Sample records for high temperature alloys

  1. Crevice corrosion repassivation temperatures of highly alloyed stainless steels

    SciTech Connect (OSTI)

    Valen, S.; Gartland, P.O. [SINTEF Corrosion Center, Trondheim (Norway)

    1995-10-01T23:59:59.000Z

    An investigation was conducted to study the repassivation temperature of a highly alloyed austenitic (UNS S31254) and of a highly alloyed duplex (UNS S32750) stainless steel (SS). When initiated at a high temperature, repassivation occurred at a temperature level significantly lower than normally associated with initiation of crevice corrosion. Experimental results combined with computer modeling of crevice corrosion explored the mechanistic aspects. In this respect, the similarity between the hysteresis observed by cyclic polarization and cyclic temperature tests was emphasized.

  2. High Temperature Mechanical Properties of Molybdenum Solid Solution Alloys

    SciTech Connect (OSTI)

    Charit, I.; Murty, K.L. [College of Engineering, North Carolina State University, Raleigh, NC 27695, (United States)

    2006-07-01T23:59:59.000Z

    Demanding material requirements for space nuclear power systems have called for the use of refractory alloys. Molybdenum alloys are such candidate materials because of their good mechanical properties at fairly high temperatures, low neutron capture cross-section, and superior resistance to the attack of liquid metals. However, conventional Mo alloys have low ductility at lower temperatures. Hence, there have been several attempts to improve their viability. One of those approaches has been to alloy Mo with various alloying additions in solid solution, most notably with rhenium (Re). In this study the high temperature deformation behavior of various Mo-X (X Re, W, Nb, Hf) alloys is reviewed. High temperature deformation data for these solid solution alloys are analyzed in the light of existing deformation theories. Alloys with both Class-M and -A type behavior are identified and thus, various mechanisms are found to operate. Sometimes data interpretation becomes difficult due to the presence of second phase particles. Results are compared with unalloyed Mo to bring out the importance of solid solution alloying. (authors)

  3. Ductile aluminide alloys for high temperature applications

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Koch, Carl C. (Oak Ridge, TN)

    1987-01-01T23:59:59.000Z

    Alloys are described which contain nickel, aluminum, boron, iron and in some instances manganese, niobium and titanium.

  4. Ductile aluminide alloys for high temperature applications

    DOE Patents [OSTI]

    Liu, C.T.; Kock, C.C.

    1983-08-03T23:59:59.000Z

    Heat- and corrosion-resistant alloys are described which contain nickel, aluminum, boron, iron and in some instances manganese, niobium and titanium.

  5. Ductile aluminide alloys for high temperature applications

    DOE Patents [OSTI]

    Liu, C.T.; Stiegler, J.O.

    1983-12-21T23:59:59.000Z

    Improved Ni/sub 3/Al alloys are provided by inclusion of boron, hafnium or zirconium, and in some species, iron.

  6. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, Claudette G. (Knoxville, TN); Liu, Chain T. (Oak Ridge, TN)

    1990-01-01T23:59:59.000Z

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  7. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, C.G.; Liu, C.T.

    1990-10-09T23:59:59.000Z

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  8. Improved high temperature creep resistant austenitic alloy

    DOE Patents [OSTI]

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13T23:59:59.000Z

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  9. Computational and Experimental Development of Novel High Temperature Alloys

    SciTech Connect (OSTI)

    Kramer, M.J.; Ray, P.K.; and Akinc, M.

    2010-06-29T23:59:59.000Z

    The work done in this paper is based on our earlier work on developing an extended Miedema model and then using it to downselect potential alloy systems. Our approach is to closely couple the semi-empirical methodologies to more accurate ab initio methods to dentify the best candidates for ternary alloying additions. The architectural framework for our material's design is a refractory base metal with a high temperature intermetallic which provides both high temperature creep strength and a source of oxidatively stable elements. Potential refractory base metals are groups IIIA, IVA and VA. For Fossil applications, Ni-Al appears to be the best choice to provide the source of oxidatively stable elements but this system requires a 'boost' in melting temperatures to be a viable candidate in the ultra-high temperature regime (> 1200C). Some late transition metals and noble elements are known to increase the melting temperature of Ni-Al phases. Such an approach suggested that a Mo-Ni-Al system would be a good base alloy system that could be further improved upon by dding Platinum group metals (PGMs). In this paper, we demonstrate the variety of microstructures that can be synthesized for the base alloy system, its oxidation behavior as well as the oxidation behavior of the PGM substituted oxidation resistant B2 NiAl phase.

  10. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    SciTech Connect (OSTI)

    Coulter, K

    2013-09-30T23:59:59.000Z

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

  11. CoNiGa High Temperature Shape Memory Alloys

    E-Print Network [OSTI]

    Dogan, Ebubekir

    2011-10-21T23:59:59.000Z

    Shape memory alloys (SMAs) are an important class of smart materials that have the ability to remember a shape. Current practical uses of SMAs are limited to below 100 degrees C which is the limit for the transformation temperatures of most...

  12. Thermomechanical Cyclic Response of TiNiPd High-Temperature Shape Memory Alloys

    E-Print Network [OSTI]

    Atli, Kadri

    2012-10-19T23:59:59.000Z

    TiNiPd high-temperature shape memory alloys (HTSMAs) have attracted considerable attention as potential solid-state actuators capable of operating at temperatures up to 500 °C, exhibiting excellent corrosion resistance, adequate ductility levels...

  13. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOE Patents [OSTI]

    Liu, C.T.; Takeyama, Masao.

    1994-02-01T23:59:59.000Z

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.

  14. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Takeyama, Masao (Tokyo, JP)

    1994-01-01T23:59:59.000Z

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.

  15. Shape memory response and microstructural evolution of a severe plastically deformed high temperature shape memory alloy (NiTiHf)

    E-Print Network [OSTI]

    Simon, Anish Abraham

    2006-04-12T23:59:59.000Z

    NiTiHf alloys have attracted considerable attention as potential high temperature Shape Memory Alloy (SMA) but the instability in transformation temperatures and significant irrecoverable strain during thermal cycling under constant stress remains a...

  16. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    SciTech Connect (OSTI)

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24T23:59:59.000Z

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  17. Influence of Inelastic Phenomena on the Actuation Characteristics of High Temperature Shape Memory Alloys

    E-Print Network [OSTI]

    Kumar, Parikshith K.

    2010-07-14T23:59:59.000Z

    Most e orts on High Temperature Shape Memory Alloys (HTSMAs), have focused on improving their work characteristics by thermomechanical treatment methods. However, the in uence of transformation induced plasticity (TRIP) and viscoplasticity during...

  18. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    DOE Patents [OSTI]

    Hsu, Huey S.

    1988-04-14T23:59:59.000Z

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  19. Copper modified austenitic stainless steel alloys with improved high temperature creep resistance

    DOE Patents [OSTI]

    Swindeman, R.W.; Maziasz, P.J.

    1987-04-28T23:59:59.000Z

    An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.

  20. Isothermal oxidation behavior of ternary Zr-Nb-Y alloys at high temperature

    SciTech Connect (OSTI)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia); Soepriyanto, Syoni; Basuki, Eddy Agus [Metallurgy Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Wiryolukito, Slameto [Materials Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24T23:59:59.000Z

    The effect of yttrium content on isothermal oxidation behavior of Zr-2,5%Nb-0,5%Y, Zr-2,5%Nb-1%Y Zr-2,5%Nb-1,5%Y alloy at high temperature has been studied. High temperature oxidation carried out at tube furnace in air at 600,700 and 800°C for 1 hour. Optical microscope is used for microstructure characterization of the alloy. Oxidized and un oxidized specimen was characterized by x-ray diffraction. In this study, kinetic oxidation of Zr-2,5%Nb with different Y content at high temperature has also been studied. Characterization by optical microscope showed that microstructure of Zr-Nb-Y alloys relatively unchanged and showed equiaxed microstructure. X-ray diffraction of the alloys depicted that the oxide scale formed during oxidation of zirconium alloys is monoclinic ZrO2 while unoxidised alloy showed two phase ? and ? phase. SEM-EDS examination shows that depletion of Zr composition took place under the oxide layer. Kinetic rate of oxidation of zirconium alloy showed that increasing oxidation temperature will increase oxidation rate but increasing yttrium content in the alloys will decrease oxidation rate.

  1. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); McKamey, Claudette G. (Knoxville, TN)

    1993-01-01T23:59:59.000Z

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  2. Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications

    SciTech Connect (OSTI)

    Ren, Weiju [ORNL; Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Holcomb, David Eugene [ORNL

    2011-01-01T23:59:59.000Z

    Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

  3. Nickel aluminide alloy for high temperature structural use

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Sikka, Vinod K. (Clinton, TN)

    1991-01-01T23:59:59.000Z

    The specification discloses nickel aluminide alloys including nickel, aluminum, chromium, zirconium and boron wherein the concentration of zirconium is maintained in the range of from about 0.05 to about 0.35 atomic percent to improve the ductility, strength and fabricability of the alloys at 1200.degree. C. Titanium may be added in an amount equal to about 0.2 to about 0.5 atomic percent to improve the mechanical properties of the alloys and the addition of a small amount of carbon further improves hot fabricability.

  4. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01T23:59:59.000Z

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600%C2%B0C with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  5. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    SciTech Connect (OSTI)

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10T23:59:59.000Z

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  6. Corrosion and Creep of Candidate Alloys in High Temperature Helium and Steam Environments for the NGNP

    SciTech Connect (OSTI)

    Was, Gary; Jones, J. W.

    2013-06-21T23:59:59.000Z

    This project aims to understand the processes by which candidate materials degrade in He and supercritical water/steam environments characteristic of the current NGNP design. We will focus on understanding the roles of temperature, and carbon and oxygen potential in the 750-850 degree C range on both uniform oxidation and selective internal oxidation along grain boundaries in alloys 617 and 800H in supercritical water in the temperature range 500-600 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature rang 750-850 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature range 750-850 degree C over a range of oxygen and carbon potentials in helium. Combined, these studies wil elucidate the potential high damage rate processes in environments and alloys relevant to the NGNP.

  7. High-Temperature Aluminum Alloys | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r rRanchoTemperature Aluminum

  8. High-temperature phase transformation in Cr added TiAl base alloy

    SciTech Connect (OSTI)

    Abe, E.; Niinobe, K.; Nobuki, M.; Nakamura, M.; Tsujimoto, T.

    1999-07-01T23:59:59.000Z

    The authors have investigated a microstructure evolution of a Ti-48Al-3.5Cr (in at.%) alloy at high-temperatures ({gt} 1,473K). In the alloy annealed at 1673K for 1.8ks, followed by air-cooling, a characteristic microstructure with a feathery fashion was uniformly formed. From a cooling-rate-controlling study, it was found that formation of the feathery structure is accomplished during continuous cooling from 1673K to 1573K, within the {alpha} + {gamma} two-phase region. Transmission electron microscopy revealed that the feathery structure is composed of lamellar colonies (5--10{micro}m) which are crystallographically tilted slightly (a few degree) with their neighbors. A surprising fact is that lamellae in each colony are mostly the {gamma} phase with few {alpha}{sub 2} phase less than 5% in volume. This suggests that the feathery structure is a metastable product and has not resulted from the {alpha} {r{underscore}arrow} {alpha} + {gamma} transformation above 1,573 K. Instead, the feathery structure formation should be attributed to the non-equilibrium {alpha} {r{underscore}arrow} {gamma} transformation which occurs at high-temperatures with a small degree of supercooling. The authors discuss this interesting phase transformation in terms of the {alpha} {r{underscore}arrow} {gamma} massive transformation, based on the continuous-cooling-transformation (CCT) diagram constructed for the present alloy.

  9. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, David O. (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  10. A View of Compatible Heat-Resistant Alloy and Coating Systems at High-Temperatures

    SciTech Connect (OSTI)

    Narita, Toshio [Specially Promoted Research Laboratory of Advanced Coatings, Hokkaido University, Kite-13 Nishi-8, Kita-Ku, Sapporo 060-8628 (Japan)

    2009-09-14T23:59:59.000Z

    Conventional and advanced coatings were reviewed, and it was pointed out that the coated Ni-base superalloys decreased their creep rupture life significantly at higher temperatures, and the advanced high strength superalloy became more remarkably. Concept of diffusion barrier coating system (DBC system) and their formation process was introduced, and the results obtained for several heat-resistant alloys, stainless steel (SUS310S), Ni-Mo base alloy (Hastelloy-X), and 4{sup th} generation single crystal superalloy (TMS-138) were given. It was noted that creep-rupture life of the SUS310S and Hastelloy-X with the DBC system became longer than those of the bare alloys with or without conventional {beta}-NiAl coatings. This is due to slow creep-deformation of the Re-base alloy layer as the diffusion barrier. A novel concept based on combination of superalloys and coatings was proposed, by taking both the materials science and corrosion science into consideration.

  11. Hot corrosion and high temperature corrosion behavior of a new gas turbine material -- alloy 603GT

    SciTech Connect (OSTI)

    Agarwal, D.C. [Krupp VDM GmbH, Houston, TX (United States); Brill, U.; Klower, J. [Krupp VDM GmbH, Werdohl (Germany)

    1998-12-31T23:59:59.000Z

    Salt deposits encountered in a variety of high temperature processes have caused premature failures in heat exchangers and superheater tubes in pulp and paper recovery boilers, waste incinerators and coal gasifiers. Molten salt corrosion studies in both land based and air craft turbines have been the subject of intense study by many researchers. This phenomenon referred to as ``hot corrosion`` has primarily been attributed to corrosion by alkali sulfates, and there is somewhat general agreement in the literature that this is caused by either basic or acidic dissolution (fluxing) of the protective metal oxide layers by complex salt deposits containing both sulfates and chlorides. This paper describes experimental studies conducted on the hot corrosion behavior of a new Ni-Cr-Al alloy 603GT (UNS N06603) in comparison to some commercially established alloys used in gas turbine components.

  12. Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems

    SciTech Connect (OSTI)

    Bimal Kad

    2011-12-31T23:59:59.000Z

    The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep performance compared to the base material creep performance. Similar and dissimilar butt joints were fabricated of MA956, IN740 alloys and using inertia welding techniques. We evaluated joining process details and heat treatments and its overall effect on creep response. Fixed and incrementally accelerated temperature creep tests were performed for similar and dissimilar joints and such incremental creep life data is compiled and reported. Long term MA956-MA556 joint tests indicate a firm 2Ksi creep stress threshold performance at 850{degree}C with a maximum exposure of over 9725 hours recorded in the current program. A Larsen Miller Parameter (LMP) of 48.50 for a 2Ksi test at 850{degree}C was further corroborated with tests at 2Ksi stress at 900{degree}C yielding a LMP=48.80. Despite this threshold the joints exhibit immense temperature sensitivity and fail promptly when test temperature raised above 900{degree}C. In comparison the performance of dissimilar joints was inferior, perhaps dictated by the creep characteristics of the mating nickel-base alloys. We describe a parametric window of joint development, and post weld heat treatment (PWHT) in dissimilar joints with solid solution (IN601, IN617) and precipitate strengthened (IN740) materials. Some concerns are evident regarding the diffusion of aluminum in dissimilar joints during high temperature recrystallization treatments. It is noted that aggressive treatments rapidly deplete the corrosion protecting aluminum reservoir in the vicinity of the joint interface. Subsequently, the impact of varying PWHT has been evaluated in the context on ensuing creep performance.

  13. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, V.K.; McKamey, C.G.

