National Library of Energy BETA

Sample records for high temperature alloys

  1. Surface modification of high temperature iron alloys

    DOE Patents [OSTI]

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  2. High-Temperature Aluminum Alloys | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Alloys High-Temperature Aluminum Alloys 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon pm044_smith_2012_o.pdf More Documents & Publications High-Temperature Aluminum Alloys Vehicle Technologies Office Merit Review 2014: High Temperature Aluminum Alloys (Agreement ID:24034) Project ID:18518 Vehicle Technologies Office Merit Review 2015: Rapidly Solidified High Temperature Aluminum Alloys

  3. Development of Austenitic ODS Strengthened Alloys for Very High Temperature

    Office of Scientific and Technical Information (OSTI)

    Applications (Technical Report) | SciTech Connect Technical Report: Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications Citation Details In-Document Search Title: Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications This "Blue Sky" project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A

  4. Ductile aluminide alloys for high temperature applications

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Stiegler, James O. (Lenoir City, TN)

    1986-01-01

    Improved Ni.sub.3 Al alloys are provided by inclusion of boron, hafnium or zirconium, and in some species, iron.

  5. Ductile aluminide alloys for high temperature applications

    DOE Patents [OSTI]

    Liu, C.T.; Stiegler, J.O.

    1983-12-21

    Improved Ni/sub 3/Al alloys are provided by inclusion of boron, hafnium or zirconium, and in some species, iron.

  6. Ductile aluminide alloys for high temperature applications

    DOE Patents [OSTI]

    Liu, C.T.; Kock, C.C.

    1983-08-03

    Heat- and corrosion-resistant alloys are described which contain nickel, aluminum, boron, iron and in some instances manganese, niobium and titanium.

  7. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, Claudette G. (Knoxville, TN); Liu, Chain T. (Oak Ridge, TN)

    1990-01-01

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  8. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, C.G.; Liu, C.T.

    1990-10-09

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  9. Improved high temperature creep resistant austenitic alloy

    DOE Patents [OSTI]

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  10. High temperature creep resistant austenitic alloy

    DOE Patents [OSTI]

    Maziasz, Philip J. (Oak Ridge, TN); Swindeman, Robert W. (Oak Ridge, TN); Goodwin, Gene M. (Lenoir City, TN)

    1989-01-01

    An improved austenitic alloy having in wt % 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150.degree.-1200.degree. C. and then cold deforming 5-15 %. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700.degree. C.

  11. High temperature seal for joining ceramics and metal alloys

    DOE Patents [OSTI]

    Maiya, P.S.; Picciolo, J.J.; Emerson, J.E.; Dusek, J.T.; Balachandran, U.

    1998-03-10

    For a combination of a membrane of SrFeCo{sub 0.5}O{sub x} and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo{sub 0.50}O{sub x} is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed. 3 figs.

  12. High temperature seal for joining ceramics and metal alloys

    DOE Patents [OSTI]

    Maiya, P. Subraya (Darien, IL); Picciolo, John J. (Lockport, IL); Emerson, James E. (Plainfield, IL); Dusek, Joseph T. (Lombard, IL); Balachandran, Uthamalingam (Hinsdale, IL)

    1998-01-01

    For a combination of a membrane of SrFeCo.sub.0.5 O.sub.x and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo.sub.0.50 O.sub.x is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed.

  13. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    SciTech Connect (OSTI)

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute (SwRI), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

  14. Dynamic high-temperature characterization of an iridium alloy in tension

    SciTech Connect (OSTI)

    Song, Bo; Nelson, Kevin; Jin, Helena; Lipinski, Ronald J.; Bignell, John; Ulrich, G. B.; George, E. P.

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750C and ~1030C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  15. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Takeyama, Masao (Tokyo, JP)

    1994-01-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.

  16. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOE Patents [OSTI]

    Liu, C.T.; Takeyama, Masao.

    1994-02-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.

  17. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    SciTech Connect (OSTI)

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  18. Copper modified austenitic stainless steel alloys with improved high temperature creep resistance

    DOE Patents [OSTI]

    Swindeman, R.W.; Maziasz, P.J.

    1987-04-28

    An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.

  19. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    DOE Patents [OSTI]

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  20. Ir-based alloys for ultra-high temperature applications

    DOE Patents [OSTI]

    Liu, Chain T.; George, Easo P.; Bloom, Everett E.

    2006-01-03

    An alloy composition includes, in atomic percent: about 1 to about 10% of at least one element selected from the group consisting of Zr and Hf, balance Ir.

  1. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); McKamey, Claudette G. (Knoxville, TN)

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  2. Nickel aluminide alloy for high temperature structural use

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Sikka, Vinod K. (Clinton, TN)

    1991-01-01

    The specification discloses nickel aluminide alloys including nickel, aluminum, chromium, zirconium and boron wherein the concentration of zirconium is maintained in the range of from about 0.05 to about 0.35 atomic percent to improve the ductility, strength and fabricability of the alloys at 1200.degree. C. Titanium may be added in an amount equal to about 0.2 to about 0.5 atomic percent to improve the mechanical properties of the alloys and the addition of a small amount of carbon further improves hot fabricability.

  3. Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications

    SciTech Connect (OSTI)

    Ren, Weiju; Muralidharan, Govindarajan; Wilson, Dane F; Holcomb, David Eugene

    2011-01-01

    Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

  4. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600%C2%B0C with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  5. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  6. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  7. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    SciTech Connect (OSTI)

    Bingtao Li

    2003-08-05

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  8. Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom

    DOE Patents [OSTI]

    Liu, Chain T.; Inouye, Henry

    1979-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.

  9. Candidate alloys for cost-effective, high-efficiency, high-temperature compact/foil heat-exchangers

    SciTech Connect (OSTI)

    Evans, Neal D; Maziasz, Philip J; Shingledecker, John P; Pint, Bruce A; Yamamoto, Yukinori

    2007-01-01

    Solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) systems operate at high temperatures (up to 1000 C and 650 C, respectively), which makes them especially attractive sources for combined heat and power (CHP) cogeneration. However, improvements in the efficiency of heat exchange in these fuel cells require both development and careful processing of advanced cost-effective alloys for use in such high-temperature service conditions. The high-temperature properties of both sheet and foil forms of several alloys being considered for use in compact heat-exchangers (recuperators) have been characterized. Mechanical and creep-rupture testing, oxidation studies, and microstructural studies have been performed on commercially available sheet and foil forms of alloy 347, alloys 625, HR230, HR120, and the new AL20-25+Nb. These studies have led to a mechanistic understanding of the responses of these alloys to anticipated service conditions, and suggest that these alloys developed for gas- and micro-turbine recuperator applications are also suitable for use in fuel cell heat-exchangers. Additional work is still required to achieve foil forms with creep life comparable to thicker-section wrought product forms of the same alloys.

  10. Influences of directionally solidified techniques and hafnium content on a nickel base high temperature alloy

    SciTech Connect (OSTI)

    Luobao, W.; Rongzhang, C.; Yuping, W.

    1984-03-01

    Two directionally solidified techniques, the power decrease (P.D.) and high rate solidification (H.R.S.) methods, are used to study the influences of the different Hf contents on the structures and properties of a nickel base high temperature alloy. When entering the alloy the Hf is mainly segregated in the interdentritic regions and gamma/gamma prime eutectic phases. After the alloy is added, there are noticeable changes in the microstructure. The amount of gamma/gamma prime eutectic phase noticeably increases. Its morphology also undergoes noticeable changes. The conditions of grain boundaries and interdentritic regions are improved. Several new types of Hf-rich microfacies also appeared. At 760 C, the endurance properties (especially the transverse properties) of the alloy noticeably rise with the increase of the Hf content. However, at 1040 C, the endurance life decreases with the increase of the Hf content. When the H.R.S. technique is used, the medium and high temperature performances of the alloy are both noticeably superior to the P.D. technique.

  11. Corrosion and Creep of Candidate Alloys in High Temperature Helium and Steam Environments for the NGNP

    SciTech Connect (OSTI)

    Was, Gary; Jones, J. W.

    2013-06-21

    This project aims to understand the processes by which candidate materials degrade in He and supercritical water/steam environments characteristic of the current NGNP design. We will focus on understanding the roles of temperature, and carbon and oxygen potential in the 750-850 degree C range on both uniform oxidation and selective internal oxidation along grain boundaries in alloys 617 and 800H in supercritical water in the temperature range 500-600 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature rang 750-850 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature range 750-850 degree C over a range of oxygen and carbon potentials in helium. Combined, these studies wil elucidate the potential high damage rate processes in environments and alloys relevant to the NGNP.

  12. Mechanisms of stress corrosion cracking for iron-based alloys in high-temperature water

    SciTech Connect (OSTI)

    Zhou, X.Y.; Congleton, J.; Bahraloloom, A.

    1998-11-01

    Stress corrosion cracking (SCC) susceptibilities of a series of iron-based alloys (IBA), including some high-purity irons, were evaluated in lithiated water at temperatures up to 300 C. Inclusion distributions in each material were established using quantitative metallography and energy dispersive x-ray analysis (EDX). Electrochemical measurements were performed to investigate film formation kinetics. Results showed the minimum potential for SCC was a function of the inclusion content. Reducing the inclusion content in IBA moved the minimum potential for SCC in the anodic direction and/or increased the temperature for the onset of cracking but did not eliminate SCC.

  13. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, David O. (Oak Ridge, TN)

    1998-01-01

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  14. High-temperature phase transformation in Cr added TiAl base alloy

    SciTech Connect (OSTI)

    Abe, E.; Niinobe, K.; Nobuki, M.; Nakamura, M.; Tsujimoto, T.

    1999-07-01

    The authors have investigated a microstructure evolution of a Ti-48Al-3.5Cr (in at.%) alloy at high-temperatures ({gt} 1,473K). In the alloy annealed at 1673K for 1.8ks, followed by air-cooling, a characteristic microstructure with a feathery fashion was uniformly formed. From a cooling-rate-controlling study, it was found that formation of the feathery structure is accomplished during continuous cooling from 1673K to 1573K, within the {alpha} + {gamma} two-phase region. Transmission electron microscopy revealed that the feathery structure is composed of lamellar colonies (5--10{micro}m) which are crystallographically tilted slightly (a few degree) with their neighbors. A surprising fact is that lamellae in each colony are mostly the {gamma} phase with few {alpha}{sub 2} phase less than 5% in volume. This suggests that the feathery structure is a metastable product and has not resulted from the {alpha} {r{underscore}arrow} {alpha} + {gamma} transformation above 1,573 K. Instead, the feathery structure formation should be attributed to the non-equilibrium {alpha} {r{underscore}arrow} {gamma} transformation which occurs at high-temperatures with a small degree of supercooling. The authors discuss this interesting phase transformation in terms of the {alpha} {r{underscore}arrow} {gamma} massive transformation, based on the continuous-cooling-transformation (CCT) diagram constructed for the present alloy.

  15. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  16. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)

    SciTech Connect (OSTI)

    Antonaglia, J.; Xie, X.; Tang, Z.; Tsai, C. -W.; Qiao, J. W.; Zhang, Y.; Laktionova, M. O.; Tabachnikova, E. D.; Yeh, J. W.; Senkov, O. N.; Gao, M. C.; Uhl, J. T.; Liaw, P. K.; Dahmen, K. A.

    2014-09-16

    Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress–strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress drops and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. As a result, the model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed.

  17. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Antonaglia, J.; Xie, X.; Tang, Z.; Tsai, C. -W.; Qiao, J. W.; Zhang, Y.; Laktionova, M. O.; Tabachnikova, E. D.; Yeh, J. W.; Senkov, O. N.; et al

    2014-09-16

    Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress–strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress dropsmore » and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. As a result, the model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed.« less

  18. Rules for design of Alloy 617 nuclear components to very high temperatures

    SciTech Connect (OSTI)

    Corum, J.M.; Blass, J.J.

    1991-01-01

    Very-high-temperature gas-cooled reactors provide attractive options for electric power generation using a direct gas-turbine cycle and for process-heat applications. For the latter, temperatures of at least 950{degree}C (1742{degree}F) are desirable. As a first step to providing rules for the design of nuclear components operating at very high temperatures, a draft ASME Boiler and Pressure Vessel Code Case has been prepared by an ad hoc Code task force. The Case, which is patterned after the high-temperature nuclear Code Case N-47, covers Ni-Cr-Co-Mo Alloy 617 for temperatures to 982{degree}C (1800{degree}F). The purpose of this paper is to provide a synopsis of the draft Case and the significant differences between it and Case N-47. Particular emphasis is placed on the material behavior and allowables. The paper also recommends some materials and structures development activities that are needed to place the design methodology on a sound and defensible footing. 4 refs., 9 figs., 1 tab.

  19. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    SciTech Connect (OSTI)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  20. Corrosion of high temperature alloys in solar salt at 400, 500, and 680%C2%B0C.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-09-01

    Corrosion tests at 400, 500, and 680%C2%B0C were performed using four high temperature alloys; 347SS, 321SS In625, and HA230. Molten salt chemistry was monitored over time through analysis of nitrite, carbonate, and dissolved metals. Metallography was performed on alloys at 500 and 680%C2%B0C, due to the relatively thin oxide scale observed at 400%C2%B0C. At 500%C2%B0C, corrosion of iron based alloys took the form of chromium depletion and iron oxides, while nickel based alloys also had chromium depletion and formation of NiO. Chromium was detected in relatively low concentrations at this temperature. At 680%C2%B0C, significant surface corrosion occurred with metal losses greater than 450microns/year after 1025hours of exposure. Iron based alloys formed complex iron, sodium, and chromium oxides. Some data suggests grain boundary chromium depletion of 321SS. Nickel alloys formed NiO and metallic nickel corrosion morphologies, with HA230 displaying significant internal oxidation in the form of chromia. Nickel alloys both exhibited worse corrosion than iron based alloys likely due to preferential dissolution of chromium, molybdenum, and tungsten.

  1. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, D.O.

    1998-01-06

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  2. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    SciTech Connect (OSTI)

    G. RObert Odette; Takuya Yamamoto

    2009-08-14

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  3. Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-01-22

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less

  4. An Integrated Study of a Novel Thermal Coating for Nb-Based High Temperature Alloy

    SciTech Connect (OSTI)

    Yang, Shizhong

    2015-01-31

    This report summarizes our recent works of ab initio density functional theory (DFT) method and molecular dynamics (MD) simulation on the interfaces between niobium substrate and coatings at atomic level. Potential oxidation barrier bond coat, Nb₂AlC and high entropy alloys, and top coat candidates were synthesized, characterized, and evaluated in our labs. The simulation methods, experimental validation techniques, achievements already reached, students and postdoc training, and future improvement are briefly introduced.

  5. High strength alloys

    DOE Patents [OSTI]

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  6. High strength alloys

    DOE Patents [OSTI]

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  7. High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability

    DOE Patents [OSTI]

    Maziasz, P.J.; Goodwin, G.M.; Liu, C.T.

    1996-08-13

    This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding. 13 figs.

  8. High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability

    DOE Patents [OSTI]

    Maziasz, Philip J. (Oak Ridge, TN); Goodwin, Gene M. (Lenoir City, TN); Liu, Chain T. (Oak Ridge, TN)

    1996-01-01

    This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding.

  9. Structure Analysis of a Precipitate Phase in an Ni-Rich High Temperature NiTiHf Shape Memory Alloy

    SciTech Connect (OSTI)

    Yang, Fan; Coughlin, D. R.; Phillips, Patrick J.; Yang, L.; Devaraj, Arun; Kovarik, Libor; Noebe, Ronald D.; Mills, M. J.

    2013-03-22

    Thermal aging of the high temperature shape memory alloy 50.3Ni-29.7Ti-20Hf (at.%) introduces a novel precipitate phase, which plays an important role in improving shape memory properties. The precipitate phase was investigated by conventional electron diffraction, high resolution scanning transmission electron microscopy (STEM) and three dimensional atom probe tomography. An unrelaxed orthorhombic atomic structural model is proposed based on these observations. This model was subsequently relaxed by ab initio calculations. As a result of the relaxation, atom shuffle displacements occur, which in turn yields improved agreement with the STEM images. The relaxed structure, which is termed the H-phase, has also been verified to be thermodymanically stable at 0 K.

  10. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    SciTech Connect (OSTI)

    J. Douglas Way

    2003-01-01

    For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating procedures for fabrication of thin Pd-Cu composite membranes at any scale.

  11. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    SciTech Connect (OSTI)

    J. Douglas Way

    2001-07-31

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H2 separation. These membranes consist of a thin ({approx}1 mm) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd{sub 60}Cu{sub 40} films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H2 separation, and resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd{sub 60}Cu{sub 4}0 alloy membranes on porous supports for H{sub 2} separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H{sub 2} flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H{sub 2} flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems.

  12. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  13. Vehicle Technologies Office Merit Review 2014: High Temperature Aluminum Alloys (Agreement ID:24034) Project ID:18518

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  14. Observation on the role of chlorine in high temperature erosion-corrosion of alloys in an AFBC system

    SciTech Connect (OSTI)

    Xie, W.; Orndorff, W.; Smith, J.; Pan, W.P.; Riley, J.T.; Anderson, K.; Smith, S.; Ho, K.

    1997-12-31

    Two 1,000-hour burns were conducted with the 12-inch (0.3m) laboratory AFBC system at Western Kentucky University. Operating conditions similar to those used at the 160 MW AFBC system at the TVA Shawnee Steam Plant located near Paducah, KY were used. A 1,000-hour burn was done with a low-chlorine (0.012% Cl and 3.0% S) Western Kentucky No.9 coal. A second 1,000-hour burn was conducted with high-chlorine (0.28% Cl and 2.4% S) Illinois No.6 coal. Four different metal alloys [carbon steel C1020 (0.18% C and 0.05% Cr), 304 SS (18.39% Cr and 8.11% Ni), 309 SS (23.28% Cr and 13.41% Ni), and 347 SS (18.03% Cr and 9.79% Ni)] were exposed uncooled in the freeboard at the entrance to the convection pass, where the metal temperature was approximately 900K. The carbon steel samples were essentially destroyed. However, it was expected that C1020 carbon steel samples would not withstand the high temperatures selected for the testing. A small amount of scale failure was observed on the other three samples in both test runs. Based on the SEM-EDS mapping results, there is no localized chloride distribution observed on the surface of the coupons, neither in the scale failure area nor on the rest of the metal part. Some trace amounts of chloride was found, but it was evenly distributed on the surface of the coupons. There is no concentration of chloride on the spot of scale failure. The scale failure might be due to sulfur attack and/or the effect of erosion. Further study with higher chlorine content coals for more conclusive information is needed.

  15. Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary alloy exposed to high-temperature water.

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2013-10-30

    Intergranular oxidation of a Ni-4Al alloy exposed to hydrogenated, high-temperature water was characterized using directly correlated transmission electron microscopy and atom probe tomography. These combined analyses revealed that discrete, well-separated oxides (NiAl2O4) precipitated along grain boundaries in the metal. Aluminum was depleted from the grain boundary between oxides and also from one side of the boundary as a result of grain boundary migration. The discrete oxide morphology, disconnected from the continuous surface oxidation, suggests intergranular solid-state internal oxidation of Al. Keywords: oxidation; grain boundaries; nickel alloys; atom probe tomography; transmission electron microscopy (TEM)

  16. Effects of temperature on serrated flows of Al0.5CoCrCuFeNi high-entropy alloy

    SciTech Connect (OSTI)

    Chen, Shuying; Xie, Xie; Chen, Bilin; Qiao, Junwei; Zhang, Yong; Ren, Yang; Dahmen, Karin A.; Liaw, Peter K.

    2015-08-14

    Compression behavior of the Al0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673K to 873K at a low strain rate of 5 x 10-5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered cubic (FCC) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed FCC and body-centered cubic (BCC) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron X-ray diffraction. As a result, by comparing the stress-strain curves at different temperatures, two opposite directions of serrations types were found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.

  17. Effects of temperature on serrated flows of Al0.5CoCrCuFeNi high-entropy alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Shuying; Xie, Xie; Chen, Bilin; Qiao, Junwei; Zhang, Yong; Ren, Yang; Dahmen, Karin A.; Liaw, Peter K.

    2015-08-14

    Compression behavior of the Al0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673K to 873K at a low strain rate of 5 x 10-5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered cubic (FCC) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed FCC and body-centered cubic (BCC) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron X-ray diffraction. As a result, by comparing the stress-strain curves at different temperatures, two opposite directions of serrations types weremore » found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.« less

  18. Anomalous phonon behavior in the high-temperature shape-memory alloy Ti{sub 50}Pd{sub 50-x}Cr{sub x}

    SciTech Connect (OSTI)

    Shapiro, S. M.; Xu Guangyong; Winn, B. L.; Schlagel, D. L.; Lograsso, T.; Erwin, R.

