Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

2

High Temperature Optical Gas Sensing  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Gas Sensing Optical Gas Sensing Opportunity Research is active on optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing applications. Patent applications have been filed for two inventions in this area and several other methods are currently under development. These technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Organizations or individuals with capabilities in optical sensor packaging for harsh environment and high temperature applications are encouraged to contact NETL to explore potential collaborative opportunities. Overview Contact NETL Technology Transfer Group techtransfer@netl.doe.gov

3

Research on Very High Temperature Gas Reactors  

Science Conference Proceedings (OSTI)

Very high temperature gas reactors are helium-cooled, graphite-moderated advanced reactors that show potential for generating low-cost electricity via gas turbines or cogeneration with process-heat applications. This investigation addresses the development status of advanced coatings for nuclear-fuel particles and high-temperature structural materials and evaluates whether these developments are likely to lead to economically competitive applications of the very high temperature gas reactor concept.

1991-08-08T23:59:59.000Z

4

High Temperature Optical Gas Sensing  

This series of inventions addresses harsh environment sensing at temperatures above approximately 400-500oC using novel sensing materials that are compatible with optical sensing platforms as well as more conventional resistive platforms. The sensors ...

5

Safety Issues for High Temperature Gas Reactors  

E-Print Network (OSTI)

Safety Issues for High Temperature Gas Reactors Andrew C. Kadak Professor of the Practice #12;Major regulation) 50mSv/a (Could be exceeded for rear recovery events) 50 mSv/a 20 mSv/a (average 5 y) (5 m performance of safety systems - natural circulation - heat conduction and convection. #12;Issues · Fuel

6

Gas Viscosity at High Pressure and High Temperature  

E-Print Network (OSTI)

Gas viscosity is one of the gas properties that is vital to petroleum engineering. Its role in the oil and gas production and transportation is indicated by its contribution in the resistance to the flow of a fluid both in porous media and pipes. Although viscosity of some pure components such as methane, ethane, propane, butane, nitrogen, carbon dioxide and binary mixtures of these components at low-intermediate pressure and temperature had been studied intensively and been understood thoroughly, very few investigations were performed on viscosity of naturally occurring gases, especially gas condensates at low-intermediate pressure and temperature, even fewer lab data were published. No gas viscosity data at high pressures and high temperatures (HPHT) is available. Therefore this gap in the oil industry still needs to be filled. Gas viscosity at HPHT becomes crucial to modern oil industry as exploration and production move to deep formation or deep water where HPHT is not uncommon. Therefore, any hydrocarbon encountered there is more gas than oil due to the chemical reaction causing oil to transfer to gas as temperature increases. We need gas viscosity to optimize production rate for production system, estimate reserves, model gas injection, design drilling fluid, and monitor gas movement in well control. Current gas viscosity correlations are derived using measured data at low-moderate pressures and temperatures, and then extrapolated to HPHT. No measured gas viscosities at HPHT are available so far. The validities of these correlations for gas viscosity at HPHT are doubted due to lack of experimental data. In this study, four types of viscometers are evaluated and their advantages and disadvantages are listed. The falling body viscometer is used to measure gas viscosity at a pressure range of 3000 to 25000 psi and a temperature range of 100 to 415 oF. Nitrogen viscosity is measured to take into account of the fact that the concentration of nonhydrocarbons increase drastically in HPHT reservoir. More nitrogen is found as we move to HPHT reservoirs. High concentration nitrogen in natural gas affects not only the heat value of natural gas, but also gas viscosity which is critical to petroleum engineering. Nitrogen is also one of common inject gases in gas injection projects, thus an accurate estimation of its viscosity is vital to analyze reservoir performance. Then methane viscosity is measured to honor that hydrocarbon in HPHT which is almost pure methane. From our experiments, we found that while the Lee-Gonzalez-Eakin correlation estimates gas viscosity at a low-moderate pressure and temperature accurately, it cannot give good match of gas viscosity at HPHT. Apparently, current correlations need to be modified to predict gas viscosity at HPHT. New correlations constructed for HPHT conditions based on our experiment data give more confidence on gas viscosity.

Ling, Kegang

2010-12-01T23:59:59.000Z

7

High temperature gas-cooled reactor: gas turbine application study  

SciTech Connect

The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

Not Available

1980-12-01T23:59:59.000Z

8

Evaluation of High-Temperature Alloys for Helium Gas Turbines  

Science Conference Proceedings (OSTI)

C. 1. Mechanical Property / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

Wolfgang Jakobeit; Jrn-Peter Pfeifer; Georg Ullrich

9

Ionic Solid Oxides for High Temperature Optical Gas Sensing in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ionic Solid Oxides for High Temperature Optical Gas Sensing in Fossil Fuel Based Power Plants. Author(s), Junhang Dong, Xiling Tang, Kurtis ...

10

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

11

High Temperature Gas Reactors The Next Generation ?  

E-Print Network (OSTI)

HPT CCS Reactor CBCS #12;14 Integrated Plant Systems #12;15 Differences Between LWRS · Higher Thermal - Not shown Fresh Fuel Storage Used Fuel Storage Tanks #12;39 MPBR Specifications Thermal Power 250 MW Core temperatures about 1670 C. #12;MPBRBUSBARGENERATIONCOSTS(`92$) ReactorThermal Power (MWt) 10x250 Net Efficiency

12

High Temperature Gas Reactors Briefing to  

E-Print Network (OSTI)

· Nuclear Power 2010 · Next Generation Nuclear Plant (NGNP) · Generation IV Nuclear Plants · NRC Regulatory Specifications · Rated Power per Module 165-175 MW(e) depending on injection temperature · Eight-pack Plant 1320 - Indirect Cycle - Core Options Available - Waste Minimization #12;Modular Pebble Bed Reactor Thermal Power

13

Preparation of high temperature gas-cooled reactor fuel element  

DOE Patents (OSTI)

This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

Bradley, Ronnie A. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

1976-01-01T23:59:59.000Z

14

High temperature gas reactor and energy pipeline system  

SciTech Connect

Under contract to the General Electric Co. as a part of a DOE-sponsored program, the Energy Systems Analysis Group at the Institute of Gas Technology examined the following aspects of the high temperature gas reactor closed loop chemical energy pipeline concept: (1) pipeline transmission and storage system design; (2) pipeline and storage system cost; (3) methane reformer interface; and (4) system safety and environmental aspects. This work focuses on the pipeline and storage system concepts, pipeline size, compressor power, and storage facility requirements were developed for 4 different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Pflasterer, G.R.; Allen, D.C.

1981-01-01T23:59:59.000Z

15

High temperature gas reactor and energy pipeline system  

DOE Green Energy (OSTI)

A study was made of the following aspects of the High Temperature Gas Reactor (HTGR) Closed Loop Chemical Energy Pipeline (CEP) concept: pipeline transmission and storage system design, pipeline and storage system cost, methane reformer interface, and system safety and environmental aspects. This paper focuses on the pipeline and storage system concepts. Pipeline size, compressor power, and storage facility requirements were developed for four different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Allen, D.C.; Pflasterer, G.R.

1980-12-19T23:59:59.000Z

16

TURRET: A HIGH TEMPERATURE GAS-CYCLE REACTOR PROPOSAL  

SciTech Connect

A nitrogen-cooled graphite-moderated nuclear reactor experiment is proposed to drive a closed-cycle gas turbine power plant at 1300 deg F. The annular core of the reactor can be rotated inside the reflector to permit fuel loading and discharge while operating at full power. Small cylindrical fuel elements of graphite are solutionimpregnated with partially enriched uranium. The fuel is recycled by incineration of the elements, chemical fresh graphite tn a small batch process. The unclad, uncoated fuel should permit high burn-up and simple fuel processing, but allows fission product diffusion into the gas stream. While methods are proposed for the removal of these from the gas, the Song-term consequences on turbine operation are unknown. The compatibility of nitrogen gas with the fuel has been studied experimentally. The radial movement of fuel gives a reactor with a constant power profile and no excess reactivity. The temperature is regulated by the fuel charging rate. (auth)

Hammond, R.P.; Busey, H.M.; Chapman, K.R.; Durham, F.P.; Rogers, J.D.; Wykoff, W.R.

1958-01-23T23:59:59.000Z

17

STEAM GENERATORS FOR HIGH-TEMPERATURE GAS-COOLED REACTORS  

SciTech Connect

An analytical approach and an IBM machine code were prepared for the design of gas-cooled reactor once-through steam generators for both axial-flow and cross-flow tube matrices. The codes were applied to investigate the effects of steam generator configuration, tube diameter, extended surface, type of cooling gas, steam and gas temperature and pressure conditions, and the pumping power-to-heat removal ratio on the size, weight, and cost of steam generators. The results indicate that the least expensive and most promising unit for high- temperature high-pressure gascooled reactor plants employs axial-gas flow over 0.5-in.dia bare U-tubes arranged with their axes parallel to that of the shell. The proposed design is readily adaptable to the installation of a reheater and is suited to conventional fabrication techniques. Charts are presented to facilitate tlie design of both axial-flow and cross-flow steam generators for gas- cooled reactor applications. (auth)

Fraas, A.P.; Ozisik, M.N.

1963-04-23T23:59:59.000Z

18

Safeguards Guidance for Prismatic Fueled High Temperature Gas Reactors (HTGR)  

National Nuclear Security Administration (NNSA)

5) 5) August 2012 Guidance for High Temperature Gas Reactors (HTGRs) with Prismatic Fuel INL/CON-12-26130 Revision 0 Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel Philip Casey Durst (INL Consultant) August 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product,

19

High-temperature gas stream filter and method  

DOE Patents (OSTI)

The present invention relates generally to the removal of solid particulate material from high-temperature gas streams, and more particularly the removal of such particulate material by employing a barrier filter formed of a carbon-carbon composite provided by a porous carbon fiber substrate with open interstitial regions between adjacently disposed carbon fibers selectively restricted by carbon integrally attached to the carbon fibers of the substrate. In a typical utilization of a particulate-bearing hot gas stream, the particulate loading of the gas stream after cleaning is normally less than about 50 ppm and with essentially no particulates larger than about 10 microns. This carbon-carbon filter for removing particulate material of a particle size larger than a preselected particle size from a gas stream at a temperature greater than about 800 F, is produced by the steps which comprise: providing a substrate of carbonaceous fibers with pore-forming open interstitial regions between adjacently disposed fibers; and, sufficiently filling these open interstitial regions with carbon integrally attached to and supported by the fibers for providing the interstitial regions with throughgoing passage-ways of a pore size sufficient to provide for the passage of the gas stream while preventing the passage of particulate material larger than a preselected particle size.

Notestein, J.E.

1994-12-31T23:59:59.000Z

20

Irradiation Effects on High-Temperature Gas-Cooled Reactor Structural Materials  

Science Conference Proceedings (OSTI)

G. Irradiation Behavior / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

James R. Lindgren

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor  

SciTech Connect

The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

2012-02-01T23:59:59.000Z

22

Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

2009-10-01T23:59:59.000Z

23

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

DOE Green Energy (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

24

Novel Gas Sensors for High-Temperature Fossil Fuel Applications  

SciTech Connect

SRI International (SRI) is developing ceramic-based microsensors to detect exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems under this DOE NETL-sponsored research project. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes attached to a solid state electrolyte and are designed to operate at the high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. The sensors can be easily integrated into online monitoring systems for active emission control. The ultimate objective is to develop sensors for multiple gas detection in a single package, along with data acquisition and control software and hardware, so that the information can be used for closed-loop control in novel advanced power generation systems. This report details the Phase I Proof-of-Concept, research activities performed from October 2003 to March 2005. SRI's research work includes synthesis of catalytic materials, sensor design and fabrication, software development, and demonstration of pulse voltammetric analysis of NO, NO{sub 2}, and CO gases on catalytic electrodes.

Palitha Jayaweera; Francis Tanzella

2005-03-01T23:59:59.000Z

25

Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes  

DOE Green Energy (OSTI)

This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540C and the helium coolant was delivered at 7 MPa at 625925C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

Lee O. Nelson

2011-04-01T23:59:59.000Z

26

Fracture Mechanics Investigations on High-Temperature Gas-Cooled Reactor Materials  

Science Conference Proceedings (OSTI)

C.5. Fracture Mechanic / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

Klaus Krompholz; Erik Bodmann; Gnter K. H. Gnirss; Horst Huthmann

27

Mechanical Properties of Welds in Commercial Alloys for High-Temperature Gas-Cooled Reactor Components  

Science Conference Proceedings (OSTI)

C. 1. Mechanical Property / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

James R. Lindgren; Brian E. Thurgood; Robin H. Ryder; Chia-Chuan Li

28

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network (OSTI)

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity will describe the design of a high temperature solar receiver capable of driving a gas turbine for power

Ponce, V. Miguel

29

High Temperature Corrosion Failures in Gas Turbine Components  

Science Conference Proceedings (OSTI)

Two case histories of gas turbine hot-gas-path components made of cobalt and nickel superalloys are presented to discuss the mechanism of different types of...

30

High-temperature gas-cooled reactors: preliminary safety and environmental information document. Volume IV  

SciTech Connect

Information is presented concerning medium-enriched uranium/thorium once-through fuel cycle; medium-enrichment uranium-233/thorium recycle fuel; high-enrichment uranium-235/thorium recycle (spiked) fuel cycle; high-enrichment uranium-233/thorium recycle (spiked) fuel cycle; and gas-turbine high-temperature gas-cooled reactor.

Not Available

1980-01-01T23:59:59.000Z

31

Survey of industrial coal conversion equipment capabilities: high-temperature, high-pressure gas purification  

SciTech Connect

In order to ensure optimum operating efficiencies for combined-cycle electric generating systems, it is necessary to provide gas treatment equipment capable of operating at high temperatures (>1000/sup 0/F) and high pressure (>10 atmospheres absolute). This equipment, when assembled in a process train, will be required to condition the inlet stream to a gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) so that it will be compatible with both environmental and machine constraints. In this work, a survey of the available and developmental equipment for the removal of particulate matter and sulfur compounds has been conducted. In addition, an analysis has been performed to evaluate the performance of a number of alternative process configurations in light of overall system needs. Results from this study indicate that commercially available, reliable, and economically competitive hot-gas cleanup equipment capable of conditioning raw product gas to the levels required for high-temperatue turbine operation will not be available for some time.

Meyer, J. P.; Edwards, M. S.

1978-06-01T23:59:59.000Z

32

High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics  

DOE Green Energy (OSTI)

The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

Larry Demick

2010-08-01T23:59:59.000Z

33

Survey of processes for high temperature-high pressure gas purification. [52 references  

SciTech Connect

In order to ensure the optimum operating efficiency of a combined-cycle electric power generating system, it is necessary to provide gas treatment processes capable of operating at high temperatures (> 1000/sup 0/F) and high pressures (> 10 atm (absolute)). These systems will be required to condition the inlet stream to the gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) to be compatible with both environmental and machine constraints. A survey of the available and developmental processes for the removal of these various contaminant materials has been conducted. Based on the data obtained from a variety of sources, an analysis has been performed to evaluate the performance of a number of potential cleanup processes in view of the overall system needs. The results indicate that commercially available, reliable, and economically competitive hot-gas cleanup systems (for the removal of H/sub 2/S, particulate matter, alkali, and nitrogen compounds) capable of conditioning raw product gas to the levels required for turbine use will not be available for some time.

Meyer, J.P.; Edwards, M.S.

1978-11-01T23:59:59.000Z

34

THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS  

SciTech Connect

A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

Michael G. McKellar

2011-11-01T23:59:59.000Z

35

High-temperature superfluidity in an ultracold Fermi gas  

E-Print Network (OSTI)

This thesis presents experiments in which a strongly interacting gas of fermions was brought into the superfluid regime. The strong interactions are induced by a Feshbach scattering resonance that allows to tune the ...

Zwierlein, Martin W

2007-01-01T23:59:59.000Z

36

Development of a High Temperature Gas-Cooled Reactor TRISO-coated particle fuel chemistry model  

E-Print Network (OSTI)

The first portion of this work is a comprehensive analysis of the chemical environment in a High Temperature Gas-Cooled Reactor TRISO fuel particle. Fission product inventory versus burnup is calculated. Based on those ...

Diecker, Jane T

2005-01-01T23:59:59.000Z

37

An integrated performance model for high temperature gas cooled reactor coated particle fuel  

E-Print Network (OSTI)

The performance of coated fuel particles is essential for the development and deployment of High Temperature Gas Reactor (HTGR) systems for future power generation. Fuel performance modeling is indispensable for understanding ...

Wang, Jing, 1976-

2004-01-01T23:59:59.000Z

38

High Temperature Gas Reactors: Assessment of Applicable Codes and Standards  

SciTech Connect

Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC allows the owner of the facility to select the preferred designation, and that either designation can be acceptable.

McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

2011-10-31T23:59:59.000Z

39

High temperature, low expansion, corrosion resistant ceramic and gas turbine  

DOE Patents (OSTI)

The present invention relates to ZrO.sub.2 -MgO-Al.sub.2 O.sub.3 -SiO.sub.2 ceramic materials having improved thermal stability and corrosion resistant properties. The utilization of these ceramic materials as heat exchangers for gas turbine engines is also disclosed.

Rauch, Sr., Harry W. (Lionville, PA)

1981-01-01T23:59:59.000Z

40

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

DOE Green Energy (OSTI)

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750C and provides electricity and/or process heat at 700C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High Temperature Gas Reactors Andrew C. Kadak, Ph.D.  

E-Print Network (OSTI)

Specifications · Rated Power per Module 165-175 MW(e) depending on injection temperature · Eight-pack Plant 1320 · On--line Refueling #12;MIT MPBR Specifications Thermal Power 250 MW - 115 Mwe Target Thermal - Core Options Available - Waste Minimization #12;Modular Pebble Bed Reactor Thermal Power 250 MW Core

42

Main features of direct cycle helium gas turbines integrated with a high temperature reactor  

SciTech Connect

From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). The main features and advantages of direct cycle helium gas turbines integrated with a high temperature reactor are presented. The proposed design concept is based on a logical extension of existirg knowledge and experience on currently built gas cooled reactors and industrial gas turbines. The direct cycle gas turbine offers many advantages in the form of high reliability, safety and simplicity; it emerges as a potential competitor to the main power generation prime mover, the steam turbine. (auth)

Burylo, P.

1972-01-01T23:59:59.000Z

43

Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility  

Science Conference Proceedings (OSTI)

A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: Identifies pre-conceptual design requirements Develops test loop equipment schematics and layout Identifies space allocations for each of the facility functions, as required Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems Identifies pre-conceptual utility and support system needs Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

2008-04-01T23:59:59.000Z

44

Plateout Phenomena in Direct-Cycle High Temperature Gas-Cooled Reactors  

Science Conference Proceedings (OSTI)

The plateout of condensable radionuclides in the primary coolant circuits of high-temperature gas-cooled reactors (HTGRs) -- particularly direct-cycle HTGRs -- has significant design, operations and maintenance (O&M), and safety implications. This report reviews and evaluates the available international information on plateout phenomena, specifically as it applies to the gas turbine-modular helium reactor (GT-MHR) and the pebble bed modular reactor (PBMR).

2002-06-26T23:59:59.000Z

45

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

Science Conference Proceedings (OSTI)

This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

Lee Nelson

2011-09-01T23:59:59.000Z

46

Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors  

SciTech Connect

Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pocoima, CA); Benander, Robert E. (Pacoima, CA)

2010-02-23T23:59:59.000Z

47

Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors  

SciTech Connect

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pacoima, CA); Benander, Robert E. (Pacoima, CA)

2011-03-01T23:59:59.000Z

48

Lifetime Test of a Partial Model of a High-Temperature Gas-Cooled Reactor Helium-Helium Heat Exchanger  

Science Conference Proceedings (OSTI)

H. Design Codes and Life Prediction / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

Masaki Kitagawa; Hiroshi Hattori; Akira Ohtomo; Tetsuo Teramae; Junichi Hamanaka; Hiroshi Ukikusa

49

Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors  

DOE Green Energy (OSTI)

The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTRs higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

Chang Oh

2008-02-01T23:59:59.000Z

50

Spectrographic temperature measurement of a high power breakdown arc in a high pressure gas switch  

Science Conference Proceedings (OSTI)

A procedure for obtaining an approximate temperature value of conducting plasma generated during self-break closure of a RIMFIRE gas switch is described. The plasma is in the form of a breakdown arc which conducts approximately 12 kJ of energy in 1 {mu}s. A spectrographic analysis of the trigger-section of the 6-MV RIMFIRE laser triggered gas switch used in Sandia National Laboratory's ''Z-Machine'' has been made. It is assumed that the breakdown plasma has sufficiently approached local thermodynamic equilibrium allowing a black-body temperature model to be applied. This model allows the plasma temperature and radiated power to be approximated. The gas dielectric used in these tests was pressurized SF{sub 6}. The electrode gap is set at 4.59 cm for each test. The electrode material is stainless steel and insulator material is poly(methyl methacrylate). A spectrum range from 220 to 550 nanometers has been observed and calibrated using two spectral irradiance lamps and three spectrograph gratings. The approximate plasma temperature is reported.

Yeckel, Christopher; Curry, Randy [Department of Computer and Electrical Engineering, Center for Physical and Power Electronics, University of Missouri--Columbia, Columbia, Missouri 65211 (United States)

2011-09-15T23:59:59.000Z

51

Preparation and characterization of composite membrane for high temperature gas separation  

DOE Green Energy (OSTI)

The objective of this project is to develop thin film palladium membranes for separation of hydrogen in high temperature applications. The authors plan to use electroless plating to deposit thin palladium films on microporous ceramic and silver substrates and then characterize the membrane in terms of permeability and selectivity for gas separation. To accomplish the research objective, the project requires three tasks: Development of a process for composite membrane fabrication; Characterization of composite membrane; and Development of theoretical model for hydrogen gas separation. The experimental procedures are described.

Ilias, S.; King, F.G.; Su, N.

1994-10-01T23:59:59.000Z

52

Conceptual Design for a High-Temperature Gas Loop Test Facility  

SciTech Connect

This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

James B. Kesseli

2006-08-01T23:59:59.000Z

53

Computational Flow Predictions for the Lower Plenum of a High-Temperature, Gas-Cooled Reactor  

Science Conference Proceedings (OSTI)

Advanced gas-cooled reactors offer the potential advantage of higher efficiency and enhanced safety over present day nuclear reactors. Accurate simulation models of these Generation IV reactors are necessary for design and licensing. One design under consideration by the Very High Temperature Reactor (VHTR) program is a modular, prismatic gas-cooled reactor. In this reactor, the lower plenum region may experience locally high temperatures that can adversely impact the plants structural integrity. Since existing system analysis codes cannot capture the complex flow effects occurring in the lower plenum, computational fluid dynamics (CFD) codes are being employed to model these flows [1]. The goal of the present study is to validate the CFD calculations using experimental data.

Donna Post Guillen

2006-11-01T23:59:59.000Z

54

INTEGRATION OF HIGH TEMPERATURE GAS REACTORS WITH IN SITU OIL SHALE RETORTING  

Science Conference Proceedings (OSTI)

This paper evaluates the integration of a high-temperature gas-cooled reactor (HTGR) to an in situ oil shale retort operation producing 7950 m3/D (50,000 bbl/day). The large amount of heat required to pyrolyze the oil shale and produce oil would typically be provided by combustion of fossil fuels, but can also be delivered by an HTGR. Two cases were considered: a base case which includes no nuclear integration, and an HTGR-integrated case.

Eric P. Robertson; Michael G. McKellar; Lee O. Nelson

2011-05-01T23:59:59.000Z

55

NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions  

SciTech Connect

This document provides key definitions, plant capabilities, and inputs and assumptions related to the Next Generation Nuclear Plant to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor. These definitions, capabilities, and assumptions were extracted from a number of NGNP Project sources such as licensing related white papers, previously issued requirement documents, and preapplication interactions with the Nuclear Regulatory Commission (NRC).

Wayne Moe

2013-05-01T23:59:59.000Z

56

SCALE Code Validation for Prismatic High-Temperature Gas-Cooled Reactors  

SciTech Connect

Using experimental data published in the International Handbook of Evaluated Reactor Physics Benchmark Experiments for the fresh cold core of the High Temperature Engineering Test Reactor, a comprehensive validation study has been carried out to assess the performance of the SCALE code system for analysis of High Temperature Gas-Cooled Reactor (HTGR) configurations. This paper describes part of the results of this effort. The studies performed included criticality evaluations for the full core and for the annular cores realized during the fuel loading, as well as calculations and comparisons for excess reactivity, shutdown margin, control rod worths, temperature coefficient of reactivity, and reaction rate distributions. Comparisons of the SCALE results with both the experimental values and MCNP-calculated values are presented. The comparisons show that the SCALE calculated results, obtained with both multigroup and continuous energy cross sections, are in reasonable agreement with the experimental data. The agreement with the MCNP predictions is, in general, very good.

Ilas, Dan [ORNL

2012-01-01T23:59:59.000Z

57

SCALE Code Validation for Prismatic High-Temperature Gas-Cooled Reactors  

SciTech Connect

Using experimental data published in the International Handbook of Evaluated Reactor Physics Benchmark Experiments for the fresh cold core of the High Temperature Engineering Test Reactor, a comprehensive validation study has been carried out to assess the performance of the SCALE code system for analysis of high-temperature gas-cooled reactor configurations. This paper describes part of the results of that effort. The studies performed included criticality evaluations for the full core and for the annular cores realized during the fuel loading, as well as calculations and comparisons for excess reactivity, shutdown margin, control rod worths, temperature coefficient of reactivity, and reaction rate distributions. Comparisons of the SCALE results with both experimental values and MCNP-calculated values are presented. The comparisons show that the SCALE calculated results, obtained with both multigroup and continuous energy cross sections, are in reasonable agreement with the experimental data and the MCNP predictions.

Ilas, Dan [ORNL

2013-01-01T23:59:59.000Z

58

Facilitated transport ceramic membranes for high-temperature gas cleanup. Final report, February 1990--April 1994  

SciTech Connect

The objective of this program was to demonstrate the feasibility of developing high temperature, high pressure, facilitated transport ceramic membranes to control gaseous contaminants in Integrated Gasification Combined Cycle (IGCC) power generation systems. Meeting this objective requires that the contaminant gas H{sub 2}S be removed from an IGCC gas mixture without a substantial loss of the other gaseous components, specifically H{sub 2} and CH{sub 4}. As described above this requires consideration of other, nonconventional types of membranes. The solution evaluated in this program involved the use of facilitated transport membranes consisting of molten mixtures of alkali and alkaline earth carbonate salts immobilized in a microporous ceramic support. To accomplish this objective, Air Products and Chemicals, Inc., Golden Technologies Company Inc., and Research Triangle Institute worked together to develop and test high temperature facilitated membranes for the removal of H{sub 2}S from IGCC gas mixtures. Three basic experimental activities were pursued: (1) evaluation of the H{sub 2}S chemistry of a variety of alkali and alkaline earth carbonate salt mixtures; (2) development of microporous ceramic materials which were chemically and physically compatible with molten carbonate salt mixtures under IGCC conditions and which could function as a host to support a molten carbonate mixture and; (3) fabrication of molten carbonate/ceramic immobilized liquid membranes and evaluation of these membranes under conditions approximating those found in the intended application. Results of these activities are presented.

Quinn, R.; Minford, E.; Damle, A.S.; Gangwal, S.K.; Hart, B.A.

1994-04-01T23:59:59.000Z

59

Development of hollow fiber catalytic membrane reactors for high temperature gas cleanup  

DOE Green Energy (OSTI)

The technology employed in the Integrated Gasification Combined Cycle (IGCC) permits burning coals with a wide range of sulfur concentrations. Emissions from the process should be reduced by an order of magnitude below stringent federal air quality regulations for coal-fired plants. The maximum thermal efficiency of this type of process can be achieved by removing sulfur and particulates from the high temperature gas. The objective of this project was to develop economically and technically viable catalytic membrane reactors for high temperature, high pressure gaseous contaminant control in IGCC systems. These catalytic membrane reactors were used to decompose H{sub 2}S and separate the reaction products. The reactors were designed to operate in the hostile process environment of the IGCC systems, and at temperatures ranging from 500 to 1,000. Feasibility of the membrane reactor process for decomposition of hydrogen sulfide was demonstrated; permeability and selectivity of molecular-sieve and Vycor glass membranes were studied at temperatures up to 1,000 C; experimental study of hydrogen sulfide in the membrane reactor was completed; and a generalized mathematical model was developed for the simulation of the high temperature membrane reactor.