    1993-08-24T23:59:59.000Z

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  14. Grain growth behavior and high-temperature high-strain-rate tensile ductility of iridium alloy DOP-26

    SciTech Connect (OSTI)

    McKamey, C.G.; Gubbi, A.N.; Lin, Y.; Cohron, J.W.; Lee, E.H.; George, E.P.

    1998-04-01T23:59:59.000Z

    This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the new-process iridium-based DOP-26 alloy used for the Cassini space mission. This alloy was developed at Oak Ridge National Laboratory (ORNL) in the early 1980`s and is currently used by NASA for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. Included within this report are data generated on grain growth in vacuum or low-pressure oxygen environments; a comparison of grain growth in vacuum of the clad vent set cup material with sheet material; effect of grain size, test temperature, and oxygen exposure on high-temperature high-strain-rate tensile ductility; and grain growth in vacuum and high-temperature high-strain-rate tensile ductility of welded DOP-26. The data for the new-process material is compared to available old-process data.

  15. Corrosion of high temperature alloys in solar salt at 400, 500, and 680%C2%B0C.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-09-01T23:59:59.000Z

    Corrosion tests at 400, 500, and 680%C2%B0C were performed using four high temperature alloys; 347SS, 321SS In625, and HA230. Molten salt chemistry was monitored over time through analysis of nitrite, carbonate, and dissolved metals. Metallography was performed on alloys at 500 and 680%C2%B0C, due to the relatively thin oxide scale observed at 400%C2%B0C. At 500%C2%B0C, corrosion of iron based alloys took the form of chromium depletion and iron oxides, while nickel based alloys also had chromium depletion and formation of NiO. Chromium was detected in relatively low concentrations at this temperature. At 680%C2%B0C, significant surface corrosion occurred with metal losses greater than 450microns/year after 1025hours of exposure. Iron based alloys formed complex iron, sodium, and chromium oxides. Some data suggests grain boundary chromium depletion of 321SS. Nickel alloys formed NiO and metallic nickel corrosion morphologies, with HA230 displaying significant internal oxidation in the form of chromia. Nickel alloys both exhibited worse corrosion than iron based alloys likely due to preferential dissolution of chromium, molybdenum, and tungsten.

  16. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, D.O.

    1998-01-06T23:59:59.000Z

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  17. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    SciTech Connect (OSTI)

    G. RObert Odette; Takuya Yamamoto

    2009-08-14T23:59:59.000Z

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  18. Compatibility of Inconel 617 alloy with eutectic fluoride salts at high temperatures

    SciTech Connect (OSTI)

    Luo, A.; Jacobson, D.L. (Department of Chemical, Bio Materials Engineering, Arizona State University, Tempe, Arizona 85287-6006 (United States)); Ponnappan, R. (Universal Energy Systems, Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432 (United States))

    1993-01-10T23:59:59.000Z

    Thermal Energy Storage (TES) capsules made of Inconel 617 alloy were filled with high purity eutectic fluoride salts and thermally cycled at eutectic temperature [plus minus]100 K for a period of up to 50,000 hours. The containment life performance characteristics with fluoride salts were examined. The depletion of Al and Cr near the inner edges was found. Atomic Absorption Spectroscopy revealed that both Al and Cr were dissolved in the fluoride salts at high temperatures. The changes in melting temperature and heat of fusion of fluoride salts during thermal cycling were measured with Thermal Differential Analysis. A modified diffusion equation for a one-dimensional semi-infinite bar was applied to the depletion of Al on the interior surfaces of the containers. Good agreement was obtained between the analysis and the measured concentration profiles. The present study suggests that the corrosion was a diffusion controlled process and an expected lifetime of 5--7 years is reasonable and predictable based upon the limited diffusion processes.

  19. Microstructural Characterization and Shape Memory Response of Ni-Rich NiTiHf and NiTiZr High Temperature Shape Memory Alloys

    E-Print Network [OSTI]

    Evirgen, Alper

    2014-08-14T23:59:59.000Z

    NiTiHf and NiTiZr high temperature shape memory alloys (HTSMAs) have drawn a great deal of attention as cheaper alternatives to Pt, Pd and Au alloyed NiTi-based HTSMAs while NiTiZr alloys also providing at least 20% weight reduction then its Ni...

  20. High plasma-flux elevated temperature sputtering of Cu-Li alloys

    SciTech Connect (OSTI)

    Krauss, A.R.; Gruen, D.M.; Mendelsohn, M.H.; Conn, R.; Goebel, D.; Hirooka, Y.; Leung, K.

    1986-01-01T23:59:59.000Z

    Copper-lithium alloys ranging in composition from 3 to 12 at. % Li have been exposed to sputtering by 3 x 10/sup 16/ - 6 x 10/sup 17/ 100 eV He+/cm/sup 2/-sec at temperatures of 300 to 500/sup 0/C at the UCLA PISCES plasma device. Weight loss and optical spectroscopy techniques were used to determine the sputtering-induced erosion of the binary alloys relative to pure copper. It was found that the weight loss of the alloy and the amount of copper in the plasma as measured by emission spectroscopy never exceeded that of pure copper and in some cases was reduced by a factor of five or more. Post-irradiation analysis by Auger electron spectroscopy and scanning electron microscopy show a correlation between lithium surface depletion, surface roughening, weight loss, and partial erosion yields as measured by plasma emission spectroscopy.

  1. High strength alloys

    DOE Patents [OSTI]

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31T23:59:59.000Z

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  2. High strength alloys

    DOE Patents [OSTI]

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05T23:59:59.000Z

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  3. Processing, Microstructure and Creep Behavior of Mo-Si-B-Based Intermetallic Alloys for Very High Temperature Structural Applications

    SciTech Connect (OSTI)

    Vijay Vasudevan

    2008-03-31T23:59:59.000Z

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. In the first part of this project, the compression creep behavior of a Mo-8.9Si-7.71B (in at.%) alloy, at 1100 and 1200 C was studied, whereas in the second part of the project, the constant strain rate compression behavior at 1200, 1300 and 1400 C of a nominally Mo-20Si-10B (in at.%) alloy, processed such as to yield five different {alpha}-Mo volume fractions ranging from 5 to 46%, was studied. In order to determine the deformation and damage mechanisms and rationalize the creep/high temperature deformation data and parameters, the microstructure of both undeformed and deformed samples was characterized in detail using x-ray diffraction, scanning electron microscopy (SEM) with back scattered electron imaging (BSE) and energy dispersive x-ray spectroscopy (EDS), electron back scattered diffraction (EBSD)/orientation electron microscopy in the SEM and transmission electron microscopy (TEM). The microstructure of both alloys was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The values of stress exponents and activation energies, and their dependence on microstructure were determined. The data suggested the operation of both dislocation as well as diffusional mechanisms, depending on alloy, test temperature, stress level and microstructure. Microstructural observations of post-crept/deformed samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. TEM observations revealed the presence of recrystallized {alpha}-Mo grains and sub-grain boundaries composed of dislocation arrays within the grains (in Mo-8.9Si-7.71B) or fine sub-grains with a high density of b = 1/2<111> dislocations (in Mo-20Si-10B), which are consistent with the values of the respective stress exponents and activation energies that were obtained and provide confirmatory evidence for the operation of diffusional (former alloy) or dislocation (latter alloy) creep mechanisms. In contrast, the intermetallic phases contained very few dislocations, but many cracks. The relative contributions of the {alpha}-Mo and the intermetallic particles to the overall deformation process, including their individual and collective dependence on temperature and strain rate are discussed in light of the present results and those from previous reports.

  4. Study of SiCnickel alloy bonding for high temperature applications M.L. Hattalia,, S. Valettea, F. Ropitalc, G. Stremsdoerfera, N. Mesratib, D. Trheuxa

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Study of SiC­nickel alloy bonding for high temperature applications M.L. Hattalia,, S. Valettea, F). In some cases a thin coating on the ceramic or the alloy by the electroless JetMétalTM process has been used. Often used in brazing, nickel, when added to silicon carbide, usually give silicides

  5. Oxidation Kinetics of High Strength Low Alloy Steels at Elevated Temperatures

    E-Print Network [OSTI]

    Talekar, Anjali

    2009-01-01T23:59:59.000Z

    selection, and physical metallurgy / E. E. Fletcher AlloyingIntroduction to Physical Metallurgy, McGraw-Hill, inc. ASM,

  6. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation

    SciTech Connect (OSTI)

    J. Douglas Way; Paul M. Thoen

    2006-08-31T23:59:59.000Z

    This report summarizes progress made during the a three year University Coal Research grant (DEFG26-03NT41792) at the Colorado School of Mines. The period of performance was September 1, 2003 through August of 2006. We made excellent progress toward our goal of contributing to the development of high productivity, sulfur tolerant composite metal membranes for hydrogen production and membrane reactors. Composite Pd and Pd alloy metal membranes with thin metal films (1-7 {micro}m) were prepared on porous stainless steel and ceramic supports that meet or exceed the DOE 2010 and 2015 pure hydrogen flux targets at differential pressure of only 20 psi. For example, a 2 {micro}m pure Pd membrane on a Pall AccuSep{reg_sign} substrate achieved an ideal H{sub 2}/N{sub 2} separation factor of over 6000, with a pure hydrogen flux of 210 SCFH/ft{sup 2} at only 20 psig feed pressure. Similar performance was achieved with a Pd{sub 80}Au{sub 20} composite membrane on a similar stainless steel substrate. Extrapolating the pure hydrogen flux of this PdAu membrane to the DOE Fossil Energy target conditions of 150 psia feed pressure and 50 psia permeate pressure gives a value of 508 SCFH/ft{sup 2}, exceeding the 2015 target. At these thicknesses, it is the support cost that will dominate the cost of a large scale module. In a direct comparison of FCC phase PdCu and PdAu alloys on identical supports, we showed that a Pd{sub 85}Au{sub 15} (mass %) alloy membrane is not inhibited by CO, CO{sub 2}, or steam present in a water-gas shift feed mixture at 400 C, has better resistance to sulfur than a Pd{sub 94}Cu{sub 6} membrane, and has over twice the hydrogen permeance.

  7. High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability

    DOE Patents [OSTI]

    Maziasz, Philip J. (Oak Ridge, TN); Goodwin, Gene M. (Lenoir City, TN); Liu, Chain T. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding.

  8. High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability

    DOE Patents [OSTI]

    Maziasz, P.J.; Goodwin, G.M.; Liu, C.T.

    1996-08-13T23:59:59.000Z

    This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding. 13 figs.

  9. Effect of oxygen potential on high temperature crack growth in alloy 617

    E-Print Network [OSTI]

    Benz, Julian K

    2009-01-01T23:59:59.000Z

    The effect of oxygen partial pressure on crack growth rates in Alloy 617 has been studied using both static and fatigue loading at 650°C. Tests were conducted at a constant stress intensity factor, K, for static loading ...

  10. Computational Thermodynamics of CoNiGa High Temperature Shape Memory Alloys 

    E-Print Network [OSTI]

    Chari, Arpita

    2012-10-19T23:59:59.000Z

    for the present work. In this work, a thermodynamic model of the ternary system is calculated based on the CALPHAD approach, to investigate the thermodynamic properties, phase stability and shape memory properties of these alloys. The CALPHAD approach is a...

  11. Computational Thermodynamics of CoNiGa High Temperature Shape Memory Alloys

    E-Print Network [OSTI]

    Chari, Arpita

    2012-10-19T23:59:59.000Z

    Alloys (HTSMAs), with possible applications in the aerospace and automotive industries. Although the CoNiGa system shows significant promise for its use as HTSMAs, limited studies are available on them. Hence, a more intensive investigation...

  12. Structure Analysis of a Precipitate Phase in an Ni-Rich High Temperature NiTiHf Shape Memory Alloy

    SciTech Connect (OSTI)

    Yang, Fan; Coughlin, D. R.; Phillips, Patrick J.; Yang, L.; Devaraj, Arun; Kovarik, Libor; Noebe, Ronald D.; Mills, M. J.

    2013-03-22T23:59:59.000Z

    Thermal aging of the high temperature shape memory alloy 50.3Ni-29.7Ti-20Hf (at.%) introduces a novel precipitate phase, which plays an important role in improving shape memory properties. The precipitate phase was investigated by conventional electron diffraction, high resolution scanning transmission electron microscopy (STEM) and three dimensional atom probe tomography. An unrelaxed orthorhombic atomic structural model is proposed based on these observations. This model was subsequently relaxed by ab initio calculations. As a result of the relaxation, atom shuffle displacements occur, which in turn yields improved agreement with the STEM images. The relaxed structure, which is termed the “H-phase”, has also been verified to be thermodymanically stable at 0 K.

  13. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    SciTech Connect (OSTI)

    J. Douglas Way

    2003-01-01T23:59:59.000Z

    For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating procedures for fabrication of thin Pd-Cu composite membranes at any scale.

  14. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    SciTech Connect (OSTI)

    J. Douglas Way; Robert L. McCormick

    2001-06-01T23:59:59.000Z

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({approx}10 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd{sub 60}Cu{sub 40} films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H{sub 2} separation, and resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd{sub 60}Cu{sub 40} alloy membranes on porous supports for H{sub 2} separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H{sub 2} flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H{sub 2} flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems.

  15. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation

    SciTech Connect (OSTI)

    J. Douglas Way; Paul M. Thoen

    2005-08-31T23:59:59.000Z

    This report summarizes progress made during the second year of research funding from DOE Grant DE-FG26-03NT41792 at the Colorado School of Mines. The period of performance was September 1, 2004 through August of 2005. We have reformulated our Pd plating process to minimize the presence of carbon contamination in our membranes. This has improved durability and increased permeability. We have developed techniques for plating the outside diameter of ceramic and metal substrate tubes. This configuration has numerous advantages including a 40% increase in specific surface area, the ability to assay the alloy composition non-destructively, the ability to potentially repair defects in the plated surface, and the ability to visually examine the plated surfaces. These improvements have allowed us to already meet the 2007 DOE Fossil Energy pure H{sub 2} flux target of 100 SCFH/ft{sup 2} for a hydrogen partial pressure difference of 100 psi with several Pd-Cu alloy membranes on ceramic microfilter supports. Our highest pure H{sub 2} flux on inexpensive, porous alumina support tubes at the DOE target conditions is 215 SCFH/ft{sup 2}. Progress toward meeting the other DOE Fossil Energy performance targets is also summarized. Additionally, we have adapted our membrane fabrication procedure to apply Pd and Pd alloy films to commercially available porous stainless steel substrates. Stable performance of Pd-Cu films on stainless steel substrates was demonstrated over a three week period at 400 C. Finally, we have fabricated and tested Pd-Au alloy membranes. These membranes also exceed both the 2007 and 2010 DOE pure H{sub 2} flux targets and exhibit ideal H{sub 2}/N{sub 2} selectivities of over 1000 at partial pressure difference of 100 psi.

  16. Standard practice for evaluation of disbonding of bimetallic stainless alloy/steel plate for use in high-pressure, high-temperature refinery hydrogen service

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2001-01-01T23:59:59.000Z

    1.1 This practice covers a procedure for the evaluation of disbonding of bimetallic stainless alloy/steel plate for use in refinery high-pressure/high-temperature (HP/HT) gaseous hydrogen service. It includes procedures to (1) produce suitable laboratory test specimens, (2) obtain hydrogen charging conditions in the laboratory that are similar to those found in refinery HP/HT hydrogen gas service for evaluation of bimetallic specimens exposed to these environments, and (3) perform analysis of the test data. The purpose of this practice is to allow for comparison of data among test laboratories on the resistance of bimetallic stainless alloy/steels to hydrogen-induced disbonding (HID). 1.2 This practice applies primarily to bimetallic products fabricated by weld overlay of stainless alloy onto a steel substrate. Most of the information developed using this practice has been obtained for such materials. The procedures described herein, may also be appropriate for evaluation of hot roll bonded, explosive bonded...

