation developed a steam reforming catalyst, which is four times as active as conventional catalysts, for hydrogen and syngas production from light natural gas. The catalyst has...3 plant. B...

Toru Numaguchi

2001-11-01T23:59:59.000Z

28

High-Stable Mesoporous Ni-Ce/Clay Catalysts for Syngas Production  

Science Journals Connector (OSTI)

Delaminated-clay was synthesized from a natural smectite using polyvinyl alcohol and microwaves. Ni-Ce catalysts supported on delaminated clay achieved high stability in dry reforming of methane for syngas production

Carlos Enrique Daza; Oscar A. Gamba; Yesid Hernndez

2011-07-01T23:59:59.000Z

29

Combined molten saltNi/Al2O3 as synergistic medium for high-quality syngas production  

Science Journals Connector (OSTI)

Abstract Proposed synergistic use of a combined medium of molten salt and Ni/Al2O3 (MS-Ni) was investigated for its enhancement of cellulose pyrolysis for high-quality syngas production. Clean renewable solar energy is to be stored at a high temperature in molten salt (MS) and provides the heat of pyrolysis. The MS-Ni medium could increase H2 yield by 3-folds while CO yield slightly increased by 15%, compared to the case of only MS medium. The peak rate of H2 production nearly quadrupled while the peak rate of CO production increased 2.5times at about 150 and 80K lower temperatures, respectively. The ratio of selectivity of syngas to undesired CH4 was nearly doubled. Arrhenius rate expressions for pseudo-first-order pyrolytic reaction are derived from the experimental data to give activation energies of 206 and 128kJmol?1 for the MS and the MS-Ni mediums, respectively. The experimental results clearly validated the role of MS-Ni as a synergistic medium for high-quality syngas production from cellulosic biomass pyrolysis.

Sakhon Ratchahat; Satoshi Kodama; Wiwut Tanthapanichakoon; Hidetoshi Sekiguchi

2014-01-01T23:59:59.000Z

30

NETL: Gasification Systems - Syngas Processing Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas Processing Systems Syngas Processing Systems Gasification Systems Syngas Processing Systems The various downstream uses of syngas require that most of the contaminants present in raw syngas be removed to very low levels prior to use. Many of these contaminants can contribute to erosion, corrosion, and loss of strength in gas turbine components, and can act as poisons to the catalysts often used in syngas conversion and utilization processes. These same contaminants include or result in regulated air pollutants such as SOx, NOx, particulates, and mercury and other trace metals, which must be removed to increasingly low levels to meet stringent regulatory limits on air emissions. Conventional methods for removing sulfur and other contaminants from syngas typically rely on chemical or physical absorption processes operating at low temperatures. However, after contaminant removal, the gas has to be reheated prior to its use in a gas turbine or other chemical synthesis process; in the case of downstream hydrogen production, additional steam needs to be added back to the syngas. These process swings adversely impact the plant's thermal efficiency and cost. Techno-economic analysis shows that gas-cleaning processes amenable to higher operating temperatures could significantly reduce this efficiency loss and improve the gasification plant's commercial viability. It is also critical that, while improving efficiency and reducing cost, the gas cleaning removes a wide variety of coal contaminants (including hydrogen sulfide, ammonia, hydrogen chloride, and carbonyl sulfide, as well as various forms of trace metals, including arsenic, mercury, selenium, and cadmium) to extremely low levels. Accordingly, the R&D approach in this area focuses on the development of high-efficiency processes that operate at moderate to high temperatures and provide multi-contaminant control to meet the highest environmental standards.

31

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

SciTech Connect (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

32

Syngas Production Using Carbon Dioxide Reforming: Fundamentals and Perspectives  

Science Journals Connector (OSTI)

Syngas can be produced from a variety of different hydrocarbon molecules by the catalysed reaction with steam, carbon dioxide or oxygen (or with various combinations of these) at high temperatures. This chapte...

Julian R. H. Ross

2014-01-01T23:59:59.000Z

33

Designing Turbine Endwalls for Deposition Resistance with 1,400 °C Combustor Exit Temperatures and Syngas Water Vapor Levels„The Ohio State University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Designing Turbine Endwalls for Designing Turbine Endwalls for Deposition Resistance with 1,400 °C Combustor Exit Temperatures and Syngas Water Vapor Levels-The Ohio State University Background This University Turbine Systems Research (UTSR) project will explore a critical need for innovative turbine endwall designs that could increase turbine durability and mitigate the adverse effects of residue deposition from coal-derived synthesis gas (syngas). The Ohio State University (OSU), in cooperation with Brigham Young University (BYU),

34

An experimental and numerical investigation of premixed syngas combustion dynamics in mesoscale channels with controlled wall temperature profiles  

Science Journals Connector (OSTI)

Abstract The dynamics in H2/CO/O2/N2 premixed combustion was investigated experimentally and numerically in a 7-mm height mesoscale channel at atmospheric pressure, fuellean equivalence ratios 0.250.42, volumetric CO:H2 ratios 1:1 to 20:1, and wall temperatures 5501320K. Experiments were performed in an optically-accessible channel-flow reactor and involved high-speed (up to 1kHz) planar laser induced fluorescence (LIF) of the OH radical and thermocouple measurements of the upper and lower channel wall temperatures. Simulations were carried out with a transient 2-D code, which included an elementary syngas reaction mechanism and detailed species transport. Demarcation of the experimentally-observed parameter space separating stationary and oscillatory combustion modes indicated that the former were favored at the higher wall temperatures and higher CO:H2 volumetric ratios, while the latter predominately appeared at the lower wall temperatures and lower CO:H2 ratios. The numerical model reproduced very well all stationary combustion modes, which included V-shaped and asymmetric (upper or lower) modes, in terms of flame shapes and flame anchoring positions. Simulations of the oscillatory flames, which appeared in the form of ignition/extinction events of varying spatial extents, were very sensitive to the specific boundary conditions and reproduced qualitatively the flame topology, the ignition sequence (including the periodic reversion from upper-asymmetric to lower-asymmetric flame propagation), and the range of measured oscillation frequencies. Predicted emissions in the stationary modes ranged from 25 to 94ppm-mass for CO and from 0.1 to 0.3ppm-mass for H2, while in the oscillatory modes incomplete combustion of both CO and H2 was attested during their oscillation period.

Andrea Brambilla; Marco Schultze; Christos E. Frouzakis; John Mantzaras; Rolf Bombach; Konstantinos Boulouchos

2014-01-01T23:59:59.000Z

35

Experimental and modeling study of the effect of elevated pressure on lean high-hydrogen syngas flames  

Science Journals Connector (OSTI)

Abstract New laminar burning velocity measurements of 85:15% (by volume) H2CO and H2N2 mixtures with O2He oxidizer are reported at lean conditions and elevated pressures (110atm). Experiments are conducted using the heat flux method at initial temperature of 298K. In this technique a near adiabatic flame is stabilized by balancing the heat loss from the flame to the burner with heat gain to the unburnt gas mixture such that no net heat loss to the burner is observed. A new facility was designed for such high pressure burner stabilized flame experiments. The results obtained are compared with five chemical kinetic schemes from literature for syngas mixtures at elevated pressures. Large differences are observed between the kinetic schemes and the experiments which can be attributed to certain key chemical reactions. A study of the kinetics is performed through reaction rate and sensitivity analysis which indicate that a high uncertainty still remains in important reactions that drive the production and consumption of species such as H, HO2 and OH. For lean mixtures the reaction H+O2(+M)=HO2(+M) contributes significantly to the deviation of models from the experiments. The present analysis in the lean mixture regime suggests the need for further studies in assessment and modification of rate constants for this reaction.

M. Goswami; J.G.H. van Griensven; R.J.M. Bastiaans; A.A. Konnov; L.P.H. de Goey

2014-01-01T23:59:59.000Z

36

Combustion and \\{NOx\\} emissions of biomass-derived syngas under various gasification conditions utilizing oxygen-enriched-air and steam  

Science Journals Connector (OSTI)

The purpose of this study is to investigate the \\{NOx\\} emissions from combustion of syngas derived from gasification of three different biomass feedstock (i.e., pine, mapleoak mixture, and seed corn) at different oxygen-enriched-air and steam conditions. Three different oxygen-enriched-air and steam conditions were tested for each feedstock, thus resulting in nine different sets of syngas. The biomass-derived syngas was burned in an industrial burner that was integrated into the gasification system. The gasifier and burner are rated at 800kW and 879kW thermal, respectively. For each set of biomass-derived syngas, \\{NOx\\} emissions were measured at different burner operating conditions including various heat rates and equivalence ratios using emission analyzers with chemiluminescence technology. All the combustion test conditions are in the lean mixture ranges in order to avoid the peak temperature limitation of both the burner and combustion chamber. Results show that \\{NOx\\} emissions using syngas obtained from woody feedstock decrease almost linearly as the combustion mixture becomes leaner and the heat rate decreases. When compared to natural gas, syngas from both woody feedstock generates higher \\{NOx\\} emissions even when the heat rates are comparable, indicating that fuel \\{NOx\\} formation is highly important in biomass-derived syngas combustion. In contrast to syngas from woody feedstock, syngas from seed corn results in peak \\{NOx\\} emissions before \\{NOx\\} decreases with leaner conditions. The trend is observed for all fuel flow rates and all oxygen-enriched-air and steam conditions of seed corn-derived syngas. Among the three feedstock, seed corn has the highest nitrogen content which yields the highest ammonia concentration in syngas, which, in turn, results in the highest \\{NOx\\} emissions for all test conditions. Overall, the \\{NOx\\} emissions from seed corn-derived syngas combustion are approximately in the range of 450900ppm higher compared to those from wood-derived syngas combustion.

Cuong Van Huynh; Song-Charng Kong

2013-01-01T23:59:59.000Z

37

Energy Efficient Production of Hydrogen and Syngas from Biomass:? Development of Low-Temperature Catalytic Process for Cellulose Gasification  

Science Journals Connector (OSTI)

Actually, the syngas production is the key step to produce such super clean liquid fuels. ... Today's corn refinery industry produces a wide range of products including starch-based ethanol fuels for transportation. ... On a catalyst with suitable reducibility, the oxidized catalyst can be reduced with the produced syngas and the reforming activity regenerates in the fluidized bed reactor. ...

Mohammad Asadullah; Shin-ichi Ito; Kimio Kunimori; Muneyoshi Yamada; Keiichi Tomishige

2002-09-10T23:59:59.000Z

38

Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper  

SciTech Connect (OSTI)

This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

A.M. Gandrik

2012-04-01T23:59:59.000Z

39

SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL  

SciTech Connect (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2008-09-01T23:59:59.000Z

40

Burning syngas in a high swirl burner: Effects offuel composition  

Science Journals Connector (OSTI)

Abstract Flame characteristics of swirling non-premixed H2/CO syngas fuel mixtures have been simulated using large eddy simulation and detailed chemistry. The selected combustor configuration is the TECFLAM burner which has been used for extensive experimental investigations for natural gas combustion. The large eddy simulation (LES) solves the governing equations on a structured Cartesian grid using a finite volume method, with turbulence and combustion modelling based on the localised dynamic Smagorinsky model and the steady laminar flamelet model respectively. The predictions for H2-rich and CO-rich flames show considerable differences between them for velocity and scalar fields and this demonstrates the effects of fuel variability on the flame characteristics in swirling environment. In general, the higher diffusivity of hydrogen in H2-rich fuel is largely responsible for forming a much thicker flame with a larger vortex breakdown bubble (VBB) in a swirling flame compare to the H2-lean but CO-rich syngas flames.

K.K.J. Ranga Dinesh; K.H. Luo; M.P. Kirkpatrick; W. Malalasekera

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Computational and Experimental Development of Novel High-Temperature Alloys  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Novel High-Temperature Alloys Background The need for fossil-fueled power plants to run cleaner and more efficiently leads toward ever-higher operating temperatures and pressures. Gas turbines, which can be fueled by natural gas, synthetic gas (syngas), or a high-hydrogen stream derived from coal, are critical components in this development. High-temperature operation of turbines is generally achieved by using nickel-chrome superalloys with coatings

42

Corrosion of Metallic SOFC Interconnects in Coal Syngas  

SciTech Connect (OSTI)

With recent reductions in the operating temperature of Solid Oxide Fuel Cells (SOFC), the potential of using metallic interconnect has gone up. There is also an interest in using Coal syngas as the fuel gas and thus there is a need to analyze the behavior and performance of metallic interconnects when exposed to Coal syngas. Three high temperature material alloys, Crofer 22 APU, Ebrite and Haynes 230, having the potential to be used as SOFC interconnects were studied in simulated wet coal syngas. These alloys were exposed to syngas at 800 degrees C and for 100 hours. The exposure to coal syngas led to the formation of oxides and spinels, which evidently led to an increase in electrical resistance. Oxidation in a reducing and carburizing environment leads to unique phase and morphology formations. A comparative analysis was carried out for all the three alloys, wherein the samples were characterized by using SEM, EDS, Raman and X-Ray diffraction to obtain the morphology, thickness, composition and crystal structure of the oxides and spinels

Dastane, R.R. (University of West Virginia); Liu, X. (University of West Virginia); Johnson, C., Mao, Scott (University of Pittsburgh)

2007-09-01T23:59:59.000Z

43

System Analysis of Nuclear-Assisted Syngas Production from Coal  

SciTech Connect (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via hightemperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2009-07-01T23:59:59.000Z

44

Task 3.3: Warm Syngas Cleanup and Catalytic Processes for Syngas Conversion to Fuels Subtask 3: Advanced Syngas Conversion to Fuels  

SciTech Connect (OSTI)

This collaborative joint research project is in the area of advanced gasification and conversion, within the Chinese Academy of Sciences (CAS)-National Energy Technology Laboratory (NETL)-Pacific Northwest National Laboratory (PNNL) Memorandum of Understanding. The goal for this subtask is the development of advanced syngas conversion technologies. Two areas of investigation were evaluated: Sorption-Enhanced Synthetic Natural Gas Production from Syngas The conversion of synthetic gas (syngas) to synthetic natural gas (SNG) is typically catalyzed by nickel catalysts performed at moderate temperatures (275 to 325C). The reaction is highly exothermic and substantial heat is liberated, which can lead to process thermal imbalance and destruction of the catalyst. As a result, conversion per pass is typically limited, and substantial syngas recycle is employed. Commercial methanation catalysts and processes have been developed by Haldor Topsoe, and in some reports, they have indicated that there is a need and opportunity for thermally more robust methanation catalysts to allow for higher per-pass conversion in methanation units. SNG process requires the syngas feed with a higher H2/CO ratio than typically produced from gasification processes. Therefore, the water-gas shift reaction (WGS) will be required to tailor the H2/CO ratio. Integration with CO2 separation could potentially eliminate the need for a separate WGS unit, thereby integrating WGS, methanation, and CO2 capture into one single unit operation and, consequently, leading to improved process efficiency. The SNG process also has the benefit of producing a product stream with high CO2 concentrations, which makes CO2 separation more readily achievable. The use of either adsorbents or membranes that selectively separate the CO2 from the H2 and CO would shift the methanation reaction (by driving WGS for hydrogen production) and greatly improve the overall efficiency and economics of the process. The scope of this activity was to develop methods and enabling materials for syngas conversion to SNG with readily CO2 separation. Suitable methanation catalyst and CO2 sorbent materials were developed. Successful proof-of-concept for the combined reaction-sorption process was demonstrated, which culminated in a research publication. With successful demonstration, a decision was made to switch focus to an area of fuels research of more interest to all three research institutions (CAS-NETL-PNNL). Syngas-to-Hydrocarbon Fuels through Higher Alcohol Intermediates There are two types of processes in syngas conversion to fuels that are attracting R&D interest: 1) syngas conversion to mixed alcohols; and 2) syngas conversion to gasoline via the methanol-to-gasoline process developed by Exxon-Mobil in the 1970s. The focus of this task was to develop a one-step conversion technology by effectively incorporating both processes, which is expected to reduce the capital and operational cost associated with the conversion of coal-derived syngas to liquid fuels. It should be noted that this work did not further study the classic Fischer-Tropsch reaction pathway. Rather, we focused on the studies for unique catalyst pathways that involve the direct liquid fuel synthesis enabled by oxygenated intermediates. Recent advances made in the area of higher alcohol synthesis including the novel catalytic composite materials recently developed by CAS using base metal catalysts were used.

Lebarbier Dagel, Vanessa M.; Li, J.; Taylor, Charles E.; Wang, Yong; Dagle, Robert A.; Deshmane, Chinmay A.; Bao, Xinhe

2014-03-31T23:59:59.000Z

45

An assessment of chemical kinetics for bio-syngas combustion  

Science Journals Connector (OSTI)

Abstract The present work was devoted to assess the chemical kinetic modelling of bio-syngas combustion. Three reaction mechanisms (the Gas Research Institute-mechanism GRI 3.0, its skeletal version DRM22 and Heghes C1C4 mechanism) were considered for that purpose along with series of ignition delay measurements relevant to the burning of bio-syngas. For experiments involving methane with and without considerably smaller quantities of added hydrogen, the measurements are generally overpredicted by Heghes mechanism but underpredicted by the GRI and DRM mechanisms. Experiments involving various blends of the bio-syngas constituents were also simulated. The strong discrepancies present for high pressures and temperatures and low pressures and temperatures could be correlated to five reactions which are only influential under those conditions, four of which involving HO 2 . The effects of variations in the bio-syngas composition on combustion were numerically investigated by using the GRI-mechanism. Globally it was found that an increase in any of the constituents goes hand in hand with higher amount of CO released. The ignition delay is either shortened or left unchanged as the initial concentration is increased except in the case of methane where it is raised. The results were in good agreement with experimental observations made elsewhere.

M. Fischer; X. Jiang

2014-01-01T23:59:59.000Z

46

Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification  

SciTech Connect (OSTI)

Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

2012-06-20T23:59:59.000Z

47

Microsoft Word - 10.5.11 Markup by Hargis Final EA-RTI Syngas CCS Project.docx  

Broader source: Energy.gov (indexed) [DOE]

67 67 FINAL ENVIRONMENTAL ASSESSMENT for RTI INTERNATIONAL SCALE-UP OF HIGH- TEMPERATURE SYNGAS CLEANUP AND CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES, POLK COUNTY, FLORIDA U.S. DEPARTMENT OF ENERGY National Energy Technology Laboratory October 2011 RTI Syngas Cleanup/Carbon Capture Final and Sequestration Project Environmental Assessment DOE/EA-1867 N:\MYFILES\CORRESPONDENCE\LUSK, MARK\RTI-POLK EA\FONSI FINAL EA\10.5.11 MARKUP BY HARGIS FINAL EA-RTI SYNGAS CCS PROJECT.DOCX-101411 i October 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for RTI International Scale-Up of High-Temperature Syngas Cleanup and Carbon Capture and Sequestration Technologies, Polk County, Florida (DOE/EA-1867)

48

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

49

NETL: Gasification Systems - Mitigation of Syngas Cooler Plugging and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mitigation of Syngas Cooler Plugging and Fouling Mitigation of Syngas Cooler Plugging and Fouling Project No.: DE-FE0007952 Reaction Engineering International (REI) is working to develop practical solutions to mitigate the plugging and fouling of syngas coolers (SC) - fire tube heat exchangers located between the coal gasifier and the combustion turbine. Syngas coolers used in Integrated Gasification Combined Cycle (IGCC) plants offer high efficiency, but their reliability is generally lower than other process equipment in the gasification island. The principle downtime events associated with syngas coolers are typically a result of ash deposits that: form on (wall) surfaces upstream of the syngas cooler, break loose, and then lodge in the tubes; or form on the fireside surface of the syngas cooler tubes that lead to fouling and reduced heat transfer. Both ash deposit mechanisms result in reduced equipment life and increased maintenance costs.

50

High-bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix Systems  

SciTech Connect (OSTI)

The goal of this program was to develop and demonstrate fuel injection technologies that will facilitate the development of cost-effective turbine engines for Integrated Gasification Combined Cycle (IGCC) power plants, while improving efficiency and reducing emissions. The program involved developing a next-generation multi-point injector with enhanced stability performance for lean premix turbine systems that burn hydrogen (H2) or synthesis gas (syngas) fuels. A previously developed injector that demonstrated superior emissions performance was improved to enhance static flame stability through zone staging and pilot sheltering. In addition, piezo valve technology was implemented to investigate the potential for enhanced dynamic stability through high-bandwidth modulation of the fuel supply. Prototype injector and valve hardware were tested in an atmospheric combustion facility. The program was successful in meeting its objectives. Specifically, the following was accomplished: Demonstrated improvement of lean operability of the Parker multi-point injector through staging of fuel flow and primary zone sheltering; Developed a piezo valve capable of proportional and high-bandwidth modulation of gaseous fuel flow at frequencies as high as 500 Hz; The valve was shown to be capable of effecting changes to flame dynamics, heat release, and acoustic signature of an atmospheric combustor. The latter achievement indicates the viability of the Parker piezo valve technology for use in future adaptively controlled systems for the mitigation of combustion instabilities, particularly for attenuating combustion dynamics under ultra-lean conditions.

Jeff Melzak; Tim Lieuwen; Adel Mansour

2012-01-31T23:59:59.000Z

51

System analysis of nuclear-assisted syngas production from coal - article no. 042901  

SciTech Connect (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. The results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

Harvego, E.A.; McKellar, M.G.; O'Brien, J.E. [Idaho National Laboratory, Idaho Falls, ID (United States)

2009-07-15T23:59:59.000Z

52

3D CFD Model of High Temperature H2O/CO2 Co-electrolysis  

SciTech Connect (OSTI)

3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James OBrien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis, using high-temperature nuclear process heat and electricity. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to 55%.

Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

2007-06-01T23:59:59.000Z

53

Method for high temperature mercury capture from gas streams  

DOE Patents [OSTI]

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

54

Turbulent flame speed for syngas at gas turbine relevant conditions  

Science Journals Connector (OSTI)

Modifications of conventional natural-gas-fired burners for operation with syngas fuels using lean premixed combustion is challenging due to the different physicochemical properties of the two fuels. A key differentiating parameter is the turbulent flame velocity, ST, commonly expressed as its ratio to the laminar flame speed, SL. This paper reports an experimental investigation of premixed syngas combustion at gas turbine like conditions, with emphasis on the determination of ST/SL derived as global fuel consumption per unit time. Experiments at pressures up to 2.0MPa, inlet temperatures and velocities up to 773K and 150m/s, respectively, and turbulence intensity to laminar flame speed ratios, u?/SL, exceeding 100 are presented for the first time. Comparisons between different syngas mixtures and methane clearly show much higher ST/SL for the former fuel. It is shown that ST/SL is strongly dependent on preferential diffusive-thermal (PDT) effects, co-acting with hydrodynamic effects, even for very high u?/SL. ST/SL increases with rising hydrogen content in the fuel mixture and with increasing pressure. A correlation for ST/SL valid for all investigated fuel mixtures, including methane, is proposed in terms of turbulence properties (turbulence intensity and integral length scale), combustion properties (laminar flame speed and laminar flame thickness) and operating conditions (pressure and inlet temperature). The correlation captures effects of preferential diffusive-thermal and hydrodynamic instabilities.

S. Daniele; P. Jansohn; J. Mantzaras; K. Boulouchos

2011-01-01T23:59:59.000Z

55

Performance Characteristics of Fluidized Bed Syngas Methanation over Ni-Mg/Al2O3 Catalyst  

Science Journals Connector (OSTI)

Abstract The performance characteristics of isothermal fluidized bed syngas methanation for substitute natural gas is investigated over a self-made Ni-Mg/Al2O3 catalyst. Via atmospheric methanation in a laboratory fluidized bed reactor it was clarified that the CO conversion varied in 5% when changing the space velocity in 40-120Lg-1h-1 but the conversion increased obviously by raising the superficial gas velocity from 4 to 12.4cms-1. The temperature 823K is suitable for syngas methanation while obvious deposition of uneasy-oxidizing C? occurs on the catalyst at temperatures around 873K. From kinetic aspect, the lowest reaction temperature is suggested to be 750K when the space velocity is 60Lg-1h-1. Raising the H2/CO ratio of the syngas increased proportionally the CO conversion and CH4 selectivity, showing that at enough high H2/CO ratios the active sites on the catalyst are sufficient for CO adsorption and in turn the reaction with H2 for forming CH4. Introducing CO2 into the syngas feed increased H2 consumption but suppressed water gas shift and Boudouard reactions. The ratio of CO2/CO in syngas should be better below 0.52 because varying the ratio from 0.52 to 0.92 resulted in negligible increases in the H2 conversion and CH4 selectivity but decreased the CH4 yield. Introducing steam into the feed gas affected little the CO conversion but decreased the selectivity to CH4. The tested Ni-Mg/Al2O3 catalyst manifested good stability in structure and activity even in syngas containing water vapor.

Jiao Liu; Dianmiao Cui; Jian Yu; Fabing Su; Guangwen Xu

2014-01-01T23:59:59.000Z

56

Determination of Syngas Premixed Gasoline and Methanol Combustion Products at Chemical Equilibrium via Lagrange Multipliers Method  

Science Journals Connector (OSTI)

(10) Several patents for generating hydrogen-rich syngas out of methanol to combust the syngas in an automotive engine have been published. ... On the other hand, the high flame speed of hydrogen causes higher NOx emissions and combustion instability when syngas is combusted with a near-stoichiometric air/fuel ratio. ...

Osman Sinan Ssl; Ipek Becerik

2014-02-11T23:59:59.000Z

57

Syngas Production from Coal through Microwave Plasma Gasification: Influence of Oxygen, Steam, and Coal Particle Size  

Science Journals Connector (OSTI)

Syngas Production from Coal through Microwave Plasma Gasification: Influence of Oxygen, Steam, and Coal Particle Size ... Plasma gasification is widely applied because of its clean syngas production performance and high chemical reactivity accelerated by the free radicals produced by plasma. ... The syngas composition produced from plasma gasification at same conditions is affected by the physicochemical properties of coals. ...

Sang Jun Yoon; Jae Goo Lee

2011-11-23T23:59:59.000Z

58

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

SciTech Connect (OSTI)

The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

2002-09-20T23:59:59.000Z

59

Production of Syngas via Partial Oxidation and CO2 Reforming of Coke Oven Gas over a Ni Catalyst  

Science Journals Connector (OSTI)

Production of Syngas via Partial Oxidation and CO2 Reforming of Coke Oven Gas over a Ni Catalyst ... The yield of produced syngas increases with an increase in temperature. ...

Jianzhong Guo; Zhaoyin Hou; Jing Gao; Xiaoming Zheng

2008-04-05T23:59:59.000Z

60

Forward and reverse combustion gasification of coal with production of high-quality syngas in a simulated pilot system for in situ gasification  

Science Journals Connector (OSTI)

Abstract This research focused on the feasibility and stability of applying the forward and reverse combustion approach to the in situ gasification of lignite and bituminous coal with oxygen or oxygensteam mixtures as gasification agents, especially reverse combustion gasification. A high-quality syngas (H2 and CO) could be obtained using the reverse combustion gasification technique combined with forward combustion gasification in a pilot system for in situ gasification. The gasification time was extended more than 25% using the reverse combustion approach. The controlling conditions for reverse combustion gasification were obtained by comparing and analyzing experimental data. The results show the relationship between the inject gas flow within certain limits and velocity of the gasification flame was linear during reverse combustion. The underground conditions of the coal seam and strata were simulated in a pilot-scale underground gasifier during experiments. The combustion gasification of coal was carried out experimentally for over 5days. The average effective content (H2 and CO) of syngas was in the range of 6070%, meeting the requirement of synthesis gas. The optimal ranges of gasifying lignite and bituminous coal were found to be 1.52.0 and 1.31.75, respectively. The product gas flow was proportional to oxygen blast. These are expected to provide useful guidance on practical underground coal gasification operations and to give experimental evidence in support of theory.

Yong Cui; Jie Liang; Zhangqing Wang; Xiaochun Zhang; Chenzi Fan; Dongyu Liang; Xuan Wang

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Syngas into Fuel: Optofluidic Solar Concentrators  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Ohio State has developed an iron-based material and process for converting syngasa synthetic gas mixtureinto electricity, H2, and/or liquid fuel with zero CO2 emissions. Traditional carbon capture methods use chemical solvents or special membranes to separate CO2 from the gas exhaust from coal-fired power plants. Ohio States technology uses an iron-based oxygen carrier to generate CO2 and H2 from syngas in separate, pure product streams by means of a circulating bed reactor configuration. The end products of the system are H2, electricity, and/or liquid fuel, all of which are useful sources of power that can come from coal or syngas derived from biomass. Ohio State is developing a high-pressure pilot-scale unit to demonstrate this process at the National Carbon Capture Center.

None

2010-10-01T23:59:59.000Z

62

Syngas Generator Use for Retrofit DPF Active Regeneration on a Medium Duty Truck  

Broader source: Energy.gov [DOE]

Syngas enables low temperature in-use active regeneration of DPFs based on real-world data from a vehicle tested for over 1,000 hours

63

Hydrogen production by high-temperature steam gasification of biomass and coal  

SciTech Connect (OSTI)

High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K. [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

2009-04-15T23:59:59.000Z

64

Steam reforming of gasification-derived tar for syngas production  

Science Journals Connector (OSTI)

Abstract In this study, the steam reforming of tar was catalyzed by dolomite, Ni/dolomite, and Ni/CeO2 for syngas production under different reaction temperature and weight hourly space velocity (WHSV, h?1). The tar was the major side product from the biomass gasification. Current results revealed that the nickel doped catalyst on dolomite with CO2 in the feed stream yielded the highest H2 and syngas production among all reaction conditions.Comparing to the use of dolomite, when Nidolomites was used as catalyst, the yield of H2 increased by 33%, the yield of syngas increased by 7%, and the yield of CH4 decreased by 59%. It was also found that the yield of syngas, H2, or CO under the Ni/dolomite catalyst were significant higher (pCO2 concentration in the feed stream>reaction temperature>weight hourly space velocity.

Alex C.-C. Chang; Lung-Shiang Chang; Cheng-You Tsai; Yu-Chun Chan

2014-01-01T23:59:59.000Z

65

Results Of Recent High Temperature Co-Electrolysis Studies At The Idaho National Laboratory  

SciTech Connect (OSTI)

For the past several years, the Idaho National Laboratory and Ceramatec, Inc. have been studying the feasibility of high temperature solid oxide electrolysis for large-scale, nuclear-powered hydrogen production. Parallel to this effort, the INL and Ceramatec have been researching high temperature solid oxide co-electrolysis of steam/CO2 mixtures to produce syngas, the raw material for synthetic fuels production. When powered by nuclear energy, high temperature co-electrolysis offers a carbon-neutral means of syngas production while consuming CO2. The INL has been conducting experiments to characterize the electrochemical performance of co-electrolysis, as well as validate INL-developed computer models. An inline methanation reactor has also been tested to study direct methane production from co-electrolysis products. Testing to date indicate that high temperature steam electrolysis cells perform equally well under co-electrolysis conditions. Process model predictions compare well with measurements for outlet product compositions. The process appears to be a promising technique for large-scale syngas production.