Ma, Y.H.; Moser, W.R.; Pien, S.; Shelekhin, A.B.

1994-10-01T23:59:59.000Z

60

Engineering study - alternatives for SHMS high temperature/moisture gas sample conditioners for the aging waste facility  

SciTech Connect

The Standard Hydrogen Monitoring Systems have been experiencing high temperature/moisture problems with gas samples from the Aging Waste Tanks. These moist hot gas samples have stopped the operation of the SHMS units on tanks AZ-101, AZ-102, and AY-102. This study looks at alternatives for gas sample conditioners for the Aging Waste Facility.

THOMPSON, J.F.

1999-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Concept of an inherently-safe high temperature gas-cooled reactor  

SciTech Connect

As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R and D items for the inherently-safe HTGR are described in this paper.

Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro [Nuclear Hydrogen and Heat Application Research Center, Japan Atomic Energy Agency, Oarai-machi, Ibaraki-ken, 311-1394 (Japan)

2012-06-06T23:59:59.000Z

62

High-temperature turbine technology program hot-gas path development test. Part II. Testing  

SciTech Connect

This topical report of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) Phase II program presents the results of testing full-scale water-cooled first-stage and second-stage turbine nozzles at design temperature and pressure to verify that the designs are adequate for operation in a full-scale turbine environment. Low-cycle fatigue life of the nozzles was demonstrated by subjecting cascade assemblies to several hundred simulated startup/shutdown turbine cycles. This testing was accomplished in the Hot-Gas Path Development Test Stand (HGPDTS), which is capable of evaluating full-scale combustion and turbine nozzle components. A three-throat cascade of the first-stage turbine nozzle was successfully tested at a nozzle inlet gas temperature of 2630/sup 0/F and a nozzle inlet pressure of 11.3 atmospheres. In addition to steady-state operation at the design firing temperature, the nozzle cascade was exposed to a simulated startup/shutdown turbine cycle by varying the firing temperature. A total of 42 h at the design point and 617 thermal cycles were accumulated during the test periods. First-stage nozzle test results show that measured metal and coolant temperatures correspond well to the predicted design values. This nozzle design has been shown to be fully satisfactory for the application (2600/sup 0/F), with growth capability to 3000/sup 0/F firing temperature. A post-test metallurgical examination of sectioned portions of the tested nozzles shows a totally bonded structure, confirming the test results and attesting to the successful performance of water-cooled composite nozzle hardware.

Horner, M.W.

1982-03-01T23:59:59.000Z

63

High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics  

DOE Green Energy (OSTI)

This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

Larry Demick

2011-08-01T23:59:59.000Z

64

A utility assessment of the Modular High-Temperature Gas-Cooled Reactor (MHTGR)  

SciTech Connect

A team of electric utility representatives conducted an in-depth, independent evaluation of the current Modular High Temperature Gas-Cooled Reactor (MHTGR) design. The emphasis was on the fuel design with respect to safety, the licensability of the proposed containment concept, refueling operations and equipment, spent fuel storage capacity, staffing projections, and the economic competitiveness. Specific comments and recommendations are provided as a contribution towards enhancing the MHTGR design, licensability and acceptance from a utility's view. Individual sections have been indexed separately for inclusion on the data base.

Bliss, H.E.; Grier, C.A. (Commonwealth Edison Co., Chicago, IL (USA)); Crews, M.R. (Duke Engineering and Services, Inc., Charlotte, NC (USA)); Fernandez, R.T.; Heard, J.W.; Hinkle, W.D. (Yankee Atomic Electric Co., Framingham, MA (USA)); Pschirer, D.M.; Sharpe, R.O. (Duke Power Co., Charlotte, NC (USA))

1991-01-01T23:59:59.000Z

65

Licensing topical report: interpretation of general design criteria for high-temperature gas-cooled reactors  

SciTech Connect

This Licensing Topical Report presents a set of General Design Criteria (GDC) which is proposed for applicability to licensing of graphite-moderated, high-temperature gas-cooled reactors (HTGRs). Modifications as necessary to reflect HTGR characteristics and design practices have been made to the GDC derived for applicability to light-water-cooled reactors and presented in Appendix A of Part 50, Title 10, Code of Federal Regulations, including the Introduction, Definitions, and Criteria. It is concluded that the proposed set of GDC affords a better basis for design and licensing of HTGRs.

Orvis, D.D.; Raabe, P.H.

1980-01-01T23:59:59.000Z

66

Multifunctional Nanowire/Film Composites-Based Bimodular Sensors for In Situ, Real-Time High Temperature Gas Detection  

NLE Websites -- All DOE Office Websites (Extended Search)

Multifunctional Nanowire/Film Multifunctional Nanowire/Film Composites-Based Bimodular Sensors for In Situ, Real-Time High Temperature Gas Detection Background Real time monitoring of combustion gas composition is important for improving the efficiency of combustion processes and reducing the emission of pollutants. However, such measurement usually requires sensors to be operated at high temperatures in harsh environments. Currently, commercially available sensor technology capable of withstanding such harsh environments is extremely

67

Development of Brazing Technology for Use in High- Temperature Gas Separation Equipment  

DOE Green Energy (OSTI)

The development of high-temperature electrochemical devices such as oxygen and hydrogen separators, fuel gas reformers, solid oxide fuel cells, and chemical sensors is part of a rapidly expanding segment of the solid state technology market. These devices employ an ionic conducting ceramic as the active membrane that establishes the electrochemical potential of the device, either under voltage (i.e. to carry out gas separation) or under chemical gradient (to develop an electrical potential and thereby generate electrical power). Because the device operates under an ionic gradient that develops across the electrolyte, hermiticity across this layer is paramount. That is, not only must this thin ceramic membrane be dense with no interconnected porosity, but it must be connected to the rest of the device, typically constructed from a heat resistant alloy, with a high-temperature, gas-tight seal. A significant engineering challenge in fabricating these devices is how to effectively join the thin electrochemically active membrane to the metallic body of the device such that the resulting seal is hermetic, rugged, and stable during continuous high temperature operation. Active metal brazing is the typical method of joining ceramic and metal engineering components. It employs a braze alloy that contains one or more reactive elements, often titanium, which will chemically reduce the ceramic faying surface and greatly improve its wetting behavior and adherence with the braze. However, recent studies of these brazes for potential use in fabricating high-temperature electrochemical devices revealed problems with interfacial oxidation and subsequent joint failure [1,2]. Specifically, it was found that the introduction of the ceramic electrolyte and/or heat resistant metal substrate dramatically affects the inherent oxidation behavior of the braze, often in a deleterious manner. These conclusions pointed to the need for an oxidation resistant, high-temperature ceramic-to-metal braze and consequently lead to the development of the novel reactive air brazing (RAB) concept. The goal in RAB is to reactively modify one or both oxide faying surfaces with an oxide compound dissolved in a molten noble metal alloy such that the newly formed surface is readily wetted by the remaining liquid filler material. In many respects, this concept is similar to active metal brazing, except that joining can be conducted in air and the final joint will be resistant to oxidation at high temperature. Potentially, there are a number of metal oxide-noble metal systems that can be considered for RAB, including Ag-CuO, Ag-V2O5, and Pt-Nb2O5. Our current interest is in determining whether the Ag-CuO system is suitable for air brazing functional ceramic-to-metal joints such as those needed in practical electrochemical devices. In a series of studies, the wetting behavior of the Ag-CuO braze was investigated with respect to a number of potential hydrogen separation, oxygen separation, and fuel cell electrolyte membrane materials and heat resistant metal systems, including: alumina, (La0.6Sr0.4)(Co0.2Fe0.8)O3, (La0.8Sr0.2)FeO3, YSZ, fecralloy, and Crofer-22APU. Selected findings from these studies as well as from our work on joint strength and durability during high-temperature exposure testing will be discussed.

Weil, K.S.; Hardy, J.S.; Kim, J.Y.

2003-04-23T23:59:59.000Z

68

Applications of Nd:YAG laser micromanufacturing in High Temperature Gas Reactor research  

SciTech Connect

Two innovative applications of Nd:YAG laser micromachining techniques are demonstrated in this publication. Research projects to determine the fission product transport mechanisms in TRISO coated particles necessitate heat treatment studies as well as the manufacturing of a unique sealed system for experimentation at very high temperatures. This article describes firstly the design and creation of an alumina jig designed to contain 500 {mu}m diameter ZrO2 spheres intended for annealing experiments at temperatures up to 1600 C. Functional requirements of this jig are the precision positioning of spheres for laser ablation, welding and post weld heat treatment in order to ensure process repeatability and accurate indexing of individual spheres. The design challenges and the performance of the holding device are reported. Secondly the manufacture of a sealing system using laser micromachining is reported. ZrO2 micro plugs isolate the openings of micro-machined cavities to produce a gas-tight seal fit for application in a high temperature environment. The technique is described along with a discussion of the problems experienced during the sealing process. Typical problems experienced were seating dimensions and the relative small size ({approx} 200 {mu}m) of these plugs that posed handling challenges. Manufacturing processes for both the tapered seating cavity and the plug are demonstrated. In conclusion, this article demonstrates the application of Nd-YAG micromachining in an innovative way to solve practical research problems.

I. J. van Rooyen; C. A. Smal; J. Steyn; H. Greyling

2012-08-01T23:59:59.000Z

69

HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS  

DOE Green Energy (OSTI)

Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

Gorensek, M.

2011-07-06T23:59:59.000Z

70

Comprehensive Thermal Hydraulics Research of the Very High Temperature Gas Cooled Reactor  

SciTech Connect

The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; David Petti; Hyung Kang

2010-10-01T23:59:59.000Z

71

Material Control and Accounting Design Considerations for High-Temperature Gas Reactors  

Science Conference Proceedings (OSTI)

The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.

Trond Bjornard; John Hockert

2011-08-01T23:59:59.000Z

72

Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Chloride and Hydrogen Sulfide Hydrogen Chloride and Hydrogen Sulfide Removal Sorbents for High Temperature Gas Streams Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,767,000 entitled "Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams." Disclosed in this patent is the invention of a unique regenerable sorbent process that can remove contaminants from gas produced by the gasification of fossil fuels. Specifically, the process removes hydrogen chloride by using the regenerable sorbent and simultaneously extracts hydrogen chloride compounds and hydrogen

73

Assessments of Water Ingress Accidents in a Modular High-Temperature Gas-Cooled Reactor  

Science Conference Proceedings (OSTI)

Severe water ingress accidents in the 200-MW HTR-module were assessed to determine the safety margins of modular pebble-bed high-temperature gas-cooled reactors (HTR-module). The 200-MW HTR-module was designed by Siemens under the criteria that no active safety protection systems were necessary because of its inherent safe nature. For simulating the behavior of the HTR-module during severe water ingress accidents, a water, steam, and helium multiphase cavity model was developed and implemented in the dynamic simulator for nuclear power plants (DSNP) simulation system. Comparisons of the DSNP simulations incorporating these models with experiments and with calculations using the time-dependent neutronics and temperature dynamics code were made to validate the simulation. The analysis of the primary circuit showed that the maximum water concentration increase in the reactor core was deaerator to the steam generator. A comprehensive simulation of the HTR-module power plant showed that the water inventory in the primary circuit was limited to {approx}3000 kg. The nuclear reactivity increase caused by the water ingress would lead to a fast power excursion, which would be inherently counterbalanced by negative feedback effects. The integrity of the fuel elements, because the safety-relevant temperature limit of 1600 deg. C is not reached in any case, is not challenged.

Zhang Zuoyi [Tsinghua University (China); Dong Yujie [Tsinghua University (China); Scherer, Winfried [Forschungszentrum Juelich (Germany)

2005-03-15T23:59:59.000Z

74

Nanocomposite thin films for high temperature optical gas sensing of hydrogen  

DOE Patents (OSTI)

The disclosure relates to a plasmon resonance-based method for H.sub.2 sensing in a gas stream at temperatures greater than about 500.degree. C. utilizing a hydrogen sensing material. The hydrogen sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. At high temperatures, blue shift of the plasmon resonance optical absorption peak indicates the presence of H.sub.2. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.

Ohodnicki, Jr., Paul R.; Brown, Thomas D.

2013-04-02T23:59:59.000Z

75

NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions  

SciTech Connect

This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

Phillip Mills

2012-02-01T23:59:59.000Z

76

Applications for a high temperature gas cooled nuclear reactor in oil shale processing  

SciTech Connect

Results are presented of a study concerning possible applications for a high temperature gas cooled reactor as a process heat source in oil shale retorting and upgrading. Both surface and in situ technologies were evaluated with respect to the applicability and potential benefits of introducing an outside heat source. The primary focus of the study was to determine the fossil resource which might be conserved, or freed for higher uses than furnishing process heat. In addition to evaluating single technologies, a centralized upgrading plant, which would hydrotreat the product from a 400,000 bbl/day regional shale oil industry was also evaluated. The process heat required for hydrogen manufacture via steam reforming, and for whole shale oil hydrotreating would be supplied by an HTGR. Process heat would be supplied where applicable, and electrical power would be generated for the entire industry.

Sinor, J.E.; Roe, D.E.

1980-01-01T23:59:59.000Z

77

Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes  

Science Conference Proceedings (OSTI)

This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

L.E. Demick

2011-10-01T23:59:59.000Z

78

Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gokhan O. Alptekin, PhD Robert Copeland, PhD Gokhan O. Alptekin, PhD Robert Copeland, PhD (Primary Contact) TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: copeland@tda.com Email: galptekin@tda.com Tel: (303) 940-2323 Tel: (303) 940-2349 Fax: (303) 422-7763 Fax: (303) 422-7763 Margarita Dubovik Yevgenia Gershanovich TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: dubovik@tda.com Email: ygershan@tda.com Tel: (303) 940-2316 Tel: (303) 940-2346 Fax: (303) 422-7763 Fax: (303) 422-7763 Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas

79

Development of MELCOR Input Techniques for High Temperature Gas-Cooled Reactor Analysis  

E-Print Network (OSTI)

High Temperature Gas-cooled Reactors (HTGRs) can provide clean electricity,as well as process heat that can be used to produce hydrogen for transportation and other sectors. A prototypic HTGR, the Next Generation Nuclear Plant (NGNP),will be built at Idaho National Laboratory.The need for HTGR analysis tools and methods has led to the addition of gas-cooled reactor (GCR) capabilities to the light water reactor code MELCOR. MELCOR will be used by the Nuclear Regulatory Commission licensing of the NGNP and other HTGRs. In the present study, new input techniques have been developed for MELCOR HTGR analysis. These new techniques include methods for modeling radiation heat transfer between solid surfaces in an HTGR, calculating fuel and cladding geometric parameters for pebble bed and prismatic block-type HTGRs, and selecting appropriate input parameters for the reflector component in MELCOR. The above methods have been applied to input decks for a water-cooled reactor cavity cooling system (RCCS); the 400 MW Pebble Bed Modular Reactor (PBMR), the input for which is based on a code-to-code benchmark activity; and the High Temperature Test Facility (HTTF), which is currently in the design phase at Oregon State University. RCCS results show that MELCOR accurately predicts radiation heat transfer rates from the vessel but may overpredict convective heat transfer rates and RCCS coolant flow rates. PBMR results show that thermal striping from hot jets in the lower plenum during steady-state operations, and in the upper plenum during a pressurized loss of forced cooling accident, may be a major design concern. Hot jets could potentially melt control rod drive mechanisms or cause thermal stresses in plenum structures. For the HTTF, results will provide data to validate MELCOR for HTGR analyses. Validation will be accomplished by comparing results from the MELCOR representation of the HTTF to experimental results from the facility. The validation process can be automated using a modular code written in Python, which is described here.

Corson, James

2010-05-01T23:59:59.000Z

80

Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel  

SciTech Connect

Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

Sonat Sen; Gilles Youinou

2013-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment  

DOE Green Energy (OSTI)

In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

Rich Ciora; Paul KT Liu

2012-06-27T23:59:59.000Z

82

Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diode Laser Sensors to Monitor Temperature and Gas Composition for High Temperature Coal Gasification Systems Description Sensing and measuring temperature and gas compositions in...

83

Containment Versus Confinement for High-Temperature Gas Reactors: Regulatory, Design Basis, Siting, and Cost/Economic Considerations  

Science Conference Proceedings (OSTI)

This report provides the results of an investigation pertaining to the use of the confinement that has been proposed for the high temperature and very high temperature gas reactors (HTGR, VHTR). No comprehensive study of this question has been published since 1985. All power reactor designs to go into commercial service in the United States were light water reactors (LWR), except for Fort St. Vrain (FSV) and Peach Bottom Unit 1, which were steam cycle helium gas cooled reactors. All designs use a leak-ti...

2005-05-04T23:59:59.000Z

84

Steam generator materials performance in high temperature gas-cooled reactors  

SciTech Connect

This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760/sup 0/C and produce superheated steam at 538/sup 0/C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10/sup 6/ MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc.

Chafey, J.E.; Roberts, D.I.

1980-11-01T23:59:59.000Z

85

Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis  

SciTech Connect

This report documents verification and validation studies carried out to assess the performance of the SCALE code system methods and nuclear data for modeling and analysis of High Temperature Gas-Cooled Reactor (HTGR) configurations. Validation data were available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE Handbook), prepared by the International Reactor Physics Experiment Evaluation Project, for two different HTGR designs: prismatic and pebble bed. SCALE models have been developed for HTTR, a prismatic fuel design reactor operated in Japan and HTR-10, a pebble bed reactor operated in China. The models were based on benchmark specifications included in the 2009, 2010, and 2011 releases of the IRPhE Handbook. SCALE models for the HTR-PROTEUS pebble bed configuration at the PROTEUS critical facility in Switzerland have also been developed, based on benchmark specifications included in a 2009 IRPhE draft benchmark. The development of the SCALE models has involved a series of investigations to identify particular issues associated with modeling the physics of HTGRs and to understand and quantify the effect of particular modeling assumptions on calculation-to-experiment comparisons.

Ilas, Germina [ORNL; Ilas, Dan [ORNL; Kelly, Ryan P [ORNL; Sunny, Eva E [ORNL

2012-08-01T23:59:59.000Z

86

High-temperature gas reactor (HTGR) market assessment, synthetic fuels analysis  

DOE Green Energy (OSTI)

This study is an update of assessments made in TRW's October 1979 assessment of overall high-temperature gas-cooled reactor (HTGR) markets in the future synfuels industry (1985 to 2020). Three additional synfuels processes were assessed. Revised synfuel production forecasts were used. General environmental impacts were assessed. Additional market barriers, such as labor and materials, were researched. Market share estimates were used to consider the percent of markets applicable to the reference HTGR size plant. Eleven HTGR plants under nominal conditions and two under pessimistic assumptions are estimated for selection by 2020. No new HTGR markets were identified in the three additional synfuels processes studied. This reduction in TRW's earlier estimate is a result of later availability of HTGR's (commercial operation in 2008) and delayed build up in the total synfuels estimated markets. Also, a latest date for HTGR capture of a synfuels market could not be established because total markets continue to grow through 2020. If the nominal HTGR synfuels market is realized, just under one million tons of sulfur dioxide effluents and just over one million tons of nitrous oxide effluents will be avoided by 2020. Major barriers to a large synfuels industry discussed in this study include labor, materials, financing, siting, and licensing. Use of the HTGR intensifies these barriers.

Not Available

1980-08-01T23:59:59.000Z

87

High temperature ultrasonic gas flow sensor based on lead free piezoelectric material  

E-Print Network (OSTI)

are satisfied by flow meters with multiple ultrasonic measurement paths, typically supplied as a spool piece and used in custody transfer applications such as natural gas pipelines. With respect to flow metering in general, a substantial and key body of work... and ?T is the differential temperature. The disadvantages of thermal mass flow meters are discussed at length by Baker [11] and Miller [10]. The response of the instrument to changes in flow velocity is typically slow due to the thermal inertia...

Krsmanovic, Dalibor

2011-11-08T23:59:59.000Z

88

System Engineering Program Applicability for the High Temperature Gas-Cooled Reactor (HTGR) Component Test Capability (CTC)  

SciTech Connect

This white paper identifies where the technical management and systems engineering processes and activities to be used in establishing the High Temperature Gas-cooled Reactor (HTGR) Component Test Capability (CTC) should be addressed and presents specific considerations for these activities under each CTC alternative

Jeffrey Bryan

2009-06-01T23:59:59.000Z

89

Development of hollow-fiber catalytic-membrane reactors for high-temperature gas cleanup  

SciTech Connect

The project consist of the following main activities: (1) Design of catalytic hollow fiber membrane reactors. Single and multiple hollow-fiber membranes were studied in reactor/permeation cells made from stainless steel or quartz tubes. Modification of the hollow fiber membrane with catalysts was performed by aqueous impregnation, vapor deposition, and utilization of packed-bed reactors. (2) Investigation of gas separations and catalytic reactions in membrane reactors. Permeation of pure gases and gas mixtures was studied as a function of temperature. Pure component catalytic studies on the decomposition of H{sub 2}S was typically studied using 10% H{sub 2}S diluted in He. The H{sub 2}S and H{sub 2} concentrations were measured in both the tube and shell sides of the membrane reactor to determine the degree of chemical equilibrium shift. (3) Process development of the cleanup system using a simulated gas stream with a composition similar to that from an IGCC system. Catalytic studies using the IGCC gas composition will be performed according to the procedure used in the H{sub 2}S experiments. The conditions for optimum conversion in a gas mixture will be investigated.

Ma, Yi H.; Moser, M.R.; Pien, S.M.

1992-12-01T23:59:59.000Z

90

Development of hollow-fiber catalytic-membrane reactors for high-temperature gas cleanup  

SciTech Connect

The project consist of the following main activities: (1) Design of catalytic hollow fiber membrane reactors. Single and multiple hollow-fiber membranes were studied in reactor/permeation cells made from stainless steel or quartz tubes. Modification of the hollow fiber membrane with catalysts was performed by aqueous impregnation, vapor deposition, and utilization of packed-bed reactors. (2) Investigation of gas separations and catalytic reactions in membrane reactors. Permeation of pure gases and gas mixtures was studied as a function of temperature. Pure component catalytic studies on the decomposition of H[sub 2]S was typically studied using 10% H[sub 2]S diluted in He. The H[sub 2]S and H[sub 2] concentrations were measured in both the tube and shell sides of the membrane reactor to determine the degree of chemical equilibrium shift. (3) Process development of the cleanup system using a simulated gas stream with a composition similar to that from an IGCC system. Catalytic studies using the IGCC gas composition will be performed according to the procedure used in the H[sub 2]S experiments. The conditions for optimum conversion in a gas mixture will be investigated.

Ma, Yi H.; Moser, M.R.; Pien, S.M.

1992-01-01T23:59:59.000Z

91

Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams  

DOE Patents (OSTI)

A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.

Siriwardane, Ranjani V. (Morgantown, WV); Stevens, Robert W. (Morgantown, WV)

2012-03-06T23:59:59.000Z

92

STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)  

SciTech Connect

An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air-ingress mitigation methods are proposed in this study. Among them, the following two mitigation ideas are extensively investigated using computational fluid dynamic codes (CFD): (1) helium injection in the lower plenum, and (2) reactor enclosure opened at the bottom. The main idea of the helium injection method is to replace air in the core and the lower plenum upper part by buoyancy force. This method reduces graphite oxidation damage in the severe locations of the reactor inside. To validate this method, CFD simulations are addressed here. A simple 2-D CFD model is developed based on the GT-MHR 600MWt design. The simulation results showed that the helium replace the air flow into the core and significantly reduce the air concentration in the core and bottom reflector potentially protecting oxidation damage. According to the simulation results, even small helium flow was sufficient to remove air in the core, mitigating the air-ingress successfully. The idea of the reactor enclosure with an opening at the bottom changes overall air-ingress mechanism from natural convection to molecular diffusion. This method can be applied to the current system by some design modification of the reactor cavity. To validate this concept, this study also uses CFD simulations based on the simplified 2-D geometry. The simulation results showed that the enclosure open at the bottom can successfully mitigate air-ingress into the reactor even after on-set natural circulation occurs.

Chang H. Oh

2011-03-01T23:59:59.000Z

93

Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants  

Science Conference Proceedings (OSTI)

Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

Buric, M.; Ohodnicky, P.; Duy, J.

2012-01-01T23:59:59.000Z

94

A catalytic membrane reactor for facilitating the water-gas shift reaction at high temperature  

DOE Green Energy (OSTI)

This program is directed toward the development of a metal-membrane-based process for the economical production of hydrogen at elevated temperature by the reaction of carbon monoxide with steam--i.e., the water-gas shift (WGS) reaction. Key to achieving this objective is the development of an inexpensive and durable metal-membrane module. The specific program objectives include the following: design, fabrication, and demonstration of prototype membrane modules; improving the membrane composition to increase the hydrogen flux; demonstrating that membrane lifetime {ge}2 years is likely to be achieved; and conducting engineering and economic analyses of the process. Results to date are given and discussed.

Edlund, D.J.

1994-10-01T23:59:59.000Z

95

DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network (OSTI)

for powering a gas turbine or to supply industrial processin conjunetion with a gas turbine system providing severalincluding heating a gas to operate a turbine (4), providing

Hunt, Arlon J.

2012-01-01T23:59:59.000Z

96

High-temperature batteries for geothermal and oil/gas borehole applications  

DOE Green Energy (OSTI)

A literature survey and technical evaluation was carried out of past and present battery technologies with the goal of identifying appropriate candidates for use in geothermal borehole and, to a lesser extent, oil/gas boreholes. The various constraints that are posed by such an environment are discussed. The promise as well as the limitations of various candidate technologies are presented. Data for limited testing of a number of candidate systems are presented and the areas for additional future work are detailed. The use of low-temperature molten salts shows the most promise for such applications and includes those that are liquid at room temperature. The greatest challenges are to develop an appropriate electrochemical couple that is kinetically stable with the most promising electrolytes--both organic as well as inorganic--over the wide operating window that spans both borehole environments.

GUIDOTTI,RONALD A.

2000-05-25T23:59:59.000Z

97

Use of high temperature insulation for ceramic matrix composites in gas turbines  

SciTech Connect

A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

Morrison, Jay Alan (Orlando, FL); Merrill, Gary Brian (Pittsburgh, PA); Ludeman, Evan McNeil (New Boston, NH); Lane, Jay Edgar (Murrysville, PA)

2001-01-01T23:59:59.000Z

98

Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Pebble Fuel  

SciTech Connect

The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on pebble fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEAs statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC.

Philip Casey Durst; Mark Schanfein

2012-08-01T23:59:59.000Z

99

Design Configurations and Coupling High Temperature Gas-Cooled Reactor and Hydrogen Plant  

DOE Green Energy (OSTI)

The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood.

Chang H. Oh; Eung Soo Kim; Steven Sherman

2008-04-01T23:59:59.000Z

100

Method for the production of electrodes for lead--acid storage batteries. [drying by inert gas at high temperature  

SciTech Connect

A method for the production of lead--acid storage batteries having a grid of lead alloy filled with active materials consisting of lead oxides, lead powder, sulfuric acid, and water is described. The electrodes are subjected to a jet of an inert gas at a high temperature and velocity for several seconds to dry the surface of the electrodes while leaving the interior thereof moist.

Nikolaou, P.

1978-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Novel Carbon Nanotube-Based Nanostructures for High-Temperature Gas Sensing  

DOE Green Energy (OSTI)

The primary objective of this research is to examine the feasibility of using vertically aligned multi-wall carbon nanotubes (MWCNTs) as a high temperature sensor material for fossil energy systems where reducing atmospheres are present. In the initial period of research, we fabricated capacitive sensors for hydrogen sensing using vertically aligned MWCNTs. We found that CNT itself is not sensitive to hydrogen. Moreover, with the help of Pd electrodes, hydrogen sensors based on CNTs are very sensitive and fast responsive. However, the Pd-based sensors can not withstand high temperature (T<200 C). In the last year, we successfully fabricated a hydrogen sensor based on an ultra-thin nanoporous titanium oxide (TiO{sub 2}) film supported by an AAO substrate, which can operate at 500 C with hydrogen concentrations in a range from 50 to 500 ppm.