  17. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01T23:59:59.000Z

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  18. Vehicle Technologies Office Merit Review 2014: High Temperature Aluminum Alloys (Agreement ID:24034) Project ID:18518

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  19. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    SciTech Connect (OSTI)

    Nan Mu

    2007-12-01T23:59:59.000Z

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain {beta}-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al{sub 2}O{sub 3} scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified {gamma}-Ni + {gamma}-Ni{sub 3}Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase {gamma}-Ni and {gamma}{prime}-Ni{sub 3}Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al{sub 2}O{sub 3} formation by suppressing the NiO growth on both {gamma}-Ni and {gamma}{prime}Ni{sub 3}Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures ({approx}970 C) in the very early stage of oxidation. It was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free {gamma}{prime}-Ni{sub 3}Al increased the extent of external NiO formation due to non-protective HfO{sub 2} formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5 at.%.

  20. High-temperature characteristics of Seebeck coefficients for AlInN alloys grown by metalorganic vapor phase epitaxy

    E-Print Network [OSTI]

    Gilchrist, James F.

    importance for efficient thermal management in high power devices. The availability of III- nitride the calculation of surface and interface energies J. Appl. Phys. 110, 113910 (2011) A strain relief mode of Physics. [doi:10.1063/1.3624761] I. INTRODUCTION High power density and high-temperature requirements

  1. Influence of germanium and the melting method on the mechanical properties of NM23KhYu alloy at high temperatures

    SciTech Connect (OSTI)

    Lebedev, D.V.; Rozonova, V.M.

    1986-05-01T23:59:59.000Z

    The purpose of the investigation was to increase the plasticity and ductility of NM233KhYu alloy without a detrimental effect on its service properties, selection of methods evaluation of placticity and ductility at increased temperatures, and establishment on the basis of the results obtained of the optimum temperature range for hot working by pressure. To evaluate the mechanical properties at increased temperature tension, impact strength and torsion tests were made. Alloying with germanium of NM23KhYu alloy leads to a two-to-three-time increase in its impact strength. Electron beam remelting of NM23KhYu alloy with germanium increases the impact strength, and the characteristics of plasticity by 1.5-2 times in comparison with the similar properties of this alloy produced by vacuum induction melting.

  2. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  3. Deformation Behavior of Laser Welds in High Temperature Oxidation Resistant Fe-Cr-Al Alloys for Fuel Cladding Applications

    SciTech Connect (OSTI)

    Field, Kevin G [ORNL; Gussev, Maxim N [ORNL; Yamamoto, Yukinori [ORNL; Snead, Lance Lewis [ORNL

    2014-01-01T23:59:59.000Z

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al in weight percent with a minor addition of yttrium using laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds has been carried out to determine the performance of welds as a function of alloy composition. Laser welding resulted in a defect free weld devoid of cracking or inclusions for all alloys studied. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. No significant correlation was found between the deformation behavior/mechanical performance of welds and the level of Cr or Al in the alloy ranges studied.

  4. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys

    SciTech Connect (OSTI)

    Nemat-Nasser, S.; Isaacs, J.B. [Univ. of California, San Diego, La Jolla, CA (United States)] [Univ. of California, San Diego, La Jolla, CA (United States)

    1997-03-01T23:59:59.000Z

    A technique is developed for measuring the flow stress of metals over a broad range of strains, strain rates, and temperatures, in uniaxial compression. It utilizes a recent, enhanced version of the classical (Kolsky) compression split Hopkinson bar, in which a sample is subjected to a single stress pulse of a predefined profile, and then recovered without being subjected to any other additional loading. For the present application, the UCSD`s split Hopkinson bar is further enhanced by the addition of a new mechanism by means of which the incident and transmission bars of the split Hopkinson construction are moved into a constant-temperature furnace containing the sample, and gently brought into contact with the sample, as the elastic stress pulse reaches and loads the sample. Using several samples of the same material and testing them at the same strain rate and temperature, but different incremental strains, an accurate estimate of the material`s isothermal flow stress can be obtained. Additionally, the modified Hopkinson technique allows the direct measurement of the change in the (high strain-rate) flow stress with a change of the strain rate, while the strain and temperature are kept constant, i.e., the strain rate can be increased or decreased during the high strain-rate test. The technique is applied to obtain both quasi-isothermal and adiabatic flow stresses of tantalum (Ta) and a tantalum-tungsten (Ta-W) alloy at elevated temperatures. These experimental results show the flow stress of these materials to be controlled by a simple long-range plastic-strain-dependent barrier, and a short-range thermally activated Peierls mechanism. For tantalum, a model which fits the experimental data over strains from a few to over 100%, strain rates from quasi-static to 40,000/s, and temperatures from {minus}200 to 1,000 C, is presented and discussed.

  5. In situ atomic force microscope study of high-temperature untwinning surface relief in Mn-Fe-Cu antiferromagnetic shape memory alloy

    SciTech Connect (OSTI)

    Wang, L.; Cui, Y. G.; Wan, J. F.; Rong, Y. H.; Zhang, J. H.; Jin, X.; Cai, M. M. [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)] [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2013-05-06T23:59:59.000Z

    The N-type untwinning surface relief associated with the fcc {r_reversible} fct martensitic transformation (MT) was observed in the Mn{sub 81.5}Fe{sub 14.0}Cu{sub 4.5} antiferromagnetic high-temperature shape memory alloy (SMA) by in situ atomic force microscopy. The measured untwinning relief angles ({theta}{sub {alpha}} Double-Vertical-Line {theta}{sub {beta}}) at the ridge and at the valley were different, and both angles were less than the conventional values. The surface relief exhibited good reversibility during heating and cooling because of the crystallographic reversibility of thermal-elastic SMAs. Untwinning shear was proposed as the main mechanism of the N-type surface relief. The order of the reverse MT was discussed based on the experimental measurements.

  6. Shape memory response and microstructural evolution of a severe plastically deformed high temperature shape memory alloy (NiTiHf) 

    E-Print Network [OSTI]

    Simon, Anish Abraham

    2006-04-12T23:59:59.000Z

    by other means. We have used Equal Channel Angular Extrusion (ECAE), hot rolling and marforming to strengthen the 49.8Ni-42.2Ti-8Hf (in at. %) material and to introduce desired texture to overcome these problems in NiTiHf alloys. ECAE offers the advantage...

  7. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    SciTech Connect (OSTI)

    Yang, Shizhong

    2013-02-28T23:59:59.000Z

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  8. Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S

    SciTech Connect (OSTI)

    Dogan, Omer N.; Nielsen, Benjamin C.; Hawk, Jeffrey A.

    2013-08-01T23:59:59.000Z

    High-entropy alloys are formed by synthesizing five or more principal elements in equimolar or near equimolar concentrations. Microstructure of the CoCrCuFeNiAl{sub 0.5}B{sub x} (x = 0, 0.2, 0.6, 1) high-entropy alloys under investigation is composed of a mixture of disordered bcc and fcc phases and borides. These alloys were tested gravimetrically for their corrosion resistance in simulated syngas containing 0, 0.01, 0.1, and 1 % H{sub 2}S at 500 °C. The exposed coupons were characterized using XRD and SEM. No significant corrosion was detected at 500 °C in syngas containing 0 and 0.01 % H{sub 2}S while significant corrosion was observed in syngas containing 0.1 and 1 % H{sub 2}S. Cu{sub 1.96}S was the primary sulfide in the external corrosion scale on the low-boron high-entropy alloys, whereas FeCo{sub 4}Ni{sub 4}S{sub 8} on the high-boron high-entropy alloys. Multi-phase Cu-rich regions in the low-B high-entropy alloys were vulnerable to corrosive attack.

  9. Experimental Analysis and Numerical Simulation of Tensile Behaviour of TiNi Shape Memory Alloy Fibres Reinforced Epoxy Matrix Composite at High Temperatures

    SciTech Connect (OSTI)

    Sahli, M. L.; Necib, B. [Mechanics Laboratory, Faculty of Engineering Sciences, University Mentouri Constantine, 25000 (Algeria)

    2011-05-04T23:59:59.000Z

    The shape memory alloys (SMA) possess both sensing and actuating functions due to their shape memory effect, pseudo-elasticity, high damping capability and other remarkable properties. Combining the SMA with other materials can create intelligent or smart composites. The epoxy resin composites filled with TiNi alloys fibres were fabricated and their mechanical properties have been investigated. In this study, stress/strain relationships for a composite with embedded shape memory materials (SMA) fibres are presented. The paper illustrates influence of the SMA fibres upon changes in mechanical behaviour of a composite plate with the SMA components, firstly and secondly, the actuating ability and reliability of shape memory alloy hybrid composites.

  10. CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS

    SciTech Connect (OSTI)

    J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

    2012-10-01T23:59:59.000Z

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

  11. High-strain-rate nanoindentation behavior of fine-grained magnesium alloys

    E-Print Network [OSTI]

    Somekawa, Hidetoshi

    The effects of temperature and alloying elements on deformation in the high-strain-rate regime were investigated by testing fine-grained magnesium alloys with an average grain size of 2 ? 3 ?m by a nanoindentation technique. ...

  12. Effect of thermally stable Cu- and Mg-rich aluminides on the high temperature strength of an AlSi12CuMgNi alloy

    SciTech Connect (OSTI)

    Asghar, Z., E-mail: zhdasghar@yahoo.com [Materials Division, Directorate of Technology, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Vienna University of Technology, Institute of Materials Science and Technology, Karlsplatz 13/308, A-1040 Vienna (Austria); Requena, G. [Vienna University of Technology, Institute of Materials Science and Technology, Karlsplatz 13/308, A-1040 Vienna (Austria); Zahid, G.H.; Rafi-ud-Din [Materials Division, Directorate of Technology, PINSTECH, P. O. Nilore, Islamabad (Pakistan)

    2014-02-15T23:59:59.000Z

    The internal architecture of an AlSi12CuMgNi piston alloy, revealed by synchrotron tomography, consists of three dimensional interconnected hybrid networks of Cu-rich aluminides, Mg-rich aluminides and eutectic/primary Si embedded in an ?-Al matrix. The strength at room temperature and at 300°C is studied as a function of solution treatment time at 490°C and compared with results previously reported for an AlSi12Ni alloy. The addition of 1 wt% Cu and 1 wt% Mg to AlSi12CuMgNi increases the room temperature strength by precipitation hardening while the strength at 300°C is similar for both alloys in as-cast condition. The strength of AlSi12CuMgNi decreases with solution treatment time and stabilizes at 4 h solution treatment. The effect of solution treatment time on the strength of the AlSi12CuMgNi alloy is less pronounced than for the AlSi12Ni alloy both at room temperature and at 300°C. - Highlights: • The 3D microstructure of AlSi12CuMgNi is revealed by synchrotron tomography. • An imaging analysis procedure to segment phases with similar contrasts is presented. • 1 wt% Cu and Mg results in the formation of 3D networks of rigid phases. • AlSi12CuMgNi is stronger than AlSi12Ni owing to the stability of the 3D networks.

  13. Sequential high temperature reduction, low temperature hydrolysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high temperature reduction, low temperature hydrolysis for the regeneration of sulfated NOx trap catalysts. Sequential high temperature reduction, low temperature hydrolysis for...

  14. Low-temperature solution synthesis of alloys and intermetallic compounds as nanocrystals 

    E-Print Network [OSTI]

    Vasquez, Yolanda

    2009-05-15T23:59:59.000Z

    the rate of reaction between two solids; however, the high temperatures required to overcome the diffusion barrier limit the products accessible to the most thermodynamically stable phases. In this work, nano-scale solids such as alloys and intermetallics...

  15. High Temperature coatings based on {beta}-NiAI

    SciTech Connect (OSTI)

    Severs, Kevin

    2012-07-10T23:59:59.000Z

    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB{sub 2} composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

  16. Progress in High-Entropy Alloys

    SciTech Connect (OSTI)

    Gao, Michael C.

    2013-12-01T23:59:59.000Z

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  17. High-Temperature Aluminum Alloys

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Casting: Corrosion Testing Practices - High Alloy Corrosion Program ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion Program lehighfs.pdf More Documents...

  19. Grain boundary depletion and migration during selective oxidation of Cr in a Ni-5Cr binary alloy exposed to high-temperature hydrogenated water

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2014-10-15T23:59:59.000Z

    High-resolution microscopy of a high-purity Ni-5Cr alloy exposed to 360°C hydrogenated water reveals intergranular selective oxidation of Cr accompanied by local Cr depletion and diffusion-induced grain boundary migration (DIGM). The corrosion-product oxide consists of a porous, interconnected network of Cr2O3 platelets with no further O ingress into the metal ahead. Extensive grain boundary depletion of Cr (to <0.05at.%) is observed typically 20–100 nm wide as a result of DIGM and reaching depths of many micrometers beyond the oxidation front.

  20. A Study on Formation and Thermal Stability of Nano-sized Oxide Clusters in Mechanically Alloyed NiAl for High Temperature Applications

    E-Print Network [OSTI]

    KIM, YONG-DEOG

    2012-01-01T23:59:59.000Z

    alloying and spark-plasma sintering, in Designing,and consolidated by spark plasma sintering. 2000. Trans Techalloying and spark-plasma sintering. 2004. Trans Tech

  1. "Exploring damage management of high performance metallic alloys in critical

    E-Print Network [OSTI]

    Acton, Scott

    Fatigue Localized corrosion degrades fatigue performance of high strength aluminum alloys. The expense and Aluminum Alloys Exposure to a moist environment degrades the fatigue resistance of all aluminum alloys"Exploring damage management of high performance metallic alloys in critical systems to develop new

  2. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08T23:59:59.000Z

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  3. OXIDATION MECHANISMS OF LOW ENERGY-HIGH FLUX NITRIDED ODS FeAl INTERMETALLIC ALLOY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    OXIDATION MECHANISMS OF LOW ENERGY-HIGH FLUX NITRIDED ODS FeAl INTERMETALLIC ALLOY F. Pedraza*, J)5.46.45.72.72 Abstract Microscopy studies of low energy-high flux nitrided ODS FeAl Grade 3 intermetallic alloy reveal nitridation treatment at moderate temperature of ODS FeAl Grade 3 has been performed to modify the surface

  4. High Temperature Capacitor Development

    SciTech Connect (OSTI)

    John Kosek

    2009-06-30T23:59:59.000Z

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a unique high-temperature electrolyte developed during the course of the program. During this program the feasibility of operating a high voltage hybridized capacitor at 230oC was demonstrated. Capacitor specifications were established in conjunction with potential capacitor users. A method to allow for capacitor operation at both ambient and elevated temperatures was demonstrated. The program was terminated prior to moving into Phase II due to a lack of cost-sharing funds.