C. M. Stoots; James E. O'Brien; Joseph J. Hartvigsen

2007-11-01T23:59:59.000Z

66

High temperature pressure gauge  

DOE Patents [OSTI]

A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

1981-01-01T23:59:59.000Z

67

Syngas and hydrogen production in a volumetric radiant burner  

Science Journals Connector (OSTI)

The production of syngas is the most energy demanding and metal consuming stage in the conversion of gaseous hydrocarbons (GH's) into value-added products. Its complexity restrains many practical applications of chemical processing of GH's, especially for low scale of operation. The paper describes new compact and highly productive generator of syngas and hydrogen based on the combustion of GH's in volumetric permeable matrixes with locked IR radiation that can serve as a solution of this problem. It is shown that such simple devices can provide a highly efficient methane conversion into syngas and thus facilitate the utilization of low-capacity sources of GH's for economically feasible low scale syngas and hydrogen production from various local hydrocarbon sources.

V.S. Arutyunov; V.M. Shmelev; M. Yu Sinev; O.V. Shapovalova

2011-01-01T23:59:59.000Z

68

High temperature probe  

DOE Patents [OSTI]

A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

Swan, Raymond A. (Fremont, CA)

1994-01-01T23:59:59.000Z

69

Advances in ion transport membrane technology for Syngas production  

Science Journals Connector (OSTI)

Abstract Ceramic, ion transport membranes for the production of Syngas (ITM Syngas) produce high pressure synthesis gas in a single unit operation from low pressure air and pre-reformed natural gas. Oxygen transport through ITM Syngas membranes occurs through a series of processes, including solid phase oxygen anion diffusion through the dense membrane and surface reactions on the air and reducing sides of the membrane. This paper focuses on the effect of adding porous layers to the syngas side or both sides of the membrane to increase the available surface area for the surface reactions. The highest fluxes are achieved by increasing the surface area on both sides of the membrane, indicating that both surface reactions are a significant resistance to oxygen transport.

C.F. Miller; Jack Chen; M.F. Carolan; E.P. Foster

2014-01-01T23:59:59.000Z

70

Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma  

Science Journals Connector (OSTI)

Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. In all experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor. A mixture of methane and carbon dioxide was fed vertically into the jet. In order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.

Sun Yanpeng (???); Nie Yong (??); Wu Angshan (???); Ji Dengxiang (???); Yu Fengwen (???); Ji Jianbing (???)

2012-01-01T23:59:59.000Z

71

High Temperature Superconductors  

Science Journals Connector (OSTI)

Abstract A brief review of the phenomenology of superconductivity, the distinction between type I and type II superconductors, and the application of type II superconductors is followed by a history of the theory of conventional superconductivity. Unconventional high-temperature superconductivity in the copper oxides is reviewed as a phenomenon occurring in narrow two-dimensional bands where the time for an electron transfer between like atoms is comparable to the period of an optical-mode lattice vibration. A family of iron pnictides containing layers of iron atoms may not require an alternative explanation of its high-temperature superconductivity.

J.B. Goodenough

2013-01-01T23:59:59.000Z

72

Advanced Acid Gas Separation Technology for Clean Power and Syngas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications Air Products and Chemicals, Inc. Project Number: FE0013363 Project Description In this project, Air Products will operate a two-bed mobile system at the National Carbon Capture Center (NCCC) facility. A slipstream of authentic, high-hydrogen syngas based on low-rank coal will be evaluated as the feedstock. Testing will be conducted for approximately eight weeks, thereby providing far longer adsorbent exposure data than demonstrated to date. By utilizing real-world, high- hydrogen syngas, information necessary to understand the utility of the system for methanol production will be made available. In addition, Air Products will also operate a multi-bed PSA process development unit (PDU), located at its Trexlertown, PA headquarters, to evaluate the impact of incorporating pressure equalization steps in the process cycle. This testing will be conducted utilizing a sulfur-free, synthetic syngas, and will improve the reliability of the prediction of the system's operating performance at commercial scale.

73

Cr3+Co0.054Ni0.018Mg0.93O Solid-Solution Catalysts for High-Pressure Syngas Production: Effect of Chromium on the Reduction and Catalysis  

Science Journals Connector (OSTI)

Cr3+Co0.054Ni0.018Mg0.93O Solid-Solution Catalysts for High-Pressure Syngas Production: Effect of Chromium on the Reduction and Catalysis ... (1) Reforming CH4 with CO2 (CH4 + CO2 ? 2H2 + 2CO) or H2O (CH4 + H2O ? 3H2 + CO) to produce syngas (CO + H2) is attracting renewed attention because advances in shale gas technology have increased the global supply of recoverable CH4(2-6) and because the process consumes CO2, a global warming gas. ... US natural gas emissions produced in the year 2008, prior to any significant Marcellus shale development. ...

Katsutoshi Nagaoka; Yosuke Abe; Yusaku Hashimoto; Takahiro Ishikawa; Katsutoshi Sato; Yusaku Takita; Toshiya Wakatsuki; Masahiro Kunisu; Eri Suda; Shin Inamoto

2013-05-27T23:59:59.000Z

74

Chemistry at High Temperatures  

Science Journals Connector (OSTI)

...347 the condensed phase. Both cases are...show the opposite behavior. These predictions...vapors. Condensed phase B203 B + B203 02...complex silicates and hydrates in high-temperature...characterized by phase diagrams (derived...doubt that thou-sands of new chemical materials...

John L. Margrave

1962-02-02T23:59:59.000Z

75

High temperature thermometric phosphors  

DOE Patents [OSTI]

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1999-03-23T23:59:59.000Z

76

High Temperature Membrane Working Group  

Broader source: Energy.gov [DOE]

The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

77

Coal-derived syngas MILD combustion in parallel jet forward flow combustor  

Science Journals Connector (OSTI)

Abstract The effect of air-fuel momentum flux ratio on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using non-reactive numerical simulations and on OH? radicals distribution and exhaust emissions using experiments. The predicted gas recirculation ratios in the combustor are high enough to establish the reaction condition of MILD scheme. Lower air-fuel momentum flux ratio associated with higher heat load benefits the drop of peak flame temperature and the increase of reaction zone volume. The critical air-fuel momentum flux ratios below which MILD combustion occurred were identified for three MILD configurations. The MILD configuration equipped with larger air nozzles and smaller fuel nozzles was observed to achieve MILD combustion at leaner condition. The MILD regime was established for syngas fuel with lean operational limit and ultra-low \\{NOx\\} and CO emissions.

Mingming Huang; Zhedian Zhang; Weiwei Shao; Yan Xiong; Yan Liu; Fulin Lei; Yunhan Xiao

2014-01-01T23:59:59.000Z

78

Chemical looping combustion of biomass-derived syngas using ceria-supported oxygen carriers  

Science Journals Connector (OSTI)

Abstract Cu, Ni and Fe oxides supported on ceria were investigated for their performance as oxygen carriers during the chemical looping combustion of biomass-derived syngas. A complex gas mixture containing CO, H2, CO2, CH4 and other hydrocarbons was used to simulate the complex fuel gas environment derived from biomass gasification. Results show that the transfer of the stored oxygen into oxidants for the supported Cu and Ni oxides at 800C for the combustion of syngas was effective (>85%). The unsupported Cu oxide showed high oxygen carrying capacity but particle sintering was observed at 800C. A reaction temperature of 950C was required for the supported Fe oxides to transfer the stored oxygen into oxidants effectively. Also, for the complex fuel gas environment, the supported Ni oxide was somewhat effective in reforming CH4 and other light hydrocarbons into CO, which may have benefits for the reduction of tar produced during biomass pyrolysis.

H.B. Huang; L. Aisyah; P.J. Ashman; Y.C. Leung; C.W. Kwong

2013-01-01T23:59:59.000Z

79

Recent developments in gas turbine materials and technology and their implications for syngas firing  

Science Journals Connector (OSTI)

Gas turbine combined-cycle systems burning natural gas represent a reliable and efficient power generation technology that is widely used. A critical factor in their development was the rapid adaptation of aero-engine technology (single crystal airfoils, sophisticated cooling techniques, and thermal barrier coatings) in order to operate at the high rotor-inlet temperatures required for high efficiency generation. Early reliability problems have been largely overcome, so that this type of power generation system is now considered to be a mature technology capable of achieving high levels of availability. Current interest in replacing natural gas with gas derived from coal (syngas or hydrogen) in these gas turbine systems focuses attention on implications for the critical turbine components. In this paper, the development requirements for materials for critical hot gas-path parts in large gas turbines burning coal-derived syngas fuels are briefly considered in the context of the state-of-the-art in materials for engines burning natural gas. It is shown that, despite some difficult design issues, many of the materials used in current engines will be applicable to units burning syngas. However, there is the potential that the durability of some components may be prejudiced because of differences in the combustion environment (especially in terms of water vapor content, and possibly sulfur compounds and particulates). Consequently, effort to develop improved coatings to resist erosion and also attack by S-containing compounds may be necessary.

I.G. Wright; T.B. Gibbons

2007-01-01T23:59:59.000Z

80

Hydrogen Production from Biomass-Derived Syngas Using a Membrane Reactor Based Process  

Science Journals Connector (OSTI)

(1) One of the benefits of adopting H2 as an energy source, in addition to reducing CO2 emissions, is that it can be produced from readily available and plentiful raw materials such as coal and renewable biomass; this then diminishes the need to use the worlds dwindling crude-oil resources. ... For that, coal must be first gasified with air or pure O2 at high temperatures(2) to produce coal-gasifier off-gas (or syngas), containing as key species H2, CO, CO2, H2O, CH4, and other byproducts such as organic vapors, tars, H2S, and NH3, etc.,(2) the exact composition depending on the operating conditions, e.g., pressure, temperature, type of coal and oxidant used and their flow rates, and gasifier configuration, etc.(2) ... A novel MR system termed as the one-box process, in which syngas cleanup, hydrogen production via the WGS reaction, and product separation are combined in the same unit, was successfully utilized for producing hydrogen from a feed with a simulated biomass-derived syngas containing common impurities such as H2S and NH3, a model organic vapor (toluene), and a model tar-like species (naphthalene). ...

Jiang Yu; Mingyang Tan; Paul K. T. Liu; Muhammad Sahimi; Theodore T. Tsotsis

2013-12-27T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High Temperature Membrane Working Group  

Broader source: Energy.gov [DOE]

This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

82

High Temperature | Open Energy Information  

Open Energy Info (EERE)

Temperature Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: High Temperature Dictionary.png High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid between 230°C and 300°C is considered by Sanyal to be "high temperature." "Above a temperature level of 230°C, the reservoir would be expected to become two-phase at some point during exploitation. The next higher

83

Numerical investigations of combustion and emissions of syngas as compared to methane in a 200MW package boiler  

Science Journals Connector (OSTI)

Abstract During the last decades, focus has been made on the use of syngas instead of conventional hydrocarbon fuels targeting \\{NOx\\} emission reduction in the exhaust gases. With advances in solar-steam methane reforming for the production of synthesis gas, the applicability of syngas at industrial scale becomes imperative. In the present work, syngas combustion and emission characteristics are numerically investigated and compared with the case of pure methane combustion in a two-burner 200MW package boiler. A detailed reaction kinetics mechanism of 21 steps and 11 species was considered for the modeling of syngasair combustion. Different syngas compositions were considered for combustion with air including 67% CO:33% H2, 50% CO:50% H2 and 33% CO:67% H2. The results showed a combustion delay in case of pure methane combustion as compared to syngas combustion. The case of 33% CO:67% H2 syngas composition was found to have the shortest flame as compared to that of other syngas compositions. The case of 50% CO:50% H2 syngas resulted in lowest maximum boiler temperature while 67% CO:33% H2 syngas resulted in highest maximum boiler temperature. The boiler exit temperature was found to increase with the increase of hydrogen content in the syngas. The excess air factor was found to have a significant effect on both CO and \\{NOx\\} emissions. \\{NOx\\} emission decreases by about 30% when the amount of excess air is increased from 5% to 25%, which is very promising. Among the tested syngas compositions, the 50% CO:50% H2 syngas composition had the lowest emissions with the best combustion characteristics.

Mohamed A. Habib; Esmail M.A. Mokheimer; Sofihullahi Y. Sanusi; Medhat A. Nemitallah

2014-01-01T23:59:59.000Z

84

High temperature detonator  

DOE Patents [OSTI]

A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

85

Experimental Investigations of the Lean Blowout Limit of Different Syngas Mixtures in an Atmospheric, Premixed, Variable-Swirl Burner  

Science Journals Connector (OSTI)

Experimental Investigations of the Lean Blowout Limit of Different Syngas Mixtures in an Atmospheric, Premixed, Variable-Swirl Burner ... The observed higher LBO limit of the diluted generic syngas could be due to the effect of N2 addition on the adiabatic flame temperature (Figure 18) and burning velocity of the generic syngas. ... The LSI does not need to undergo significant alteration to operate with the hydrocarbon fuels but needs further studies for adaptation to burn dild. ...

Parisa Sayad; Alessandro Schnborn; Jens Klingmann

2013-04-05T23:59:59.000Z

86

High-Bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix - Parker Hannifin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bandwidth Modulation of H Bandwidth Modulation of H 2 /Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix-Parker Hannifin Background In this congressionally directed project, Parker Hannifin Corporation (Parker), in cooperation with Georgia Institute of Technology (Georgia Tech), will enhance its micro-mixing injector platform to improve combustion operability in lean premix turbine systems by attenuating the combustion dynamics. This will be accomplished

87

Imperium/Lanzatech Syngas Fermentation Project - Biomass Gasification and Syngas Conditioning for Fermentation Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-12-474  

SciTech Connect (OSTI)

LanzaTech and NREL will investigate the integration between biomass gasification and LanzaTech's proprietary gas fermentation process to produce ethanol and 2,3-butanediol. Using three feed materials (woody biomass, agricultural residue and herbaceous grass) NREL will produce syngas via steam indirect gasification and syngas conditioning over a range of process relevant operating conditions. The gasification temperature, steam-to-biomass ratio of the biomass feed into the gasifier, and several levels of syngas conditioning (based on temperature) will be varied to produce multiple syngas streams that will be fed directly to 10 liter seed fermenters operating with the Lanzatech organism. The NREL gasification system will then be integrated with LanzaTech's laboratory pilot unit to produce large-scale samples of ethanol and 2,3-butanediol for conversion to fuels and chemicals.

Wilcox, E.

2014-09-01T23:59:59.000Z

88

High-Temperature Water Splitting  

Broader source: Energy.gov [DOE]

High-temperature water splitting (a "thermochemical" process) is a long-term technology in the early stages of development.

89

Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas  

SciTech Connect (OSTI)

A thermodynamic analysis was conducted to characterize the effects of trace contaminants in syngas derived from coal gasification on solid oxide fuel cell (SOFC) anode material. The effluents from 15 different gasification facilities were considered to assess the impact of fuel composition on anode susceptibility to contamination. For each syngas case, the study considers the magnitude of contaminant exposure resulting from operation of a warm gas cleanup unit at two different temperatures and operation of a nickel-based SOFC at three different temperatures. Contaminant elements arsenic (As), phosphorous (P), and antimony (Sb) are predicted to be present in warm gas cleanup effluent and will interact with the nickel (Ni) components of a SOFC anode. Phosphorous is the trace element found in the largest concentration of the three contaminants and is potentially the most detrimental. Poisoning was found to depend on the composition of the syngas as well as system operating conditions. Results for all trace elements tended to show invariance with cleanup operating temperature, but results were sensitive to syngas bulk composition. Synthesis gas with high steam content tended to resist poisoning.

Andrew Martinez; Kirk Gerdes; Randall Gemmen; James Postona

2010-03-20T23:59:59.000Z

90

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

Michael Swanson; Daniel Laudal

2008-03-31T23:59:59.000Z

91

Preparation and selection of Fe-Cu sorbent for COS removal in syngas  

Science Journals Connector (OSTI)

A series of iron-based sorbents prepared with iron trioxide hydrate, cupric oxide by a novel method was studied in a fixed-bed reactor for COS removal from syngas at moderate temperature. In addition, the sorbent...

Bowu Cheng; Zhaofei Cao; Yong Bai

2010-12-01T23:59:59.000Z

92

High-temperature Pump Monitoring - High-temperature ESP Monitoring...  

Broader source: Energy.gov (indexed) [DOE]

Report Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report...

93

NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS  

SciTech Connect (OSTI)

This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O'Dowd; Dr. Hien Pham; Jian Xu

2001-01-07T23:59:59.000Z

94

High Temperature Structural Foam  

Science Journals Connector (OSTI)

The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program ...

Weiser Erik S.; Baillif Faye F.; Grimsley Brian W.; Marchello Joseph M.

1998-05-01T23:59:59.000Z

95

Micro-Scale Catalytic Reactor for Syngas Production  

Science Journals Connector (OSTI)

Micro-Scale Catalytic Reactor for Syngas Production ... The H2 yield (?H2) was evaluated as moles of H2 produced per mole of CH4 converted in the reforming channel. ... In particular, the maximum temperature moves from a location close to the reactor center (for MCH4-sr/MCH4-co = 2) toward the reactor inlet producing in the case of MCH4-sr/MCH4-co =2.75 decreasing temperature profiles without a maximum. ...

S. Vaccaro; L. Malangone; P. Ciambelli

2010-07-01T23:59:59.000Z

96

High Temperature Processing Symposium 2014  

E-Print Network [OSTI]

} High temperature recycling operations } Materials sustainability } New furnace technology (including solar) We look forward to seeing you in February 2014. Dr M Akbar Rhamdhani (Chairman HTPS 2014) Prof

Liley, David

97

Fundamental Studies in Syngas Premixed Combustion Dynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Studies Studies in Syngas Premixed Combustion Dynamics Ahmed F. Ghoniem, Anuradha M. Annaswamy, Raymond L. Speth, H. Murat Altay Massachusetts Institute of Technology SCIES Project 05-01-SR121 Project Awarded (08/01/2005, 36 Month Duration) Needs & Objectives Gas Turbine Needs Flexibility to operate with variable syngas compositions Ensure stable operation over a wide range of conditions Reduce emissions of CO and NO x Project Objectives Study experimentally lean premixed syngas combustion

98

Clostridium ljungdahlii represents a microbial production platform based on syngas  

Science Journals Connector (OSTI)

...represents a microbial production platform based on syngas 10.1073/pnas...novel biotechnological production platform based on syngas and CO 2 /H 2 . Results and Discussion...represents a microbial production platform based on syngas. | Clostridium...

Michael Kpke; Claudia Held; Sandra Hujer; Heiko Liesegang; Arnim Wiezer; Antje Wollherr; Armin Ehrenreich; Wolfgang Liebl; Gerhard Gottschalk; Peter Drre

2010-01-01T23:59:59.000Z

99

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

Broader source: Energy.gov [DOE]

This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

100

Storing syngas lowers the carbon price for profitable coal gasification  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) electric power generation systems with carbon capture and sequestration have desirable environmental qualities but are not profitable when the carbon dioxide price is less than approximately $50 per metric ton. We examine whether an IGCC facility that operates its gasifier continuously but stores the syngas and produces electricity only when daily prices are high may be profitable at significantly lower CO{sub 2} prices. Using a probabilistic analysis, we have calculated the plant-level return on investment (ROI) and the value of syngas storage for IGCC facilities located in the U.S. Midwest using a range of storage configurations. Adding a second turbine to use the stored syngas to generate electricity at peak hours and implementing 12 h of above-ground high-pressure syngas storage significantly increases the ROI and net present value. Storage lowers the carbon price at which IGCC enters the U.S. generation mix by approximately 25%. 36 refs., 7 figs., 1 tab.

Adam Newcomer; Jay Apt [Carnegie Mellon University, Pittsburgh, PA (USA). Carnegie Mellon Electricity Industry Center

2007-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal Progress toward Biomass and Coal-Derived Syngas...

102

Noise in non?premixed turbulent syngas flames  

Science Journals Connector (OSTI)

A turbulent syngas flame may generate acoustic noise of high acoustic intensity in a combustion chamber. This may lead to the failure of construction components in a gas turbine engine in periods of the order of 1100 hours. The research as described in the literature has almost exclusively been performed on the generation of noise in premixed methane or propane flames. Syngas fuel is a mixture of hydrogen and carbon monoxide and the burners used are of the non?premixed type. In this research the effect of turbulence and syngas composition on noise generation is investigated. A laboratory is set up to test syngas flames of a thermal power of 50 kW in a cylindrical air?cooled combustion chamber. Experiments are performed at several fuel compositions and burner inlet conditions. The flame sound intensity is measured in the combustion chamber equipped with acoustic dampers. The paper discusses the measured sound spectra. A model is derived for the generation of sound in a turbulent non?premixed flame. In this model it is shown that the sound generation is related to the dependence of density on mixture fraction in a flame with fast chemistry. A fluctuation in mixture fraction will lead to sound generation.

Sikke A. Klein; Jim B. W. Kok

1998-01-01T23:59:59.000Z

103

Ce-Promoted Rh/TiO2 Heterogeneous Catalysts Towards Ethanol Production from Syngas  

Science Journals Connector (OSTI)

Direct synthesis of ethanol from syngas derived from coal, natural gas, or ... of the most promising routes for renewable energy production. In this work, Ce-promoted highly-...2...support was prepared by the dep...

Changming Li; Junmin Liu; Wa Gao; Yufei Zhao; Min Wei

2013-11-01T23:59:59.000Z

104

Removal of H{sub 2}S using molten carbonate at high temperature  

SciTech Connect (OSTI)

Highlights: The performance of molten carbonate for the removal of H{sub 2}S improves at higher temperatures. The degree of H{sub 2}S removal is significantly affected by the CO{sub 2} concentration in syngas. Addition of carbon elements, such as char and tar, decrease the negative effects of CO{sub 2}. Continuous addition of carbon elements into molten carbonate enables continuous desulfurization. Desulfurization using molten carbonate is suitable for gasification gas. - Abstract: Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H{sub 2}S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 C. It is found that the removal of H{sub 2}S is significantly affected by the concentration of CO{sub 2} in the syngas. When only a small percentage of CO{sub 2} is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H{sub 2}S removal can be maintained at a high level. To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance.

Kawase, Makoto, E-mail: kawase@criepi.denken.or.jp; Otaka, Maromu

2013-12-15T23:59:59.000Z

105

Chemical Kinetics in Support of Syngas Turbine Combustion  

SciTech Connect (OSTI)

This document is the final report on an overall program formulated to extend our prior work in developing and validating kinetic models for the CO/hydrogen/oxygen reaction by carefully analyzing the individual and interactive behavior of specific elementary and subsets of elementary reactions at conditions of interest to syngas combustion in gas turbines. A summary of the tasks performed under this work are: 1. Determine experimentally the third body efficiencies in H+O{sub 2}+M = HO{sub 2}+M (R1) for CO{sub 2} and H{sub 2}O. 2. Using published literature data and the results in this program, further develop the present H{sub 2}/O{sub 2}/diluent and CO/H{sub 2}/O{sub 2}/diluent mechanisms for dilution with CO{sub 2}, H{sub 2}O and N{sub 2} through comparisons with new experimental validation targets for H{sub 2}-CO-O{sub 2}-N{sub 2} reaction kinetics in the presence of significant diluent fractions of CO{sub 2} and/or H{sub 2}O, at high pressures. (task amplified to especially address ignition delay issues, see below). 3. Analyze and demonstrate issues related to NOx interactions with syngas combustion chemistry (task amplified to include interactions of iron pentacarbonyl with syngas combustion chemistry, see below). 4. Publish results, including updated syngas kinetic model. Results are summarized in this document and its appendices. Three archival papers which contain a majority of the research results have appeared. Those results not published elsewhere are highlighted here, and will appear as part of future publications. Portions of the work appearing in the above publications were also supported in part by the Department of Energy under Grant No. DE-FG02-86ER-13503. As a result of and during the research under the present contract, we became aware of other reported results that revealed substantial differences between experimental characterizations of ignition delays for syngas mixtures and ignition delay predictions based upon homogenous kinetic modeling. We adjusted emphasis of Task 2 to understand the source of these noted disparities because of their key importance to developing lean premixed combustion technologies of syngas turbine applications. In performing Task 3, we also suggest for the first time the very significant effect that metal carbonyls may have on syngas combustion properties. This work is fully detailed. The work on metal carbonyl effects is entirely computational in nature. Pursuit of experimental verification of these interactions was beyond the scope of the present work.

Dryer, Frederick

2007-07-31T23:59:59.000Z

106

Methane-to-hydrogen conversion in a reversible flow filtration combustion reactor at a high pressure  

Science Journals Connector (OSTI)

The noncatalytic process of partial oxidation of methane to syngas in a reversible flow filtration combustion reactor at high pressures has been considered. ... conversion process the maximum temperature in the...

Yu. M. Dmitrenko; P. A. Klyovan

2013-09-01T23:59:59.000Z

107

Philosophy 26 High Temperature Superconductivity  

E-Print Network [OSTI]

is the ratio of voltage to current. The resistance of a material tells us how a low resistance, and they are therefore good conductors; other materials, likePhilosophy 26 High Temperature Superconductivity By Ohm's Law, resistance

Callender, Craig

108

Experiment Hazard Class 3 - High Temperatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operation * APS Base Low Temperatures * Cryogenic Systems High Temperatures * Electric Furnace * Optical Furnace * Other High Temperature Lasers * Laser, Class 2 * Laser,...

109

Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production  

SciTech Connect (OSTI)

Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450C. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450C (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300C (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300C. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

2014-10-31T23:59:59.000Z

110

Liquid hydrocarbon fuels from syngas. Second annual report, March 1982-February 1983  

SciTech Connect (OSTI)

Initial Task 1 tests used methanol as the feed. It was found that catalysts of interest tended to make highly methylated aromatics in the Berty reactor. Although a simulated distillation showed that these products boiled in the gasoline and diesel range, most were solid at room temperature. Aromatic products frequently are desirable constituents of gasoline, but highly methylated aromatics which precipitate at the concentrations found are undesirable. Since small olefins are products and intermediates in reactions over Fischer-Tropsch catalysts, propylene was chosen as feedstock to replace methanol. Catalysts for syngas feed (task 2) have a metal component (MC) and a shape-selective component (SSC). Four techniques have been used in synthesizing our bi-functional catalysts. The data presented show that catalysts and conditions have been found which enable converting 1:1 H/sub 2//CO syngas feed at reasonable conversions in one step to motor fuel range products with quite acceptable selectivity to C/sub 5//sup +/ products. Two effects should be noted. The molecular sieves used reduced the high boiling (wax) component of the product as compared to physical mixture with the relatively inert ..cap alpha..-alumina. Also the quality of the gasoline range product with the molecular sieve is much better than with the F-T type catalyst.

Not Available

1983-01-01T23:59:59.000Z

111

Syngas production from wood pellet using filtration combustion of lean natural gasair mixtures  

Science Journals Connector (OSTI)

Abstract A common method for the production of hydrogen and syngas is solid fuel gasification. This paper discusses the experimental results obtained from the combustion of lean natural gasair mixtures in a porous medium composed of aleatory alumina spheres and wood pellets, called hybrid bed. Temperature, velocity, and chemical products (H2, CO, CO2, CH4) of the combustion waves were recorded experimentally in an inert bed (baseline) and hybrid bed (with a volume wood fraction of 50%), for equivalence ratios (?) from 0.3 to 1.0, and a constant filtration velocity of 15cm/s. Upstream, downstream and standing combustion waves were observed for inert and hybrid bed. The maximum hydrogen conversion in hybrid filtration combustion is found to be ?99% at ?=0.3. Results demonstrate that wood gasification process occurs with high temperature (1188K) and oxygen available, and the lean hybrid filtration process can be used to reform solid fuels into hydrogen and syngas.

Karina Araus; Felipe Reyes; Mario Toledo

2014-01-01T23:59:59.000Z

112

Temperature controlled high voltage regulator  

DOE Patents [OSTI]

A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

2004-04-20T23:59:59.000Z

113

High temperature lightweight foamed cements  

DOE Patents [OSTI]

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

Sugama, Toshifumi.

1989-10-03T23:59:59.000Z

114

Novel syngas-based process for methyl methacrylate  

SciTech Connect (OSTI)

Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel are developing a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Pittsburgh Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the research on propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis, which shows that Eastman`s propionate synthesis process is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-SI-P and Ta metal oxide catalysts for condensation reactions of propionates with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields, acid-base properties, in situ condensation in a high- temperature, high-pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory reactor operating data, a cost estimate is also being developed for the integrated process.

Gogate, M.R.; Spivey, J.J. [Research Triangle Institute, Research Triangle Park, NC (United States); Zoeller, J.R. [Eastman Chemical Co., Kingsport, TN (United States); Choi, G.N. [Bechtel, Inc., San Francisco, CA (United States); Tam, S.S. [Bechtel, Inc., Houston, TX (United States); Tischer, R.E. [USDOE Pittsburgh Energy Technology Center, PA (United States); Srivastava, R.D. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1996-12-31T23:59:59.000Z

115

Modeling of the reburning process using sewage sludge-derived syngas  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Gasification provides an attractive method for sewage sludges treatment. Black-Right-Pointing-Pointer Gasification generates a fuel gas (syngas) which can be used as a reburning fuel. Black-Right-Pointing-Pointer Reburning potential of sewage sludge gasification gases was defined. Black-Right-Pointing-Pointer Numerical simulation of co-combustion of syngases in coal fired boiler has been done. Black-Right-Pointing-Pointer Calculation shows that analysed syngases can provide higher than 80% reduction of NO{sub x}. - Abstract: Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200 K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process.

Werle, Sebastian, E-mail: sebastian.werle@polsl.pl [Institute of Thermal Technology, Silesian University of Technology at Gliwice, 44-100 Gliwice, Konarskiego 22 (Poland)

2012-04-15T23:59:59.000Z

116

Biomass Gasification-Based Syngas Production for a Conventional Oxo Synthesis PlantProcess Modeling, Integration Opportunities, and Thermodynamic Performance  

Science Journals Connector (OSTI)

Biomass Gasification-Based Syngas Production for a Conventional Oxo Synthesis PlantProcess Modeling, Integration Opportunities, and Thermodynamic Performance ... A small amount of steam (0.4 ktony1) is used to control the burner temperature. ...