Zhi Chen; Kozo Saito

2008-08-31T23:59:59.000Z

102

Safeguards-by-Design:Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel  

Science Conference Proceedings (OSTI)

Introduction and Purpose The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on prismatic fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEAs statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC. For the nuclear industry to reap the benefits of SBD (i.e. avoid cost overruns and construction schedule slippages), nuclear facility designers and operators should work closely with the State Regulatory Authority and IAEA as soon as a decision is taken to build a new nuclear facility. Ideally, this interaction should begin during the conceptual design phase and continue throughout construction and start-up of a nuclear facility. Such early coordination and planning could influence decisions on the design of the nuclear material processing flow-sheet, material storage and handling arrangements, and facility layout (including safeguards equipment), etc.

Mark Schanfein; Casey Durst

2012-11-01T23:59:59.000Z

103

Thermal Hydraulic Analyses for Coupling High Temperature Gas-Cooled Reactor to Hydrogen Plant  

DOE Green Energy (OSTI)

The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermalhydraulic and efficiency points of view.

C.H. Oh; R. Barner; C. B. Davis; S. Sherman; P. Pickard

2006-08-01T23:59:59.000Z

104

Method and apparatus for transport, introduction, atomization and excitation of emission spectrum for quantitative analysis of high temperature gas sample streams containing vapor and particulates without degradation of sample stream temperature  

DOE Patents (OSTI)

A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.

Eckels, David E. (Ankeny, IA); Hass, William J. (Ames, IA)

1989-05-30T23:59:59.000Z

105

Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors  

Science Conference Proceedings (OSTI)

A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000C in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

Dawn Scates

2010-10-01T23:59:59.000Z

106

High Temperature Capacitor Development  

Science Conference Proceedings (OSTI)

The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a unique high-temperature electrolyte developed during the course of the program. During this program the feasibility of operating a high voltage hybridized capacitor at 230oC was demonstrated. Capacitor specifications were established in conjunction with potential capacitor users. A method to allow for capacitor operation at both ambient and elevated temperatures was demonstrated. The program was terminated prior to moving into Phase II due to a lack of cost-sharing funds.

John Kosek

2009-06-30T23:59:59.000Z

107

Development of ceramic membrane reactors for high temperature gas cleanup. Final report  

SciTech Connect

The objective of this project was to develop high temperature, high pressure catalytic ceramic membrane reactors and to demonstrate the feasibility of using these membrane reactors to control gaseous contaminants (hydrogen sulfide and ammonia) in integrated gasification combined cycle (IGCC) systems. Our strategy was to first develop catalysts and membranes suitable for the IGCC application and then combine these two components as a complete membrane reactor system. We also developed a computer model of the membrane reactor and used it, along with experimental data, to perform an economic analysis of the IGCC application. Our results have demonstrated the concept of using a membrane reactor to remove trace contaminants from an IGCC process. Experiments showed that NH{sub 3} decomposition efficiencies of 95% can be achieved. Our economic evaluation predicts ammonia decomposition costs of less than 1% of the total cost of electricity; improved membranes would give even higher conversions and lower costs.

Roberts, D.L.; Abraham, I.C.; Blum, Y.; Gottschlich, D.E.; Hirschon, A.; Way, J.D.; Collins, J.

1993-06-01T23:59:59.000Z

108

FISSION PRODUCT TRAPS FOR USE IN HIGH-TEMPERATURE GAS-COOLED GRAPHITE REACTORS  

SciTech Connect

A proposal is given of an approach to a fission-product trapping system which appears feasible on the basis of thermodynamic and other data available. Reactor and trapping conditions are outlined. The half-lives, fission yields, and volatility of the fission products of interest are described. To provide the most effective retention at elevated temperatures, two types of reagents are required: a highly electropositive metal that will not melt or appreciably vaporize and which will form stable non-volatile compounds with non-metallic or near non-metallic fission products; and a reagent to provide a highly electronegative element to form stable, non-volatile compounds with metallic fission products. Thermodynamic properties are included for compounds formed by reactions between the fission products and the trapping reagents. (B.O.G.)

Zumwalt, L.R.

1958-03-13T23:59:59.000Z

109

A STUDY OF GAS-SOLID SUSPENSIONS AT HIGH TEMPERATURES AND EFFECT OF ELECTROMAGNETIC FIELDS. Technical Report IIL-7-P  

SciTech Connect

The equilibrium between thermionic emission from solid particles and space charges of the phases in a gas-solid suspension (thermal electrification) was previously studied. Some further considerations are examined. Investigation of the effects of the properties of the solid phase on thermal electrification indicates that solid particies in a gassolid system could be much hotter than the gas phase since thermal electrification depends mainly on solid particle temperature. Control of thermal electrification by the initial charge of solid particles, particularly removal of electrons by positively charged particles, is considered. The rate of solid particle dispersion is found to be the main factor in deionization of hot gases by charged solid particles. Investigation of the electrical conductivity of a mixture of electrons, charged solid particles, and the gas atoms of the suspending gas reveals that thermal electrification is not the only contributor to high electrical conductivity. Use of a gas-solid system for magnetohydrodynamic energy conversion is also examined. Solid particles of controlled size contribute favorably to MHD generation, but in plasma MHD accelerators would reduce performance. (D.C.W.)

Soo, S.L.

1962-06-01T23:59:59.000Z

110

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

111

Numerical simulation of flow distribution for pebble bed high temperature gas cooled reactors  

E-Print Network (OSTI)

The premise of the work presented here is to use a common analytical tool, Computational Fluid dynamics (CFD), along with a difference turbulence models. Eddy viscosity models as well as state-of-the-art Large Eddy Simulation (LES) were used to study the flow past bluff bodies. A suitable CFD code (CFX5.6b) was selected and implemented. Simulation of turbulent transport for the gas through the gaps of the randomly distributed spherical fuel elements (pebbles) was performed. Although there are a number of numerical studies () on flows around spherical bodies, none of them use the necessary turbulence models that are required to simulate flow where strong separation exists. With the development of high performance computers built for applications that require high CPU time and memory; numerical simulation becomes one of the more effective approaches for such investigations and LES type of turbulence models can be used more effectively. Since there are objects that are touching each other in the present study, a special approach was applied at the stage of building computational domain. This is supposed to be a considerable improvement for CFD applications. Zero thickness was achieved between the pebbles in which fission reaction takes place. Since there is a strong pressure gradient as a result of high Reynolds Number on the computational domain, which strongly affects the boundary layer behavior, heat transfer in both laminar and turbulent flows varies noticeably. Therefore, noncircular curved flows as in the pebble-bed situatio n, in detailed local sense, is interesting to be investigated. Since a compromise is needed between accuracy of results and time/cost of effort in acquiring the results numerically, selection of turbulence model should be done carefully. Resolving all the scales of a turbulent flow is too costly, while employing highly empirical turbulence models to complex problems could give inaccurate simulation results. The Large Eddy Simulation (LES) method would achieve the requirements to obtain a reasonable result. In LES, the large scales in the flow are solved and the small scales are modeled. Eddy viscosity and Reynolds stress models were also be used to investigate the applicability of these models for this kind of flow past bluff bodies at high Re numbers.

Yesilyurt, Gokhan

2006-05-01T23:59:59.000Z

112

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

DOE Green Energy (OSTI)

This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

Lee Nelson

2009-10-01T23:59:59.000Z

113

Preparation and characterization of composite membrane for high temperature gas separation. Quarterly technical report, September 1--November 30, 1994  

DOE Green Energy (OSTI)

To develop a new class of permselective inorganic membranes, the authors have identified electroless plating as a potential route to deposit a thin metal film on a porous substrate. Electroless plating is a controlled autocatalytic deposition of continuous film on the surface of a substrate by the interactions of a metal salt and a chemical reducing agent. This method can give thin films of metals, alloys and composites on both conducting and nonconducting surfaces. The objective of this project is to develop thin film palladium membranes for separation of hydrogen in high temperature applications. The authors plan to use electroless plating to deposit thin palladium films on microporous ceramic and silver substrates. They plan to characterize the membrane in terms of permeability and selectivity for gas separation. To accomplish the research objective, the project requires three tasks: Development of a process for composite membrane formation; Characterization of fabricated composite membrane; and Development of theoretical model for hydrogen gas separation. During this quarter, the authors attempted to measure the diffusivity and permeability of hydrogen gas through the palladium composite membrane. While running the diffusion measurements at elevated temperature and pressure, leakage of hydrogen was observed. This is a serious problem and it needs to be resolved. Currently, they are working on this problem. During this quarter, they also designed a diffusion cell to test thin-film palladium membrane in tubular structure. The diffusion cell is being fabricated and assembled by a local machine shop.

Ilias, S.; King, F.G.

1994-12-31T23:59:59.000Z

114

Status of METC investigations of coal gas desulfurization at high temperature. [Zinc ferrite  

DOE Green Energy (OSTI)

This report documents the continuing effort at the US Department of Energy/Morgantown Energy Technology Center (METC) to develop a hot-gas desulfurization process for coal-derived gas, primarily for application to molten carbonate fuel cells. Metal oxide sorbents were tested on lab-scale test equipment, and it was determined that scale-up of the process was warranted. A larger, skid-mounted test unit was therefore designed, constructed, and installed on a sidestream of the DOE/METC fixed-bed gasifier. A first series of tests was conducted during Gasifier Run 101. These tests served to shake down the test unit, and provide data on the performance of the test unit operating on coal-derived gas. Overall, the process operated well on fixed-bed, air-blown gasifier gas. Sulfur levels in exit dry gas were reduced to less than 10 ppM. Regeneration appears to restore the sulfur-removing capacity of the sorbent. Sorbent integrity was maintained during the test period, which incorporated three sulfidations. It is recommended that treatment of the regeneration offgas be investigated, and that testing and development of a system to reduce the sulfur in this gas to elemental sulfur be initiated. In addition, it is suggested that a multiple reactor system be planned for continuous operation, to allow for long-term tests of downstream users of desulfurized gas. 7 references, 18 figures, 9 tables.

Steinfeld, G.

1984-03-01T23:59:59.000Z

115

High-temperature ceramic receivers  

DOE Green Energy (OSTI)

An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

Jarvinen, P. O.

1980-01-01T23:59:59.000Z

116

PERFORMANCE ANALYSIS OF A WINDOWED HIGH TEMPERATURE GAS RECEIVER USING A SUSPENSION OF ULTRAFINE CARBON PARTICLES AS THE SOLAR ABSORBER  

E-Print Network (OSTI)

efficiency. INTRODUCTION Recently, there has been renewed interest in windowed high temperature receivers for solar thermal

Fisk, William J.

2012-01-01T23:59:59.000Z

117

Preparation and characterization of composite membrane for high temperature gas separation  

DOE Green Energy (OSTI)

A new class of perm-selective inorganic membrane was developed by electroless deposition of palladium thin-film on a microporous {alpha}-alumina ceramic substrate ({phi}39 mm x 2 mm thickness, nominal pore size 150 nm and open porosity {approx} 42 %). The new membrane was characterized by Scanning Electron Micrography (SEM), Energy Dispersive X-ray Analysis (EDX) and conducting permeability experiments with hydrogen, helium, argon and carbon dioxide at temperatures from 473 K to 673 K and feed pressures from 136 kPa to 274 kPa. The results indicate that the membrane has both high permeability and selectivity for hydrogen. The hydrogen transport through the Pd-composite membrane closely followed Sievert's law. A theoretical model is presented to describe the performance of a single-stage permeation process. The model uses a unified mathematical formulation and calculation methods for two flow patterns (cocurrent and countercurrent) with two permeable components and a nonpermeable fraction in the feed and a sweep stream in the permeate. The countercurrent flow pattern is always better than the cocurrent flow pattern with respect to stage cut and membrane area. The effect of flow configuration decreases with increasing membrane selectivity or with decreasing permeate/feed ratio.

Ilias, S.; King, F.G.

1998-03-26T23:59:59.000Z

118

Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production  

SciTech Connect

The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

Carl Marcel Stoots; Lee Shunn; James O'Brien

2010-06-01T23:59:59.000Z

119

PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS  

DOE Green Energy (OSTI)

For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating procedures for fabrication of thin Pd-Cu composite membranes at any scale.

J. Douglas Way

2003-01-01T23:59:59.000Z

120

Thermal Hydraulic Analysis of a Reduced Scale High Temperature Gas-Cooled Reactor Test Facility and its Prototype with MELCOR  

E-Print Network (OSTI)

Pursuant to the energy policy act of 2005, the High Temperature Gas-Cooled Reactor (HTGR) has been selected as the Very High Temperature Reactor (VHTR) that will become the Next Generation Nuclear Plant (NGNP). Although plans to build a demonstration plant at Idaho National Laboratories (INL) are currently on hold, a cooperative agreement on HTGR research between the U.S. Nuclear Regulatory Commission (NRC) and several academic investigators remains in place. One component of this agreement relates to validation of systems-level computer code modeling capabilities in anticipation of the eventual need to perform HTGR licensing analyses. Because the NRC has used MELCOR for LWR licensing in the past and because MELCOR was recently updated to include gas-cooled reactor physics models, MELCOR is among the system codes of interest in the cooperative agreement. The impetus for this thesis was a code-to-experiment validation study wherein MELCOR computer code predictions were to be benchmarked against experimental data from a reduced-scale HTGR testing apparatus called the High Temperature Test Facility (HTTF). For various reasons, HTTF data is not yet available from facility designers at Oregon State University, and hence the scope of this thesis was narrowed to include only computational studies of the HTTF and its prototype, General Atomics Modular High Temperature Gas-Cooled Reactor (MHTGR). Using the most complete literature references available for MHTGR design and using preliminary design information on the HTTF, MELCOR input decks for both systems were developed. Normal and off-normal system operating conditions were modeled via implementation of appropriate boundary and inititial conditions. MELCOR Predictions of system response for steady-state, pressurized conduction cool-down (PCC), and depressurized conduction cool-down (DCC) conditions were checked against nominal design parameters, physical intuition, and some computational results available from previous RELAP5-3D analyses at INL. All MELCOR input decks were successfully built and all scenarios were successfully modeled under certain assumptions. Given that the HTTF input deck is preliminary and was based on dated references, the results were altogether imperfect but encouraging since no indications of as yet unknown deficiencies in MELCOR modeling capability were observed. Researchers at TAMU are in a good position to revise the MELCOR models upon receipt of new information and to move forward with MELCOR-to-HTTF benchmarking when and if test data becomes available.

Beeny, Bradley 1988-

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Regenerable sorbents for CO.sub.2 capture from moderate and high temperature gas streams  

DOE Patents (OSTI)

A process for making a granular sorbent to capture carbon dioxide from gas streams comprising homogeneously mixing an alkali metal oxide, alkali metal hydroxide, alkaline earth metal oxide, alkaline earth metal hydroxide, alkali titanate, alkali zirconate, alkali silicate and combinations thereof with a binder selected from the group consisting of sodium ortho silicate, calcium sulfate dihydrate (CaSO.sub.4.2H.sub.2O), alkali silicates, calcium aluminate, bentonite, inorganic clays and organic clays and combinations thereof and water; drying the mixture and placing the sorbent in a container permeable to a gas stream.

Siriwardane, Ranjani V. (Morgantown, WV)

2008-01-01T23:59:59.000Z

122

Development of hollow fiber catalytic membrane reactors for high temperature gas cleanup. Final report, September 1989--March 1994  

SciTech Connect

The objective of this project was to develop economically and technically viable catalytic membrane reactors for high temperature, high pressure gaseous contaminant control in Integrated Gasification Combined Cycle (IGCC) systems. These catalytic membrane reactors decompose H{sub 2}S and separate the reaction products. The reactors were designed to operate in the hostile process environment of the IGCC systems, and at temperatures ranging from 500 to 1000{degrees}C. Severe conditions encountered in the IGCC process (e.g., 900{degrees}C, containing of H{sub 2}S, CO{sub 2} and H{sub 2}O) make it impossible to use polymeric membranes in the process. A list of inorganic membranes that can be employed in the membrane reactor includes Pd metallic membranes, molecular-sieve glass membranes (PPG Industries), porous Vycor glass membranes and porous sol-gel derived membranes such as alumina, zirconia. Alumina and zirconia membranes, however, cannot withstand for a long time at high temperatures in the presence of water vapors. Palladium membranes are a very promising class of inorganic membranes for gas separations that is currently under development. In this project two different types of membranes were used in the design of the membrane reactor -- molecular-sieve glass membrane and Vycor glass porous membrane.

Ma, Yi Hua; Moser, W.R.; Pien, S.; Shelekhin, A.B.

1994-07-01T23:59:59.000Z

123

High-temperature gas-cooled reactor (HTGR): long term program plan  

DOE Green Energy (OSTI)

The FY 1980 effort was to investigate four technology options identified by program participants as potentially viable candidates for near-term demonstration: the Gas Turbine system (HTGR-GT), reflecting its perceived compatibility with the dry-cooling market, two systems addressing the process heat market, the Reforming (HTGR-R) and Steam Cycle (HTGR-SC) systems, and a more developmental reactor system, The Nuclear Heat Source Demonstration Reactor (NHSDR), which was to serve as a basis for both the HTGR-GT and HTGR-R systems as well as the further potential for developing advanced applications such as steam-coal gasification and water splitting.

Not Available

1980-10-09T23:59:59.000Z

124

High-pressure/high-temperature gas-solubility study in hydrogen-phenanthrene and methane-phenanthrene systems using static and chromatographic techniques  

SciTech Connect

The design and discovery of sources for alternative energy such as coal liquefaction has become of major importance over the past two decades. One of the major problems in such design in the lack of available data, particularly, for gas solubility in polycyclic aromatics at high temperature and pressure. Static and gas-liquid partition chromatographic methods were used for the study of hydrogen-phenanthrene and methane-phenanthrene systems. The static data for these two binaries were taken along 398.2, 423.2, 448.2, and 473.2 K isotherms up to 25.23 MPa. Gas-liquid partition chromatography was used to study the infinite dilution behavior of methane, ethane, propane, n-butane, and carbon dioxide in the hydrogen-phenanthrene system as well as hydrogen, ethane, n-butane, and carbon dioxide in the methane-phenanthrene binary. The principle objective was to examine the role of the elution gas. Temperatures were along the same isotherms as the static data and up to 20.77 MPa. With the exception of carbon dioxide, Henry's constants were calculated for all systems. Expressions for the heat of solution as a function of pressure were derived for both binary and chromatographic data. Estimates of delta H/sub i/sup sol/ at high pressure were presented.

Malone, P.V.

1987-01-01T23:59:59.000Z

125

Modeling and performance of the MHTGR (Modular High-Temperature Gas-Cooled Reactor) reactor cavity cooling system  

SciTech Connect

The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab.

Conklin, J.C. (Oak Ridge National Lab., TN (USA))

1990-04-01T23:59:59.000Z

126

Design Configurations for a Very High Temperature Gas-Cooled Reactor Designed to Generate Electricity and Hydrogen  

DOE Green Energy (OSTI)

The High Temperature Gas-Cooled Reactor is being envisioned that will generate not just electricity, but also hydrogen to charge up fuel cells for cars, trucks and other mobile energy uses. INL engineers studied various heat-transfer working fluidsincluding helium and liquid saltsin seven different configurations. In computer simulations, serial configurations diverted some energy from the heated fluid flowing to the electric plant and hydrogen production plant. In anticipation of the design, development and procurement of an advanced power conversion system for HTGR, this study was initiated to identify the major design and technology options and their tradeoffs in the evaluation of power conversion system (PCS) coupled to hydrogen plant. In this study, we investigated a number of design configurations and performed thermal hydraulic analyses using various working fluids and various conditions (Oh, 2005). This paper includes a portion of thermal hydraulic results based on a direct cycle and a parallel intermediate heat exchanger (IHX) configuration option.

Conference preceedings

2006-07-01T23:59:59.000Z

127

Licensing topical report: applicability of Division 1 regulatory guides to high-temperature gas-cooled reactors  

SciTech Connect

The application of Division 1 (power reactors) regulatory guides to high-temperature gas-cooled reactors (HTGRs) is discussed. About eighty of the Division 1 guides can be applied to any type of reactor; the remaining sixty, mostly written for light water reactors (LWRs), are divided between (1) those not applicable to the HTGR because of fundamental differences in design, (2) those applicable in intent but containing positions specific to LWRs, and (3) those written for LWRs but of sufficient generality to be applied to the HTGR without major exception. Emphasis is placed on issues which involve the unique characteristics of the HTGR. The regulatory guides evaluated are those extant as of early 1980. The positions presented are subject to periodic updating owing to the continuing modification of the guides and because the design options for the HTGR are at various stages of development. Nevertheless, this report is believed to provide a sound basis for evaluating conformance with existing Division 1 guides.

Lewis, J.H.

1980-12-01T23:59:59.000Z

128

On0Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactor  

Science Conference Proceedings (OSTI)

IVery High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (~ 1- mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4% 10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

Ayman I. Hawari; Mohamed A. Bourham

2010-04-22T23:59:59.000Z

129

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

DOE Green Energy (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

130

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

Not Available

1992-11-01T23:59:59.000Z

131

Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas  

SciTech Connect

Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

Baltrus, J.P.; Granite, E.J.; Pennline, H.W.; Stanko, D.; Hamilton, H.; Rowsell, L.; Poulston, S.; Smith, A.; Chu, W.

2010-01-01T23:59:59.000Z

132

ORTAP: a nuclear steam supply system simulation for the dynamic analysis of high temperature gas cooled reactor transients  

SciTech Connect

ORTAP was developed to predict the dynamic behavior of the high temperature gas cooled reactor (HTGR) Nuclear Steam Supply System for normal operational transients and postulated accident conditions. It was developed for the Nuclear Regulatory Commission (NRC) as an independent means of obtaining conservative predictions of the transient response of HTGRs over a wide range of conditions. The approach has been to build sufficient detail into the component models so that the coupling between the primary and secondary systems can be accurately represented and so that transients which cover a wide range of conditions can be simulated. System components which are modeled in ORTAP include the reactor core, a typical reheater and steam generator module, a typical helium circulator and circulator turbine and the turbine generator plant. The major plant control systems are also modeled. Normal operational transients which can be analyzed with ORTAP include reactor start-up and shutdown, normal and rapid load changes. Upset transients which can be analyzed with ORTAP include reactor trip, turbine trip and sudden reduction in feedwater flow. ORTAP has also been used to predict plant response to emergency or faulted conditions such as primary system depressurization, loss of primary coolant flow and uncontrolled removal of control poison from the reactor core.

Cleveland, J.C.; Hedrick, R.A.; Ball, S.J.; Delene, J.G.

1977-08-10T23:59:59.000Z

133

High temperature furnace  

DOE Patents (OSTI)

A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

Borkowski, Casimer J. (Oak Ridge, TN)

1976-08-03T23:59:59.000Z

134

Coatings to Prevent Diffusion of Fission Products into Turbine Materials Used in High Temperature Gas Cooled Nuclear Electric Genera ting Stations  

Science Conference Proceedings (OSTI)

This report describes EPRI activities relating to turbine blade coatings to prevent diffusion of fission products into turbine materials used in high temperature gas cooled nuclear electric generating stations. Specifically, this report describes activities that have identified candidate coatings and methodologies for evaluating the effectiveness of these coatings.

2003-12-31T23:59:59.000Z

135

Development of a dynamic simulation code for the sulfur-iodine process coupled to a very high-temperature gas-cooled nuclear reactor  

Science Conference Proceedings (OSTI)

One of the key issues in developing a sulfur-iodine (SI) thermochemical hydrogen production technology is how to operate the SI process, including the start-up operation procedure. In order to effectively establish a start-up procedure, it is necessary ... Keywords: dynamic simulation, nuclear hydrogen, start-up, sulfur-iodine process, very high-temperature gas-cooled reactor

Jiwoon Chang, Youngjoon Shin, Kiyoung Lee, Yongwan Kim, Cheong Youn

2013-02-01T23:59:59.000Z

136

Balance of Plant System Analysis and Component Design of Turbo-Machinery for High Temperature Gas Reactor Systems  

Science Conference Proceedings (OSTI)

The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a Generation IV nuclear system. The availability of controllable helium turbomachinery and compact heat exchangers are thus the critical enabling technology for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has been accomplished with the overriding constraint that this design could be built with existing technology and complies with all current codes and standards. Using the initial reference design, limiting features were identified. Finally, an optimized reference design was developed by identifying key advances in the technology that could reasonably be expected to be achieved with limited R&D. This final reference design is an indirect, intercooled and recuperated cycle consisting of a three-shaft arrangement for the turbomachinery system. A critical part of the design process involved the interaction between individual component design and overall plant performance. The helium cycle overall efficiency is significantly influenced by performance of individual components. Changes in the design of one component, a turbine for example, often required changes in other components. To allow for the optimization of the overall design with these interdependencies, a detailed steady state and transient control model was developed. The use of the steady state and transient models as a part of an iterative design process represents a key contribution of this work. A dynamic model, MPBRSim, has been developed. The model integrates the reactor core and the power conversion system simultaneously. Physical parameters such as the heat exchangers; weights and practical performance maps such as the turbine characteristics and compressor characteristics are incorporated into the model. The individual component models as well as the fully integrated model of the power conversion system have been verified with an industry-standard general thermal-fluid code Flownet. With respect to the dynamic model, bypass valve control and inventory control have been used as the primary control methods for the power conversion system. By performing simulation using the dynamic model with the designed control scheme, the combination of bypass and inventory control was optimized to assure system stability within design temperature and pressure limits. Bypass control allows for rapid control system response while inventory control allows for ultimate steady state operation at part power very near the optimum operating point for the system. Load transients simulations show that the indirect, three-shaft arrangement gas turbine power conversion system is stable and controllable. For the indirect cycle the intermediate heat exchanger (IHX) is the interface between the reactor and the turbomachinery systems. As a part of the design effort the IHX was identified as the key component in the system. Two technologies, printed circuit and compact plate-fin, were investigated that have the promise of meeting the design requirements for the system. The reference design incorporates the possibility of using either technology although the compact plate-fin design was chosen for subsequent analysis. The thermal design and parametric analysis with an IHX and recuperator using the plate-fin configuration have been performed. As a three-shaft arrangement, the turbo-shaft sets consist of a pair of turbine/compressor sets (high pressure and low pressure turbines with same-shaft compressor) and a power turbine coupled with a synchronous generator. The turbines and compressors are all axial type and the shaft configuration is horizontal. The core outlet/inlet temperatures are 900/520 C, and the optimum pressure ratio in the power conversion cycle is 2.9. The design achieves a plant net efficiency of approximately 48%.

Ronald G. Ballinger Chunyun Wang Andrew Kadak Neil Todreas

2004-08-30T23:59:59.000Z

137

Development and Evaluation of a Safeguards System Concept for a Pebble-Fueled High Temperature Gas-cooled Reactor  

E-Print Network (OSTI)

Pebble-fueled high temperature gas-cooled reactor (HTGR) technology was first developed by the Federal Republic of Germany in the 1950s. More recently, the design has been embraced by the People's Republic of China and the Republic of South Africa. Unlike light water reactors that generate heat from fuel assemblies comprised of fuel rods, pebble-fueled HTGRs utilize thousands of 60-mm diameter fuel spheres (pebbles) comprised of thousands of TRISO particles. As this reactor type is deployed across the world, adequate methods for safeguarding the reactor must be developed. Current safeguards methods for the pebble-fueled HTGR focus on extensive, redundant containment and surveillance (C/S) measures or a combination of item-type and bulk-type material safeguards measures to deter and detect the diversion of fuel pebbles. The disadvantages to these approaches are the loss of continuity of knowledge (CoK) when C/S systems fail, or are compromised, and the introduction of material unaccounted for (MUF). Either vulnerability can be exploited by an adversary to divert fuel pebbles from the reactor system. It was determined that a solution to maintaining CoK is to develop a system to identify each fuel pebble that is inserted and removed from the reactor. Work was performed to develop and evaluate the use of inert microspheres placed in each fuel pebble, whose random placement could be used as a fingerprint to identify the fuel pebble. Ultrasound imaging of 1 mm zirconium oxide microspheres was identified as a possible imaging system and microsphere material for the new safeguards system concept. The system concept was evaluated, and it was found that a minimum of three microspheres are necessary to create enough random fingerprints for 10,000,000 pebbles. It was also found that, over the lifetime of the reactor, less than 0.01% of fuel pebbles can be expected to have randomly the same microsphere fingerprint. From an MCNP 5.1 model, it was determined that less than fifty microspheres in each pebble will have no impact on the reactivity or temperature coefficient of reactivity of the reactor system. Finally, using an ultrasound system it was found that ultrasound waves can penetrate thin layers of graphite to image the microsphere fingerprint.