    2007-08-01

    Ti{sub 50}Pd{sub 50-x}Cr{sub x} is a high-temperature shape-memory alloy with a martensitic transformation temperature strongly dependent on the Cr composition. Prior to the transformation, a premartensitic phase is present with an incommensurate modulated cubic lattice with wave vector of q{sub 0}=(0.22,0.22,0). The temperature dependence of the diffuse scattering in the cubic phase is measured as a function temperature for x=6.5, 8.5, and 10 at. %. The lattice dynamics has been studied and reveals anomalous temperature and q dependences of the [110]-TA{sub 2} transverse phonon branch. The phonon linewidth is broad over the entire Brillouin zone and increases with decreasing temperature, contrary to the behavior expected for anharmonicity. No anomaly is observed at q{sub 0}. The results are compared with first principles calculation of the phonon structure.

  19. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    SciTech Connect (OSTI)

    Nan Mu

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain {beta}-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al{sub 2}O{sub 3} scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified {gamma}-Ni + {gamma}-Ni{sub 3}Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase {gamma}-Ni and {gamma}{prime}-Ni{sub 3}Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al{sub 2}O{sub 3} formation by suppressing the NiO growth on both {gamma}-Ni and {gamma}{prime}Ni{sub 3}Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures ({approx}970 C) in the very early stage of oxidation. It was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free {gamma}{prime}-Ni{sub 3}Al increased the extent of external NiO formation due to non-protective HfO{sub 2} formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5 at.%.

  20. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy

    SciTech Connect (OSTI)

    Otto, Frederik; Dlouhy, A.; Somsen, Ch.; Bei, Hongbin; Eggeler, G.; George, Easo P

    2013-01-01

    An equiatomic CoCrFeMnNi high-entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was produced by arc melting and drop casting. The drop-cast ingots were homogenized, cold rolled, and recrystallized to obtain single-phase microstructures with three different grain sizes in the range 4~160 m. Quasi-static tensile tests were then performed at temperatures between 77 and 1073 K. Yield strength, ultimate tensile strength and ductility all increased with decreasing temperature. During the initial stages of plasticity (up to ~2% strain), deformation occurs by planar dislocation glide on the normal FCC slip system {111} 110 at all temperatures and grain sizes investigated. Undissociated 1/2 110 dislocations were observed, as were numerous stacking faults, which imply the dissociation of several of these dislocations into 1/6 112 Shockley partials. At later stages ( 20% strain), nanoscale deformation twins were observed after interrupted tests at 77 K, but not in specimens tested at room temperature where plasticity occurred exclusively by dislocations which organized into cells. Deformation twinning, by continually decreasing the mean free path of dislocations during tensile testing, produces a high degree of work hardening and a significant increase in the ultimate tensile strength. This increased work hardening prevents the early onset of necking instability and is a reason for the enhanced ductility observed at 77 K. A second way in which twinning can contribute to ductility is by providing an additional deformation mode to accommodate plasticity. However, it cannot explain the increase in yield strength with decreasing temperature in our high-entropy alloy since twinning was not observed in the early stages of plastic deformation. Since strong temperature dependencies of yield strength are also seen in binary FCC solid solution alloys, it may be an inherent solute effect, which needs further study.

  1. Method for producing evaporation inhibiting coating for protection of silicon--germanium and silicon--molybdenum alloys at high temperatures in vacuum

    DOE Patents [OSTI]

    Chao, P.J.

    1974-01-01

    A method is given for protecting Si--Ge and Si-- Mo alloys for use in thermocouples. The alloys are coated with silicon to inhibit the evaporation of the alloys at high tempenatures in a vacuum. Specific means and methods are provided. (5 fig) (Official Gazette)

  2. Gas-Alloy Interactions at Elevated Temperatures

    SciTech Connect (OSTI)

    Arroyave, Raymundo; Gao, Michael

    2012-12-01

    The understanding of the stability of metals and alloys against oxidation and other detrimental reactions, to the catalysis of important chemical reactions and the minimization of defects associated with processing and synthesis have one thing in common: At the most fundamental level, all these scientific/engineering problems involve interactions between metals and alloys (in the solid or liquid state) and gaseous atmospheres at elevated temperatures. In this special issue, we have collected a series of articles that illustrate the application of different theoretical, computational, and experimental techniques to investigate gas-alloy interactions.

  3. High Temperature Dynamics Strain Hardening Behavior in Stainless...

    Office of Scientific and Technical Information (OSTI)

    High Temperature Dynamics Strain Hardening Behavior in Stainless Steels and Nickel Alloys Citation Details In-Document Search Title: High Temperature Dynamics Strain Hardening ...

  4. Deformation Behavior of Laser Welds in High Temperature Oxidation Resistant Fe-Cr-Al Alloys for Fuel Cladding Applications

    SciTech Connect (OSTI)

    Field, Kevin G; Gussev, Maxim N; Yamamoto, Yukinori; Snead, Lance Lewis

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al in weight percent with a minor addition of yttrium using laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds has been carried out to determine the performance of welds as a function of alloy composition. Laser welding resulted in a defect free weld devoid of cracking or inclusions for all alloys studied. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. No significant correlation was found between the deformation behavior/mechanical performance of welds and the level of Cr or Al in the alloy ranges studied.

  5. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    SciTech Connect (OSTI)

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  6. In situ atomic force microscope study of high-temperature untwinning surface relief in Mn-Fe-Cu antiferromagnetic shape memory alloy

    SciTech Connect (OSTI)

    Wang, L.; Cui, Y. G.; Wan, J. F.; Rong, Y. H.; Zhang, J. H.; Jin, X.; Cai, M. M.

    2013-05-06

    The N-type untwinning surface relief associated with the fcc {r_reversible} fct martensitic transformation (MT) was observed in the Mn{sub 81.5}Fe{sub 14.0}Cu{sub 4.5} antiferromagnetic high-temperature shape memory alloy (SMA) by in situ atomic force microscopy. The measured untwinning relief angles ({theta}{sub {alpha}} Double-Vertical-Line {theta}{sub {beta}}) at the ridge and at the valley were different, and both angles were less than the conventional values. The surface relief exhibited good reversibility during heating and cooling because of the crystallographic reversibility of thermal-elastic SMAs. Untwinning shear was proposed as the main mechanism of the N-type surface relief. The order of the reverse MT was discussed based on the experimental measurements.

  7. Experimental Analysis and Numerical Simulation of Tensile Behaviour of TiNi Shape Memory Alloy Fibres Reinforced Epoxy Matrix Composite at High Temperatures

    SciTech Connect (OSTI)

    Sahli, M. L.; Necib, B.

    2011-05-04

    The shape memory alloys (SMA) possess both sensing and actuating functions due to their shape memory effect, pseudo-elasticity, high damping capability and other remarkable properties. Combining the SMA with other materials can create intelligent or smart composites. The epoxy resin composites filled with TiNi alloys fibres were fabricated and their mechanical properties have been investigated. In this study, stress/strain relationships for a composite with embedded shape memory materials (SMA) fibres are presented. The paper illustrates influence of the SMA fibres upon changes in mechanical behaviour of a composite plate with the SMA components, firstly and secondly, the actuating ability and reliability of shape memory alloy hybrid composites.

  8. Development of Austenitic ODS Strengthened Alloys for Very High

    Office of Scientific and Technical Information (OSTI)

    11-3251 Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications Nuclear Energy Enabling Technologies Dr. J a m e s Stubbing University o f Illinois-Urbana Champaign In c o ll a b o r a tio n with: International Institute fo r Carbon Neutral Energy Research Sue Lesica, Federal ROC Lizhen Tan, Technical ROC Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications Final Report 22 April 2015 Authors Dr. Yinbin Miao (main author) with

  9. CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS

    SciTech Connect (OSTI)

    J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

    2012-10-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

  10. High temperature solid state storage cell

    DOE Patents [OSTI]

    Rea, Jesse R. (Burlington, MA); Kallianidis, Milton (Brockton, MA); Kelsey, G. Stephen (Nashua, NH)

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  11. High-Temperature Aluminum Alloys

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Progress in High-Entropy Alloys

    SciTech Connect (OSTI)

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  13. High Temperature coatings based on {beta}-NiAI

    SciTech Connect (OSTI)

    Severs, Kevin

    2012-07-10

    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAlTiB{sub 2} composite are explained. A novel coating process for MoNiAl alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated MoNiAl alloys is discussed.

  14. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect (OSTI)

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  15. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  16. Grain boundary depletion and migration during selective oxidation of Cr in a Ni-5Cr binary alloy exposed to high-temperature hydrogenated water

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2014-10-01

    High-resolution microscopy of a high-purity Ni-5Cr alloy exposed to 360C hydrogenated water reveals intergranular selective oxidation of Cr accompanied by local Cr depletion and diffusion-induced grain boundary migration (DIGM). The corrosion-product oxide consists of a porous, interconnected network of Cr2O3 platelets with no further O ingress into the metal ahead. Extensive grain boundary depletion of Cr (to <0.05at.%) is observed typically 20100 nm wide as a result of DIGM and reaching depths of many micrometers beyond the oxidation front.

  17. ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrosion Testing Practices - High Alloy Corrosion Program ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion Program PDF icon lehighfs.pdf More Documents & ...

  18. High Temperature Dynamics Strain Hardening Behavior in Stainless Steels and

    Office of Scientific and Technical Information (OSTI)

    Nickel Alloys (Conference) | SciTech Connect High Temperature Dynamics Strain Hardening Behavior in Stainless Steels and Nickel Alloys Citation Details In-Document Search Title: High Temperature Dynamics Strain Hardening Behavior in Stainless Steels and Nickel Alloys Authors: Yu, Xinghua [1] ; Qiao, Dongxiao [1] ; Feng, Zhili [1] ; Crooker, Paul [2] ; Wang, Yanli [1] + Show Author Affiliations ORNL Electric Power Research Institute (EPRI) Publication Date: 2014-01-01 OSTI Identifier: 1159430

  19. High Temperature ESP Monitoring

    Broader source: Energy.gov [DOE]

    The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 °C for measuring motor temperature; pump discharge pressure; and formation temperature and pressure.

  20. Application of Combined Sustained and Cyclic Loading Test Results to Alloy 617 Elevated Temperature Design Criteria

    SciTech Connect (OSTI)

    Wang, Yanli; Jetter, Robert I; Sham, Sam

    2014-08-25

    Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of 900-950°C . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 1200°F (650°C). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, 1200o F , is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures.

  1. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  2. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  3. High-Performance Computing for Alloy Development | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Performance Computing for Alloy Development alloy-development.jpg Tomorrow's fossil-fuel based power plants will achieve higher efficiencies by operating at higher pressures and temperatures and under harsher and more corrosive conditions. Unfortunately, conventional metals simply cannot withstand these extreme environments, so advanced alloys must be designed and fabricated to meet the needs of these advanced systems. The properties of metal alloys, which are mixtures of metallic elements,

  4. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  5. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  6. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  7. Creep resistant high temperature martensitic steel

    DOE Patents [OSTI]

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  8. High Temperature Aqueous Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accurate knowledge of aqueous chemistry at high temperatures and pressures is important in many applications including nuclear waste disposal and energy extraction. Sandia's Defense Waste Management Programs is equipped with a state-of-the-art hydrothermal experimental system that allows us to obtain high quality kinetic and equilibrium data at temperatures and pressures of interest up to 600 o C and 1,000 bars (100 MPa). This state-of-the-art hydrothermal experimental system includes the

  9. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

  10. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  11. First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    SciTech Connect (OSTI)

    Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.

    2015-12-01

    The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensile specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.

  12. Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature in a Combustion Gas Environment

    SciTech Connect (OSTI)

    Tylczak, Joseph

    2014-05-02

    This paper reports on the results of a study that compares the erosion-corrosion behavior of a variety of alloys (Fe- 2Cr 1Mo, 304 SS, 310 SS, Incoloy 800, Haynes 230 and a Fe3Al) in a combustion environment. Advanced coal combustion environments, with higher temperatures, are driving re-examination of traditional and examination of new alloys in these hostile environments. In order to simulate conditions in advanced coal combustion boilers, a special erosion apparatus was used to allow for impingement of particles under a low abrasive flux in a gaseous environment comprised of 20 % CO2, 0.05 % HCl, 77 % N2, 3 % O2, and 0.1 % SO2. Tests were conducted at room temperature and 700 C with ~ 270 ?m silica, using an impact velocity of 20 m/s in both air and the simulated combustion gas environment. The erosion-corrosion behavior was characterized by gravimetric measurements and by examination of the degraded surfaces optically and by scanning electron microscopy (SEM). At room temperature most of the alloys had similar loss rates. Not surprisingly, at 700 C the lower chrome-iron alloy had a very high loss rate. The nickel alloys tended to have higher loss rates than the high chrome austenitic alloys.

  13. Method for low temperature preparation of a noble metal alloy

    DOE Patents [OSTI]

    Even, Jr., William R. (Livermore, CA)

    2002-01-01

    A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.

  14. High Energy Novel Cathode / Alloy Automotive Cell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Energy Novel Cathode / Alloy Automotive Cell High Energy Novel Cathode / Alloy Automotive Cell 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es131_choi_2012_p.pdf More Documents & Publications High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2014: Advanced High

  15. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    SciTech Connect (OSTI)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W{sup 2+} ion in solution; the predominance of WO{sup +} appears to have resulted in a W-O-Ni complex that has not yet been fully characterized.

  16. Turbine vane with high temperature capable skins

    DOE Patents [OSTI]

    Morrison, Jay A.

    2012-07-10

    A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

  17. High strength nickel-chromium-iron austenitic alloy

    DOE Patents [OSTI]

    Gibson, Robert C. (Ringwood, NJ); Korenko, Michael K. (Richland, WA)

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  18. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  19. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  20. ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy Metal Casting: Corrosion Testing Practices - High Alloy Corrosion Program ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion Program PDF icon lehigh_fs.pdf More Documents & Publications FY 2009 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast Vehicle Technologies Office Merit Review 2015: Phase Transformation Kinetics and Alloy Microsegregation in High Pressure Die Cast Magnesium Alloys FY 2008 Progress Report

  1. Thermal fuse for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph G. (Albuquerque, NM); Armijo, James R. (Albuquerque, NM); Frear, Darrel R. (Austin, TX)

    2000-01-01

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  2. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

  3. Elevated temperature tribology of cobalt and tantalum-based alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scharf, T. W.; Prasad, S. V.; Kotula, P. G.; Michael, J. R.; Robino, C. V.

    2014-12-31

    This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volumemore » gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10–4 mm3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.« less

  4. High temperature detonator

    DOE Patents [OSTI]

    Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  5. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  6. Dose dependence of mechanical properties in tantalum and tantalum alloys after low temperature irradiation

    SciTech Connect (OSTI)

    Byun, Thak Sang

    2008-01-01

    The dose dependence of mechanical properties was investigated for tantalum and tantalum alloys after low temperature irradiation. Miniature tensile specimens of three pure tantalum metals, ISIS Ta, Aesar Ta1, Aesar Ta2, and one tantalum alloy, Ta-1W, were irradiated by neutrons in the High Flux Isotope Reactor (HFIR) at ORNL to doses ranging from 0.00004 to 0.14 displacements per atom (dpa) in the temperature range 60 C 100 oC. Also, two tantalum-tungsten alloys, Ta-1W and Ta-10W, were irradiated by protons and spallation neutrons in the LANSCE facility at LANL to doses ranging from 0.7 to 7.5 dpa and from 0.7 to 25.2 dpa, respectively, in the temperature range 50 C 160 oC. Tensile tests were performed at room temperature and at 250oC at nominal strain rates of about 10-3 s-1. All neutron-irradiated materials underwent progressive irradiation hardening and loss of ductility with increasing dose. The ISIS Ta experienced embrittlement at 0.14 dpa, while the other metals retained significant necking ductility. Such a premature embrittlement in ISIS Ta is believed to be because of high initial oxygen concentrations picked up during a pre-irradiation anneal. The Ta-1W and Ta-10W specimens irradiated in spallation condition experienced prompt necking at yield since irradiation doses for those specimens were high ( 0.7 dpa). At the highest dose, 25.2 dpa, the Ta-10W alloy specimen broke with little necking strain. Among the test materials, the Ta-1W alloy displayed the best combination of strength and ductility. The plastic instability stress and true fracture stress were nearly independent of dose. Increasing test temperature decreased strength and delayed the onset of necking at yield.

  7. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOE Patents [OSTI]

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  8. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  9. Austenitic stainless steel for high temperature applications

    DOE Patents [OSTI]

    Johnson, Gerald D. (Kennewick, WA); Powell, Roger W. (Pasco, WA)

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  10. High Operating Temperature Liquid Metal Heat Transfer Fluids | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy High Operating Temperature Liquid Metal Heat Transfer Fluids High Operating Temperature Liquid Metal Heat Transfer Fluids This fact sheet describes a UCLA-led solar project to investigate high operating temperature liquid metal heat transfer fluids, funded by the SunShot initiative. The project team is using a combination of modeling along with a variety of property measurement and validation studies to demonstrate that the metal alloys identified can meet all the needs of a

  11. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    SciTech Connect (OSTI)

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords

  12. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less

  13. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm075_hovanski_2013_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks Vehicle Technologies Office

  14. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  15. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  16. Effect of Grain Refinement on the Mechanical Behaviour of an Al6061 Alloy at Cryogenic Temperatures

    SciTech Connect (OSTI)

    Moreno-Valle, E.; Sabirov, I.; Murashkin, M. Yu.; Valiev, R. Z.; Bobruk, E. V.; Perez-Prado, M. T.

    2011-05-04

    A solution treated coarse grained (CG) Al6061 was subjected to high pressure torsion (HPT) at room temperature resulting in the formation of a homogeneous ultra-fine grained (UFG) microstructure with an average grain size of 170 nm. Tensile tests were performed at room temperature (RT) and liquid nitrogen temperature (LNT). The as-HPT UFG Al6061 alloy shows an increased strength at both RT and LNT. The decrease of testing temperature results in increased flow stress and in enhanced elongation to failure in both CG and UFG samples. The ratio {sigma}{sub y}{sup LNT}/{sigma}{sub y}{sup RT} was found to be larger for the CG Al6061 than for the UFG Al6061. Both surface relief and fracture surface observations were performed. The effect of the grain size and of the testing temperature on the mechanical behaviour of the Al6061 alloy is analyzed in detail. It is suggested that the solute atoms play an important role in the plastic deformation of the UFG Al6061 alloy.

  17. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W. (Livermore, CA); Shell, Thomas E. (Livermore, CA)

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  18. Highly Dispersed Alloy Cathode Catalyst for Durability

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on alloy cathode catalysts, was given by T. D. Jarvi of UTC Power at a February 2007 meeting on new fuel cell projects.

  19. High-Temperature Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  20. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    SciTech Connect (OSTI)

    Stoica, Grigoreta M [ORNL; Stoica, Alexandru Dan [ORNL; Miller, Michael K [ORNL; Ma, Dong [ORNL

    2014-01-01

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization of anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.

  1. High-Temperature-High-Volume Lifting for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for ...

  2. High-temperature-measuring device

    DOE Patents [OSTI]

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  3. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Scale Up Challenges Joseph Hartvigsen Ceramatec, Inc. National Renewable Energy Laboratory Golden, CO February 28, 2014 Antipode Assertions * Electric power generation is not the limitation - To misquote Jay Leno "Use all you want, we'll make more" - http://atomicinsights.com/2013/02/use-all-the-electricity-you-want-well-make-more.html * High electric costs come from working the demand curve from below rather than above * "Grid Storage" is a misleading

  4. High Temperature, High Pressure Devices for Zonal Isolation in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, ...

  5. Ultra High Temperature | Open Energy Information

    Open Energy Info (EERE)

    Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High...

  6. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  7. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gludovatz, Bernd; Hohenwarter, Anton; Thurston, Keli V. S.; Bei, Hongbin; Wu, Zhenggang; George, Easo P.; Ritchie, Robert O.