Maria Arvidsson; Matteo Morandin; Simon Harvey

2014-05-07T23:59:59.000Z

117

High Temperature Optical Gas Sensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Gas Sensing Optical Gas Sensing Opportunity Research is active on optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing applications. Patent applications have been filed for two inventions in this area and several other methods are currently under development. These technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Organizations or individuals with capabilities in optical sensor packaging for harsh environment and high temperature applications are encouraged to contact NETL to explore potential collaborative opportunities. Overview Contact NETL Technology Transfer Group techtransfer@netl.doe.gov

118

High temperature superconductor current leads  

DOE Patents [OSTI]

An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

Hull, J.R.; Poeppel, R.B.

1995-06-20T23:59:59.000Z

119

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture  

SciTech Connect (OSTI)

Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700C) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

2014-01-01T23:59:59.000Z

120

Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor  

Science Journals Connector (OSTI)

Abstract Syngas fermentation is a promising process for producing fuels and chemicals from lignocellulosic biomass. Currently syngas fermentation faces several engineering challenges, with gas-to-liquid mass transfer limitation representing the major bottleneck. The aim of this work is to evaluate the performance of a monolithic biofilm reactor (MBR) as a novel reactor configuration for syngas fermentation. The volumetric mass transfer coefficient (kLa) of the MBR was evaluated in abiotic conditions within a wide range of gas flow rates (i.e., gas velocity in monolithic channels) and liquid flow rates (i.e., liquid velocity in the channels). The kLa values of the MBR were higher than those of a controlled bubble column reactor (BCR) in certain conditions, due to the slug flow pattern in the monolithic channels. A continuous syngas fermentation using Clostridium carboxidivorans P7 was conducted in the MBR system under varying operational conditions, with the variables including syngas flow rate, liquid recirculation between the monolithic column and reservoir, and dilution rate. It was found that the syngas fermentation performance measured by such parameters as syngas utilization efficiency, ethanol concentration and productivity, and ratio of ethanol to acetic acid depended not only on the mass transfer efficiency but also on the biofouling or abrading of the biofilm attached on the monolithic channel wall. At a condition of 300mL/min of syngas flow rate, 500mL/min of liquid flow rate, and 0.48day?1 of dilution rate, the MBR produced much higher syngas (CO/H2) utilization efficiency and much greater metabolite (ethanol/acetic acid) productivity than what was obtained using a traditional bubble column reactor. The study demonstrates the great potential of MBR as a promising reactor configuration for syngas fermentation with high mass transfer efficiency, low energy consumption, and high metabolite productivity.

Yanwen Shen; Robert Brown; Zhiyou Wen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ISOBUTANOL FROM SYNGAS IN A THREE PHASE SYSTEM  

SciTech Connect (OSTI)

With growing interest in oxygenates as octane booster for automotive fuels, various synthesis routes for these chemicals are being investigated. Among others, alternative routes to isobutene, the C4-components in MTBE-synthesis are under investigation. A promising path to isobutene is the heterogeneously catalyzed CO-hydrogenation to isobutanol with following dehydration (Fig. 1). As shown by thermodynamical studies, the heterogeneously catalyzed CO-hydrogenation to isobutanol is not expected to experience any thermodynamic constraints. However, heterogeneous hydrogenation of CO is a very exothermic process, a problem which can only be partly solved when being conducted in a plug flow reactor. When carried out in reaction vessels with moving catalyst bed (e.g. three phase stirred tank), heat transfer problems can be resolved, along with additional benefits connected with this reactor type. Several heterogeneous catalytic systems have been under investigation for their capability of isobutanol synthesis from syngas. Most promising catalysts for an active and selective isobutanol synthesis from CO are modified high temperature methanol catalysts.

Peter Tijrn

2002-12-29T23:59:59.000Z

122

Emerging Technologies on Syngas Purification: Process Intensification  

Science Journals Connector (OSTI)

Syngas normally contains a series of contaminating gases,...2S, accompanied by COS and, also, HCl, HF, etc. Normally, purification should be performed before its combustion in the gas turbine (in the case...

Ramn lvarez-Rodrguez; Carmen Clemente-Jul

2011-01-01T23:59:59.000Z

123

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

124

Review of Mid- to High-Temperature Sulfur Sorbents for Desulfurization of Biomass- and Coal-derived Syngas  

Science Journals Connector (OSTI)

Biomass feedstocks contain low percentages of protein-derived sulfur that is converted primarily to H2S, as well as small amounts of carbonyl sulfide (COS) and organosulfur compounds during pyrolysis and gasification. ...

Singfoong Cheah; Daniel L. Carpenter; Kimberly A. Magrini-Bair

2009-10-16T23:59:59.000Z

125

Production of Mixed Alcohols from Bio-syngas over Mo-based Catalyst  

Science Journals Connector (OSTI)

A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas derived from the biomass gasification. The Cu1Co1Fe1Mo1Zn0.5? 6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols compared with the other Mo-based catalysts. The carbon conversion significantly increases with rising temperature below 340 C but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kgcatalh) with the C2+ (C2C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are consistent with the Schulz-Flory plots except methanol. In the alcohols products the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%85%. The Mo-based catalysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.

Song-bai Qiu; Wei-wei Huang; Yong Xu; Lu Liu; Quan-xin Li

2011-01-01T23:59:59.000Z

126

Experimental and theoretical study of exhaust gas fuel reforming of Diesel fuel by a non-thermal arc discharge for syngas production  

E-Print Network [OSTI]

-thermal arc discharge for syngas production A. Lebouvier1,2 , F. Fresnet2 , F. Fabry1 , V. Boch2 , V. Rohani1% and a conversion rate of 95% have been reached which correspond to a syngas dry molar fraction of 25%. For the most to POx reaction. To higher the temperature, more oxygen is needed but local combustion can happen

Paris-Sud XI, Université de

127

Synthesis of Methanol and Dimethyl Ether from Syngas over Pd/ZnO/Al2O3 Catalysts  

SciTech Connect (OSTI)

A Pd/ZnO/Al2O3 catalyst was developed for the synthesis of methanol and dimethyl ether (DME) from syngas. Studied were temperatures of operation ranging from 250C to 380C. High temperatures (e.g. 380C) are necessary when combining methanol and DME synthesis with a methanol to gasoline (MTG) process in a single reactor bed. A commercial Cu/ZnO/Al2O3 catalyst, utilized industrially for the synthesis of methanol at 220-280C, suffers from a rapid deactivation when the reaction is conducted at high temperature (>320C). On the contrary, a Pd/ZnO/Al2O3 catalyst was found to be highly stable for methanol and DME synthesis at 380C. The Pd/ZnO/Al2O3 catalyst was thus further investigated for methanol and DME synthesis at P=34-69 bars, T= 250-380C, GHSV= 5 000-18 000 h-1, and molar feeds H2/CO= 1, 2, and 3. Selectivity to DME increased with decreasing operating temperature, and increasing operating pressure. Increased GHSVs and H2/CO syngas feed ratios also enhanced DME selectivity. Undesirable CH4 formation was observed, however, can be minimized through choice of process conditions and by catalyst design. By studying the effect of the Pd loading and the Pd:Zn molar ratio the formulation of the Pd/ZnO/Al2O3 catalyst was optimized. A catalyst with 5% Pd and a Pd:Zn molar ratio of 0.25:1 has been identified as the preferred catalyst. Results indicate that PdZn particles are more active than Pd particles for the synthesis of methanol and less active for CH4 formation. A correlation between DME selectivity and the concentration of acid sites of the catalysts has been established. Hence, two types of sites are required for the direct conversion of syngas to DME: 1) PdZn particles are active for the synthesis of methanol from syngas, and 2) acid sites which are active for the conversion of methanol to DME. Additionally, CO2 formation was problematic as PdZn was found to be active for the water-gas-shift (WGS) reaction, under all the conditions evaluated.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Lizarazo Adarme, Jair A.; King, David L.; Palo, Daniel R.

2012-10-01T23:59:59.000Z

128

Acid Doped Membranes for High Temperature PEMFC  

Broader source: Energy.gov [DOE]

Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

129

Joint Institute for High Temperatures  

National Nuclear Security Administration (NNSA)

Joint Institute for High Temperatures of Russian Academy of Sciences Moscow Institute of Physics and Technology Extended title Extended title Excited state of warm dense matter or Exotic state of warm dense matter or Novel form of warm dense matter or New form of plasma Three sources of generation similarity: solid state density, two temperatures: electron temperature about tens eV, cold ions keep original crystallographic positions, but electron band structure and phonon dispersion are changed, transient but steady (quasi-stationary for a short time) state of non-equilibrium, uniform plasmas (no reference to non-ideality, both strongly and weakly coupled plasmas can be formed) spectral line spectra are emitted by ion cores embedded in plasma environment which influences the spectra strongly,

130

High Reliability, High TemperatureThermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

131

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

132

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

133

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

134

A novel reactor configuration for packed bed chemical-looping combustion of syngas  

Science Journals Connector (OSTI)

Abstract This study reports on the application of chemical looping combustion (CLC) in pressurized packed bed reactors using syngas as a fuel. High pressure operation of CLC in packed bed has a different set of challenges in terms of material properties, cycle and reactor design compared to fluidized bed operation. However, high pressure operation allows the use of inherently more efficient power cycles than low pressure fluidized bed solutions. This paper quantifies the challenges in high pressure operation and introduces a novel reactor concept with which those challenges can be addressed. Continuous cyclic operation of a packed bed CLC system is simulated in a 1D numerical reactor model. Importantly, it is demonstrated that the temperature profiles that can occur in a packed bed reactor as a result of the different process steps do not accumulate, and have a negligible effect on the overall performance of the system. Moreover, it has been shown that an even higher energy efficiency can be achieved by feeding the syngas from the opposite direction during the reduction step (i.e. countercurrent operation). Unfortunately, in this configuration mode, more severe temperature fluctuations occur in the reactor exhaust, which is disadvantageous for the operation of a downstream gas turbine. Finally, a novel reactor configuration is introduced in which the desired temperature rise for obtained hot pressured air suitable for a gas turbine is obtained by carrying out the process with two packed bed reactor in series (two-stage CLC). This is shown to be a good alternative to the single bed configuration, and has the added advantage of decreasing the demands on both the oxygen carrier and the reactor materials and design specification.

H.P. Hamers; F. Gallucci; P.D. Cobden; E. Kimball; M. van Sint Annaland

2013-01-01T23:59:59.000Z

135

Autoignition studies of Syngas and Hydrogen (SGH) Fuels The Pennsylvania State University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Autoignition Autoignition Studies of Syngas and Hydrogen (SGH) Fuels The Pennsylvania State University Robert J. Santoro SCIES Project 05-01-SR117 Project Awarded (8/1/05 36 Month Duration) $419,036 Total Contract Value ($419,036 DOE) Motivation * Renewed interest in IGCC requires a fundamental understanding of syngas properties * Of particular importance for lean premixed gas turbine power operation are the autoignition properties of syngas * Additionally, these properties must be measured for pressure and temperature conditions representative of gas turbines The Pennsylvania State University Objectives * Parametrically determine the autoignition delay time for CO/H 2 mixtures * Vary CO concentration, equivalence ratio, pressure and temperature over a wide range * Effect of water will be investigated

136

Ultra High Temperature | Open Energy Information  

Open Energy Info (EERE)

Ultra High Temperature Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid greater than 300°C is considered by Sanyal to be "ultra high temperature". "Such reservoirs are characterized by rapid development of steam saturation in the reservoir and steam fraction in the mobile fluid phase upon

137

Amorphous Alloy Membranes for High Temperature Hydrogen Separation  

SciTech Connect (OSTI)

At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute (SwRI), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

Coulter, K

2013-09-30T23:59:59.000Z

138

Materials Characterization Capabilities at the High Temperature...  

Broader source: Energy.gov (indexed) [DOE]

Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites Materials Characterization Capabilities at the High...

139

Thermodynamic Analysis of Syngas Production via the Solar Thermochemical Cerium Oxide Redox Cycle with Methane-Driven Reduction  

Science Journals Connector (OSTI)

Thermodynamic Analysis of Syngas Production via the Solar Thermochemical Cerium Oxide Redox Cycle with Methane-Driven Reduction ... Of particular interest is the storage of solar energy in chemical bonds via the splitting of water and carbon dioxide to produce hydrogen and carbon monoxide, referred to collectively as syngas. ... The coupled cycle produces high-quality syngas by the partial oxidation of methane in the ceria reduction step in addition to the carbon monoxide and hydrogen produced by splitting carbon dioxide and water in the oxidation step. ...

Peter T. Krenzke; Jane H. Davidson

2014-05-16T23:59:59.000Z

140

A reburning process using sewage sludge-derived syngas  

Science Journals Connector (OSTI)

The motivation for this work was to define the reburning potential of sewage sludge (SS) gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was .....

Sebastian Werle

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams  

DOE Patents [OSTI]

A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.

Siriwardane, Ranjani V. (Morgantown, WV); Stevens, Robert W. (Morgantown, WV)

2012-03-06T23:59:59.000Z

142

Gasification of Fuel Cane Bagasse in a Downdraft Gasifier: Influence of Lignocellulosic Composition and Fuel Particle Size on Syngas Composition and Yield  

Science Journals Connector (OSTI)

The extracted syngas is then flared or fed to a 30 kW internal combustion engine. ... As expected, immediately after the start of combustion, pyrolysis zone temperatures increased by thermal radiation from the oxidation zone; however, a rapid increase in the temperature at the gasifier exit also occurred, and within 10 min of ignition, the syngas temperature at the exit had already reached 309 C and continued to increase. ... The ER is a measure of the ratio of actual air used to the stoichiometric amount of air required for combustion and is, therefore, crucial in the development of syngas quality. ...

Galip Akay; C. Andrea Jordan

2011-04-11T23:59:59.000Z

143

High Temperature Mechanical Properties as Design Parameters  

Science Journals Connector (OSTI)

...corrosion resistance or high proof strength...development of more efficient power plant, process...Figure 2 shows a high temperature bolt...S.O.) of a Boiler Code (I968...power plant for high temperature pipework, boiler headers, valve...

1976-01-01T23:59:59.000Z

144

Mixed conducting membranes for syngas production  

DOE Patents [OSTI]

This invention presents a new class of multicomponent metallic oxides which are particularly suited toward use in fabricating components used in processes for producing syngas. The non-stoichiometric, A-site rich compositions of the present invention are represented by the formula (Ln.sub.x Ca.sub.1-x).sub.y FeO.sub.3-.delta. wherein Ln is La or a mixture of lanthanides comprising La, and wherein 1.0>x>0.5, 1.1.gtoreq.y>1.0 and .delta. is a number which renders the composition of matter charge neutral. Solid-state membranes formed from these compositions provide a favorable balance of oxygen permeance and resistance to degradation when employed in processes for producing syngas. This invention also presents a process for making syngas which utilizes such membranes.

Dyer, Paul Nigel (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Butt, Darryl (Gainesville, FL); Van Doorn, Rene Hendrick Elias (Neckarsulm, DE); Cutler, Raymond Ashton (Bountiful, UT)

2002-01-01T23:59:59.000Z

145

Chemical Looping Reforming for H2, CO and Syngas Production  

SciTech Connect (OSTI)

We demonstrate that the extension of CLC onto oxidants beyond air opens new, highly efficient pathways for production of ultra-pure hydrogen, activation of CO{sub 2} via reduction to CO, and are currently working on production of syngas using nanocomposite Fe-BHA. CLR hold great potential due to fuel flexibility and CO{sub 2} capture. Chemical Looping Combustion (CLC) is a novel clean combustion technology which offers an elegant and highly efficient route for fossil fuel combustion. In CLC, combustion of a fuel is broken down into two spatially separated steps. In the reducer, the oxygen carrier (typically a metal) supplies the stoichiometric oxygen required for fuel combustion. In the oxidizer, the oxygen-depleted carrier is then re-oxidized with air. After condensation of steam from the effluent of the reducer, a high-pressure, high-purity sequestration-ready CO{sub 2} stream is obtained. In the present study, we apply the CLC principle to the production of high-purity H{sub 2}, CO, and syngas streams by replacing air with steam and/or CO{sub 2} as oxidant, respectively. Using H{sub 2}O as oxidant, pure hydrogen streams can be obtained. Similarly, using CO{sub 2} as oxidant, CO is obtained, thus opening an efficient route for CO{sub 2} utilization. Using steam and CO{sub 2} mixtures for carrier oxidation should thus allow production of syngas with adjustable CO:H{sub 2} ratios. Overall, these processes result in Chemical Looping Reforming (CLR), i.e. the net overall reaction is the steam and/or dry reforming of the respective fuel.

Bhavsar,Saurabh; Najera,Michelle; Solunke,Rahul; Veser,Gtz

2001-06-06T23:59:59.000Z

146

Effect of H2/CO ratio and N2/CO2 dilution rate on laminar burning velocity of syngas investigated by direct measurement and simulation  

Science Journals Connector (OSTI)

Abstract Laminar burning velocities of syngas/air premixed flames, varying with H2/CO ratio (from 5/95 to 75/25) and N2 or CO2 dilution rate (from 0% to 60%), were accurately measured using a Teflon coated Heat Flux burner and OH-PLIF based Bunsen flame method. Experiments were carried out at atmospheric pressure and room temperature, with fuel/air equivalence ratios ranging from fuel-lean to fuel-rich. Coupled with experimental data, three chemical kinetic mechanisms, namely GRI-Mech 3.0, USC Mech II and Davis H2CO mechanism, were validated. The Davis H2CO and USC Mech II mechanisms appear to provide a better prediction for the laminar burning velocity. The laminar burning velocity variations with H2 and dilution gas contents were systematically investigated. For given dilution gas fraction, the laminar burning velocity reduction rate was enhanced as H2/CO ratio increasing. Effects of the syngas components and equivalence ratio variation on the concentrations of radical H and OH were also studied. It appears that there is a strong linear correlation between the laminar burning velocity and the maximum concentration of the H radical in the reaction zone for syngas. This characteristic is exclusively different from that in methane air premixed flame. These findings indicated that the high thermal diffusivity of the H radical played an important role in the laminar burning velocity enhancement and affected the laminar burning velocity reduction rate under dilution condition.

Z.H. Wang; W.B. Weng; Y. He; Z.S. Li; K.F. Cen

2014-01-01T23:59:59.000Z

147

Sandia National Laboratories: High-Pressure and High-Temperature...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECClimateCarbon CaptureHigh-Pressure and High-Temperature Neutron Reflectometry Cell for Solid-Fluid Interface Studies High-Pressure and High-Temperature Neutron...

148

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network [OSTI]

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma

Paris-Sud XI, Université de

149

High-temperature thermocouples and related methods  

DOE Patents [OSTI]

A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

Rempe, Joy L. (Idaho Falls, ID); Knudson, Darrell L. (Firth, ID); Condie, Keith G. (Idaho Falls, ID); Wilkins, S. Curt (Idaho Falls, ID)

2011-01-18T23:59:59.000Z

150

High-temperature Pump Monitoring - High-temperature ESP Monitoring...  

Broader source: Energy.gov (indexed) [DOE]

at least at the outset, exclude new ideas. The drift issue appears to have brought a new search for materials into this research. * Objectives: Develop temperature and pressure...

151

Reciprocity theorem in high-temperature superconductors  

E-Print Network [OSTI]

This article is devoted to the problem of the validity of the reciprocity theorem in high-temperature

Ivan Jane?ek

2002-01-01T23:59:59.000Z

152

Scaling in high-temperature superconductors by  

E-Print Network [OSTI]

A Hartree approximation is used to study the interplay of two kinds of scaling which arise in high-temperature

Ian D Lawrie

1994-01-01T23:59:59.000Z

153

Agenda: High Temperature Membrane Working Group Meeting  

Broader source: Energy.gov [DOE]

Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

154

Syngas production from burner-stabilized methane/air flames: The effect of preheated reactants  

Science Journals Connector (OSTI)

The effect of preheated reactants on syngas production from a methane/air flame was investigated over a range of inlet temperatures up to 630K. In addition to experimental measurements, the results from a burner-stabilized flame and freely-propagating flame models are presented. A comparison of the modeling and experimental results in terms of flame standoff distance, stability limit conditions and species yields show excellent agreement across a broad range of equivalence ratios and preheat temperatures. Preheating of reactants increased the rich limit for stable operation from 1.26 to 1.75 for a given inlet velocity, and syngas yields were shown to increase with equivalence ratio. The preheat temperature of the reactants was shown to have little impact on syngas yields beyond extending the limits of stable operation. The results of this study are useful for the design and analysis of heat recirculating reactors and other reactors that are designed for producing syngas through the combustion of rich mixtures.

Colin H. Smith; Daniel I. Pineda; Janet L. Ellzey

2013-01-01T23:59:59.000Z

155

Gasification of refinery sludge in an updraft reactor for syngas production  

Science Journals Connector (OSTI)

The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time oxidation temperature and equivalence ratios on carbon gas conversion rate gasification efficiency heating value and fuel gas yield are presented. The results show that the oxidation temperature increased sharply up to 858C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 C. This bridging was found to affect also the syngas compositions meanwhile as the temperature decreased the CO H 2 CH 4 compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction ( CO 2 + C ?=?450?2 CO ) and accelerated the carbon conversion and gasification efficiencies resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies high heating value of gas and fuel gas yield to reach their maximum values of 96.1 % and 53.7 % 5.42 MJ Nm?3 of and 2.5 Nm3 kg?1 respectively.

2014-01-01T23:59:59.000Z

156

Conversion of wet ethanol to syngas via filtration combustion: An experimental and computational investigation  

Science Journals Connector (OSTI)

Ethanol is often promoted as the biofuel of the future, yet its acceptance as a fuel for combustion devices is limited by the cost of production. Since most combustion engines cannot tolerate high concentrations of water, the ethanol must be distilled and dehydrated, requiring large amounts of energy. Ethanol also has great potential as a feedstock for syngas consisting of hydrogen, carbon monoxide, and other species. The conversion, called reforming, of ethanol to syngas does not necessarily require dehydration or distillation, thus eliminating or reducing the costs associated with those processes. In addition, there is potential for obtaining additional hydrogen from the water in the mixture. In this paper, we investigate the conversion of wet ethanol, or ethanol that has not been fully distilled or dehydrated, to syngas in an inert porous reactor. Experimental and computational results over a range of equivalence ratios, inlet velocities, and water fractions are presented. The results indicate that wet ethanol is a promising biological source for hydrogen.

Colin H. Smith; Daniel M. Leahey; Liane E. Miller; Janet L. Ellzey

2011-01-01T23:59:59.000Z

157

High Temperature Superconducting Underground Cable  

SciTech Connect (OSTI)

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

158

Combustion of syngas in a pressurized microturbine-like combustor: Experimental results  

Science Journals Connector (OSTI)

The different routes for power production from biomass often lead to an intermediary product such as a synthesis gas or syngas, which is typically rich in hydrogen and carbon monoxide. The simple design, fuel flexibility and size, which often matches the amount of waste energy available in industrial sites, makes microturbines an attractive solution for on-site, decentralized power generation using a limited range of alternative fuels such as synthetic gas. The properties of the synthetic fuel differ from properties of natural gas and a detailed experimental study with a separated microturbine-like pressurized combustor is therefore necessary. The present article reviews the experimental results obtained by gradually switching the fuel feed from natural gas to wet syngas in a pressurized, slightly modified lean premix microturbine combustor. Temperature profiles, pressure, emissions and flame imaging were closely monitored to detect possible problems in operability of the combustor caused by the strong difference in fuel characteristics. No problems regarding auto-ignition, dynamic or static instability were observed throughout the test-run. Temperature profiles stayed well within allowable limits and did not reveal any significant shift in flame anchoring position. The combustion of syngas during full or part load of the combustor produced remarkably low \\{NOx\\} and CO emissions. The microturbine combustor achieved stable full load combustion of syngas at the end of the test-run.

Frank Delattin; Giovanni Di Lorenzo; Sergio Rizzo; Svend Bram; Jacques De Ruyck

2010-01-01T23:59:59.000Z

159

Multidimensional CFD simulation of syngas combustion in a micro-pilot-ignited dual-fuel engine using a constructed chemical kinetics mechanism  

Science Journals Connector (OSTI)

A multidimensional computational fluid dynamics (CFD) simulation of a constructed syngas chemical kinetic mechanism was performed to evaluate the combustion of syngas in a supercharged dual-fuel engine for various syngas initial compositions under lean conditions. The modelled results were validated by comparing predictions against corresponding experimental data for a supercharged dual-fuel engine. The predicted and measured in-cylinder pressure, temperature, and rate of heat release (ROHR) data were in good agreement. The effect of the hydrogen peroxide chain-propagation reaction on the progress of combustion under supercharged conditions was examined for different types of syngas using various initial H2 concentrations. The effect of the main syngas kinetic mechanism reactions on the combustion progress was analysed in terms of their contribution to the total heat of the reaction. The best results compared with experimental data were obtained in the range of equivalence ratios below about 0.8 for all types of syngas considered in this paper. As the equivalence ratio increased above 0.8, the results deviated from the experiment data. The spatial distribution of the in-cylinder temperature and OH? within this equivalence-ratio range showed the completeness of the combustion. The present CFD model captured the overall combustion process well and could be further developed into a useful tool for syngas-engine combustion simulations.

Ulugbek Azimov; Masahiro Okuno; Kazuya Tsuboi; Nobuyuki Kawahara; Eiji Tomita

2011-01-01T23:59:59.000Z

160

Electrochemical investigations of various high-temperature superconductor phases  

Science Journals Connector (OSTI)

Electrochemical investigations of various high-temperature superconductor phases ... Electrochemistry of High-Temperature Superconductors ...

David R. Riley; A. Manthiram; John T. McDevitt

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Long, Highly-Ordered High-Temperature Superconductor Nanowire Arrays  

Science Journals Connector (OSTI)

Long, Highly-Ordered High-Temperature Superconductor Nanowire Arrays ... For bulk superconductors, the electrical resistance drops precipitously to zero below the superconducting transition temperature (Tc). ... Even these temperatures are considerably higher than those found in conventional superconductor NWs of similar widths, which are typically below liquid helium temperature (4.2 K). ...

Ke Xu; James R. Heath

2008-10-28T23:59:59.000Z

162

An internal winding high temperature heater  

Science Journals Connector (OSTI)

An internal winding high temperature heater ... General principles are outlined for the construction of compact heaters that are suitable for heating small containers or reaction vessels at constant temperature and up to about 1000 C. ...

A. J. Delbouille; E. G. Derouane

1973-01-01T23:59:59.000Z

163

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration  

Science Journals Connector (OSTI)

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration ... The clean syngas is diluted with N2 from the ASU and enters the gas turbine burner. ... The amount of N2 diluent to be added is determined by the requirement of maintaining the appropriate lower heating value of the syngas feeding into the gas turbine burner to achieve sufficiently low NOx emissions (1535 ppmv at 15% O2)(36) and to keep the temperature of the gas low enough to avoid blade failure. ...

David J. Couling; Kshitij Prakash; William H. Green

2011-08-11T23:59:59.000Z

164

Use of High Temperature Electrochemical Cells for Co-Generation of Chemicals and Electricity  

SciTech Connect (OSTI)

In this project, two key issues were addressed to show the feasibility of electrochemical partial oxidation (EPOx) in a SOFC. First, it was demonstrated that SOFCs can reliably operate directly with natural gas. These results are relevant to both direct-natural-gas SOFCs, where the aim is solely electrical power generation, and to EPOx. Second, it must be shown that SOFCs can work effectively as partial oxidation reactors, i.e, that they can provide high conversion efficiency of natural gas to syngas. The results of this study in both these areas look extremely promising. The main results are summarized briefly: (1) Stability and coke-free direct-methane SOFC operation is promoted by the addition of a thin porous inert barrier layer to the anode and the addition of small amounts of CO{sub 2} or air to the fuel stream; (2) Modeling results readily explained these improvements by a change in the gas composition at the Ni-YSZ anode to a non-coking condition; (3) The operation range for coke-free operation is greatly increased by using a cell geometry with a thin Ni-YSZ anode active layer on an inert porous ceramic support, i.e., (Sr,La)TiO{sub 3} or partially-stabilized zirconia (in segmented-in-series arrays); (4) Ethane and propane components in natural gas greatly increase coking both on the SOFC anode and on gas-feed tubes, but this can be mitigated by preferentially oxidizing these components prior to introduction into the fuel cell, the addition of a small amount of air to the fuel, and/or the use of ceramic-supported SOFC; (5) While a minimum SOFC current density was generally required to prevent coking, current interruptions of up to 8 minutes yielded only slight anode coking that caused no permanent damage and was completely reversible when the cell current was resumed; (6) Stable direct-methane SOFC operation was demonstrated under EPOx conditions in a 350 h test; (7) EPOx operation was demonstrated at 750 C that yielded 0.9 W/cm{sup 2} and a syngas production rate of 30 sccm/cm{sup 2}, and the reaction product composition was close to the equilibrium prediction during the early stages of cell testing; (8) The methane conversion to syngas continuously decreased during the first 100 h of cell testing, even though the cell electrical characteristics did not change, due to a steady decrease in the reforming activity of Ni-YSZ anodes; (9) The stability of methane conversion was substantially improved via the addition of a more stable reforming catalyst to the SOFC anode; (10) Modeling results indicated that a SOFC with anode barrier provides similar non-coking performance as an internal reforming SOFC, and provides a simpler approach with no need for a high-temperature exhaust-gas recycle pump; (11) Since there is little or no heat produced in the EPOx reaction, overall efficiency of the SOFC operated in this mode can, in theory, approach 100%; and (12) The combined value of the electricity and syngas produced allows the EPOx generator to be economically viable at a >2x higher cost/kW than a conventional SOFC.