Gitau, Ernest Travis Ngure

2011-08-01T23:59:59.000Z

138

THE COMPONENT TEST FACILITY A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

David S. Duncan; Vondell J. Balls; Stephanie L. Austad

2008-09-01T23:59:59.000Z

139

High temperature sensor  

DOE Patents (OSTI)

A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

Tokarz, Richard D. (West Richland, WA)

1982-01-01T23:59:59.000Z

140

High temperature refrigerator  

SciTech Connect

A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

Steyert, Jr., William A. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Effect of low and high storage temperatures on head space gas concentrations and physical properties of wood pellets  

SciTech Connect

Headspace gas concentrations and wood pellet properties were studied in sealed glass canisters at 540 degrees C storage temperatures. CO2 and CO concentrations at 5, 10, 20 and 40 degrees C at the end of 2328 days of storage were 1600 and 200, 4700 and 1200, and 31 200 and 15 800 parts per million by volume (ppmv) respectively. Corresponding O2 concentration was about 1949, 1920, 180 and 207% respectively. Non-linear regression equations adequately described the gas concentrations in the storage container as a function of time. Safe level estimation functions developed were linear for O2 and logarithmic for CO and CO2 concentrations. Measured pellet properties moisture, length, diameter, unit, bulk and tapped density, durability, calorific value, ash content and per cent fines were in the range of 46502%, 1415 mm, 6465 mm, 11251175 kg m-3, 750770 kg m-3, 825840 kg m-3, 7374%, 18321878 MJ kg-1, 065074% and 013015%. Durability values of pellets decreased by 13% at 40 degrees C storage temperature and other properties changed marginally.

Jaya Shankar Tumuluru; Shahab Sokhansanj; C. Jim Lim; Tony Bi; Xingya Kuang; Staffan Melin

2013-11-01T23:59:59.000Z

142

High Temperature Corrosion  

Science Conference Proceedings (OSTI)

Oct 18, 2010 ... Protective Coatings for Corrosion Resistance at High Temperatures: Vilupanur Ravi1; Thuan Nguyen1; Alexander Ly1; Kameron Harmon1;...

143

A summary of volatile impurity measurements and gas generation studies on MISSTD-1, a high-purity plutonium oxide produced by low-temperature calcination of plutonium oxalate  

Science Conference Proceedings (OSTI)

Plutonium dioxide of high specific surface area was subjected to long-term tests of gas generation in sealed containers. The material preparation and the storage conditions were outside the bounds of acceptable parameters defined by DOE-STD-3013-2012 in that the material was stabilized to a lower temperature than required and had higher moisture content than allowed. The data provide useful information for better defining the bounding conditions for safe storage. Net increases in internal pressure and transient increases in H{sub 2} and O{sub 2} were observed, but were well within the bounds of gas compositions previously shown to not threaten integrity of 3013 containers.

Berg, John M. [Los Alamos National Laboratory; Narlesky, Joshua E. [Los Alamos National Laboratory; Veirs, Douglas K. [Los Alamos National Laboratory

2012-06-08T23:59:59.000Z

144

High-temperature sensor  

DOE Patents (OSTI)

A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

Not Available

1981-01-29T23:59:59.000Z

145

Electrolysis High Temperature Hydrogen  

INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility ...

146

PERFORMANCE ANALYSIS OF A WINDOWED HIGH TEMPERATURE GAS RECEIVER USING A SUSPENSION OF ULTRAFINE CARBON PARTICLES AS THE SOLAR ABSORBER  

E-Print Network (OSTI)

with a regenerated gas turbine sys- tem providing severaltemperature for powering a gas turbine or to supply indus-from the compressor of a gas turbine and passes on to the

Fisk, William J.

2012-01-01T23:59:59.000Z

147

Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology  

SciTech Connect

The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.

Shiquan Tao

2006-12-31T23:59:59.000Z

148

High Temperature ESP Monitoring  

SciTech Connect

The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

Jack Booker; Brindesh Dhruva

2011-06-20T23:59:59.000Z

149

Representative Source Terms and the Influence of Reactor Attributes on Functional Containment in Modular High-Temperature Gas-Cooled Reactors  

Science Conference Proceedings (OSTI)

Modular high-temperature gas-cooled reactors (MHTGRs) offer a high degree of passive safety. The low power density of the reactor and the high heat capacity of the graphite core result in slow transients that do not challenge the integrity of the robust TRISO fuel. Another benefit of this fuel form and the surrounding graphite is their superior ability to retain fission products under all anticipated normal and off-normal conditions, which limits reactor accident source terms to very low values. In this paper, we develop estimates of the source term for a generic MHTGR to illustrate the performance of the radionuclide barriers that comprise the MHTGR functional containment. We also examine the influence of initial fuel quality, fuel performance/failure, reactor outlet temperature, and retention outside of the reactor core on the resultant source term to the environment.

D. A. Petti; Hans Gougar; Dick Hobbins; Pete Lowry

2013-11-01T23:59:59.000Z

150

High temperature size selective membranes  

DOE Green Energy (OSTI)

The objective of this research is to develop a high temperature size selective membrane capable of separating gas mixture components from each other based on molecular size, using a molecular sieving mechanism. The authors are evaluating two concepts: a composite of a carbon molecular sieve (CMS) with a tightly defined pore size distribution between 3 and 4 {angstrom}, and a microporous supporting matrix which provides mechanical strength and resistance to thermal degradation, and a sandwich of a CMS film between the porous supports. The high temperature membranes the authors are developing can be used to replace the current low-temperature unit operations for separating gaseous mixtures, especially hydrogen, from the products of the water gas shift reaction at high temperatures. Membranes that have a high selectivity and have both thermal and chemical stability would improve substantially the economics of the coal gasification process. These membranes can also improve other industrial processes such as the ammonia production and oil reform processes where hydrogen separation is crucial. Results of tests on a supported membrane and an unsupported carbon film are presented.

Yates, S.F.; Zhou, S.J.; Anderson, D.J.; Til, A.E. van

1994-10-01T23:59:59.000Z

151

Mechanism-Based Testing Methodology for Improving the Oxidation, Hot Corrosion and Impact Resistance of High-Temperature Coatings for Advanced Gas Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Pittsburgh Pittsburgh University of Pittsburgh PIs: F. S. Pettit, G. H. Meier Subcontractor: J. L. Beuth SCIES Project 02- 01- SR101 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/02, 36 Month Duration + 6 mo No-Cost Extension) $ 458,420 Total Contract Value ($ 412,695 DOE) Mechanism-Based Testing Methodology For Improving the Oxidation, Hot Corrosion and Impact Resistance of High- Temperature Coatings for Advanced Gas Turbines University of Pittsburgh - Carnegie Mellon University University of Pittsburgh University of Pittsburgh In the next generation gas turbine, resistance to thermal cycling damage may be as important as resistance to long isothermal exposures. Moreover, metallic coatings and Thermal Barrier

152

Processing of FRG high-temperature gas-cooled reactor fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements  

Science Conference Proceedings (OSTI)

The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects of gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment development section of the agreement, both FRG mixed uranium/ thorium and low-enriched uranium fuel spheres have been processed in the Department of Energy-sponsored cold pilot plant for high-temperature gas-cooled reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles suitable for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated certain modifications to the US HTGR fuel burining process necessary for FRG fuel treatment. Results of the tests will be used in the design of a US/FRG joint prototype headend facility for HTGR fuel.

Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Drake, R.N.

1981-11-01T23:59:59.000Z

153

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Progress report No. 12, September--December 1994  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. There are two basic arrangements of our HIPPS cycle. Both are coal-fired combined cycles. One arrangement is the 35% natural gas HIPPS. Coal is converted to fuel gas and char in a pyrolysis process, and these fuels are fired in separate parts of a high temperature advanced furnace (HITAF). The char-fired furnace produces flue gas that is used to heat gas turbine air up to 1400 F. Alloy tubes are used for these tube banks. After leaving the alloy tube banks, the gas turbine air goes through a ceramic air heater where it is heated from 1400 F to 1800 F. The flue gas that goes through the ceramic air heater comes from the combustion of the fuel gas that is produced in the pyrolysis process. This fuel gas is cleaned to remove particulates and alkalies that would corrode and plug a ceramic air heater. The air leaving the ceramic air heater needs to be heated further to achieve the efficiency goal of 47%, and this is done by firing natural gas in the gas turbine combustor. An alternative arrangement of the HIPPS cycle is called the All Coal HIPPS. With this arrangement, the char is used to heat the gas turbine air to 1400 F as before, but instead of then going to a ceramic air heater, the air goes directly to the gas turbine combustor. The fuel gas generated in the pyrolyzer is used as fuel in the gas turbine combustor. In both cycle arrangements, heat is transferred to the steam cycle in the HITAF and a heat recovery steam generator (HRSG).

1995-06-01T23:59:59.000Z

154

High temperature thermometric phosphors  

SciTech Connect

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1999-03-23T23:59:59.000Z

155

Enriched-uranium feed costs for the High-Temperature Gas-Cooled reactor: trends and comparison with other reactor concepts  

SciTech Connect

This report discusses each of the components that affect the unit cost for enriched uranium; that is, ore costs, U/sub 3/O/sub 8/ to UF/sub 6/ conversion cost, costs for enriching services, and changes in transaction tails assay. Historical trends and announced changes are included. Unit costs for highly enriched uranium (93.15 percent /sup 235/U) and for low-enrichment uranium (3.0, 3.2, and 3.5 percent /sup 235/U) are displayed as a function of changes in the above components and compared. It is demonstrated that the trends in these cost components will probably result in significantly less cost increase for highly enriched uranium than for low-enrichment uranium--hence favoring the High-Temperature Gas-Cooled Reactor.

Thomas, W.E.

1976-04-01T23:59:59.000Z

156

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report  

SciTech Connect

A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

NONE

1996-02-01T23:59:59.000Z

157

High-temperature electronics: an overview  

DOE Green Energy (OSTI)

A summary is presented providing an overview of contemporary high-temperature electronics and identifying the major areas where developments are needed and the laboratories where research is being conducted. The geothermal program, high-temperature oil and gas well logging, jet engine monitors, and circuits for operation in the sodium coolant loop of the Clinch River Breeder reactor have stimulated research. (FS)

Heckman, R.C.

1979-01-01T23:59:59.000Z

158

Dual-phase membrane for High temperature CO2 separation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 CO 2 High temp. membrane for CO 2 removal High Temperature CO 2 Selective Membranes Syngas gas CO 2 enriched gas CO 2 High pressure H 2 0 100 200 300 400 500 600 700 1 10 100...

159

High-temperature helium-loop facility  

Science Conference Proceedings (OSTI)

The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

Tokarz, R.D.

1981-09-01T23:59:59.000Z

160

CFD Analysis of Core Bypass Flow and Crossflow in the Prismatic Very High Temperature Gas-cooled Nuclear Reactor  

E-Print Network (OSTI)

Very High Temperature Rector (VHTR) had been designated as one of those promising reactors for the Next Generation (IV) Nuclear Plant (NGNP). For a prismatic core VHTR, one of the most crucial design considerations is the bypass flow and crossflow effect. The bypass flow occurs when the coolant flow into gaps between fuel blocks. These gaps are formed as a result of carbon expansion and shrinkage induced by radiations and manufacturing and installation errors. Hot spots may appear in the core if the large portion of the coolant flows into bypass gaps instead of coolant channels in which the cooling efficiency is much higher. A preliminary three dimensional steady-state CFD analysis was performed with commercial code STARCCM+ 6.04 to investigate the bypass flow and crossflow phenomenon in the prismatic VHTR core. The k-? turbulence model was selected because of its robustness and low computational cost with respect to a decent accuracy for varied flow patterns. The wall treatment used in the present work is two-layer all y+ wall treatment to blend the wall laws to estimate the shear stress. Uniform mass flow rate was chose as the inlet condition and the outlet condition was zero gauge pressure outlet. Grid independence study was performed and the results indicated that the discrepancy of the solution due to the mesh density was within 2% of the bypass flow fraction. The computational results showed that the bypass flow fraction was around 12%. Furthermore, the presence of the crossflow gap resulted in a up to 28% reduction of the coolant in the bypass flow gap while mass flow rate of coolant in coolant channels increased by around 5%. The pressure drop at the inlet due to the sudden contraction in area could be around 1kpa while the value was about 180 Pa around the crossflow gap region. The error analysis was also performed to evaluate the accumulated errors from the process of discretization and iteration. It was found that the total error was around 4% and the variation for the bypass flow fraction was within 1%.

Wang, Huhu 1985-

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High Temperature | Open Energy Information  

Open Energy Info (EERE)

Temperature Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: High Temperature Dictionary.png High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid between 230°C and 300°C is considered by Sanyal to be "high temperature." "Above a temperature level of 230°C, the reservoir would be expected to become two-phase at some point during exploitation. The next higher

162

Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop  

SciTech Connect

The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

McCulloch, R.W.; MacPherson, R.E.

1983-03-01T23:59:59.000Z

163

High temperature catalytic membrane reactors  

DOE Green Energy (OSTI)

Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

Not Available

1990-03-01T23:59:59.000Z

164

High temperature interfacial superconductivity  

DOE Patents (OSTI)

High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

2012-06-19T23:59:59.000Z

165

Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG  

Science Conference Proceedings (OSTI)

The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

2009-08-15T23:59:59.000Z

166

TRITIUM PERMEATION AND TRANSPORT IN THE GASOLINE PRODUCTION SYSTEM COUPLED WITH HIGH TEMPERATURE GAS-COOLED REACTORS (HTGRS)  

Science Conference Proceedings (OSTI)

This paper describes scoping analyses on tritium behaviors in the HTGR-integrated gasoline production system, which is based on a methanol-to-gasoline (MTG) plant. In this system, the HTGR transfers heat and electricity to the MTG system. This system was analyzed using the TPAC code, which was recently developed by Idaho National Laboratory. The global sensitivity analyses were performed to understand and characterize tritium behaviors in the coupled HTGR/MTG system. This Monte Carlo based random sampling method was used to evaluate maximum 17,408 numbers of samples with different input values. According to the analyses, the average tritium concentration in the product gasoline is about 3.0510-3 Bq/cm3, and 62 % cases are within the tritium effluent limit (= 3.7x10-3 Bq/cm3[STP]). About 0.19% of released tritium is finally transported from the core to the gasoline product through permeations. This study also identified that the following four parameters are important concerning tritium behaviors in the HTGR/MTG system: (1) tritium source, (2) wall thickness of process heat exchanger, (3) operating temperature, and (4) tritium permeation coefficient of process heat exchanger. These four parameters contribute about 95 % of the total output uncertainties. This study strongly recommends focusing our future research on these four parameters to improve modeling accuracy and to mitigate tritium permeation into the gasol ine product. If the permeation barrier is included in the future study, the tritium concentration will be significantly reduced.

Chang H. Oh; Eung S. Kim; Mike Patterson

2011-05-01T23:59:59.000Z

167

Updating of ASME Nuclear Code Case N-201 to Accommodate the Needs of Metallic Core Support Structures for High Temperature Gas Cooled Reactors Currently in Development  

Science Conference Proceedings (OSTI)

On September 29, 2005, ASME Standards Technology, LLC (ASME ST-LLC) executed a multi-year, cooperative agreement with the United States DOE for the Generation IV Reactor Materials project. The project's objective is to update and expand appropriate materials, construction, and design codes for application in future Generation IV nuclear reactor systems that operate at elevated temperatures. Task 4 was embarked upon in recognition of the large quantity of ongoing reactor designs utilizing high temperature technology. Since Code Case N-201 had not seen a significant revision (except for a minor revision in September, 2006 to change the SA-336 forging reference for 304SS and 316SS to SA-965 in Tables 1.2(a) and 1.2(b), and some minor editorial changes) since December 1994, identifying recommended updates to support the current high temperature Core Support Structure (CSS) designs and potential new designs was important. As anticipated, the Task 4 effort identified a number of Code Case N-201 issues. Items requiring further consideration range from addressing apparent inconsistencies in definitions and certain material properties between CC-N-201 and Subsection NH, to inclusion of additional materials to provide the designer more flexibility of design. Task 4 developed a design parameter survey that requested input from the CSS designers of ongoing high temperature gas cooled reactor metallic core support designs. The responses to the survey provided Task 4 valuable input to identify the design operating parameters and future needs of the CSS designers. Types of materials, metal temperature, time of exposure, design pressure, design life, and fluence levels were included in the Task 4 survey responses. The results of the survey are included in this report. This research proves that additional work must be done to update Code Case N-201. Task 4 activities provide the framework for the Code Case N-201 update and future work to provide input on materials. Candidate materials such as Type 321 and Type 347 austenitic stainless steels, Modified 9Cr-1Mo steel for core support structure construction, and Alloy 718 for Threaded Structural Fasteners were among the recommended materials for inclusion in the Code Case. This Task 4 Report identifies the need to address design life beyond 3 x 105 hours, especially in consideration of 60-year design life. A proposed update to the latest Code Case N-201 revision (i.e., Code Case N-201-5) including the items resolved in this report is included as Appendix A.

Mit Basol; John F. Kielb; John F. MuHooly; Kobus Smit

2007-05-02T23:59:59.000Z

168

High-Temperature Gas-Cooled Reactors for the Production of Hydrogen: An Assessment in Support of the Hydrogen Economy  

Science Conference Proceedings (OSTI)

As we begin the 21st century, the civilized world, including the United States in particular, faces some daunting challenges with respect to energy. Energy use is a vital force in economic well-being. It drives many aspects of economic activity and is essential to a high quality of life. However, the unwanted side effects of energy use, including local pollution and the global build-up of greenhouse gases, degrade the quality of life and may threaten large-scale climate changes. In response to these chal...

2003-03-17T23:59:59.000Z

169

Primary coolant chemistry of the Peach Bottom and Fort St. Vrain high-temperature gas-cooled reactors  

Science Conference Proceedings (OSTI)

The chemical impurities in the primary coolants of the Peach Bottom and Fort St. Vrain reactors are discussed. The impurity mixtures in the two plants were quite different because the sources of the impurities were different. In the Peach Bottom reactor, the impurities were dominated by H/sub 2/ and CH/sub 4/, which are decomposition products of oil. In the Fort St. Vrain reactor, there were high levels of CO, CO/sub 2/, and H/sub 2/O. Although oil ingress at Peach Bottom created carbon deposits on virtually all surfaces, its effect on reactor operation was negligible. Slow outgassing of water from the thermal insulation at Fort St. Vrain caused delays in reactor startup. The overall graphite oxidation in both plants was negligible.

Burnette, R.D.; Baldwin, N.L.

1980-11-01T23:59:59.000Z

170

High Temperature Superconductivity Partners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Temperature Superconductivity Partners High Temperature Superconductivity Partners Map showing DOE's partnersstakeholders in the High Temperature Superconductivity Program...

171

Development of Simulation System for Hot Gas Filtration by Ceramic Candle Filters on High Temperature and/or High Pressure Conditions  

SciTech Connect

Hot gas filtration from industrial processes offers various advantages in terms of improvement of process efficiencies, heat recovery and protection of plant installation. Especially hot gas filtration is an essential technology for pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC).

Park, S.J.; Lim, J.H.; Kim, S.D.; Choi, H.K.; Park, H,S.; Park, Y.O.

2002-09-19T23:59:59.000Z

172

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high-temperature furnace (HITAF): Volume 4. Final report  

Science Conference Proceedings (OSTI)

An outgrowth of our studies of the FWDC coal-fired high performance power systems (HIPPS) concept was the development of a concept for the repowering of existing boilers. The initial analysis of this concept indicates that it will be both technically and economically viable. A unique feature of our greenfields HIPPS concept is that it integrates the operation of a pressurized pyrolyzer and a pulverized fuel-fired boiler/air heater. Once this type of operation is achieved, there are a few different applications of this core technology. Two greenfields plant options are the base case plant and a plant where ceramic air heaters are used to extend the limit of air heating in the HITAF. The greenfields designs can be used for repowering in the conventional sense which involves replacing almost everything in the plant except the steam turbine and accessories. Another option is to keep the existing boiler and add a pyrolyzer and gas turbine to the plant. The study was done on an Eastern utility plant. The owner is currently considering replacing two units with atmospheric fluidized bed boilers, but is interested in a comparison with HIPPS technology. After repowering, the emissions levels need to be 0.25 lb SO{sub x}/MMBtu and 0.15 lb NO{sub x}/MMBtu.

NONE

1996-05-01T23:59:59.000Z

173

Computational and Experimental Development of Novel High-Temperature Alloys  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Novel High-Temperature Alloys Background The need for fossil-fueled power plants to run cleaner and more efficiently leads toward ever-higher operating temperatures and pressures. Gas turbines, which can be fueled by natural gas, synthetic gas (syngas), or a high-hydrogen stream derived from coal, are critical components in this development. High-temperature operation of turbines is generally achieved by using nickel-chrome superalloys with coatings

174

Corrosion of U sub x Zr sub 1-x C sub 1-y nuclear fuel materials in hydrogen gas at high pressures and temperatures  

DOE Green Energy (OSTI)

This paper describes the thermodynamics and kinetics of the corrosion of U{sub x}Zr{sub 1-x}C{sub 1-y} in hydrogen gas. It describes how corrosion rates are influenced by variables such as pressure, temperature, and gas flow rate. A model is developed which agrees with experimental steady state corrosion rates at 1 atm between 2670 and 3100 K. Under these conditions the corrosion flux is rate limited by the vapor phase transport of Zr(g) away from the solid surface to the bulk gas stream where the partial pressure of Zr(g) is determined by the congruently vaporizing surface composition. Extrapolation of the model to higher pressures indicates that Zr(g) transport should also be rate limiting at higher pressures but the corrosion rate should decrease with increased total pressure due to reduced gaseous diffusion rates. The model predicts that the corrosion rate will increase as the square root of gas velocity for a given temperature and pressure. Calculations demonstrating the effects of gas velocity are in agreement with experimental studies. The addition of hydrocarbons to the hydrogen gas stream is predicted to decrease the corrosion rates significantly.

Butt, D.P.

1992-01-01T23:59:59.000Z

175

Corrosion of U{sub x}Zr{sub 1-x}C{sub 1-y} nuclear fuel materials in hydrogen gas at high pressures and temperatures  

DOE Green Energy (OSTI)

This paper describes the thermodynamics and kinetics of the corrosion of U{sub x}Zr{sub 1-x}C{sub 1-y} in hydrogen gas. It describes how corrosion rates are influenced by variables such as pressure, temperature, and gas flow rate. A model is developed which agrees with experimental steady state corrosion rates at 1 atm between 2670 and 3100 K. Under these conditions the corrosion flux is rate limited by the vapor phase transport of Zr(g) away from the solid surface to the bulk gas stream where the partial pressure of Zr(g) is determined by the congruently vaporizing surface composition. Extrapolation of the model to higher pressures indicates that Zr(g) transport should also be rate limiting at higher pressures but the corrosion rate should decrease with increased total pressure due to reduced gaseous diffusion rates. The model predicts that the corrosion rate will increase as the square root of gas velocity for a given temperature and pressure. Calculations demonstrating the effects of gas velocity are in agreement with experimental studies. The addition of hydrocarbons to the hydrogen gas stream is predicted to decrease the corrosion rates significantly.

Butt, D.P.

1992-06-01T23:59:59.000Z

176

High-temperature Erosion Behavior of Aluminide-coated Turbine ...  

Science Conference Proceedings (OSTI)

The high-temperature erosion behavior of an aluminide-coated turbine blade ... The Tensile Property Of A Gas Turbine Engine Fan Blade And Casing Material.

177

Next Generation High-Temperature Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

Advanced, super high efficiency gas turbine systems will necessarily need to operate in severe conditions that correspond to blade metal temperatures in excess...

178

High-temperature Material Systems for Energy Conversion and ...  

Science Conference Proceedings (OSTI)

Ionic Solid Oxides for High Temperature Optical Gas Sensing in Fossil Fuel Based Power Plants Mitigation of Chromium Poisoning in Solid Oxide Fuel Cell

179

High Temperature Optical Gas Sensing  

The availability of fossil fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century.

180

Reliable Gas Turbine Output: Attaining Temperature Independent Performance  

E-Print Network (OSTI)

Improvements in gas turbine efficiency, coupled with dropping gas prices, has made gas turbines a popular choice of utilities to supply peaking as well as base load power in the form of combined cycle power plants. Today, because of the gas turbine's compactness, low maintenance, and high levels of availability, it is the major option for future power generation. One inherent disadvantage of gas turbines is the degradation of output as the ambient air temperature increases. This reduction in output during times of peak load create a reliability concern as more gas turbines are added to the electric system. A 10% reduction in gas turbine output, when it comprises only 10% of the electric system, does not cause reliability concerns. A 10% reduction in gas turbine output, when it comprises 50% of the electric system, could create reliability and operational problems. This paper explores the potential for maintaining constant, reliable outputs from gas turbines by cooling ambient air temperatures before the air is used in the compressor section of the gas turbine.

Neeley, J. E.; Patton, S.; Holder, F.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Residual gas analysis (RGA) and shear strength characteristics of a silver-filled epoxy and polyimide under long-term, high-temperature storage conditions. Final report  

SciTech Connect

Introduction of organic materials into hermetically sealed electronic packages increases the risk of failure due to contamination. The contaminants of concern are moisture and ionics. This combination can lead to unwanted electrical pathways and/or corrosion. To minimize sealed-in moisture, packages are vacuum-baked for 16 hours at 200 C and Au/Sn solder-sealed i a glove box purged with dry nitrogen. Even following this procedure, the package plating and organic adhesive can still outgas moisture during high-temperature storage. Long-term aging characteristics for a silver-filled epoxy and a silver-filled polyimide were investigated. Leadless chip carriers (LCCs) containing die attached with epoxy or polyimide were aged at 25 C, 100 C, 150 C, and 200 C for up to six months. Residual gas analysis (RGA) and die shear testing were performed on each package. Results indicate that the epoxy can withstand storage at 150 C with no increase in internal moisture. The polyimide could only be stored at 100 C. No loss in shear strength for epoxy or polyimide was noted at any storage condition.

Adams, B.E.

1994-04-01T23:59:59.000Z

182

Eigenvalue sensitivity studies for the Fort St. Vrain high temperature gas-cooled reactor to account for fabrication and modeling uncertainties  

SciTech Connect

Uncertainties in the composition and fabrication of fuel compacts for the Fort St. Vrain (FSV) high temperature gas reactor have been studied by performing eigenvalue sensitivity studies that represent the key uncertainties for the FSV neutronic analysis. The uncertainties for the TRISO fuel kernels were addressed by developing a suite of models for an 'average' FSV fuel compact that models the fuel as (1) a mixture of two different TRISO fuel particles representing fissile and fertile kernels, (2) a mixture of four different TRISO fuel particles representing small and large fissile kernels and small and large fertile kernels and (3) a stochastic mixture of the four types of fuel particles where every kernel has its diameter sampled from a continuous probability density function. All of the discrete diameter and continuous diameter fuel models were constrained to have the same fuel loadings and packing fractions. For the non-stochastic discrete diameter cases, the MCNP compact model arranged the TRISO fuel particles on a hexagonal honeycomb lattice. This lattice-based fuel compact was compared to a stochastic compact where the locations (and kernel diameters for the continuous diameter cases) of the fuel particles were randomly sampled. Partial core configurations were modeled by stacking compacts into fuel columns containing graphite. The differences in eigenvalues between the lattice-based and stochastic models were small but the runtime of the lattice-based fuel model was roughly 20 times shorter than with the stochastic-based fuel model. (authors)

Pavlou, A. T.; Betzler, B. R.; Burke, T. P.; Lee, J. C.; Martin, W. R.; Pappo, W. N.; Sunny, E. E. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

2012-07-01T23:59:59.000Z

183

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 3, July--September 1992  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R & D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

Not Available

1992-11-01T23:59:59.000Z

184

High pressure synthesis gas fermentation  

DOE Green Energy (OSTI)

The construction of the high pressure gas phase fermentation system has been completed. Photographs of the various components of the system are presented, along with an operating procedure for the equipment.