    2016-02-02

    The high-entropy alloys are an intriguing new class of metallic materials that derive their properties not from a single dominant constituent, such as iron in steels, nor from the presence of a second phase, such as in nickel-base superalloys, but rather comprise multi-element systems that crystallize as a single phase, despite containing high concentrations (~20 at.%) of five or more elements with different crystal structures. Indeed, we have recently reported on one such single-phase high-entropy alloy, NiCoCrFeMn, which displays exceptional strength and toughness at cryogenic temperatures. Here which displays unprecedented strength-toughness properties that exceed those of all high-entropy alloys andmore » most multi-phase alloys. With roomtemperature tensile strengths of almost 1 GPa and KJIc fracture-toughness values above 200 MPa.m 1/2 (with crack-growth toughnesses exceeding 300 MPa.m 1/2), the strength, ductility and toughness of the NiCoCr alloy actually improve at cryogenic temperatures to unprecedented levels of strengths above 1.3 GPa, failure strains up to 90% and KJIc values of 275 MPa.m 1/2 (with crackgrowth toughnesses above 400 MPa.m 1/2). These properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning.« less

  8. Exceptional damage-tolerance of a medium-entropy alloy NiCoCr at cryogenic temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gludovatz, Bernd; Hohenwarter, Anton; Thurston, Keli; Bei, Hongbin; Wu, Zhenggang; George, Easo

    2016-01-01

    High-entropy alloys1 3 are an intriguing new class of metallic materials that derive their properties not from a single dominant constituent, such as iron in steels, nor from the presence of a second phase, such as in nickel-base superalloys, but rather comprise multi-element systems that crystallize as a single phase4 7, despite containing high concentrations (~20 at.%) of five or more elements with different crystal structures5 7. Indeed, we have recently reported on one such single-phase high-entropy alloy, NiCoCrFeMn, which displays exceptional strength and toughness at cryogenic temperatures8. Here which displays unprecedented strength-toughness properties that exceed those of all high-entropymore »alloys and most multi-phase alloys. With roomtemperature tensile strengths of almost 1 GPa and KJIc fracture-toughness values above 200 MPa.m1/2 (with crack-growth toughnesses exceeding 300 MPa.m1/2), the strength, ductility and toughness of the NiCoCr alloy actually improve at cryogenic temperatures to unprecedented levels of strengths above 1.3 GPa, failure strains up to 90% and KJIc values of 275 MPa.m1/2 (with crackgrowth toughnesses above 400 MPa.m1/2). Such properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning.« less

  9. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  10. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  11. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, III, Raymond B. (Melbourne, FL)

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  12. High Strength, Dissimilar Alloy Aluminum Tailor-Welded Blanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Merit Review High Strength, Dissimilar Alloy Aluminum Tailor-Welded Blanks YURI HOVANSKI This Presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #LM099 Pacific Northwest National Laboratory June 12, 2015 Project Overview Automotive OEM GM Tier I Supplier TWB Company LLC Material Provider Alcoa 2 2 Start: FY2015 Finish: FY2017 15% complete Capacity to rapidly join dissimilar alloy Al sheet is not developed for high volume production.

  13. A general method for multimetallic platinum alloy nanowires as highly

    Office of Scientific and Technical Information (OSTI)

    active and stable oxygen reduction catalysts (Journal Article) | SciTech Connect A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts Citation Details In-Document Search This content will become publicly available on October 13, 2016 Title: A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts The production of inorganic nanoparticles (NPs) with precise control over

  14. Embrittlement and DBTT of High-Burnup PWR Fuel Cladding Alloys | Department

    Office of Environmental Management (EM)

    of Energy Embrittlement and DBTT of High-Burnup PWR Fuel Cladding Alloys Embrittlement and DBTT of High-Burnup PWR Fuel Cladding Alloys Structural analyses of high-burnup (HBU) fuel require cladding mechanical properties and failure limits to assess fuel behavior during long-term dry-cask storage and transportation. Pre-storage drying-transfer operations and early stage storage subject cladding to higher temperatures and pressure-induced tensile hoop stresses relative to in-reactor operation

  15. High Temperature Materials Overview Richard Wright Idaho National Laboratory

    Office of Environmental Management (EM)

    Temperature Materials Overview Richard Wright Idaho National Laboratory Advanced Reactor Technologies September 17, 2015 Objectives  Provide Technology Development to Support Future Design and Deployment of Very High Temperature Gas Cooled Reactors: - Pressure Vessel - Steam Generator and Intermediate Heat Exchanger (IHX) - Support Codes and Standards Activities for SiC/SiC composites and Materials Handbook  Program Goals - Alloy 617 Code Case Submittal for ASME approval by FY15 allowing

  16. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOE Patents [OSTI]

    Bianco, Robert (Finleyville, PA); Buckman, Jr., R. William (Pittsburgh, PA); Geller, Clint B. (Pittsburgh, PA)

    1999-01-01

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.

  17. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOE Patents [OSTI]

    Bianco, R.; Buckman, R.W. Jr.; Geller, C.B.

    1999-02-09

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume (ca. 1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum. 10 figs.

  18. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization Capabilities at the High Temperature Materials Laboratory: ... Success Stories from the High Temperature Materials Laboratory (HTML) User ...

  19. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization Capabilities at the High Temperature Materials Laboratory and ... Materials Characterization Capabilities at the High Temperature Materials Laboratory and ...

  20. Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy

    SciTech Connect (OSTI)

    Kubsek, J., E-mail: Jiri.Kubasek@vscht.cz; Vojt?ch, D.; Martnek, M.

    2013-12-15

    Structure and mechanical properties of the novel casting AJ62 (Mg6Al2Sr) alloy developed for elevated temperature applications were studied. The AJ62 alloy was compared to commercial casting AZ91 (Mg9Al1Zn) and WE43 (Mg4Y3RE) alloys. The structure was examined by scanning electron microscopy, x-ray diffraction and energy dispersive spectrometry. Mechanical properties were characterized by Viskers hardness measurements in the as-cast state and after a long-term heat treatment at 250 C/150 hours. Compressive mechanical tests were also carried out both at room and elevated temperatures. Compressive creep tests were conducted at a temperature of 250 C and compressive stresses of 60, 100 and 140 MPa. The structure of the AJ62 alloy consisted of primary ?-Mg dendrites and interdendritic nework of the Al{sub 4}Sr and massive Al{sub 3}Mg{sub 13}Sr phases. By increasing the cooling rate during solidification from 10 and 120 K/s the average dendrite arm thickness decreased from 18 to 5 ?m and the total volume fraction of the interdendritic phases from 20% to 30%. Both factors slightly increased hardness and compressive strength. The room temperature compressive strength and hardness of the alloy solidified at 30 K/s were 298 MPa and 50 HV 5, i.e. similar to those of the as-cast WE43 alloy and lower than those of the AZ91 alloy. At 250 C the compressive strength of the AJ62 alloy decreased by 50 MPa, whereas those of the AZ91 and WE43 alloys by 100 and 20 MPa, respectively. The creep rate of the AJ62 alloy was higher than that of the WE43 alloy, but significantly lower in comparison with the AZ91 alloy. Different thermal stabilities of the alloys were discussed and related to structural changes during elevated temperature expositions. - Highlights: Small effect of cooling rate on the compressive strength and hardness of AJ 62 A bit lower compressive strength of AJ 62 compared to AZ91 at room temperature Higher resistance of the AJ 62 alloy to the creep process in compression compared to AZ91 Excellent thermal stability and creep resistance of the alloy WE 43 Improved thermal stability and creep resistance in order WE43 > AJ62 >> AZ91.

  1. High temperature coatings for gas turbines

    DOE Patents [OSTI]

    Zheng, Xiaoci Maggie

    2003-10-21

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  2. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  3. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  4. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  5. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks YURI HOVANSKI This Presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #LM075 Pacific Northwest National Laboratory June 18, 2014 Project Overview OEM GM Tier I Supplier TWB Company LLC Material Provider Alcoa 2 2 Start: FY2012 Finish: FY2014 85% complete Capacity to rapidly join Al sheet in dissimilar thicknesses and alloys is not developed. Supply chain

  6. High Strain-Rate Characterization of Magnesium Alloys | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Strain-Rate Characterization of Magnesium Alloys High Strain-Rate Characterization of Magnesium Alloys 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm032_warren_2011_o.pdf More Documents & Publications 2011 Annual Progress Report for Lightweighting Materials FY 2008 Progress Report for Lightweighting Materials - 6. Automotive Metals-Crosscutting Vehicle Technologies Office: 2013 Lightweight Materials

  7. High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy

    SciTech Connect (OSTI)

    Bainsla, Lakhan; Suresh, K. G.; Nigam, A. K.; Manivel Raja, M.; Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K.; Hono, K.

    2014-11-28

    We report the structure, magnetic property, and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to crystallize in the cubic Heusler structure (prototype LiMgPdSn) with considerable amount of DO{sub 3} disorder. Thermal analysis result indicated the Curie temperature is about 750 K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 ± 0.01 was deduced using point contact andreev reflection measurements. The temperature dependence of electrical resistivity has been fitted in the temperature range of 5–300 K in order to check for the half metallic behavior. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.

  8. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  9. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  10. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  11. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  12. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, E.J.; Pennline, H.W.

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  13. High Temperature Thermoelectric Materials Characterization for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program | Department of Energy High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program 2009 DOE

  14. High Temperature Superconductivity Partners | Department of Energy

    Office of Environmental Management (EM)

    High Temperature Superconductivity Partners High Temperature Superconductivity Partners Map showing DOE's partners/stakeholders in the High Temperature Superconductivity Program PDF icon High Temperature Superconductivity Partners More Documents & Publications DOE Superconductivity Program Stakeholders DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 High-Temperature Superconductivity Cable Demonstration Projects

  15. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...

  16. High-pressure, high-temperature plastic deformation of sintered...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-pressure, high-temperature plastic deformation of sintered diamonds Citation Details In-Document Search Title: High-pressure, high-temperature plastic ...

  17. The high-pressure-high-temperature behavior of bassanite (Journal...

    Office of Scientific and Technical Information (OSTI)

    The high-pressure-high-temperature behavior of bassanite Citation Details In-Document Search Title: The high-pressure-high-temperature behavior of bassanite The pressure evolution ...

  18. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E. (Vashon, WA); Poole, Donald R. (Woodinville, WA); Schmidt, Eckart W. (Bellevue, WA); Wang, Charles (Lafayette, IN)

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  19. High pressure and high temperature apparatus

    DOE Patents [OSTI]

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  20. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  1. Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy, and High-Entropy Alloys

    SciTech Connect (OSTI)

    Carroll, Robert; Lee, Chi; Tsai, Che-Wei; Yeh, Jien-Wei; Antonaglia, James; Brinkman, Braden A.W.; LeBlanc, Michael; Xie, Xie; Chen, Shuying; Liaw, Peter K; Dahmen, Karin A

    2015-11-23

    High-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation. An analytic model explains these slips as avalanches of slipping weak spots and predicts the observed slip statistics, stress-strain curves, and their dependence on temperature, strain-rate, and material composition. The ratio of the weak spots’ healing rate to the strain-rate is the main tuning parameter, reminiscent of the Portevin-LeChatellier effect and time-temperature superposition in polymers. Our model predictions agree with the experimental results. The proposed widely-applicable deformation mechanism is useful for deformation control and alloys design.

  2. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  3. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  4. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  5. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOE Patents [OSTI]

    Park, J.H.

    1998-06-23

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

  6. High-Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  7. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  8. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  9. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D ...

  10. High Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program High Temperature Thermoelectric ...

  11. High Reliability, High TemperatureThermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

  12. Highly Dispersed Alloy Cathode Catalyst for Durability | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 3_utc.pdf More Documents & Publications Highly Dispersed Alloy Cathode Catalyst for Durability Breakout Group 1: Catalysts and Supports Advance Patent Waiver W(A)2009-002

  13. High temperature sealed electrochemical cell

    DOE Patents [OSTI]

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  14. Stress-induced large Curie temperature enhancement in Fe(sub 64)Ni(sub 36) Invar alloy.

    SciTech Connect (OSTI)

    Gorria, P.; Martinez-Blanco, D.; Perez, M. J.; Blanco, J. A.; Hernando, A.; Laguna-Marco, M. A.; Haskel, D.; Souza-Neto, N. M.; Xmith, R. I.; Marshall, W. G.; Garbarino, G.; Mezouar, M.; Fernandez-Martinez, A.; Chaboy, J.; Fernandez Barquin, L.; Rodriguez Castrillon, J. A.; Moldovan, M.; Garcia Alonso, J. I.; Zhang, J.; Llobet, A.; Jiang, J. S.; Univ. de Oviedo; Inst. de Magnetismo Aplicado; ISIS Facility; ESRF; Univ.Grenoble and CNRS; CSIC-Univ. de Zaragoza; Univ. de Cantabria; LANL

    2009-01-01

    We have succeeded in increasing up to 150 K the Curie temperature in the Fe{sub 64}N{sub 36}6 invar alloy by means of a severe mechanical treatment followed by a heating up to 1073 K. The invar behavior is still present as revealed by the combination of magnetic measurements with neutron and x-ray techniques under extreme conditions, such as high temperature and high pressure. The proposed explanation is based in a selective induced microstrain around the Fe atoms, which causes a slight increase in the Fe-Fe interatomic distances, thus reinforcing ferromagnetic interactions due to the strong magnetoelastic coupling in these invar compounds.

  15. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J. C. Crepeau; J. L. Rempe; J. E. Daw; D. L. Knudson; K. G. Condie; S. C. Wilkins

    2008-03-01

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped lybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to become familiar with the techniques and equipment used for specialized high temperature instrumentation fabrication and evaluation and to author/coauthor several key conference papers and journal articles.

  16. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J.C. Crepeau; J.L. Rempe; J.E. Daw; D.L. Knudson: K.G. Condie; S.C. Wilkins

    2008-03-31

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped molybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to become familiar with the techniques and equipment used for specialized high temperature instrumentation fabrication and evaluation and to author/coauthor several key conference papers and journal articles.

  17. Development of Austenitic ODS Strengthened Alloys for Very High...

    Office of Scientific and Technical Information (OSTI)

    at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. ...

  18. Non-Rare Earth High-Performance Wrought Magnesium Alloys | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High-Performance Wrought Magnesium Alloys Non-Rare Earth High-Performance Wrought Magnesium Alloys 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm056_lavender_2012_o-revised.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Non-Rare Earth High-Performance Wrought Magnesium Alloys Non-Rare Earth High-Performance Wrought Magnesium Alloys Vehicle Technologies Office:

  19. Environmental effect on room-temperature ductility of isothermally forged TiAl-base alloys

    SciTech Connect (OSTI)

    Nakamura, Morihiko; Hashimoto, Kenki (National Research Inst. for Metals, Tokyo (Japan)); Itoh, Naoyuki (Nippon Steel Corp., Chiba (Japan)); Tsujimoto, Tokuzo (Ibaraki Univ. (Japan). Faculty of Engineering); Suzuki, Toshiyuki (Kougakuin Univ., Tokyo (Japan))

    1994-02-01

    Isothermally forged TiAl-base alloy (Al-rich, Mn-containing, and Cr-containing TiAl) were heat-treated in various conditions, and equiaxed grain structures consisting of [gamma] and [alpha][sub 2] or [beta] phases were obtained. The heat-treated alloys were tensile tested in vacuum and air at room temperature, and the environmental effect on tensile elongation was studied. The ductility of the alloys consisting of equiaxed [gamma] grains and a large amount of [alpha][sub 2] grains was not largely affecting by laboratory air, and a decrease in the amount of [alpha][sub 2] grains resulted in a large reduction of ductility in air. The [beta] phase in the Cr-containing alloy improved the ductility in vacuum, but it resulted in a large reduction of ductility in air.

  20. Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature in a Combustion Gas Environment

    Office of Scientific and Technical Information (OSTI)

    Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature in a Combustion Gas Environment J.H. Tylczak* 1 1 National Energy Technology Laboratory, USA joseph.tylczak@netl.doe.gov Abstract This paper reports on the results of a study that compares the erosion-corrosion behavior of a variety of alloys (Fe- 2¼Cr 1Mo, 304 SS, 310 SS, Incoloy 800, Haynes 230 and a Fe 3 Al) in a combustion environment. Advanced coal combustion environments, with higher temperatures, are driving

  1. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Reichert, Patrick (Hayward, CA)

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  2. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  3. High temperature control rod assembly

    DOE Patents [OSTI]

    Vollman, Russell E. (Solana Beach, CA)

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  4. Adjusting alloy compositions for selected properties in temperature limited heaters

    DOE Patents [OSTI]

    Brady; Michael Patrick (Oak Ridge, TN), Horton, Jr.; Joseph Arno (Oak Ridge, TN), Vitek; John Michael (Oak Ridge, TN)

    2010-03-23

    Heaters for treating a subsurface formation are described herein. Such heaters can be obtained by using the systems and methods described herein. The heater includes a heater section including iron, cobalt, and carbon. The heater section has a Curie temperature less than a phase transformation temperature. The Curie temperature is at least 740.degree. C. The heater section provides, when time varying current is applied to the heater section, an electrical resistance.

  5. The high-pressure-high-temperature behavior of bassanite (Journal...

    Office of Scientific and Technical Information (OSTI)

    The high-pressure-high-temperature behavior of bassanite Citation Details In-Document Search Title: The high-pressure-high-temperature behavior of bassanite The pressure evolution of ...

  6. High-Pressure and High-Temperature Powder Diffraction (Journal...

    Office of Scientific and Technical Information (OSTI)

    High-Pressure and High-Temperature Powder Diffraction Citation Details In-Document Search Title: High-Pressure and High-Temperature Powder Diffraction Authors: Fei, Yingwei ; Wang, ...

  7. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  8. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wells | Department of Energy High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells PDF icon fabian_ctd_ zonal_isolation_peer2013.pdf More Documents & Publications High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells track 3: enhanced geothermal systems (EGS) | geothermal 2015

  9. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon turnquist_high_temp_tools_peer2013.pdf More Documents & Publications High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production

  10. High permeance sulfur tolerant Pd/Cu alloy membranes

    DOE Patents [OSTI]

    Ma, Yi Hua; Pomerantz, Natalie

    2014-02-18

    A method of making a membrane permeable to hydrogen gas (H.sub.2.uparw.) is disclosed. The membrane is made by forming a palladium layer, depositing a layer of copper on the palladium layer, and galvanically displacing a portion of the copper with palladium. The membrane has improved resistance to poisoning by H.sub.2S compared to a palladium membrane. The membrane also has increased permeance of hydrogen gas compared to palladium-copper alloys. The membrane can be annealed at a lower temperature for a shorter amount of time.

  11. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  12. High-temperature thermocouples and related methods

    DOE Patents [OSTI]

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  13. Highly mismatched crystalline and amorphous GaN(1-x)As(x) alloys in the whole composition range

    SciTech Connect (OSTI)

    Yu, K. M.; Novikov, S. V.; Broesler, R.; Demchenko, I. N.; Denlinger, J. D.; Liliental-Weber, Z.; Luckert, F.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2009-08-29

    Alloying is a commonly accepted method to tailor properties of semiconductor materials for specific applications. Only a limited number of semiconductor alloys can be easily synthesized in the full composition range. Such alloys are, in general, formed of component elements that are well matched in terms of ionicity, atom size, and electronegativity. In contrast there is a broad class of potential semiconductor alloys formed of component materials with distinctly different properties. In most instances these mismatched alloys are immiscible under standard growth conditions. Here we report on the properties of GaN1-xAsx, a highly mismatched, immiscible alloy system that was successfully synthesized in the whole composition range using a nonequilibrium low temperature molecular beam epitaxy technique. The alloys are amorphous in the composition range of 0.17alloys with x>0.2, and to the upward movement of the valence band for alloys with x<0.2. The unique features of the band structure offer an opportunity of using GaN1-xAsx alloys for various types of solar power conversion devices.

  14. High temperature interfacial superconductivity (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: High temperature interfacial superconductivity Citation Details In-Document Search Title: High temperature interfacial superconductivity High-temperature superconductivity ...

  15. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells...

  16. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  17. High Temperature Interfacial Superconductivity - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summary Cuprate superconductors exhibit relatively high transition temperatures, but their unit cells are complex and large. Localizing a...

  18. High-Temperature Superconductivity Cable Demonstration Projects |

    Office of Environmental Management (EM)

    Department of Energy High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into the Power Delivery Infrastructure PDF icon High-Temperature Superconductivity Cable Demonstration Projects More Documents & Publications HTS Cable Projects Superconductivity Program Overview Columbus HTS Power Cable

  19. Highly Dispersed Alloy Catalyst for Durability

    SciTech Connect (OSTI)

    Vivek S. Murthi , Elise Izzo, Wu Bi, Sandra Guerrero and Lesia Protsailo

    2013-01-08

    Achieving DOE?¢????s stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  20. High-temperature fabricable nickel-iron aluminides

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN)

    1988-02-02

    Nickel-iron aluminides are described that are based on Ni.sub.3 Al, and have significant iron content, to which additions of hafnium, boron, carbon and cerium are made resulting in Ni.sub.3 Al base alloys that can be fabricated at higher temperatures than similar alloys previously developed. Further addition of molybdenum improves oxidation and cracking resistance. These alloys possess the advantages of ductility, hot fabricability, strength, and oxidation resistance.

  1. Cermet anode compositions with high content alloy phase

    DOE Patents [OSTI]

    Marschman, S.C.; Davis, N.C.

    1989-10-03

    Cermet electrode compositions comprising NiO-NiFe[sub 2]O[sub 4]-Cu-Ni, and methods for making, are disclosed. Addition of nickel metal prior to formation and densification of a base mixture into the cermet allows for an increase in the total amount of copper and nickel that can be contained in the NiO-NiFe[sub 2]O[sub 4] oxide system. Nickel is present in a base mixture weight concentration of from 0.1% to 10%. Copper is present in the alloy phase in a weight concentration of from 10% to 30% of the densified composition. Such cermet electrodes can be formed to have electrical conductivities well in excess of 100 ohm[sup [minus]1] cm[sup [minus]1]. Other alloy and oxide system cermets having high content metal phases are also expected to be manufacturable in accordance with the invention.