Scott Barnett

2007-09-30T23:59:59.000Z

165

High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

166

High Temperature Solar Splitting of Methane  

E-Print Network [OSTI]

-term commercialization opportunities #12;Why Use Solar Energy?Why Use Solar Energy? · High concentrations possible (>1000High Temperature Solar Splitting of Methane to Hydrogen and Carbon High Temperature Solar Splitting and worldwide) ­ Sufficient to power the world (if we choose to) · Advantages tradeoff against collection area

167

QED3 Theory of High Temperature Superconductors  

E-Print Network [OSTI]

QED3 Theory of High Temperature Superconductors Zlatko Tesanovi´c The Johns Hopkins University is The Problem in high Tc superconductors? · Superconducting state appears dx2-y2 "BCS-like". Low energy: · Today, everything seems to be a high temperature superconduc- tor (cuprates, C60's, MgB2

Tesanovic, Zlatko

168

Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H{sub 2}) for chemical-looping combustion  

SciTech Connect (OSTI)

The reactivity of three Cu-, Fe-, and Ni-based oxygen carriers to be used in a chemical-looping combustion (CLC) system using syngas as fuel has been analyzed. The oxygen carriers exhibited high reactivity during reduction with fuel gases present in syngas (H{sub 2} and CO), with average values in the range 8-30% min{sup -1}. No effect of the gas products (H{sub 2}O, CO{sub 2}) on the reduction reaction rate was detected. The kinetic parameters of reaction with H{sub 2} and CO have been determined by thermogravimetric analysis. The grain model with spherical or platelike geometry in the grain was used for the kinetic determination, in which the chemical reaction controlled the global reaction rate. The activation energies determined for these reactions were low, with values ranging from 14 to 33 kJ mol{sup -1}. The reaction order depended on the reacting gas, and values from 0.5 to 1 were found. Moreover, the reactivity of the oxygen carriers when both H{sub 2} and CO are simultaneously present in the reacting gases has been analyzed, both at atmospheric and pressurized conditions. For the Cu- and Fe-based oxygen carriers, the reaction rate of the oxygen carrier with syngas corresponded to the addition of the reaction rates for the individual fuel gases, H{sub 2} and CO. For the Ni-based oxygen carrier, the reaction rate was that corresponding to the fuel gas that reacted faster with the oxygen carrier at the reacting conditions (fuel concentration, temperature, and pressure). The consequences of the behavior of the reaction of syngas and the water-gas shift (WGS) equilibrium on the design of the fuel reactor of a CLC system have been analyzed. A preliminary estimation of the solids inventory for the use of syngas in the fuel reactor of a CLC system gave values in the range of 19-34 kg MW{sup -1} when the WGS equilibrium was considered to be instantaneous. 8 figs., 4 tabs.

Alberto Abad; Francisco Garcia-Labiano; Luis F. de Diego; Pilar Gayn; Juan Adnez [Instituto de Carboquimica (CSIC), Zaragoza (Spain). Department of Energy and Environment

2007-08-15T23:59:59.000Z

169

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficient Automotive Waste Heat Recovery Multi-physics modeling of thermoelectric generators for waste heat recovery applications Nanostructured High-Temperature Bulk...

170

High Temperature Thermoelectric Materials Characterization for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2009 -- Washington D.C. lmp06wang.pdf More Documents & Publications High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success...

171

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites...

172

High Temperature Materials Laboratory (HTML) - PSD Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions....

173

THE EFFECTS OF CHANGING FUELS ON HOT GAS PATH CONDITIONS IN SYNGAS TURBINES  

SciTech Connect (OSTI)

Gas turbines in integrated gasification combined cycle power plants burn a fuel gas (syngas) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may differ significantly from those in natural gas. Such differences can yield changes in the temperature, pressure, and corrosive species that are experienced by critical components in the hot gas path, with important implications in the design, operation, and reliability of the turbine. A new data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle for various fuel types. The approach used allows efficient handling of turbine components and different variable constraints due to fuel changes. Examples are presented for a turbine with four stages. The vanes and blades were considered to be cooled in an open circuit, with air provided from the appropriate compressor stages. A constraint was placed on the maximum metal temperature and values were calculated for the fuel flow rates, airflow ratios, and coolant flow rates for cases where the turbine was fired with natural gas, NG, or syngas, SG. One NG case was conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points. It was found that pressure matching is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case to comply with imposed temperature constraint. Thus, for this first case, the turbine size would be different for SG than for NG. In order to maintain the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) for the SG simulations, a second series of simulations was carried out in which the inlet mass flow was varied while keeping constant the pressure ratios and the amount of hot gas passing the first vane of the turbine. The effects of turbine matching between the NG and SG cases were increases for the SG case of approximately 7 and 13 % for total cooling flows and cooling flows for the first vane, respectively. In particular, for the SG case, the vane in the last stage of the turbine experienced inner wall temperatures that approached the maximum allowable limit.

Sabau, Adrian S [ORNL; Wright, Ian G [ORNL

2009-01-01T23:59:59.000Z

174

Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report  

SciTech Connect (OSTI)

The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

2013-11-26T23:59:59.000Z

175

Processes yielding high superconducting temperatures  

SciTech Connect (OSTI)

It is pointed out that any microscopic description of the new high-T/sub c/ superconductors should take into account a number of important points concerning strong couplings, whatever their nature: absence of the MacMillan limit, absence of a Migdal theorem, and importance of the Brovman-Kagan type of vertices with different singularities depending on the dimensionality. As a consequence, the applicability of standard techniques such as the Eliashberg theory in particular, may be questioned in high-T/sub c/ superconductors.

Beal-Monod, M.T.

1987-12-01T23:59:59.000Z

176

Hole doping in high temperature superconductors using the XANES technique  

E-Print Network [OSTI]

Hole doping in high temperature superconductors using the1994 Thallium-Based High Temperature Superconductors ed A M1994 Thallium-Based High Temperature Superconductors ed A M

Hamdan, Nasser

2012-01-01T23:59:59.000Z

177

AOI [3] High-Temperature Nano-Derived Micro-H2 and - H2S Sensors  

SciTech Connect (OSTI)

The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO2) and hydrogen sulfide (H2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500C) chemical sensor for in-situ monitoring of H2, H2S and SO2 levels during coal gasification is strongly desired. The selective detection of SO2/H2S in the presence of H2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled High-Temperature Nano-Derived Micro-H2 and -H2S Sensors, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H2, SO2, and H2S within high-temperature environments (>500?C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). NexTech assisted in the testing of the sensors in syngas with contaminate levels of H2S. The idea of including nanomaterials as the sensing material within resistive-type chemical sensor platforms was to increase the sensitivity (as shown for room temperature applications). Unfortunately, nanomaterials are not stable at high temperatures due to sintering and coarsening processes that are driven by their high surface to volume ratio. Therefore, new hydrogen and sulfur selective nanomaterial systems with high selectivity and stability properties in the proposed harsh environment were investigated. Different nano-morphologies of zirconate, molybdate, and tungstate compounds were investigated. The fabrication of the microsensors consisted of the deposition of the selective nanomaterial systems over metal based interconnects on an inert substrate. This work utilized the chemi-resistive (resistive- type) microsensor architecture where the chemically and structurally stable, high temperature compatible electrodes were sputtered onto a ceramic substrate. The nanomaterial sensing systems were deposited over the electrodes using a lost mold method patterned by conventional optical lithography. The microsensor configuration with optimized nanomaterial system was tested and compared to a millimeter-size sensor e outcomes of this research will contribute to the economical application of sensor arrays for simultaneous sensing of H2, H2S, and SO2.

Perepezko, John; Lu-Steffes, Otto

2014-08-31T23:59:59.000Z

178

High temperature solar selective coatings  

DOE Patents [OSTI]

Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

Kennedy, Cheryl E

2014-11-25T23:59:59.000Z

179

BURNER DEVELOPMENT AND OPERABILITY ISSUES ASSOCIATED WITH STEADY FLOWING SYNGAS  

E-Print Network [OSTI]

BURNER DEVELOPMENT AND OPERABILITY ISSUES ASSOCIATED WITH STEADY FLOWING SYNGAS FIRED COMBUSTORS Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA 2 UCI Combustion Laboratory, University-Mu¨nchen, Garching, Germany This article addresses the impact of syngas fuel composition on combustor blowout, flash

Lieuwen, Timothy C.

180

CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2  

SciTech Connect (OSTI)

This report summarizes the work completed under DOE's Support of Advanced Fuel Research program, Contract No. DE-FG26-99FT40681. The contract period was October 2000 through September 2002. This R&D program investigated the modification of the mechanical strength of catalyst extrudates using Hydrocarbon Technologies, Inc. (HTI) carbon-coated catalyst technology so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. Exothermic chemical reactions benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. The carbon-coated extrudates prepared using these procedures had sufficient attrition resistance and surface area for use in ebullated bed operation. The low cost of carbon coating makes the carbon-coated catalysts highly competitive in the market of catalyst extrudates.

Peizheng Zhou

2002-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High Temperature, High Pressure Devices for Zonal Isolation in...  

Open Energy Info (EERE)

remotely and autonomous deployable structures for space and our high temperature composite technology developed for downhole applications. These devices offer several...

182

High-Temperature-High-Volume Lifting for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Norman Turnquist GE Global Research High Temperature Tools and Sensors, Down-hole Pumps and Drilling May 19, 2010 This presentation does not contain any proprietary...

183

Symposium on high temperature and materials chemistry  

SciTech Connect (OSTI)

This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

Not Available

1989-10-01T23:59:59.000Z

184

Temperature dependence of vortex charges in high-temperature superconductors  

Science Journals Connector (OSTI)

Using a model Hamiltonian with d-wave superconductivity and competing antiferromagnetic (AF) interactions, the temperature (T) dependence of the vortex charge in high-Tc superconductors is investigated by numerically solving the Bogoliubovde Gennes equations. The strength of the induced AF order inside the vortex core is T dependent. The vortex charge could be negative when the AF order with sufficient strength is present at low temperatures. At higher temperatures, the AF order may be completely suppressed and the vortex charge becomes positive. A first-order-like transition in the T-dependent vortex charge is seen near the critical temperature TAF. For an underdoped sample, the spatial profiles of the induced spin-density wave and the charge-density wave orders could have stripelike structures at TTs. As a result, a vortex charge discontinuity occurs at Ts.

Yan Chen; Z. D. Wang; C. S. Ting

2003-06-03T23:59:59.000Z

185

Metallic Hydrogen: A High-Temperature Superconductor?  

Science Journals Connector (OSTI)

Application of the BCS theory to the proposed metallic modification of hydrogen suggests that it will be a high-temperature superconductor. This prediction has interesting astrophysical consequences, as well as implications for the possible development of a superconductor for use at elevated temperatures.

N. W. Ashcroft

1968-12-23T23:59:59.000Z

186

Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas A Techno-Economic Analysis  

SciTech Connect (OSTI)

This study reports the comparison of biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT) case, goal case, and conventional case, were compared in terms of performance and cost. The SOT case and goal case represent technology being developed at Pacific Northwest National Laboratory for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation (S2D process). The conventional case mirrors the two-step S2D process previously utilized and reported by Mobil using natural gas feedstock and consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. Analysis of the three cases revealed that the goal case could indeed reduce fuel production cost over the conventional case, but that the SOT was still more expensive than the conventional. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield, single pass conversion efficiency, and reactor space velocity are the key factors driving the high cost for the SOT case.

Zhu, Yunhua; Jones, Susanne B.; Biddy, Mary J.; Dagle, Robert A.; Palo, Daniel R.

2012-08-01T23:59:59.000Z

187

Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas - A Techno-Economic Analysis  

SciTech Connect (OSTI)

This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goal cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case.

Zhu, Y.; Jones, S. B.; Biddy, M. J.; Dagle, R. A.; Palo, D. R.

2012-08-01T23:59:59.000Z

188

Noise Absorbing High-Temperature Insulation  

Science Journals Connector (OSTI)

Until recently simple heat shields on the engine, in the engine space or on the subframe of a vehicle had given protection against radiant heat from hot components. Today, complex high-temperature insulation syst...

Peter Cappellucci

2013-07-01T23:59:59.000Z

189

Thermodynamics of high-temperature nuclear fuel  

Science Journals Connector (OSTI)

A method for performing a thermodynamic analysis of the high-temperature nuclear fuel using the ASTA computer program is substantiated. Calculations of the chemical composition and pressure of the gas phase of...

I. A. Belov; A. S. Ivanov

190

High Temperature Corrosion Test Facilities and High Pressure Test  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Temperature High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Test Facilities for Metal Dusting Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Six corrosion test facilities and two thermogravimetric systems for conducting corrosion tests in complex mixed gas environments, in steam and in the presence of deposits, and five facilities for metal dusting degradation Bookmark and Share The High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting include: High Pressure Test Facility for Metal Dusting Resistance:

191

High temperature thermometric phosphors for use in a temperature sensor  

DOE Patents [OSTI]

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1998-01-01T23:59:59.000Z

192

Single-Step Syngas-to-Dimethyl Ether Processes for Optimal Productivity, Minimal Emissions, and Natural Gas-Derived Syngas  

Science Journals Connector (OSTI)

Single-step conversion of synthesis gas (syngas, H2/CO mixture) to dimethyl ether (DME, CH3OCH3) is very attractive as a route for indirect coal liquefaction, natural gas utilization, and production of synthetic liquid fuels, fuel additives, and chemicals. ... The main driving force for developing a single-step syngas-to-DME process is to produce DME at a cost lower than that from the commercially available two-step process, namely, syngas-to-methanol followed by methanol dehydration in sequential reactors. ... Furthermore, the composition of most commercially available syngas (except that produced by a CO2?methane reformer) is not the optimal composition (1:1 H2:CO) for the syngas-to-DME reactor. ...

X. D. Peng; A. W. Wang; B. A. Toseland; P. J. A. Tijm

1999-09-28T23:59:59.000Z

193

High temperature crystalline superconductors from crystallized glasses  

DOE Patents [OSTI]

A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

Shi, Donglu (Downers Grove, IL)

1992-01-01T23:59:59.000Z

194

Apparatus and method for high temperature viscosity and temperature measurements  

DOE Patents [OSTI]

A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

2001-01-01T23:59:59.000Z

195

Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors  

SciTech Connect (OSTI)

Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

Ahsan Choudhuri

2011-03-31T23:59:59.000Z

196

High Temperature, Permanent Magnet Biased Magnetic Bearings  

E-Print Network [OSTI]

performance, high speed and high temperature applications like space vehicles, jet engines and deep sea equipment. The bearing system had a target design to carry a load equal to 500 lb-f (2225N). Another objective was to design and build a test rig fixture...

Gandhi, Varun R.

2010-07-14T23:59:59.000Z

197

High Temperature Materials for Aerospace Applications  

E-Print Network [OSTI]

below 430 ?C for exposure times up to 20 minutes. Transition-metal carbides were initially synthesized by carbothermal reduction of transition-metal halides and polymer precursor mixtures, at temperatures that range from 900 to 1500 ?C in an argon... ........................................ 20 2.3 Present/Future Aerospace Applications ......................................... 24 2.4 Ultra-High Temperature Materials ................................................. 27 2.4.1 Transition-Metal Carbides...

Adamczak, Andrea Diane

2011-08-08T23:59:59.000Z

198

High Temperature Cements | Open Energy Information  

Open Energy Info (EERE)

High Temperature Cements High Temperature Cements Jump to: navigation, search Geothermal ARRA Funded Projects for High Temperature Cements Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

199

High Temperature Membrane & Advanced Cathode Catalyst Development  

SciTech Connect (OSTI)

Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

Protsailo, Lesia

2006-04-20T23:59:59.000Z

200

Manufacturing Barriers to High Temperature PEM Commercialization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9/2011 9/2011 1 BASF Fuel Cell, Inc. Manufacturing Barriers to high temperature PEM commercialization 39 Veronica Ave Somerset , NJ 08873 Tel : (732) 545-5100 9/9/2011 2 Background on BASF Fuel Cell  BASF Fuel Cell was established in 2007, formerly PEMEAS Fuel Cells (including E-TEK)  Product line is high temperature MEAs (Celtec ® P made from PBI-phosphoric acid)  Dedicated a new advanced pilot manufacturing facility in Somerset NJ May 2009. Ribbon-cutting hosted by Dr. Kreimeyer (BASF BoD, right) and attended by various US pubic officials including former NJ Governor Jon Corzine (left) 9/9/2011 3 Multi-layer product of membrane (polybenzimidazole and phosphoric acid), gas diffusion material and catalysts Unique characteristics:  High operating temperature

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Methods and systems for producing syngas  

DOE Patents [OSTI]

Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.

Hawkes, Grant L; O'Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D

2013-02-05T23:59:59.000Z

202

Frustrated phase separation and high temperature superconductivity  

SciTech Connect (OSTI)

A dilute system of neutral holes in an antiferromagnet separates into a hole-rich and a hole-poor phase. The phase separation is frustrated by long-range Coulomb interactions but, provided the dielectric constant is sufficiently large, there remain large-amplitude low-energy fluctuations in the hole density at intermediate length scales. The extensive experimental evidence showing that this behavior giver, a reasonable picture of high temperature superconductors is surveyed. Further, it is shown that the scattering of mobile holes from the local density fluctuations may account for the anomalous normal-state properties of high temperature superconductors and also provide the mechanism of pairing.

Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

1992-09-01T23:59:59.000Z

203

Frustrated phase separation and high temperature superconductivity  

SciTech Connect (OSTI)

A dilute system of neutral holes in an antiferromagnet separates into a hole-rich and a hole-poor phase. The phase separation is frustrated by long-range Coulomb interactions but, provided the dielectric constant is sufficiently large, there remain large-amplitude low-energy fluctuations in the hole density at intermediate length scales. The extensive experimental evidence showing that this behavior giver, a reasonable picture of high temperature superconductors is surveyed. Further, it is shown that the scattering of mobile holes from the local density fluctuations may account for the anomalous normal-state properties of high temperature superconductors and also provide the mechanism of pairing.

Emery, V.J. (Brookhaven National Lab., Upton, NY (United States)); Kivelson, S.A. (California Univ., Los Angeles, CA (United States). Dept. of Physics)

1992-01-01T23:59:59.000Z

204

Production of syngas via partial oxidation and CO{sub 2} reforming of coke oven gas over a Ni catalyst  

SciTech Connect (OSTI)

The partial oxidation and CO{sub 2} reforming of coke oven gas (COG) to syngas was investigated on differently sized Ni catalysts in a fluidized-bed reactor. It was found that the catalytic performance of Ni depends strongly on its particle size. The small-sized Ni catalyst exhibited higher activity and higher selectivity in the partial oxidation of COG. The conversion of CH{sub 4} was kept at 80.7% at a lower temperature (750{sup o}C) and a wide space velocity (from 8000 to 80 000 h{sup -1}). CO{sub 2} reforming of COG is also an efficient route for syngas production. The H{sub 2}/CO ratio in the COG-derived syngas could be controlled by manipulating the concentration of O{sub 2} or CO{sub 2} added in the feed. The yield of produced syngas increases with an increase in temperature. 19 refs., 10 figs., 2 tabs.

Jianzhong Guo; Zhaoyin Hou; Jing Gao; Xiaoming Zheng [Zhejiang University, Hangzhou (China). Institute of Catalysis, Department of Chemistry

2008-05-15T23:59:59.000Z

205

High temperature storage loop : final design report.  

SciTech Connect (OSTI)

A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650%C2%B0C) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOE's SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

Gill, David Dennis; Kolb, William J.

2013-07-01T23:59:59.000Z

206

High-Temperature-High-Volume Lifting | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » High-Temperature-High-Volume Lifting Jump to: navigation, search Geothermal ARRA Funded Projects for High-Temperature-High-Volume Lifting Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

207

Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol  

Science Journals Connector (OSTI)

Abstract The main aim of the present study was to enrich anaerobic mixed bacterial culture capable of producing ethanol from synthesis gas fermentation. Screening of thirteen anaerobic strains together with enrichment protocol helped to develop an efficient mixed culture capable of utilizing syngas for ethanol production. Physiological and operational parameters were optimized for enhanced ethanol production. The optimized value of operational parameters i.e. initial media pH, incubation temperature, initial syngas pressure, and agitation speed were 6.00.1, 37C, 2kgcm?2 and 100rpm respectively. Under these conditions ethanol and acetic acid production by the selected mixed culture were 1.54gL?1 and 0.8gL?1 respectively. Furthermore, up-scaling studies in semi-continuous fermentation mode further enhanced ethanol and acetic acid production up to 2.2gL?1 and 0.9gL?1 respectively. Mixed culture TERI SA1 was efficient for ethanol production by syngas fermentation.

Ashish Singla; Dipti Verma; Banwari Lal; Priyangshu M. Sarma

2014-01-01T23:59:59.000Z

208

Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pyrochlore-Based Catalysts for Syngas-Derived Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis Contact NETL Technology Transfer Group techtransfer@netl.doe.gov PON-13-006 August 2013 Opportunity This technology provides an advantageous means to convert syngas into a class of chemicals known as higher oxygenates as well as other long-chain hydrocarbons. Research is currently active on this patent-pending technology "Method of CO and/or CO2 Hydrogenation Using Doped Mixed Metal Oxides." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Significance * Improves the conversion of syngas from natural gas, coal, or biomass * Enhances the potential use of oxygenates as

209

Solid Oxide Fuel Cell System Utilizing Syngas from Coal Gasifiers  

Science Journals Connector (OSTI)

Solid Oxide Fuel Cell System Utilizing Syngas from Coal Gasifiers ... The oxidizer is expected to be similar in design to a HRSG duct firing burner (at the inlet of a HRSG). ...

Hossein Ghezel-Ayagh; Stephen Jolly; Dilip Patel; David Stauffer

2013-01-10T23:59:59.000Z

210

Storing Syngas Lowers the Carbon Price for Profitable Coal Gasification  

Science Journals Connector (OSTI)

There are currently eight gasification facilities operating worldwide producing about 1.7 GW of electricity from coal or petcoke feedstock (10), and in all of these facilities, the syngas is used immediately after it is produced. ...

Adam Newcomer; Jay Apt

2007-10-17T23:59:59.000Z

211

Combustion of Low-Calorific Waste Biomass Syngas  

Science Journals Connector (OSTI)

The industrial combustion chamber designed for burning low-calorific syngas from gasification of waste biomass is presented. ... chips and turkey feathers the non-premixed turbulent combustion in the chamber is s...

Kamil Kwiatkowski; Marek Dudy?ski; Konrad Bajer

2013-12-01T23:59:59.000Z

212

Improved Martensitic Steel for High Temperature Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Martensitic Steel Improved Martensitic Steel for High Temperature Applications Opportunity Research is active on the patented technology, titled "Heat-Treated 9 Cr-1 Mo Steel for High Temperature Application." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The operating efficiency of coal-fired power plants is directly related to combustion system temperature and pressure. Incorporation of ultra- supercritical (USC) steam conditions into new or existing power plants can achieve increased efficiency and reduce coal consumption, while reducing carbon dioxide emissions as well as other pollutants. Traditionally used materials do not possess the optimal characteristics for operation

213

Magnetism in Iron at High Temperatures  

Science Journals Connector (OSTI)

Magnetism in iron at high temperature is investigated by calculating the total electronic band-structure energy for four types of spin arrangements. A slow smooth spatial variation of spin direction costs relatively little energy and the atomic moment m is reduced only ? 10%. More rapid variations have considerably higher energy, which may explain the high degree of short-range order and small ?m observed at T?TC. Other aspects are also discussed.

M. V. You; V. Heine; A. J. Holden; P. J. Lin-Chung

1980-05-12T23:59:59.000Z

214

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal  

Open Energy Info (EERE)

Temperature, High Pressure Devices for Zonal Isolation in Geothermal Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Zonal Isolation Project Description For Enhanced Geothermal Systems (EGS), high-temperature high-pressure zonal isolation tools capable of withstanding the downhole environment are needed. In these wells the packers must withstand differential pressures of 5,000 psi at more than 300°C, as well as pressures up to 20,000 psi at 200°C to 250°C. Furthermore, when deployed these packers and zonal isolation tools must form a reliable seal that eliminates fluid loss and mitigates short circuiting of flow from injectors to producers. At this time, general purpose open-hole packers do not exist for use in geothermal environments, with the primary technical limitation being the poor stability of existing elastomeric seals at high temperatures.

215

High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems  

Open Energy Info (EERE)

Temperature-High-Volume Lifting For Enhanced Geothermal Systems Temperature-High-Volume Lifting For Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature-High-Volume Lifting Project Description The proposed scope of work is divided into three Phases. Overall system requirements will be established in Phase 1, along with an evaluation of existing lifting system capability, identification of technology limitations, and a conceptual design of an overall lifting system. In developing the system components in Phase 2, component-level tests will be conducted using GE facilities. Areas of development will include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall lab-scale lifting system will be demonstrated in a flow loop that will be constructed at GE Global Research.

216

Potential applications of high temperature helium  

SciTech Connect (OSTI)

This paper discusses the DOE MHTGR-SC program`s recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal.

Schleicher, R.W. Jr.; Kennedy, A.J.

1992-09-01T23:59:59.000Z

217

Potential applications of high temperature helium  

SciTech Connect (OSTI)

This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal.

Schleicher, R.W. Jr.; Kennedy, A.J.

1992-09-01T23:59:59.000Z

218

The High-Temperature Oxidation of Propane  

Science Journals Connector (OSTI)

...research-article The High-Temperature Oxidation of Propane J. W. Falconer J. H. Knox Above 400 degrees C propane is oxidized by a two-stage degenerately...of propylene becomes important. While propane still in the main reacts to form propylene...

1959-01-01T23:59:59.000Z

219

Flux noise in high-temperature superconductors  

Science Journals Connector (OSTI)

Spontaneously created vortex-antivortex pairs are the predominant source of flux noise in high-temperature superconductors. In principle, flux noise measurements allow to check theoretical predictions for both the distribution of vortex-pair sizes and for the vortex diffusivity. In this paper the flux-noise power spectrum is calculated for the highly anisotropic high-temperature superconductor Bi2Sr2CaCu2O8+?, both for bulk crystals and for ultrathin films. The spectrum is basically given by the Fourier transform of the temporal magnetic-field correlation function. We start from a Berezinskii-Kosterlitz-Thouless-type theory and incorporate vortex diffusion, intrapair vortex interaction, and annihilation of pairs by means of a Fokker-Planck equation to determine the noise spectrum below and above the superconducting transition temperature. We find white noise at low frequencies ? and a spectrum proportional to 1/?3/2 at high frequencies. The crossover frequency between these regimes strongly depends on temperature. The results are compared with earlier results of computer simulations.

Carsten Timm

1997-02-01T23:59:59.000Z

220

Conversion of Biomass Syngas to DME Using a Microchannel Reactor  

Science Journals Connector (OSTI)

Conversion of Biomass Syngas to DME Using a Microchannel Reactor ... The purpose of the research discussed here is to develop such a process capable of converting syngas generated from gasification of dispersed biomass resources. ... MeOH was converted to water and hydrocarbons, with up to 70% selectivity to C2-4 olefins, at 100% conversion, over ZSM-5 class zeolite catalysts modified with P compds. ...

Jianli Hu; Yong Wang; Chunshe Cao; Douglas C. Elliott; Don J. Stevens; James F. White

2005-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Combustion analysis of an equimolar mixture of methane and syngas in a surface-stabilized combustion burner for household appliances  

Science Journals Connector (OSTI)

Abstract The primary objective of this work is to study the combustion of an equimolar mixture of methane and syngas (CH4SG) in a ceramic surface-stabilized combustion burner. We examine the effects of the fuel composition, the air-to-fuel ratio and the thermal input on the flame stability, the radiation efficiency and the pollutant emissions (CO and NOx). In this study, we evaluate a syngas with a high hydrogen content that is similar to those obtained by coal gasification (5060% H2) using Sasol/Lurgi gasification technology and biomass gasification, for example. To determine the effect of the air-to-fuel ratio (?), the burner performance is analyzed at ?=1.4 and ?=1.1. Some studies have reported optimal operating conditions for ?=1.4, whereas for hydrocarbons, the proximity to stoichiometric conditions at the ?=1.1 air-to-fuel ratio produces the highest possible laminar burning velocity and flame temperature. The thermal inputs evaluated in this study correspond to three values (1.0, 1.8, and 2.5kW) found in household appliances and for cooking appliances in particular. The results for this experimental burner design indicate that the macroscopic flame shape for an equimolar CH4SG mixture is approximately the same as that for CH4. Moreover, the pollutant concentrations in the flue gas are generally below 85ppm for CO and 15ppm for NOx. However, the thermal input and the air-to-fuel ratio significantly affect the flame structure, the radiation efficiency and the pollutant emissions.

Carlos E. Arrieta; Andrs A. Amell

2014-01-01T23:59:59.000Z

222

High temperature intermetallic binders for HVOF carbides  

SciTech Connect (OSTI)

Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

Shaw, K.G. [Xform, Inc., Cohoes, NY (United States); Gruninger, M.F.; Jarosinski, W.J. [Praxair Specialty Powders, Indianapolis, IN (United States)

1994-12-31T23:59:59.000Z

223

Application of high temperature superconductors for fusion  

Science Journals Connector (OSTI)

The use of High Temperature Superconductor (HTS) materials in future fusion machines can increase the efficiency drastically. For ITER, W7-X and JT-60SA the economic benefit of HTS current leads was recognized after a 70kA HTS current lead demonstrator was designed, fabricated and successfully tested by Karlsruhe Institute of Technology (KIT, which is a merge of former Forschungszentrum Karlsruhe and University of Karlsruhe). For ITER, the Chinese Domestic Agency will provide the current leads as a part of the superconducting feeder system. KIT is in charge of design, construction and test of HTS current leads for W7-X and JT-60SA. For W7-X 14 current leads with a maximum current of 18.2kA are required that are oriented with the room temperature end at the bottom. JT60-SA will need 26 current leads (20 leads @ 20kA and 6 leads @ 25.7kA) which are mounted in vertical, normal position. These current leads are based on BiSCCO HTS superconductors, demonstrating that HTS material is now state of the art for highly efficient current leads. With respect to future fusion reactors, it would be very promising to use HTS material not only in current leads but also in coils. This would allow a large increase of efficiency if the coils could be operated at temperatures ?65K. With such a high temperature it would be possible to omit the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine. In addition less refrigeration power is needed saving investment and operating costs. However, to come to an HTS fusion coil it is necessary to develop low ac loss HTS cables for currents well above 20kA at high fields well above 10T. The high field rules BiSCCO superconductors out at temperatures above 50K, but RE-123 superconductors are promising. The development of a high current, high field RE-123 HTS fusion cable will not be targeted outside fusion community and has to be in the frame of a long term development programme for DEMO. KIT has already demonstrated a scalable concept using RE-123 HTS tapes that are assembled to Roebel type conductors. This concept can be expanded to form Rutherford cables as starting point for a development of a high current fusion cable. The status and prospect of using HTS conductors for fusion is discussed.

W.H. Fietz; R. Heller; S.I. Schlachter; W. Goldacker

2011-01-01T23:59:59.000Z

224

Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORNL's High Temperature ORNL's High Temperature Materials Laboratory Assists NASCAR Teams to someone by E-mail Share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Facebook Tweet about Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Twitter Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Google Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Delicious Rank Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Digg Find More places to share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on AddThis.com...

225

Vehicle Technologies Office Merit Review 2014: High-Temperature...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Air-Cooled Power Electronics Thermal Design Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design...

226

High Temperature Polymer Membrane Development at Argonne National...  