Not Available

1992-01-01T23:59:59.000Z

185

High Temperature Corrosion Test Facilities and High Pressure Test  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Test Facilities for Metal Dusting Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Six corrosion test facilities and two thermogravimetric systems for conducting corrosion tests in complex mixed gas environments, in steam and in the presence of deposits, and five facilities for metal dusting degradation Bookmark and Share The High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting include: High Pressure Test Facility for Metal Dusting Resistance:

186

High Temperature and Electrical Properties  

Science Conference Proceedings (OSTI)

Mar 5, 2013... and Nanomaterials: High Temperature and Electrical Properties ... thermomechanical (or in cyclic power) loading of electronic devices is an...

187

Ultra High Temperature Ceramic Composites  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... These ceramics, often combined with 20-30% SiC, have been studied extensively in monolithic form, demonstrating excellent high-temperature...

188

Comparison of Furnace Flue Gas Temperature Monitors  

Science Conference Proceedings (OSTI)

This report summarizes the results of a temperature monitor comparison study performed at Ameren Sioux Station, in Missouri. The study compared the accuracy and ease of use of two radiation-based monitors, an Infra-View and SpectraTemp, and a newer tunable-diode laser (TDL) absorption-based device, the LTS-100. The instruments, installed in the upper furnace and allowed to run continuously for approximately 8 weeks, monitored and recorded exit gas temperatures during normal boiler operation and one brief...

2006-09-22T23:59:59.000Z

189

High-temperature borehole instrumentation  

DOE Green Energy (OSTI)

A new method of extracting natural heat from the earth's crust was invented at the Los Alamos National Laboratory in 1970. It uses fluid pressures (hydraulic fracturing) to produce cracks that connect two boreholes drilled into hot rock formations of low initial permeability. Pressurized water is then circulated through this connected underground loop to extract heat from the rock and bring it to the surface. The creation of the fracture reservior began with drilling boreholes deep within the Precambrian basement rock at the Fenton Hill Test Site. Hydraulic fracturing, flow testing, and well-completion operations required unique wellbore measurements using downhole instrumentation systems that would survive the very high borehole temperatures, 320/sup 0/C (610/sup 0/F). These instruments were not available in the oil and gas industrial complex, so the Los Alamos National Laboratory initiated an intense program upgrading existing technology where applicable, subcontracting materials and equipment development to industrial manufactures, and using the Laboratory resource to develop the necessary downhole instruments to meet programmatic schedules. 60 refs., 11 figs.

Dennis, B.R.; Koczan, S.P.; Stephani, E.L.

1985-10-01T23:59:59.000Z

190

Structural and Kinetic Studies of Structure I Gas Hydrates via Low Temperature X-Ray Diffraction and High Resolution Neutron Diffraction.  

E-Print Network (OSTI)

??Gas hydrates are materials of interest as sources for clean energy, carbon sequestration, greenhouse gas mitigation, and gas storage. This body of work presents two (more)

Everett, Susan Michelle

2013-01-01T23:59:59.000Z

191

Urania vapor composition at very high temperatures  

SciTech Connect

Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

Pflieger, Rachel [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Marcoule Institute for Separation Chemistry (ICSM), UMR 5257, CEA-CNRS-UMII-ENSCM, Bagnols sur Ceze Cedex (France); Colle, Jean-Yves [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Iosilevskiy, Igor [Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, State University, 141700 Moscow (Russian Federation); Extreme Matter Institute (EMMI), 64291 Darmstadt (Germany); Sheindlin, Michael [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation)

2011-02-01T23:59:59.000Z

192

High ratio recirculating gas compressor  

DOE Patents (OSTI)

A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor.

Weinbrecht, John F. (601 Oakwood Pl., NE., Albuquerque, NM 87123)

1989-01-01T23:59:59.000Z

193

High ratio recirculating gas compressor  

DOE Patents (OSTI)

A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

Weinbrecht, J.F.

1989-08-22T23:59:59.000Z

194

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

Boyd, Gary L. (Tempe, AZ)

1990-01-01T23:59:59.000Z

195

High temperature structural insulating material  

DOE Patents (OSTI)

A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

Chen, W.Y.

1984-07-27T23:59:59.000Z

196

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

DOE Green Energy (OSTI)

In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.

Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

2011-09-30T23:59:59.000Z

197

Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm  

Science Conference Proceedings (OSTI)

For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

Drakakis, E. [Technological Educational Institute, Department of Electrical Engineering, 71004 Heraklion (Greece); Karabourniotis, D. [Institute of Plasma Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece)

2012-09-01T23:59:59.000Z

198

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

Science Conference Proceedings (OSTI)

There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.

Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

2011-09-30T23:59:59.000Z

199

Manufacturing Barriers to High Temperature PEM Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

9/2011 9/2011 1 BASF Fuel Cell, Inc. Manufacturing Barriers to high temperature PEM commercialization 39 Veronica Ave Somerset , NJ 08873 Tel : (732) 545-5100 9/9/2011 2 Background on BASF Fuel Cell  BASF Fuel Cell was established in 2007, formerly PEMEAS Fuel Cells (including E-TEK)  Product line is high temperature MEAs (Celtec ® P made from PBI-phosphoric acid)  Dedicated a new advanced pilot manufacturing facility in Somerset NJ May 2009. Ribbon-cutting hosted by Dr. Kreimeyer (BASF BoD, right) and attended by various US pubic officials including former NJ Governor Jon Corzine (left) 9/9/2011 3 Multi-layer product of membrane (polybenzimidazole and phosphoric acid), gas diffusion material and catalysts Unique characteristics:  High operating temperature

200

High temperature simulation of petroleum formation  

Science Conference Proceedings (OSTI)

Petroleum formation has been simulated in the laboratory with emphasis on the effects of temperature, mineral catalysis, and starting material structure on the yield and composition of the liquid and gaseous hydrocarbon products. In an attempt to prove the hypothesis that petroleum formation can be simulated using high temperatures, Green River Shale from Colorado, USA, was subjected to pyrolysis for 16 hours at temperatures ranging from 300 to 500/sup 0/C. The sequence of products formed over this temperature range was used as the basis for defining five different zones of maturation reaction: 1) a heterobond cracking zone; 2) a labile carbon bond cracking zone; 3) a free radical synthesis zone; 4) a wet gas formation zone; and 5) an aromatization zone. The role of some typical inorganic components of sedimentary rocks in the origin and maturation of petroleum has been investigated using this high temperature model. The importance of the structure of organic matter in petroelum formation has also been investigated using this high temperature model. Lignin and cellulose are poor sources of liquid hydrocarbons, but cellulose in the presence of carbonate gives a high yield of gaseous hydrocarbons. Protein pyrolysis gives a high oil yield with an alkane distribution similar to petroleum. The lipids produced the highest oil yield of the substances tested but the n-alkanes show an odd carbon length predominance unlike the distribution found in petroleum.

Evans, R.J.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High temperature lightweight foamed cements  

DOE Patents (OSTI)

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

Sugama, Toshifumi.

1989-10-03T23:59:59.000Z

202

High temperature lightweight foamed cements  

DOE Patents (OSTI)

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

Sugama, Toshifumi (Mastic Beach, NY)

1989-01-01T23:59:59.000Z

203

High temperature electronic gain device  

SciTech Connect

An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

McCormick, J. Byron (Los Alamos, NM); Depp, Steven W. (Los Alamos, NM); Hamilton, Douglas J. (Tucson, AZ); Kerwin, William J. (Tucson, AZ)

1979-01-01T23:59:59.000Z

204

High temperature superconductor current leads  

DOE Patents (OSTI)

An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

1995-01-01T23:59:59.000Z

205

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

DOE Green Energy (OSTI)

There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

2009-09-30T23:59:59.000Z

206

Hydrogen at high pressure and temperatures  

DOE Green Energy (OSTI)

Hydrogen at high pressures and temperatures is challenging scientifically and has many real and potential applications. Minimum metallic conductivity of fluid hydrogen is observed at 140 GPa and 2600 K, based on electrical conductivity measurements to 180 GPa (1.8 Mbar), tenfold compression, and 3000 K obtained dynamically with a two-stage light-gas gun. Conditions up to 300 GPa, sixfold compression, and 30,000 K have been achieved in laser-driven Hugoniot experiments. Implications of these results for the interior of Jupiter, inertial confinement fusion, and possible uses of metastable solid hydrogen, if the metallic fluid could be quenched from high pressure, are discussed.

Nellis, W J

1999-09-30T23:59:59.000Z

207

High pressure/high temperature thermogravimetric apparatus. Final report  

DOE Green Energy (OSTI)

The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C and 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.

Calo, J.M.; Suuberg, E.M.

1999-12-01T23:59:59.000Z

208

High-temperature plasma physics  

SciTech Connect

Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

Furth, H.P.

1988-03-01T23:59:59.000Z

209

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

210

High temperature mineral fiber binder  

SciTech Connect

A modified phenol formaldehyde condensate is reacted with boric acid and cured in the presence of a polyfunctional nitrogeneous compound to provide a binder for mineral wool fibers which is particularly suited for thermal insulation products intended for high temperature service.

Miedaner, P.M.

1980-11-25T23:59:59.000Z

211

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

212

Geothermal high temperature instrumentation applications  

DOE Green Energy (OSTI)

A quick look at the geothermal industry shows a small industry producing about $1 billion in electric sales annually. The industry is becoming older and in need of new innovative solutions to instrumentation problems. A quick look at problem areas is given along with basic instrumentation requirements. The focus of instrumentation is on high temperature electronics.

Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants (United States)

1998-06-11T23:59:59.000Z

213

High-Dielectric Constant, High-Temperature Ceramic Capacitors for ...  

Science Conference Proceedings (OSTI)

Growth of Thick, On-Axis SiC Epitaxial Layers by High Temperature Halide CVD for High Voltage Power Devices High-Dielectric Constant, High-Temperature...

214

FILM-COOLED GAS TURBINE VANE TEMPERATURE CALCULATIONS WITH AN ITERATIVE CONJUGATE HEAT TRANSFER APPROACH USING EMPIRICAL FILM CORRELATIONS.  

E-Print Network (OSTI)

??The design of gas turbine blades and vanes is a challenging task. The nature of the problem calls for high speed, high temperature, turbulent flows (more)

Jennings, Timothy

2011-01-01T23:59:59.000Z

215

Compliant high temperature seals for dissimilar materials  

DOE Patents (OSTI)

A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

Rynders, Steven Walton (Fogelsville, PA); Minford, Eric (Laurys Station, PA); Tressler, Richard Ernest (Boalsburg, PA); Taylor, Dale M. (Salt Lake City, UT)

2001-01-01T23:59:59.000Z

216

Joint Institute for High Temperatures  

National Nuclear Security Administration (NNSA)

Joint Institute for High Temperatures of Russian Academy of Sciences Moscow Institute of Physics and Technology Extended title Extended title Excited state of warm dense matter or Exotic state of warm dense matter or Novel form of warm dense matter or New form of plasma Three sources of generation similarity: solid state density, two temperatures: electron temperature about tens eV, cold ions keep original crystallographic positions, but electron band structure and phonon dispersion are changed, transient but steady (quasi-stationary for a short time) state of non-equilibrium, uniform plasmas (no reference to non-ideality, both strongly and weakly coupled plasmas can be formed) spectral line spectra are emitted by ion cores embedded in plasma environment which influences the spectra strongly,

217

Precision control of high temperature furnaces  

DOE Patents (OSTI)

It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

Pollock, G.G.

1994-12-31T23:59:59.000Z

218

High Temperature Heat Exchanger Project  

Science Conference Proceedings (OSTI)

The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

Anthony E. Hechanova, Ph.D.

2008-09-30T23:59:59.000Z

219

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

220

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

222

High-temperature geothermal cableheads  

DOE Green Energy (OSTI)

Two high-temperature, corrosion-resistant logging cableheads which use metal seals and a stable fluid to achieve proper electrical terminations and cable-sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable-sonde interface were absent during demonstration hostile-environment loggings in which these cableheads were used.

Coquat, J.A.; Eifert, R.W.

1981-11-01T23:59:59.000Z

223

HIGH TEMPERATURE MICROSCOPE AND FURNACE  

DOE Patents (OSTI)

A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

Olson, D.M.

1961-01-31T23:59:59.000Z

224

High-Temperature Superconductivity Cable Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into...

225

New Waste Calciner High Temperature Operation  

SciTech Connect

A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

Swenson, M.C.

2000-09-01T23:59:59.000Z

226

The Northwest Geysers High-Temperature Reservoir- Evidence For Active  

Open Energy Info (EERE)

Geysers High-Temperature Reservoir- Evidence For Active Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Northwest Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Details Activities (2) Areas (1) Regions (0) Abstract: Noble gas isotope abundances in steam from the Coldwater Creek field of the Northwest Geysers, California, show mixing between a nearly pure mid-ocean ridge (MOR) type magmatic gas with high 3He/4He and low radiogenic 40*Ar (R/Ra > 8.3 and 40*Ar/4He < 0.07), and a magmatic gas diluted with crustal gas (R/Ra 0.25). The

227

High-Temperature Gas-Cooled Reactors for the Production of Hydrogen: Establishment of the Quantified Technical Requirements for Hydrogen Production That will Support the Water-Splitting Processes at Very High Temperature  

Science Conference Proceedings (OSTI)

Affordable access to energy is essential to a high quality of life. However, the unwanted side effects of energy use, including local pollution and the global build-up of greenhouse gases, are detriments that degrade that same quality of life. In response to these challenges, researchers are seeking new options for producing and distributing energy that are stable, sustainable, environmentally compatible, and available at affordable cost. There is an emerging consensus that advanced nuclear energy and th...

2004-10-25T23:59:59.000Z

228

Ultra High Temperature | Open Energy Information  

Open Energy Info (EERE)

Ultra High Temperature Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid greater than 300°C is considered by Sanyal to be "ultra high temperature". "Such reservoirs are characterized by rapid development of steam saturation in the reservoir and steam fraction in the mobile fluid phase upon

229

High performance internal reforming unit for high temperature fuel cells  

DOE Patents (OSTI)

A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

2008-10-07T23:59:59.000Z

230

CHARACTERIZING TRANSITION TEMPERATURE GAS IN THE GALACTIC CORONA  

Science Conference Proceedings (OSTI)

We present a study of the properties of the transition temperature (T {approx} 10{sup 5} K) gas in the Milky Way corona, based on the measurements of O VI, N V, C IV, Si IV, and Fe III absorption lines seen in the far-ultraviolet spectra of 58 sight lines to extragalactic targets, obtained with the Far-Ultraviolet Spectroscopic Explorer and the Space Telescope Imaging Spectrograph. In many sight lines the Galactic absorption profiles show multiple components, which are analyzed separately. We find that the highly ionized atoms are distributed irregularly in a layer with a scale height of about 3 kpc, which rotates along with the gas in the disk, without an obvious gradient in the rotation velocity away from the Galactic plane. Within this layer the gas has randomly oriented velocities with a dispersion of 40-60 km s{sup -1}. On average the integrated column densities are log N(O VI) = 14.3, log N(N V) = 13.5, log N(C IV) = 14.2, log N(Si IV) = 13.6, and log N(Fe III) = 14.2, with a dispersion of just 0.2 dex in each case. In sight lines around the Galactic center and Galactic north pole, all column densities are enhanced by a factor {approx}2, while at intermediate latitudes in the southern sky there is a deficit in N(O VI) of about a factor of two, but no deficit for the other ions. We compare the column densities and ionic ratios to a series of theoretical predictions: collisional ionization equilibrium, shock ionization, conductive interfaces, turbulent mixing, thick disk supernovae, static non-equilibrium ionization (NIE) radiative cooling, and an NIE radiative cooling model in which the gas flows through the cooling zone. None of these models can fully reproduce the data, but it is clear that NIE radiative cooling is important in generating the transition temperature gas.

Wakker, Bart P.; Savage, Blair D. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Fox, Andrew J. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Benjamin, Robert A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218 (United States); Shapiro, Paul R., E-mail: wakker@astro.wisc.edu, E-mail: savage@astro.wisc.edu, E-mail: afox@stsci.edu, E-mail: benjamir@uww.edu, E-mail: shapiro@astro.as.utexas.edu [University of Texas at Austin, Department of Astronomy, Austin, TX 78712 (United States)

2012-04-20T23:59:59.000Z

231

CONFINEMENT OF HIGH TEMPERATURE PLASMA  

DOE Patents (OSTI)

The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

Koenig, H.R.

1963-05-01T23:59:59.000Z

232

HIGH TEMPERATURE SUPERCONDUCTORS-SYNTHESIS ... - TMS  

Science Conference Proceedings (OSTI)

... Anaheim, California. HIGH TEMPERATURE SUPERCONDUCTORS- SYNTHESIS, PROCESSING, AND LARGE SCALE APPLICATIONS VII: Characterization...

233

HIGH TEMPERATURE SUPERCONDUCTORS: III: YBCO Conductor ...  

Science Conference Proceedings (OSTI)

HIGH TEMPERATURE SUPERCONDUCTORS: Session III: YBCO Conductor Development. Sponsored by: Jt: EMPMD/SMD Superconducting Materials...

234

High Temperature Battery for Drilling Applications  

SciTech Connect

In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

Josip Caja

2009-12-31T23:59:59.000Z

235

High Temperature Interactions of Antimony with Nickel  

SciTech Connect

In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

Marina, Olga A.; Pederson, Larry R.

2012-07-01T23:59:59.000Z

236

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

DOE Green Energy (OSTI)

The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

2010-09-30T23:59:59.000Z

237

High potential recovery -- Gas repressurization  

SciTech Connect

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

238

Temperature detection in a gas turbine  

Science Conference Proceedings (OSTI)

A temperature detector includes a first metal and a second metal different from the first metal. The first metal includes a plurality of wires and the second metal includes a wire. The plurality of wires of the first metal are connected to the wire of the second metal in parallel junctions. Another temperature detector includes a plurality of resistance temperature detectors. The plurality of resistance temperature detectors are connected at a plurality of junctions. A method of detecting a temperature change of a component of a turbine includes providing a temperature detector include ing a first metal and a second metal different from the first metal connected to each other at a plurality of junctions in contact with the component; and detecting any voltage change at any junction.

Lacy, Benjamin; Kraemer, Gilbert; Stevenson, Christian

2012-12-18T23:59:59.000Z

239

High Temperature Corrosion and Oxidation of Materials  

Science Conference Proceedings (OSTI)

Mar 31, 2013... oil and gas, and propulsion industries, materials with improved high ... and interdiffusion, and cost-effective materials processing protocols.

240

Gas-Filled Panels, High Performance Insulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Filled Panels high performance insulation Windows & Daylighting | Building Technologies | Environmental Energy Technologies Division | Berkeley Lab gfp4b.jpg (5624 bytes)...

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermal disconnect for high-temperature batteries  

DOE Patents (OSTI)

A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

Jungst, Rudolph George (Albuquerque, NM); Armijo, James Rudolph (Albuquerque, NM); Frear, Darrel Richard (Austin, TX)

2000-01-01T23:59:59.000Z

242

Potential uses for a high-temperature borehole gravimeter  

DOE Green Energy (OSTI)

It is possible to design a canister to cool a borehole gravimeter for use in geothermal and high-temperature (up to 350/sup 0/C) gas wells. Repeat surveys with such a gravimeter could (1) help estimate the extent of reservoir plugging in geothermal injection well after one year of operation and (2) detect compaction of a geothermal aquifer if the change in thickness of the aquifer exceeds 1 m. The instrument could be used together with conventional logging tools to evaluate radial dependence of density around a well, or to estimate gas-filled porosity around wells drilled with mud. A high-temperature borehole gravimeter could also be used to evaluate structure and stratigraphy around geothermal and high-temperature gas wells.

Hearst, J.R.; Kasameyer, P.W.; Owen, L.B.

1978-03-08T23:59:59.000Z

243

Recent Developments in High Temperature Superconductivity  

E-Print Network (OSTI)

New material systems and the experimental progress of high temperature superconductivity are briefly reviewed. We examine both oxides and non-oxides which exhibit stable and/or unstable superconductivity at high temperatures.

Hor, P. H.

1988-09-01T23:59:59.000Z

244

High-temperature thermocouples and related methods  

DOE Patents (OSTI)

A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

Rempe, Joy L. (Idaho Falls, ID); Knudson, Darrell L. (Firth, ID); Condie, Keith G. (Idaho Falls, ID); Wilkins, S. Curt (Idaho Falls, ID)

2011-01-18T23:59:59.000Z

245

High Temperature Superconducting Underground Cable  

SciTech Connect

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

246

Turbine vane with high temperature capable skins  

Science Conference Proceedings (OSTI)

A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

Morrison, Jay A. (Oviedo, FL)

2012-07-10T23:59:59.000Z

247

Pressure sensor for high-temperature liquids  

DOE Patents (OSTI)

A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

Forster, George A. (Westmont, IL)

1978-01-01T23:59:59.000Z

248

Compact High-Temperature Superconducting Cable Wins ' ...  

Science Conference Proceedings (OSTI)

Compact High-Temperature Superconducting Cable Wins 'R&D 100' Award. From NIST Tech Beat: June 22, 2011. ...

2011-07-06T23:59:59.000Z

249

High temperature electronics application in well logging  

DOE Green Energy (OSTI)

Some limitations, problems, and needs are briefly reviewed for neutron logging tools used in high-temperature geothermal environments. (ACR)

Traeger, R.K.; Lysne, P.C.

1987-01-01T23:59:59.000Z

250

High Temperature Strain Gages for SOFC Application  

DOE Green Energy (OSTI)

This presentation discusses the investigation/extension of high temperature strain gage applications sensors to SOFC applications.

Pineault, R.L.; Johnson, C.; Gemmen, R.S.; Gregory, O.; You, T.

2005-01-27T23:59:59.000Z

251

HIGH TEMPERATURE SUPERCONDUCTORS: IV: BSCCO and ...  

Science Conference Proceedings (OSTI)

HIGH TEMPERATURE SUPERCONDUCTORS: Session IV: BSCCO and TBCCO Conductor Development. Sponsored by: Jt. EMPMD/SMD Superconducting...

252

Predicted nuclear heating and temperatures in gas-cooled nuclear reactors for process heat applications  

SciTech Connect

The high-temperature gas-cooled nuclear reactor (HTGR) is an attractive potential source of primary energy for many industrial and chemical process applications. Significant modification of current HTGR core design will be required to achieve the required elevations in exit gas temperatures without exceeding the maximum allowable temperature limits for the fuel material. A preliminary evaluation of the effects of various proposed design modifications by predicting the resulting fuel and gas temperatures with computer calculational modeling techniques is reported. The design modifications evaluated are generally those proposed by the General Atomic Company (GAC), a manufacturer of HTGRs, and some developed at the LASL. The GAC modifications do result in predicted fuel and exit gas temperatures which meet the proposed design objectives. (auth)

Cort, G.E.; Vigil, J.C.; Jiacoletti, R.J.

1975-09-01T23:59:59.000Z

253

THE HGCR-1, A DESIGN STUDY OF A NUCLEAR POWER STATION EMPLOYING A HIGH- TEMPERATURE GAS-COOLED REACTOR WITH GRAPHITE-UO$sub 2$ FUEL ELEMENTS  

SciTech Connect

The preliminary design of a 3095-Mw(thermal), helium-cooled, graphite- moderated reactor employing sign conditions, 1500 deg F reactor outlet gas would be circulated to eight steam generators to produce 1050 deg F, 1450-psi steam which would be converted to electrical power in eight 157-Mw(electrical) turbine- generators. The over-all efficiency of this nuclear power station is 36.5%. The significant activities released from the unclad graphite-UO/sub 2/ fuel appear to be less than 0.2% of those produced and would be equivalent to 0.002 curie/ cm/ sup 3/ in the primary helium circuit. The maintenance problems associated with this contamination level are discussed. A cost analysis indicates that the capital cost of this nuclear station per electrical kilowatt would be around 0, and that the production cost of electrical power would be 7.8 mills/kwhr. (auth)

Cottrell, W.B.; Copenhaver, C.M.; Culver, H.N.; Fontana, M.H.; Kelleghan, V.J.; Samuels, G.

1959-07-28T23:59:59.000Z

254

Experiment Hazard Class 3 - High Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

* RF and Microwave * UV Light Hydrogen * Hydrogen Electronics * Electrical Equipment * High Voltage Other * Other Class 3 - High Temperatures Applicability The hazard controls...

255

Energy Economizer for Low Temperature Stack Gas: A Case Study  

E-Print Network (OSTI)

Bartlesville (Oklahoma) Energy Technology Center (BETC) engineers made a study of recycling waste heat from one of the Power Plant boilers. The study showed that a system could be designed that would reclaim this waste heat and then utilize it to preheat air for boiler operation. The system incorporated a heat pipe heat exchanger flanged in a stack by-pass loop that would efficiently capture and transfer heat at low temperature differences (?T 350-5000 F). After reclaiming heat from this source, the burner air supply is preheated by passing through the heat exchanger. Sensitive design problems that had to be resolved were: Overall cost-effectiveness; below dew point cooling of stack gas causing acid corrosion; and selection of an effective heat exchanger for this application The candidate boiler is one of two that generate high temperature hot water (HTHW) for BETC facility heating and cooling. One unit normally handles the heating and cooling load while the other is in standby status. The preheat system was designed by BETC engineers. The new stack assembly was fabricated by a local metal shop, and was installed by BETC maintenance personnel. The cost of the heat exchanger and other hard-ware was $7,562. Operational results show that boiler efficiency has increased between 6 and 7 percent, which reflects the percent of reduction in fuel consumption. At full-load conditions, the burner supply air is preheated to 350oF and stack gas is cooled to 310oF. Corrosion damage to the heat exchanger and other internal parts are non-existent. Natural gas is the boiler fuel, and as expected, no residue coating of the heat exchanger has developed. To date, we are well pleased with the performance of the system. The savings in fuel and dollars speaks for itself. We are optimistic that this approach of reclaiming heat is not only technically feasible, but also cost-effective for many industry boilers that emit low temperature stack gas.

Tipton, J. A.

1979-01-01T23:59:59.000Z

256

Compact, high energy gas laser  

DOE Patents (OSTI)

An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

Rockwood, Stephen D. (Los Alamos, NM); Stapleton, Robert E. (Los Alamos, NM); Stratton, Thomas F. (Los Alamos, NM)

1976-08-03T23:59:59.000Z

257

High power gas transport laser  

SciTech Connect

Continuous wave output power from a gas transport laser is substantially increased by disposing a plurality of parallel cylindrically tubular cathodes in the main stream transversely of the direction of gas flow and spaced above a coextensive segmented anode in the opposite wall of the channel. Ballast resistors are connected between the cathodes, respectively, and the power supply to optimize the uniform arcless distribution of current passing between each cathode and the anode. Continuous output power greater than 3 kW is achieved with this electrode configuration.

Fahlen, T.S.; Kirk, R.F.

1978-02-28T23:59:59.000Z

258

A Novel Sorbent-Based Process for High Temperature Trace Metals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent-Based Process for High Temperature Trace Metals Removal from Coal-Derived Syngas Description Gasification converts coal and other heavy feedstocks into synthesis gas...