  2. Cermet anode compositions with high content alloy phase

    DOE Patents [OSTI]

    Marschman, Steven C. (Richland, WA); Davis, Norman C. (Richland, WA)

    1989-01-01

    Cermet electrode compositions comprising NiO-NiFe.sub.2 O.sub.4 -Cu-Ni, and methods for making, are disclosed. Addition of nickel metal prior to formation and densification of a base mixture into the cermet allows for an increase in the total amount of copper and nickel that can be contained in the NiO-NiFe.sub.2 O.sub.4 oxide system. Nickel is present in a base mixture weight concentration of from 0.1% to 10%. Copper is present in the alloy phase in a weight concentration of from 10% to 30% of the densified composition. Such cermet electrodes can be formed to have electrical conductivities well in excess of 100 ohm.sup.-1 cm.sup.-1. Other alloy and oxide system cermets having high content metal phases are also expected to be manufacturable in accordance with the invention.

  3. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  4. Local electronic effects and irradiation resistance in high-entropy alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; Khorgolkhuu, Od; Ojha, Madhusudan

    2015-01-01

    High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.

  5. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  6. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  7. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  8. Deep Trek High Temperature Electronics Project

    SciTech Connect (OSTI)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  9. High-Temperature Falling-Particle Receiver

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conceptual drawing illustrates a high-temperature falling-particle receiver system that ... the potential to increase the maximum temperature of the heat-transfer media to more than ...

  10. Fast high-temperature superconductor switch for high current applications

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Fast high-temperature superconductor switch for high current applications Citation Details In-Document Search Title: Fast high-temperature superconductor switch for high current applications Reversible operation of a high current superconductor switch based on the quench of high-resistance second generation high temperature superconducting wire is demonstrated. The quench is induced by a burst of an ac field generated by an inductively coupled

  11. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect (OSTI)

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  12. Manufacturing Barriers to High Temperature PEM Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Manufacturing Barriers to High Temperature PEM Commercialization More Documents & Publications PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update MCFC and PAFC R&D Workshop Summary Report 2012 Pathways to

  13. Electrolysis - High Temperature - Hydrogen - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolysis - High Temperature - Hydrogen Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility by taking a stream of water and heating it and then splitting the water into hydrogen and oxygen product streams. A

  14. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. PDF icon ape03marlino.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module ...

  15. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon ape003tolbert2010p.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart ...

  16. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation PDF icon lm028laracurzio2011o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and...

  17. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. PDF icon lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and...

  18. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 -- Washington D.C. PDF icon lm01laracurzio.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and...

  19. Quantitative Modeling of High Temperature Magnetization Dynamics

    SciTech Connect (OSTI)

    Zhang, Shufeng

    2009-03-01

    Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport

  20. High-temperature brazed ceramic joints

    DOE Patents [OSTI]

    Jarvinen, Philip O.

    1986-01-01

    High-temperature joints formed from metallized ceramics are disclosed wherein the metal coatings on the ceramics are vacuum sputtered thereon.

  1. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  2. Highly Mismatched Alloys for Intermediate Band Solar Cells

    SciTech Connect (OSTI)

    Walukiewicz, W.; Yu, K.M.; Wu, J.; Ager III, J.W.; Shan, W.; Scrapulla, M.A.; Dubon, O.D.; Becla, P.

    2005-03-21

    It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a ''stepping stone'' for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.

  3. Spin Hall magnetoresistance at high temperatures

    SciTech Connect (OSTI)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  4. Amorphous metal alloy

    DOE Patents [OSTI]

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  5. High temperature solar selective coatings

    DOE Patents [OSTI]

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  6. Controlled Chemistry Helium High Temperature Materials Test Loop

    SciTech Connect (OSTI)

    Richard N. WRight

    2005-08-01

    A system to test aging and environmental effects in flowing helium with impurity content representative of the Next Generation Nuclear Plant (NGNP) has been designed and assembled. The system will be used to expose microstructure analysis coupons and mechanical test specimens for up to 5,000 hours in helium containing potentially oxidizing or carburizing impurities controlled to parts per million levels. Impurity levels in the flowing helium are controlled through a feedback mechanism based on gas chromatography measurements of the gas chemistry at the inlet and exit from a high temperature retort containing the test materials. Initial testing will focus on determining the nature and extent of combined aging and environmental effects on microstructure and elevated temperature mechanical properties of alloys proposed for structural applications in the NGNP, including Inconel 617 and Haynes 230.

  7. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect (OSTI)

    Mylavarapu, Sai K.; Sun, Xiaodong; Christensen, Richard N.; Glosup, Richard E.; Unocic, Raymond R

    2012-01-01

    The very high temperature reactor (VHTR), using gas-cooled reactor technology, is one of the six reactor concepts selected by the Generation IV International Forum and is anticipated to be the reactor type for the next generation nuclear plant (NGNP). In this type of reactor with an indirect power cycle system, a high-temperature and high integrity intermediate heat exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to secondary fluid for electricity production, process heat, or hydrogen cogeneration. The current Technology Readiness Level status issued by NGNP to all components associated with the IHX for reactor core outlet temperatures of 750-800oC is 3 on a scale of 1 to 10 with 10 being the most ready. At present, there is no proven high-temperature IHX concept for VHTRs. Amongst the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP is the primary focus of this paper. In the current study, two PCHEs were fabricated using Alloy 617 plates and will be experimentally investigated for their thermal-hydraulic performance in a high-temperature helium test facility (HTHF). The HTHF was primarily designed and constructed to test the thermal-hydraulic performance of PCHEs The test facility is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800oC and 3 MPa, respectively. The PCHE fabrication related processes, i.e., photochemical machining and diffusion bonding are briefly discussed for Alloy 617 plates. Diffusion bonding of Alloy 617 plates with and without a Ni interlayer is discussed. Furthermore, preliminary microstructural and mechanical characterization studies of representative diffusion bonded Alloy 617 specimens are presented.

  8. Overcharge tolerant high-temperature cells and batteries

    DOE Patents [OSTI]

    Redey, Laszlo; Nelson, Paul A.

    1989-01-01

    In a lithium-alloy/metal sulfide high temperature electrochemical cell, cell damage caused by overcharging is avoided by providing excess lithium in a high-lithium solubility phase alloy in the negative electrode and a specified ratio maximum of the capacity of a matrix metal of the negative electrode in the working phase to the capacity of a transition metal of the positive electrode. In charging the cell, or a plurality of such cells in series and/or parallel, chemical transfer of elemental lithium from the negative electrode through the electrolyte to the positive electrode provides sufficient lithium to support an increased self-charge current to avoid anodic dissolution of the positive electrode components above a critical potential. The lithium is subsequently electrochemically transferred back to the negative electrode in an electrochemical/chemical cycle which maintains high self-discharge currents on the order of 3-15 mA/cm.sup.2 in the cell to prevent overcharging.

  9. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOE Patents [OSTI]

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  10. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOE Patents [OSTI]

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  11. Development of a 100-Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a 100-Watt High Temperature Thermoelectric Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric ...

  12. Highly-enhanced reflow characteristics of sputter deposited Cu alloy thin films for large scale integrated interconnections

    SciTech Connect (OSTI)

    Onishi, Takashi; Mizuno, Masao; Yoshikawa, Tetsuya; Munemasa, Jun; Mizuno, Masataka; Kihara, Teruo; Araki, Hideki; Shirai, Yasuharu

    2011-08-01

    An attempt to improve the reflow characteristics of sputtered Cu films was made by alloying the Cu with various elements. We selected Y, Sb, Nd, Sm, Gd, Dy, In, Sn, Mg, and P for the alloys, and ''the elasto-plastic deformation behavior at high temperature'' and ''the filling level of Cu into via holes'' were estimated for Cu films containing each of these elements. From the results, it was found that adding a small amount of Sb or Dy to the sputtered Cu was remarkably effective in improve the reflow characteristics. The microstructure and imperfections in the Cu films before and after high-temperature high-pressure annealing were investigated by secondary ion micrographs and positron annihilation spectroscopy. The results imply that the embedding or deformation mechanism is different for the Cu-Sb alloy films compared to the Cu-Dy alloy films. We consider that the former is embedded by softening or deformation of the Cu matrix, which has a polycrystalline structure, and the latter is embedded by grain boundary sliding.

  13. Sandia_HighTemperatureComponentEvaluation_2015.

    SciTech Connect (OSTI)

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  14. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  15. Symposium on high temperature and materials chemistry

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  16. ITP Metal Casting: Corrosion Testing Practices … High Alloy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    alloys within a single laboratory. The results of the test method are often used as material acceptance criteria. However, the tests were not originally developed for ...

  17. High-Temperature-High-Volume Lifting For Enhanced Geothermal...

    Open Energy Info (EERE)

    include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall...

  18. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  19. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  20. Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy, and High-Entropy Alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carroll, Robert; Lee, Chi; Tsai, Che-Wei; Yeh, Jien-Wei; Antonaglia, James; Brinkman, Braden A.W.; LeBlanc, Michael; Xie, Xie; Chen, Shuying; Liaw, Peter K; et al

    2015-11-23

    High-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation. An analytic model explains these slips as avalanches of slipping weak spots and predicts the observed slip statistics, stress-strain curves, and their dependence on temperature, strain-rate, and material composition. The ratio ofmore » the weak spots’ healing rate to the strain-rate is the main tuning parameter, reminiscent of the Portevin-LeChatellier effect and time-temperature superposition in polymers. Our model predictions agree with the experimental results. The proposed widely-applicable deformation mechanism is useful for deformation control and alloys design.« less

  1. Microstructure–property relationships in a high-strength 51Ni–29Ti–20Hf shape memory alloy

    SciTech Connect (OSTI)

    Coughlin, D. R.; Casalena, L.; Yang, F.; Noebe, R. D.; Mills, M. J.

    2015-09-18

    NiTiHf alloys exhibit remarkable shape memory and pseudoelastic properties that are of fundamental interest to a growing number of industries. In this study, differential scanning calorimetry and isothermal compression tests have revealed that the 51Ni–29Ti–20Hf alloy has useful shape memory properties that include a wide range of transformation temperatures as well as highly stable pseudoelastic behavior. These properties are governed by short-term aging conditions, which may be tailored to control transformation temperatures while giving rise to exceptionally high austenite yield strengths which aid transformation stability. The yield strength of the austenite phase can reach 2.1 GPa by aging for 3hrs at 500°C, while aging for 3hrs at 700°C produced an alloy with an austenite finish temperature (A f ) of 146°C. High-resolution scanning transmission electron microscopy has revealed a new precipitate phase, H-phase, under the homogenized and extruded condition and the aged 3 hrs at 500°C condition, but only the previously identified H-phase precipitate was observed after aging at temperatures of 600°C and 700°C for 3 hrs. Finally, dislocation analysis indicated that plastic deformation of the austenite phase occurred by <100> type slip, similar to that observed in binary NiTi.

  2. High temperature ceramic/metal joint structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  3. Apparatus and method for high temperature viscosity and temperature measurements

    DOE Patents [OSTI]

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  4. High temperature crystalline superconductors from crystallized glasses

    DOE Patents [OSTI]

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  5. Effects of Lower Drying-Storage Temperatures on the DBTT of High Burnup PWR

    Energy Savers [EERE]

    Cladding | Department of Energy Effects of Lower Drying-Storage Temperatures on the DBTT of High Burnup PWR Cladding Effects of Lower Drying-Storage Temperatures on the DBTT of High Burnup PWR Cladding The purpose of the research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor cladding alloys during cooling for a range of storage temperatures and hoop

  6. Characterization of high-current, high-temperature superconductor current lead elements

    SciTech Connect (OSTI)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L.; Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J.

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures.

  7. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    SciTech Connect (OSTI)

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

    2014-01-16

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or NextGeneration Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion crack initiation processes, and (4) modeling.

  8. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a 500 Watt High Temperature Thermoelectric Generator Development of a 500 Watt High Temperature Thermoelectric Generator A low temperature TEG has been built and tested providing ...

  9. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    SciTech Connect (OSTI)

    Fukuhara, M.; Kawarada, H.

    2015-02-28

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The I{sub d}-V{sub g} characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} FETs were measured at a gate-drain bias voltage of 060??V in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28?mV, Fabry-Perot interference with a period of 2.35??V under nonmagnetic conditions, and a Fano effect with a period of 0.26?mV for Vg and 0.2?T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics.

  10. Final Scientific Report - "Novel Steels for High Temperature Carburizing"

    SciTech Connect (OSTI)

    McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

    2012-07-27

    This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer. For comparison, a control alloy of similar composition but without the microalloy additions exhibited a duplex prior austenite grain size with grains ranging from ASTM grain size 3 down to ASTM grain size 1 after similar processing and thermal exposure. These results confirm the potential for using microalloy additions of Ti, B, Nb, Al, rare earths and/or N for austenite grain size control in Cr-Mo (i.e. 4000-series) low alloy carburizing steels. They also demonstrate that these microalloy additions will not compromise the processability of the steel; all three materials produced under the program could be hot worked readily using normal steel processing protocols. To fully realize the technical and commercial potential of these steels, there is a need to continue development work using larger-scale heats. These larger-scale heats are needed to provide adequate material for fatigue testing of quenched and tempered alloys, to conduct more complete investigations of potential alloy chemistries and to provide additional material for processing studies. It will also be beneficial to carefully review intellectual property issues associated with this family of steels, since existing Japanese patent literature suggests that significant microstructural and/or process characterization work may be needed on new materials to confirm that these materials fall outside existing patent claims.

  11. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOE Patents [OSTI]

    Wright, Randy B. (Idaho Falls, ID)

    1992-01-01

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation).

  12. Multi-component solid solution alloys having high mixing entropy

    DOE Patents [OSTI]

    Bei, Hongbin

    2015-10-06

    A multi-component high-entropy alloy includes a composition selected from the following group: VNbTaTiMoWRe, VNbTaTiMoW, VNbTaTiMoRe, VNbTaTiWRe, VNbTaMoWRe, VNbTiMoWRe, VTaTiMoWRe, NbTaTiMoWRe, VNbTaTiMo, VNbTaTiW, VNbTaMoW, VNbTiMoW, VTaTiMoW, NbTaTiMoW, VNbTaTiRe, VNbTaMoRe, VNbTiMoRe, VTaTiMoRe, NbTaTiMoRe, VNbTaWRe, VNbTiWRe, VTaTiWRe, NbTaTiWRe, VNbMoWRe, VTaMoWRe, NbTaMoWRe, VTiMoWRe, NbTiMoWRe, TaTiMoWRe, wherein relative amounts of each element vary by no more than .+-.15 atomic %.

  13. Laser beam surface melting of high alloy austenitic stainless steel

    SciTech Connect (OSTI)

    Woollin, P.

    1996-12-31

    The welding of high alloy austenitic stainless steels is generally accompanied by a substantial reduction in pitting corrosion resistance relative to the parent, due to microsegregation of Mo and Cr. This prevents the exploitation of the full potential of these steels. Processing to achieve remelting and rapid solidification offers a means of reducing microsegregation levels and improving corrosion resistance. Surface melting of parent UNS S31254 steel by laser beam has been demonstrated as a successful means of producing fine, as-solidified structures with pitting resistance similar to that of the parent, provided that an appropriate minimum beam travel speed is exceeded. The use of N{sub 2} laser trail gas increased the pitting resistance of the surface melted layer. Application of the technique to gas tungsten arc (GTA) melt runs has shown the ability to raise the pitting resistance significantly. Indeed, the use of optimized beam conditions, N{sub 2} trail gas and appropriate surface preparation prior to laser treatment increased the pitting resistance of GTA melt runs to a level approaching that of the parent material.

  14. Molecular beam epitaxy of GaNAs alloys with high As content for potential photoanode applications in hydrogen production

    SciTech Connect (OSTI)

    Novikov, S. V.; Staddon, C. R.; Foxon, C. T.; Yu, K. M.; Broesler, R.; Hawkridge, M.; Liliental-Weber, Z.; Walukiewicz, W.; Denlinger, J.; Demchenko, I.

    2009-10-06

    The authors have succeeded in growing GaN1?xAsx alloys over a large composition range (0 < x < 0.8) by plasma-assisted molecular beam epitaxy. The enhanced incorporation of As was achieved by growing the films with high As{sub 2} flux at low (as low as 100 C) growth temperatures, which is much below the normal GaN growth temperature range. Using x-ray and transmission electron microscopy, they found that the GaNAs alloys with high As content x > 0.17 are amorphous. Optical absorption measurements together with x-ray absorption and emission spectroscopy results reveal a continuous gradual decrease in band gap from -3.4 to < 1 eV with increasing As content. The energy gap reaches its minimum of -0.8 eV at x - 0.8. The composition dependence of the band gap of the crystalline GaN{sub 1?x}As{sub x} alloys follows the prediction of the band anticrossing model (BAC). However, our measured band gap of amorphous GaN{sub 1?x}As{sub x} with 0.3 < x < 0.8 are larger than that predicted by BAC. The results seem to indicate that for this composition range the amorphous GaN{sub 1?x}As{sub x} alloys have short-range ordering that resembles random crystalline GaN{sub 1?x}As{sub x} alloys. They have demonstrated the possibility of the growth of amorphous GaN{sub 1?x}As{sub x} layers with variable As content on glass substrates

  15. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Richard N. Christensen; Raymond R. Unocic; Richard E. Glosup; Mike W. Patterson

    2012-08-01

    The Very High Temperature Reactor (VHTR) using gas-cooled reactor technology is anticipated to be the reactor type for the Next Generation Nuclear Plant (NGNP). In this reactor concept with an indirect power cycle system, a high-temperature and high integrity Intermediate Heat Exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation, hydrogen production, and/or industrial process heat applications. At present, there is no proven IHX concept for VHTRs. The current Technology Readiness Level (TRL) status issued by NGNP to all components associated with the IHX for reduced nominal reactor outlet temperatures of 750800 degrees C is 3 on a 110 scale, with 10 indicating omplete technological maturity. Among the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP with Alloy 617, a candidate high-temperature structural material for NGNP applications, are the primary focus of this paper. In the current study, diffusion bonding of Alloy 617 has been demonstrated, although the optimum diffusion bonding process parameters to engineer a quasi interface-free joint are yet to be determined. The PCHE fabrication related processes, i.e., photochemical etching and diffusion bonding are discussed for Alloy 617 plates. In addition, the authors experiences with these non-conventional machining and joining techniques are discussed. Two PCHEs are fabricated using Alloy 617 plates and are being experimentally investigated for their thermal-hydraulic performance in a High-Temperature Helium Facility (HTHF). The HTHF is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800 degrees C and 3 MPa, respectively. Furthermore, some preliminary microstructural and mechanical property characterization studies of representative diffusion bonded Alloy 617 specimens are presented. The characterization studies are restricted and less severe from an NGNP perspective but provide sufficient confidence to ensure safe operation of the heat exchangers in the HTHF. The test results are used to determine the design operating conditions for the PCHEs fabricated.

  16. Room-temperature nonlinear transport phenomena in low-dimensional Ni-Nb-Zr-H glassy alloys and its device

    SciTech Connect (OSTI)

    Fukuhara, Mikio; Yoshida, Hajime

    2014-05-15

    We report the room-temperature switching and Coulomb blockade effects in threeterminal glassy alloy field effect transistor (GAFET), using the millimeter sized glassy alloy. By applying dc and ac voltages to a gate electrode, GAFET can be switched from a metallic conducting state to an insulating state with Coulomb oscillation at a period of 14 ?V at room temperature. The transistor showed the three-dimensional Coulomb diamond structure. The fabrication of a low-energy controllable device throws a new light on cluster electronics without wiring.

  17. Oxide-Nanoparticle Containing Coatings for High Temperature Alloys

    SciTech Connect (OSTI)

    2009-04-01

    This factsheet describes a study whose objective is to examine the feasibility of using Electromagnetic Stirring (EMS) techniques in dispersing the oxide nanoparticles uniformly within the liquid steel.

  18. High Temperature Materials Interim Data Qualification Report

    SciTech Connect (OSTI)

    Nancy Lybeck

    2010-08-01

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  19. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based ... More Documents & Publications High Temperature Polymer Capacitor Dielectric Films High ...

  20. High Temperature Thermoelectric Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials High Temperature Thermoelectric Materials 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon acep_04_elsner.pdf More Documents & Publications Quantum Well Thermoelectrics and Waste Heat Recovery Fabrication of A Quantum Well Based System for Truck HVAC

  1. Measurements of T sub o temperatures of supersaturated Si-As alloys

    SciTech Connect (OSTI)

    Lee, Kwang-Ryeol; West, J.A.; Smith, P.M.; Aziz, M.J. . Div. of Applied Sciences); Knapp, J.A. )

    1990-01-01

    The congruent melting point, to T{sub o} curve, of crystalline Si-As alloys has been measured in the range of 1.6 to 18.1 at. % arsenic by line source electron beam annealing. Alloys were created by ion implantation of As into 0.1mm Si-on-sapphire and crystallized by pulsed laser melting. T{sub o} temperatures decrease from 1673{plus minus}10K at 2.0 at. % As to 1516 {plus minus}30K at 18.1 at. % As. The results of these measurements are significantly higher than the previous results of studies using pulsed laser melting techniques. Advantages of the e-beam technique over previous techniques are discussed. Chemical free energy functions of the solid and liquid phases were calculated from existing thermodynamic data. The calculated T{sub o} curve agrees with the measured values only in low concentration region (less than 8 at. %). 17 refs., 2 figs., 2 tabs.