Broader source: Energy.gov (indexed) [DOE]

Polymer Membrane Development at Argonne National Laboratory High Temperature Polymer Membrane Development at Argonne National Laboratory Summary of ANL's high temperature polymer...

227

High Temperature Fuel Cells in the European Union  

Broader source: Energy.gov [DOE]

Presentation on High Temperature Fuel Cells in the European Union to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

228

Low and high Temperature Dual Thermoelectric Generation Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat...

229

High temperature membranes for DMFC (and PEFC) applications  

Broader source: Energy.gov [DOE]

Presentation on High temperature membranes for DMFCs (and PEFCs) to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

230

Development of Advanced High Temperature Fuel Cell Membranes  

Broader source: Energy.gov [DOE]

Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

231

Development of a 100-Watt High Temperature Thermoelectric Generator...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric generators (TEG) those for a...

232

A Discussion of Conductivity Testing in High Temperature Membranes...  

Broader source: Energy.gov (indexed) [DOE]

A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport) A Discussion of Conductivity Testing in High Temperature Membranes...

233

High Temperature Polymer Membrane Development at Argonne National Laboratory  

Broader source: Energy.gov [DOE]

Summary of ANLs high temperature polymer membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

234

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy...

235

Microchannel High-Temperature Recuperator for Fuel Cell Systems...  

Office of Environmental Management (EM)

Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell...

236

Enhanced High and Low Temperature Performance of NOx Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells...

237

High Resolution and Low-Temperature Photoelectron Spectroscopy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Resolution and Low-Temperature Photoelectron Spectroscopy of an Oxygen-Linked Fullerene Dimer Dianion: C120O2-. High Resolution and Low-Temperature Photoelectron Spectroscopy...

238

Polyelectrolyte Materials for High Temperature Fuel Cells | Department...  

Broader source: Energy.gov (indexed) [DOE]

Polyelectrolyte Materials for High Temperature Fuel Cells Polyelectrolyte Materials for High Temperature Fuel Cells This presentation, which focuses on polyelectrolyte materials...

239

Compliant high temperature seals for dissimilar materials  

DOE Patents [OSTI]

A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

Rynders, Steven Walton (Fogelsville, PA); Minford, Eric (Laurys Station, PA); Tressler, Richard Ernest (Boalsburg, PA); Taylor, Dale M. (Salt Lake City, UT)

2001-01-01T23:59:59.000Z

240

Thermal fuse for high-temperature batteries  

DOE Patents [OSTI]

A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

Jungst, Rudolph G. (Albuquerque, NM); Armijo, James R. (Albuquerque, NM); Frear, Darrel R. (Austin, TX)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Establishment of Harrop, High-Temperature Viscometer  

SciTech Connect (OSTI)

This report explains how the Harrop, High-Temperature Viscometer was installed, calibrated, and operated. This report includes assembly and alignment of the furnace, viscometer, and spindle, and explains the operation of the Brookfield Viscometer, the Harrop furnace, and the UDC furnace controller. Calibration data and the development of the spindle constant from NIST standard reference glasses is presented. A simple operational procedure is included.

Schumacher, R.F.

1999-11-05T23:59:59.000Z

242

Charged Vortices in High Temperature Superconductors  

Science Journals Connector (OSTI)

It is argued that in the mixed state of a type II superconductor, because of the difference of the chemical potential in a superconducting versus normal state, the vortex cores may become charged. The extra electron density is estimated. The extra charge contributes to the dynamics of the vortices; in particular, it can explain in certain cases the change of the sign of the Hall coefficient below Tc frequently observed in the high temperature superconductors.

D. I. Khomskii and A. Freimuth

1995-08-14T23:59:59.000Z

243

Polyelectrolyte Materials for High Temperature Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Polyelectrolyte Materials for High Polyelectrolyte Materials for High 3M (3M) Temperature Fuel Cells John B. Kerr Lawrence Berkeley National Laboratory (LBNL) Collaborators: Los Alamos National Laboratory (LANL). February 13, 2007 This presentation does not contain any proprietary or confidential information Team Members: Nitash Blasara, Rachel Segalman, Adam Weber (LBNL). Bryan Pivovar, James Boncella (LANL) Steve Hamrock Objectives * Investigate the use of solid polyelectrolyte proton conductors that do not require the presence of water. * Prepare solid electrolytes where only the proton moves. - Measure conductivity, mechanical/thermal properties of Nafion® and other polyelectrolytes doped with imidazoles. Compare with water doped materials. - Covalently attach imidazoles to side chains of ionomers with

244

3 - High temperature superconductor (HTS) cables  

Science Journals Connector (OSTI)

Abstract: Many superconductor applications such as rotating machinery, transformers and magnets with low inductance require high current cables with low AC losses. This chapter gives an overview on cabling techniques for the high temperature superconductors (HTS) BSCCO (2212), BSCCO (2223) and (RE)BCO. A short review is given of the basic properties of HTS wires and tapes and the basic requirements of HTS cables for different applications. Cabling concepts for the different HTS materials are presented, and current performance and AC loss behaviour are discussed. After a short description of remaining challenges and future trends, cabling techniques are summarized.

S.I. Schlachter; W. Goldacker

2012-01-01T23:59:59.000Z

245

Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 Composite Catalyst System  

SciTech Connect (OSTI)

A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al=40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. Bifunctional catalyst comprising PdZn metal and acid sites present the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and methanol-to-gasoline reactions. This system provides a unique catalytic pathway for the production of liquid hydrocarbons directly from syngas. However, selectivity control is difficult and poses many challenges. The composite catalytic system was evaluated under various process conditions. Investigated were the effects of temperature (310-375oC), pressure (300-1000 psig), time-on-stream (50 hrs), and gas-hour space velocity (740-2970 hr-1), using a H2/CO molar syngas ratio of 2.0. By operating at the lower end of the temperature range investigated, liquid hydrocarbon formation was favored, as was decreased amounts of undesirable light hydrocarbons. However, lower operating temperatures also facilitated undesirable CO2 formation via the water-gas shift reaction. Higher operating pressures slightly favored liquid synthesis. Operating at relatively low pressures (e.g. 300 psig) was made possible, whereas for methanol synthesis alone higher pressure are usually required to achieve similar conversion levels (e.g. 1000 psig). Thermodynamic constraints on methanol synthesis are eased by pushing the equilibrium through hydrocarbon formation. Catalytic performance was also evaluated by altering Pd and Zn composition of the Pd/ZnO/Al2O3 catalyst. Of the catalysts and conditions tested, selectivity toward liquid hydrocarbon was highest when using a 5% Pd metal loading and Pd/Zn molar ratio of 0.25 and mixed with HZMS-5, operating at 310oC and 300 psig, CO conversion was 43 % and selectivity (carbon weight basis) to hydrocarbons was 49 wt. %. Of the hydrocarbon fraction, 44wt. % was in the C5-C12 liquid product range and consisted primarily of aromatic polymethylbenzenes. However, as syngas conversion increases with increasing temperature, selectivity to liquid product diminished. This is attributed, in large part, to increased saturation of the olefinic intermediates over PdZn metal sites. Under all the conditions and catalysts evaluated in this study, generating liquid product in high yield was challenging (<10 wt. % C5+ yield).

Dagle, Robert A.; Lizarazo Adarme, Jair A.; Lebarbier, Vanessa MC; Gray, Michel J.; White, James F.; King, David L.; Palo, Daniel R.

2014-07-01T23:59:59.000Z

246

NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS  

SciTech Connect (OSTI)

Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries.

Hemrick, James Gordon [ORNL

2011-09-01T23:59:59.000Z

247

Laboratory Study on Gasification Reactivity of Coals and Petcokes in CO2/Steam at High Temperatures  

Science Journals Connector (OSTI)

A diffusion term associated with the carbon structure may be needed for modelling the gasification behaviors of the petcoke-like materials. ... Gasification technology is used to convert feedstocks, not only coal but also petcoke and other carbonaceous materials, to fuel gas or syngas,(1, 2) which can be used to generate electricity and heat or to synthesize liquid fuel and chemicals. ... It is certain that petcoke, derived from oil refinery coke units or other cracking processes, has a much lower gasification reactivity than coal chars, especially at low temperatures. ...

Liwei Ren; Jianli Yang; Feng Gao; Jinding Yan

2013-07-30T23:59:59.000Z

248

Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production  

SciTech Connect (OSTI)

The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

Carl Marcel Stoots; Lee Shunn; James O'Brien

2010-06-01T23:59:59.000Z

249

Diamond switches for high temperature electronics  

SciTech Connect (OSTI)

Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.

Prasad, R.R.; Rondeau, G.; Qi, Niansheng [Alameda Applied Sciences Corp., San Leandro, CA (United States)] [and others

1996-04-25T23:59:59.000Z

250

Correction for Kpke et al., Clostridium ljungdahlii represents a microbial production platform based on syngas  

Science Journals Connector (OSTI)

...Clostridium ljungdahlii represents a microbial production platform based on syngas 10.1073/pnas.1010816107 MICROBIOLOGY...Clostridium ljungdahlii represents a microbial production platform based on syngas, by Michael Kopke, Claudia Held...

2010-01-01T23:59:59.000Z

251

Simulation of Bio-syngas Production from Biomass Gasification via Pressurized Interconnected Fluidized Beds  

Science Journals Connector (OSTI)

Bio-syngas production from biomass gasification via pressurized interconnected fluidized...T g), gasification pressure (p g) and steam to biomass ratio (S/B) on bio-syngas production

Fei Feng; Guohui Song; Laihong Shen

2014-01-01T23:59:59.000Z

252

Fundamentals of Petroleum Residue Cracking Gasification for Coproduction of Oil and Syngas  

Science Journals Connector (OSTI)

Fundamentals of Petroleum Residue Cracking Gasification for Coproduction of Oil and Syngas ... Thus, the terminology of heavy oil or heavy residue can be also used to indicate all such heavy petroleum oils. ... Notwithstanding, for the RCG process it is ideal to develop the catalyst that has moderate cracking activity for heavy residues or heavy oils but meanwhile good activity for catalyzing the deposited coke gasification so that the gasification can be at reasonably low temperatures to maintain the catalytic activity for cracking heavy fractions. ...

Yuming Zhang; Deping Yu; Wangliang Li; Yin Wang; Shiqiu Gao; Guangwen Xu

2012-10-23T23:59:59.000Z

253

Fermi liquid theory for high temperature superconductors  

SciTech Connect (OSTI)

In this article the Fermi liquid theory of metals is discussed starting from Luttinger's theorem. The content of Luttinger's Theorem and its implications for microscopic theories of high temperature superconductors are discussed. A simple quasi-2d Fermi liquid theory is introduced and some of its properties are calculated. It is argued that a number of experiments on YBa/sub 2/Cu/sub 3/O/sub 6+x/, x > 0.5, strongly suggest the existence of a Fermi surface and thereby a Fermi liquid normal state. 25 refs., 1 fig.

Bedell, K.S.

1988-01-01T23:59:59.000Z

254

5 - High temperature superconductor (HTS) magnets  

Science Journals Connector (OSTI)

Abstract: At the time of writing, high temperature superconducting magnets have not fulfilled their early promise, mainly because of the difficulties in getting these reactive and brittle ceramics into wire form and, consequently, their expense. However, for some niche applications, HTS magnets have been developed. In this chapter, the author outlines his experience of building four such systems after introductory discussions about superconducting magnets in general and design considerations. The recent commercial availability of so-called second-generation (2G) coated conductors opens up a more promising scenario, provided the cost can come down. This scenario is discussed and some conclusions are drawn.

H. Jones

2012-01-01T23:59:59.000Z

255

Boson linewidth in high-temperature superconductors  

Science Journals Connector (OSTI)

We have considered boson exchange models of high-temperature superconductors which use Eliashberg theory and in which the bare bosons have sharp spectral features. In particular, we have calculated the boson linewidth due to the interaction with the charge carriers. We find for a recent model of Arnold, Mueller, and Swihart that the width of the 10-meV peak in their ?2F is consistent with a broadened boson peak. However, for a weak-coupling model with the boson peak in the eV range, the interaction causes a broadening in the boson peak that is comparable to or larger than the energy of the peak.

James C. Swihart; William H. Butler; Fred M. Mueller; Gerald B. Arnold

1992-09-01T23:59:59.000Z

256

Applications of bulk high-temperature superconductors  

SciTech Connect (OSTI)

The development of high-temperature superconductors (HTSs) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTSs to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTSs cooled to 77 K, and the properties of the bulk HTSs are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTSs includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

Hull, J.R.

1995-06-01T23:59:59.000Z

257

High Temperature Materials Laboratory third annual report  

SciTech Connect (OSTI)

The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

Tennery, V.J.; Foust, F.M.

1990-12-01T23:59:59.000Z

258

Production of methane-rich syngas from hydrocarbon fuels using multi-functional catalyst/capture agent  

DOE Patents [OSTI]

The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 700.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900.degree. C. and pressures in excess of 10 atmospheres.

Siefert, Nicholas S; Shekhawat, Dushyant; Berry, David A; Surdoval, Wayne A

2014-12-30T23:59:59.000Z

259

Thermal and Chemical Effects of Water Addition on Laminar Burning Velocity of Syngas  

Science Journals Connector (OSTI)

The major issue of water-diluted IGCC and IGHAT is the humid air combustion of syngas, in which, syngas combustion will be even complicated by water dilution and this is much different from that of traditional hydrocarbon fuels. ... Das, A. K.; Kumar, K.; Sung, C. J.Laminar flame speeds of moist syngas mixtures Combust. ... Chaos, M.; Dryer, F. L.Syngas combustion kinetics and applications Combust. ...

Yongliang Xie; Jinhua Wang; Nan Xu; Senbin Yu; Meng Zhang; Zuohua Huang

2014-04-14T23:59:59.000Z

260

Superconductivity Program Overview High-Temperature Superconductivity  

Broader source: Energy.gov (indexed) [DOE]

SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy applicaTionS Developing HTS-based electric power equipment such as transmission and distribution cables and fault current limiters Second-generaTion Wire developmenT Developing high-performance, low-cost, second- generation HTS wire at long lengths STraTegic reSearch Supporting fundamental research activities to better understand relationships between the microstructure of HTS materials and their ability to carry large electric currents over long lengths Superconductivity Program Overview High-Temperature Superconductivity for Electric Systems Office of Electricity Delivery and Energy Reliability www.oe.energy.gov Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermal stability of high temperature structural alloys  

SciTech Connect (OSTI)

High temperature structural alloys were evaluated for suitability for long term operation at elevated temperatures. The effect of elevated temperature exposure on the microstructure and mechanical properties of a number of alloys was characterized. Fe-based alloys (330 stainless steel, 800H, and mechanically alloyed MA 956), and Ni-based alloys (Hastelloy X, Haynes 230, Alloy 718, and mechanically alloyed MA 758) were evaluated for room temperature tensile and impact toughness properties after exposure at 750 C for 10,000 hours. Of the Fe-based alloys evaluated, 330 stainless steel and 800H showed secondary carbide (M{sub 23}C{sub 6}) precipitation and a corresponding reduction in ductility and toughness as compared to the as-received condition. Within the group of Ni-based alloys tested, Alloy 718 showed the most dramatic structure change as it formed delta phase during 10,000 hours of exposure at 750 C with significant reductions in strength, ductility, and toughness. Haynes 230 and Hastelloy X showed significant M{sub 23}C{sub 6} carbide precipitation and a resulting reduction in ductility and toughness. Haynes 230 was also evaluated after 10,000 hours of exposure at 850, 950, and 1050 C. For the 750--950 C exposures the M{sub 23}C{sub 6} carbides in Haynes 230 coarsened. This resulted in large reductions in impact strength and ductility for the 750, 850 and 950 C specimens. The 1050 C exposure specimens showed the resolution of M{sub 23}C{sub 6} secondary carbides, and mechanical properties similar to the as-received solution annealed condition.

Jordan, C.E.; Rasefske, R.K.; Castagna, A. [Lockheed Martin Corp., Schenectady, NY (United States)

1999-03-01T23:59:59.000Z

262

Correlated electrons in high-temperature superconductors Elbio Dagotto  

E-Print Network [OSTI]

Correlated electrons in high-temperature superconductors Elbio Dagotto Department of Physics Theoretical ideas and experimental results concerning high-temperature superconductors are reviewed. Special, National High Magnetic Field Laboratory, and MAR TECH, Florida State University, Tallahassee, Florida 32308

Wu, Zhigang

263

Phenotyping of High Temperature Susceptibility in Garden Roses (Rosa xhybrida)  

E-Print Network [OSTI]

cultivars. Adaptation to high temperature stress is viewed as high priority in breeding programs of all major crops. High temperature stress negatively affects garden rose performance and the quality of flowers produced. The work described...

Greyvenstein, Ockert Frederick

2013-12-10T23:59:59.000Z

264

High temperature lined conduits, elbows and tees  

DOE Patents [OSTI]

A high temperature lined conduit comprising, a liner, a flexible insulating refractory blanket around and in contact with the liner, a pipe member around the blanket and spaced therefrom, and castable rigid refractory material between the pipe member and the blanket. Anchors are connected to the inside diameter of the pipe and extend into the castable material. The liner includes male and female slip joint ends for permitting thermal expansion of the liner with respect to the castable material and the pipe member. Elbows and tees of the lined conduit comprise an elbow liner wrapped with insulating refractory blanket material around which is disposed a spaced elbow pipe member with castable refractory material between the blanket material and the elbow pipe member. A reinforcing band is connected to the elbow liner at an intermediate location thereon from which extend a plurality of hollow tubes or pins which extend into the castable material to anchor the lined elbow and permit thermal expansion. A method of fabricating the high temperature lined conduit, elbows and tees is also disclosed which utilizes a polyethylene layer over the refractory blanket after it has been compressed to maintain the refractory blanket in a compressed condition until the castable material is in place. Hot gases are then directed through the interior of the liner for evaporating the polyethylene and setting the castable material which permits the compressed blanket to come into close contact with the castable material.

De Feo, Angelo (Passaic, NJ); Drewniany, Edward (Bergen, NJ)

1982-01-01T23:59:59.000Z

265

High temperature electrochemical corrosion rate probes  

SciTech Connect (OSTI)

Corrosion occurs in the high temperature sections of energy production plants due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Electrochemical corrosion rate (ECR) probes have been shown to operate in high temperature gaseous environments that are similar to those found in fossil fuel combustors. ECR probes are rarely used in energy production plants at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the nature of these probes. Factors being considered are values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits. The nature of ECR probes will be explored in a number of different atmospheres and with different electrolytes (ash and corrosion product). Corrosion rates measured using an electrochemical multi-technique capabilities instrument will be compared to those measured using the linear polarization resistance (LPR) technique. In future experiments, electrochemical corrosion rates will be compared to penetration corrosion rates determined using optical profilometry measurements.

Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, M.

2005-09-01T23:59:59.000Z

266

High-Temperature, Air-Cooled Traction Drive Inverter Packaging...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Temperature, Air-Cooled Traction Drive Inverter Packaging High-Temperature, Air-Cooled Traction Drive Inverter Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

267

Experimental study of combustion of hydrogensyngas/methane fuel mixtures in a porous burner  

Science Journals Connector (OSTI)

Lean premixed combustion of hydrogensyngas/methane fuel mixtures was investigated experimentally to demonstrate fuel flexibility of a two-section porous burner. The un-insulated burner was operated at atmospheric pressure. Combustion was stabilized at the interface of silicon-carbide coated carbon foam of 26 pores per centimeter (ppcm) and 4ppcm. Methane (CH4) content in the fuel was decreased from 100% to 0% (by volume), with the remaining amount split equally between carbon monoxide (CO) and hydrogen (H2), the two reactive components of the syngas. Experiments for different fuel mixtures were conducted at a fixed air flow rate, while the fuel flow rate was varied to obtain a range of adiabatic flame temperatures. The CO and nitric oxide ( NO x ) emissions were measured downstream of the porous burner, in the axial direction to identify the post-combustion zone and in the transverse direction to quantify combustion uniformity. For a given adiabatic flame temperature, increasing H2/CO content in the fuel mixture decreased both the CO and NO x emissions. Presence of H2/CO in the fuel mixture also decreased temperature near the lean blow-off limit, especially for higher percentages of CO and H2 in the fuel.

S.K. Alavandi; A.K. Agrawal

2008-01-01T23:59:59.000Z

268

Characterization of syngas laminar flames using the Bunsen burner configuration  

Science Journals Connector (OSTI)

Laminar flame speeds of syngas mixtures (H2/CO/Air) have been studied using the Bunsen flame configuration with both straight and nozzle burners. The flame surface area and flame cone angle methodologies, respectively based on the OH* chemiluminescence and Schlieren imaging techniques, have been performed to extract flame speeds for a wide range ofequivalence ratios (0.3syngas flames with 0.6

N. Bouvet; C. Chauveau; I. Gkalp; S.-Y. Lee; R.J. Santoro

2011-01-01T23:59:59.000Z

269

Process Intensification in Hydrogen Production from Biomass-Derived Syngas  

Science Journals Connector (OSTI)

Process Intensification in Hydrogen Production from Biomass-Derived Syngas ... A one-box process has been proposed and studied in order to economically produce pure hydrogen from biomass-derived syngas in the presence of its common impurities through the use of the water gas shift (WGS) reaction. ... (1) Hydrogen burns cleanly and produces more energy on a per mass basis than any other fuel; if widely adopted for both mobile and stationary power generation, it would reduce the emissions of pollutants typically associated with power production, and would potentially diminish the prospect of global warming. ...

Mitra Abdollahi; Jiang Yu; Hyun Tae Hwang; Paul K. T. Liu; Richard Ciora; Muhammad Sahimi; Theodore T. Tsotsis

2010-09-15T23:59:59.000Z

270

Levitation Performance of Bulk High Temperature Superconductor Above the Permanent Magnet Guideway atDifferent Temperatures  

Science Journals Connector (OSTI)

The levitation performance of a high temperature superconducting (HTS) Maglev system was investigated at different temperatures for HTS Maglev vehicle application. Using a cryogenic measurement system, we stud...

Hua Jing; Suyu Wang; Ming Jiang; Jiasu Wang

2010-12-01T23:59:59.000Z

271

Influence of MgO in the CO2 steam reforming of methane to syngas by NiO/MgO/ ?-Al2O3 catalyst  

Science Journals Connector (OSTI)

Simultaneous steam and CO2 reforming of methane to syngas (H2and CO) over NiO/MgO/a-Al2O3 catalyst have been investigated at different MgO wt.%. The catalyst has been characterized by temperature-programmed reduc...

Jafar Yeganeh Mehr; Kheirolah Jafari Jozani

2002-03-01T23:59:59.000Z

272

Syngas Production from Catalytic Partial Oxidation of n-Butane: Comparison between Incipient Wetness and Sol?gel Prepared Pt/Al2O3  

Science Journals Connector (OSTI)

Syngas Production from Catalytic Partial Oxidation of n-Butane: Comparison between Incipient Wetness and Sol?gel Prepared Pt/Al2O3 ... (30, 31) To start the reaction, a Bunsen burner was used to heat the catalyst bed to its ignition temperature. ... for fuel-efficient, lean-burn vehicles, both diesel and spark-ignited. ...

Rainer J. Bass; Timothy M. Dunn; Yu-Chuan Lin; Keith L. Hohn

2008-09-10T23:59:59.000Z

273

Simultaneous carbon dioxide and steam reforming of methane to syngas over NiO-CaO catalyst  

SciTech Connect (OSTI)

Steam reforming, Co{sub 2} reforming, and simultaneous steam and CO{sub 2} reforming of methane to CO and H{sub 2} over NiO-CaO catalyst (without any prereduction treatment) at different temperatures (700--850 C) and space velocities (5000--70,000 cm{sup 3}/g{center_dot}h) are investigated. The catalyst is characterized by XRD, XPS, and temperature-programmed reduction (TPR). The catalyst showed high activity/selectivity in both the steam and CO{sub 2} reforming reactions and the simultaneous steam and CO{sub 2} reforming. In the CO{sup 2} reforming, the coke deposition on the catalyst is found to be very fast. However, when the CO{sub 2} reforming is carried out simultaneously with the steam reforming, the coke deposition on the catalyst is drastically reduced. By the simultaneous CO{sub 2} and steam reforming (at {ge} 800 C and space velocity of about 20,000--30,000 cm{sup 3}/g{center_dot}h)m methane can be converted almost completely to syngas with 100% selectivity for both CO and H{sub 2}. The H{sub 2}/CO ratio in products can be varied between 1.5 and 2.5 quite conveniently by manipulating the relative concentration of steam and CO{sub 2} in the feed.

Choudhary, V.R.; Rajput, A.M. [National Chemical Lab., Pune (India). Chemical Engineering Div.] [National Chemical Lab., Pune (India). Chemical Engineering Div.

1996-11-01T23:59:59.000Z

274

Scaling in high-temperature superconductors  

Science Journals Connector (OSTI)

A Hartree approximation is used to study the interplay of two kinds of scaling which arise in high-temperature superconductors, namely critical-point scaling and that due to the confinement of electron pairs to their lowest Landau level in the presence of an applied magnetic field. In the neighborhood of the zero-field critical point, thermodynamic functions scale with the scaling variable [T-Tc2(B)]/B1/2?, which differs from the variable [T-Tc(0)]/B1/2? suggested by the Gaussian approximation. Lowest-Landau-level (LLL) scaling occurs in a region of high field surrounding the upper critical-field line but not in the vicinity of the zero-field transition. For YBa2Cu3O7-? in particular, a field of at least 10 T is needed to observe LLL scaling. These results are consistent with a range of recent experimental measurements of the magnetization, transport properties, and, especially, the specific heat of high-Tc materials.

Ian D. Lawrie

1994-10-01T23:59:59.000Z

275

The New England High-Resolution Temperature Program  

Science Journals Connector (OSTI)

The New England High-Resolution Temperature Program seeks to improve the accuracy of summertime 2-m temperature and dewpoint temperature forecasts in the New England region through a collaborative effort between the research and operational ...

David J. Stensrud; Nusrat Yussouf; Michael E. Baldwin; Jeffery T. McQueen; Jun Du; Binbin Zhou; Brad Ferrier; Geoffrey Manikin; F. Martin Ralph; James M. Wilczak; Allen B. White; Irina Djlalova; Jian-Wen Bao; Robert J. Zamora; Stanley G. Benjamin; Patricia A. Miller; Tracy Lorraine Smith; Tanya Smirnova; Michael F. Barth

2006-04-01T23:59:59.000Z

276

High Temperature Materials Laboratory (HTML) - PSD Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions. However, research projects at the HTML still may be conducted on a cost-recovery basis through the Work for Others (WFO) Program or under a Cooperative R&D Agreement (CRADA). Dr. Edgar Lara-Curzio, HTML Director Tel: 865.574.1749 Fax: 865.574.4913 laracurzioe@ornl.gov Christine Goudy, Administrative Specialist Tel: 865.574.8295 Fax: 865.574.4913 goudyc@ornl.gov Oak Ridge National Laboratory [MST Home] [ORNL Home] [Site Index] [Search][Disclaimer] [Webmaster] Oak Ridge National Laboratory is a national multi-program research and development facility managed by UT-Battelle, LLC for the U.S. Department of Energy

277

Multilayer ultra-high-temperature ceramic coatings  

DOE Patents [OSTI]

A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

2012-03-20T23:59:59.000Z

278

Turbine vane with high temperature capable skins  

DOE Patents [OSTI]

A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

Morrison, Jay A. (Oviedo, FL)

2012-07-10T23:59:59.000Z

279

High temperature low friction surface coating  

DOE Patents [OSTI]

A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

Bhushan, Bharat (Watervliet, NY)

1980-01-01T23:59:59.000Z

280

Zero Emissions Coal Syngas Oxygen Turbo Machinery  

SciTech Connect (OSTI)

Siemens Energy, Inc. (formerly Siemens Westinghouse Power Corporation) worked with Clean Energy Systems and Florida Turbine Technologies to demonstrate the commercial feasibility of advanced turbines for oxy-fuel based power systems that discharge negligible CO{sub 2} into the atmosphere. The approach builds upon ultra supercritical steam turbine and advanced gas turbine technology with the goal of attaining plant efficiencies above 50% in the 2015 timeframe. Conceptual designs were developed for baseline, near term, and long term oxy-fuel turbine cycles, representing commercial introductions of increasingly advanced thermal conditions and increasing exposure to steam-CO{sub 2} mixtures. An economic analysis and market demand study was performed by Science Applications International Corp. (SAIC), and indicated that long-term oxy-fuel turbine cycles start to look attractive in 2025 when the CO{sub 2} tax is assumed to reach $40/ ton, and by 2030 it has a clear advantage over both IGCC with sequestration and pulverized coal with sequestration. A separate risk analysis of the oxy-fuel combustor, HP turbine, re-heater, and IP turbine of the long-term cycle identified and categorized risks and proposed mitigation measures. In 2007 the program began to focus on a potential oxy-fuel turbine power generation demonstration project in the 2012 -13 time period while still maintaining a link to the requirements of the long-term oxy-syngas cycle. The SGT-900 turbine was identified as the best fit for modification into an intermediate pressure turbine (IPT) for this application. The base metals, bond coats, thermal barrier coatings (TBCs), and rotor materials used in the SGT-900 were tested for their ability to operate in the steam- CO{sub 2} environment of the oxy-fuel OFT-900. Test results indicated that these same materials would operate satisfactorily, and the plan, is to use SGT-900materials for the OFT-900. Follow-on programs for corrosion testing and evaluation of crack growth rates in oxy-fuel environments have been proposed to build on these results and provide quantifiable assessments of the effects of oxy-fuel environments on the service lives of turbine components.

Dennis Horazak

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assessment of microelectronics packaging for high temperature, high reliability applications  

SciTech Connect (OSTI)

This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

Uribe, F.

1997-04-01T23:59:59.000Z

282

Chlor-syngas: Coupling of Electrochemical Technologies for Production of Commodity Chemicals  

Science Journals Connector (OSTI)

This paper describes a novel electrolysis process called chlor-syngas, where synthesis gas is produced at the cathode and chlorine gas is produced at the anode. ... The process described here, chlor-syngas, produces two commodity gas streams, Cl2 and synthesis gas (syngas), using low-value chemicals, CO2 and HCl. ... The chlor-syngas process could replace two existing processes in current use: (1) chlor-alkali for the production of Cl2 and (2) gasification of fossil sources, such as natural gas or coal, to produce syngas. ...