259

High Temperature Syngas Cleanup Technology Scale-up  

NLE Websites -- All DOE Office Websites (Extended Search)

RECOVERY ACT: Scale-Up of RECOVERY ACT: Scale-Up of High-Temperature Syngas Cleanup Technology Background Coal gasification generates a synthesis gas (syngas)-predominantly a mixture of carbon monoxide (CO) and hydrogen (H 2 )-that can be used for chemical production of hydrogen, methanol, substitute natural gas (SNG), and many other industrial chemicals, or for electric power generation. Conventional integrated gasification combined cycle (IGCC) power plants use this syngas as a fuel for a combustion

260

Reinforcements for high temperature ceramics  

DOE Green Energy (OSTI)

A method has been investigated and developed to grow TiB{sub 2} whiskers by the VLS mechanism. The reaction was carried out in a quartz tube 3 in. in diameter, 30 in. long at about 1150{degrees}C in the presence of a catalyst. The basic experimental parameters, a substrate, and a catalyst, for the growth of the whiskers have been defined. The whiskers produced have shown variable size and morphology depending on the experimental conditions, and location of the whiskers from the input port. The corrosion of the catalyst by the gas environment, and the gas distribution profile in the furnace had a serious effect on the reproducibility of the experimental results, and the overall yield of whiskers.

Kyriacou, C.I.; Sepulveda, J.L.; Watson, M.A. (Keramont Corp., Tucson, AZ (United States))

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High temperature superconducting fault current limiter  

DOE Patents (OSTI)

A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

Hull, J.R.

1997-02-04T23:59:59.000Z

262

Deep Trek High Temperature Electronics Project  

Science Conference Proceedings (OSTI)

This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

Bruce Ohme

2007-07-31T23:59:59.000Z

263

Strangeness at high temperatures: from hadrons to quarks  

E-Print Network (OSTI)

Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.

A. Bazavov; H. -T. Ding; P. Hegde; O. Kaczmarek; F. Karsch; E. Laermann; Y. Maezawa; Swagato Mukherjee; H. Ohno; P. Petreczky; C. Schmidt; S. Sharma; W. Soeldner; M. Wagner

2013-04-26T23:59:59.000Z

264

High Temperature Shape Memory Alloys  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Shape Memory Response of NiTiHfPd High Strength and High Hysteresis Shape Memory Alloys: Emre Acar1; Haluk Karaca1; Hirobumi Tobe1;...

265

HIGH TEMPERATURE SUPERCONDUCTORS: V: BSCCO ...  

Science Conference Proceedings (OSTI)

Transport current properties in bias fields for the other magnet with the outer ... Two obstacles to high field Jc over long lengths are poor flux pinning and...

266

HIGH TEMPERATURE SUPERCONDUCTORS: I: BSCCO ...  

Science Conference Proceedings (OSTI)

Recently the high tensile strength conductor 100 m long was successfully fabricated and wound for the energizing test at 21 Tesla back up filed. The coil was...

267

High Temperature Interfacial Superconductivity - Energy Innovation ...  

Cuprate superconductors exhibit relatively high transition temperatures, but their unit cells are complex and large. Localizing a superconducting layer to a small ...

268

Improved Martensitic Steel for High Temperature Applications  

NETL has developed a stainless steel composition and heat treatment process for a high-temperature, titanium alloyed 9 Cr-1 molybdenum alloy ...

269

High-temperature brazed ceramic joints  

DOE Patents (OSTI)

High-temperature joints formed from metallized ceramics are disclosed wherein the metal coatings on the ceramics are vacuum sputtered thereon.

Jarvinen, Philip O. (Amherst, NH)

1986-01-01T23:59:59.000Z

270

Recent Developments in High Temperature Superconductivity  

Science Conference Proceedings (OSTI)

Scope, Recently, significant progress has been made world-wide in both fabrication and fundamental understanding of high-temperature superconductors (HTS)...

271

Thermodynamic and Kinetic Properties of High Temperature ...  

Science Conference Proceedings (OSTI)

Perspectives on Phonons and Electron-Phonon Scattering in High-Temperature Superconductors Prediction and Design of Materials from Crystal Structures to...

272

Development of Inorganic High Temperature Proton Exchange ...  

Science Conference Proceedings (OSTI)

For fuel cell systems directly coupled to a reformer, the primary advantage of high temperatures is the elimination of CO poisoning. Direct methanol fuel cells...

273

Split stream boilers for high-temperature/high-pressure topping steam turbine combined cycles  

SciTech Connect

Research and development work on high-temperature and high-pressure (up to 1,500 F TIT and 4,500 psia) topping steam turbines and associated steam generators for steam power plants as well as combined cycle plants is being carried forward by DOE, EPRI, and independent companies. Aeroderivative gas turbines and heavy-duty gas turbines both will require exhaust gas supplementary firing to achieve high throttle temperatures. This paper presents an analysis and examples of a split stream boiler arrangement for high-temperature and high-pressure topping steam turbine combined cycles. A portion of the gas turbine exhaust flow is run in parallel with a conventional heat recovery steam generator (HRSG). This side stream is supplementary fired opposed to the current practice of full exhaust flow firing. Chemical fuel gas recuperation can be incorporated in the side stream as an option. A significant combined cycle efficiency gain of 2 to 4 percentage points can be realized using this split stream approach. Calculations and graphs show how the DOE goal of 60 percent combined cycle efficiency burning natural gas fuel can be exceeded. The boiler concept is equally applicable to the integrated coal gas fuel combined cycle (IGCC).

Rice, I.G. [Rice (I.G.), Spring, TX (United States)

1997-04-01T23:59:59.000Z

274

Synthesis and development of processes for the recovery of sulfur from acid gases. Part 1, Development of a high-temperature process for removal of H{sub 2}S from coal gas using limestone -- thermodynamic and kinetic considerations; Part 2, Development of a zero-emissions process for recovery of sulfur from acid gas streams  

SciTech Connect

Limestone can be used more effectively as a sorbent for H{sub 2}S in high-temperature gas-cleaning applications if it is prevented from undergoing calcination. Sorption of H{sub 2}S by limestone is impeded by sintering of the product CaS layer. Sintering of CaS is catalyzed by CO{sub 2}, but is not affected by N{sub 2} or H{sub 2}. The kinetics of CaS sintering was determined for the temperature range 750--900{degrees}C. When hydrogen sulfide is heated above 600{degrees}C in the presence of carbon dioxide elemental sulfur is formed. The rate-limiting step of elemental sulfur formation is thermal decomposition of H{sub 2}S. Part of the hydrogen thereby produced reacts with CO{sub 2}, forming CO via the water-gas-shift reaction. The equilibrium of H{sub 2}S decomposition is therefore shifted to favor the formation of elemental sulfur. The main byproduct is COS, formed by a reaction between CO{sub 2} and H{sub 2}S that is analogous to the water-gas-shift reaction. Smaller amounts of SO{sub 2} and CS{sub 2} also form. Molybdenum disulfide is a strong catalyst for H{sub 2}S decomposition in the presence of CO{sub 2}. A process for recovery of sulfur from H{sub 2}S using this chemistry is as follows: Hydrogen sulfide is heated in a high-temperature reactor in the presence of CO{sub 2} and a suitable catalyst. The primary products of the overall reaction are S{sub 2}, CO, H{sub 2} and H{sub 2}O. Rapid quenching of the reaction mixture to roughly 600{degrees}C prevents loss Of S{sub 2} during cooling. Carbonyl sulfide is removed from the product gas by hydrolysis back to CO{sub 2} and H{sub 2}S. Unreacted CO{sub 2} and H{sub 2}S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H{sub 2} and CO, which recovers the hydrogen value from the H{sub 2}S. This process is economically favorable compared to the existing sulfur-recovery technology and allows emissions of sulfur-containing gases to be controlled to very low levels.

Towler, G.P.; Lynn, S.

1993-05-01T23:59:59.000Z

275

Goa, India Permeability of Charnokite Rock at High Temperatures  

E-Print Network (OSTI)

ABSTRACT: Permeability at high temperature is a very important parameter to be considered for designing underground high level nuclear waste repository (HLW) in rock mass. The surrounding rock mass is exposed to heat radiated by HLW when it is buried underground and development or extension of micro-cracks takes place in the host rock due to rise in temperature. Keeping this in view, the permeability study was conducted for Charnokite rock at high temperatures in the range from room temperature, 30 to 200 o C. The cylindrical rock samples of 36mm diameter and 150mm in length were used as per the required size for the equipment permeameter, TEMCO, USA. Total thirty rock samples were tested at various temperatures using nitrogen gas as fluid. The permeability tests were conducted at confining pressure of around 4MPa in order to simulate the horizontal in situ stress conditions in Charnokite rock at the depth of 400m for construction of HLW repository. 1

R. D. Dwivedi; R. K. Goel; A. Swarup; V. V. R. Prasad; R. K. Bajpai; P. K. Narayan; V. Arumugam

2008-01-01T23:59:59.000Z

276

High Temperature Superconductivity -- A Joint Feasibility Study for a Power Application with High-Temperature Superconducting Cable by South Carolina  

Science Conference Proceedings (OSTI)

Practical realization of high temperature superconductivity (HTS) technology is within the reach of the electric power industry. This report documents a feasibility study co-sponsored by South Carolina Electric and Gas Company (SCE&G) to assess a real-world underground transmission application of this technology.

1998-11-17T23:59:59.000Z

277

Investigations into High Temperature Components and Packaging  

SciTech Connect

The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

2007-12-31T23:59:59.000Z

278

Fusion blanket high-temperature heat transfer  

DOE Green Energy (OSTI)

Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300/sup 0/C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000/sup 0/C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency.

Fillo, J.A.

1983-01-01T23:59:59.000Z

279

High Temperature Electrochemistry Center - HiTEC  

DOE Green Energy (OSTI)

This presentation discusses the High Temperature Electrochemistry Center (HiTEC). The mission of HiTEC is to advance the solid oxide technology, such as solid oxide, high temperature electrolysers, reversible fuel cells, energy storage devices, proton conductors, etc., for use in DG and FutureGen applications, and to conduct fundamental research that aids the general development of all solid oxide technology.

McVay, G.; Williams, M.

2005-01-27T23:59:59.000Z

280

High-temperature borehole instrumentation  

DOE Green Energy (OSTI)

Research in materials, equipment, and instrument development was required in the Hot Dry Rock Energy Extraction Demonstration at Fenton Hill located in northern New Mexico. The new Phase II Energy Extraction System at the Fenton Hill Test Site will consist of two wellbores drilled to a depth of about 4570 m (15,000 ft) and then connected by a series of hydraulic-induced fractures. The first borehole (EE-2) was completed in May of 1980, at a depth of 4633 m (15,200 ft) of which approximately 3960 m (13,000 ft) is in Precambrian granitic rock. Starting at a depth of approximately 2930 m (9600 ft), the borehole was inclined up to 35/sup 0/ from vertical. Bottom-hole temperature in EE-2 is 317/sup 0/C. The EE-3 borehole was then drilled to a depth of 4236 m (13,900 ft). Its inclined part is positioned directly over the EE-2 wellbore with a vertical separation of about 450 m (1500 ft) between them. The materials development programs cover all aspects of geothermal energy extraction. Research on drilling, hydraulic fracturing, and wellbore logging were necessary to determine the technical and economic feasibility of the hot dry rock concepts.

Dennis, B.R.; Koczan, S.; Cruz, J.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Critical Temperature for the Nuclear Liquid-Gas Phase Transition  

E-Print Network (OSTI)

The charge distribution of the intermediate mass fragments produced in p (8.1 GeV) + Au collisions is analyzed in the framework of the statistical multifragmentation model with the critical temperature for the nuclear liquid-gas phase transition $T_c$ as a free parameter. It is found that $T_c=20\\pm3$ MeV (90% CL).

V. A. Karnaukhov; H. Oeschler; S. P. Avdeyev; E. V. Duginova; V. K. Rodionov; A. Budzanowski; W. Karcz; O. V. Bochkarev; E. A. Kuzmin; L. V. Chulkov; E. Norbeck; A. S. Botvina

2003-02-07T23:59:59.000Z

282

1. Introduction The equilibrium temperature and pressure of a gas  

E-Print Network (OSTI)

a storage tank of known, and essentially fixed, volume can be used to calculate consumption. Equations1. Introduction The equilibrium temperature and pressure of a gas before and after usage within of state for calculating the thermodynamic properties generally provide the pres- sure as a function

Magee, Joseph W.

283

The three way catalyst efficiency and the gas temperature difference  

Science Conference Proceedings (OSTI)

This work refers to the examination of the three way catalyst efficiency, testing the exhaust gases temperature difference (?T) at the inlet and outlet of the catalyst, using gasoline - ethanol mixtures for fuel, at a catalyst engine functioning ... Keywords: bioethanol, gas emissions, three way catalyst

Charalampos Arapatsakos; Panagiotis Lefakis

2009-02-01T23:59:59.000Z

284

High pressure-high temperature effect on the HTSC ceramics structure and properties  

Science Conference Proceedings (OSTI)

Keywords: high pressures-high temperatures, high temperature superconductors, mechanical properties, structure, superconductive

T. A. Prikhna

1995-12-01T23:59:59.000Z

285

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

Michael Swanson; Daniel Laudal

2008-03-31T23:59:59.000Z

286

Kinetic Description of a Finite Temperature Meson Gas  

E-Print Network (OSTI)

A transport model based on the mean free path approach for an interacting meson system at finite temperatures is discussed. A transition to a quark gluon plasma is included within the framework of the bag model. We discuss some calculations for a pure meson gas where the Hagedorn limiting temperature is reproduced when including the experimentally observed resonances. Next we include the possibility for a QGP formation based on the MIT bag model. The results obtained compare very well with Lattice QCD calculations. In particular the cross over to the QGP at about 175 MeV temperature is nicely reproduced.

Zhi Guang Tan; Dai-Mei Zhou; S. Terranova; A. Bonasera

2006-06-28T23:59:59.000Z

287

Fabrication and Characterization of Uranium-based High Temperature Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication and Characterization of Uranium-based High Temperature Reactor Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication and characterization of uranium-based high temperature reactor fuel. A laboratory-scale coater manufactures tri-isotropic (TRISO) coated fuel particles (CFPs), state-of-the-art materials property characterization is performed, and the CFPs are then pressed into fuel compacts for irradiation testing, all under a NQA-1 compliant Quality Assurance Program. After fuel kernel size and shape are measured by optical shadow imaging, the TRISO coatings are deposited via fluidized bed chemical vapor deposition in a 50-mm diameter conical chamber within the coating furnace. Computer control of temperature and gas composition ensures reproducibility

288

NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS  

SciTech Connect

A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new application techniques and systems were developed as part of this project to optimize the installation of this new family of refractory materials to maximize the properties of installed linings and to facilitate nuances such as hot installation and repair. Under this project, seven new shotcrete materials were developed for both primary and repair applications in aluminum, black liquor, coal gasification, and lime kiln environments. Developed materials were based on alumino-silicate, magnesia, and spinel forming systems. One of the developed materials was an insulating shotcrete to be used behind the high conductivity spinel linings developed under this project. Fundamental research work was carried out at MS&T throughout the life of the project to provide support for the development and production of the experimental refractory materials being developed. Work was also ongoing at ORNL and MS&T through the duration of the project on the measurement and characterization of key refractory properties as identified during year one of the project. Both materials currently being used in the industrial processes as identified and supplied by the industrial partners of this project and new materials being provided and developed by MINTEQ were evaluated as necessary. Additionally, energy savings estimates based on measured properties of the experimentally developed refractory systems from this project were made at MINTEQ to validate the energy savings estimates originally proposed for the project. As another part of the project, on-line inspection and hot repair techniques were considered. It was determined that although repair materials were successfully developed under this project for aluminum, black liquor, and coal gasification systems which enable hot repair, there was only minor interest from industry in implementing these materials. On-line inspection techniques were also identified under this project which are currently used in the steel industry, but implementation of these techniques in applications such as black liquor and coal gasification where higher temperature

Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.

2012-08-01T23:59:59.000Z

289

Symposium on high temperature and materials chemistry  

SciTech Connect

This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

1989-10-01T23:59:59.000Z

290

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

291

Experimental Study of Main Gas Ingestion and Purge Gas Egress Flow in Model Gas Turbine Stages.  

E-Print Network (OSTI)

??Efficient performance of gas turbines depends, among several parameters, on the mainstream gas entry temperature. At the same time, transport of this high temperature gas (more)

Balasubramanian, Jagdish Harihara

2010-01-01T23:59:59.000Z

292

High temperature spectral gamma well logging  

Science Conference Proceedings (OSTI)

A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

Normann, R.A.; Henfling, J.A.

1997-01-01T23:59:59.000Z

293

High temperature ceramic/metal joint structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

294

Live Work with High Temperature Conductors  

Science Conference Proceedings (OSTI)

This report examines issues that may arise when live work is undertaken on conductors that operate at high temperatures (HT conductors) and provides the results from selected tests on the temperature levels reached by tools in contact with hot conductors. It also discusses possible concerns that may arise during de-energized work on lines that use HT conductors.

2009-12-15T23:59:59.000Z

295

High temperature thermometric phosphors for use in a temperature sensor  

SciTech Connect

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1998-01-01T23:59:59.000Z

296

Live Work on High Temperature Conductors  

Science Conference Proceedings (OSTI)

Feedback from field personnel working with high-temperature conductors indicates that when a dead-end compression yoke assembly (DCYA) is installed on the conductor according to normal utility procedures, the soft aluminum strands are deformed and "birdcage." This is of course a concern to the field crews and the utility operating the line. This report presents results of research and tests performed on selected conductors operating at high temperature (approximately 250-260C) with selected live wor...

2011-12-13T23:59:59.000Z

297

Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations  

Science Conference Proceedings (OSTI)

It is well known that for increasingly rarefied flowfields, the predictions from continuum formulation, such as the Navier-Stokes equations lose accuracy. For the high speed diatomic molecular flow in the transitional regime, the inaccuracies are partially ... Keywords: Gas-kinetic method, Hypersonic and rarefied flows, Multiple temperature kinetic model

Kun Xu; Xin He; Chunpei Cai

2008-07-01T23:59:59.000Z

298

Permeability enhancement using high energy gas fracturing  

DOE Green Energy (OSTI)

This paper reports the results of a preliminary study of using High Energy Gas Fracturing (HEGF) techniques for geothermal well stimulation. Experiments conducted in the G-tunnel complex at the Nevada Test Site (NTS) showed that multiple fractures could be created in water-filled boreholes using HEGF. Therefore, the method is potentially useful for geothermal well stimulation. 4 refs., 11 figs.

Chu, T.Y.; Cuderman, J.F.; Jung, J.; Jacobson, R.D.

1986-01-01T23:59:59.000Z

299

High temperature crystalline superconductors from crystallized glasses  

DOE Patents (OSTI)

A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

Shi, Donglu (Downers Grove, IL)

1992-01-01T23:59:59.000Z

300

40-MW(E) PROTOTYPE HIGH-TEMPERATURE GAS-COOLED REACTOR RESEARCH AND DEVELOPMENT PROGRAM. Summary Report for the Period January 1, 1959-December 31, 1959 and Quarterly Progress Report for the Period October 1, 1959-December 31, 1959  

SciTech Connect

The HTGR prototype plant (Peach Bottom Power Reactor) is being designed to produce steam at l450 psi and 1000 deg F and to have a net capacity of 40 Mw(e). The fuel temperatures and gas pressures will be approximately the same as those required for larger plants. The reactor data and operating conditions for the graphite-clad core are given. The reactor and primary coolant systems are described. The prospects for development of the graphite-clad fuel element in time for use in the first loading of the reactor were improved by important advances in methods of fabrication and testing of both fuel compacts and graphite sleeves. The hot-pressing process for making fuel compacts was used successfully to make full-size compacts with a uniform distribution of ThC/sub 2/- UC/sub 2/ particles. Three irradiation capsules were fabricated and inserted in a test reactor to determine fuel compact and sleeve performance under HTGR conditions of irradiation and temperature. Two of these ran satisfactorily for the scheduled time of operation. A scope design study of the in-pile loop that will be used to evaluate the full-diameter graphite-clad element was completed. Experiments to determine the extent of fuel migration within the element were undertaken. Preliminary results indicated that the central fuel-element temperatures must not exceed 2300-C for routine operation. An important start was made in developing an understanding of how to treat the neutron thermalization process in high-temperature graphite reactors. Analytical techniques for calculating the thermal neutron spectra in poisoned graphite media were developed and programmed for the IBM 704 computer. The experimental technique of measuring neutron spectra by using a pulsed linear electron accelerator was demonstrated by measurements made with boron-loaded graphite. A mockup of a small portion of the reactor core was constructed and operated to determine the local heat-transfer coefficients and pressure drop in the tricusp- shaped coolant passage. Initial results indicated that the variation of the heat-transfer coefficient around the circumference of the element is less than expected. Studies were started of the transient temperatures and stresses developed in the pressure vessel as a result of load changes or a scram. A detailed study of several types of steam generator for use in the nuclear steam supply system was completed. A design incorporating a steam drum was selected for further study. Preliminary flow diagrams were completed for the helium- purification and fission-product trapping systems. Adsorption isobars for selected fission products in activated carbon were measured and will be used in the detailed design of the trapping system. Detailed planning of the experimental reactor physics program was initiated. Progress was made in the identification of the principal safeguards problems for this type of reactor, and a preliminary safety analysis of the plant was completed. (auth)

1960-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Apparatus and method for high temperature viscosity and temperature measurements  

DOE Patents (OSTI)

A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

2001-01-01T23:59:59.000Z

302

High temperature sodium testing of the CRBR prototype primary pump  

Science Conference Proceedings (OSTI)

Qualification testing in sodium of the CRBR primary pump was conducted through 1982. This paper presents an overview of the test program, a description of the Sodium Pump Test Facility (largest of its kind in the world), a brief description of the test article and summary overview of results. Of special interest were the high temperature gas convection tests and the extensive flow/speed control (dynamic) tests. Special innovative test methods were employed to investigate these phenomena.

Tessier, M.J.; Grimaldi, J.L.

1983-01-01T23:59:59.000Z

303

Study of the MWPC gas gain behaviour as a function of the gas pressure and temperature  

E-Print Network (OSTI)

The Muon System of the LHCb experiment is composed of five detection stations (M1-M5) equipped with 1368 Multi-Wire Proportional Chambers (MWPC) and 24 Triple-GEM detectors. The Multi Wire Proportional Chamber (MWPC) performances (detection efficiency, time resolution, pad-cluster size and ageing properties) are heavily dependent on the gas gain. The chamber gain depends on the gas density and therefore on the gas temperature and pressure. The impact of the environmental parameters on the MWPC gain has been studied in detail. The results, togheter with a simple method proposed to account for the gain variations, are reported in this note. The absolute gas gain at the testing voltage of 2750 V was also measured to be (1.2 +- 0.1)*10^5.

Pinci, D

2005-01-01T23:59:59.000Z

304

Apparatus for accurately measuring high temperatures  

DOE Patents (OSTI)

The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

Smith, Douglas D. (Knoxville, TN)

1985-01-01T23:59:59.000Z

305

High Temperature Cements | Open Energy Information  

Open Energy Info (EERE)

High Temperature Cements High Temperature Cements Jump to: navigation, search Geothermal ARRA Funded Projects for High Temperature Cements Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

306

High Temperature Membrane & Advanced Cathode Catalyst Development  

DOE Green Energy (OSTI)

Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

Protsailo, Lesia

2006-04-20T23:59:59.000Z

307

Materials Degradation Studies for High Temperature Steam Electrolysis Systems  

DOE Green Energy (OSTI)

Experiments are currently in progress to assess the high temperature degradation behavior of materials in solid oxide electrolysis systems. This research includes the investigation of various electrolysis cell components and balance of plant materials under both anodic and cathodic gas atmospheres at temperatures up to 850C. Current results include corrosion data for a high temperature nickel alloy used for the air-side flow field in electrolysis cells and a commercial ferritic stainless steel used as the metallic interconnect. Three different corrosion inhibiting coatings were also tested on the steel material. The samples were tested at 850C for 500 h in both air and H2O/H2 atmospheres. The results of this research will be used to identify degradation mechanisms and demonstrate the suitability of candidate materials for long-term operation in electrolysis cells.

Paul Demkowicz; Pavel Medvedev; Kevin DeWall; Paul Lessing

2007-06-01T23:59:59.000Z

308

Initial stages of high temperature metal oxidation  

Science Conference Proceedings (OSTI)

The application of XPS and UPS to the study of the initial stages of high temperature (> 350/sup 0/C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS.

Yang, C.Y.; O'Grady, W.E.

1981-01-01T23:59:59.000Z

309

Numerical Early Warning Model Research of Landfill Gas Permeation and Diffusion Considering Flow-Temperature Coupling  

Science Conference Proceedings (OSTI)

Based on seepage mechanics in porous medium gas and heat transfer theory, numerical early warning model is established, which is on quantitative description of migration and release of landfill gas and penetration and diffusion of energy, and dynamic ... Keywords: component, landfill gas, flow-temperature coupling, gas pressure and temperature distribution, numerical early warning model

Xue Qiang; Feng Xia-ting; Ma Shi-jin; Zhou Xiao-jun

2009-10-01T23:59:59.000Z

310

High-temperature processing of phosphogypsum in neutral and reducing atmospheres  

SciTech Connect

A thermodynamic study of the high-temperature processing of phosphogypsum (in the presence of steam and natural gas) in the 1500-3000 K temperature interval was conducted. It is shown that the optimum process scheme is thermal dissociation of the dihydrate phosphogypsum in a low-temperature plasma without using natural gas as a reducing agent. This reduces the number of stages in the technological process and specific energy costs for the process.

Messerle, V.E.; Kalmykov, S.I.

1988-11-01T23:59:59.000Z

311

High-Temperature-High-Volume Lifting | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » High-Temperature-High-Volume Lifting Jump to: navigation, search Geothermal ARRA Funded Projects for High-Temperature-High-Volume Lifting Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

312

Testing Methods Used for Materials at High Temperatures  

Science Conference Proceedings (OSTI)

Table 11   Typical commercial high-temperature/high-pressure service conditions...350??650 662??1202 ?10 ?100 Compressed natural gas storage Methane with trace H 2 S 0??100 32??212 ?8 ?80 Thermodynamic power generation NH 3 , H 2 O 100??650 212??1202 ?1.5??15 ?15??150 Geothermal power Brine, steam, H 2 S ?370 ?698 ?17 ?170 Steam boiler Water, steam ?300 ?572 ?9 ?90 Source: Ref 140...

313

High Temperature Materials Interim Data Qualification Report  

SciTech Connect

ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

Nancy Lybeck

2010-08-01T23:59:59.000Z

314

A 5th Generation SC Superalloy with Balanced High Temperature ...  

Science Conference Proceedings (OSTI)

Alloy development for turbine blade materials with higher temperature capability is crucial in order to improve the thermal efficiency in gas turbine systems for...

315

Improved Martensitic Steel for High Temperature Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Martensitic Steel Improved Martensitic Steel for High Temperature Applications Opportunity Research is active on the patented technology, titled "Heat-Treated 9 Cr-1 Mo Steel for High Temperature Application." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The operating efficiency of coal-fired power plants is directly related to combustion system temperature and pressure. Incorporation of ultra- supercritical (USC) steam conditions into new or existing power plants can achieve increased efficiency and reduce coal consumption, while reducing carbon dioxide emissions as well as other pollutants. Traditionally used materials do not possess the optimal characteristics for operation

316

Microscopic Probes of High-Temperature Superconductivity  

Science Conference Proceedings (OSTI)

The granularity of the cuprate superconductors limits the effectiveness of many experimental probes that average over volumes containing many atoms. This report presents theoretical studies on muon spin relaxation and positron annihilation, two microscopic experimental techniques that can probe the properties of both high- and low-temperature superconductors on the atomic scale.

1992-07-01T23:59:59.000Z

317

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal  

Open Energy Info (EERE)

Temperature, High Pressure Devices for Zonal Isolation in Geothermal Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Zonal Isolation Project Description For Enhanced Geothermal Systems (EGS), high-temperature high-pressure zonal isolation tools capable of withstanding the downhole environment are needed. In these wells the packers must withstand differential pressures of 5,000 psi at more than 300°C, as well as pressures up to 20,000 psi at 200°C to 250°C. Furthermore, when deployed these packers and zonal isolation tools must form a reliable seal that eliminates fluid loss and mitigates short circuiting of flow from injectors to producers. At this time, general purpose open-hole packers do not exist for use in geothermal environments, with the primary technical limitation being the poor stability of existing elastomeric seals at high temperatures.