  2. Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy novel cathode / alloy...

  3. Au-Ag Alloy Static High Pressure EOS measurements: FY09 summary...

    Office of Scientific and Technical Information (OSTI)

    Static high-pressure measurements of the equation of state of a Gold-Silver alloy (23.5 ... EOS curves of silver and gold, taken from the literature, are shown for comparison. We fit ...

  4. Improved Processing of High Alloy Steels for Wear Components in Energy

    Office of Scientific and Technical Information (OSTI)

    Generation Systems, Transportation and Manufacturing Systems (Technical Report) | SciTech Connect Improved Processing of High Alloy Steels for Wear Components in Energy Generation Systems, Transportation and Manufacturing Systems Citation Details In-Document Search Title: Improved Processing of High Alloy Steels for Wear Components in Energy Generation Systems, Transportation and Manufacturing Systems Authors: Peter, William H [1] ; Liby, Alan L [1] ; Chen, Wei [1] ; Yamamoto, Yukinori [1] ;

  5. Compressibility of Ir-Os alloys under high pressure (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Compressibility of Ir-Os alloys under high pressure Citation Details In-Document Search Title: Compressibility of Ir-Os alloys under high pressure Authors: Yusenko, Kirill V. [1] ; Bykova, Elena [2] ; Bykov, Maxim [2] ; Gromilov, Sergey A. [3] ; Kurnosov, Alexander V. [2] ; Prescher, Clemens [4] ; Prakapenka, Vitali B. [4] ; Hanfland, Michael [5] ; van Smaalen, Sander [2] ; Margadonna, Serena [1] ; Dubrovinsky, Leonid S. [2] + Show Author Affiliations Univ. of Oslo, Oslo

  6. High-Temperature Behavior of Cellulose I

    SciTech Connect (OSTI)

    Matthews, James F.; Bergenstråhle, Malin; Beckham, Gregg T.; Himmel, Michael E.; Nimlos, Mark R.; Brady, John W.; Crowley, Michael F.

    2011-03-17

    We use molecular simulation to elucidate the structural behavior of small hydrated cellulose Iβ microfibrils heated to 227 °C (500 K) with two carbohydrate force fields. In contrast to the characteristic two-dimensional hydrogen-bonded layer sheets present in the cellulose Iβ crystal structure, we show that at high temperature a three-dimensional hydrogen bond network forms, made possible by hydroxymethyl groups changing conformation from trans–gauche (TG) to gauche–gauche (GG) in every second layer corresponding to “center” chains in cellulose Iβ and from TG to gauche–trans (GT) in the “origin” layer. The presence of a regular three-dimensional hydrogen bond network between neighboring sheets eliminates the possibility of twist, whereas two-dimensional hydrogen bonding allows for microfibril twist to occur. Structural features of this high-temperature phase as determined by molecular simulation may explain several experimental observations for which no detailed structural basis has been offered. This includes an explanation for the observed temperature and crystal size dependence for the extent of hydrogen/deuterium exchange, and diffraction patterns of cellulose at high temperature.

  7. Nickel aluminide alloy suitable for structural applications

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN)

    1998-01-01

    Alloys for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1.+-.0.8%)Al--(1.0.+-.0.8%)Mo--(0.7.+-.0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques.

  8. Nickel aluminide alloy suitable for structural applications

    DOE Patents [OSTI]

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  9. Advanced nickel base alloys for high strength, corrosion applications

    DOE Patents [OSTI]

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  10. Advanced nickel base alloys for high strength, corrosion applications

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID)

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  11. High Temperature Fluoride Salt Test Loop

    SciTech Connect (OSTI)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.

  12. Gasification of high ash, high ash fusion temperature bituminous coals

    DOE Patents [OSTI]

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  13. High Temperature, High Voltage Fully Integrated Gate Driver Circuit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape003_tolbert_2010_p.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart Integrated Power Module

  14. High Temperature, High Voltage Fully Integrated Gate Driver Circuit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_03_marlino.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module Wide Bandgap Materials

  15. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  16. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Gougar, Hans D.

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  17. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both small or medium-sized and modular by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOEs ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  18. Compliant high temperature seals for dissimilar materials

    DOE Patents [OSTI]

    Rynders, Steven Walton; Minford, Eric; Tressler, Richard Ernest; Taylor, Dale M.

    2001-01-01

    A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

  19. Amorphous metal alloy and composite

    DOE Patents [OSTI]

    Wang, Rong (Richland, WA); Merz, Martin D. (Richland, WA)

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  20. High strength, thermally stable, oxidation resistant, nickel-based alloy

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Vought, Joseph D. (Rockwood, TN); Howell, C. Randal (Knoxville, TN)

    1999-01-01

    A polycrystalline alloy is composed essentially of, by weight %: 15% to 30% Mo, 3% to 10% Al, up to 10% Cr, up to 10% Fe, up to 2% Si, 0.01% to 0.2% C, 0.01% to 0.04% B, balance Ni.

  1. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    SciTech Connect (OSTI)

    Weiss, David C.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  2. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    SciTech Connect (OSTI)

    Salazar Mejía, C. Nayak, A. K.; Felser, C.; Nicklas, M.; Ghorbani Zavareh, M.; Wosnitza, J.; Skourski, Y.

    2015-05-07

    The present pulsed high-magnetic-field study on Ni{sub 50}Mn{sub 35}In{sub 15} gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields.

  3. Brazing Refractory Metals Used In High-Temperature Nuclear Instrumentation

    SciTech Connect (OSTI)

    A. J. Palmer; C. J. Woolstenhulme

    2009-06-01

    As part of the U. S. Department of Energy (DOE) sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL’s Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR 1) experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed.

  4. High Temperature PEM - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search High Temperature PEM Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (976 KB) Technology Marketing SummaryPolymer electrolyte fuel cells (PEFCs) have been identified as an attractive electrical power source due to it having a higher efficiency level and being an environmental friendly energy source. In

  5. High Temperature Materials Laboratory (HTML) - PSD Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions. However, research projects at the HTML still may be conducted on a cost-recovery basis through the Work for Others (WFO) Program or under a Cooperative R&D Agreement (CRADA). Dr. Edgar Lara-Curzio, HTML Director Tel: 865.574.1749 Fax: 865.574.4913 laracurzioe@ornl.gov Christine Goudy, Administrative Specialist Tel:

  6. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes...

  7. Modoc High School Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc...

  8. Henley High School Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility...

  9. Cotulla High School Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility...

  10. CARISMA: A Networking Project for High Temperature PEMFC MEA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe This...

  11. Development of Advanced High Temperature Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  12. High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL ... DC, August 11-12, 2011. PDF icon High Temperature Fuel Cell (Phosphoric Acid) ...

  13. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission ...

  14. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant ...

  15. High-Temperature Falling-Particle Receiver | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Falling-Particle Receiver High-Temperature Falling-Particle Receiver This fact sheet summarizes the Sandia National Laboratories (SNL) project for the DOE Solar ...

  16. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  17. Overview of Fraunhofer IPM Activities in High Temperature Bulk...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development ...

  18. Project Profile: Engineering a Novel High Temperature Metal Hydride...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical Storage Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical Storage ...

  19. New Polyelectrolyte Materials for High Temperature Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polyelectrolyte Materials for High Temperature Fuel Cells New Polyelectrolyte Materials for High Temperature Fuel Cells Part of a 100 million fuel cell award announced by DOE ...

  20. High Operating Temperature Liquid Metal Heat Transfer Fluids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Operating Temperature Liquid Metal Heat Transfer Fluids High Operating Temperature Liquid Metal Heat Transfer Fluids This fact sheet describes a UCLA-led solar project to ...

  1. Project Profile: High Operating Temperature Liquid Metal Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Operating Temperature Liquid Metal Heat Transfer Fluids Project Profile: High Operating Temperature Liquid Metal Heat Transfer Fluids Logos for The University of California, ...

  2. Low and high Temperature Dual Thermoelectric Generation Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery ...

  3. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for ...

  4. Pressure Testing of a High Temperature Naturally Fractured Reservoir...

    Office of Scientific and Technical Information (OSTI)

    Conference: Pressure Testing of a High Temperature Naturally Fractured Reservoir Citation Details In-Document Search Title: Pressure Testing of a High Temperature Naturally ...

  5. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell ...

  6. Exploring high temperature phenomena related to post-detonation...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Exploring high temperature phenomena related to post-detonation by an electric arc Citation Details In-Document Search Title: Exploring high temperature phenomena ...

  7. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  8. High temperature interfacial superconductivity (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: High temperature interfacial superconductivity Citation Details In-Document Search Title: High temperature interfacial superconductivity You are accessing a document ...

  9. High-Speed, Temperature Programmable Gas Chromatography Utilizing...

    Office of Scientific and Technical Information (OSTI)

    High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip ... Citation Details In-Document Search Title: High-Speed, Temperature Programmable Gas ...

  10. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Performance of alternative ...

  11. Testing of a Microfluidic Sampling System for High Temperature...

    Office of Scientific and Technical Information (OSTI)

    System for High Temperature Electrochemical MC&A Citation Details In-Document Search Title: Testing of a Microfluidic Sampling System for High Temperature Electrochemical MC&A ...

  12. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    Aerogel-Based Insulation for High-Temperature Industrial Processes Citation Details In-Document Search Title: Aerogel-Based Insulation for High-Temperature Industrial Processes ...

  13. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: ...

  14. Final Report: Ionization chemistry of high temperature molecular...

    Office of Scientific and Technical Information (OSTI)

    chemistry of high temperature molecular fluids Citation Details In-Document Search Title: Final Report: Ionization chemistry of high temperature molecular fluids With the ...

  15. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  16. Project Profile: Fundamental Corrosion Studies in High-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems Project Profile: Fundamental Corrosion Studies in High-Temperature Molten Salt ...

  17. Project Profile: High-Temperature Thermochemical Storage with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power Project Profile: High-Temperature Thermochemical Storage with ...

  18. Polyelectrolyte Materials for High Temperature Fuel Cells | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polyelectrolyte Materials for High Temperature Fuel Cells Polyelectrolyte Materials for High Temperature Fuel Cells This presentation, which focuses on polyelectrolyte materials ...

  19. High Temperature Polymer Membrane Development at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Summary of ANL’s high temperature polymer membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  20. Exploring high temperature phenomena related to post-detonation...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Exploring high temperature phenomena related to post-detonation by an electric arc Citation Details In-Document Search Title: Exploring high temperature phenomena...

  1. High Temperature Fuel Cells in the European Union

    Broader source: Energy.gov [DOE]

    Presentation on High Temperature Fuel Cells in the European Union to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  2. Duplex precipitates and their effects on the room-temperature fracture behaviour of a NiAl-strengthened ferritic alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Liaw, Peter K.

    2015-03-23

    Duplex precipitates are presented in a NiAl-strengthened ferritic alloy. They were characterized by the ultra-small angle X-ray scattering and transmission electron microscope. Fine cooling precipitates with the size of several to tens of nanometres harden the matrix considerably at room temperature. Cracks are likely to initiate from precipitates, and coalesce and propagate quickly through the matrix due to the excessive hardening effect of cooling precipitates, which lead to the premature fracture of NiAl-strengthened ferritic alloys.

  3. High-temperature, high-pressure bonding of nested tubular metallic components

    DOE Patents [OSTI]

    Quinby, Thomas C. (Kingston, TN)

    1980-01-01

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  4. Permanent Mold Casting of JIS-AC4C Aluminum Alloy Using a Low-Temperature Mold

    SciTech Connect (OSTI)

    Yamagata, Hiroshi; Nikawa, Makoto

    2011-01-17

    Permanent mold casting using mold temperatures below 200 deg. C was conducted to obtain a high-strength, thin-walled casting. Al-7.36 mass% Si -0.18 Cu- 0.27Mg-0.34Fe alloy JIS-AC4C was cast using a bottom pouring cast plan. The product had a rectangular tube shape (70 mm W x 68 mm D x 180 mm H) with wall thicknesses of 1, 3 and 5 mm. The effect of heat insulation at the melt path was compared when using a sand runner insert and when using a steel runner insert as well as a powder mold release agent. Fine microstructures were observed in the casting. The smaller the thickness, the higher the hardness with smaller secondary dendrite arm spacing (SDAS). However, the hardness and the SDAS were unaffected by the mold temperature. It was proposed that the avoidance of the formation of primary {alpha} dendrite at the melt path generates a higher strength casting with adequate mold filling.

  5. ternay-pd-alloys-pall | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at high temperature and pressure from gasified coal in the presence of typical contaminants. Goals for the project include creating an advanced palladium alloy for optimum hydrogen...

  6. In-situ neutron scattering studies of magnetic shape memory alloys under stress, temperature, and magnetic fields

    SciTech Connect (OSTI)

    Brown, Donald W; Sisneros, Thomas A; Kabra, Saurabh; Schlagel, Deborah

    2010-01-01

    We have utilized the SMARTS engineering neutron diffractometer to study the crystallographic orientation and phase transformations in the ferromagnetic shape memory alloy Ni 2MnGa under conditions of temperature (200-600K), stress (500MPa), and magnetic field (2T). Neutrons are uniquely suited to probe the crystallographic response of materials to external stimuli because of their high penetration, which allows them to sample the bulk of the material (as opposed to the surface) as well as pass through environmental chambers. A single crystal of Ni{sub 5}MnGa was repeatedly thermally cycled through the Austenitic-Martensitic phase transformation under varying conditions of applied stress, magnetic field or both. In-situ neutron diffraction was used to quantitatively monitor the population of the crystallographic variants in the martensitic phase as a function of the external stimuli during cooling. Neutron diffraction was used to monitor variant selection in the Ferromagnetic Shape Memory Alloy Ni{sub 2}Mn Ga during austenitic to martensitic transformation under varying conditions of externally applied stress and magnetic field. Qualitatively, the results were to be expected in this simple example. The shorter and magnetically soft c-axis of the tetragonal martensitic phase aligned with the compressive stress or magnetic field. However, neutron diffraction proved useful in directly quantifying the selection of the preferred variant by external influence. For instance, by quantifying the variant selection, the neutron diffraction results made apparent that the sample 'remembered' a loading cycle following a 'reset' cycle with no external applied stress. Moreover, the power of in-situ neutron diffraction will become more apparent when applied to more complex, less understood, samples such as polycrystalline samples or composite samples.

  7. Optimization of High-Volume Warm Forming for Lightweight Sheet Alloys |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Volume Warm Forming for Lightweight Sheet Alloys Optimization of High-Volume Warm Forming for Lightweight Sheet Alloys 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm061_harrison_2012_o.pdf More Documents & Publications Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Vehicle Technologies

  8. High Temperature Materials Laboratory third annual report

    SciTech Connect (OSTI)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  9. High temperature regenerable hydrogen sulfide removal agents

    DOE Patents [OSTI]

    Copeland, Robert J. (Wheat Ridge, CO)

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  10. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    SciTech Connect (OSTI)

    Kalay, Yunus Eren

    2008-10-15

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T{sub 0} curves, which makes Al-Si a good candidate for solubility extension while the plunging T{sub 0} line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of {approx}0.2, JH and TMK deviate from each other. This deviation indicates an adiabatic type solidification path where heat of fusion is reabsorbed. It is interesting that this particle size range is also consistent with the appearance of a microcellular growth. While no glass formation is observed within this system, the smallest size powders appear to consist of a mixture of nanocrystalline Si and Al. Al-Sm alloys have been investigated within a composition range of 34 to 42 wt% Sm. Gas atomized powders of Al-Sm are investigated to explore the morphological and structural hierarchy that correlates with different degrees of departure from full equilibrium conditions. The resultant powders show a variety of structural selection with respect to amount of undercooling, with an amorphous structure appearing at the highest cooling rates. Because of the chaotic nature of gas atomization, Cu-block melt-spinning is used to produce a homogeneous amorphous structure. The as-quenched structure within Al-34 to 42 wt% Sm consists of nanocrystalline fcc-Al (on the order of 5 nm) embedded in an amorphous matrix. The nucleation density of fcc-Al after initial crystallization is on the order of 10{sup 22}-10{sup 23} m{sup -3}, which is 10{sup 5}-10{sup 6} orders of magnitude higher than what classical nucleation theory predicts. Detailed analysis of liquid and as-quenched structures using high energy synchrotron X-ray diffraction, high energy transmission electron microscopy, and atom probe tomography techniques revealed an Al-Sm network similar in appearance to a medium range order (MRO) structure. A model whereby these MRO clusters promote the observed high nucleation density of fcc-Al nanocrystals is proposed. The devitrification path was identified using high temperature, in-situ, high energy synchrotron X-ray diffraction techniques and the crystallization kinetics were described using an analytical Johnson-Mehl-Avrami (JMA) approach.

  11. High power densities from high-temperature material interactions

    SciTech Connect (OSTI)

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  12. Grain size and texture effect on compression behavior of hot-extruded Mg-3Al-1Zn alloys at room temperature

    SciTech Connect (OSTI)

    Chang, L.L. [Department of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Y.N., E-mail: wynmm@dlut.edu.cn [Department of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao, X. [Key laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110005 (China); Qi, M. [Department of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2009-09-15

    Hot-extruded AZ31 alloy was subjected to compression at room temperature. The influence of grain size and grain orientation on the compression behavior of the specimens was examined by optical microscopy, compression test and X-ray diffraction. Abundant twins activated during compression of extruded AZ31 magnesium alloy. The hot extruded AZ31 magnesium alloys had a higher Hall-Petch slope for compression than that for tension.

  13. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    SciTech Connect (OSTI)

    Thomas Lillo; Richard Wright

    2009-05-01

    HVOF coatings have shown high resistance to corrosion in fossil energy applications and it is generally accepted that mechanical failure, e.g. cracking or spalling, ultimately will determine coating lifetime. The high velocity oxygen-fuel method (HVOF) for applying coatings is one of the most commercially viable and allows the control of various parameters including powder particle velocity and temperature which influence coating properties, such as residual stress, bond coat strength and microstructure. The mechanical durability of coatings is being assessed using a dual eddy current coil method to monitor crack formation in real time during thermal cycling. Absolute impedence signals from two coils, which interrogate two different areas on the sample, are collected. Crack detection can be determined from the differential signal generated from these absolute signals. The coils are operated at two different frequencies, resulting in two differential signals used for crack detection. Currently this crack detection method is being used to elucidate the influence of thermal cycling temperature and coating thickness on cracking. Recent results (cycles to failure) will be presented for FeAl coatings thermally sprayed (HVOF) onto carbon steel to two coating thicknesses (160 microns and 250 microns thick) and subsequently cycled at temperatures up to 700oC. Thinner coatings exhibit greater resistance to cracking. Ultimately the resistance to cracking will be used to explore the relationship between HVOF spraying parameters, the mechanical properties of the coating and coating bond strength to develop optimized thermal spray parameters. To this end thermal spray coatings (FeAl and Fe3Al) have been applied to additional alloy substrates (Grade 91 steel, 316 SS, etc.) relevant to the fossil industry. Future plans also include a direct comparison to conventional weld overlay coatings currently used in the industry as well as exploration of new coatings. The room temperature mechanical strength and coating adhesion to the substrate is also of considerable importance. Eddy current methods are being developed to detect coating failure during room temperature tensile tests to optimize surface preparation as well as aid in the optimization of the HVOF thermal spray parameters.

  14. Apparatus for accurately measuring high temperatures

    DOE Patents [OSTI]

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  15. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  16. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  17. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  18. High temperature lined conduits, elbows and tees

    DOE Patents [OSTI]

    De Feo, Angelo (Passaic, NJ); Drewniany, Edward (Bergen, NJ)

    1982-01-01

    A high temperature lined conduit comprising, a liner, a flexible insulating refractory blanket around and in contact with the liner, a pipe member around the blanket and spaced therefrom, and castable rigid refractory material between the pipe member and the blanket. Anchors are connected to the inside diameter of the pipe and extend into the castable material. The liner includes male and female slip joint ends for permitting thermal expansion of the liner with respect to the castable material and the pipe member. Elbows and tees of the lined conduit comprise an elbow liner wrapped with insulating refractory blanket material around which is disposed a spaced elbow pipe member with castable refractory material between the blanket material and the elbow pipe member. A reinforcing band is connected to the elbow liner at an intermediate location thereon from which extend a plurality of hollow tubes or pins which extend into the castable material to anchor the lined elbow and permit thermal expansion. A method of fabricating the high temperature lined conduit, elbows and tees is also disclosed which utilizes a polyethylene layer over the refractory blanket after it has been compressed to maintain the refractory blanket in a compressed condition until the castable material is in place. Hot gases are then directed through the interior of the liner for evaporating the polyethylene and setting the castable material which permits the compressed blanket to come into close contact with the castable material.