Tedd E. Lister; Eric J. Dufek

2013-01-18T23:59:59.000Z

283

High Temperature Integrated Thermoelectric Ststem and Materials  

SciTech Connect (OSTI)

The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

Mike S. H. Chu

2011-06-06T23:59:59.000Z

284

Comparison of several glycerol reforming methods for hydrogen and syngas production using Gibbs energy minimization  

Science Journals Connector (OSTI)

Abstract This paper focuses on the comparison of different glycerol reforming technologies aimed to hydrogen and syngas production. The reactions of steam reforming, partial oxidation, autothermal reforming, dry reforming and supercritical water gasification were analyzed. For this, the Gibbs energy minimization approach was used in combination with the virial equation of state. The validation of the model was made between the simulations of the proposed model and both, simulated and experimental data obtained in the literature. The effects of modifications in the operational temperature, operational pressure and reactants composition were analyzed with regard to composition of the products. The effect of coke formation was discussed too. Generally, higher temperatures and lower pressures resulted in higher hydrogen and syngas production. All reforming technologies demonstrated to be feasible for use in hydrogen or synthesis gas production in respect of the products composition. The proposed model showed good predictive ability and low computational time (close to 1s) to perform the calculation of the combined chemical and phase equilibrium for all systems analyzed.

Antonio C.D. Freitas; Reginaldo Guirardello

2014-01-01T23:59:59.000Z

285

Effect of fuel injection velocity on MILD combustion of syngas in axially-staged combustor  

Science Journals Connector (OSTI)

Abstract The role of fuel injection velocity on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in an axially staged combustor, where the secondary air was mixed with the flue gases from the gas generation zone to produce hot and diluted oxidant prior to its mixing with the secondary fuel. The global flame signatures, OH? radicals distribution, and exhaust emissions were obtained through experimental measurements, while the mixing behavior between the secondary fuel and oxidant was numerically studied. Higher secondary fuel injection velocity within 199299m/s facilitated the earlier entrainment of oxidizer into the secondary fuel and increased the flame lift-off height, resulting in a lower flame temperature, a more distributed reaction zone and reduced \\{NOx\\} emissions, but higher pressure loss and CO formation. The MILD regime yields lower \\{NOx\\} emissions compared to the traditional diffusion combustion mode, and the N2O-intermediate mechanism dominates the NO production in the syngas MILD flame with adiabatic flame temperature lower than 1565K according to the prediction of the chemical reactor network model.

Ming-ming Huang; Wei-wei Shao; Yan Xiong; Yan Liu; Zhe-dian Zhang; Fu-lin Lei; Yun-han Xiao

2014-01-01T23:59:59.000Z

286

High Temperature Oxidation Performance of Aluminide Coatings  

SciTech Connect (OSTI)

Aluminide coatings are of interest for many high temperature applications because of the possibility of improving the oxidation resistance of structural alloys by forming a protective external alumina scale. Steam and exhaust gas environments are of particular interest because alumina is less susceptible to the accelerated attack due to hydroxide formation observed for chromia- and silica-forming alloys and ceramics. For water vapor testing, one ferritic (Fe-9Cr-1Mo) and one austenitic alloy (304L) have been selected as substrate materials and CVD coatings have been used in order to have a well-controlled, high purity coating. It is anticipated that similar aluminide coatings could be made by a higher-volume, commercial process such as pack cementation. Previous work on this program has examined as-deposited coatings made by high and low Al activity CVD processes and the short-term performance of these coatings. The current work is focusing on the long term behavior in both diffusion tests16 and oxidation tests of the thicker, high Al activity coatings. For long-term coating durability, one area of concern has been the coefficient of thermal expansion (CTE) mismatch between coating and substrate. This difference could cause cracking or deformation that could reduce coating life. Corrosion testing using thermal cycling is of particular interest because of this potential problem and results are presented where a short exposure cycle (1h) severely degraded aluminide coatings on both types of substrates. To further study the potential role of aluminide coatings in fossil energy applications, several high creep strength Ni-base alloys were coated by CVD for testing in a high pressure (20atm) steam-CO{sub 2} environment for the ZEST (zero-emission steam turbine) program. Such alloys would be needed as structural and turbine materials in this concept. For Ni-base alloys, CVD produces a {approx}50{mu}m {beta}-NiAl outer layer with an underlying interdiffusion zone. Specimens of HR160, alloy 601 and alloy 230 were tested with and without coatings at 900 C and preliminary post-test characterization is reported.

Pint, Bruce A [ORNL; Zhang, Ying [Tennessee Technological University; Haynes, James A [ORNL; Wright, Ian G [ORNL

2004-01-01T23:59:59.000Z

287

Investigation on syngas production via biomass conversion through the integration of pyrolysis and airsteam gasification processes  

Science Journals Connector (OSTI)

Abstract Fuel production from agro-waste has become an interesting alternative for energy generation due to energy policies and greater understanding of the importance of green energy. This research was carried out in a lab-scale gasifier and coconut shell was used as feedstock in the integrated process. In order to acquire the optimum condition of syngas production, the effect of the reaction temperature, equivalence ratio (ER) and steam/biomass (S/B) ratio was investigated. Under the optimized condition, H2 and syngas yield achieved to 83.3g/kg feedstock and 485.9g/kg feedstock respectively, while LHV of produced gases achieved to 12.54MJ/Nm3.

Reza Alipour Moghadam; Suzana Yusup; Wan Azlina; Shahab Nehzati; Ahmad Tavasoli

2014-01-01T23:59:59.000Z

288

Emission of a compression ignition engine fuelled by diesel and imitated syngas  

Science Journals Connector (OSTI)

Biomass can be converted into a useful source of energy through gasification. The gasification product known as synthesis gas or syngas composition of syngas may fluctuate due to many factors such as operational errors of the gasifier as well as the type of feedstock used or may be due to the feeding rate fluctuation. Therefore it would be difficult to assess the effect of syngas composition and diesel replacement ratio to the emission when combusted in dual fuel syngas diesel compression ignition engine. In order to overcome this problem controllable composition and conditions of imitated syngas was used in this study by selective three compositions of syngas close to the real conditions. The objective of this study is to determine the exhaust emissions of a compression ignition engine fuelled with diesel and imitated syngas at different compositions and diesel replacement ratios to determine the most appropriate composition of syngas and diesel replacement ratio which will give less emission. The test results on syngas emission are compared with the results of diesel. CO2 and NOX emission level was reduced on syngas dual fuel mode but there were increases in CO and THC emissions throughout all syngas compositions examined due to poor combustion efficiency of dual fuel operation.

2012-01-01T23:59:59.000Z

289

Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 High Temperature 9 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on AddThis.com...

290

High-Temperature Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

291

Development of a 100-Watt High Temperature Thermoelectric Generator  

Broader source: Energy.gov [DOE]

Test results for low and high temperature thermoelectric generators (TEG) those for a 530-watt BiTe TEG; design and construction of a 100-watt high temperature TEG currently in fabrication.

292

Mold, flow, and economic considerations in high temperature precision casting  

E-Print Network [OSTI]

Casting high temperature alloys that solidify through a noticeable two phase region, specifically platinum-ruthenium alloys, is a particularly challenging task due to their high melting temperature and this necessitates ...

Humbert, Matthew S

2013-01-01T23:59:59.000Z

293

Corrosion Studies in High-Temperature Molten Salt Systems for...  

Broader source: Energy.gov (indexed) [DOE]

Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1 Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1...

294

Motor Using High Temperature Superconductor as a Rotor  

Science Journals Connector (OSTI)

It is found that a high temperature superconductor rotates in the rotating magnetic field at ... authors and a small motor is made using high temperature superconductor as a rotor. This motor rotates at...

Makoto Takenaka; Masaharu Minami; Kazuo Morimoto

1994-01-01T23:59:59.000Z

295

High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model  

E-Print Network [OSTI]

High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model Zaher Abstract We have analysed low and high temperature series expansions for the three­dimensional Ising model temperature of the three­dimensional (3d) Ising model on the simple cubic lattice has been exhaustively

Adler, Joan

296

System issues and tradeoffs associated with syngas production and combustion  

SciTech Connect (OSTI)

The purpose of this article is to provide an overview of the basic technology of coal gasification for the production of syngas and the utilization of that syngas in power generation. The common gasifier types, fixed/moving bed, fluidized bed, entrained flow, and transport, are described, and accompanying typical product syngas compositions are shown for different coal ranks. Substantial variation in product gas composition is observed with changes in gasifier and coal feed type. Fuel contaminants such as sulfur, nitrogen, ash, as well as heavy metals such as mercury, arsenic, and selenium, can be removed to protect the environment and downstream processes. A variety of methods for syngas utilization for power production are discussed, including both present (gas turbine and internal combustion engines) and future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Casleton, K.H.; Richards, G.A.; Breault, R.W.

2008-06-01T23:59:59.000Z

297

System Issues and Tradeoffs Associated with Syngas Production and Combustion  

SciTech Connect (OSTI)

The purpose of this article is to provide an overview of the basic technology of coal gasification for the production of syngas and the utilization of that syngas in power generation. The common gasifier types, fixed=moving bed, fluidized bed, entrained flow, and transport, are described, and accompanying typical product syngas compositions are shown for different coal ranks. Substantial variation in product gas composition is observed with changes in gasifier and coal feed type. Fuel contaminants such as sulfur, nitrogen, ash, as well as heavy metals such as mercury, arsenic, and selenium, can be removed to protect the environment and downstream processes. A variety of methods for syngas utilization for power production are discussed, including both present (gas turbine and internal combustion engines) and future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Kent H. Casleton; Ronald W. Breault; George A. Richards

2008-06-01T23:59:59.000Z

298

DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development Milestone  

Broader source: Energy.gov [DOE]

In a project sponsored by the U.S. Department of Energy (DOE), a demonstration-scale application of RTI Internationals warm synthesis gas (syngas) cleanup process technology has achieved a key operational milestone at Tampa Electric Companys coal gasification plant in Polk County, Fla.

299

Hydrogen Production from Nuclear Energy via High Temperature Electrolysis  

SciTech Connect (OSTI)

This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

2006-04-01T23:59:59.000Z

300

Agenda for the High Temperature Membrane Working Group Meeting  

Broader source: Energy.gov [DOE]

This agenda provides information about the Agenda for the High Temperature Membrane Working Group Meeting on September 14, 2006.

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

High Temperature Membrane Working Group Meeting, May 14, 2007  

Broader source: Energy.gov [DOE]

This agenda provides information about the High Temperature Membrane Working Group Meeting on May 14, 2007 in Arlington, Va.

302

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office...

303

SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOFC Anode Interaction with Trace Coal Syngas Species SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 Gregory Hackett, Kirk Gerdes, Randall Gemmen Phone: (304)285-5279, Gregory.Hackett@NETL.DOE.GOV Utilization of coal as a fuel source for highly efficient integrated gasification fuel cell (IGFC) power generation facilities is technologically and environmentally attractive. IGFC plants are expected to offer the highest efficiency coal gasification processes, even when carbon capture and storage systems are included in the design. One element of IGFC research at the National Energy Technology Laboratory is the investigation of syngas cleanup processes for these integrated systems. Of particular interest are the effects of trace elements naturally contained in

304

ANALYSIS OF FUTURE PRICES AND MARKETS FOR HIGH TEMPERATURE SUPERCONDUCTORS  

E-Print Network [OSTI]

1 ANALYSIS OF FUTURE PRICES AND MARKETS FOR HIGH TEMPERATURE SUPERCONDUCTORS BY JOSEPH MULHOLLAND of Future Prices and Markets for High Temperature Superconductors 2 I . PURPOSE, SCOPE AND APPROACH analysts to make estimates about the future of high temperature superconductor (HTS) technology

305

Vibrational Raman Spectroscopy of High-temperature Superconductors  

E-Print Network [OSTI]

Vibrational Raman Spectroscopy of High-temperature Superconductors C. Thomsen and G. Kaczmarczyk after the discovery of high- critical-temperature Tc superconductors:2 while reports on Raman scattering Wiley & Sons Ltd, Chichester, 2002 #12;Vibrational Raman Spectroscopy of High-temperature

Nabben, Reinhard

306

High performance internal reforming unit for high temperature fuel cells  

DOE Patents [OSTI]

A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

2008-10-07T23:59:59.000Z

307

Project Profile: High-Temperature Solar Selective Coating Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

water droplets falling on a flat, dust-covered surface. The research team is exploring materials with high melting temperatures, intrinsic oxidation resistance, high thermal...

308

Free energy of QCD at high temperature  

Science Journals Connector (OSTI)

Effective-field-theory methods are used to separate the free energy for a non-Abelian gauge theory at high temperature T into the contributions from the momentum scales T, gT, and g2T, where g is the coupling constant at the scale 2?T. The effects of the scale T enter through the coefficients in the effective Lagrangian for the three-dimensional effective theory obtained by dimensional reduction. These coefficients can be calculated as power series in g2. The contribution to the free energy from the scale gT can be calculated using perturbative methods in the effective theory. It can be expressed as an expansion in g starting at order g3. The contribution from the scale g2T must be calculated using nonperturbative methods, but nevertheless it can be expanded in powers of g beginning at order g6. We calculate the free energy explicitly to order g5. We also outline the calculations necessary to obtain the free energy to order g6.

Eric Braaten and Agustin Nieto

1996-03-15T23:59:59.000Z

309

Development of Strengthened Bundle High Temperature Superconductors  

SciTech Connect (OSTI)

In the process of developing high temperature superconducting (HTS) transmission cables, it was found that mechanical strength of the superconducting tape is the most crucial property that needs to be improved. It is also desirable to increase the current carrying capacity of the conductor so that fewer layers are needed to make the kilo-amp class cables required for electric utility usage. A process has been developed by encapsulating a stack of Bi-2223/Ag tapes with a silver or non-silver sheath to form a strengthened bundle superconductor. This process was applied to HTS tapes made by the Continuous Tube Forming and Filling (CTFF) technique pursued by Plastronic Inc. and HTS tapes obtained from other manufacturers. Conductors with a bundle of 2 to 6 HTS tapes have been made. The bundled conductor is greatly strengthened by the non-silver sheath. No superconductor degradation as compared to the sum of the original critical currents of the individual tapes was seen on the finished conductors.

Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Demko, J.A. [Oak Ridge Inst. for Science and Education, TN (United States); Tomsic, M. [Plastronic, Inc., Troy, OH (United States); Sinha, U. [Southwire Company, Carollton, GA (United States)

1997-12-31T23:59:59.000Z

310

High Temperature 300C Directional Drilling System  

Broader source: Energy.gov [DOE]

Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300C; and at depths of 10; 000 meters.

311

High temperature, optically transparent plastics from biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

312

NOvel Refractory Materials for High Alkali, High Temperature Environments  

SciTech Connect (OSTI)

Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)

2011-08-30T23:59:59.000Z

313

Ultra-High Temperature Distributed Wireless Sensors  

SciTech Connect (OSTI)

Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

2013-03-31T23:59:59.000Z

314

Vibration Combined High Temperature Cycle Tests for Capacitive MEMS  

E-Print Network [OSTI]

Vibration Combined High Temperature Cycle Tests for Capacitive MEMS Accelerometers Z. Szcs, G. Nagy|nagyg|hodossy|rencz|poppe>@eet.bme.hu Abstract - In this paper vibration combined high temperature cycle tests for packaged capacitive SOI- MEMS designed and realized at BME ­ DED. Twenty thermal cycles of combined Temperature Cycle Test and Fatigue

Boyer, Edmond

315

High temperature, minimally invasive optical sensing modules  

DOE Patents [OSTI]

A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

2008-02-05T23:59:59.000Z

316

Highly temperature insensitive quantum cascade lasers  

SciTech Connect (OSTI)

An InP based quantum cascade laser (QCL) heterostructure emitting around 5 {mu}m is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T{sub 0} and T{sub 1}, for operations above room temperature. A T{sub 0} value of 383 K and a T{sub 1} value of 645 K are obtained within a temperature range of 298-373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mm and a ridge width of 8 {mu}m.

Bai, Y.; Bandyopadhyay, N.; Tsao, S.; Selcuk, E.; Slivken, S.; Razeghi, M. [Department of Electrical Engineering and Computer Science, Center for Quantum Devices, Northwestern University, Evanston, Illinois 60208 (United States)

2010-12-20T23:59:59.000Z

317

IGFC response to initial fuel cell load for various syngas compositions  

SciTech Connect (OSTI)

The system response to an initial electric load of the fuel cell during the startup of a direct-fired fuel cell turbine power system was studied using the Hybrid Performance (Hyper) project hardware-based simulation facility at the U.S. Department of Energy, National Energy Technology Laboratory for a range of input fuel compositions. The facility was brought to a steady condition at a temperature deemed adequate to minimize stress on the fuel cell during the initial load transient. A 1D distributed fuel cell model operating in real-time was used to produce individual cell transient temperature profiles during the course of the load change. The process was conducted with humidified hydrogen, and then repeated with various syngas compositions representative of different gasifier technologies. The results provide insight into control strategy requirements for mitigation of expected fuel cell failure modes relevant to available gasifier technology.

Tucker, David [U.S DOE; Hughes, Dimitri O. [Georgia Institute of Technology; Haynes, Comas L. [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

318

Fuel Cell Technologies Office: High Temperature Membrane Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Temperature Membrane Working Group High Temperature Membrane Working Group The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at higher temperatures (120°C for transportation and 150°C for stationary applications), however, would yield significant energy benefits. For example, heat rejection is easier at higher temperatures, which would allow use of smaller heat exchangers in fuel cell power systems. In addition, for reformate fuel cell systems, carbon monoxide (CO) tolerance of the stack is less problematic at higher temperatures, which would reduce the size requirements or possibly eliminate the need for some CO clean-up beds in the fuel processor.

319

High-temperature neutron diffraction study of deuterated brucite  

Science Journals Connector (OSTI)

To study the structural behavior of brucite at high temperature, we conducted in situ neutron diffraction experiments of a deuterated brucite powder sample, Mg(OD)2, in the temperature range 313583K. The sample...

Hongwu Xu; Yusheng Zhao; Donald D. Hickmott

2013-11-01T23:59:59.000Z

320

Cryogenic deformation of high temperature superconductive composite structures  

DOE Patents [OSTI]

An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

Roberts, Peter R. (Groton, MA); Michels, William (Brookline, MA); Bingert, John F. (Jemez Springs, NM)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vortices in high-temperature superconductors  

Science Journals Connector (OSTI)

With the high-temperature superconductors a qualitatively new regime in the phenomenology of type-II superconductivity can be accessed. The key elements governing the statistical mechanics and the dynamics of the vortex system are (dynamic) thermal and quantum fluctuations and (static) quenched disorder. The importance of these three sources of disorder can be quantified by the Ginzburg number Gi=(TcHc2??3)22, the quantum resistance Qu=(e2?)(?n??), and the critical current-density ratio jcjo, with jc and jo denoting the depinning and depairing current densities, respectively (?n is the normal-state resistivity and ?2=mMsuperconductors, leading to interesting effects such as the melting of the vortex lattice, the creation of new vortex-liquid phases, and the appearance of macroscopic quantum phenomena. Introducing quenched disorder into the system turns the Abrikosov lattice into a vortex glass, whereas the vortex liquid remains a liquid. The terms "glass" and "liquid" are defined in a dynamic sense, with a sublinear response ?=?E?j|j?0 characterizing the truly superconducting vortex glass and a finite resistivity ?(j?0)>0 being the signature of the liquid phase. The smallness of jcjo allows one to discuss the influence of quenched disorder in terms of the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media subject to a random potential, this modern version of the weak collective pinning theory consistently accounts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong (correlated) disorder in the form of twin boundaries or columnar defects not only is technologically relevant but also provides the framework for the physical realization of novel thermodynamic phases such as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both the spatial and the temporal scale accessible to experimental investigations.

G. Blatter; M. V. Feigel'man; V. B. Geshkenbein; A. I. Larkin; V. M. Vinokur

1994-10-01T23:59:59.000Z

322

Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2005 High

323

Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2004 High

324

Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2010 High

325

Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2007 High

326

Assessment of Carbon Dioxide Dissociation as a New Route for Syngas Production: A Comparative Review and Potential of Plasma-Based Technologies  

Science Journals Connector (OSTI)

Assessment of Carbon Dioxide Dissociation as a New Route for Syngas Production: A Comparative Review and Potential of Plasma-Based Technologies ... high alloy tubular reactor; furnace equipped with burners ... adiabatic refractory reactor; combustion chamber equipped with a burner and catalytic bed ...

Alexandre Lebouvier; Samuel A. Iwarere; Philippe dArgenlieu; Deresh Ramjugernath; Laurent Fulcheri

2013-03-29T23:59:59.000Z

327

Effect of Alkali and Alkaline Earth Metallic Species on Biochar Reactivity and Syngas Compositions during Steam Gasification  

Science Journals Connector (OSTI)

Effect of Alkali and Alkaline Earth Metallic Species on Biochar Reactivity and Syngas Compositions during Steam Gasification ... Briefly, a biomass or biochar sample, held in a platinum (Pt) crucible, was ashed in air following a specially designed ashing program that raised the temperature to a final temperature of 600 C at a very slow heating rate in order to prevent the ignition of the biomass/biochar hence to avoid the loss of AAEM species from the sample during oxidation. ... Therefore, wood may be a good fuel based on the consideration that this would potentially reduce the ash-related operation problems in a gasifier. ...

Kongvui Yip; Fujun Tian; Jun-ichiro Hayashi; Hongwei Wu

2009-07-24T23:59:59.000Z

328

Avestar® - Syngas-Fired Combined Cycle Dynamic Simulator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas-Fired Combined Cycle Dynamic Simulator Syngas-Fired Combined Cycle Dynamic Simulator The AVESTAR® center offers courses using the Combined Cycle Simulator, focusing on the power generation process after gasification. This simulator is well-suited for concentrated training on operation and control of the gas and steam turbines; condensate, feed water, and circulating water systems; heat recovery steam generator; and selective catalytic reduction (SCR) unit. Combined cycle simulator startup operations include bringing up the gas turbine to rated speed on natural gas and then switching over to the firing of synthesis gas. Key capabilities of the Combined Cycle Simulator include: Combined Cycle Simulator Operator training station HMI display for overview of Gas Turbine - Train A Normal base load operation

329

Viscosity of high-temperature iodine  

Science Journals Connector (OSTI)

The viscosity coefficient of iodine in the temperature range 500?T?3000 K is calculated. Because of the low dissociation energy of the I2 molecules, the dissociation degree of the gas increases quickly with temperature, and I+I2 and I+I collisions must be taken into account in calculations of viscosity at temperatures greater than 1000. Several possible channels for atom-atom interaction are considered, and the resulting collision integrals are averaged over all the important channels. It is also shown that the rigid-sphere model is inaccurate in predictions of the viscosity. The approach of the present work is general and can be used for other diatomic gases with arbitrary dissociation degree.

Steve H. Kang and Joseph A. Kunc

1991-09-15T23:59:59.000Z

330

Impurity effects on electronmode coupling in high-temperature superconductors  

E-Print Network [OSTI]

LETTERS Impurity effects on electron­mode coupling in high-temperature superconductors K. TERASHIMA espite years of intensive research on copper oxide superconductors with high transition temperatures (Tc in the high-Tc superconductors. The interaction of electrons with bosonic excitations (phonons or spin

Loss, Daniel

331

High-temperature for improved ES  

E-Print Network [OSTI]

standard requires tests both for u powered systems. For the latter testin temperature has to be taken a perfect electric insulation active device. Regarding ESD r proposed protection should provide current: We propose a new MOS-IGB robustness ESD protection with low temp diffusions in the drain with various

Paris-Sud XI, Université de

332

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment.

333

First high-temperature electronics products survey 2005.  

SciTech Connect (OSTI)

On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

Normann, Randy Allen

2006-04-01T23:59:59.000Z

334

Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques  

SciTech Connect (OSTI)

Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of $0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

Deng, Yangyang; Parajuli, Prem B.

2011-08-10T23:59:59.000Z

335

Rotational viscometer for high-pressure, high-temperature fluids  

DOE Patents [OSTI]

The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer include a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. Means are provided to generate an output indicative of the phase difference between the two waveforms. The viscometer is comparatively simple, inexpensive, rugged, and does not require shaft seals.

Carr, K.R.

1983-06-06T23:59:59.000Z

336

High pressure--high temperature research using high energy synchrotron radiation at the TRISTAN accumulation ring  

SciTech Connect (OSTI)

High energy synchrotron radiation emitted from the bending magnet of the TRISTAN accumulation ring (6.5 GeV) at the National Laboratory for High Energy Physics has been used for the high pressure--high temperature diffraction experiments using a multianvil press system, MAX80. Owing to the specific features of high energy synchroton radiation, significant improvements have been brought to the high pressure research. The wide energy range of diffraction spectrum leads to an increase in the number of observable diffraction peaks in an energy-dispersive method, resulting in an increase in the accuracy of the measurements of the lattice and thermal parameters. Due to the high penetrating power of radiation, diffraction patterns can be taken in a short time from materials containing heavy elements or materials surrounded by a metal foil. Typical examples of high pressure--high temperature experiments with high energy synchrotron radiation are also described.

Kikegawa, T.; Shimomura, O.; Iwasaki, H.; Sato, S.; Mikuni, A.; Iida, A.; Kamiya, N.

1989-07-01T23:59:59.000Z

337

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

SciTech Connect (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

338

Overview of Fraunhofer IPM Activities in High Temperature Bulk...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric...

339

Development of a 500 Watt High Temperature Thermoelectric Generator...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat...

340

Institute of Chemical Engineering and High Temperature Chemical...  

Open Energy Info (EERE)

Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes (ICEHT) Place: Hellas, Greece Zip:...

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Evaluation of High-Temperature Alloys for Helium Gas Turbines  

Science Journals Connector (OSTI)

C. 1. Mechanical Property / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

Wolfgang Jakobeit; Jrn-Peter Pfeifer; Georg Ullrich

342

Variable Temperature Ultra-High Vacuum Scanning Tunneling Microscope...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vacuum Scanning Tunneling Microscope The Omicron variable temperature ultra-high vacuum (UHV) scanning tunneling microscope (VTSTM) is designed to study the structure of both clean...

343

High Temperature Superconducting Fault Current Limiter for Utility Applications  

Science Journals Connector (OSTI)

One of the most near term High Temperature Superconductor (HTS) applications is the Fault Current Limiter (FCL). It is a device that...

E. M. W. Leung; G. W. Albert; M. Dew

1997-01-01T23:59:59.000Z

344

Fundamental Corrosion Studies in High-Temperature Molten Salt...  

Broader source: Energy.gov (indexed) [DOE]

Studies in High-Temperature Molten Salt Systems for CSP Applications Savannah River National Laboratory April 15, 2013 | Garcia-Diaz * The overall project approach will combine...

345

Corrosion Studies in High-Temperature Molten Salt Systems for...  

Broader source: Energy.gov (indexed) [DOE]

Studies in High-Temperature Molten Salt Systems for CSP Applications Savannah River National Laboratory Garcia-Diaz A 1152013:Garcia-Diaz * The overall project approach will...

346

High Temperature Superconductor Cable Concepts for Fusion Magnets.  

E-Print Network [OSTI]

??Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability (more)

Barth, Christian

2013-01-01T23:59:59.000Z

347

Solid oxide steam electrolysis for high temperature hydrogen production .  

E-Print Network [OSTI]

??This study has focused on solid oxide electrolyser cells for high temperature steam electrolysis. Solid oxide electrolysis is the reverse operation of solid oxide fuel (more)

Eccleston, Kelcey L.

2007-01-01T23:59:59.000Z

348

Detecting Fractures Using Technology at High Temperatures and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting...

349

Detecting Fractures Using Technology at High Temperatures and...  

Broader source: Energy.gov (indexed) [DOE]

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI) Presentation Number: 015 Investigator: Patterson, Doug (Baker Hughes...

350

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Project Overview 2 * Start: October 2011 * End: September 2015 * Percent complete -...

351

Feasibility and Design Studies for a High Temperature Downhole Tool  

Broader source: Energy.gov [DOE]

Project objective: Perform feasibility and design studies for a high temperature downhole tool; which uses nuclear techniques for characterization purposes; using measurements and modeling/simulation.

352

High-Temperature Aluminum Alloys | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm044smith2012o.pdf More Documents & Publications High-Temperature Aluminum Alloys Vehicle...

353

High Temperature, High Voltage Fully Integrated Gate Driver Circuit  

Broader source: Energy.gov (indexed) [DOE]

driver circuit, 5-V on- chip voltage regulator, short-circuit protection, undervoltage lockout, bootstrap capacitor, dead time controller and temperature sensor * 0.8-micron,...

354

The Performance of Planar Solid Oxide Fuel Cells using Hydrogen-depleted Coal Syngas.  

E-Print Network [OSTI]

??Since solid oxide fuel cells can operate on fuel containing both hydrogen and carbon monoxide, it may prove possible to remove hydrogen from syngas streams (more)

Burnette, David D.

2007-01-01T23:59:59.000Z

355

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition  

Science Journals Connector (OSTI)

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition ... The performance of a four-stroke Honda GC160E spark ignition (SI) internal combustion (IC) engine operating on landfill gas (LFG) was investigated, as well as the impact of H2 and CO (syngas) addition on emissions and engine efficiency. ... In addition, variation across both the syngas content (up to 15%) and the ratio of H2 to CO in the syngas (H2/CO = 0.5, 1, and 2) were tested. ...

McKenzie P. Kohn; Jechan Lee; Matthew L. Basinger; Marco J. Castaldi

2011-02-07T23:59:59.000Z

356

High-Temperature Superconductivity Cable Demonstration Projects  

Broader source: Energy.gov (indexed) [DOE]

Temperature Temperature Superconductivity Cable Demonstration Projects Superconductivity Power Equipment www.oe.energy.gov Phone: 202-586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585. Plugging America Into the Future of Power "A National Effort to Introduce New Technology into the Power Delivery Infrastructure" "In order to meet President Obama's ambitious energy goals, we must modernize the nation's electrical grid to improve the transmission, storage and reliability of clean energy across the country and help to move renewable energy from the places it can be produced to the places it can be used. The Department of Energy is working with industry partners to develop the

357

High Temperature Oxidation Resistance and Surface Electrical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plates with oxidation resistant coatings. Candidate coatings must exhibit chemical and thermal-mechanical stability and high electrical conductivity during long-term...

358

High temperature elemental losses and mineralogical  

E-Print Network [OSTI]

future energy crops. Combustion in biomass fueled boilers,in ash during combustion of biomass fuels is important forC. Combustion characteristics of high alkali biomass. Final

Thy, P.; Jenkins, B. M.; Grundvig, S.; Shiraki, R.; Lesher, C. E.