318

High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems  

Open Energy Info (EERE)

Temperature-High-Volume Lifting For Enhanced Geothermal Systems Temperature-High-Volume Lifting For Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature-High-Volume Lifting Project Description The proposed scope of work is divided into three Phases. Overall system requirements will be established in Phase 1, along with an evaluation of existing lifting system capability, identification of technology limitations, and a conceptual design of an overall lifting system. In developing the system components in Phase 2, component-level tests will be conducted using GE facilities. Areas of development will include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall lab-scale lifting system will be demonstrated in a flow loop that will be constructed at GE Global Research.

319

High-temperature Hydrogen Permeation in Nickel Alloys  

DOE Green Energy (OSTI)

In gas cooled Very High Temperature Reactor concepts, tritium is produced as a tertiary fission product and by activation of graphite core contaminants, such as lithium; of the helium isotope, He-3, that is naturally present in the He gas coolant; and the boron in the B4C burnable poison. Because of its high mobility at the reactor outlet temperatures, tritium poses a risk of permeating through the walls of the intermediate heat exchanger (IHX) or steam generator (SG) systems, potentially contaminating the environment and in particular the hydrogen product when the reactor heat is utilized in connection with a hydrogen generation plant. An experiment to measure tritium permeation in structural materials at temperatures up to 1000 C has been constructed at the Idaho National Laboratory Safety and Tritium Applied Research (STAR) facility within the Next Generation Nuclear Plant program. The design is based on two counter flowing helium loops to represent heat exchanger conditions and was optimized to allow control of the materials surface condition and the investigation of the effects of thermal fatigue. In the ongoing campaign three nickel alloys are being considered because of their high-temperature creep properties, alloy 617, 800H and 230. This paper introduces the general issues related to tritium in the on-going assessment of gas cooled VHTR systems fission product transport and outlines the planned research activities in this area; outlines the features and capabilities of the experimental facility being operated at INL; presents and discusses the initial results of hydrogen permeability measurements in two of the selected alloys and compares them with the available database from previous studies.

P. Calderoni; M. Ebner; R. Pawelko

2010-10-01T23:59:59.000Z

320

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE  

E-Print Network (OSTI)

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE JIYONG ZHAOa,? , WOLFGANG, The University of Chicago, Chicago, IL 60637, USA We introduce the combination of nuclear resonant inelastic X the thermal radiation spectra fitted to the Planck radiation function up to 1700 K. Nuclear resonant

Shen, Guoyin

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High-temperature directional drilling turbodrill  

DOE Green Energy (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

322

High temperature solar thermal technology: The North Africa Market  

DOE Green Energy (OSTI)

High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

Not Available

1990-12-01T23:59:59.000Z

323

Establishment of Harrop, High-Temperature Viscometer  

Science Conference Proceedings (OSTI)

This report explains how the Harrop, High-Temperature Viscometer was installed, calibrated, and operated. This report includes assembly and alignment of the furnace, viscometer, and spindle, and explains the operation of the Brookfield Viscometer, the Harrop furnace, and the UDC furnace controller. Calibration data and the development of the spindle constant from NIST standard reference glasses is presented. A simple operational procedure is included.

Schumacher, R.F.

1999-11-05T23:59:59.000Z

324

Geochemistry of Aluminum in High Temperature Brines  

DOE Green Energy (OSTI)

geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

1999-05-18T23:59:59.000Z

325

Thermal fuse for high-temperature batteries  

SciTech Connect

A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

Jungst, Rudolph G. (Albuquerque, NM); Armijo, James R. (Albuquerque, NM); Frear, Darrel R. (Austin, TX)

2000-01-01T23:59:59.000Z

326

Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's High Temperature ORNL's High Temperature Materials Laboratory Assists NASCAR Teams to someone by E-mail Share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Facebook Tweet about Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Twitter Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Google Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Delicious Rank Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Digg Find More places to share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on AddThis.com...

327

High-temperature alloys for high-power thermionic systems  

DOE Green Energy (OSTI)

The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

Shin, Kwang S.; Jacobson, D.L.; D'cruz, L.; Luo, Anhua; Chen, Bor-Ling.

1990-08-01T23:59:59.000Z

328

Polyelectrolyte Materials for High Temperature Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Polyelectrolyte Materials for High Polyelectrolyte Materials for High 3M (3M) Temperature Fuel Cells John B. Kerr Lawrence Berkeley National Laboratory (LBNL) Collaborators: Los Alamos National Laboratory (LANL). February 13, 2007 This presentation does not contain any proprietary or confidential information Team Members: Nitash Blasara, Rachel Segalman, Adam Weber (LBNL). Bryan Pivovar, James Boncella (LANL) Steve Hamrock Objectives * Investigate the use of solid polyelectrolyte proton conductors that do not require the presence of water. * Prepare solid electrolytes where only the proton moves. - Measure conductivity, mechanical/thermal properties of Nafion® and other polyelectrolytes doped with imidazoles. Compare with water doped materials. - Covalently attach imidazoles to side chains of ionomers with

329

THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL  

SciTech Connect

The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models are necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the strong Doppler feedback forces the reactor to quickly stabilize.

J. Ortensi; A.M. Ougouag

2011-12-01T23:59:59.000Z

330

Heat exchangers for high-temperature thermodynamic cycles  

SciTech Connect

The special requirements of heat exchangers for high temperature thermodynamic cycles are outlined and discussed with particular emphasis on cost and thermal stress problems. Typical approaches that have been taken to a comprehensive solution intended to meet all of the many boundary conditions are then considered by examining seven typical designs including liquid-to-liquid heat exchangers for nuclear plants, a heater for a closed cycle gas turbine coupled to a fluidized bed coal combustion chamber, steam generators for nuclear plants, a fossil fuel-fired potassium boiler, and a potassium condenser-steam generator. (auth)

Fraas, A.P.

1975-01-01T23:59:59.000Z

331

Fabrication of a Miniaturized Room Temperature Ionic Liquid Gas Sensor for Human Health and  

E-Print Network (OSTI)

Fabrication of a Miniaturized Room Temperature Ionic Liquid Gas Sensor for Human Health and Safety temperature ionic liquid (RTIL) gas sensors utilizing electrochemical instrumentation demonstrate promising that enables miniaturized, rapid response, gas sensors to be realized using RTIL interfaces on a permeable

Mason, Andrew

332

Evaluation of ceramic filters for high-temperature/high-pressure fine particulate control. Final report Dec 75-Jun 76  

SciTech Connect

High temperature gas turbines used to generate electric power require gas streams virtually free of particulate matter. Gas streams from high temperature, high pressure coal processes, such as low Btu gasification and pressurized fluidized bed combustion, require considerable particulate removal. In order to maintain high thermal efficiency the particulate clean-up must be done at the high temperatures of the process. Many new concepts for fine particulate control at elevated temperatures are presently being proposed. One such concept utilizes ceramic membrane filters. The report gives results of a study to analyze and evaluate ceramic membrane filters as a new, fine particulate (<3 um) control concept for high-temperature (approx. 900/sup 0/C), high-pressure processes. Several ceramic filters were identified as potential candidates for fine particulate removal. There does not seem to be any inherent material limitation to high-temperature operation; however, no evidence of high-temperature filter application was found. The filters typically are 2-6 mm thick, cylindrical, and available with various pore sizes, increasing upward from 0.5 um. These elements may be suitable for fine particulate control in hot gas streams. The most promising, although undeveloped, idea for a ceramic filter is to use ceramic honeycomb monoliths similar to those available for catalyst supports and heat exchangers. The walls of the monoliths are about 0.2-0.4 mm thick and of varying pore size and porosity. Geometric configurations are available which would force the gas to flow through the membrane walls. Pressure losses would be very small relative to those of standard ceramic filter elements. The application of ceramic monoliths to high-temperature fine particulate control appears very promising. It is strongly recommended that this concept be investigated further.

Poe, G.G.; Evans, R.M.; Bonnett, W.S.; Waterland, L.R.

1977-02-01T23:59:59.000Z

333

NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS  

Science Conference Proceedings (OSTI)

Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries.

Hemrick, James Gordon [ORNL

2011-09-01T23:59:59.000Z

334

Protecting Your Precious Recuperators in High Temperature Processes  

E-Print Network (OSTI)

Recuperators are very useful heat exchangers that recover waste heat from products of combustion (poc) in a furnace stack and give them back to the heating operation in the form of preheated combustion air for the burners. Since part of the chemical energy in our purchased fuel must first be used to raise the air and fuel to flame temperature, the use of preheated air leaves more heat for transfer to the furnace load, or permits reduction of overall fuel consumption. Also, this heat-recycling affords a good relationship, time-wise, between the need for input and the availability of hot flue gases for air preheating. Unlike the heat exchange surface of waste heat boilers, however, recuperators re gas-to-gas heat exchangers that can overheat and develop hot spots because the only coolant to protect the heat exchanger material is the air being heated. Air is a good insulator and therefore a poor coolant; whereas the heat exchange surface of a waste heat boiler is backed by a good coolant-water-with a high latent heat, making it very forgiving. The flow of air coolant through a recuperator diminishes as the burner input is turned down to lower firing rates. But, the furnace temperature, and therefore the flue gas temperature, stays at about the same level. Although the flow of hot poc is reduced, the net effect is that heat exchange surface temperature rises, often above the limit of its materials. This is only one of several ways in which over-enthusiastic engineers have been 'burned' by recuperator failures.

Reed, R. J.

1983-01-01T23:59:59.000Z

335

High-temperature superconducting current leads  

Science Conference Proceedings (OSTI)

Use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature can reduce refrigeration requirements to values significantly below those achievable with conventional leads. HTS leads are now near commercial realization. Argonne National Laboratory (ANL) has developed a sinter-forge process to fabricate current leads from bismuth-based superconductors. The current-carrying capacity of these leads is five times better than that of HTS leads made by a conventional fabrication process. ANL along with Superconductivity, Inc., has developed a 1500 ampere current lead for an existing superconducting magnetic energy storage (SMES) device. With Babcock & Wilcox Company, Argonne is creating 16-kiloampere leads for use in a 0.5 MWh SMES. In a third project Argonne performed characterization testing of a existing, proprietary conduction-cooled lead being developed by Zer Res Corp.

Niemann, R.C.

1995-03-01T23:59:59.000Z

336

Method for providing variable output gas-fired furnace with a constant temperature rise and efficiency  

Science Conference Proceedings (OSTI)

A method is described for providing a variable output gas-fired furnace means with a constant temperature rise and efficiency where the furnace means includes burners, a blower, a thermostat and a delay timer, the method comprising the steps of: sensing the temperature in an area to be conditioned; comparing the sensed temperature to a predetermined set point; if the sensed temperature deviates from the predetermined set point by more than a predetermined amount, gas is supplied to the burners and the blower is started; determining the reference revolution per minute of the blower; determining the reference cubic feet per minute delivered by the blower; determining the manifold pressure; determining whether the furnace is in a high heat or a low heat mode of operation; determining the desired cubic feet per minute delivered by the blower for the current mode of operation; reading the actual revolution per minute of the blower; adjusting the speed of the blower motor if the actual and desired revolution per minute of the blower are not the same; determining whether the thermostat is satisfied; if the thermostat is not satisfied, returning to the step of determining the manifold pressure; and if the thermostat is satisfied, shutting off the gas and starting the delay timer.

Ballard, G.W.; Thompson, K.D.

1987-08-25T23:59:59.000Z

337

Development of Disposable Sorbents for Chloride Removal from High-Temperature Coal-Derived Gases  

Science Conference Proceedings (OSTI)

The integrated coal-gasification combined-cycle approach is an efficient process for producing electric power from coal by gasification, followed by high-temperature removal of gaseous impurities, then electricity generation by gas turbines. Alternatively, molten carbonate fuel cells (MCFC) may be used instead of gas turbine generators. The coal gas must be treated to remove impurities such as hydrogen chloride (HCl), a reactive, corrosive, and toxic gas, which is produced during gasification from chloride species in the coal. HCl vapor must be removed to meet environmental regulations, to protect power generation equipments such as fuel cells or gas turbines, and to minimize deterioration of hot coal gas desulfurization sorbents. The objectives of this study are to: (1) investigate methods to fabricate reactive sorbent pellets or granules that are capable of reducing HCl vapor in high-temperature coal gas streams to less than 1 ppm in the temperature range 400{degrees}C to 650{degrees}C and the pressure range 1 to 20 atm; (2) testing their suitability in bench-scale fixed- or fluidized-bed reactors; (3) testing a superior sorbent in a circulating fluidized- bed reactor using a gas stream from an operating coal gasifier; and (4) updating the economics of high temperature HCl removal.

Krishnan, G.N.; Canizales, A. [SRI International, Menlo Park, CA (United States); Gupta, R. [Research Triangle Inst., Research Triangle Park, NC (United States); Ayala, R. [General Electric Co., Schenectady, NY (United States). Corporate Research and Development Center

1996-12-31T23:59:59.000Z

338

High power densities from high-temperature material interactions  

DOE Green Energy (OSTI)

Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

Morris, J.F.

1981-01-01T23:59:59.000Z

339

Live Working Tools for High Temperature Conductors  

Science Conference Proceedings (OSTI)

In long-duration (several days) tests, strain link sticks used for live work were removed from service and exposed to conductors operating at high temperature of about 250-260C. Only strain link sticks were tested to date. Results obtained do not indicate damage or deterioration of the tested sticks. The research is a joint effort between project 35.010 Live Working Research for Overhead Transmission Equipment, Techniques, Procedures and Protective Grounding and project 35.015 Advanced Conductors to inve...

2010-12-17T23:59:59.000Z

340

High-temperature liquid--metal MHD generator experiments  

DOE Green Energy (OSTI)

Detailed data were obtained for the world's first high-temperature two-phase liquid--metal MHD generator under open-circuit conditions. Both single-phase (sodium) and two-phase (sodium and nitrogen) flows were used in the temperture range of approx. 490 to approx. 740/sup 0/K. The data presented includes pressures, voltages, and slip ratios (ratio of gas velocity to liquid velocity). The two-phase pressure--gradient data were predicted well by a simplified two-phase MHD correlation that includes the effect of a pure-liquid shunt layer between the electrodes. The slip ratio is shown to decrease with increasing temperature, implying higher generator and system efficiencies; this anticipated result was a prime reason for performing these experiments.

Dunn, P.F.; Pierson, E.S.; Staffon, J.D.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NETL: Gasification - Recovery Act: High Temperature Syngas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Recovery Act: High Temperature Syngas Cleanup Technology Scale-Up and Demonstration Project Research Triangle Institute Project Number: FE0000489 Project Description Research Triangle Institute (RTI) is designing, building, and testing the Warm Temperature Desulfurization Process (WDP) at pre-commercial scale (50 megawatt electric equivalent [MWe]) to remove more than 99.9 percent of the sulfur from coal-derived synthesis gas (syngas). RTI is integrating this WDP technology with an activated methyl diethanolamine (aMDEA) solvent technology to separate 90% of the carbon dioxide (CO2) from shifted syngas. The Polk Power Station, an integrated gasification combined cycle (IGCC) power plant, will supply approximately 20% of its coal-derived syngas as a slipstream to feed into the pre-commercial scale technologies being scaled-up.

342

Superconductivity Program Overview High-Temperature Superconductivity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy applicaTionS Developing HTS-based electric power equipment such as transmission and distribution cables and fault current limiters Second-generaTion Wire developmenT Developing high-performance, low-cost, second- generation HTS wire at long lengths STraTegic reSearch Supporting fundamental research activities to better understand relationships between the microstructure of HTS materials and their ability to carry large electric currents over long lengths Superconductivity Program Overview High-Temperature Superconductivity for Electric Systems Office of Electricity Delivery and Energy Reliability www.oe.energy.gov Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585

343

Comparison of diesel spray combustion in different high-temperature, high-pressure facilities.  

DOE Green Energy (OSTI)

Diesel spray experiments at controlled high-temperature and high-pressure conditions offer the potential for an improved understanding of diesel combustion, and for the development of more accurate CFD models that will ultimately be used to improve engine design. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but uncertainties about their operation exist because of the uniqueness of each facility. For the IMEM meeting, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m{sup 3}, 15% oxygen) and sharing the same injector (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging. Performing experiments at the same high-temperature, high-pressure operating conditions is an objective of the Engine Combustion Network (http://www.ca.sandia.gov/ECN/), which seeks to leverage the research capabilities and advanced diagnostics of all participants in the ECN. We expect that this effort will generate a high-quality dataset to be used for advanced computational model development at engine conditions.

Christiansen, Caspar (Technical University of Denmark); Hermant, Laurent (IFP); Malbec, Louis-Marie (IFP); Bruneaux, Gilles (IFP); Genzale, Caroline L.; Pickett, Lyle M.; Schramm, Jesper (Technical University of Denmark)

2010-05-01T23:59:59.000Z

344

The experimental evaluation and application of high temperature solid lubricants  

Science Conference Proceedings (OSTI)

A research program meant to develop an understanding of high temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system was described. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid libricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials. The data obtained and the lubrication techniques developed provide important information to designers of sliding seals.

Dellacorte, C.

1989-01-01T23:59:59.000Z

345

Measurement of gas temperature field in a flame spreading over solid fuel.  

E-Print Network (OSTI)

??An experimental measurement is developed to measure the gas temperature field in a flame spreading downward over thermally thin filter paper. A flame stabilizer apparatus (more)

Alghamdi, Abdulaziz Othman

2012-01-01T23:59:59.000Z

346

Perturbations in high-velocity gas flow  

DOE Green Energy (OSTI)

High velocity explosive products or other low-density gases are often used to accelerate metal plates to high velocities. Perturbations in otherwise uniform flow configurations are sometimes sufficient to cause interactions that can rapidly destroy the integrity of the plates. In this study perturbations were introduced in uniform gas flows of detonated HE products and strongly shocked polyethylene, CH{sub 2}. The primary diagnostics were smear-camera records obtained when these gases impinged on layers of plexiglas separated by small argon-filled gaps. These records show shock-arrival times at various levels and thus determine not only the size of the perturbation but also its strength. Perturbations in HE gases running into H{sub 2} and in CH{sub 2} into H{sub 2} have been studied. Two-dimensional hydrodynamic calculations are in excellent agreement with the experiments, and enable one to study details of the flow not possible from experimental results. 1 ref., 5 figs.

Harvey, W.B.; McQueen, R.G. (Los Alamos National Lab., NM (USA))

1989-01-01T23:59:59.000Z

347

Modeling twin-screw multiphase pump performance during periods of high gas volume fraction  

E-Print Network (OSTI)

Multiphase pumping is a new technology used for reducing capital investments, increasing production rates, and improving recoveries in many on-shore projects. Interest is also growing in the subsea/offshore application of this technology. Multiphase pumping adds energy to an unprocessed effluent stream acting as a combined pump and compressor, permitting the recovery of oil and gas on an economical basis. In practice, multiphase production is characterized by wide fluctuations in the gas and liquid mass flow rates. During periods of substantial gas flow, temperature becomes the critical variable determining the performance of the pump. Without the liquid phase to remove the gas compression heat, temperatures in the discharge gas stream begin to rise causing a decrease in efficiency, a high temperature shut-in of the pump, and damage to the pump. While this behavior has been observed in lab experiments and in the field, a review of literature reveals that no mechanistic model exists for predicting the performance of a twin-screw pump under high gas volume flow conditions. Also, very few data are available under high GVF conditions. Both large-scale experiments and mechanistic modeling were performed as part of this research. This thesis models the behavior of a twin-screw multiphase pump under high gas volume fraction conditions. The model of the pump is based on fundamental principles of thermodynamic and fluid mechanics. The specific experimental tasks undertaken in this work include studying the volumetric pump performance during periods of high gas volume fractions, the observation of temperature increase with time under periods of 100% gas volume fraction and studying the effect of viscosity on high GVF performance. The results indicate that the pump can be operated during periods of 100% gas volume fractions. The volumetric efficiency of the twin-screw multiphase pump during periods of high to 100% gas volume fractions can be improved by increasing the viscosity of the process stream or by injecting high viscosity fluids into the pump casing. At 94-95% gas volume fraction the system transitions from isothermal conditions. And the system moves from isothermal to adiabatic (uncooled) conditions with time. A model has been generated that predicts temperature increase with time as a function of the key parameters of pump speed, differential pressure, mass flow rate, specific heat and slip flow. This model can be used to develop novel control philosophies for operating multiphase pumps during high gas volume fractions.

Singh, Aditya

2003-01-01T23:59:59.000Z

348

Assessing High Temperature Failures in Components under ...  

Science Conference Proceedings (OSTI)

These type of failures have occurred in the refinery, petrochemical and power ... Stainless Steels - Some Failure Case Histories from the Norwegian Oil and Gas...

349

NETL: Gasification Systems - High Temperature Syngas Cleanup...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hornick, Tampa Electric Company, Ben Gardner, RTI International, presented at the Gasification Technologies Conference, San Francisco, CA Oct 9-12, 2011. Warm Gas Clean-up and...

350

High temperature methods for forming oxidizer fuel  

DOE Patents (OSTI)

A method of treating a formation fluid includes providing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes carbon dioxide, hydrogen sulfide, hydrocarbons, hydrogen or mixtures thereof. Molecular oxygen is separated from air to form a molecular oxygen stream comprising molecular oxygen. The first gas stream is combined with the molecular oxygen stream to form a combined stream comprising molecular oxygen and the first gas stream. The combined stream is provided to one or more downhole burners.

Bravo, Jose Luis (Houston, TX)

2011-01-11T23:59:59.000Z

351

Production and high temperature treatment of syngas.  

E-Print Network (OSTI)

??Gas cleaning is an essential step in many chemical processes. The reason for cleaning is to remove components that can damage equipment or inhibit further (more)

Botha, Martin Francis.

2010-01-01T23:59:59.000Z

352

New Environmental Challenges on High Temperature Alloys  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Corrosion Resistant Metallic Materials for Ultra-deep Well Drilling ... tubular components during ultra-deep drilling of oil and natural gas shale.

353

High temperature heat pipe experiments in low earth orbit  

SciTech Connect

Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented.

Woloshun, K.; Merrigan, M.A.; Sena, J.T. (Los Alamos National Lab., NM (United States)); Critchley, E. (Phillips Lab., Kirtland AFB, NM (United States))

1993-01-01T23:59:59.000Z

354

High temperature heat pipe experiments in low earth orbit  

SciTech Connect

Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented.

Woloshun, K.; Merrigan, M.A.; Sena, J.T. [Los Alamos National Lab., NM (United States); Critchley, E. [Phillips Lab., Kirtland AFB, NM (United States)

1993-02-01T23:59:59.000Z

355

SAGBO Mechanism on High Temperature Cracking Behavior of Ni ...  

Science Conference Proceedings (OSTI)

mode I stress intensity factor, Q is the activation energy, R is the universal gas constant and T is the absolute temperature. Accordingly, a plot of log (da/dt)...

356

High Temperature Borehole Televiewer software user manual  

DOE Green Energy (OSTI)

The High Temperature Borehole Televiewer is a downhole instrument which provides acoustic pictures of the borehole walls that are suitable for casing inspection and fracture detection in geothermal wells. The Geothermal Drilling Organization has funded the development of a commercial tool survivable to temperatures of 275{degree}C and pressures of 5000 psi. A real-time display on an IBM-compatible PC was included as part of the development effort. This report contains a User Manual which describes the operation of this software. The software is designed in a menu format allowing the user to change many of the parameters which control both the acquisition and the display of the Televiewer data. An internal data acquisition card digitizes the waveform from the tool at a rate of 100,000 samples per second. The data from the tool, both the range or arrival time and the amplitude of the return signal, are displayed in color on the CRT screen of the computer during the logging operation. This data may be stored on the hard disk for later display and analysis. The software incorporates many features which aid in the setup of the tool for proper operation. These features include displaying and storing the captured waveform data to check the voltage and time windows selected by the user. 17 refs., 28 figs., 15 tabs.

Duda, L.E.

1989-11-01T23:59:59.000Z

357

High Temperature Materials Laboratory (HTML) - PSD Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions. However, research projects at the HTML still may be conducted on a cost-recovery basis through the Work for Others (WFO) Program or under a Cooperative R&D Agreement (CRADA). Dr. Edgar Lara-Curzio, HTML Director Tel: 865.574.1749 Fax: 865.574.4913 laracurzioe@ornl.gov Christine Goudy, Administrative Specialist Tel: 865.574.8295 Fax: 865.574.4913 goudyc@ornl.gov Oak Ridge National Laboratory [MST Home] [ORNL Home] [Site Index] [Search][Disclaimer] [Webmaster] Oak Ridge National Laboratory is a national multi-program research and development facility managed by UT-Battelle, LLC for the U.S. Department of Energy

358

Multilayer ultra-high-temperature ceramic coatings  

SciTech Connect

A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

2012-03-20T23:59:59.000Z

359

Analytical model of the temperature dependent properties of microresonators immersed in a gas  

SciTech Connect

A comprehensive theoretical model of microresonators immersed in a viscous gas of varying temperature is presented and verified by experiments. Analytical expressions for both the temperature dependent resonant frequency and quality factor of the first flexural eigenmode were derived extending Sader's theory of viscous damping to small temperature variations. The model provides useful implications for the thermal stabilization of microresonators immersed in a gas as well as for the reduction in the influence of the temperature dependent gas properties on the resonant frequency. Finally, an analytical expression is deduced for the mass detection capability of a microresonator that undergoes temperature variations.

Ilin, E. A.; Kehrbusch, J.; Radzio, B.; Oesterschulze, E. [Physics and Technology of Nanostructures, Nano-Bio-Center, University of Kaiserslautern, Erwin-Schroedinger Strasse 46, 67663 Kaiserslautern (Germany)

2011-02-01T23:59:59.000Z

360

The Framatome ANP Indirect-Cycle Very High Temperature Reactor  

SciTech Connect

Framatome ANP is developing a Very High Temperature Reactor (VHTR) design, relying on its previous experience with high temperature reactor designs, from its participation in the MODUL and the GT-MHR designs. The Framatome ANP VHTR design is based on an indirect cycle coupled to an 'off-the-shelf' combined cycle gas turbine. Although direct cycle HTR's are being promoted for their high efficiency, preliminary evaluations show that the Framatome ANP design efficiency is on par with a direct cycle while avoiding PGS (Power Generation System) developments and keeping the PGS contamination free. This concept was independently evaluated with sensitivity analysis by EDF. Moreover, the nuclear heat source of the indirect cycle could also be used to qualify the direct cycle components without risk of contamination behind the IHX, thus assisting in the preparation for the later introduction of that technology. Relying to the maximum extent on available technology, the Framatome ANP VHTR plant can demonstrate high-efficiency electricity generation and carbon-free hydrogen production. (authors)

Copsey, Bernie [Framatome ANP, Inc., 3315 Old Forest Road Lynchburg, VA (United States); Lecomte, Michel [Framatome ANP, SAS, Tour AREVA Paris, La Defense (France); Brinkmann, Gerd [Framatome ANP, GmbH, 49 (9131) 18-96630, Erlangen (Germany); Capitaine, Alain; Deberne, Nicolas [EDF/SEPTEN, Villeurbanne (France)

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

RESULTS OF RECENT HIGH TEMPERATURE COELECTROLYSIS STUDIES AT THE IDAHO NATIONAL LABORATORY  

DOE Green Energy (OSTI)

Some results of CO2 / H2O electrolysis experiments performed to date using button cells and three different 10-cell planar solid oxide stacks are presented and discussed. These results include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via an in-line micro gas chromatograph (GC), are compared to predictions obtained from an INL-developed chemical equilibrium coelectrolysis model (CECM). Better understanding of the feasibility of producing syngas using high temperature electrolysis may initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

Carl Stoots; James O'Brien; Joseph Hartvigsen

2009-05-01T23:59:59.000Z

362

Assessment of microelectronics packaging for high temperature, high reliability applications  

DOE Green Energy (OSTI)

This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

Uribe, F.