  19. 2005 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 5 High Temperature Membrane Working Group Meeting Archives 2005 High Temperature Membrane Working Group Meeting Archives View 2005 meeting presentations from the High Temperature Membrane Working Group. October 20, 2005, Los Angeles, California Conductivity Testing in High Temperature Membranes, Jim Boncella, Los Alamos National Laboratory Photo of participants at the High Temperature Membrane Working Group Meeting in October 2005 May 26, 2005, Arlington, Virginia Agenda Model

  20. Control corrosion with new nickel-base alloys

    SciTech Connect (OSTI)

    Schade, J.P. ); Ross, R.W. Jr. )

    1994-07-01

    Nickel plays an important role in many of the alloys developed to withstand corrosive process environments such as those in chemical, petrochemical, power, marine, and pulp and paper industries. It imparts excellent corrosion resistance, toughness, metallurgical stability, and fabricability to alloys containing iron, chromium, tungsten, and other metals. These alloys are valuable in processes with high concentrations of corrosives and high operating temperatures. These alloys and their corrosive environments are discussed here.

  1. Heat treated 9 Cr-1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  2. Filter unit for use at high temperatures

    DOE Patents [OSTI]

    Ciliberti, David F. (Murrysville Boro, PA); Lippert, Thomas E. (Murrysville, PA)

    1988-01-01

    A filtering unit for filtering particulates from high temperature gases uses a spiral ceramic spring to bias a ceramic, tubular filter element into sealing contact with a flange about an aperture of a metallic tube sheet. The ceramic spiral spring may contact the upper edge of the filter element and be restrained by a stop member spaced from one end of the tube sheet, or the spring may contact the bottom of the filter element and be restrained by a support member spaced from the opposite end of the tube sheet. The stop member and support member are adjustably secured to the tube sheet. A filtering system uses the ceramic spiral spring to bias a plurality of ceramic, tubular filter elements in a respective plurality of apertures in a tube sheet which divides a vessel into upper and lower enclosed sections.

  3. High temperature chemically resistant polymer concrete

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  4. High temperature low friction surface coating

    DOE Patents [OSTI]

    Bhushan, Bharat (Watervliet, NY)

    1980-01-01

    A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

  5. Multilayer ultra-high-temperature ceramic coatings

    DOE Patents [OSTI]

    Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  6. A potential Rosetta Stone of high temperature superconductivity...

    Office of Science (SC) Website

    for the high temperature superconductivity. Summary Superconductivity enables the flow of electricity without any loss of energy, but this extremely-low temperature...

  7. Carbon Capture Turned Upside Down: High-Temperature Adsorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture Turned Upside Down: High-Temperature Adsorption & Low-Temperature Desorption (HALD) Previous Next List Joos, Lennart; Lejaeghere, Kurt; Huck, Johanna M.; Van...

  8. High Country Rose Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Rose Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name High Country Rose Greenhouses Greenhouse Low Temperature Geothermal Facility...

  9. Enhanced High and Low Temperature Performance of NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and...

  10. Project Profile: High-Temperature Solar Selective Coating Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for ... Characterize the optical performance, material properties, and temperature stability. ...

  11. Enabling High Efficiency Low Temperature Combustion by Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion by Adaptive In-Situ Jet Cooling Enabling High Efficiency Low Temperature Combustion by Adaptive In-Situ Jet Cooling A new approach, called ...

  12. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Impact of Variable Valve Timing on Low Temperature Combustion ...

  13. Evaluation of pitting corrosion resistance of high-alloyed stainless steels welds for FGD plants in Korea

    SciTech Connect (OSTI)

    Baek, K.K.; Sung, H.J.; Im, C.S.; Hong, I.P.; Kim, D.K.

    1998-12-31

    For successful application of high-alloyed stainless steels for Flue Gas Desulfurization (FGD) plants, pitting corrosion resistance of arc welds of N-added 6%Mo austenitic stainless steels (UNS N 08367) and super duplex stainless steels (UNS S 32550) made with various filler metals were evaluated using the Green Death solution. For Gas Tungsten Arc (GTA) and Gas Metal Arc (GMA) welds of N 08367, Critical Pitting Temperature (CPT) of base metal was 65--70 C, whereas weld made by ERNiCrMo-3 filler metal yielded CPT of 50 C. Welds made by ERNiCrMo-10 or ERNiCrMo-4 filler metals showed CPT of 60--65 C and 65--70C, respectively. For GTA and GMA welds of S 32550, CPT of welds made by ERNiCrMo-3 was 45--50 C, indicating that the filler metal can provide pitting corrosion resistance matching the S 32550 alloy. Thus, a proper pitting corrosion resistance of weldments of high-alloy stainless steels can be achieved by selecting filler metals having at least +10 higher Pitting Resistance Equivalent Number (PRE{sub N}) value than the base metal regardless of the type of arc welding process. The over-alloyed filler metals would compensate preferential segregation of Cr, MO along the dendrite boundary, which made the dendrite core more susceptible to pitting. Nitrogen addition to the GTA welds of N 08367 made with ERNiCrMo-3 failed to improve pitting corrosion resistance, which was attributed to the precipitation of nitrogen in the weld metal in the form of Nb-nitride.

  14. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect (OSTI)

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790840?MPa, enhanced electrical conductivity of 81%85% IACS and thermal stability up to 500?C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  15. High Poisson;s ratio of Earth;s inner core explained by carbon alloying

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect High Poisson;s ratio of Earth;s inner core explained by carbon alloying Citation Details In-Document Search Title: High Poisson;s ratio of Earth;s inner core explained by carbon alloying Authors: Prescher, C. ; Dubrovinsky, L. ; Bykova, E. ; Kupenko, I. ; Glazyrin, K. ; Kantor, A. ; McCammon, C. ; Mookherjee, M. ; Nakajima, Y. ; Miyajima, N. ; Sinmyo, R. ; Cerantola, V. ; Dubrovinskaia, N. ; Prakapenka, V. ; Rüffer, R. ; Chumakov, A. ; Hanfland , M. [1] ;

  16. 2003 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy High Temperature Membrane Working Group Meeting Archives 2003 High Temperature Membrane Working Group Meeting Archives View 2003 meeting presentations from the High Temperature Membrane Working Group. October 17, 2003, Orlando, Florida High T Membrane Development at Foster-Miller, Bindu Nair, Foster-Miller Highly Sulfonated Polymers for High Temperature Applications, Morton Litt, Case Western Reserve University Assessing Transport in New Electrolytes, Bryan Pivovar, LANL

  17. 2004 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 4 High Temperature Membrane Working Group Meeting Archives 2004 High Temperature Membrane Working Group Meeting Archives View 2004 meeting presentations from the High Temperature Membrane Working Group. October 8, 2004, Honolulu, Hawaii High Temperature Fuel Cell Performance of Sulfonated Poly (phenylene) Proton Conducting Polymers, Chris J. Cornelius, Cy H. Fujimoto, Michael A. Hickner, Darin Leonhardt, Sandia National Laboratories Higher Temperature PEM Composite Systems for Fuel

  18. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    SciTech Connect (OSTI)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  19. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect (OSTI)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  20. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    SciTech Connect (OSTI)

    Pramanick, S.; Giri, S.; Majumdar, S.; Chatterjee, S.

    2014-09-15

    Present work reports on the observation of large magnetoresistance (??30% at 80 kOe) and magnetocaloric effect (?12?Jkg{sup ?1}K{sup ?1} for 050 kOe) near room temperature (?290?K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288?K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  1. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect (OSTI)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  2. High Temperature Interactions of Antimony with Nickel

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.

    2012-07-01

    In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

  3. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    DOE Patents [OSTI]

    Otto, N.C.; Warner, B.T.; Smaga, J.A.; Battles, J.E.

    1982-07-07

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  4. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    DOE Patents [OSTI]

    Otto, Neil C. (Chicago, IL); Warner, Barry T. (South Holland, IL); Smaga, John A. (Lemont, IL); Battles, James E. (Oak Forest, IL)

    1983-01-01

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  5. Refractory thermowell for continuous high temperature measurement of molten metal

    DOE Patents [OSTI]

    Thiesen, Todd J.

    1992-01-01

    An apparatus for the continuous high temperature measurement of materials in vessels lined with rammed or cast refractory materials. A refractory housing member is integral with the refractory lining of the vessel and contains a plurality of high temperature sensing means, such as thermocouples. A face of the housing is flush with the refractory lining and contacts the high temperature material contained in the vessel. Continuous temperature measurement is achieved by a means which is coupled to the thermocouples for indicating the temperature.

  6. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  7. Atomic processes in high temperature plasmas

    SciTech Connect (OSTI)

    Hahn, Y.

    1991-07-01

    This is the final report on the project Atomic Processes in High Temperature Plasmas', which has been completed in June 30, 1991. The original contract started in 1978. The dielectronic recombination (DR) rate coefficients were calculated for ions with the number of electrons N = 1, 2, 3, 4, 5, 10, 11, and 12. The result was then used to construct a new and improved rate formula. Other important resonant processes, which are closely related to DR, were also studied to interpret experiments and to test the DR theory. The plasma field and the density effects on the rate coefficients was found to be important, and a consistent correction procedure is being developed. The available data on the DR rates and their accuracy do not yet fully meet the requirement for plasma modeling; there are serious gaps in the available data, and the currently adopted theoretical procedure needs improvements. Critical assessment of the current status of the DR problem is presented, and possible future work needed is summarized.

  8. High temperature thermoelectric properties of the solid-solution...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High temperature thermoelectric properties of the solid-solution zintl phase EuCd6-xZnxSb Citation Details In-Document Search Title: High temperature ...

  9. Development of a High-Temperature Diagnostics-While-Drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the ...

  10. AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES...

    Office of Scientific and Technical Information (OSTI)

    AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES IN THE V-Cr SYSTEM Citation Details In-Document Search Title: AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND...

  11. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOE Patents [OSTI]

    Natesan, Ken (Naperville, IL)

    1994-01-01

    An iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100.degree. C.

  12. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOE Patents [OSTI]

    Natesan, K.

    1994-12-27

    An iron-based alloy is described containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100 C. 8 figures.

  13. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOE Patents [OSTI]

    Natesan, K.

    1992-01-01

    This invention is comprised of an iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100{degrees}C.

  14. Agenda for the High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    This agenda provides information about the Agenda for the High Temperature Membrane Working Group Meeting on September 14, 2006.

  15. High Temperature Membrane Working Group Meeting, May 14, 2007

    Broader source: Energy.gov [DOE]

    This agenda provides information about the High Temperature Membrane Working Group Meeting on May 14, 2007 in Arlington, Va.

  16. Development of a 100-Watt High Temperature Thermoelectric Generator |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy a 100-Watt High Temperature Thermoelectric Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric generators (TEG) those for a 530-watt BiTe TEG; design and construction of a 100-watt high temperature TEG currently in fabrication. PDF icon deer08_lagrandeur.pdf More Documents & Publications Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of

  17. Vehicle Technologies Office Merit Review 2015: High Temperature Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for High Efficiency Engines | Department of Energy Temperature Materials for High Efficiency Engines Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high temperature materials for high efficiency engines. PDF icon pm053_muralidharan_2015_o.pdf More Documents

  18. High Temperature Polymer Capacitor Dielectric Films | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape009_dirk_2011_o.pdf More Documents & Publications High Temperature Polymer Capacitor Dielectric Films High Temperature Polymer Capacitor Dielectric Films High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power

  19. Alloy Design and Method for Processing Low-Cost Refractory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dispersoid-Reinforced Alloys for Harsh Environments - Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Alloy Design and Method for Processing Low-Cost Refractory Dispersoid-Reinforced Alloys for Harsh Environments Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Alloys used in applications such as exhaust valves are increasingly subject to demanding operating environments, such as high temperatures and exposure

  20. Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion

    SciTech Connect (OSTI)

    Jane?ek, Milo; ?ek, Jakub; Strsk, Josef; Vclavov, Kristna; Hruka, Petr; Polyakova, Veronika; Gatina, Svetlana; Semenova, Irina

    2014-12-15

    Microstructure evolution and mechanical properties of ultra-fine grained Ti15Mo alloy processed by high pressure torsion were investigated. High pressure torsion straining resulted in strong grain refinement as-observed by transmission electron microscopy. Microhardness and light microscopy showed two distinct regions (i) a central region with radial material flow and low microhardness (340 HV) and (ii) a peripheral region with rotational material flow and high microhardness (430 HV). Positron annihilation spectroscopy showed that the only detectable defects in the material are dislocations, whose density increases with the radial distance and the number of high pressure torsion revolutions. The local chemical environment around defects does not differ significantly from the average composition. - Highlights: Beta-Ti alloy Ti15Mo was processed by high pressure torsion (HPT). Lateral inhomogeneity of the microstructure and microhardness was found. Dislocations are the only lattice defects detectable by positron annihilation. Molybdenum is not preferentially segregated along dislocation cores.

  1. Radiation behavior of high-entropy alloys for advanced reactors. Final report

    SciTech Connect (OSTI)

    Liaw, Peter K.; Egami, Takeshi; Zhang, Chuan; Zhang, Fan; Zhang, Yanwen

    2015-04-30

    In the first task, we have demonstrated the radiation damage and the recrystallization behaviors in multicomponent alloys through molecular-dynamics simulations. It is found that by alloying with atoms of different sizes, the atomic-level strain increases, and the propensity of the radiation-induced crystalline to amorphous transition increases as the defects cluster in the cascade body. Recrystallization of the radiation induced supercooled or glass regions show that by tuning the composition and the equilibrium temperature, the multicomponent alloys can be healed. The crystalline-amorphous-crystalline transitions predict the potential high radiation resistance in multicomponent alloys. In the second task, three types of high-entropy alloys (HEAs) were fabricated from AlCoCrFeNi and AlCuCrFeNi quinary alloys. Hardness and reduced contact modulus were measured using nanoindentation tests. Heavy ion irradiation were performed using 10 MeV gold and 5 MeV nickel to study radiation effects. Al0.5CrCuFeNi2 shows phase separation upon the presence of copper. Both hardness and contact modulus exhibit the same trend as increasing the applied load, and it indicates that excessive free volume may alter the growth rate of the plastic zone. The as-cast Al0.1CoCrFeNi specimen undergone the hot isostatic pressing (HIP) process and steady cooling rate which mitigate the quenching effect. The swelling behavior was characterized by the atomic force microscopy (AFM), and the swelling rate is approximately 0.02% dpa. Selected area diffraction (SAD) patters show irradiation-induced amorphization throughout the ion projected range. Within the peak damage region, an amorpous ring is observed, and a mixture of amorphous/ crystalline structure at deeper depth is found. The Al0.3CoCrFeNi HEAs shows good radiation resistance up to 60 peak dpa. No voids or dislocations are observed. The crystal structures remain face-centered-cubic (FCC) before and after 5 MeV Ni irradiation. Higher dpa might be required to study defects formation mechanisms. In the third task, all the constituent binary and ternary systems of the Al-Co-Cr-Fe-Ni system were thermodynamically modeled within the whole composition range. Comparisons between the calculated phase diagrams and literature data are in good agreement. The multi-component thermodynamic database of the Al-Co-Cr-Fe-Ni system was then obtained via extrapolation. The current Al-Co-Cr-Fe-Ni thermodynamic database enables us to carry out the calculations of phase diagrams, which can be used as useful guidelines to identify the Al-Co-Cr-Fe-Ni HEAs with desirable microstructures. In the fourth task, we discuss how as-cast and homogenized phases can be identified, what phases are usually found in the as-cast and homogenized conditions, and what the thermodynamics and kinetics of phase transformations are in the AlCoCrFeNi HEA. The microstructure and phase composition were studied in as-cast and homogenized conditions. It showed the dendritrical structure in the as-cast condition consisting primarily of a nano-lamellar mixture of A2 [disorder body-centered-cubic (BCC)] and B2 (ordered BCC) phases, in addition to a very small amount of A1 [disorder face-centered-cubic (FCC)] phases. The homogenization heat treatment resulted in an increase in the volume fraction of the A1 phase and formation of a Sigma phase. Tensile properties in as-cast and homogenized conditions are reported at 700 °C. Thermodynamic modeling of non-equilibrium and equilibrium phase diagrams for the AlCoCrFeNi HEA gave good agreement with the experimental observations of the phase contents. The reasons for the improvement of ductility after the heat treatment are discussed.

  2. Structural and electronic properties of Si{sub 1-x}Ge{sub x} binary semiconducting alloys under the effect of temperature and pressure

    SciTech Connect (OSTI)

    Degheidy, A. R.; Elkenany, E. B.

    2013-10-15

    Based on the empirical pseudo-potential method which incorporates compositional disorder as an effective potential, the band structure of Si{sub 1-x}Ge{sub x} alloy are calculated for different alloy composition x. The effect of temperature and pressure on the electronic band structure of the considered alloy has been studied. Monotonic decreasing and increasing functions are obtained for the temperature and pressure dependent form factors respectively. Some physical quantities as band gaps, bowing parameters, and the refractive index of the considered alloy with different Ge concentration and under the effect of temperature and pressure are calculated. The results obtained are found in good agreement with the experimental and published data.

  3. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  4. Cedarville Elementary & High School Space Heating Low Temperature...

    Open Energy Info (EERE)

    Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low...

  5. Vehicle Technologies Office Merit Review 2015: High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel...

  6. High-Temperature, Air-Cooled Traction Drive Inverter Packaging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Air-Cooled Traction Drive Inverter Benchmarking of Competitive Technologies High Temperature, High Voltage Fully Integrated Gate Driver Circuit

  7. NOvel Refractory Materials for High Alkali, High Temperature Environments

    SciTech Connect (OSTI)

    Hemrick, J.G.; Griffin, R.

    2011-08-30

    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  8. Ultra-High Temperature Distributed Wireless Sensors

    SciTech Connect (OSTI)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  9. A Successful Synthesis of the CoCrFeNiAl{sub 0.3} Single-Crystal, High-Entropy Alloy by Bridgman Solidification

    SciTech Connect (OSTI)

    Ma, S. G.; Zhang, S. F.; Gao, M. C.; Liaw, P. K.; Zhang, Y.

    2013-12-01

    For the first time, a face-centered-cubic, single-crystal CoCrFeNiAl{sub 0.3} (designated as Al0.3), high-entropy alloy (HEA) was successfully synthesized by the Bridgman solidification (BS) method, at an extremely low withdrawal velocity through a constant temperature gradient, for which it underwent two BS steps. Specially, at the first BS step, the alloy sample underwent several morphological transitions accompanying the crystal growth from the melt. This microstructure evolves from as-cast dendrites, to equiaxed grains, and then to columnar crystals, and last to the single crystal. In particular, at the equiaxed-grain region, some visible annealing twins were observed, which indicates a low stacking fault energy of the Al0.3 alloy. Although a body-centered- cubic CoCrFeNiAl (Al1) HEA was also prepared under the same conditions, only a single columnar-crystal structure with instinctively preferential crystallographic orientations was obtained by the same procedure. A similar morphological transition from dendrites to equiaxed grains occurred at the equiaxed-grain region in Al1 alloy, but the annealing twins were not observed probably because a higher Al addition leads to a higher stacking fault energy for this alloy.

  10. Carbon Capture Turned Upside Down: High-Temperature Adsorption &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Temperature Desorption (HALD) | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Carbon Capture Turned Upside Down: High-Temperature Adsorption & Low-Temperature Desorption (HALD) Previous Next List Joos, Lennart; Lejaeghere, Kurt; Huck, Johanna M.; Van Speybroeck, Veronique; and Smit, Berend. Carbon Capture Turned Upside Down: High-Temperature Adsorption & Low-Temperature Desorption (HALD). Energy Environ. Sci., 8, 2480-2491 (2015). DOI:

  11. High temperature pressurized high frequency testing rig and test method

    DOE Patents [OSTI]

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  12. High temperature, minimally invasive optical sensing modules

    DOE Patents [OSTI]

    Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

    2008-02-05

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  13. Tritium Formation and Mitigation in High Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots

    2012-08-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. In order to prevent the tritium contamination of proposed reactor buildings and surrounding sites, this paper examines the root causes and potential solutions for the production of this radionuclide, including materials selection and inert gas sparging. A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450750C. Results of the diffusion model are presented for one steadystate value of tritium production in the reactor.

  14. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  15. Tritium Formation and Mitigation in High-Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots

    2012-10-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  16. Design of High Field Solenoids made of High Temperature Superconductors

    SciTech Connect (OSTI)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  17. Improved Martensitic Steel for High Temperature Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined. U.S. Department of...