  5. Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature in a Combustion Gas Environment

    SciTech Connect (OSTI)

    Tylczak, Joseph [NETL] [NETL

    2014-05-02T23:59:59.000Z

    This paper reports on the results of a study that compares the erosion-corrosion behavior of a variety of alloys (Fe- 2¼Cr 1Mo, 304 SS, 310 SS, Incoloy 800, Haynes 230 and a Fe3Al) in a combustion environment. Advanced coal combustion environments, with higher temperatures, are driving re-examination of traditional and examination of new alloys in these hostile environments. In order to simulate conditions in advanced coal combustion boilers, a special erosion apparatus was used to allow for impingement of particles under a low abrasive flux in a gaseous environment comprised of 20 % CO2, 0.05 % HCl, 77 % N2, 3 % O2, and 0.1 % SO2. Tests were conducted at room temperature and 700 °C with ~ 270 ?m silica, using an impact velocity of 20 m/s in both air and the simulated combustion gas environment. The erosion-corrosion behavior was characterized by gravimetric measurements and by examination of the degraded surfaces optically and by scanning electron microscopy (SEM). At room temperature most of the alloys had similar loss rates. Not surprisingly, at 700 °C the lower chrome-iron alloy had a very high loss rate. The nickel alloys tended to have higher loss rates than the high chrome austenitic alloys.

  6. Project Profile: High Operating Temperature Liquid Metal Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A freezing point below 100C Stable at temperatures greater than 800C Low corrosion of stainless steel and high-nickel content alloys A heat capacity greater than 2...

  7. Author's Accepted Manuscript High-temperature-oxidation-induced ordered struc-

    E-Print Network [OSTI]

    Laughlin, David E.

    and turbine power generation system, turbine alloys are exposed to high temperature and an atmosphere comprised of steam, CO2 and O2. While surface and internal oxidation of the alloy takes place-fuel combustion turbine power generation systems are being developed, materials performance of candidate

  8. A Study on Formation and Thermal Stability of Nano-sized Oxide Clusters in Mechanically Alloyed NiAl for High Temperature Applications

    E-Print Network [OSTI]

    KIM, YONG-DEOG

    2012-01-01T23:59:59.000Z

    IN MECHANICALLY ALLOYED ODS STEEL. Journal of Materialscompressive properties of ODS MA NiAl. Scripta Materialia,TEM imaging and EELS study of ODS particles and argon-filled

  9. High-temperature gas-cooled reactor helium compatibility studies: results of 10,000-hour exposure of selected alloys in simulated reactor helium

    SciTech Connect (OSTI)

    Lechtenberg, T.A.; Stevenson, R.D.; Johnson, W.R.

    1980-05-01T23:59:59.000Z

    Work on the HTGR Helium Compatibility Task accomplished during the period March 31, 1977 through September 30, 1979, is documented in this report. Emphasis is on the results and analyses of creep data to 10,000 h and the detailed metallurgical evaluations performed on candidate alloy specimens tested for up to 10,000 h. Long-term creep and unstressed aging data in controlled-impurity helium and in air at 800, 900, and 1000/sup 0/C are reported for alloys included in the program in FY-76, including the wrought solid-solution-strengthened alloys, Hastelloy X, Hastelloy S, RA 333, and HD 556, and the centrifugally cast austenitic alloys, HK 40, Supertherm, Manaurite 36X, Manaurite 36XS, and Manaurite 900.

  10. High-temperature Pump Monitoring - High-temperature ESP Monitoring...

    Broader source: Energy.gov (indexed) [DOE]

    7 4.4.4 High-temperature Pump Monitoring - High-temperature ESP Monitoring Presentation Number: 018 Investigator: Dhruva, Brindesh (Schlumberger Technology Corp.) Objectives: To...

  11. Method for low temperature preparation of a noble metal alloy

    DOE Patents [OSTI]

    Even, Jr., William R. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.

  12. Turbine vane with high temperature capable skins

    DOE Patents [OSTI]

    Morrison, Jay A. (Oviedo, FL)

    2012-07-10T23:59:59.000Z

    A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

  13. High temperature storage battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-06-07T23:59:59.000Z

    A high temperature electrochemical cell is described comprising: a solid-state divalent cation conducting electrolyte; a positive electrode in contact with the electrolyte; a solid-state negative electrode contacting a divalent cation conducting molten salt mediating agent providing ionic mediation between the solid-state negative electrode and the solid-state electrolyte.

  14. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

    1999-03-23T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  15. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  16. Thermal fuse for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph G. (Albuquerque, NM); Armijo, James R. (Albuquerque, NM); Frear, Darrel R. (Austin, TX)

    2000-01-01T23:59:59.000Z

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  17. High temperature adsorption measurements

    SciTech Connect (OSTI)

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24T23:59:59.000Z

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  18. Tribological behavior of NiTi alloy against 52100 steel and WC at elevated temperatures

    SciTech Connect (OSTI)

    Abedini, M. [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Ghasemi, H.M., E-mail: hghasemi@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Ahmadabadi, M. Nili [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2010-07-15T23:59:59.000Z

    The dry tribological behavior of a Ti-50.3 at.% Ni alloy at temperatures of 25 deg. C, 50 deg. C and 200 deg. C was studied. The wear tests were performed on a high temperature pin-on-disk tribometer using 52100 steel and tungsten carbide pins. The worn surfaces of the NiTi alloy were examined by scanning electron microscope. The results showed that in the wear tests involving steel pins, the wear rate of the NiTi decreased as the wear testing temperature was increased. However, for the NiTi/WC contact, a reverse trend was observed. There was also a large decrease in the coefficient of friction for the NiTi/steel contact with increasing wear testing temperature. The formation of compact tribological layers could be the main reason for the reduction of the wear rate and coefficient of friction of the NiTi/steel contact at higher wear testing temperatures.

  19. Effect of hydrogen on the {beta} transus temperature of TC21 alloy

    SciTech Connect (OSTI)

    Zhu, T.K., E-mail: zhutangkui@sohu.com; Li, M.Q., E-mail: honeymli@nwpu.edu.cn

    2011-09-15T23:59:59.000Z

    Effect of hydrogen on the {beta} transus temperature of TC21 alloy was investigated by metallographic technique and dilatometry. It is found that the {beta} transus temperature is closely related to the hydrogen content. For the hydrogenated TC21 alloy, the starting and finishing temperatures of {alpha} {yields} {beta} phase transition decrease with the increasing of hydrogen content before the hydride precipitates. And the finishing temperature of {alpha} {yields} {beta} phase transition increases as the hydrogen content increases after the hydride precipitates. Furthermore, corresponding inherent mechanisms of the above-mentioned phenomena have been presented according to atomic diffusivity, interface migration and the precipitation of hydride. - Research Highlights: {yields} The {beta} transus temperature of TC21 alloy is closely related to hydrogen content. {yields} The mechanism for effect of hydrogen on the {beta} transus temperature is presented. {yields} Precipitation of hydride has a significant influence on the {beta} transus temperature. {yields} The {alpha}/{beta} interface migration has an important effect on the {beta} transus temperature. {yields} The improvement of atom diffusivity affects the {beta} transus temperature highly.

  20. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  1. Dose dependence of mechanical properties in tantalum and tantalum alloys after low temperature irradiation

    SciTech Connect (OSTI)

    Byun, Thak Sang [ORNL

    2008-01-01T23:59:59.000Z

    The dose dependence of mechanical properties was investigated for tantalum and tantalum alloys after low temperature irradiation. Miniature tensile specimens of three pure tantalum metals, ISIS Ta, Aesar Ta1, Aesar Ta2, and one tantalum alloy, Ta-1W, were irradiated by neutrons in the High Flux Isotope Reactor (HFIR) at ORNL to doses ranging from 0.00004 to 0.14 displacements per atom (dpa) in the temperature range 60 C 100 oC. Also, two tantalum-tungsten alloys, Ta-1W and Ta-10W, were irradiated by protons and spallation neutrons in the LANSCE facility at LANL to doses ranging from 0.7 to 7.5 dpa and from 0.7 to 25.2 dpa, respectively, in the temperature range 50 C 160 oC. Tensile tests were performed at room temperature and at 250oC at nominal strain rates of about 10-3 s-1. All neutron-irradiated materials underwent progressive irradiation hardening and loss of ductility with increasing dose. The ISIS Ta experienced embrittlement at 0.14 dpa, while the other metals retained significant necking ductility. Such a premature embrittlement in ISIS Ta is believed to be because of high initial oxygen concentrations picked up during a pre-irradiation anneal. The Ta-1W and Ta-10W specimens irradiated in spallation condition experienced prompt necking at yield since irradiation doses for those specimens were high ( 0.7 dpa). At the highest dose, 25.2 dpa, the Ta-10W alloy specimen broke with little necking strain. Among the test materials, the Ta-1W alloy displayed the best combination of strength and ductility. The plastic instability stress and true fracture stress were nearly independent of dose. Increasing test temperature decreased strength and delayed the onset of necking at yield.

  2. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01T23:59:59.000Z

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  3. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOE Patents [OSTI]

    Sikka, Vinod K. (Clinton, TN)

    1992-01-01T23:59:59.000Z

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  4. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

    2012-06-19T23:59:59.000Z

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  5. Method for fabricating wrought components for high-temperature gas-cooled reactors and product

    DOE Patents [OSTI]

    Thompson, Larry D. (San Diego, CA); Johnson, Jr., William R. (San Diego, CA)

    1985-01-01T23:59:59.000Z

    A method and alloys for fabricating wrought components of a high-temperature gas-cooled reactor are disclosed. These wrought, nickel-based alloys, which exhibit strength and excellent resistance to carburization at elevated temperatures, include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength.

  6. Alumina-forming Austenitic Alloys Licensed | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    powder metal stainless steels and specialty alloys including high temperature (iron-nickel-cobalt base), stainless, superior corrosion resistant, controlled expansion alloys,...

  7. High-Temperature-High-Volume Lifting for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for...

  8. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  9. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  10. Thermochemistry of high-temperature corrosion

    SciTech Connect (OSTI)

    Natesan, K.

    1980-01-01T23:59:59.000Z

    Multicomponent gas environments are prevalent in a number of energy systems, especially in those that utilize fossil fuels. The gas environments in these processes contain sulfur-bearing components in addition to oxidants. These complex environments, coupled with the elevated temperatures present in these systems, generally cause significant corrosion of engineering materials. Thermodynamic aspects of high-temperature corrosion processes occuring in complex gas mixtures are discussed, with emphasis on the role of thermochemical diagrams. The interrelationships between the corrosion behavior of materials and gas composition, alloy chemistry, and temperatures are examined. A number of examples from studies on materials behavior in coal-gasification environments are used to elucidate the role of thermochemistry in the understanding of corrosion processes that occur in complex gas mixtures. 11 figures.

  11. 2. HIGH-LOv~ JUNCTION FORY_,\\'UO AN EXPERIMENTAL STUDY OF AL-ALLOYED:'p+ JUNCT;[ONS FOR SSF SOLAR CELT.S As temperature rises en..!."

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    . Luque formed. The deposited Al diss Instituto de Energia Solar {E.T,S,I.T,} phase composition given2. HIGH-LOv~ JUNCTION FORY_,\\'UO AN EXPERIMENTAL STUDY OF AL-ALLOYED:§'p+ JUNCT;[ONS FOR SSF SOLAR+pp+ bifacial SSF solar cells are used to experimentally analyse the interphase in a similar way a 5i layer

  12. Philosophy 26 High Temperature Superconductivity

    E-Print Network [OSTI]

    Callender, Craig

    Philosophy 26 High Temperature Superconductivity By Ohm's Law, resistance will dim. Low temperature superconductivity was discovered in 1911 by Heike was explained by BCS theory. BCS theory explains superconductivity microscopically

  13. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    SciTech Connect (OSTI)

    Stoica, Grigoreta M [ORNL; Stoica, Alexandru Dan [ORNL; Miller, Michael K [ORNL; Ma, Dong [ORNL

    2014-01-01T23:59:59.000Z

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization of anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.

  14. High Temperature, High Pressure Devices for Zonal Isolation in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature,...

  15. Hotline IV ?High Temperature ESP

    Broader source: Energy.gov (indexed) [DOE]

    Hotline IV - High Temperature ESP Brindesh Dhruva (principal Inv.) Michael Dowling (presenter) Schlumberger Track Name May 18, 2010 This presentation does not contain any...

  16. Nanoparticles as Reactive Precursors: Synthesis of Alloys, Intermetallic Compounds, and Multi-Metal Oxides Through Low-Temperature Annealing and Conversion Chemistry 

    E-Print Network [OSTI]

    Bauer, John C.

    2010-07-14T23:59:59.000Z

    Alloys, intermetallic compounds and multi-metal oxides are generally made by traditional solid-state methods that often require melting or grinding/pressing powders followed by high temperature annealing (> 1000 degrees ...

  17. High-temperature ceramic receivers

    SciTech Connect (OSTI)

    Jarvinen, P. O.

    1980-01-01T23:59:59.000Z

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  18. Sputtering properties of copper-lithium alloys at reactor-level temperatures and surface erosion rates

    SciTech Connect (OSTI)

    Krauss, A.R.; Gruen, D.M.; Lam, N.Q.; DeWald, A.B.

    1984-01-01T23:59:59.000Z

    Previous experiments on copper-lithium alloys at temperatures up to 250/sup 0/C and with erosion rates of .01 to .1 monolayer per second have shown that in the electric and magnetic field environment of a magnetic-confinement fusion reactor, it is possible to maintain a lithium overlayer which will significantly reduce the copper erosion rate. We have extended these experiments to the reactor-relevant regime of 350 to 400/sup 0/C, with erosion rates approaching one monolayer per second. By comparison with the lower flux experiments, it is found that radiation damage effects start to dominate both the surface concentration and depth profile of the lithium. The subsurface region of enhanced lithium concentration is broadened, while the surface concentration is not depleted as rapidly per incident ion as in the low flux case. The time-dependent lithium depth profile is calculated using a computer code developed at Argonne which includes both Gibbsian segregation and radiation-induced effects. The experimental results are compared with these calculations. It is found that the sputtering behavior of the copper-lithium alloy is highly dependent on the mass and energy spectrum of the incident particles, the sample temperature, subsurface structure, and the partial sputtering yields of the alloy components.

  19. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27T23:59:59.000Z

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  20. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y. (Munster, IN)

    1987-01-01T23:59:59.000Z

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  1. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOE Patents [OSTI]

    Bianco, Robert (Finleyville, PA); Buckman, Jr., R. William (Pittsburgh, PA); Geller, Clint B. (Pittsburgh, PA)

    1999-01-01T23:59:59.000Z

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.

  2. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOE Patents [OSTI]

    Bianco, R.; Buckman, R.W. Jr.; Geller, C.B.

    1999-02-09T23:59:59.000Z

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume (ca. 1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum. 10 figs.

  3. Towards electroformed nanostructured aluminum alloys with high strength and ductility

    E-Print Network [OSTI]

    Ruan, Shiyun

    Nanostructured Al–Mn alloys are proposed as high-strength low-density materials, which can be electroformed (i.e., produced electrolytically and removed from the substrate) from ionic liquid. A variety of current waveforms, ...

  4. ORNL's Alumina-forming Austenitic Alloys Licensed to Carpenter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    powder metal stainless steels and specialty alloys including high temperature (iron-nickel-cobalt base), stainless, superior corrosion resistant, controlled expansion alloys,...

  5. High temperature coatings for gas turbines

    DOE Patents [OSTI]

    Zheng, Xiaoci Maggie

    2003-10-21T23:59:59.000Z

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  6. Secondary calcium solid electrolyte high temperature battery

    SciTech Connect (OSTI)

    Sammells, A.F.; Schumacher, B.