1997-04-01T23:59:59.000Z

363

Operating experience with gas-bearing circulators in a high-pressure helium loop  

Science Conference Proceedings (OSTI)

A high-pressure engineering test loop has been designed and constructed at the Oak Ridge National Laboratory for circulating helium through a test chamber at temperatures to 1000/sup 0/C. The purpose of this loop is to determine the thermal and structural performance of proposed components for the primary loops of gas-cooled nuclear reactors. Five MW of power is available to provide the required gas temperature at the test chamber, and an air-cooled heat exchanger, rated at 4.4 MW, serves as a heat sink. This report contains results of tests performed on gas-bearing circulators.

Sanders, J.P.; Gat, Uri; Young, H.C.

1987-01-01T23:59:59.000Z

364

High Temperature Integrated Thermoelectric Ststem and Materials  

DOE Green Energy (OSTI)

The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

Mike S. H. Chu

2011-06-06T23:59:59.000Z

365

The New England High-Resolution Temperature Program  

Science Conference Proceedings (OSTI)

The New England High-Resolution Temperature Program seeks to improve the accuracy of summertime 2-m temperature and dewpoint temperature forecasts in the New England region through a collaborative effort between the research and operational ...

David J. Stensrud; Nusrat Yussouf; Michael E. Baldwin; Jeffery T. McQueen; Jun Du; Binbin Zhou; Brad Ferrier; Geoffrey Manikin; F. Martin Ralph; James M. Wilczak; Allen B. White; Irina Djlalova; Jian-Wen Bao; Robert J. Zamora; Stanley G. Benjamin; Patricia A. Miller; Tracy Lorraine Smith; Tanya Smirnova; Michael F. Barth

2006-04-01T23:59:59.000Z

366

High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test  

SciTech Connect

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

Richard D. Boardman; B. H. O& #39; Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

2004-02-01T23:59:59.000Z

367

High Collapse Tubulars for the Oil and Gas Industry, Manufacturing ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Collapse Tubulars for the Oil and Gas Industry, Manufacturing and Characterization. Author(s), Federico Daguerre, Gustavo Lopez...

368

SUMMER 2010 67 for temperature but leaving the buildup of greenhouse gas  

E-Print Network (OSTI)

SUMMER 2010 67 for temperature but leaving the buildup of greenhouse gas concentrations unchecked is to reduce greenhouse gas concentra- tions in the air. The second type of geoengineering reflects or blocks in a remarkably short period of time. The first is our inability to reduce green- house gas emissions in any

Jackson, Robert B.

369

Aeroengine turbine exhaust gas temperature prediction using process support vector machines  

Science Conference Proceedings (OSTI)

The turbine exhaust gas temperature (EGT) is an important parameter of the aeroengine and it represents the thermal health condition of the aeroengine. By predicting the EGT, the performance deterioration of the aeroengine can be deduced in advance and ... Keywords: aeroengine, condition monitoring, process support vector machines, time series prediction, turbine exhaust gas temperature

Xu-yun Fu, Shi-sheng Zhong

2013-07-01T23:59:59.000Z

370

Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy  

E-Print Network (OSTI)

sensor for measurements of gas turbine exhaust temperature."O, CO 2 , and Temperature in Gas Turbine Exhaust through theview of UCSD power plant gas turbine systems 31

Leon, Marco E.

2007-01-01T23:59:59.000Z

371

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

DOE Green Energy (OSTI)

The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

Michael L. Swanson

2005-08-30T23:59:59.000Z

372

Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

9 High Temperature 9 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on AddThis.com...

373

Mold, flow, and economic considerations in high temperature precision casting  

E-Print Network (OSTI)

Casting high temperature alloys that solidify through a noticeable two phase region, specifically platinum-ruthenium alloys, is a particularly challenging task due to their high melting temperature and this necessitates ...

Humbert, Matthew S

2013-01-01T23:59:59.000Z

374

GasHighWay Best Practices | Open Energy Information  

Open Energy Info (EERE)

GasHighWay Best Practices GasHighWay Best Practices Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GasHighWay Best Practices Agency/Company /Organization: GasHighWay Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.gashighway.net/default.asp?sivuID=25922&component=/modules/bbsView This website provides a compilation of best practices and experiences in the use of natural gas vehicles, the production of biogas and natural gas, and the expansion of fueling infrastructure in countries including Sweden, Finland, Austria, Czech Republic, Poland, and Germany. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

375

Analytic Models of High-Temperature Hohlraums  

SciTech Connect

A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented.

Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

2000-11-29T23:59:59.000Z

376

High temperature water adsorption on The Geysers rocks  

DOE Green Energy (OSTI)

In order to measure water retention by geothermal reservoir rocks at the actual reservoir temperature, the ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quality of water retained by rock samples taken from three different wells of The Geysers geothermal reservoir was measured at 150{sup degree}C, 200{sup degree}C, and 250{sup degree}C as a function of pressure in the range 0.00 {<=}p/p{sub degree} {<=} 0.98, where p{sub degree} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A correlation is sought between water adsorption, the surface properties, and the mineralogical and petrological characteristics of the solids.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1997-08-01T23:59:59.000Z

377

Ceramic heat pipes for high temperature heat removal  

SciTech Connect

Difficulties in finding metal or protected metal components that exhibit both strength and corrosion resistance at high temperature have severely restricted the application of effective heat recovery techniques to process heat furnaces. A potential method of overcoming this restriction is to use heat pipes fabricated from ceramic materials to construct counterflow recuperators. A development program has been initiated to demonstrate the technical and eventually the economical feasibility of ceramic heat pipes and ceramic heat pipe recuperators. The prime candidate for heat pipe construction is SiC. Closed-end tubes of this material have been prepared by chemical vapor deposition (CVD). These tubes were lined internally with tungsten by a subsequent CVD operation, partially filled with sodium, and sealed by brazing a tungsten lined SiC plug into the open-end with a palladium--cobalt alloy. Heat pipes constructed in this manner have been successfully operated in vacuum at temperatures of 1225/sup 0/K and in air at a temperature of 1125/sup 0/K. The heat source used initially for the air testing was an induction heated metallic sleeve in thermal contact with the test unit. Subsequent testing has shown that a silicon carbide heat pipe can be successfully operated with natural gas burners providing the input heat. Methods of fabricating and testing these devices are described.

Keddy, E.S.; Ranken, W.A.

1978-01-01T23:59:59.000Z

378

Effect of Environment and Microstructure on the High Temperature ...  

Science Conference Proceedings (OSTI)

EFFECT OF ENVIRONMENT AND MICROSTRUCTURE ON THE HIGH. TEMPERATURE BEHAVIOR OF ALLOY 718. E. Andrieu",. R. Cozar** and A. Pineau".

379

High Temperature Fatigue Life of Coated and Uncoated Valve ...  

Science Conference Proceedings (OSTI)

Symposium, Properties, Processing, and Performance of Steels and Ni-Based Alloys for Advanced Steam Conditions. Presentation Title, High Temperature...

380

WEB RESOURCE: High Temperature Materials 21 Project (Phase 2)  

Science Conference Proceedings (OSTI)

Feb 10, 2007... thermal efficiency of power generation systems and advanced aeroengines. ... SOURCE: Harada, H. "High Temperature Materials 21 Project...

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Improved Growth of High-Temperature Superconductors with ...  

Visual Patent Search; Success Stories; News; Events; Electricity Transmission Improved Growth of High-Temperature Superconductors with HF Pressure ...

382

A Possible Pressure-Induced High-Temperature-Superconducting  

Science Conference Proceedings (OSTI)

... Materials Forensics, Three-dimensional Modeling and Fractal Characterization Vortex Physics in Oxide and Pnictide High Temperature Superconductors.

383

Hydrogen production from fusion reactors coupled with high temperature electrolysis  

SciTech Connect

An initial study was conducted on a fusion reactor and high temperature electrolyzer system for the production of synthetic fuel. The design temperatures in the fusion reactor blanket were above 1380/sup 0/C. Electrolytic hydrogen production at the high temperatures consumes a high ratio of thermal to electric energy and increases the efficiency of the plant and an overall efficiency of approximately 50% appeared possible. The concepts of the system and the design considerations of the high temperature electrolyzer will be presented.

Isaacs, H.S.; Fillo, J.A.; Dang, V.; Powell, J.R.; Steinberg, M.; Salzano, F.; Benenati, R.

1978-01-01T23:59:59.000Z

384

Hydrogen Production from Nuclear Energy via High Temperature Electrolysis  

DOE Green Energy (OSTI)

This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

2006-04-01T23:59:59.000Z

385

High Temperature Materials I - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 28, 2011 ... To increase efficiency and reduce carbon emissions, boilers, heat exchangers, and turbines all will be asked to perform at higher temperature...

386

Novel Techniques for Investigating the High Temperature ...  

Science Conference Proceedings (OSTI)

(enriched to 87%, ga=O.87) for 4 hours and 62 hours at the same temperature. ... Neglecting any contribution from 170-, which has a natural abundance of...

387

New Ultra-High Temperature Material Systems  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... Hafnium Based Coatings for Non-Oxide Ultrahigh Temperature ... the fracture properties and resistance to thermal shock were evaluated before...

388

Applications of High-temperature Structural Materials  

Science Conference Proceedings (OSTI)

Aug 9, 2013 ... The development of advanced ultra-supercritical coal-fired power plants with operating temperature beyond 700C requires the partial...

389

Multiplexed Sensor for Synthesis Gas Compsition and Temperature  

Science Conference Proceedings (OSTI)

The overall goal of this project has been to develop a highly sensitive, multiplexed TDL-based sensor for CO{sub 2}, CO, H{sub 2}O (and temperature), CH{sub 4}, H{sub 2}S, and NH{sub 3}. Such a sensor was designed with so-called 'plug-and-play' characteristics to accommodate additional sensors, and provided in situ path-integrated measurements indicative of average concentrations at speeds suitable for direct gasifier control. The project developed the sensor and culminated in a real-world test of the underlying technology behind the sensor. During the project, new underlying measurements of spectroscopic constants for all of the gases of interest performed, in custom cells built for the project. The envisioned instrument was built from scratch from component lasers, fiber optics, amplifier blocks, detectors, etc. The sensor was tested for nearly a week in an operational power plant. The products of this research are expected to have a direct impact on gasifier technology and the production of high-quality syngas, with substantial broader application to coal and other energy systems. This report is the final technical report on project DE-FG26-04NT42172. During the project we completed all of the milestones planned in the project, with a modification of milestone (7) required due to lack of funding and personnel.

Steven Buckley; Reza Gharavi; Marco Leon

2007-10-01T23:59:59.000Z

390

Fuel Cell Technologies Office: 2006 High Temperature Membrane...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes, Andrew Herring, Colorado School of Mines (PDF 213 KB) Design and Development of High-Performance...

391

High temperatures drove record electricity demand and very ...  

U.S. Energy Information Administration (EIA)

Therefore, the high prices for Friday were set on Thursday when ERCOT had called a supply emergency and temperatures were expected to remain high on ...

392

Laclede Gas Company - Residential High Efficiency Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential High Efficiency Heating Rebate Residential High Efficiency Heating Rebate Program Laclede Gas Company - Residential High Efficiency Heating Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Heating System: 2 maximum Programmable Thermostats: 2 maximum Multi-Family Property Owners: 50 thermostat rebates, 50 furnace rebates over the life of the program Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Gas Furnace: $150 - $200 Gas Boiler: $150 Programmable Setback Thermostat: $25 Gas Water Heater: $50 - $200 Provider Laclede Gas Company Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential

393

NOvel Refractory Materials for High Alkali, High Temperature Environments  

SciTech Connect

Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)

2011-08-30T23:59:59.000Z

394

Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling  

Science Conference Proceedings (OSTI)

This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

Tom Champness; Tony Worthen; John Finger

2008-12-31T23:59:59.000Z

395

Device For Determining Therophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure  

DOE Patents (OSTI)

A computer product for determining thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Gilbert, AZ)

2005-02-01T23:59:59.000Z

396

Fusion reactors-high temperature electrolysis (HTE)  

DOE Green Energy (OSTI)

Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800/sup 0/C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400/sup 0/C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) ($1000/KW(E) equivalent), the H/sub 2/ energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10/sup 6/ scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen.

Fillo, J.A. (ed.)

1978-01-01T23:59:59.000Z

397

Design of High Field Solenoids made of High Temperature Superconductors  

Science Conference Proceedings (OSTI)

This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

Bartalesi, Antonio; /Pisa U.

2010-12-01T23:59:59.000Z

398

High temperature, minimally invasive optical sensing modules  

DOE Patents (OSTI)

A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

2008-02-05T23:59:59.000Z

399

The gas temperature in flaring disks around pre-main sequence stars  

E-Print Network (OSTI)

A model is presented which calculates the gas temperature and chemistry in the surface layers of flaring circumstellar disks using a code developed for photon-dominated regions. Special attention is given to the influence of dust settling. It is found that the gas temperature exceeds the dust temperature by up to several hundreds of Kelvins in the part of the disk that is optically thin to ultraviolet radiation, indicating that the common assumption that Tgas=Tdust is not valid throughout the disk. In the optically thick part, gas and dust are strongly coupled and the gas temperature equals the dust temperature. Dust settling has little effect on the chemistry in the disk, but increases the amount of hot gas deeper in the disk. The effects of the higher gas temperature on several emission lines arising in the surface layer are examined. The higher gas temperatures increase the intensities of molecular and fine-structure lines by up to an order of magnitude, and can also have an important effect on the line shapes.

B. Jonkheid; F. G. A. Faas; G. -J. van Zadelhoff; E. F. van Dishoeck

2004-08-26T23:59:59.000Z

400

Reinforcements for high temperature ceramics. Final report  

Science Conference Proceedings (OSTI)

A method has been investigated and developed to grow TiB{sub 2} whiskers by the VLS mechanism. The reaction was carried out in a quartz tube 3 in. in diameter, 30 in. long at about 1150{degrees}C in the presence of a catalyst. The basic experimental parameters, a substrate, and a catalyst, for the growth of the whiskers have been defined. The whiskers produced have shown variable size and morphology depending on the experimental conditions, and location of the whiskers from the input port. The corrosion of the catalyst by the gas environment, and the gas distribution profile in the furnace had a serious effect on the reproducibility of the experimental results, and the overall yield of whiskers.

Kyriacou, C.I.; Sepulveda, J.L.; Watson, M.A. [Keramont Corp., Tucson, AZ (United States)

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heat-pipe development for high-temperature recuperator application  

SciTech Connect

Heat pipes have been developed for operation in oxidizing atmospheres at temperatures above 1100/sup 0/K. The heat pipes comprise a metallic liner and wick structure with a protective outer shell of an oxidation resistant material. The working fluids used in the heat pipes are alkali metals. A number of configurations have been evaluated, ranging from pipes using a metallic inner liner of a chemically vapor deposited (CVD) refractory metal applied to ceramic tubing, to one utilizing ferrous materials with an outer layer of a developed oxide. A promising intermediate configuration consisting of free-standing refractory tubing covered with a layered structure of fine grain, equi-axed CVD silicon carbide has also been evaluated. The test heat pipe was fabricated using low-carbon, arc-cast molybdenum tubing and a wick composed of 150 mesh molybdenum screen. Hafnium gettering was used with sodium working fluid. Assembly of the pipe was by electron beam welding. Following closure and capping of the fill tube the assembly was operated in a vacuum for several hours prior to the chemical vapor deposition of the exterior ceramic coating. After coating, the pipe was operated in air and in combustion gases for performance evaluation. The use of iron-chromium-aluminum alloys as container materials for operating in high temperature oxidizing and sulfiding gas streams has been investigated. Alloys of this type develop heavy, protective oxide surface layers when exposed to high temperature oxidizing atmospheres, and are commonly used in electrical heating elements because of their exceptional oxidation resistance.

Merrigan, M.; Dunwoody, W.; Lundberg, L.

1981-01-01T23:59:59.000Z

402

High temperature electronics and instrumentation seminar proceedings  

DOE Green Energy (OSTI)

This seminar was tailored to address the needs of the borehole logging industry and to stimulate the development and application of this technology, for logging geothermal, hot oil and gas, and steam injection wells. The technical sessions covered the following topics: hybrid circuits, electronic devices, transducers, cables and connectors, materials, mechanical tools and thermal protection. Thirty-eight papers are included. Separate entries were prepared for each one. (MHR)

Veneruso, A.F.; Arnold, C.; Simpson, R.S. (eds.)

1980-05-01T23:59:59.000Z

403

Development Of An Acoustice Sensor For On-Line Gas Temperature Measurement In Gasifiers  

Science Conference Proceedings (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated into the prototype sensor. This port rodding mechanism operated flawlessly during the field testing, but because these tests were performed in a region of the gasifier that experiences little slagging, the effectiveness of the rodding mechanism in dealing with highly slagging conditions was not fully demonstrated. This report describes the design and operation of the automated Gasifier Acoustic Pyrometer (autoGAP) which was tested at the Wabash River facility. The results of the tests are reported and analyzed in detail. All of the objectives of the project have been achieved. A field prototype acoustic pyrometer sensor has been successfully tested at the Wabash River gasifier plant. Acoustic signals were propagated through the gases inside the gasifier and were detected by the receiver unit, the times of flight of these sound pulses were measured and these propagation times were converted into temperatures which agreed very well with thermocouple measurements m

Peter Ariessohn; Hans Hornung

2006-10-01T23:59:59.000Z

404

Metallic substrates for high temperature superconductors  

DOE Patents (OSTI)

A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

Truchan, Thomas G. (Chicago, IL); Miller, Dean J. (Darien, IL); Goretta, Kenneth C. (Downers Grove, IL); Balachandran, Uthamalingam (Hinsdale, IL); Foley, Robert (Chicago, IL)

2002-01-01T23:59:59.000Z

405

Fuel Cell Technologies Office: High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Membrane Working Group High Temperature Membrane Working Group The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at higher temperatures (120°C for transportation and 150°C for stationary applications), however, would yield significant energy benefits. For example, heat rejection is easier at higher temperatures, which would allow use of smaller heat exchangers in fuel cell power systems. In addition, for reformate fuel cell systems, carbon monoxide (CO) tolerance of the stack is less problematic at higher temperatures, which would reduce the size requirements or possibly eliminate the need for some CO clean-up beds in the fuel processor.

406

Cryogenic deformation of high temperature superconductive composite structures  

DOE Patents (OSTI)

An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

Roberts, Peter R. (Groton, MA); Michels, William (Brookline, MA); Bingert, John F. (Jemez Springs, NM)

2001-01-01T23:59:59.000Z

407

Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2005 High

408

Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2004 High

409

Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2010 High

410

Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2007 High

411

High-Temperature Viscosity of Commercial Glasses  

SciTech Connect

Arrhenius models were developed for glass viscosity within the processing temperature of six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Both local models (for each of the six glass types) and a global model (for the composition region of commercial glasses, i.e., the six glass types taken together) are presented. The models are based on viscosity data previously obtained with rotating spindle viscometers within the temperature range between 900 C and 1550 C; the viscosity varied from 1 Pa?s to 750 Pa?s. First-order models were applied to relate Arrhenius coefficients to the mass fractions of 15 components: SiO2, TiO2, ZrO2, Al2O3, Fe2O3, B2O3, MgO, CaO, SrO, BaO, PbO, ZnO, Li2O, Na2O, K2O. The R2 is 0.98 for the global model and ranges from .097 to 0.99 for the six local models. The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100 C to 1550 C and viscosity range from 5 to 400 Pa?s.

Hrma, Pavel R.

2006-08-31T23:59:59.000Z

412

Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

By incorporating amines inside clay containing quaternary ammonium salts (organoclay) minerals, this invention has created a way to prepare sorbents that capture carbon dioxide (CO2) from low temperature and low pressure gas streams. In this process, ...

413

Relations between Temperature and Residential Natural Gas Consumption in the Central and Eastern United States  

Science Conference Proceedings (OSTI)

The increased U.S. natural gas price volatility since the mid-to-late-1980s deregulation generally is attributed to the deregulated market being more sensitive to temperature-related residential demand. This study therefore quantifies relations ...

Reed P. Timmer; Peter J. Lamb

2007-11-01T23:59:59.000Z

414

Advanced High Temperature Reactor Systems and Economic Analysis  

SciTech Connect

The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with advanced supercritical-water power cycles. The current design activities build upon a series of small-scale efforts over the past decade to evaluate and describe the features and technology variants of FHRs. Key prior concept evaluation reports include the SmAHTR preconceptual design report,1 the PB-AHTR preconceptual design, and the series of early phase AHTR evaluations performed from 2004 to 2006. This report provides a power plant-focused description of the current state of the AHTR. The report includes descriptions and sizes of the major heat transport and power generation components. Component configuration and sizing are based upon early phase AHTR plant thermal hydraulic models. The report also provides a top-down AHTR comparative economic analysis. A commercially available advanced supercritical water-based power cycle was selected as the baseline AHTR power generation cycle both due to its superior performance and to enable more realistic economic analysis. The AHTR system design, however, has several remaining gaps, and the plant cost estimates consequently have substantial remaining uncertainty. For example, the enriched lithium required for the primary coolant cannot currently be produced on the required scale at reasonable cost, and the necessary core structural ceramics do not currently exist in a nuclear power qualified form. The report begins with an overview of the current, early phase, design of the AHTR plant. Only a limited amount of information is included about the core and vessel as the core design and refueling options are the subject of a companion report. The general layout of an AHTR system and site showing the relationship of the major facilities is then provided. Next is a comparative evaluation of the AHTR anticipated performance and costs. Finally, the major system design efforts necessary to bring the AHTR design to a pre-conceptual level are then presented.

Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

2011-09-01T23:59:59.000Z

415

Program on Technology Innovation: Thermodynamic Data to Support High-Temperature Syngas Quench Design  

Science Conference Proceedings (OSTI)

This report describes the development of a method for predicting water content in synthesis gas (syngas) quenched at high temperature by water. The method, generated by the National Institute of Standards and Technology (NIST), is presented in detail along with further analysis performed by EPRI.

2008-01-31T23:59:59.000Z

416

PERGAMON Carbon 38 (2000) 17671774 High temperature hydrogen sulfide adsorption on activated  

E-Print Network (OSTI)

.e. an activation energy is required for chemi- cal adsorption to occur and once that energy is supplied and gas-phase regeneration experiments were [1] Cal MP, Strickler BW, Lizzio AA. High temperature hydro, PA: US Department of Energy/Federal removal requirement set at one of the DOE's IGCC plants. Energy

Cal, Mark P.

417

Numerical Modeling of Cased-hole Instability in High Pressure and High Temperature Wells  

E-Print Network (OSTI)

Down-hole damages such as borehole collapse, circulation loss and rock tensile/compressive cracking in the open-hole system are well understood at drilling and well completion stages. However, less effort has been made to understand the instability of cemented sections in High Pressure High Temperature (HPHT) wells. The existing analysis shows that, in the perforation zones, casing/cement is subject to instability, particularly in the presence of cavities. This dissertation focuses on the instability mechanism of casing/cement in the non-perforated zones. We investigate the transient thermal behavior in the casing-cement-formation system resulting from the movement of wellbore fluid using finite element method. The critical value of down-hole stresses is identified in both wellbore heating and cooling effects. Differently with the heating effect, the strong cooling effect in a cased hole can produce significant tension inside casing/cement. The confining formation has an obvious influence on the stability of casing/cement. The proposed results reveal that the casing/cement system in the non-homogeneous formation behaves differently from that in homogeneous formation. With this in mind, a three-dimensional layered finite element model is developed to illustrate the casing/cement mechanical behavior in the non-homogeneous formation. The radial stress of cement sheath is found to be highly variable and affected by the contrast in Youngs moduli in the different formation layers. The maximum stress is predicted to concentrate in the casing-cement system confined by the sandstone. Casing wear in the cased-hole system causes significant casing strength reduction, possibly resulting in the casing-cement tangential collapse. In this study, an approach for calculating the stress concentration in the worn casing with considering temperature change is developed, based on boundary superposition. The numerical results indicate that the casing-cement system after casing wear will suffer from severe tangential instability due to the elevated compressive hoop stress. Gas migration during the cementing process results from the fluid cements inability to balance formation pore pressure. Past experience emphasized the application of chemical additives to reduce or control gas migration during the cementing process. This report presents the thermal and mechanical behaviors in a cased hole caused by created gas channels after gas migration. In conclusion, the size and the number of gas channels are two important factors in determining mechanical instability in a casing-cement system.

Shen, Zheng 1983-

2012-12-01T23:59:59.000Z

418

High Temperature Oxidation Testing of Reverse Infiltrated Ultra High ...  

Science Conference Proceedings (OSTI)

Fracture Criterion of Discontinuous Carbon Fiber Dispersed SiC Matrix ... Issues for the Development of Fatigue Resistant CMC at Intermediate Temperatures.

419

Room-temperature mid-infrared laser sensor for trace gas detection  

E-Print Network (OSTI)

, and pipeline leak detection. Applications such as landfill emissions monitoring require measurements of gasRoom-temperature mid-infrared laser sensor for trace gas detection Thomas To¨ pfer, Konstantin P. Petrov, Yasuharu Mine, Dieter Jundt, Robert F. Curl, and Frank K. Tittel Design and operation

420

Ris Energy Report 3 Hydrogen is a gas at ambient temperatures and pressures,  

E-Print Network (OSTI)

5.2 Risø Energy Report 3 Hydrogen is a gas at ambient temperatures and pressures, but it can be stored as a gas, a liquid or a solid. In the case of solid storage, the hydrogen exists as a chemical. Compared to fossil fuels such as gasoline, hydrogen has a very obvious shortfall in the amount of energy

Note: This page contains sample records for the topic "high temperature gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High-Temperature Superconductivity Cable Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Temperature Temperature Superconductivity Cable Demonstration Projects Superconductivity Power Equipment www.oe.energy.gov Phone: 202-586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585. Plugging America Into the Future of Power "A National Effort to Introduce New Technology into the Power Delivery Infrastructure" "In order to meet President Obama's ambitious energy goals, we must modernize the nation's electrical grid to improve the transmission, storage and reliability of clean energy across the country and help to move renewable energy from the places it can be produced to the places it can be used. The Department of Energy is working with industry partners to develop the

422

Assessment of very high-temperature reactors in process applications. Appendix III. Engineering evaluation of process heat applications for very-high temperature reactors  

SciTech Connect

An engineering and economic evaluation is made of coal conversion processes that can be coupled to a very high-temperature nuclear reactor heat source. The basic system developed by General Atomic/Stone and Webster (GA/S and W) is similar to the H-coal process developed by Hydrocarbon Research, Inc., but is modified to accommodate a nuclear heat source and to produce synthetic natural gas (SNG), synthesis gas, and hydrogen in addition to synthetic crude liquids. The synthetic crude liquid production is analyzed by using the GA/S and W process coupled to either a nuclear- or fossil-heat source. Four other processes are included for comparison: (1) the Lurgi process for production of SNG, (2) the Koppers-Totzek process for production of either hydrogen or synthesis gas, (3) the Hygas process for production of SNG, and (4) the Westinghouse thermal-chemical water splitting process for production of hydrogen. The production of methanol and iron ore reduction are evaluated as two potential applications of synthesis gas from either the GA/S and W or Koppers-Totzek processes. The results indicate that the product costs for each of the gasification and liquefaction processes did not differ significantly, with the exception that the unproven Hygas process was cheaper and the Westinghouse process considerably more expensive than the others.

Wiggins, D.S.; Williams, J.J.

1977-04-01T23:59:59.000Z

423

High Temperature Oxidation and Design for Resistance  

Science Conference Proceedings (OSTI)

Mar 2, 2011 ... Overall weight uptakes followed linear kinetics in dry CO2, but additions of H2O caused a transition to parabolic kinetics. In contrast, high...

424

Spectral Emissivity Measurements of High Temperature Reactor ...  

Science Conference Proceedings (OSTI)

CASL: The Consortium for Advanced Simulation of Light Water Reactors: A U.S. ... Strategies for Studying High Dose Irradiation Effects in Reactor Components.

425

High temperature elemental losses and mineralogical  

E-Print Network (OSTI)

future energy crops. Combustion in biomass fueled boilers,in ash during combustion of biomass fuels is important forC. Combustion characteristics of high alkali biomass. Final

Thy, P.; Jenkins, B. M.; Grundvig, S.; Shiraki, R.; Lesher, C. E.

2006-01-01T23:59:59.000Z

426

Advancement of High Temperature Black Liquor Gasification Technology  

DOE Green Energy (OSTI)

Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in Dec