2006-01-01T23:59:59.000Z

359

Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells  

SciTech Connect (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

James E. O'Brien

2012-03-01T23:59:59.000Z

360

A simple, inexpensive device for measuring the critical temperature of a high-temperature superconductor  

Science Journals Connector (OSTI)

A simple, inexpensive device for measuring the critical temperature of a high-temperature superconductor ... This note describes a simple, inexpensive method of measuring the temperature at which the Meissner effect exists in a disk of YBa2Cu3O7-x. ...

David B. Green; Dijon Douphner; Bennett Hutchinson

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Temperature dependence of the lower critical field and strong pinning in high-temperature superconductors  

Science Journals Connector (OSTI)

We show, within the framework of the Ginzburg-Landau theory, that both the conventional and the anomalous temperature dependence of the lower critical field observed in high-temperature superconductors may result from the flux penetration through a set of separated microdefects. Microdefects modeled by normal layers with proximity-induced superconductivity can produce drastic enhancement of the lower critical field at low temperatures and can provide strong-pinning centers. The pinning interaction between an isolated vortex and the normal layer is primarily magnetic at high temperatures. At low temperatures, magnetic interaction is reduced, due to the increase of the normal-layer coherence length.

Dragomir Davidovi? and Ljiljana Dobrosavljevi?-Gruji?

1991-02-01T23:59:59.000Z

362

System and process for the production of syngas and fuel gasses  

DOE Patents [OSTI]

The production of gasses and, more particularly, to systems and methods for the production of syngas and fuel gasses including the production of hydrogen are set forth. In one embodiment system and method includes a reactor having a molten pool of a material comprising sodium carbonate. A supply of conditioned water is in communication with the reactor. A supply of carbon containing material is also in communication with the reactor. In one particular embodiment, the carbon containing material may include vacuum residuum (VR). The water and VR may be kept at desired temperatures and pressures compatible with the process that is to take place in the reactor. When introduced into the reactor, the water, the VR and the molten pool may be homogenously mixed in an environment in which chemical reactions take place including the production of hydrogen and other gasses.

Bingham, Dennis N; Kllingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Benefiel, Bradley C

2014-04-01T23:59:59.000Z

363

Advancing the technology base for high-temperature membranes  

SciTech Connect (OSTI)

This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses the major issues confronting the implementation of high-temperature membranes for separations and catalysis. We are pursuing high-temperature membrane systems that can have a large impact for DOE and be industrially relevant. A major obstacle for increased use of membranes is that most applications require the membrane material to withstand temperatures above those acceptable for polymer-based systems. Advances made by this project have helped industry and DOE move toward high-temperature membrane applications to improve overall energy efficiency.

Dye, R.C.; Birdsell, S.A.; Snow, R.C. [and others

1997-10-01T23:59:59.000Z

364

POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS  

E-Print Network [OSTI]

POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS AND CO2 METHANATION NOVEMBER 19th 2013 IRES. Energy background 2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis Gas-to-heat Gas-to-mobility Gas-to-power Excess Production = Consumption Distribution and storing

Paris-Sud XI, Université de

365

High Temperature Evaluation of Tantalum Capacitors - Test 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

Grzegorz Cieslewski

366

High Temperature Evaluation of Tantalum Capacitors - Test 1  

SciTech Connect (OSTI)

Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

Cieslewski, Grzegorz

2014-09-28T23:59:59.000Z

367

Gas Viscosity at High Pressure and High Temperature  

E-Print Network [OSTI]

. Although viscosity of some pure components such as methane, ethane, propane, butane, nitrogen, carbon dioxide and binary mixtures of these components at low-intermediate pressure and temperature had been studied intensively and been understood thoroughly...

Ling, Kegang

2012-02-14T23:59:59.000Z

368

An unusual isotope effect in a high-transition-temperature superconductor  

E-Print Network [OSTI]

coupling in high-temperature superconductors. Nature 412,Properties of High Temperature Superconductors IV (ed.in a high-transition-temperature superconductor G. -H. Gweon

2004-01-01T23:59:59.000Z

369

To Crack or Not to Crack: Strain in High Temperature Superconductors  

E-Print Network [OSTI]

Strain in High Temperature Superconductors Arno GodekeCrack: Strain in High Temperature Superconductors MotivationCrack: Strain in High Temperature Superconductors How do Nb

Godeke, Arno

2008-01-01T23:59:59.000Z

370

X-ray diffuse scattering studies of the local structural inhomogeneities in high temperature superconductors  

E-Print Network [OSTI]

in high temperature superconductors A dissertation submittedChemistry of High-Temperature Superconductors. Word Scienti?work on the high temperature superconductors, one of the

Liu, Xuerong

2009-01-01T23:59:59.000Z

371

Temperature dependence of the gaps of high-temperature superconductors in the Fermi-arc region  

Science Journals Connector (OSTI)

It is shown how in a high-temperature superconductor, the length of the Fermi arc can be obtained from the doping dependence of the pseudogap and the superconducting gap. In the momentum region spanned by the Fermi arc, the pseudogap temperature dependence follows that of the superconducting gap. The close interconnection of the two gaps suggests that they are both an essential part of the high-temperature superconductivity.

S. Hfner and F. Mller

2008-07-23T23:59:59.000Z

372

HIGH TEMPERATURE ELECTROLYZER MATERIALS PROJECT GOAL  

E-Print Network [OSTI]

with compatible electrodes to develop reversible solid oxide fuel cells for low-cost, high efficient power and solid oxide fuel cells. Notable reversible fuel cell achievements have been demonstrated by Proton of traditional oxide ion conductor-based solid oxide fuel cell (SOFC) materials. [2 ,3 ,4 ] Significantly

Mease, Kenneth D.

373

Apparatus for accurately measuring high temperatures  

DOE Patents [OSTI]

The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

Smith, Douglas D. (Knoxville, TN)

1985-01-01T23:59:59.000Z

374

DOE Hydrogen Analysis Repository: High Temperature Electrolysis (HTE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Temperature Electrolysis (HTE) High Temperature Electrolysis (HTE) Project Summary Full Title: High Temperature Electrolysis (HTE) Project ID: 159 Principal Investigator: Steve Herring Brief Description: A three-dimensional computational fluid dynamics (CFD) model was created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). A solid-oxide fuel cell model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. Keywords: Solid oxide fuel cell; solid oxide elctrolysis cell; nuclear; model Purpose Assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Performer Principal Investigator: Steve Herring

375

NOx emission characteristics of counterflow syngas diffusion flames with airstream dilution  

E-Print Network [OSTI]

Abstract Syngas is produced through a gasification process using variety of fossil fuels, including coal, biomass, organic waste, and refinery residual. Although, its composition may vary significantly emissions; Effect of diluents 1. Introduction Syngas or synthetic gas is formed through the gasification

Aggarwal, Suresh K.

376

Effect of the Catalyst Load on Syngas Production in Short Contact Time Catalytic Partial Oxidation Reactors  

Science Journals Connector (OSTI)

Effect of the Catalyst Load on Syngas Production in Short Contact Time Catalytic Partial Oxidation Reactors ... For safety and environmental protection reasons (to avoid syngas release into the atmosphere), after the analysis section, the reacted gas stream was completely oxidized by forced air in a catalytic honeycomb burner (Figure 2). ...

S. Specchia; L. D. Vella; B. Lorenzut; T. Montini; V. Specchia; P. Fornasiero

2009-07-22T23:59:59.000Z

377

ITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for  

E-Print Network [OSTI]

(U.S. DOE) and other members of the ITM Syngas/ITM H2 Team, is developing Ion Transport Membrane (ITM of the ITM membrane to oxygen ions, which diffuse through the membrane under a chemical potential gradientITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for Converting

378

Explosions of Syngas/CO2 Mixtures in Oxygen-Enriched Air  

Science Journals Connector (OSTI)

Most of the scientific works on syngas combustion deal with dry air as oxidizer, whereas very few studies have been carried out on syngas combustion in oxygen-enriched air (i.e., oxy-combustion). In this work, the explosion behavior (peak pressure and ...

Ernesto Salzano; Anna Basco; Francesco Cammarota; Valeria Di Sarli; Almerinda Di Benedetto

2011-12-01T23:59:59.000Z

379

MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET-A COMBUSTION  

E-Print Network [OSTI]

MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET-A COMBUSTION of Technology August 2008 #12;MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET-A COMBUSTION Approved by: Dr. Jerry M. Seitzman, Advisor School of Aerospace Engineering Georgia Institute

Seitzman, Jerry M.

380

High-Pressure and High-Temperature Powder Diffraction  

Science Journals Connector (OSTI)

...pressure and varies the motor speed is often used...12.398 is from the quantum mechanical relationship...detectors could in the future reduce data collection...kind of studies in the future. Other more fundamental...addressed in the near future. Temperature gradients...

Yingwei Fei; Yanbin Wang

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

4 - Bulk high temperature superconductor (HTS) materials  

Science Journals Connector (OSTI)

Abstract: This chapter concentrates on bulk materials. A bulk superconductor is one in which the superconductor has been formed into a lump, usually cylindrically shaped, but can also be hexagonal, rectangular or even square. Bulk superconductors are typically 35cm across and 1cm thick. They have many uses but the principal one is as extremely compact high-field permanent magnets in superconducting machines. A 2.6cm (RE)BCO puck has been magnetised to 17.24 T: this is an order of magnitude greater than the flux density available from a conventional permanent magnet. This chapter describes the materials, manufacturing process, magnetisation process and some examples of machines.

T. Coombs

2012-01-01T23:59:59.000Z

382

New Process Concept for H2S Capture from Syngas  

Science Journals Connector (OSTI)

In this last case, the H2S concentration has been set around 1% mol, such as in syngas from coal/petcoke gasification; the sulfur content in biomass, such as wood chips, would be typically low, but a higher concentration was assumed to extend our analysisalthough fictitiouslyto other types of biomasses, such as urban residues, with different qualities and compositions. ... The currently proposed technology could be a competitive alternative to existing ones and a viable route to improve the energy efficiency of processes producing power or chemicals from coal, petcoke and biomass. ...

Fabio Ruggeri; Maria Sudiro; Inida Papa; Alessia Gallio; Alberto Bertucco; Marco Fontana

2011-09-19T23:59:59.000Z

383

Thermomagnetic phenomena in the mixed state of high temperature superconductors  

SciTech Connect (OSTI)

Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.

Meilikhov, E.Z.

1995-04-01T23:59:59.000Z

384

High temperature alkali corrosion of ceramics in coal gas  

SciTech Connect (OSTI)

High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

Pickrell, G.R.; Sun, T.; Brown, J.J.

1992-05-27T23:59:59.000Z

385

Method for Synthesizing Extremeley High Temperature Melting Materials  

DOE Patents [OSTI]

The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

Saboungi, Marie-Louise and Glorieux, Benoit

2005-11-22T23:59:59.000Z

386

Method For Synthesizing Extremely High-Temperature Melting Materials  

DOE Patents [OSTI]

The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

2005-11-22T23:59:59.000Z

387

Method for synthesizing extremely high-temperature melting materials  

SciTech Connect (OSTI)

The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

2007-11-06T23:59:59.000Z

388

Thermodynamics of high-temperature, high-pressure water electrolysis  

Science Journals Connector (OSTI)

Abstract We report on a thermodynamic analysis for water electrolysis from normal conditions (P=0.1MPa, T=298K) up to heretofore unaddressed temperatures of 1000K and pressures of 100MPa. Thermoneutral and reversible potentials are determined using equations-of-state published by the International Association for the Properties of Water and Steam and the National Institute of Standards and Technology. The need for using accurate property models at these elevated temperatures and pressures is exemplified by contrasting results with those obtained via ideal assumptions. The utility of our results is demonstrated by their application in an analysis comparing pressurized electrolysis versus mechanical gas compression. Within the limits of our analysis, pressurized electrolysis demonstrates lower energy requirements albeit with electrical work composing a greater proportion of the total energy input.

Devin Todd; Maximilian Schwager; Walter Mrida

2014-01-01T23:59:59.000Z

389

Experimental Analysis of Water Based Drilling Fluid Aging Processes at High Temperature and High Pressure Conditions  

E-Print Network [OSTI]

! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted to the Office of Graduate Studies of Texas A&M University... Temperature and High Pressure Conditions Copyright 2012 Brandon Scott Zigmond ! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted...

Zigmond, Brandon

2012-10-19T23:59:59.000Z

390

Project Profile: High Operating Temperature Liquid Metal Heat Transfer Fluids  

Broader source: Energy.gov [DOE]

The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and Yale University, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall cost of electricity production.

391

Microwave characterization of high-temperature superconductors  

SciTech Connect (OSTI)

Thick (10-15 {mu}m) Tl-Ba-Ca-Cu-O films have been deposited onto yttria-stabilized zirconia and Ag substrates by d.c. magnetron sputtering techniques. Direct deposition onto 1'' diameter yttria-stabilized zirconia yields films with typical 22 GHz surface resistance (R{sub s}) values of 5.2 {plus minus} 2 m{Omega} and 52 {plus minus} 2 m{Omega} at 10 K and 77 K, respectively. For comparison, R{sub s} of Cu at this same frequency is 10 m{Omega} at 4 K and 22 m{Omega} at 77 K. Tl-Ba-Ca-Cu-O films have also been deposited onto 1'' diameter Ag substrates using Au/Cu, Cu, and BaF{sub 2} buffer layers. The lowest R{sub s} values were obtained on films with a BaF{sub 2} buffer layer, typical values being 7.8 {plus minus} 2 m{Omega} and 30.6 {plus minus} 2 m{Omega} (measured at 22 GHz) at 10 K and 77 K, respectively. Larger films (1.5'' diameter) with similar R{sub s} values were prepared using this same technique, demonstrating that the fabrication process can be scaled to larger surface areas. These films are promising for radiofrequency cavity applications because they are thick (50-75 times the London penetration depth), have relatively large surface areas, are fabricated on metallic substrates, and have R{sub s} values that are competitive with Cu at 77 K and are lower than Cu at 4 K. Because they are polycrystalline and unoriented, it is anticipated that their R{sub s} values can be lowered by improving the processing technique. High-quality films of YBa{sub 2}Cu{sub 3}O{sub 7} have been electron-beam deposited onto 1'' LaGaO{sub 3} and 1.5'' LaAlO{sub 3} substrates. The 1'' sample is characterized by R{sub s} values of 0.2 {plus minus} 0.1 m{Omega} at 4 K and 18.6 {plus minus} 2 m{Omega} at 77 K. The 4-K value is only 2-4 times higher than Nb. The 1.5'' sample has R{sub s} values (measured at 18 GHz) of 0.93 {plus minus} 2 m{Omega} and 71 {plus minus} 3 m{Omega} at 10 K and 77 K, respectively. 18 refs., 8 figs.

Cooke, D.W.; Gray, E.R.; Arendt, P.N.; Beery, J.G.; Bennett, B.L.; Brown, D.R.; Houlton, R.J.; Jahan, M.S.; Klapetzky, A.J.; Maez, M.A.; Raistrick, I.D.; Reeves, G.A.; Rusnak, B.

1989-01-01T23:59:59.000Z

392

TEMPERATURE DEPENDENCE OF ELECTRICAL RESISTIVITY IN HIGHLY RESISTIVE ALLOYS  

E-Print Network [OSTI]

L-323 TEMPERATURE DEPENDENCE OF ELECTRICAL RESISTIVITY IN HIGHLY RESISTIVE ALLOYS F. BROUERS at finite temperature yields an expression for the resistivity which is consistent with a gene- ral analysis-dependence of the resistivity and appears as an alternative model to describe the resistivity of crystalline, liquid

Boyer, Edmond

393

FATIGUE AND FRACTURE BEHAVIOR OF HIGH TEMPERATURE MATERIALS  

E-Print Network [OSTI]

of damagetolerance in Ti3SiC,; (above the "ductile-brittle" transition temperature), where in fact, the plastic behavior in general is unusual for carbides and significant high-temperature deformation and damage are first is believed to be due to its layered structure and the metallic apparent. Of the two

Ritchie, Robert

394

Temperature evolution of the spectral peak in high-temperature superconductors  

Science Journals Connector (OSTI)

Recent photoemission data in the high-temperature cuprate superconductor Bi2212 have been interpreted in terms of a sharp spectral peak with a temperature-independent lifetime, whose weight strongly decreases upon heating. By a detailed analysis of the data, we are able to extract the temperature dependence of the electron self-energy, and demonstrate that this interpretation is misleading. Rather, the spectral peak loses its integrity above Tc due to a large reduction in the electron lifetime.

M. R. Norman; A. Kaminski; J. Mesot; J. C. Campuzano

2001-03-22T23:59:59.000Z

395

An experimental investigation of high temperature, high pressure paper drying  

E-Print Network [OSTI]

CONCLUSIONS RECOMMENDATIONS 50 51 REFERENCES APPENDIX A EXPERIMENTAL DATA 52 54 VITA 105 vail LIST OF FIGURES Page Fig. 1 Schematic of test facility 13 Fig. 2 Comparison of Texas A&M drying facility operating ranges to other drying processes... of number of drying passes for drying temperatures of 93, 149, and 204 'C (200, 300, and 400 'F), a contact pressure of 1. 4 MPa (200 psi), a basis weight of 25 g/m' (0. 005 lb/ft'), and contact times between 20 to 180 msec with same side drying...

Patel, Kamal Raoji

2012-06-07T23:59:59.000Z

396

Temperature variations in the flux of high-energy muons  

Science Journals Connector (OSTI)

The flux of high-energy muons (threshold energy, 220 GeV) as a function of ... the correlation coefficient between the counting rate of muons and the temperature of the atmosphere at...

M. G. Kostyuk; V. B. Petkov

2011-06-01T23:59:59.000Z

397

High Temperature Superconducting Racetrack Coils for Electric Motor Applications  

Science Journals Connector (OSTI)

American Superconductor Corporation (ASC) has designed and fabricated racetrack-shaped field coils from PbBSSCO-2223 high temperature superconducting (HTS) wire for a 125 HP, four-pole motor currently being devel...

J. P. Voccio; C. B. Prum; M. J. Navarro

1997-01-01T23:59:59.000Z

398

Multidisciplinary University Research Initiative: High Operating Temperature Fluids  

Broader source: Energy.gov [DOE]

In August 2012, DOE announced two awards under the Multidisciplinary University Research Initiative (MURI) to develop high-operating temperature heat-transfer fluids for concentrating solar power (CSP) applications, managed by the SunShot Initiative.

399

High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

400

Structural Integrity Assessment of Very High Temperature Nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structural Integrity Assessment of Very High Temperature Nuclear Reactor Core Components Oct 20 2014 09:00 AM - 10:00 AM Gyanendar Singh, The University of Minnesota, Minneapolis...

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Copper Aluminate as a potential material for high temperature...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Copper Aluminate as a potential material for high temperature thermoelectric power generation Home Author: D. T. Morelli, E. D. Case, B. D. Hall, S. Wang Year: 2008 Abstract: URL:...

402

18th Topical Conference High-Temperature Plasma Diagnostics ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 16, 2010, 9:00am to May 20, 2010, 5:00pm Conference Wildwood, New Jersey 18th Topical Conference High-Temperature Plasma Diagnostics (HTPD) The 18th Topical Conference on...

403

Electronic properties of doped Mott insulators and high temperature superconductors  

E-Print Network [OSTI]

High-temperature superconducting cuprates, which are the quintessential example of a strongly correlated system and the most extensively studied materials after semiconductors, spurred the development in the fields of ...

Ribeiro, Tiago Castro

2005-01-01T23:59:59.000Z

404

Cryocooler Applications for High-Temperature Superconductor Magnetic Bearings  

Science Journals Connector (OSTI)

The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of ... aspects to be considered are i...

R. C. Niemann; J. R. Hull

2002-01-01T23:59:59.000Z

405

Growth of high-temperature superconductor crystals from flux  

Science Journals Connector (OSTI)

Crystallization of high-temperature superconductors was studied in La-Sr-Cu-O,...2Cu3O6.5+x were obtained by spontaneous crystallization from homogeneous nonstoichiometric melts enriched in bariu...

L N Demianets; A B Bykov; O K Melnikov; S M Stishov

1991-04-01T23:59:59.000Z

406

Engineering Design of A High-Temperature Superconductor Current Lead  

Science Journals Connector (OSTI)

As part of the U.S. Department of Energys Superconductivity Pilot Center Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads suita...

R. C. Niemann; Y. S. Cha; J. R. Hull; M. A. Daugherty; W. E. Buckles

1994-01-01T23:59:59.000Z

407

Experimental demonstration of vortex pancake in high temperature superconductor  

Science Journals Connector (OSTI)

In order to demonstrate the existence of the vortex pancake in high temperature superconductor experimentally, a configuration in which the current...E-j relation obtained with this electrodes spatial configurati...

Wei-xian Wang; Yu-heng Zhang

2006-09-01T23:59:59.000Z

408

High-temperature superconductor applications development at Argonne National Laboratory  

SciTech Connect (OSTI)

Developments at Argonne National Laboratory of near and intermediate term applications using high-temperature superconductors are discussed. Near-term applications of liquid-nitrogen depth sensors, current leads, and magnetic bearings are discussed in detail.

Hull, J.R.; Poeppel, R.B.

1992-02-09T23:59:59.000Z

409

High temperature solid electrolyte fuel cell configurations and interconnections  

DOE Patents [OSTI]

High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

410

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

411

Stability and quench protection of high-temperature superconductors  

E-Print Network [OSTI]

In the design and operation of a superconducting magnet, stability and protection are two key issues that determine the magnet's reliability and safe operation. Although the high-temperature superconductor (HTS) is considered ...

Ang, Ing Chea

2006-01-01T23:59:59.000Z

412

Next-generation nuclear fuel withstands high-temperature accident...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

teri.ehresman@inl.gov Bill Cabage (ORNL), 865-574-4399, cabagewh@ornl.gov Next-generation nuclear fuel withstands high-temperature accident conditions IDAHO FALLS - A safer...

413

A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis  

Science Journals Connector (OSTI)

Abstract High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified ButlerVolmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.

Vikram Menon; Qingxi Fu; Vinod M. Janardhanan; Olaf Deutschmann

2015-01-01T23:59:59.000Z

414

Low GWP Working Fluid for High Temperature Heat Pumps  

E-Print Network [OSTI]

Low GWP Working Fluid for High Temperature Heat Pumps: DR-2 Chemical Stability at High Temperatures Temp Heat Pumps: DR-2 Very Low GWP AND Non-Flammable HFC-245fa DR-2 Chemical Formula CF3CH2CHF2 HFO 171.3 Pcr [MPa] 3.65 2.9 Kontomaris-DuPont; European Heat Pump Summit, Nuremberg, October 15th, 2013

Oak Ridge National Laboratory

415

Effects of syngas composition on combustion induced vortex breakdown (CIVB) flashback in a swirl stabilized combustor  

Science Journals Connector (OSTI)

Flame flashback attributed to combustion induced vortex breakdown (CIVB) is a major design challenge for swirl stabilized burner combustors. This paper presents an experimental investigation of combustion induced vortex breakdown (CIVB) flashback propensity for flames yielded from Hydrogen (H2)Carbon Monoxide (CO) fuel blends and actual synthesized gas (syngas) mixtures. A two-fold experimental approach, consisting of a high definition digital imaging system and a high speed PIV system, was employed. The main emphasis was on the effect of concentration of different constituents in fuel mixtures on flashback limit. In addition, the effect of Swirl Number on flashback propensity was discussed. The percentage of H2 in fuel mixtures played the dominant role when CIVB flashback occurred. For a given air mass flow rate, the mixture containing a higher percentage of H2 underwent flashback at much leaner conditions. Flashback maps for actual syngas fuel compositions showed a distinct behavior when various concentrations of diluents were introduced in the mixture. For the two major diluents tested, carbon dioxide (CO2) and nitrogen dioxide (NO2), CO2 was more dominant. The effect of Swirl Number on the flashback propensity was also tested and showed a decrease with an increase in Swirl Number. The final portion of this paper also provides an analysis of flow field of reacting flames which revealed complex vortexchemistry interactions leading to vortex breakdown and flashback. Based on the experimental results a parametric model similar to Peclet Number approach was developed employing a flame quenching concept. A value of the quench parameter, Cquench was obtained from the correlation of flow Peclet Number and flame Peclet Number, which was observed to be dominated by the fuel composition rather than Swirl Number.

Bidhan Dam; Gilberto Corona; Mir Hayder; Ahsan Choudhuri

2011-01-01T23:59:59.000Z

416

Electron-Phonon Coupling in High-Temperature Cuprate Superconductors as Revealed by Angle-resolved Photoemisson Spectroscopy  

E-Print Network [OSTI]

Cuprate oxide high-temperature superconductors are dopedsuperconductivity. High temperature superconductors arein understanding high-temperature superconductors, such as

Zhou, X.J.; Hussain, Z.; Shen, Z.-X.

2005-01-01T23:59:59.000Z

417

Vibration Combined High Temperature Cycle Tests for Capacitive MEMS Accelerometers  

E-Print Network [OSTI]

In this paper vibration combined high temperature cycle tests for packaged capacitive SOI-MEMS accelerometers are presented. The aim of these tests is to provide useful Design for Reliability information for MEMS designers. A high temperature test chamber and a chopper-stabilized read-out circuitry were designed and realized at BME - DED. Twenty thermal cycles of combined Temperature Cycle Test and Fatigue Vibration Test has been carried out on 5 samples. Statistical evaluation of the test results showed that degradation has started in 3 out of the 5 samples.

Z. Szucs; G. Nagy; S. Hodossy; M. Rencz; A. Poppe

2008-01-07T23:59:59.000Z

418

Instrument Series: Microscopy Ultra-High Vacuum, Low- Temperature Scanning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low- Low- Temperature Scanning Probe Microscope EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM, is the preeminent system dedicated to surface chemistry and physics at low temperatures down to 5 K. Operating at low temperatures provides high mechanical stability, superior vacuum conditions, and negligible drift for long-term experiments. With thermal diffusion being entirely suppressed, stable imaging becomes possible even for weakly bound species. The system is primarily used for probing single-site chemical reactivity, while the combination with a hyperthermal molecular beam allows the study of important chemical processes at energies corresponding to the operational temperatures well beyond typical UHV studies. The LT SPM provides

419

Production of Syngas by Direct Catalytic Oxidation of Methane  

Science Journals Connector (OSTI)

...DESORPTION AT HIGH-TEMPERATURES...of abundant natural gas into liquid...a 50-mI high-pressure Autoclave...atmospheric pressure, and the...with very high CH4 yields...Contact times of gases within the...catalytic combustors and reactors...

D. A. Hickman; L. D. Schmidt

1993-01-15T23:59:59.000Z

420

Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor.  

SciTech Connect (OSTI)

Future energy systems based on gasification of coal or biomass for co-production of electrical power and fuels may require gas turbine operation on unusual gaseous fuel mixtures. In addition, global climate change concerns may dictate the generation of a CO{sub 2} product stream for end-use or sequestration, with potential impacts on the oxidizer used in the gas turbine. In this study the operation at atmospheric pressure of a small, optically accessible swirl-stabilized premixed combustor, burning fuels ranging from pure methane to conventional and H{sub 2}-rich and H{sub 2}-lean syngas mixtures is investigated. Both air and CO{sub 2}-diluted oxygen are used as oxidizers. CO and NO{sub x} emissions for these flames have been determined from the lean blowout limit to slightly rich conditions ({phi} - 1.03). In practice, CO{sub 2}-diluted oxygen systems will likely be operated close to stoichiometric conditions to minimize oxygen consumption while achieving acceptable NO{sub x} performance. The presence of hydrogen in the syngas fuel mixtures results in more compact, higher temperature flames, resulting in increased flame stability and higher NO{sub x} emissions. Consistent with previous experience, the stoichiometry of lean blowout decreases with increasing H{sub 2} content in the syngas. Similarly, the lean stoichiometry at which CO emissions become significant decreases with increasing H{sub 2} content. For the mixtures investigated, CO emissions near the stoichiometric point do not become significant until {phi} > 0.95. At this stoichiometric limit, CO emissions rise more rapidly for combustion in O{sub 2}-CO{sub 2} mixtures than for combustion in air.

Williams, Timothy C.; Shaddix, Christopher R.; Schefer, Robert W.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Science Showcase - Understanding High-Temperature Superconductors |  

Office of Scientific and Technical Information (OSTI)

Understanding High-Temperature Superconductors Understanding High-Temperature Superconductors Credit: DOE Scientists have long worked to understand one of the great mysteries of modern physics - the origin and behavior of high-temperature superconductors (HTS) that are uniquely capable of transmitting electricity with zero loss when chilled to subzero temperatures. For decades there have been competing theories and misunderstandings of how HTS materials actually work and they have remained fundamentally puzzling to physicists. Solving this mystery has the potential to revolutionize the planet's energy infrastructure from generation to transmission and grid-scale storage. Recent technical breakthroughs in this quest are being discovered by DOE scientists and their collaborators. Read about HTS technology, basic

422

Fabrication and Characterization of Uranium-based High Temperature Reactor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fabrication and Characterization of Uranium-based High Temperature Reactor Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication and characterization of uranium-based high temperature reactor fuel. A laboratory-scale coater manufactures tri-isotropic (TRISO) coated fuel particles (CFPs), state-of-the-art materials property characterization is performed, and the CFPs are then pressed into fuel compacts for irradiation testing, all under a NQA-1 compliant Quality Assurance Program. After fuel kernel size and shape are measured by optical shadow imaging, the TRISO coatings are deposited via fluidized bed chemical vapor deposition in a 50-mm diameter conical chamber within the coating furnace. Computer control of temperature and gas composition ensures reproducibility

423

Non-graphite crucible for high temperature applications  

DOE Patents [OSTI]

A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation. 9 figs.

Holcombe, C.E.; Pfeiler, W.A.

1996-01-09T23:59:59.000Z

424

Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph  

Science Journals Connector (OSTI)

Various Bunsen flame information of premixed syngas/air mixtures was systematically collected. A CCD camera was used to capture the flame images. The OH-PLIF technique was applied to obtain the flame OH distribution and overall flame radiation spectra were measured with a spectrograph. Experiments were conducted on a temperature un-controlled burner and syngas over a wide range of H2/CO ratios (from 0.25 to 4) and equivalence ratios (from 0.5 to 1.2). Results show that increasing hydrogen fraction ( X H 2 ) extends the blow-off limit significantly. The measured laminar flame speed using cone-angle method based on CCD flame imaging and OH-PLIF images increases remarkably with the increase of X H 2 , and these measurements agrees well with kinetic modeling predictions through Li's mechanism when the temperature for computation is corrected. Kinetic study shows that as X H 2 increases, the production of H and OH radicals is accelerated. Additionally, the main H radical production reaction (or OH radical consumption reactions) changes from R29 (CO+OH=CO2+H) to R3 (H2+OH=H2O+H) as X H 2 increases. Sensitivity analysis was conducted to access the dominant reactions when X H 2 increases. The difference on flame color for different X H 2 mixtures is due to their difference in radiation spectrum of the intermediate radicals produced in combustion.