    1986-01-01T23:59:59.000Z

    The authors report on recent work directed towards determining the viability of polycrystalline Ca/sup 2 +/ conducting ..beta..''-alumina solid electrolytes as the basis for a new type of high temperature battery. In this battery system the negative electrode consisted of a calcium-silicon alloy whose redox electro-chemistry was mediated to the calcium conducting solid electrolyte via the use of the molten salt eutectic CaCl/sub 2/ (51.4/sup M//0), CaI/sub 2/ (mp 550/sup 0/C). Both the molten salt and the calcium-alloy negative active material were separated from the positive active material via the Ca/sup 2 +/ conducting polycrystalline solid electrolyte. The positive electrode consisted of a solid-state matrix having a somewhat related crystallographic structure to Ca/sup 2 +/ ..beta..''-alumina, but where a significant fraction of the A1/sup 3 +/ sites located within this solid electrolyte's spinel block were replaced by immobile transition metal species. These species were available for participating in solid-state redox electrochemistry upon electrochemical cell cycling.

  7. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

    2004-04-20T23:59:59.000Z

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  8. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  9. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  10. High temperature Seebeck coefficient metrology

    SciTech Connect (OSTI)

    Martin, J. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Tritt, T. [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States); Uher, C. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2010-12-15T23:59:59.000Z

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  11. High temperature Seebeck coefficient metrology

    SciTech Connect (OSTI)

    Martin, J.; Tritt, T.; Uher, Ctirad

    2010-01-01T23:59:59.000Z

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential propertymeasurement for evaluating the potential performance of novel thermoelectricmaterials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectricmeasurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  12. Fracture and fatigue resistance of MoSiB alloys for ultrahigh-temperature structural applications

    E-Print Network [OSTI]

    Ritchie, Robert

    Fracture and fatigue resistance of Mo­Si­B alloys for ultrahigh-temperature structural applications­Mo3Si­Mo5SiB2 alloys, which utilize a continuous a-Mo matrix to achieve unprecedented room. Introduction For applications such as aerospace engines and power generation, future advancements are limited

  13. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, E.J.; Pennline, H.W.

    2006-04-25T23:59:59.000Z

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  14. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01T23:59:59.000Z

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  15. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, J.R.; Poeppel, R.B.

    1995-06-20T23:59:59.000Z

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  16. Role of Crystallographic Texture and Grain Size on Low Temperature Deformation and Formability of a Mg Alloy

    E-Print Network [OSTI]

    Dogan, Ebubekir

    2014-12-12T23:59:59.000Z

    Interest in Mg alloys has significantly increased in recent years for weight-critical applications. However, Mg alloys show low strength and poor low temperature formability, due to the limited available slip systems and the strong final texture...

  17. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  18. Geothermal high temperature instrumentation applications

    SciTech Connect (OSTI)

    Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants (United States)

    1998-06-11T23:59:59.000Z

    A quick look at the geothermal industry shows a small industry producing about $1 billion in electric sales annually. The industry is becoming older and in need of new innovative solutions to instrumentation problems. A quick look at problem areas is given along with basic instrumentation requirements. The focus of instrumentation is on high temperature electronics.

  19. ENHANCEMENT OF THE SUPERCONDUCTING TRANSITION TEMPERATURES IN ION-IMPLANTED ALUMINIUM ALLOYS (*)

    E-Print Network [OSTI]

    Boyer, Edmond

    L-287 ENHANCEMENT OF THE SUPERCONDUCTING TRANSITION TEMPERATURES IN ION-IMPLANTED ALUMINIUM ALLOYS helium temperatures, have maximum superconducting transition temperatures Tc of 4.2 K (C), 7.35 K (Ge 1976, Classification Physics Abstracts 7.188 - 8.362 One of the crucial problems in superconductivity

  20. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  1. High-Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  2. High Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  3. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

  4. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  5. High swelling rates observed in neutron-irradiated V-Cr and V-Si binary alloys

    SciTech Connect (OSTI)

    Garner, F.A.; Gelles, D.S. (Pacific Northwest Lab., Richland, WA (United States)); Takahashi, H.; Ohnuki, S.; Kinoshita, H. (Hokkaido Univ., Sapporo (Japan)); Loomis, B.A. (Argonne National Lab., IL (United States))

    1991-11-01T23:59:59.000Z

    Additions of 5 to 14 wt% chromium to vanadium lead to very large swelling rates during neutron irradiation of the binary alloys, with swelling increasing strongly at higher irradiation temperatures. Addition of 2 wt% silicon to vanadium also leads to very large swelling rates but swelling decreases with increasing irradiation temperature. Addition of 1 wt% zirconium does not yield high swelling rates, however.

  6. NSTX High Temperature Sensor Systems

    SciTech Connect (OSTI)

    B.McCormack; H.W. Kugel; P. Goranson; R. Kaita; et al

    1999-11-01T23:59:59.000Z

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed.

  7. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30T23:59:59.000Z

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  8. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1994-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  9. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1993-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  10. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1992-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  11. Thermomechanical Characterization of a TiPdNi High Temperature SMA under Tension

    E-Print Network [OSTI]

    Thermomechanical Characterization of a TiPdNi High Temperature SMA under Tension Parikshith K issues, a nominal composition of Ti50Pd40Ni10 HTSMA was used. The alloy was fabricated using a vacuum arc Electrode Discharge Machining (EDM). A high temperature experimental setup was developed on a load frame

  12. THE USE OF TERNARY PHASE DIAGRAMS IN THE STUDY OF HIGH TEMPERATURE CORROSION

    E-Print Network [OSTI]

    DuPont, John N.

    THE USE OF TERNARY PHASE DIAGRAMS IN THE STUDY OF HIGH TEMPERATURE CORROSION PRODUCTS FORMED ON Fe'' and resulting morphologies that may occur during formation of corrosion scales from high temperature gaseous the previously formed reaction products was found to produce internal corrosion phases within the alloy

  13. Stress-induced large Curie temperature enhancement in Fe(sub 64)Ni(sub 36) Invar alloy.

    SciTech Connect (OSTI)

    Gorria, P.; Martinez-Blanco, D.; Perez, M. J.; Blanco, J. A.; Hernando, A.; Laguna-Marco, M. A.; Haskel, D.; Souza-Neto, N. M.; Xmith, R. I.; Marshall, W. G.; Garbarino, G.; Mezouar, M.; Fernandez-Martinez, A.; Chaboy, J.; Fernandez Barquin, L.; Rodriguez Castrillon, J. A.; Moldovan, M.; Garcia Alonso, J. I.; Zhang, J.; Llobet, A.; Jiang, J. S.; Univ. de Oviedo; Inst. de Magnetismo Aplicado; ISIS Facility; ESRF; Univ.Grenoble and CNRS; CSIC-Univ. de Zaragoza; Univ. de Cantabria; LANL

    2009-01-01T23:59:59.000Z

    We have succeeded in increasing up to 150 K the Curie temperature in the Fe{sub 64}N{sub 36}6 invar alloy by means of a severe mechanical treatment followed by a heating up to 1073 K. The invar behavior is still present as revealed by the combination of magnetic measurements with neutron and x-ray techniques under extreme conditions, such as high temperature and high pressure. The proposed explanation is based in a selective induced microstrain around the Fe atoms, which causes a slight increase in the Fe-Fe interatomic distances, thus reinforcing ferromagnetic interactions due to the strong magnetoelastic coupling in these invar compounds.

  14. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J.C. Crepeau; J.L. Rempe; J.E. Daw; D.L. Knudson: K.G. Condie; S.C. Wilkins

    2008-03-31T23:59:59.000Z

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped molybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to become familiar with the techniques and equipment used for specialized high temperature instrumentation fabrication and evaluation and to author/coauthor several key conference papers and journal articles.

  15. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J. C. Crepeau; J. L. Rempe; J. E. Daw; D. L. Knudson; K. G. Condie; S. C. Wilkins

    2008-03-01T23:59:59.000Z

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped lybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 °C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to become familiar with the techniques and equipment used for specialized high temperature instrumentation fabrication and evaluation and to author/coauthor several key conference papers and journal articles.

  16. On a one-dimensional shape-memory alloy model in its fast-temperature-activation limit

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    On a one-dimensional shape-memory alloy model in its fast-temperature-activation limit Toyohiko describing the motion of a shape-memory alloy spring at a small characteristic time scale, called here fast for shape memory alloys that can capture oscillations and then damp out these oscillations numerically

  17. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications

    SciTech Connect (OSTI)

    Charit, Indrajit; Butt, Darryl; Frary, Megan; Carroll, Mark

    2012-11-05T23:59:59.000Z

    This research will develop an optimized, cost-effective method for producing high-purity tungsten-rhenium alloyed fuel clad forms that are crucial for the development of a very high-temperature nuclear reactor. The study will provide critical insight into the fundamental behavior (processing-microstructure- property correlations) of W-Re alloys made using this new fabrication process comprising high-energy ball milling (HEBM) and spark plasma sintering (SPS). A broader goal is to re-establish the U.S. lead in the research field of refractory alloys, such as W-Re systems, with potential applications in very high-temperature nuclear reactors. An essential long-term goal for nuclear power is to develop the capability of operating nuclear reactors at temperatures in excess of 1,000K. This capability has applications in space exploration and some special terrestrial uses where high temperatures are needed in certain chemical or reforming processes. Refractory alloys have been identified as being capable of withstanding temperatures in excess of 1,000K and are considered critical for the development of ultra hightemperature reactors. Tungsten alloys are known to possess extraordinary properties, such as excellent high-temperature capability, including the ability to resist leakage of fissile materials when used as a fuel clad. However, there are difficulties with the development of refractory alloys: 1) lack of basic experimental data on thermodynamics and mechanical and physical properties, and 2) challenges associated with processing these alloys.

  18. High temperature x ray diffraction determination of the body-centered-cubicface-centered-cubic transformation temperature in

    E-Print Network [OSTI]

    McHenry, Michael E.

    , generators, transformers, sensors,1 and, more recently, for magnetic refrigeration.4­6 Recently 16 February 2012) In situ high-temperature x ray diffraction and magnetization measurements were.1063/1.3675990] INTRODUCTION Fe-Ni alloys have been extensively studied, due to their technologically important magnetic

  19. Environmental effect on room-temperature ductility of isothermally forged TiAl-base alloys

    SciTech Connect (OSTI)

    Nakamura, Morihiko; Hashimoto, Kenki (National Research Inst. for Metals, Tokyo (Japan)); Itoh, Naoyuki (Nippon Steel Corp., Chiba (Japan)); Tsujimoto, Tokuzo (Ibaraki Univ. (Japan). Faculty of Engineering); Suzuki, Toshiyuki (Kougakuin Univ., Tokyo (Japan))

    1994-02-01T23:59:59.000Z

    Isothermally forged TiAl-base alloy (Al-rich, Mn-containing, and Cr-containing TiAl) were heat-treated in various conditions, and equiaxed grain structures consisting of [gamma] and [alpha][sub 2] or [beta] phases were obtained. The heat-treated alloys were tensile tested in vacuum and air at room temperature, and the environmental effect on tensile elongation was studied. The ductility of the alloys consisting of equiaxed [gamma] grains and a large amount of [alpha][sub 2] grains was not largely affecting by laboratory air, and a decrease in the amount of [alpha][sub 2] grains resulted in a large reduction of ductility in air. The [beta] phase in the Cr-containing alloy improved the ductility in vacuum, but it resulted in a large reduction of ductility in air.

  20. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George (Albuquerque, NM); Armijo, James Rudolph (Albuquerque, NM); Frear, Darrel Richard (Austin, TX)

    2000-01-01T23:59:59.000Z

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  1. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, L.A.; Reichert, P.

    1997-03-18T23:59:59.000Z

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  2. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Reichert, Patrick (Hayward, CA)

    1997-01-01T23:59:59.000Z

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  3. Neural network analysis of strength and ductility of welding alloys for high strength low

    E-Print Network [OSTI]

    Cambridge, University of

    Neural network analysis of strength and ductility of welding alloys for high strength low alloy There are considerable demands for the development of weld metals for high strength low alloy steels. To assist in meeting such demands, a neural network was trained and tested on a set of data obtained on weld metals

  4. Feeding of High-Nickel Alloy Castings KENT D. CARLSON, SHOUZHU OU, and CHRISTOPH BECKERMANN

    E-Print Network [OSTI]

    Beckermann, Christoph

    Feeding of High-Nickel Alloy Castings KENT D. CARLSON, SHOUZHU OU, and CHRISTOPH BECKERMANN Feeding of the nickel-based alloys CZ-100, M-35-1, and CW-12MW, as well as of the austenitic stainless steel CN-7M are shown to provide accurate FDs for the casting trial plates. The FDs of the high-nickel alloys (except CZ

  5. High-temperature thermocouples and related methods

    DOE Patents [OSTI]

    Rempe, Joy L. (Idaho Falls, ID); Knudson, Darrell L. (Firth, ID); Condie, Keith G. (Idaho Falls, ID); Wilkins, S. Curt (Idaho Falls, ID)

    2011-01-18T23:59:59.000Z

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  6. Temperture and composition dependence of the high flux plasma sputtering yield of Cu-Li binary alloys

    SciTech Connect (OSTI)

    Krauss, A.R.; Mendelsohn, M.H.; Gruen, D.M.; Conn, R.W.; Goebel, D.M.; Hirooka, Y.; Leung, W.K.; Bohdansky, J.

    1986-01-01T23:59:59.000Z

    High flux deuterium plasma sputtering and ion beam experiments have been performed on Cu-Li alloys to determine if the reduction in copper erosion previously predicted and observed in low flux ion beam experiments occurs at particle fluxes representative of an RFP first wall or tokamak limiter. Partial sputtering yields of the copper and lithium components have been measured as a function of alloy composition and sample temperature using optical plasma emission spectroscopy, weight loss and catcher foil techniques. It is found that the lithium sputtering yield increases with increasing sample temperature while the copper yield decreases by as much as two orders of magnitude. The temperature required to obtain the reduction in copper erosion is found to be a function of bulk lithium concentration. Consequences of these experimental results for anticipated erosion/redeposition properties are calculated, and the Cu-Li alloy in found to compare favorably with conventional low-Z materials.

  7. Quantifying the economic and commercial potential of a high strength, low thermal coefficient super-alloy

    E-Print Network [OSTI]

    Liew, Heng Lee Henry

    2008-01-01T23:59:59.000Z

    Inspired by the importance of having a favourable sheathing material for superconducting wires, a high-strength, low thermal coefficient (CTE) super-alloy has been developed. Known as Incoloy 908, this super-alloy's material ...

  8. High Temperature Irradiation-Resistant Thermocouple Performance Improvements

    SciTech Connect (OSTI)

    Joshua Daw; Joy Rempe; Darrell Knudson; John Crepeau; S. Curtis Wilkins

    2009-04-01T23:59:59.000Z

    Traditional methods for measuring temperature in-pile degrade at temperatures above 1100 ºC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple (HTIR-TC) that contains alloys of molybdenum and niobium. Data from high temperature (up to 1500 ºC) long duration (up to 4000 hours) tests and on-going irradiations at INL’s Advanced Test Reactor demonstrate the superiority of these sensors to commercially-available thermocouples. However, several options have been identified that could further enhance their reliability, reduce their production costs, and allow their use in a wider range of operating conditions. This paper presents results from on-going Idaho National Laboratory (INL)/University of Idaho (UI) efforts to investigate options to improve HTIR-TC ductility, reliability, and resolution by investigating specially-formulated alloys of molybdenum and niobium and alternate diameter thermoelements (wires). In addition, on-going efforts to evaluate alternate fabrication approaches, such as drawn and loose assembly techniques will be discussed. Efforts to reduce HTIR-TC fabrication costs, such as the use of less expensive extension cable will also be presented. Finally, customized HTIR-TC designs developed for specific customer needs will be summarized to emphasize the varied conditions under which these sensors may be used.