  18. High Temperature Optical Gas Sensing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Temperature Optical Gas Sensing Optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication Partnership Opportunity Notice for High Temperature Optical Gas Sensing (366 KB) Technology Marketing Summary This series of inventions addresses harsh environment sensing at temperatures above approximately 400-500oC using novel sensing materials

  19. High temperature membranes for DMFC (and PEFC) applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy temperature membranes for DMFC (and PEFC) applications High temperature membranes for DMFC (and PEFC) applications Presentation on High temperature membranes for DMFCs (and PEFCs) to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA. PDF icon italy_philadelphia.pdf More Documents & Publications Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells

  20. Development of a 500 Watt High Temperature Thermoelectric Generator |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy a 500 Watt High Temperature Thermoelectric Generator Development of a 500 Watt High Temperature Thermoelectric Generator A low temperature TEG has been built and tested providing over 500 watts electric power at a ∆T of 2000C PDF icon deer09_lagrandeur.pdf More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion to Power Program

  1. IN SITU INVESTIGATION OF THE PASSIVATION OF ALLOY C22 AND OF THE PASSIVE FILMS FORMED ON ALLOY C22 IN ACIDIC ELECTROLYTES AT ROOM TEMPERATURE AND AT 90 DEGREES C

    SciTech Connect (OSTI)

    M. Miyagusuku, S. Harrington, and T. M. Devine

    2006-03-11

    The passive films formed on Alloy C22 in several acidic solutions were investigated by a combination of five in situ techniques: cyclic polarization, electrochemical impedance spectroscopy, Mott-Schottky analyses, electrochemical quartz crystal microbalance measurements, and surface enhanced Raman spectroscopy. Similar tests were conducted on unalloyed samples of nickel, chromium and molybdenum, which are the main alloying elements of Alloy C22. The results of the tests conducted on nickel, chromium, and molybdenum helped to determine the roles of these elements in the passivation of Alloy C22. In general, the corrosion resistance of C22 was superior to that of unalloyed chromium. Although chromium is an important component of the passive film on Alloy C22, the other elements figure prominently in the corrosion resistance of C22 in acidic solutions. The passivity of Alloy C22 was detrimentally affected by increasing concentrations of hydrogen ions, chloride ions, and increasing temperature. The results of this study provide understanding of the resistance/susceptibility of Alloy C22 to corrosion by the aggressive solutions that can develop inside pits and crevices.

  2. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supply chain doesn't exist for high volume joining of automotive aluminum sheet. ... Joining Comparison Evaluate the performance of best in class laser, laserhybrid ...

  3. Metallic substrates for high temperature superconductors

    DOE Patents [OSTI]

    Truchan, Thomas G. (Chicago, IL); Miller, Dean J. (Darien, IL); Goretta, Kenneth C. (Downers Grove, IL); Balachandran, Uthamalingam (Hinsdale, IL); Foley, Robert (Chicago, IL)

    2002-01-01

    A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

  4. Enhancement and Commercialization of the Alloy Selection System for Elevated Temperatures - ASSET

    SciTech Connect (OSTI)

    Randy C. John

    2005-11-05

    A corrosion engineering information system was created to manage, correlate and predict corrosion of alloys and also to use thermochemical calculations to predict the occurrence of dominant corrosion mechanisms in hot gases found in many different chemical processes and other related industrial processes.

  5. High Permeability Ternary Palladium Alloy Membranes with Improved Sulfur and Halide Tolerances

    SciTech Connect (OSTI)

    K. Coulter

    2010-12-31

    The project team consisting of Southwest Research Institute{reg_sign} (SwRI{reg_sign}), Georgia Institute of Technology (GT), the Colorado School of Mines (CSM), TDA Research, and IdaTech LLC was focused on developing a robust, poison-tolerant, hydrogen selective free standing membrane to produce clean hydrogen. The project completed on schedule and on budget with SwRI, GT, CSM, TDA and IdaTech all operating independently and concurrently. GT has developed a robust platform for performing extensive DFT calculations for H in bulk palladium (Pd), binary alloys, and ternary alloys of Pd. Binary alloys investigated included Pd96M4 where M = Li, Na, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Ce, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. They have also performed a series of calculations on Pd{sub 70}Cu{sub 26}Ag{sub 4}, Pd{sub 70}Cu{sub 26}Au{sub 4}, Pd{sub 70}Cu{sub 26}Ni{sub 4}, Pd{sub 70}Cu{sub 26}Pt{sub 4}, and Pd{sub 70}Cu{sub 26}Y{sub 4}. SwRI deposited and released over 160 foils of binary and ternary Pd alloys. There was considerable work on characterizing and improving the durability of the deposited foils using new alloy compositions, post annealing and ion bombardment. The 10 and 25 {micro}m thick films were sent to CSM, TDA and IdaTech for characterization and permeation testing. CSM conducted over 60 pure gas permeation tests with SwRI binary and ternary alloy membranes. To date the PdAu and PdAuPt membranes have exhibited the best performance at temperatures in the range of 423-773 C and their performance correlates well with the predictions from GT. TDA completed testing under the Department of Energy (DOE) WGS conditions on over 16 membranes. Of particular interest are the PdAuPt alloys that exhibited only a 20% drop in flux when sulfur was added to the gas mixture and the flux was completely recovered when the sulfur flow was stopped. IdaTech tested binary and ternary membranes on a simulated flue gas stream and experienced significant difficulty in mounting and testing the sputter deposited membranes. IdaTech was able to successfully test PdAu and PdAuPt membranes and saw similar sulfur tolerance to what TDA found. The Program met all the deliverables on schedule and on budget. Over ten presentations at national and international conferences were made, four papers were published (two in progress) in technical journals, and three students (2 at GT and 1 at CSM) completed their doctorates using results generated during the course of the program. The three major findings of program were; (1) the DFT modeling was verified as a predictive tool for the permeability of Pd based ternary alloys, (2) while magnetron sputtering is useful in precisely fabricating binary and ternary alloys, the mechanical durability of membranes fabricated using this technique are inferior compared to cold rolled membranes and this preparation method is currently not ready for industrial environments, (3) based on both modeling and experimental verification in pure gas and mixed gas environments PdAu and PdAuPt alloys were found to have the combination of the highest permeability and tolerance to sulfur.

  6. High temperature bias line stabilized current sources

    DOE Patents [OSTI]

    Patterson, III, Raymond B. (Melbourne, FL)

    1984-01-01

    A compensation device for the base of emitter follower configured bipolar transistors becoming operable at elevated temperatures including a bipolar transistor of a geometry of not more than half the geometry of the bipolar emitter follower having its collector connected to the base of the emitter follower and its base and emitter connected together and to the emitter of the emitter follower.

  7. High temperature bias line stabilized current sources

    DOE Patents [OSTI]

    Patterson, R.B. III.

    1984-09-11

    A compensation device for the base of emitter follower configured bipolar transistors becoming operable at elevated temperatures including a bipolar transistor of a geometry of not more than half the geometry of the bipolar emitter follower having its collector connected to the base of the emitter follower and its base and emitter connected together and to the emitter of the emitter follower. 1 fig.

  8. Cryogenic deformation of high temperature superconductive composite structures

    DOE Patents [OSTI]

    Roberts, Peter R. (Groton, MA); Michels, William (Brookline, MA); Bingert, John F. (Jemez Springs, NM)

    2001-01-01

    An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

  9. Low-Temperature Combustion Demonstrator for High-Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion | Department of Energy Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace043_de_ojeda_2010_o.pdf More Documents & Publications Impact of Variable Valve Timing on Low Temperature Combustion Low Temperature Combustion Demonstrator

  10. Sulfur Tolerant Pd/Cu and Pd/Au Alloy Membranes for H2 Separation with High Pressure CO2 for Sequestration

    SciTech Connect (OSTI)

    Yi Hua Ma; Natalie Pomerantz; Chao-Huang Chen

    2008-09-30

    The effect of H{sub 2}S poisoning on Pd, Pd/Cu, and Pd/Au alloy composite membranes prepared by the electroless deposition method on porous Inconel supports was investigated to provide a fundamental understanding of the durability and preparation of sulfur tolerant membranes. X-ray photoelectron spectroscopy (XPS) studies showed that the exposure of pure Pd to 50 ppm H{sub 2}S/H{sub 2} mixtures caused bulk sulfide formation at lower temperatures and surface sulfide formation at higher temperatures. Lower temperatures, longer exposure times, and higher H{sub 2}S concentrations resulted in a higher degree of sulfidation. In a Pd membrane, the bulk sulfide formation caused a drastic irrecoverable H{sub 2} permeance decline and an irreparable loss in selectivity. Pd/Cu and Pd/Au alloy membranes exhibited permeance declines due to surface sulfide formation upon exposure to 50 ppm H{sub 2}S/H{sub 2} gas mixtures. However in contrast to the pure Pd membrane, the permeances of the Pd/Cu and Pd/Au alloy membranes were mostly recovered in pure H{sub 2} and the selectivity of the Pd alloy layers remained essentially intact throughout the characterization in H{sub 2}, He and H{sub 2}S/H{sub 2} mixtures which lasted several thousand hours. The amount of irreversible sulfur poisoning decreased with increasing temperature due to the exothermicity of H{sub 2}S adsorption. Longer exposure times increased the amount of irreversible poisoning of the Pd/Cu membrane but not the Pd/Au membrane. Pd/Au coupon studies of the galvanic displacement method showed that higher Au{sup 3+} concentrations, lower pH values, higher bath temperatures and stirring the bath at a rate of 200 rpm yielded faster displacement rates, more uniform depositions, and a higher Au content within the layers. While 400 C was found to be sufficient to form a Pd/Au alloy on the surface, high temperature X-ray diffraction (HTXRD) studies showed that even after annealing between 500-600 C, the Pd/Cu alloys could have part or all of the surface in the less sulfur resistant {beta} phase.

  11. Rotational viscometer for high-pressure high-temperature fluids

    DOE Patents [OSTI]

    Carr, Kenneth R. (Knoxville, TN)

    1985-01-01

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  12. High temperature expanding cement composition and use

    DOE Patents [OSTI]

    Nelson, Erik B. (Tulsa County, OK); Eilers, Louis H. (Rogers County, OK)

    1982-01-01

    A hydratable cement composition useful for preparing a pectolite-containing expanding cement at temperatures above about 150.degree. C. comprising a water soluble sodium salt of a weak acid, a 0.1 molar aqueous solution of which salt has a pH of between about 7.5 and about 11.5, a calcium source, and a silicon source, where the atomic ratio of sodium to calcium to silicon ranges from about 0.3:0.6:1 to about 0.03:1:1; aqueous slurries prepared therefrom and the use of such slurries for plugging subterranean cavities at a temperature of at least about 150.degree. C. The invention composition is useful for preparing a pectolite-containing expansive cement having about 0.2 to about 2 percent expansion, by volume, when cured at at least 150.degree. C.

  13. High temperature desulfurization of synthesis gas

    DOE Patents [OSTI]

    Najjar, Mitri S. (Hopewell Junction, NY); Robin, Allen M. (Anaheim, CA)

    1989-01-01

    The hot process gas stream from the partial oxidation of sulfur-containing heavy liquid hydrocarbonaceous fuel and/or sulfur-containing solid carbonaceous fuel comprising gaseous mixtures of H.sub.2 +CO, sulfur-containing gases, entrained particulate carbon, and molten slag is passed through the unobstructed central passage of a radiant cooler where the temperature is reduced to a temperature in the range of about 1800.degree. F. to 1200.degree. F. From about 0 to 95 wt. % of the molten slag and/or entrained material may be removed from the hot process gas stream prior to the radiant cooler with substantially no reduction in temperature of the process gas stream. In the radiant cooler, after substantially all of the molten slag has solidified, the sulfur-containing gases are contacted with a calcium-containing material to produce calcium sulfide. A partially cooled stream of synthesis gas, reducing gas, or fuel gas containing entrained calcium sulfide particulate matter, particulate carbon, and solidified slag leaves the radiant cooler containing a greatly reduced amount of sulfur-containing gases.

  14. Heat treatment of NiCrFe alloy to optimize resistance to intergrannular stress corrosion

    DOE Patents [OSTI]

    Steeves, Arthur F. (Schenectady, NY); Bibb, Albert E. (Clifton Park, NY)

    1984-01-01

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprising heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cool the alloy body, and heat the cooled body to a temperature between 1100.degree. to 1500.degree. F. for about 1 to 30 hours.

  15. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objective: Advance the technology for well fluids lifting systems to meet the foreseeable pressure; temperature; and longevity needs of the Enhanced Geothermal Systems (EGS) industry.

  16. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect (OSTI)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  17. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  18. VANADIUM ALLOYS

    DOE Patents [OSTI]

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  19. Local structures of high-entropy alloys (HEAs) on atomic scales: An overview

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Diao, Haoyan; Santodonato, Louis J.; Tang, Zhi; Egami, Takeshi; Liaw, Peter K.

    2015-08-29

    The high-entropy alloys, containing several elements mixed in equimolar or near-equimolar ratios, have shown exceptional engineering properties. Local structures on the atomic level are essential to understand the mechanical behaviors and related mechanisms. This article covers the local structure and stress on the atomic level are reviewed by the pair-distribution function of neutron-diffraction data, ab-initio molecular dynamics simulations, and the atomic probe microscopy.

  20. Apparatus for monitoring high temperature ultrasonic characterization

    DOE Patents [OSTI]

    Lanagan, M.T.; Kupperman, D.S.; Yaconi, G.A.

    1998-03-24

    A method and an apparatus for nondestructive detecting and evaluating changes in the microstructural properties of a material by employing one or more magnetostrictive transducers linked to the material by means of one or more sonic signal conductors. The magnetostrictive transducer or transducers are connected to a pulser/receiver which in turn is connected to an oscilloscope. The oscilloscope is connected to a computer which employs an algorithm to evaluate changes in the velocity of a signal transmitted to the material sample as function of time and temperature. 6 figs.

  1. Apparatus for monitoring high temperature ultrasonic characterization

    DOE Patents [OSTI]

    Lanagan, Michael T. (Woodridge, IL); Kupperman, David S. (Oak Park, IL); Yaconi, George A. (Berwyn, IL)

    1998-01-01

    A method and an apparatus for nondestructive detecting and evaluating chas in the microstructural properties of a material by employing one or more magnetostrictive transducers linked to the material by means of one or more sonic signal conductors. The magnetostrictive transducer or transducers are connected to a pulser/receiver which in turn is connected to an oscilloscope. The oscilloscope is connected to a computer which employs an algorithm to evaluate changes in the velocity of a signal transmitted to the material sample as function of time and temperature.

  2. High temperature solid oxide fuel development activities

    SciTech Connect (OSTI)

    Ray, E.R.

    1993-11-01

    This paper presents an overview of the Westinghouse tubular SOFC development activities and current program status. Goal is to develop a cell that can operate for 50,000 to 100,000 h. Test results are presented for multiple single cell tests which have now successfully exceeded 40,000 hours of continuous power operation at temperature. Two 25-kW SOFC customer tests units were delivered in 1992; a 20-kW SOFC system is bein manufactured and will be operated by Southern California Edison in 1995. Megawatt class generators are being developed.

  3. High Temperature Polymer Capacitor Dielectric Films | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape009_dirk_2012_o.pdf More Documents & Publications High Temperature Polymer Capacitor Dielectric Films High Temperature Polymer Capacitor Dielectric Films Vehicle Technologies Office Merit Review 2014: High Performance DC Bus Film Capacitor

  4. Project Profile: Engineering a Novel High Temperature Metal Hydride

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Storage | Department of Energy Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical Storage Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical Storage PNNL Logo Pacific Northwest National Lab (PNNL), through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program, is developing a concept for high energy density

  5. 2006 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 6 High Temperature Membrane Working Group Meeting Archives 2006 High Temperature Membrane Working Group Meeting Archives View 2006 meeting presentations from the High Temperature Membrane Working Group. September 14, 2006, San Francisco, California Agenda Minutes Discussion Overview, James Fenton, University of Central Florida Membrane Performance and Durability Overview for Automotive Fuel Cell Applications, Tom Greszler, GM Measuring Physical Properties of Polymer Electrolyte

  6. 2007 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 7 High Temperature Membrane Working Group Meeting Archives 2007 High Temperature Membrane Working Group Meeting Archives View 2007 meeting presentations from the High Temperature Membrane Working Group. October 10, 2007, Washington, D.C. This meeting was held in conjunction with the Electrochemical Society's fall meeting. Meeting Agenda Meeting Minutes Structure and Dynamics of Polymer Nanocomposites by Grazing-Incidence X-Ray Techniques, Jin Wang, Argonne National Laboratory

  7. 2009 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 9 High Temperature Membrane Working Group Meeting Archives 2009 High Temperature Membrane Working Group Meeting Archives View information from meetings of the High Temperature Membrane Working Group held in 2009. November 16, 2009, Palm Springs, California This meeting was held in conjunction with the Fuel Cell Seminar. Minutes U.S. Fuel Cell Council: The Voice of the Fuel Cell Industry Membrane Requirements for Back-up Power Applications, Michael Hicks, IdaTech GenSys Blue: Fuel

  8. 2010 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 10 High Temperature Membrane Working Group Meeting Archives 2010 High Temperature Membrane Working Group Meeting Archives View information from meetings of the High Temperature Membrane Working Group held in 2010. October 14, 2010, Las Vegas, Nevada Minutes Continuum Modeling of Membrane Properties, Ahmet Kusoglu and Adam Z. Weber, Lawrence Berkeley National Laboratory Some Durability Considerations for Proton Exchange Membranes, Steven Hamrock, 3M Fuel Cell Components Program

  9. Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Device Development | Department of Energy Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Presentation given at the 2011 Thermoelectrics Applications Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric metrology. PDF icon konig.pdf More

  10. High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy - INL Research Program Summary Jim O'Brien Idaho National Laboratory Electrolytic Hydrogen Production Workshop National Renewable Energy Laboratory Golden, CO February 27-28, 2014 NGNP/VHTR Concept for Large-Scale Centralized Nuclear Hydrogen Production based on High-Temperature Steam Electrolysis * Directly coupled to high-temperature gas-cooled reactor for electrical power and process heat * 600 MWth reactor

  11. First high-temperature electronics products survey 2005.

    SciTech Connect (OSTI)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  12. Alternative Refrigerant Evaluation for High-Ambient-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners | Department of Energy Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners The Oak Ridge National Laboratory High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP)

  13. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    Aerogel-Based Insulation for High-Temperature Industrial Processes Dr. Owen Evans 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; COMPETITION; ENERGY CONSUMPTION; MARKET;...

  14. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    SciTech Connect (OSTI)

    2010-02-01

    This factsheet describes a research project whose goal is to build an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system.

  15. High-Speed, Temperature Programmable Gas Chromatography Utilizing...

    Office of Scientific and Technical Information (OSTI)

    High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip with an Improved Carbon Nanotube Stationary Phase Citation Details In-Document Search...

  16. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (LNT) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction...

  17. Detecting Fractures Using Technology at High Temperatures and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting Fractures Using Technology at High Temperatures and Depths -...

  18. High-temperature charge and thermal transport properties of the...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: High-temperature charge and thermal transport properties of the n -type thermoelectric material PbSe Authors: Androulakis, John ; Chung, ...

  19. Feasibility and Design Studies for a High Temperature Downhole Tool

    Broader source: Energy.gov [DOE]

    Project objective: Perform feasibility and design studies for a high temperature downhole tool; which uses nuclear techniques for characterization purposes; using measurements and modeling/simulation.

  20. High-Temperature Downhole Tools | Open Energy Information

    Open Energy Info (EERE)

    and Analysis of Geothermal Technologies Albuquerque, NM 941,000 941,000 Feasibility and Design for a High-Temperature Downhole Tool Tennessee Oak Ridge National...

  1. Seeing Stripes: Competition and Complexity in High-Temperature...

    Office of Scientific and Technical Information (OSTI)

    Seeing Stripes: Competition and Complexity in High-Temperature Superconductors Citation Details In-Document Search Title: Seeing Stripes: Competition and Complexity in...

  2. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound...

  3. Materials and Process Design for High-Temperature Carburizing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials and Process Design for High-Temperature Carburizing Materials and Process Design ... Case hardening would enable major productivity gains in the forging, forming, and die ...

  4. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOE Patents [OSTI]

    Wright, R.B.

    1992-01-14

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation). 23 figs.

  5. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment.

  6. Preparation of thin film high temperature superconductors

    SciTech Connect (OSTI)

    VenKatesan, X.X.T.; Li, Q.; Findikoglu, A.; Hemmick, D. . Dept. of Physics); Wu, X.D. ); Inam, A.; Chang, C.C.; Ramesh, R.; Hwang, D.M.; Ravi, T.S.; Etemad, S.; Martinez, J.A.; Wilkens, B. )

    1991-03-01

    This paper addresses fundamental issues in preparing high quality high T{sub c} YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films. The techniques of inverted cylindrical magnetron sputtering and pulsed laser deposition are chosen as successful examples to illustrate how the key problems can be solved. The fabrication of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}/PrBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superlattices where superconductivity in a single unit cell layer of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} was observed demonstrates the state of the art of thin film deposition of high T{sub c} materials. Systematic variations of the deposition parameters result in changes of superconducting and structural properties of the films that correlate with their microwave and infrared characteristics.

  7. Advancing the technology base for high-temperature membranes

    SciTech Connect (OSTI)

    Dye, R.C.; Birdsell, S.A.; Snow, R.C. [and others

    1997-10-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses the major issues confronting the implementation of high-temperature membranes for separations and catalysis. We are pursuing high-temperature membrane systems that can have a large impact for DOE and be industrially relevant. A major obstacle for increased use of membranes is that most applications require the membrane material to withstand temperatures above those acceptable for polymer-based systems. Advances made by this project have helped industry and DOE move toward high-temperature membrane applications to improve overall energy efficiency.