Jin Fu; Chenglong Tang; Wu Jin; Luong Dinh Thi; Zuohua Huang; Yang Zhang

2013-01-01T23:59:59.000Z

425

A temperature compensated pressure transducer for high temperature, high pressure applications  

E-Print Network [OSTI]

will work only if the cliange in deflectiou due to tenrperature ivas constant for all pressures. which is uot the case. At 0 ksi, the rliaphragni deflection is constant (zerol for all possible temperatures. At 40 ksi. however, the deflection is much... temperature. 3, 3 Basic Dimensioning After selecting the basic configuration and material for the transclucer body a diaphragm cap, it ivas next necessary to determine the actual defle& tion of the diaphragni and any thermally induced affects. Prior to a...

Lippka, Sandra Margaret

1991-01-01T23:59:59.000Z

426

Pressure Swing Absorption Device and Process for Separating CO{sub 2} from Shifted Syngas and its Capture for Subsequent Storage  

SciTech Connect (OSTI)

Using the ionic liquid (IL) 1-butyl-3-methylimidazolium dicyanamide ([bmim][DCA]) as the absorbent on the shell side of a membrane module containing either a porous hydrophobized ceramic tubule or porous hydrophobized polyether ether ketone (PEEK) hollow fiber membranes, studies for CO{sub 2} removal from hot simulated pre-combustion shifted syngas were carried out by a novel pressure swing membrane absorption (PSMAB) process. Helium was used as a surrogate for H{sub 2} in a simulated shifted syngas with CO{sub 2} around 40% (dry gas basis). In this cyclic separation process, the membrane module was used to achieve non-dispersive gas absorption from a high-pressure feed gas (689-1724 kPag; 100-250 psig) at temperatures between 25-1000C into a stationary absorbent liquid on the module shell side during a certain part of the cycle followed by among other cycle steps controlled desorption of the absorbed gases from the liquid in the rest of the cycle. Two product streams were obtained, one He-rich and the other CO{sub 2}-rich. Addition of polyamidoamine (PAMAM) dendrimer of generation 0 to IL [bmim][DCA] improved the system performance at higher temperatures. The solubilities of CO{sub 2} and He were determined in the ionic liquid with or without the dendrimer in solution as well as in the presence or absence of moisture; polyethylene glycol (PEG) 400 was also studied as a replacement for the IL. The solubility selectivity of the ionic liquid containing the dendrimer for CO{sub 2} over helium was considerably larger than that for the pure ionic liquid. The solubility of CO{sub 2} and CO{sub 2}-He solubility selectivity of PEG 400 and a solution of the dendrimer in PEG 400 were higher than the corresponding ones in the IL, [bmim][DCA]. A mathematical model was developed to describe the PSMAB process; a numerical solution of the governing equations described successfully the observed performance of the PSMAB process for the pure ionic liquid-based system.

Sirkar, Kamalesh; Jie, Xingming; Chau, John; Obuskovic, Gordana

2013-03-31T23:59:59.000Z

427

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

SciTech Connect (OSTI)

This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

2005-05-01T23:59:59.000Z

428

Conditional Moment Closure Modeling for a Three-Dimensional Turbulent Non-premixed Syngas Flame with a Cooling Wall  

Science Journals Connector (OSTI)

Conditional Moment Closure Modeling for a Three-Dimensional Turbulent Non-premixed Syngas Flame with a Cooling Wall ... In the experiment,(13) the burner is mounted to an air-cooled combustion chamber and the burner consists of a central fuel tube and an annular air tube. ... It can be seen that the velocity field at the pure-mixing entrance region is highly deflected by the flame holder, and the burned mixtures are partially impinged on the cooling wall (Tw = 600 K). ...

Gunhong Kim; Sungmo Kang; Yongmo Kim; Kwan-Soo Lee

2008-09-13T23:59:59.000Z

429

Pseudogap and Superconducting Gap in High-Temperature Superconductors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pseudogap and Superconducting Gap in Pseudogap and Superconducting Gap in High-Temperature Superconductors Two decades after the discovery of first high temperature superconductors, the microscopic mechanism of high-Tc superconductivity remains elusive. In conventional superconductors, it has been well established that electrons form so-called "Cooper pairs" to give rise to superconductivity. The pair binding manifests itself as an energy gap in many spectroscopic measurements. This energy gap, known as superconducting gap, appears at the superconducting transition temperature Tc where the resistance also vanishes. For high temperature superconductors, the story is more complicated. Over a wide region of compositions and temperatures, there exists an energy gap well above Tc. This energy gap is called pseudogap [1], because there is no direct correlation to the superconducting transition. The origin of this pseudogap and its relation to the superconducting gap are believed to hold the key for understanding the mechanism of high-Tc superconductivity - one of the outstanding problems in condensed matter physics. In this regard, researchers Kiyohisa Tanaka and Wei-Sheng Lee, along with their co-workers in Prof. Zhi-Xun Shen's group at Stanford University, have recently made an important discovery about the coexistence of two distinct energy gaps that have opposite doping dependence. Their observation not only provides a natural explanation for the contradictory results about the superconducting gap deduced from different experimental techniques, but also has profound implications on the mechanism of high-Tc superconductivity.

430

Production of hydrogen rich bio-oil derived syngas from co-gasification of bio-oil and waste engine oil as feedstock for lower alcohols synthesis in two-stage bed reactor  

Science Journals Connector (OSTI)

Abstract High efficient production of lower alcohols (C1C5 mixed alcohols) from hydrogen rich bio-oil derived syngas was achieved in this work. A non-catalytic partial oxidation (NPOX) gasification technology was successfully applied in the production and conditioning of bio-oil derived syngas using bio-oil (BO) and emulsifying waste engine oil (EWEO) as feedstock. The effects of water addition and feedstock composition on the gasification performances were investigated. When the BO20 and EWEO30 was mixed with mass ratio of 1: 0.33, the maximum hydrogen yield of 93.7% with carbon conversion of 96.7% was obtained, and the hydrogen rich bio-oil derived syngas was effectively produced. Furthermore, a two-stage bed reactor was applied in the downstream process of lower alcohols synthesis from hydrogen rich bio-oil derived syngas (H2/CO/CO2/CH4/N2=52.2/19.5/3.0/9.4/15.9, v/v). The highest carbon conversion of 42.5% and the maximum alcohol yield of 0.18kg/kgcath with selectivity of 53.8wt% were obtained over the Cu/ZnO/Al2O3(2.5)//Cu25Fe22Co3K3/SiO2(2.5) catalyst combination system. The mechanism and evaluation for lower alcohols synthesis from model bio-oil derived syngas and model mixture gas were also discussed. The integrative process of hydrogen rich bio-oil derived syngas production and downstream lower alcohols synthesis, potentially providing a promising route for the conversion of organic wastes into high performance fuels and high value-added chemicals.

Haijun Guo; Fen Peng; Hairong Zhang; Lian Xiong; Shanggui Li; Can Wang; Bo Wang; Xinde Chen; Yong Chen

2014-01-01T23:59:59.000Z

431

Cedarville Elementary & High School Space Heating Low Temperature  

Open Energy Info (EERE)

Cedarville Elementary & High School Space Heating Low Temperature Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Facility Cedarville Elementary & High School Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606°, -120.1732781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

432

The Northwest Geysers High-Temperature Reservoir- Evidence For Active  

Open Energy Info (EERE)

Geysers High-Temperature Reservoir- Evidence For Active Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Northwest Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Details Activities (2) Areas (1) Regions (0) Abstract: Noble gas isotope abundances in steam from the Coldwater Creek field of the Northwest Geysers, California, show mixing between a nearly pure mid-ocean ridge (MOR) type magmatic gas with high 3He/4He and low radiogenic 40*Ar (R/Ra > 8.3 and 40*Ar/4He < 0.07), and a magmatic gas diluted with crustal gas (R/Ra 0.25). The

433

Cotulla High School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Cotulla High School Space Heating Low Temperature Geothermal Facility Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility Facility Cotulla High School Sector Geothermal energy Type Space Heating Location Cotulla, Texas Coordinates 28.436934°, -99.2350322° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

434

Henley High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Henley High School Space Heating Low Temperature Geothermal Facility Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility Henley High School Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

435

Modoc High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Modoc High School Space Heating Low Temperature Geothermal Facility Modoc High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc High School Sector Geothermal energy Type Space Heating Location Alturas, California Coordinates 41.4871146°, -120.5424555° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

436

High-Temperature Superconducting Cable Testing Gregory S. Boebinger, National High Magnetic Field Laboratory  

E-Print Network [OSTI]

High-Temperature Superconducting Cable Testing Gregory S. Boebinger, National High Magnetic Field-Temperature Superconducting (HTS) Cables are desirable for application in large high-field magnets (>20 T), especially when). Of the three HTS magnet cable concepts emerging, the Conductor On Round Core was the first that was tested

Weston, Ken

437

INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION  

SciTech Connect (OSTI)

The systematic tests of the gasifier simulator on the ultrasonic vibration application for cleaning method were completed in this reporting period. Within the systematic tests on the ultrasonic vibration application, the ambient temperature and high temperature status condition were tested separately. The sticky dirt on the thermocouple tip was simulated by the cement-covered layer on the thermocouple tip. At the ambient temperature status, four (4) factors were considered as the input factors affecting the response variable of peeling off rate. The input factors include the shape of the cement-covered layer (thickness and length), the ultrasonic vibration output power, and application time. At the high temperature tests, four (4) different environments were considered as the experimental parameters including air flow supply, water and air supply environment, water/air/fine dust particle supply, and air/water/ammonia/fine dust particle supply environment. The factorial design method was used in the experiment design with twelve (12) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the thickness and length of the cement-covered layer have the significant impact on the peeling off rate of ultrasonic vibration application at the ambient temperature environment. For the high temperature tests, the different environments do not seem to have significant impact on the temperature changes. These results may indicate that the ultrasonic vibration is one of best cleaning methods for the thermocouple tip.

Seong W. Lee

2005-04-01T23:59:59.000Z

438

Reduction of Emissions from a Syngas Flame Using Micromixing and Dilution with CO2  

Science Journals Connector (OSTI)

Hydrogen-rich syngas can be burned stably in the designed combustor, and each suite of nozzles forms a flame surface. ... The smaller dilution ratio and the higher fuel heating value means the fuel can be burned quickly after it leaves the nozzles, resulting in strong heat release in the frontal section of the burner. ... There are, however, gaps in the fundamental understanding of syngas combustion and emissions, as most previous research has focused on flames burning individual fuel components such as H2 and CH4, rather than syngas mixts. ...

Yongsheng Zhang; Tianming Yang; Xueqi Liu; Long Tian; Zhongguang Fu; Kai Zhang

2012-10-25T23:59:59.000Z

439

Thermodynamic Investigation of Carbon Deposition and Sulfur Evolution in Chemical Looping Combustion with Syngas  

Science Journals Connector (OSTI)

Thermodynamic Investigation of Carbon Deposition and Sulfur Evolution in Chemical Looping Combustion with Syngas ... Chemical looping combustion (CLC) with syngas, a synthesized gas mixture of CO, H2, CO2, H2O(g), N2, and H2S, was investigated using thermodynamic simulation, with focus on carbon deposition and sulfur evolution in CLC. ... Abad, A.; Garcia-Labiano, F.; de Diego, L. F.; Gayan, P.; Adanez, J. Reduction kinetics of Cu-,Ni-, and Fe-based oxygen carriers using syngas (CO+H2) for chemical-looping combustion Energy Fuels 2007 21 4 1854 1858 ...

Baowen Wang; Rong Yan; Dong Ho Lee; David Tee Liang; Ying Zheng; Haibo Zhao; Chuguang Zheng

2008-02-16T23:59:59.000Z

440

Two Phase Transitions Make a High-Temperature Superconductor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Two Phase Transitions Make a High-Temperature Superconductor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

442

Two Phase Transitions Make a High-Temperature Superconductor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

443

Two Phase Transitions Make a High-Temperature Superconductor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

444

Quench development in a high temperature superconducting tape  

SciTech Connect (OSTI)

Normal zone propagation experiments have been performed on a long length of Bi-2223/Ag high temperature superconducting (HTS) tape. Tests were conducted with liquid nitrogen and gaseous helium cooling in temperatures from 5 to 77 K. No sustained expansion of a {open_quotes}normal{close_quotes} zone was observed with a short resistive heater. Non-uniform critical currents were, however, observed over the length of the conductor. When the conductor was charged and held at a current above the critical currents of weaker sections, a quench was being developed without distinctive {open_quotes}normal{close_quotes} zone propagation. Because of the high temperature margin and broad resistive transition of the superconductor, and the good thermal conductivity of the Ag-matrix, the quench process was very slow. and no large temperature gradient along the conductor was observed.

Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Aized, D.; Campbell, J.M.; Schwall, R.E. [American Superconductor Corporation, Westborough, MA (United States)

1996-12-31T23:59:59.000Z

445

Quench development in a high temperature superconducting tape  

SciTech Connect (OSTI)

Normal zone propagation experiments have been per-formed on a long length of Bi2223/Ag high temperature superconducting (HTS) tape. Tests were performed in liquid nitrogen and with gaseous helium cooling in temperatures ranging from 4.2 K to 77 K. No sustained expansion of a ``normal`` zone was observed with a short resistive heater. Non-uniform critical currents were, however, observed over the length of the conductor. When the conductor was charged and held at a current above the critical currents of weaker sections, a quench was being developed without distinctive ``normal`` zone propagation. Because of the high temperature margin and broad resistive transition of the superconductor, and the good thermal conductivity of the Ag-matrix, the quench process was very slow, and no large temperature gradient along the conductor was observed in the test duration of a few minutes.

Lue, J.W.; Lubell, M.S. [Argonne National Lab., IL (United States); Aized, D.; Campbell, J.M.; Schwall, R.E. [American Superconductor Corp., Westborough, MA (United States)

1995-12-01T23:59:59.000Z

446

NETL: Mercury Emissions Control Technologies - Enhanced High Temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced High Temperature Mercury Oxidation and Enhanced High Temperature Mercury Oxidation and In-Situ Active Carbon Generation for Low Cost Mercury Capture Mercury oxidation phenomenon and the studies of this phenomenon have generally focused on lower temperatures, typically below 650°F. This has been based on the mercury vapor equilibrium speciation curve. The baseline extents of mercury oxidation as reported in the ICR dataset and observed during subsequent tests has shown a tremendous amount of scatter. The objective of this project is to examine, establish and demonstrate the effect of higher temperature kinetics on mercury oxidation rates. Further, it is the objective of this project to demonstrate how the inherent mercury oxidation kinetics can be influenced to dramatically increase the mercury oxidation.

447

Acoustic studies of single?crystal high?temperature superconductors  

Science Journals Connector (OSTI)

The acoustic properties of single crystals of the high?temperature superconductor YBa 2 Cu 3 O 7 have been measured at temperatures between 0.1 and 300 K for frequencies near 103 and 109 Hz. In the GHz regime longitudinal modes have been studied for propagation directions parallel and perpendicular to the c axis. At Tc there is a discontinuity in the soundvelocities and their temperature derivatives from which the anisotropic strain dependences of Tc are obtained. In the kHz regime resonant excitation of flexural modes in thin reeds of YBa 2 Cu 3 O 7 crystals has permitted precise measurement of acoustic damping and dispersion. The temperature?dependent damping is characterized by at least five features associated with the relaxation of defects. At temperatures below 1 K the velocity of sound is consistent with the presence of a broad glasslike distribution of tunneling modes.

Brage Golding; W. H. Haemmerle; L. F. Schneemeyer

1988-01-01T23:59:59.000Z

448

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

SciTech Connect (OSTI)

The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

Michael L. Swanson

2005-08-30T23:59:59.000Z

449

Amorphous Alloy Membranes for High Temperature Hydrogen Separations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for High for High Temperature Hydrogen Separations Background Coal and biomass are readily available in the United States and can be mixed for thermal processing to produce hydrogen and power. The produced hydrogen can be sent directly to a fuel cell for highly efficient and environmentally clean power generation. For coal and biomass to become economically viable sources of hydrogen, more efficient production processes need to be developed. To meet this

450

Ca0.9Mn0.5Ti0.5O3??: A Suitable Oxygen Carrier Material for Fixed-Bed Chemical Looping Combustion under Syngas Conditions  

Science Journals Connector (OSTI)

Ca0.9Mn0.5Ti0.5O3??: A Suitable Oxygen Carrier Material for Fixed-Bed Chemical Looping Combustion under Syngas Conditions ... Power generation using chemical looping combustion (CLC) technology has emerged as a promising CO2-capture-based alternative to conventional technology. ... Because of the high oxidation enthalpy, Ca0.9Mn0.5Ti0.5O3?? does not give full combustion of the syngas; still 95% conversion is achieved. ...

Mehdi Pishahang; Yngve Larring; Michael McCann; Rune Bredesen

2014-06-06T23:59:59.000Z

451

Deposition method for producing silicon carbide high-temperature semiconductors  

DOE Patents [OSTI]

An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

Hsu, George C. (La Crescenta, CA); Rohatgi, Naresh K. (W. Corine, CA)

1987-01-01T23:59:59.000Z

452

Sealed glass coating of high temperature ceramic superconductors  

DOE Patents [OSTI]

A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

Wu, Weite (Tainan, TW); Chu, Cha Y. (Garnerville, NY); Goretta, Kenneth C. (Downers Grove, IL); Routbort, Jules L. (Darien, IL)

1995-01-01T23:59:59.000Z

453

Nearly Perfect Fluidity in a High Temperature Superconductor  

E-Print Network [OSTI]

Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, {\\eta}/s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the Quark-Gluon Plasma (QGP) and in unitary atomic Fermi gases (UFG), exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use Angle Resolve Photoemission Spectroscopy (ARPES) to measure the temperature dependence of an electronic analogue of {\\eta}/s in an optimally doped cuprate high temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature Tc.

J. D. Rameau; T. J. Reber; H. -B. Yang; S. Akhanjee; G. D. Gu; S. Campbell; P. D. Johnson

2014-09-19T23:59:59.000Z

454

Nearly Perfect Fluidity in a High Temperature Superconductor  

E-Print Network [OSTI]

Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, {\\eta}/s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the Quark-Gluon Plasma (QGP) and in unitary atomic Fermi gases (UFG), exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use Angle Resolve Photoemission Spectroscopy (ARPES) to measure the temperature dependence of an electronic analogue of {\\eta}/s in an optimally doped cuprate high temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature Tc.

Rameau, J D; Yang, H -B; Akhanjee, S; Gu, G D; Campbell, S; Johnson, P D

2014-01-01T23:59:59.000Z

455

Nearly perfect fluidity in a high-temperature superconductor  

Science Journals Connector (OSTI)

Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, ?/s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the quark-gluon plasma and in unitary atomic Fermi gases, exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use angle resolved photoemission spectroscopy to measure the temperature dependence of an electronic analog of ?/s in an optimally doped cuprate high-temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature Tc.

J. D. Rameau; T. J. Reber; H.-B. Yang; S. Akhanjee; G. D. Gu; P. D. Johnson; S. Campbell

2014-10-13T23:59:59.000Z

456

HIGH TEMPERATURE CONDUCTIVITY PROBE FOR MONITORING CONTAMINATION LEVELS IN POWER PLANT BOILER WATER.  

E-Print Network [OSTI]

??A high temperature/high pressure flow through probe was designed to measure high temperature electrical conductivity of aqueous (aq) dilute electrolyte solutions, an application which can (more)

Hipple, Sarah

2008-01-01T23:59:59.000Z

457

Refueling Liquid-Salt-Cooled Very High-Temperature Reactors  

SciTech Connect (OSTI)

The liquid-salt-cooled very high-temperature reactor (LS-VHTR), also called the Advanced High-Temperature Reactor (AHTR), is a new reactor concept that combines in a novel way four established technologies: (1) coated-particle graphite-matrix nuclear fuels, (2) Brayton power cycles, (3) passive safety systems and plant designs previously developed for liquid-metal-cooled fast reactors, and (4) low-pressure liquid-salt coolants. Depending upon goals, the peak coolant operating temperatures are between 700 and 1000 deg. C, with reactor outputs between 2400 and 4000 MW(t). Several fluoride salt coolants that are being evaluated have melting points between 350 and 500 deg. C, values that imply minimum refueling temperatures between 400 and 550 deg. C. At operating conditions, the liquid salts are transparent and have physical properties similar to those of water. A series of refueling studies have been initiated to (1) confirm the viability of refueling, (2) define methods for safe rapid refueling, and (3) aid the selection of the preferred AHTR design. Three reactor cores with different fuel element designs (prismatic, pebble bed, and pin-type fuel assembly) are being evaluated. Each is a liquid-salt-cooled variant of a graphite-moderated high-temperature reactor. The refueling studies examined applicable refueling experience from high-temperature reactors (similar fuel element designs) and sodium-cooled fast reactors (similar plant design with liquid coolant, high temperatures, and low pressures). The findings indicate that refueling is viable, and several approaches have been identified. The study results are described in this paper. (authors)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008 Oak Ridge, TN 37831 (United States); Peterson, Per F. [Nuclear Engineering Department, University of California at Berkeley, 6124a Etcheverry Hall, Berkeley, CA 94720 (United States); Cahalan, James E. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Enneking, Jeffrey A. [Areva NP (United States); Phil MacDonald [Consultant, Cedar Hill, TX (United States)

2006-07-01T23:59:59.000Z

458

High-Temperature Downhole Tools | Open Energy Information  

Open Energy Info (EERE)

Tools Tools Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for High-Temperature Downhole Tools 2 Geothermal ARRA Funded Projects for High-Temperature Downhole Tools Geothermal Lab Call Projects for High-Temperature Downhole Tools Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

459

High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases  

DOE Patents [OSTI]

A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

1990-10-16T23:59:59.000Z

460

High-Temperature Gas-Stream Cleanup Test Facility  

SciTech Connect (OSTI)

In support of METC`s hot-gas filter development program, the high- temperature, gas-stream cleanup test facility was designed to: investigate conventional and novel approaches to high-temperature filtration; conduct detailed parametric studies that characterize particulate control devices under well-controlled conditions; and screen new materials for other high-temperature applications, such as heat exchanger tubes. This new facility utilizes a natural gas-fueled combustor to produce high-temperature process gas, and a screw feeder to inject ash, or other fine media, into the gas stream. The vessel that surrounds the particulate control devices has an inside diameter of roughly 0.20 meters (8 inches) and is about 3 meters (10 feet) long. Three commercial-size filter elements can be tested simultaneously, and the facility is capable of operating over a wide range of conditions. Operating temperatures can vary from 540 to 870{degrees}C (1,000 to 1,600 {degrees}F), and the operating pressure can vary from 0 to 400 kPa (0 to 60 psig).

Straub, D.; Chiang, Ta-Kuan, Schultz, J.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature syngas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Margins in high temperature leak-before-break assessments  

SciTech Connect (OSTI)

Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

Budden, P.J.; Hooton, D.G.

1997-04-01T23:59:59.000Z

462

Electronic-Structure of High-Temperature Superconductors  

E-Print Network [OSTI]

, and for the corresponding metal atoms in related high-temperature superconductors. These peaks should be observable in electron energy-loss spectroscopy's and 6nal-state photoemission spectrosco- py 20 The calculated valences d,n are again given in Table II. Notice... again neatly cancel in YBa2Cu307. In summary, we have calculated the electronic struc- tures of the most typical members of the two known classes of high-temperature superconductors. The present results, obtained with a simple tight-binding model...

RICHERT, BA; Allen, Roland E.

1988-01-01T23:59:59.000Z

463

High temperature alkali corrosion of ceramics in coal gas  

SciTech Connect (OSTI)

The high temperature alkali corrosion kinetics of SiC have been systematically investigated from 950 to 1100[degrees]C at 0.63 vol % alkali vapor concentration. The corrosion rate in the presence of alkaliis approximately 10[sup 4] to 10[sup 5] times faster than the oxidation rate of SiC in air. The activation energy associated with the alkali corrosion is 406 kJ/mol, indicating a highly temperature-dependent reaction rate. The rate-controlling step of the overall reaction is likely to be the dissolution of silica in the sodium silicate liquid, based on the oxygen diffusivity data.

Pickrell, G.R.; Sun, T.; Brown, J.J.

1992-02-24T23:59:59.000Z

464

Silicon Carbide Temperature Monitor Measurements at the High Temperature Test Laboratory  

SciTech Connect (OSTI)

Silicon carbide (SiC) temperature monitors are now available for use as temperature sensors in Advanced Test Reactor (ATR) irradiation test capsules. Melt wires or paint spots, which are typically used as temperature sensors in ATR static capsules, are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that may have occurred during irradiation. As part of the efforts initiated by the ATR National Scientific User Facility (NSUF) to make SiC temperature monitors available, a capability was developed to complete post-irradiation evaluations of these monitors. As discussed in this report, the Idaho National Laboratory (INL) selected the resistance measurement approach for detecting peak irradiation temperature from SiC temperature monitors. This document describes the INL efforts to develop the capability to complete these resistance measurements. In addition, the procedure is reported that was developed to assure that high quality measurements are made in a consistent fashion.

J. L. Rempe; K. G. Condie; D. L. Knudson; L. L. Snead

2010-01-01T23:59:59.000Z

465

Mesoscale Climatic Simulation of Surface Air Temperature Cooling by Highly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mesoscale Climatic Simulation of Surface Air Temperature Cooling by Highly Mesoscale Climatic Simulation of Surface Air Temperature Cooling by Highly Reflective Greenhouses in SE Spain Title Mesoscale Climatic Simulation of Surface Air Temperature Cooling by Highly Reflective Greenhouses in SE Spain Publication Type Journal Article Year of Publication 2013 Authors Campra, Pablo, and Dev Millstein Journal Environmental Science & Technology Volume 47 Issue 21 Pagination 12284 - 12290 Date Published 11/2013 ISSN 0013-936X Keywords buildings, Heat Island Group Abstract A long-term local cooling trend in surface air temperature has been monitored at the largest concentration of reflective greenhouses in the world, at the Province of Almeria, SE Spain, associated with a dramatic increase in surface albedo in the area. The availability of reliable long-term climatic field data at this site offers a unique opportunity to test the skill of mesoscale meteorological models describing and predicting the impacts of land use change on local climate. Using the Weather Research and Forecast (WRF) mesoscale model, we have run a sensitivity experiment to simulate the impact of the observed surface albedo change on monthly and annual surface air temperatures. The model output showed a mean annual cooling of 0.25 °C associated with a 0.09 albedo increase, and a reduction of 22.8 W m-2 of net incoming solar radiation at surface. Mean reduction of summer daily maximum temperatures was 0.49 °C, with the largest single-day decrease equal to 1.3 °C. WRF output was evaluated and compared with observations. A mean annual warm bias (MBE) of 0.42 °C was estimated. High correlation coefficients (R2 > 0.9) were found between modeled and observed values. This study has particular interest in the assessment of the potential for urban temperature cooling by cool roofs deployment projects, as well as in the evaluation of mesoscale climatic models performance.

466

Deposition of Alternative (Syngas) Fuels on Turbine Blades with Film Cooling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ACERC ACERC Dr. Jeffrey Bons and Dr. Thomas Fletcher BRIGHAM YOUNG UNIVERSITY SCIES Project 05-01-SR-120 with support from General Electric, Siemens-Westinghouse, Solar Turbines, Praxair UTSR Peer Workshop III, Clemson University, SC Oct. 18-20, 2005 Deposition of Alternative ( Deposition of Alternative ( Syngas Syngas ) Fuels on ) Fuels on Turbine Blades with Film Cooling Turbine Blades with Film Cooling Alternate fuels (e.g. coal, petcoke, and biomass) are being cons Alternate fuels (e.g. coal, petcoke, and biomass) are being cons idered to idered to produce produce syngas syngas fuels to replace natural gas in power turbines fuels to replace natural gas in power turbines Despite gas cleanup, small levels of airborne particulate (e.g. Despite gas cleanup, small levels of airborne particulate (e.g. 0.1 0.1 ppmw

467

Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: A...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

over Rh-basedSiO2 catalysts: A combined experimental and theoretical modeling study. Ethanol synthesis from syngas over Rh-basedSiO2 catalysts: A combined experimental and...

468

Investigation of the Syngas Flame Characteristics at Elevated Pressures Using Optical and Laser Diagnostic Methods  

Science Journals Connector (OSTI)

The effect of pressure on the characteristics of syngas flames is investigated under gas turbine relevant...*...chemiluminescence imaging. An optically accessible combustor fitted with a swirl burner was operated...

Rajesh Sadanandan; Peter Kutne; Adam Steinberg

2012-09-01T23:59:59.000Z

469

Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels  

Broader source: Energy.gov [DOE]

Syngas upgrading to hydrocarbon fuels is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

470

Simulation and optimization of hot syngas separation processes in integrated gasification combined cycle  

E-Print Network [OSTI]

IGCC with CO2 capture offers an exciting approach for cleanly using abundant coal reserves of the world to generate electricity. The present state-of-the-art synthesis gas (syngas) cleanup technologies in IGCC involve ...

Prakash, Kshitij

2009-01-01T23:59:59.000Z

471

Analysis of Hydroxide Sorbents for CO2 Capture from Warm Syngas  

Science Journals Connector (OSTI)

Analysis of Hydroxide Sorbents for CO2 Capture from Warm Syngas ... (1, 2) However, conventional coal combustion releases large amounts of the greenhouse gas CO2 into the atmosphere. ...

David J. Couling; Ujjal Das; William H. Green

2012-09-04T23:59:59.000Z

472

Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst  

Science Journals Connector (OSTI)

Iron particles confined in carbon nanotube (CNT) channels have been used as a catalyst for the direct conversion of syngas to light olefins. Compared with iron catalysts supported on other materials such as Si...

ChuanFu Wang; XiuLian Pan; XinHe Bao

2010-04-01T23:59:59.000Z

473

Investigation of Multistage Circulating Fast Fluidized Bed Membrane Reformers for Production of Ultraclean Hydrogen and Syngas  

Science Journals Connector (OSTI)

Investigation of Multistage Circulating Fast Fluidized Bed Membrane Reformers for Production of Ultraclean Hydrogen and Syngas ... In order to distinguish between the two catalysts employed in this study, the catalyst over which the CSRM and CPOM reactions take place is considered catalyst 1 and that over which the CDRM reaction takes place is considered catalyst 2. The physical significance of catalyst 1 is that both reaction schemes of the CSRM and CPOM