  9. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells...

  10. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  11. Highly mismatched crystalline and amorphous GaN(1-x)As(x) alloys in the whole composition range

    SciTech Connect (OSTI)

    Yu, K. M.; Novikov, S. V.; Broesler, R.; Demchenko, I. N.; Denlinger, J. D.; Liliental-Weber, Z.; Luckert, F.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2009-08-29T23:59:59.000Z

    Alloying is a commonly accepted method to tailor properties of semiconductor materials for specific applications. Only a limited number of semiconductor alloys can be easily synthesized in the full composition range. Such alloys are, in general, formed of component elements that are well matched in terms of ionicity, atom size, and electronegativity. In contrast there is a broad class of potential semiconductor alloys formed of component materials with distinctly different properties. In most instances these mismatched alloys are immiscible under standard growth conditions. Here we report on the properties of GaN1-xAsx, a highly mismatched, immiscible alloy system that was successfully synthesized in the whole composition range using a nonequilibrium low temperature molecular beam epitaxy technique. The alloys are amorphous in the composition range of 0.17alloys with x>0.2, and to the upward movement of the valence band for alloys with x<0.2. The unique features of the band structure offer an opportunity of using GaN1-xAsx alloys for various types of solar power conversion devices.

  12. High permeance sulfur tolerant Pd/Cu alloy membranes

    DOE Patents [OSTI]

    Ma, Yi Hua; Pomerantz, Natalie

    2014-02-18T23:59:59.000Z

    A method of making a membrane permeable to hydrogen gas (H.sub.2.uparw.) is disclosed. The membrane is made by forming a palladium layer, depositing a layer of copper on the palladium layer, and galvanically displacing a portion of the copper with palladium. The membrane has improved resistance to poisoning by H.sub.2S compared to a palladium membrane. The membrane also has increased permeance of hydrogen gas compared to palladium-copper alloys. The membrane can be annealed at a lower temperature for a shorter amount of time.

  13. Reinforcement Learning for Determining Temperature/Strain Behavior of Shape Memory Alloys

    E-Print Network [OSTI]

    Valasek, John

    Reinforcement Learning for Determining Temperature/Strain Behavior of Shape Memory Alloys Kenton Kirkpatrick John Valasek Aerospace Engineering Department Texas A&M University AIAA International Student Conference 5 January 2009 47th Aerospace Sciences Meeting and Exhibit Orlando, FL #12;Basic Overview

  14. Comparison of alloying concepts for Low Transformation Temperature (LTT) welding consumables

    E-Print Network [OSTI]

    Cambridge, University of

    Comparison of alloying concepts for Low Transformation Temperature (LTT) welding consumables L. Karlsson1 , L. Mráz2 , H. K. D. H. Bhadeshia3 and A. A. Shirzadi4 1 ESAB AB, Göteborg, Sweden 2 Welding Abstract Fatigue cracks often initiate at welds as a consequence of large residual stresses and changes

  15. Adjusting alloy compositions for selected properties in temperature limited heaters

    DOE Patents [OSTI]

    Brady; Michael Patrick (Oak Ridge, TN), Horton, Jr.; Joseph Arno (Oak Ridge, TN), Vitek; John Michael (Oak Ridge, TN)

    2010-03-23T23:59:59.000Z

    Heaters for treating a subsurface formation are described herein. Such heaters can be obtained by using the systems and methods described herein. The heater includes a heater section including iron, cobalt, and carbon. The heater section has a Curie temperature less than a phase transformation temperature. The Curie temperature is at least 740.degree. C. The heater section provides, when time varying current is applied to the heater section, an electrical resistance.

  16. DEVELOPMENT OF A HIGH STRENGTH, HYDROGEN-RESISTANT AUSTENITIC ALLOY

    E-Print Network [OSTI]

    Chang, K.M.

    2010-01-01T23:59:59.000Z

    mechanical properties to gaseous hydrogen was determinedof these properties the alloy was subjected to hydrogenTensile Properties of Alloy E in Air and in Hydrogen.

  17. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28T23:59:59.000Z

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  18. A Comparison of the Corrosion Resistance of Iron-Based Amorphous Metals and Austenitic Alloys in Synthetic Brines at Elevated Temperature

    SciTech Connect (OSTI)

    Farmer, J C

    2008-11-25T23:59:59.000Z

    Several hard, corrosion-resistant and neutron-absorbing iron-based amorphous alloys have now been developed that can be applied as thermal spray coatings. These new alloys include relatively high concentrations of Cr, Mo, and W for enhanced corrosion resistance, and substantial B to enable both glass formation and neutron absorption. The corrosion resistances of these novel alloys have been compared to that of several austenitic alloys in a broad range of synthetic brines, with and without nitrate inhibitor, at elevated temperature. Linear polarization and electrochemical impedance spectroscopy have been used for in situ measurement of corrosion rates for prolonged periods of time, while scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDAX) have been used for ex situ characterization of samples at the end of tests. The application of these new coatings for the protection of spent nuclear fuel storage systems, equipment in nuclear service, steel-reinforced concrete will be discussed.

  19. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04T23:59:59.000Z

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  20. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1997-01-01T23:59:59.000Z

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  1. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I. [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)] [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)

    2013-09-11T23:59:59.000Z

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  2. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27T23:59:59.000Z

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  3. Deep Trek High Temperature Electronics Project

    SciTech Connect (OSTI)

    Bruce Ohme

    2007-07-31T23:59:59.000Z

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  4. A chemical approach toward low temperature alloying of immiscible iron and molybdenum metals

    SciTech Connect (OSTI)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Applied Chemistry Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore 54600 (Pakistan); Ahmed, Sohail [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Akhtar, Muhammad Javed; Siddique, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Khan, Nawazish Ali [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Shah, Muhammad Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Nadeem, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2013-11-15T23:59:59.000Z

    Graphical abstract: - Highlights: • Low temperature pyrolysis of [Fe(bipy){sub 3}]Cl{sub 2} and [Mo(bipy)Cl{sub 4}] homogeneous powder. • Easy low temperature alloying of immiscible metals like Fe and Mo. • Uniform sized Fe–Mo nanoalloy with particle size of 48–68 nm. • Characterization by EDXRF, AFM, XRPD, magnetometery, {sup 57}Fe Mössbauer and impedance. • Alloy behaves as almost superparamagnetic obeying simple –R(CPE)– circuit. - Abstract: The present research is based on a low temperature operated feasible method for the synthesis of immiscible iron and molybdenum metals’ nanoalloy for technological applications. The nanoalloy has been synthesized by pyrolysis of homogeneous powder precipitated, from a common solvent, of the two complexes, trisbipyridineiron(II)chloride, [Fe(bipy){sub 3}]Cl{sub 2}, and bipyridinemolybedenum(IV) chloride, [Mo(bipy)Cl{sub 4}], followed by heating at 500 °C in an inert atmosphere of flowing argon gas. The resulting nanoalloy has been characterized by using EDXRF, AFM, XRD, magnetometery, {sup 57}Fe Mössbauer and impedance spectroscopies. These results showed that under provided experimental conditions iron and molybdenum metals, with known miscibility barrier, alloy together to give (1:1) single phase material having particle size in the range of 48–66 nm. The magnetism of iron is considerably reduced after alloy formation and shows its trend toward superparamagnetism. The designed chemical synthetic procedure is equally feasible for the fabrication of other immiscible metals.

  5. Highly Dispersed Alloy Catalyst for Durability

    SciTech Connect (OSTI)

    Vivek S. Murthi (Primary Contact), Elise Izzo, Wu Bi, Sandra Guerrero and Lesia Protsailo

    2013-01-08T23:59:59.000Z

    Achieving DOE�¢����s stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  6. The Effects of Test Temperature, Temper, and Alloyed Copper on the Hydrogen-Controlled Crack Growth Rate of an Al-Zn-Mg-(Cu) Alloy

    SciTech Connect (OSTI)

    G.A. Young, Jr.; J.R. Scully

    2000-09-17T23:59:59.000Z

    The hydrogen embrittlement controlled stage II crack growth rate of AA 7050 (6.09 wt.% Zn, 2.14 wt% Mg, 2.19 wt.% Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged, peak aged, and overaged conditions were tested in 90% relative humidity (RH) air at temperatures between 25 and 90 C. At all test temperatures, an increased degree of aging (from underaged to overaged) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed Arrhenius-type temperature dependence with activation energies between 58 and 99 kJ/mol. For both the normal copper and low copper alloys, the fracture path was predominantly intergranular at all test temperatures (25-90 C) in each temper investigated. Comparison of the stage II crack growth rates for normal (2.19 wt.%) and low (0.06 wt.%) copper alloys in the peak aged and overaged tempers showed the beneficial effect of copper additions on stage II crack growth rate in humid air. In the 2.19 wt.% copper alloy, the significant decrease ({approx} 10 times at 25 C) in stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. IN the 0.06 wt.% copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor, {nu}{sub 0}, resulting in a modest ({approx} 2.5 times at 25 C) decrease in crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II crack growth rate. Overaged, copper bearing alloys are not intrinsically immune to hydrogen environment assisted cracking but are more resistant due to an increased apparent activation energy for stage II crack growth.

  7. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect (OSTI)

    N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

    2010-10-01T23:59:59.000Z

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  8. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  9. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation lm028laracurzio2011o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  10. Materials Characterization Capabilities at the High Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    and Peer Evaluation Meeting lm028laracurzio2012o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  11. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 18-22, 2009 -- Washington D.C. lm01laracurzio.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  12. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory: Focus on Carbon Fiber and Composites Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites 2011 DOE...

  13. Materials Characterization Capabilities at the High Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites Project ID: LM027 DOE 2011 Vehicle Technologies Annual Merit...

  14. Intertwined Orders in High Temperature Superconductors

    E-Print Network [OSTI]

    Ostoja-Starzewski, Martin

    Intertwined Orders in High Temperature Superconductors ! Eduardo Fradkin University of Illinois · Electronic liquid crystal phases have also been seen heavy fermions and iron superconductors 7 #12

  15. Polyelectrolyte Materials for High Temperature Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    High 3M (3M) Temperature Fuel Cells John B. Kerr Lawrence Berkeley National Laboratory (LBNL) Collaborators: Los Alamos National Laboratory (LANL). February 13, 2007 This...

  16. Quantitative Modeling of High Temperature Magnetization Dynamics

    SciTech Connect (OSTI)

    Zhang, Shufeng

    2009-03-01T23:59:59.000Z

    Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport

  17. Photonic crystals for high temperature applications

    E-Print Network [OSTI]

    Yeng, Yi Xiang

    2014-01-01T23:59:59.000Z

    This thesis focuses on the design, optimization, fabrication, and experimental realization of metallic photonic crystals (MPhCs) for high temperature applications, for instance thermophotovoltaic (TPV) energy conversion ...

  18. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    SciTech Connect (OSTI)

    Weiss, David C. [Eck Industreis, Inc.] [Eck Industreis, Inc.; Gegal, Gerald A.

    2014-04-15T23:59:59.000Z

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  19. Processing Age-hardenable Alloys by Equal-Channel Angular Pressing at Room Temperature: Strategies and Advantages

    E-Print Network [OSTI]

    Gubicza, Jenõ

    Processing Age-hardenable Alloys by Equal-Channel Angular Pressing at Room Temperature: Strategies, Poland 3 Departments of Aerospace & Mechanical Engineering and Materials Science, University of SouthernZnMg alloys, precipitation, Guinier-Preston zones, Equal-Channel Angular Pressing, strengthening, elongation

  20. High temperature synthetic cement retarder

    SciTech Connect (OSTI)

    Eoff, L.S.; Buster, D.

    1995-11-01T23:59:59.000Z

    A synthetic cement retarder which provides excellent retardation and compressive strength development has been synthesized. The response properties and temperature ranges of the synthetic retarder far exceed those of commonly used retarders such as lignosulfonates. The chemical nature of the new retarder is discussed and compared to another synthetic retarder.

  1. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect (OSTI)

    Mylavarapu, Sai K. [Ohio State University; Sun, Xiaodong [Ohio State University; Christensen, Richard N. [Ohio State University; Glosup, Richard E. [Ohio State University; Unocic, Raymond R [ORNL

    2012-01-01T23:59:59.000Z

    The very high temperature reactor (VHTR), using gas-cooled reactor technology, is one of the six reactor concepts selected by the Generation IV International Forum and is anticipated to be the reactor type for the next generation nuclear plant (NGNP). In this type of reactor with an indirect power cycle system, a high-temperature and high integrity intermediate heat exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to secondary fluid for electricity production, process heat, or hydrogen cogeneration. The current Technology Readiness Level status issued by NGNP to all components associated with the IHX for reactor core outlet temperatures of 750-800oC is 3 on a scale of 1 to 10 with 10 being the most ready. At present, there is no proven high-temperature IHX concept for VHTRs. Amongst the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP is the primary focus of this paper. In the current study, two PCHEs were fabricated using Alloy 617 plates and will be experimentally investigated for their thermal-hydraulic performance in a high-temperature helium test facility (HTHF). The HTHF was primarily designed and constructed to test the thermal-hydraulic performance of PCHEs The test facility is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800oC and 3 MPa, respectively. The PCHE fabrication related processes, i.e., photochemical machining and diffusion bonding are briefly discussed for Alloy 617 plates. Diffusion bonding of Alloy 617 plates with and without a Ni interlayer is discussed. Furthermore, preliminary microstructural and mechanical characterization studies of representative diffusion bonded Alloy 617 specimens are presented.

  2. Assessment of High-Temperature Measurements for Use in the Gas Test Loop

    SciTech Connect (OSTI)

    S. Curt Wilkins; Robert P. Evans

    2005-05-01T23:59:59.000Z

    Temperature transducers capable of control and test measurements in the 1400-1800¢ªC range in the fast neutron irradiation environment of the Gas Test Loop are evaluated. Among the instruments discussed are high-temperature thermocouples, resistance temperature detectors, ultrasonic thermometers, noise thermometers, and optical temperature sensors. High-temperature capability, behavior under irradiation, technical maturity, cost, and availability are among the key factors considered in assessing the relative merits of each measurement method. In the near term, the doped molybdenum versus niobium-zirconium alloy thermocouple is deemed to be best suited to the in-pile test and control requirements. Additional characterization of this thermocouple combination is needed to ensure confidence in its performance. Use of tungsten-rhenium alloy thermocouples, with specific disadvantages noted, constitutes the recommended back-up position.

  3. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31T23:59:59.000Z

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  4. NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.

    SciTech Connect (OSTI)

    VIlim, R.; Nuclear Engineering Division

    2009-03-12T23:59:59.000Z

    Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This compares with a value of 43.9 for the reference plant. This latter plant has a reactor outlet temperature of 850 C and the two high temperature heat exchangers. The reduction in reactor outlet temperature from 850 C to 700 C reduces the tritium permeability rate in the IHX metal by a factor of three and thermal creep by five orders of magnitude. The design option for reducing PHX temperature from 800 C to 200 C reduces the permeability there by three orders of magnitude. In that design option this heat exchanger is the single 'choke-point' for tritium migration from the nuclear to the chemical plant.