  8. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Two Phase Transitions Make a High-Temperature Superconductor Print Wednesday, 30 November 2011 00:00 Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally

  9. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Waste Heat Recovery | Department of Energy High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Proposed two-stage TEG system with half-heusler as the first stage, and Bi2Te3 as the low temperature stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle PDF icon caylor.pdf More Documents &

  10. DOE Science Showcase - Understanding High-Temperature Superconductors |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information Understanding High-Temperature Superconductors Credit: DOE Scientists have long worked to understand one of the great mysteries of modern physics - the origin and behavior of high-temperature superconductors (HTS) that are uniquely capable of transmitting electricity with zero loss when chilled to subzero temperatures. For decades there have been competing theories and misunderstandings of how HTS materials actually work

  11. Tritium permeation characterization of materials for fusion and generation IV very high temperature reactors

    SciTech Connect (OSTI)

    Thomson, S.; Pilatzke, K.; McCrimmon, K.; Castillo, I.; Suppiah, S.

    2015-03-15

    The objective of this work is to establish the tritium-permeation properties of structural alloys considered for Fusion systems and very high temperature reactors (VHTR). A description of the work performed to set up an apparatus to measure permeation rates of hydrogen and tritium in 304L stainless steel is presented. Following successful commissioning with hydrogen, the test apparatus was commissioned with tritium. Commissioning tests with tritium suggest the need for a reduction step that is capable of removing the oxide layer from the test sample surfaces before accurate tritium-permeation data can be obtained. Work is also on-going to clearly establish the temperature profile of the sample to correctly estimate the tritium-permeability data.

  12. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    2014-09-28

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  13. Detecting Fractures Using Technology at High Temperatures and Depths -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report | Department of Energy Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal

  14. High Temperature Quantum Well Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantum Well Materials High Temperature Quantum Well Materials Seebeck coefficients of >1,000 microvolt/degree C and resistivities of 1 milliohm-cm or less were obtained. PDF icon deer08_bass.pdf More Documents & Publications High Temperature Thermoelectric Materials Quantum Well Thermoelectrics and Waste Heat Recovery

  15. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  16. Enhanced High Temperature Performance of NOx Storage/Reduction (NSR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace026_peden_2012_o.pdf More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials CLEERS Aftertreatment Modeling and Analysis

  17. Spatiotemporal temperature and density characterization of high-power

    Office of Scientific and Technical Information (OSTI)

    atmospheric flashover discharges over inert poly(methyl methacrylate) and energetic pentaerythritol tetranitrate dielectric surfaces (Journal Article) | SciTech Connect Spatiotemporal temperature and density characterization of high-power atmospheric flashover discharges over inert poly(methyl methacrylate) and energetic pentaerythritol tetranitrate dielectric surfaces Citation Details In-Document Search Title: Spatiotemporal temperature and density characterization of high-power atmospheric

  18. Superconductivity Program Overview High-Temperature Superconductivity

    Energy Savers [EERE]

    SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy applicaTionS Developing HTS-based electric power equipment such as transmission and distribution cables and fault current limiters Second-generaTion Wire developmenT Developing high-performance, low-cost, second- generation HTS wire at long lengths STraTegic reSearch Supporting fundamental research activities to better understand relationships between the microstructure of HTS materials and their ability to carry large electric

  19. Swelling in several commercial alloys irradiated to very high neutron fluence

    SciTech Connect (OSTI)

    Gelles, D.S.; Pintler, J.S.

    1983-01-01

    Swelling values have been obtained from a set of commercial alloys irradiated in EBR-II to a peak fluence of 2.5 x 10/sup 23/ n/cm/sup 2/ (E > 0.1 MeV) or approx. 125 dpa covering the range 400 to 650/sup 0/C. The alloys can be ranked for swelling resistance from highest to lowest as follows: the martensitic and ferritic alloys, the niobium based alloys, the precipitation strengthened iron and nickel based alloys, the molybdenum alloys and the austenitic alloys.

  20. High Temperature and Pressure Steam-H2 Interaction with Candidate Advanced LWR Fuel Claddings

    SciTech Connect (OSTI)

    Pint, Bruce A

    2012-08-01

    This report summarizes the work completed to evaluate cladding materials that could serve as improvements to Zircaloy in terms of accident tolerance. This testing involved oxidation resistance to steam or H{sub 2}-50% steam environments at 800-1350 C at 1-20 bar for short times. A selection of conventional alloys, SiC-based ceramics and model alloys were used to explore a wide range of materials options and provide guidance for future materials development work. Typically, the SiC-based ceramic materials, alumina-forming alloys and Fe-Cr alloys with {ge}25% Cr showed the best potential for oxidation resistance at {ge}1200 C. At 1350 C, FeCrAl alloys and SiC remained oxidation resistant in steam. Conventional austenitic steels do not have sufficient oxidation resistance with only {approx}18Cr-10Ni. Higher alloyed type 310 stainless steel is protective but Ni is not a desirable alloy addition for this application and high Cr contents raise concern about {alpha}{prime} formation. Higher pressures (up to 20.7 bar) and H{sub 2} additions appeared to have a limited effect on the oxidation behavior of the most oxidation resistant alloys but higher pressures accelerated the maximum metal loss for less oxidation resistant steels and less metal loss was observed in a H{sub 2}-50%H{sub 2}O environment at 10.3 bar. As some of the results regarding low-alloyed FeCrAl and Fe-Cr alloys were unexpected, further work is needed to fundamentally understand the minimum Cr and Al alloy contents needed for protective behavior in these environments in order to assist in alloy selection and guide alloy development.

  1. Some aspects of the selection of materials for high temperature service in fossil fuel power generation

    SciTech Connect (OSTI)

    Birks, N.

    1999-07-01

    The electric power industry, converting heat into electricity, is concerned with two primary parameters, reliability and efficiency. In order to satisfy the reliability criteria, it is preferred to use well known and well tried materials well within their ultimate performance limits. In order to improve the economics of the process, it is attempted first to optimize the process and then to alter the operational parameters in order to increase the efficiency of the cycle used. The efficiency of the thermal cycle used depends primarily on its upper and lower temperature limits. For instance, it is well known that a plant operating in regions where the water supply is cooler demonstrate higher efficiencies than a plant that operates in warmer climates. For practical purposes however, it is the upper temperature limit of the cycle that must be increased to improve efficiency. This immediately requires that materials be selected, for the high temperature components, that can operate safely and continuously under these conditions, that also include aggressive, corrosive atmospheres. The need to consider higher operating temperatures opens up the range of materials being studied to include alloys that are established for high temperature use in other applications as well as new, mainly untried materials. The conditions under which a heat exchanger for electric power generation must operate are so different from other applications that nearly all materials, alternative to those now in use, must be approached as new and undergo extensive testing for coding. Few materials are available for use in this application off the shelf.

  2. PLUTONIUM ALLOYS

    DOE Patents [OSTI]

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  3. Aqueous Geochemistry at High Pressures and High Temperatures

    SciTech Connect (OSTI)

    Bass, Jay D.

    2015-05-21

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  4. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    DOE Patents [OSTI]

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  5. Microwave characterization of high-temperature superconductors

    SciTech Connect (OSTI)

    Cooke, D.W.; Gray, E.R.; Arendt, P.N.; Beery, J.G.; Bennett, B.L.; Brown, D.R.; Houlton, R.J.; Jahan, M.S.; Klapetzky, A.J.; Maez, M.A.; Raistrick, I.D.; Reeves, G.A.; Rusnak, B.

    1989-01-01

    Thick (10-15 {mu}m) Tl-Ba-Ca-Cu-O films have been deposited onto yttria-stabilized zirconia and Ag substrates by d.c. magnetron sputtering techniques. Direct deposition onto 1'' diameter yttria-stabilized zirconia yields films with typical 22 GHz surface resistance (R{sub s}) values of 5.2 {plus minus} 2 m{Omega} and 52 {plus minus} 2 m{Omega} at 10 K and 77 K, respectively. For comparison, R{sub s} of Cu at this same frequency is 10 m{Omega} at 4 K and 22 m{Omega} at 77 K. Tl-Ba-Ca-Cu-O films have also been deposited onto 1'' diameter Ag substrates using Au/Cu, Cu, and BaF{sub 2} buffer layers. The lowest R{sub s} values were obtained on films with a BaF{sub 2} buffer layer, typical values being 7.8 {plus minus} 2 m{Omega} and 30.6 {plus minus} 2 m{Omega} (measured at 22 GHz) at 10 K and 77 K, respectively. Larger films (1.5'' diameter) with similar R{sub s} values were prepared using this same technique, demonstrating that the fabrication process can be scaled to larger surface areas. These films are promising for radiofrequency cavity applications because they are thick (50-75 times the London penetration depth), have relatively large surface areas, are fabricated on metallic substrates, and have R{sub s} values that are competitive with Cu at 77 K and are lower than Cu at 4 K. Because they are polycrystalline and unoriented, it is anticipated that their R{sub s} values can be lowered by improving the processing technique. High-quality films of YBa{sub 2}Cu{sub 3}O{sub 7} have been electron-beam deposited onto 1'' LaGaO{sub 3} and 1.5'' LaAlO{sub 3} substrates. The 1'' sample is characterized by R{sub s} values of 0.2 {plus minus} 0.1 m{Omega} at 4 K and 18.6 {plus minus} 2 m{Omega} at 77 K. The 4-K value is only 2-4 times higher than Nb. The 1.5'' sample has R{sub s} values (measured at 18 GHz) of 0.93 {plus minus} 2 m{Omega} and 71 {plus minus} 3 m{Omega} at 10 K and 77 K, respectively. 18 refs., 8 figs.

  6. Final Report: Ionization chemistry of high temperature molecular fluids

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Final Report: Ionization chemistry of high temperature molecular fluids Citation Details In-Document Search Title: Final Report: Ionization chemistry of high temperature molecular fluids With the advent of coupled chemical/hydrodynamic reactive flow models for high explosives, understanding detonation chemistry is of increasing importance to DNT. The accuracy of first principles detonation codes, such as CHEETAH, are dependent on an

  7. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Automotive Waste Heat Recovery | Department of Energy High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace082_caylor_2012_o.pdf More Documents & Publications Nanostructured High

  8. Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant potential exists for clean diesel combustion by recouping exhaust energy to generate syngas either with a dedicated reformer or in-cylinder fuel reforming. PDF icon p-10_hou.pdf More Documents & Publications Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency

  9. Experimental study of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys

    SciTech Connect (OSTI)

    Bannikov, Mikhail E-mail: oborin@icmm.ru Oborin, Vladimir E-mail: oborin@icmm.ru Naimark, Oleg E-mail: oborin@icmm.ru

    2014-11-14

    Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and SEM to improve methods of monitoring of damage accumulation during fatigue test and to verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue regime using the Luong method [1] by in-situ infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both high cycle fatigue and gigacycle fatigue regimes. Fracture surface analysis for plane and cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometer-profiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ?300 ?m has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics.

  10. Method for Synthesizing Extremeley High Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  11. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  12. Method for synthesizing extremely high-temperature melting materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  13. Toward Oxide Scale Behavior Management At High Temperature

    SciTech Connect (OSTI)

    Deltombe, R.; Dubar, M.; Dubois, A.; Dubar, L.

    2011-01-17

    Oxide scales grow freely on bare metallic surface under environmental conditions such as high temperature and oxygen. These act as thermal and mechanical shields, especially during high hot forming processes (>1000 deg. C). But product quality can be impacted by these oxide scales due to scale remaining on product or sticking on tools. Thus the TEMPO laboratory has created an original methodology in order to characterize oxide scale under high temperature, pressure and strain gradients. An experimental device has been developed. The final purpose of this work is to understand the scale behavior as a function of temperature, reduction ratio and steel composition.

  14. Wettability of brazing alloys on molybdenum and TZM (Mo-Ti-Zr alloy)

    SciTech Connect (OSTI)

    McDonald, M.M.; Keller, D.L.; Heiple, C.R.; Hofmann, W.E.

    1988-01-01

    Vacuum brazing studies have been performed on molybdenum and TZM (0.5Ti-0.08Zr-Mo). Wettability tests have been conducted for nineteen braze metal filler alloys on molybdenum and thirty-two braze metal filler alloys on TZM over a wide range of temperatures. A wetting index, which is a function of contact angle and braze alloy contact area, was determined for each filler alloy at each brazing temperature. The nature and extent of interaction between the brazing alloys and the base metals was analyzed by conventional metallography, scanning-electron microscopy, and electron microprobe analysis. A comparison is made between the behavior of filler alloys on molybdenum and TZM -- filler alloys consistently exhibited less wettability on TZM than on molybdenum. The lower wettability of TZM is believed to be due to a small amount of titanium in the surface oxide on TZM. Cracking was observed in the base metal under some of the high temperature braze deposits. The cracking is shown to arise from liquid metal embrittlement from nickel in the high temperature braze alloys. 7 refs., 11 figs., 2 tabs.

  15. Sandia Energy - High-Pressure and High-Temperature Neutron Reflectomet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure and High-Temperature Neutron Reflectometry Cell for Solid-Fluid Interface Studies Home Carbon Capture & Storage Climate News News & Events Carbon Capture Carbon...

  16. High efficiency multijunction amorphous silicon alloy-based solar cells and modules

    SciTech Connect (OSTI)

    Guha, S.; Yang, J.; Banerjeee, A.; Glatfelter, T.; Hoffman, K.; Xu, X. )

    1994-06-30

    We have achieved initial efficiency of 11.4% as confirmed by National Renewable Energy Laboratory (NREL) on a multijunction amorphous silicon alloy photovoltaic module of one-square-foot-area. [bold This] [bold is] [bold the] [bold highest] [bold initial] [bold efficiency] [bold confirmed] [bold by] [bold NREL] [bold for] [bold any] [bold thin] [bold film] [bold photovoltaic] [bold module]. After light soaking for 1000 hours at 50 [degree]C under one-sun illumination, a module with initial efficiency of 11.1% shows a stabilized efficiency of 9.5%. Key factors that led to this high performance are discussed.

  17. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, Zhinan; Jia, Haoling; Wu, Yueying; Rack, Philip D.; Patchen, Allan D.; Liu, Yuzi; Ren, Yang; Li, Nan; Liaw, Peter K.

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  18. High temperature solid electrolyte fuel cell configurations and interconnections

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills, PA)

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  19. AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES...

    Office of Scientific and Technical Information (OSTI)

    AND PRESSURES IN THE V-Cr SYSTEM Citation Details In-Document Search Title: AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES IN THE V-Cr SYSTEM Authors: Landa, A ...

  20. High Temperature Irradiation Resistant Thermocouple (HTIR-TC)

    ScienceCinema (OSTI)

    None

    2013-05-28

    INL researchers have created a new thermocouple that can resist high temperature and radiation. This device will improve safety and reduce costs associated with unit failures. Learn more about INL research at http://www.facebook.com/idahonationallaboratory

  1. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for High-Ambient-Temperature Environments: R-22 and ... prepared as an account of work sponsored by an agency of ... Its expertise in this area includes the measurement of heat ...

  2. Assessment of Moderate- and High-Temperature Geothermal Resources...

    Open Energy Info (EERE)

    States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Moderate- and High-Temperature Geothermal Resources of the United States Abstract...

  3. Copper Aluminate as a potential material for high temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermoelectric power generation | Energy Frontier Research Centers Copper Aluminate as a potential material for high temperature thermoelectric power generation Home Author: D. T. Morelli, E. D. Case, B. D. Hall, S. Wang Year: 2008 Abstract: URL:

  4. Copper Aluminate as a potential material for high temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copper Aluminate as a potential material for high temperature thermoelectric power generation Home Author: D. T. Morelli, E. D. Case, B. D. Hall, S. Wang Year: 2008 Abstract: URL:...

  5. Project Profile: High Operating Temperature Liquid Metal Heat Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluids | Department of Energy High Operating Temperature Liquid Metal Heat Transfer Fluids Project Profile: High Operating Temperature Liquid Metal Heat Transfer Fluids Logos for The University of California, Los Angeles, the University of California, Berkeley, and Yale University, and Four graphics in a grid that represent the sputtering technique being used in this project. The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and

  6. High-Speed, Temperature Programmable Gas Chromatography Utilizing a

    Office of Scientific and Technical Information (OSTI)

    Microfabricated Chip with an Improved Carbon Nanotube Stationary Phase (Journal Article) | SciTech Connect High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip with an Improved Carbon Nanotube Stationary Phase Citation Details In-Document Search Title: High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip with an Improved Carbon Nanotube Stationary Phase Authors: Stadermann, M ; Bakajin, O ; Reid, V ; Synovec, R

  7. Laser-induced breakdown spectroscopy at high temperatures in industrial

    Office of Scientific and Technical Information (OSTI)

    boilers and furnaces. (Journal Article) | SciTech Connect Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces. Citation Details In-Document Search Title: Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces. Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coat, or both, (2) at the exit of a glass-melting furnace burning

  8. High Temperature BOP and Fuel Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BOP and Fuel Processing High Temperature BOP and Fuel Processing Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon High Temperature BOP and Fuel Processing More Documents & Publications Biogas Impurities and Cleanup for Fuel Cells Fuel Quality Issues in Stationary Fuel Cell Systems Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells

  9. High Temperature Thermal Array for Next Generation Solar Thermal Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_obrey.pdf More Documents & Publications A Method for Evaluating Fire After Earthquake Scenarios for Single

  10. High-Temperature Solar Thermoelectric Generators (STEG) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High-Temperature Solar Thermoelectric Generators (STEG) High-Temperature Solar Thermoelectric Generators (STEG) This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_ginley.pdf More Documents & Publications Concentrated Solar Thermoelectric Power Direct s-CO2 Reciever Development NBB Enclosed Particle Receiver - FY13 Q1

  11. Reflectance spectroscopy for high-speed temperature measurements.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SciTech Connect Search Results Conference: Reflectance spectroscopy for high-speed temperature measurements. Citation Details In-Document Search Title: Reflectance spectroscopy for high-speed temperature measurements. Abstract not provided. Authors: Dolan, Daniel H., ; Seagle, Christopher T ; Ao, Tommy ; Herrmann, Mark Publication Date: 2013-05-01 OSTI Identifier: 1106087 Report Number(s): SAND2013-3898C 465305 DOE Contract Number: AC04-94AL85000 Resource Type:

  12. A University Consortium on Low Temperature Combustion (LTC) for High

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Ultra-Low Emission Engines | Department of Energy Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission Engines A University Consortium on Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_19_assanis.pdf More Documents & Publications A University Consortium on Efficient and

  13. 18th Topical Conference High-Temperature Plasma Diagnostics (HTPD) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab May 16, 2010, 9:00am to May 20, 2010, 5:00pm Conference Wildwood, New Jersey 18th Topical Conference High-Temperature Plasma Diagnostics (HTPD) The 18th Topical Conference on High-Temperature Plasma Diagnostics will be held May 16-20, 2010 in Wildwood, New Jersey. This biennial conference brings together plasma physicists from a variety of fields including magnetic confinement fusion, inertial confinement fusion, space plasmas, astrophysics, and industrial

  14. Project Profile: Advanced High Temperature Trough Collector Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Temperature Trough Collector Development Project Profile: Advanced High Temperature Trough Collector Development Solar Millennium logo The Solar Millennium Group and its subsidiary Flagsol, under the CSP R&D FOA, are completing work on an advanced parabolic trough collector that uses molten salt as a heat transfer fluid. Approach Solar Millenium's Flagsol SKAL-ET heliotrough. Solar Millennium has developed a preliminary design of an advanced geometry parabolic

  15. Materials Characterization Capabilities at the High Temperature Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory and HTML User Program Success Stories | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm028_laracurzio_2011_o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success

  16. Materials Characterization Capabilities at the High Temperature Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory and HTML User Program Success Stories | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon lm028_laracurzio_2010_o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML

  17. Materials Characterization Capabilities at the High Temperature Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory: Focus Lightweighting Materials | Department of Energy Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm039_watkins_2011_o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User

  18. Enhanced High Temperature Performance of NOx Storage/Reduction (NSR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace026_peden_2011_o.pdf More Documents & Publications Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT)

  19. Evaluation of Thermal to Electrical Energy Conversion of High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite-Based Thermoelectric Modules | Department of Energy Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Discusses progress toward the fabrication of a skutterudite-based TE module and provides module performance data under operating conditions similar to those for automotive applications PDF icon deer11_salvador.pdf

  20. Encapsulation of High Temperature Thermoelectric Modules | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Encapsulation of High Temperature Thermoelectric Modules Encapsulation of High Temperature Thermoelectric Modules Presents concept for hermetic encapsulation of TE modules addressing key failure mechanism, TE material oxidation, which severely impacts long term performance PDF icon deer12_whalen.pdf More Documents & Publications Materials, Modules, and Systems: An Atoms to Autos Approach to Automotive Thermoelectric Systems Development Advanced Thermoelectric Materials and