  5. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-08-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  6. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  7. Corrosion Resistant Coatings for High Temperature Applications

    SciTech Connect (OSTI)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01T23:59:59.000Z

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  8. Band anticrossing effects in highly mismatched semiconductor alloys

    SciTech Connect (OSTI)

    Wu, Junqiao

    2002-09-09T23:59:59.000Z

    The first five chapters of this thesis focus on studies of band anticrossing (BAC) effects in highly electronegativity- mismatched semiconductor alloys. The concept of bandgap bowing has been used to describe the deviation of the alloy bandgap from a linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero (for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin film deposition techniques have allowed the growth of semiconductor alloys composed of significantly different constituents with ever- improving crystalline quality (e.g., GaAs{sub 1-x}N{sub x} and GaP{sub 1-x}N{sub x} with x {approx}< 0.05). These alloys exhibit many novel and interesting properties including, in particular, a giant bandgap bowing (bowing parameters > 14 eV). A band anticrossing model has been developed to explain these properties. The model shows that the predominant bowing mechanism in these systems is driven by the anticrossing interaction between the localized level associated with the minority component and the band states of the host. In this thesis I discuss my studies of the BAC effects in these highly mismatched semiconductors. It will be shown that the results of the physically intuitive BAC model can be derived from the Hamiltonian of the many-impurity Anderson model. The band restructuring caused by the BAC interaction is responsible for a series of experimental observations such as a large bandgap reduction, an enhancement of the electron effective mass, and a decrease in the pressure coefficient of the fundamental gap energy. Results of further experimental investigations of the optical properties of quantum wells based on these materials will be also presented. It will be shown that the BAC interaction occurs not only between localized states and conduction band states at the Brillouin zone center, but also exists over all of k-space. Finally, taking ZnSTe and ZnSeTe as examples, I show that BAC also occurs between localized states and the valence band states. Soft x-ray fluorescence experiments provide direct evidence of the BAC interaction in these systems. In the final chapter of the thesis, I describe and summarize my studies of optical properties of wurtzite InN and related alloys. Early studies performed on InN films grown by sputtering techniques suggested a direct bandgap of {approx}1.9 eV for this semiconductor. Very recently, high-quality InN films with much higher mobility have become available by using the molecular beam epitaxy growth method. Optical experiments carried out on these samples reveal a narrow bandgap for InN of 0.77 eV, much lower than the previously accepted value. Optical properties of InGaN and InAlN ternaries on the In rich side have also been characterized and are found to be consistent with the narrow bandgap of InN. The bandgap bowing parameters in these alloys were determined. In the context of these findings, the bandgap energies of InGaN and InAlN were found to cover a wide spectral range from the infrared for InN to the ultraviolet for GaN and deep ultraviolet for AlN. The significance of this work is rooted in many important applications of nitride semiconductors in optoelectronics and solar energy conversion devices.

  9. High Temperature Gas Reactors The Next Generation ?

    E-Print Network [OSTI]

    -Proof Advanced Reactor and Gas Turbine #12;Flow through Power Conversion Vessel 8 #12;9 TRISO Fuel Particle1 High Temperature Gas Reactors The Next Generation ? Professor Andrew C Kadak Massachusetts of Brayton vs. Rankine Cycle · High Temperature Helium Gas (900 C) · Direct or Indirect Cycle · Originally

  10. DEFORMATION MECHANISMS AND DAMAGE OF OXIDE DISPERSION STRENGTHENED STEELS AT HIGH TEMPERATURE

    E-Print Network [OSTI]

    Boyer, Edmond

    alloy, an ODS ferritic steel produced by hot extrusion at CEA are presented. Its mechanical propertiesTech, 91003 Evry, France ABSTRACT A ferritic oxide dispersion strengthened steel is under study for fuel are suspected and intergranular damage is observed on fractured specimens. KEYWORDS ODS steels, high temperature

  11. The effect of inter-pass temperature on residual stresses in multi-pass welds produced using a low transformation temperature filler alloy

    E-Print Network [OSTI]

    Cambridge, University of

    The effect of inter-pass temperature on residual stresses in multi-pass welds produced using a low-to-martensite transformation temperatures offer an effective method of reducing residual stresses in strong, steel welds with a martensitic weld filler alloy that transforms at a low temperature, have been studied as a function

  12. HIGH TEMPERATURE IRRADIATION RESISTANT THERMOCOUPLES – A LOW COST SENSOR FOR IN-PILE TESTING AT HIGH TEMPERATURES

    SciTech Connect (OSTI)

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; S. Curtis Wilkins; Joshua E. Daw

    2008-06-01T23:59:59.000Z

    Several options have been identified to improve recently-developed Idaho National Laboratory (INL) High Temperature Irradiation Resistant ThermoCouples (HTIR-TCs) for in-pile testing. These options have the potential to reduce fabrication costs and allow HTIR-TC use in higher temperature applications (up to at least 1800 °C). The INL and the University of Idaho (UI) investigated these options with the ultimate objective of providing recommendations for alternate thermocouple designs that are optimized for various applications. This paper summarizes results from these INL/UI investigations. Specifically, results are reported about several options found to enhance HTIR-TC performance, such as improved heat treatments, alternate geometries, alternate fabrication techniques, and the use of copper/nickel alloys as soft extension cable.

  13. Recrystallization of high temperature superconductors

    SciTech Connect (OSTI)

    Kouzoudis, D.

    1996-05-09T23:59:59.000Z

    Currently one of the most widely used high {Tc} superconductors is the Bi-based compounds Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub z} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub z} (known as BSCCO 2212 and 2223 compounds) with {Tc} values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  14. High-Temperature-High-Volume Lifting for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Turnquist GE Global Research High Temperature Tools and Sensors, Down-hole Pumps and Drilling May 19, 2010 This presentation does not contain any proprietary confidential, or...

  15. High-Temperature-High-Volume Lifting For Enhanced Geothermal...

    Open Energy Info (EERE)

    include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall...

  16. High temperature solar selective coatings

    DOE Patents [OSTI]

    Kennedy, Cheryl E

    2014-11-25T23:59:59.000Z

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  17. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A. [NMD and Associates, Cincinnati, OH (United States)

    1998-01-01T23:59:59.000Z

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  18. High-Temperature Water Splitting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Temperature Water Splitting High-Temperature Water Splitting High-temperature water splitting (a "thermochemical" process) is a long-term technology in the early stages of...

  19. High temperature oxidation behavior of Fe-Cr-Al foils

    SciTech Connect (OSTI)

    Chang, C.S.; Jha, B. [Texas Instruments, Inc., Attleboro, MA (United States)

    1998-12-31T23:59:59.000Z

    Metallic catalytic converters for automotive emission control is becoming an important application for heat resistant alloys as more design opportunities are realized. The service conditions and design of metallic catalytic converters require the alloy to be highly oxidation resistant at gauges typically at 50 microns or less. For conventional heat resistant alloy design the goal is to form a well adherent scale on the alloy surface to protect the alloy matrix from being oxidized. However, the thin gauge results in a limited supply of alloying elements that can form the protective scale on the surface. The alloy chemistry has to be optimized to have the minimum oxidation while maintaining processing characteristics. Furthermore, the ratio of scale thickness to foil gauge is significant and the stress state between them introduces measurable permanent distortion of the foil. In this study, the effect of alloying elements on the oxidation behavior of commonly used Fe-Cr-Al alloys was quantified by the oxidation weight gain and length change measurements.

  20. SUSY and symmetry nonrestoration at high temperature

    SciTech Connect (OSTI)

    Bajc, Borut [J. Stefan Institute, 1001 Ljubljana (Slovenia)

    1999-07-15T23:59:59.000Z

    The status of internal symmetry breaking at high temperature in super-symmetric models is shortly reviewed. This possibility could solve some well known cosmological problems, such as the domain wall, monopole and false vacuum problems.

  1. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    SciTech Connect (OSTI)

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

    2014-01-16T23:59:59.000Z

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are 1) dynamic creep-fatigue-environment process, 2) subcritical crack processes, 3) dynamic corrosion – crack initiation processes, and 4) modeling.

  2. Design of high temperature high speed electromagnetic axial thrust bearing

    E-Print Network [OSTI]

    Mohiuddin, Mohammad Waqar

    2002-01-01T23:59:59.000Z

    DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2002 Major Subject: Mechanical Engineering DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to Texas A&M University in partial fulfillment...

  3. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

    1998-01-01T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  4. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  5. Characterization of high-current, high-temperature superconductor current lead elements

    SciTech Connect (OSTI)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L. [Argonne National Lab., IL (United States); Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J. [American Superconductor Corp., Westborough, MA (United States)

    1996-08-01T23:59:59.000Z

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures.

  6. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1993-01-01T23:59:59.000Z

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  7. High temperature crystalline superconductors from crystallized glasses

    DOE Patents [OSTI]

    Shi, Donglu (Downers Grove, IL)

    1992-01-01T23:59:59.000Z

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  8. Apparatus and method for high temperature viscosity and temperature measurements

    DOE Patents [OSTI]

    Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

    2001-01-01T23:59:59.000Z

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  9. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    SciTech Connect (OSTI)

    Vinayak N. Kabadi

    1999-02-20T23:59:59.000Z

    It is well known that the fluid phase equilibria can be represented by a number of {gamma}-models , but unfortunately most of them do not function well under high temperature. In this calculation, we mainly investigate the performance of UNIQUAC and NRTL models under high temperature, using temperature dependent parameters rather than using the original formulas. the other feature of this calculation is that we try to relate the excess Gibbs energy G{sup E}and enthalpy of mixing H{sup E}simultaneously. In other words, we will use the high temperature and pressure G{sup E} and H{sup E}data to regress the temperature dependant parameters to find out which model and what kind of temperature dependant parameters should be used.

  10. QED3 Theory of High Temperature Superconductors

    E-Print Network [OSTI]

    Tesanovic, Zlatko

    QED3 Theory of High Temperature Superconductors Zlatko Tesanovi´c The Johns Hopkins University-wave Superconductor to Antiferromagnet via Strange Metal #12;This talk is based on: M. Franz and ZT, Phys. Rev. Lett is The Problem in high Tc superconductors? · Superconducting state appears dx2-y2 "BCS-like". Low energy

  11. Understanding and Improving High-Temperature Structural Properties of Metal-Silicide Intermetallics

    SciTech Connect (OSTI)

    Bruce S. Kang

    2005-10-10T23:59:59.000Z

    The objective of this project was to understand and improve high-temperature structural properties of metal-silicide intermetallic alloys. Through research collaboration between the research team at West Virginia University (WVU) and Dr. J.H. Schneibel at Oak Ridge National Laboratory (ORNL), molybdenum silicide alloys were developed at ORNL and evaluated at WVU through atomistic modeling analyses, thermo-mechanical tests, and metallurgical studies. In this study, molybdenum-based alloys were ductilized by dispersing MgAl2O4 or MgO spinel particles. The addition of spinel particles is hypothesized to getter impurities such as oxygen and nitrogen from the alloy matrix with the result of ductility improvement. The introduction of fine dispersions has also been postulated to improve ductility by acting as a dislocation source or reducing dislocation pile-ups at grain boundaries. The spinel particles, on the other hand, can also act as local notches or crack initiation sites, which is detrimental to the alloy mechanical properties. Optimization of material processing condition is important to develop the desirable molybdenum alloys with sufficient room-temperature ductility. Atomistic analyses were conducted to further understand the mechanism of ductility improvement of the molybdenum alloys and the results showed that trace amount of residual oxygen may be responsible for the brittle behavior of the as-cast Mo alloys. For the alloys studied, uniaxial tensile tests were conducted at different loading rates, and at room and elevated temperatures. Thermal cycling effect on the mechanical properties was also studied. Tensile tests for specimens subjected to either ten or twenty thermal cycles were conducted. For each test, a follow-up detailed fractography and microstructural analysis were carried out. The test results were correlated to the size, density, distribution of the spinel particles and processing time. Thermal expansion tests were carried out using thermo-mechanical analyzer (TMA). Results showed that the coefficient of thermal expansion (CTE) value decreases with the addition of spinel and silicide particles. Thermo-cycling tests showed that molybdenum alloy with 6% wt of spinel (MgAl2O4) developed microcracks which were caused by thermal expansion mismatch between the spinel particles and molybdenum matrix, as well as the processing conditions. Detailed post-mortem studies of microstructures and segregation of impurities to the oxide dispersion/Mo interfaces were conducted using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS).

  12. Development of a 500 Watt High Temperature Thermoelectric Generator

    Broader source: Energy.gov (indexed) [DOE]

    * TEG thermal and electrical interfaces modified to withstand high temperature environment 8 5 August, 2009 Deer 2009 9 100 Watt High Temperature TEG 100 Watt High...

  13. Final Scientific Report - "Novel Steels for High Temperature Carburizing"

    SciTech Connect (OSTI)

    McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

    2012-07-27T23:59:59.000Z

    This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer. For comparison, a control alloy of similar composition but without the microalloy additions exhibited a duplex prior austenite grain size with grains ranging from ASTM grain size 3 down to ASTM grain size 1 after similar processing and thermal exposure. These results confirm the potential for using microalloy additions of Ti, B, Nb, Al, rare earths and/or N for austenite grain size control in Cr-Mo (i.e. 4000-series) low alloy carburizing steels. They also demonstrate that these microalloy additions will not compromise the processability of the steel; all three materials produced under the program could be hot worked readily using normal steel processing protocols. To fully realize the technical and commercial potential of these steels, there is a need to continue development work using larger-scale heats. These larger-scale heats are needed to provide adequate material for fatigue testing of quenched and tempered alloys, to conduct more complete investigations of potential alloy chemistries and to provide additional material for processing studies. It will also be beneficial to carefully review intellectual property issues associated with this family of steels, since existing Japanese patent literature suggests that significant microstructural and/or process characterization work may be needed on new materials to confirm that these materials fall outside existing patent claims.

  14. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Richard N. Christensen; Raymond R. Unocic; Richard E. Glosup; Mike W. Patterson

    2012-08-01T23:59:59.000Z

    The Very High Temperature Reactor (VHTR) using gas-cooled reactor technology is anticipated to be the reactor type for the Next Generation Nuclear Plant (NGNP). In this reactor concept with an indirect power cycle system, a high-temperature and high integrity Intermediate Heat Exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation, hydrogen production, and/or industrial process heat applications. At present, there is no proven IHX concept for VHTRs. The current Technology Readiness Level (TRL) status issued by NGNP to all components associated with the IHX for reduced nominal reactor outlet temperatures of 750–800 degrees C is 3 on a 1–10 scale, with 10 indicating omplete technological maturity. Among the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP with Alloy 617, a candidate high-temperature structural material for NGNP applications, are the primary focus of this paper. In the current study, diffusion bonding of Alloy 617 has been demonstrated, although the optimum diffusion bonding process parameters to engineer a quasi interface-free joint are yet to be determined. The PCHE fabrication related processes, i.e., photochemical etching and diffusion bonding are discussed for Alloy 617 plates. In addition, the authors’ experiences with these non-conventional machining and joining techniques are discussed. Two PCHEs are fabricated using Alloy 617 plates and are being experimentally investigated for their thermal-hydraulic performance in a High-Temperature Helium Facility (HTHF). The HTHF is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800 degrees C and 3 MPa, respectively. Furthermore, some preliminary microstructural and mechanical property characterization studies of representative diffusion bonded Alloy 617 specimens are presented. The characterization studies are restricted and less severe from an NGNP perspective but provide sufficient confidence to ensure safe operation of the heat exchangers in the HTHF. The test results are used to determine the design operating conditions for the PCHEs fabricated.

  15. Nickel aluminide alloy suitable for structural applications

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    Alloys for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1.+-.0.8%)Al--(1.0.+-.0.8%)Mo--(0.7.+-.0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques.

  16. Nickel aluminide alloy suitable for structural applications

    DOE Patents [OSTI]

    Liu, C.T.

    1998-03-10T23:59:59.000Z

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  17. Molecular beam epitaxy of GaNAs alloys with high As content for potential photoanode applications in hydrogen production

    SciTech Connect (OSTI)

    Novikov, S. V.; Staddon, C. R.; Foxon, C. T.; Yu, K. M.; Broesler, R.; Hawkridge, M.; Liliental-Weber, Z.; Walukiewicz, W.; Denlinger, J.; Demchenko, I.

    2009-10-06T23:59:59.000Z

    The authors have succeeded in growing GaN1?xAsx alloys over a large composition range (0 < x < 0.8) by plasma-assisted molecular beam epitaxy. The enhanced incorporation of As was achieved by growing the films with high As{sub 2} flux at low (as low as 100 C) growth temperatures, which is much below the normal GaN growth temperature range. Using x-ray and transmission electron microscopy, they found that the GaNAs alloys with high As content x > 0.17 are amorphous. Optical absorption measurements together with x-ray absorption and emission spectroscopy results reveal a continuous gradual decrease in band gap from -3.4 to < 1 eV with increasing As content. The energy gap reaches its minimum of -0.8 eV at x - 0.8. The composition dependence of the band gap of the crystalline GaN{sub 1?x}As{sub x} alloys follows the prediction of the band anticrossing model (BAC). However, our measured band gap of amorphous GaN{sub 1?x}As{sub x} with 0.3 < x < 0.8 are larger than that predicted by BAC. The results seem to indicate that for this composition range the amorphous GaN{sub 1?x}As{sub x} alloys have short-range ordering that resembles random crystalline GaN{sub 1?x}As{sub x} alloys. They have demonstrated the possibility of the growth of amorphous GaN{sub 1?x}As{sub x} layers with variable As content on glass substrates

  18. Temperature-controlled epitaxy of In{sub x}Ga{sub 1-x}N alloys and their band gap bowing

    SciTech Connect (OSTI)

    Liu, S. T.; Wang, X. Q.; Chen, G.; Zhang, Y. W.; Feng, L.; Huang, C. C.; Xu, F. J.; Tang, N.; Shen, B. [State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Sang, L. W.; Sumiya, M. [Wide Bandgap Material Group, National Institute for Materials Science, 305-0044, Tsukuba (Japan)

    2011-12-01T23:59:59.000Z

    In{sub x}Ga{sub 1-x}N alloys (0 {<=} x {<=} 1) have been grown on GaN/sapphire templates by molecular beam epitaxy. Growth temperature controlled epitaxy was proposed to modulate the In composition so that each In{sub x}Ga{sub 1-x}N layer was grown at a temperature as high as possible and thus their crystalline quality was improved. The bandgap energies of the In{sub x}Ga{sub 1-x}N alloys have been precisely evaluated by optical transmission spectroscopy, where the effect of residual strain and electron concentration (the Burstein-Moss effect) on the bandgap energy shift has been considered. Finally, a bowing parameter of {approx}1.9 {+-} 0.1 eV has been obtained by the well fitting In-composition dependent bandgap energy.

  19. High-temperature corrosion in advanced combustion systems

    SciTech Connect (OSTI)

    Natesan, K.; Yanez-Herrero, M.; Fornasieri, C.

    1993-11-01T23:59:59.000Z

    Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high temperature furnaces and heat transfer surfaces capable of operation at much elevated temperatures than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitate development/application of advanced ceramic materials in these designs. The present paper characterizes the chemistry of coal-fired combustion environments over a wide temperature range of interest in these systems and discusses preliminary experimental results on several materials with potential for application in these systems. An experimental program has been initiated to evaluate materials for advanced combustion systems. Several candidate materials have been identified for evaluation. The candidates included advanced metallic alloys, monolithic ceramics, ceramic particulate/ceramic matrix composites, ceramic fiber/ceramic matrix composites, and ceramic whisker/ceramic matrix composites. The materials examined so far included nickel-base superalloys, alumina, stabilized zirconia, different types of silicon carbide, and silicon nitride. Coupon specimens of several of the materials have been tested in an air environment at 1000, 1200, and 1400{degree}C for 168 h. In addition, specimens were exposed to sodium-sulfate-containing salts at temperatures of 1000 and 1200{degree}C for 168 h. Extensive microstructural analyses were conducted on the exposed specimens to evaluate the corrosion performance of the materials for service in air and fireside environments of advanced coal-fired boilers. Additional tests are underway with several of the materials to evaluate their corrosion performance as a function of salt chemistry, alkali vapor concentration, gas chemistry, exposure temperature, and exposure time.

  20. F A T I G U E 2 0 0 2 HIGH-CYCLE FATIGUE OF BETA TITANIUM ALLOYS

    E-Print Network [OSTI]

    Ritchie, Robert

    F A T I G U E 2 0 0 2 HIGH-CYCLE FATIGUE OF BETA TITANIUM ALLOYS J. O. Peters*+ , G. Lütjering*, R) properties of the high-strength titanium alloys -Cez and Ti-6246 (in two distinctly different + processed and processed conditions) with the conventional + titanium alloy Ti-6Al-4V (in a + processed condition

  1. Electrodeposition of nickel-aluminum alloys from the aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt

    SciTech Connect (OSTI)

    Pitner, W.R.; Hussey, C.L. [Univ. of Mississippi, University, MS (United States). Dept. of Chemistry; Stafford, G.R. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Materials Science and Engineering Lab.

    1996-01-01T23:59:59.000Z

    The electrodeposition of Ni and Ni-Al alloys on glassy carbon was investigated in the 66.7--33.3 mole percent (m/o) Al chloride-1-methyl-3-ethylimidazolium chloride molten salt containing electrogenerated Ni(II) at 40 C. The electrodeposition of Ni on glassy carbon involves 3-D progressive nucleation on a finite number of active sites with hemispherical diffusion-controlled growth of the nuclei. At potentials slightly more negative than those needed to induce the reduction of Ni(II) to the metal, Al is codeposited with Ni to produce Ni-Al alloys. Controlled-potential and controlled-current experiments revealed that it is possible to produce alloy deposits containing up to approximately 40 atomic percent (a/o) Al under conditions that circumvent the bulk deposition of Al. The Al content of the Ni-Al deposit was found to vary linearly with the deposition potential but nonlinearly with the current density. The electrodeposited Ni-Al alloys are thermodynamically unstable with respect to Ni(II), i.e., immersion of the alloy deposit in melt containing Ni(II) under open-circuit conditions leads to a reduction in the Al content of the alloy. The mechanism of alloy formation appears to involve underpotential deposition of Al on the developing Ni deposit; however, alloy formation must be kinetically hindered because the Al content is always less than predicted from theoretical considerations. Ni-Al alloys produced at 0.30 V in melt containing Ni(II) and 20% (w/w) benzene as a cosolvent contained about 15 a/o Ni and were of high quality with a disordered fcc structure, but alloys produced at more negative potentials had the visual appearance of a loosely adherent, finely divided, black powder and were heavily contaminated with chloride, probably as a result of the occlusion of the molten salt solvent by the dendritic alloy deposit during deposit growth.

  2. Ultra high temperature diffusion apparatus and operating procedures

    SciTech Connect (OSTI)

    Wyrick, S.B.

    1985-11-15T23:59:59.000Z

    It is the purpose of this paper to present an experimental apparatus which is capable of measuring diffusion coefficients of interdiffusing gases in the temperature range 300K to 2500K. Because of the high temperatures which will be encountered, a special alloy of tantalum (T-111) is used to house the diffusion process. This T-111 diffusion cell is heated via radiation heat from a tungsten heating element powered by a Saban saturable reactor power supply. The diffusion cell heating element are encased in a nickel-plated copper cooling can. This entire assembly is enclosed in an Ultek vacuum chamber to prevent oxidation of the diffusion cell. This report covers the construction and calibration of the diffusion cell, details of the gas loading and sampling system, and complete information on the components required to operate the vacuum furnace. Thus far, several experiments have been run in the temperature range 600K to 800K and the resulting diffusion coefficients agree fairly well with previously published values. 21 refs., 9 figs., 4 tabs.

  3. High temperature storage loop : final design report.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.

    2013-07-01T23:59:59.000Z

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650%C2%B0C) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOE's SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  4. DEVELOPMENT OF A HIGH STRENGTH, HYDROGEN-RESISTANT AUSTENITIC ALLOY

    E-Print Network [OSTI]

    Chang, K.M.

    2010-01-01T23:59:59.000Z

    W. Morris, Jr. and G. Thonps: EPRI Report FP-1061, Electricbased superalloy, designated EPRI-E, of nominal composition0.3V-0.01B, and designated EPRI-T. The alloy differs from

  5. CVD of refractory amorphous metal alloys

    SciTech Connect (OSTI)

    Tenhover, M. [The Carborundum Co., Niagara Falls, NY (United States). Technology Div.

    1995-08-01T23:59:59.000Z

    In this work, a novel process is described for the fabrication of multi-metallic amorphous metal alloy coatings using a chemical vapor deposition (CVD) technique. Of special interest in this work are amorphous metal alloys containing Mo and/or Cr which have high crystallization temperatures and readily available low decomposition temperature metal-bearing precursors. The conditions for amorphous alloy formation via CVD are described as well as the chemical properties of these materials. High temperature, aqueous corrosion tests have shown these materials (especially those containing Cr) are among the most corrosion resistant metal alloys known.

  6. Amorphous metal alloy and composite

    DOE Patents [OSTI]

    Wang, Rong (Richland, WA); Merz, Martin D. (Richland, WA)

    1985-01-01T23:59:59.000Z

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  7. High Temperature Materials Interim Data Qualification Report

    SciTech Connect (OSTI)

    Nancy Lybeck

    2010-08-01T23:59:59.000Z

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing – 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram – 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  8. Ultrasonic properties of low solvus high refractory (LSHR) super alloy disk material

    SciTech Connect (OSTI)

    Na, Jeong K. [University of Dayton Research Institute, 300 College Park, Dayton, OH 45469 (United States); Blodgett, Mark [Air Force Research Laboratory (AFRL/RXLP) Wright-Patterson AFB, OH 45433 (United States)

    2011-06-23T23:59:59.000Z

    Measurements are made for ultrasonic linear and nonlinear properties of the powder metallurgy disk alloy LSHR material designed with a relatively low {gamma}' precipitate solvus temperature and high refractory element content. This allows versatile heat treatment processing which results in high tensile, creep and fatigue properties depending on the grain size controlled through proper selection of solution heat treatment temperatures relative to the {gamma}' precipitate solvus temperature. Sound velocity and attenuation for both longitudinal and shear modes at various frequencies from 5 to 20 MHz help to identify and quantify the size of transition zone nondestructively between the small grain ({approx}10 {mu}m) and the large grain ({approx}100 {mu}m) zones. The shear wave velocity measurements taken by aligning the transducer polarization direction parallel and perpendicular to the grain transition direction reveal some results that we do not fully understand at this time and will be the basis of future research. Similarly, measurements of the acoustic nonlinearity parameter show some variations that may originate from uncertain sources.

  9. HYDROGEN SULFIDE -HIGH TEMPERATURE DRILLING CONTINGENCY PLAN

    E-Print Network [OSTI]

    HYDROGEN SULFIDE - HIGH TEMPERATURE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 16 Steven P. Howard Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Daniel H. Reudelhuber Ocean Drilling Program Texas A&M University

  10. High Temperature Gas Reactors Briefing to

    E-Print Network [OSTI]

    Meltdown-Proof Advanced Reactor and Gas Turbine #12;TRISO Fuel Particle -- "Microsphere" · 0.9mm diameter · Utilizes gas turbine technology · Lower Power Density · Less Complicated Design (No ECCS) #12;AdvantagesHigh Temperature Gas Reactors Briefing to by Andrew C. Kadak, Ph.D. Professor of the Practice

  11. Advanced Converter Systems for High Temperature Environments

    Broader source: Energy.gov (indexed) [DOE]

    500 1000 1500 2000 2500 Voltage (Volts) Current (nA) . 4.0 Resistance (mOhms) 3.5 3.0 2.5 2.0 1.5 0 20 40 60 80 100 Current (Amps) High temperature package voltage breakdown and...

  12. Temperature dependence of dynamic Young's modulus and internal friction in three plasma sprayed NiCrAlY coating alloys

    E-Print Network [OSTI]

    Cook, Lloyd Steven

    1989-01-01T23:59:59.000Z

    TEMPERATURE DEPENDENCE OF DYNAM'IIC YOUNG'S MODULUS AND INTERNAL FRICTION IN THREE PLASMA SPRAYED NiCrAlY COATING -ALLOYS A Thesis LLOYD STEVEN COOK Submitted to the 08ice of Graduate Studies of Texas AE M University in part. al full...'illment of the requirement for the degree of MASTER OF SCIENCE August 1989 Itiajor Subject: l'dechanical Engineering TEMPERATURE DEPENDENCE OF DYNAMIC YOUNG'S MODULUS AND INTERNAL FRICTION IN THREE PLASMA SPRAYED NiCrAIY COATING ALLOYS A Thesis by LLOYD STEVEN COOK...

  13. Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy novel cathode / alloy...

  14. Stress corrosion cracking and hydrogen embrittlement of thick section high strength low alloy steel

    E-Print Network [OSTI]

    Needham, William Donald

    1986-01-01T23:59:59.000Z

    An experimental study was conducted to evaluate the corrosion performance of weldments of a high strength low alloy(HSLA) steel in a simulated seawater environment. This steel, designated HSLA80, was developed by the United ...

  15. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01T23:59:59.000Z

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  16. al zn alloy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NANOLAMINATES . Open Access Theses and Dissertations Summary: ??To characterize the self-propagating, high-temperature exothermic alloying reactions of NiAl nanoscaled...

  17. alloying elements al: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NANOLAMINATES . Open Access Theses and Dissertations Summary: ??To characterize the self-propagating, high-temperature exothermic alloying reactions of NiAl nanoscaled...

  18. alloy steels simulations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NANOLAMINATES . Open Access Theses and Dissertations Summary: ??To characterize the self-propagating, high-temperature exothermic alloying reactions of NiAl nanoscaled...

  19. alloys transformation induced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NANOLAMINATES . Open Access Theses and Dissertations Summary: ??To characterize the self-propagating, high-temperature exothermic alloying reactions of NiAl nanoscaled...

  20. alloy c-22 induced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NiAl NANOLAMINATES . Open Access Theses and Dissertations Summary: ??To characterize the self-propagating, high-temperature exothermic alloying reactions of NiAl nanoscaled...

  1. High temperature intermetallic binders for HVOF carbides

    SciTech Connect (OSTI)

    Shaw, K.G. [Xform, Inc., Cohoes, NY (United States); Gruninger, M.F.; Jarosinski, W.J. [Praxair Specialty Powders, Indianapolis, IN (United States)

    1994-12-31T23:59:59.000Z

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  2. High Temperature Fuel Cells in the European Union

    Broader source: Energy.gov [DOE]

    Presentation on High Temperature Fuel Cells in the European Union to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  3. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Energy Savers [EERE]

    Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Presentation from the U.S....

  4. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Applied low temperature combustion to the Navistar...

  5. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle...

  6. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion 2009 DOE Hydrogen Program...

  7. Cedarville Elementary & High School Space Heating Low Temperature...

    Open Energy Info (EERE)

    Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature...

  8. Possible Origin of Improved High Temperature Performance of Hydrotherm...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Origin of Improved High Temperature Performance of Hydrothermally Aged CuBeta Zeolite Catalysts. Possible Origin of Improved High Temperature Performance of Hydrothermally Aged...

  9. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Institute of Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical...

  10. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission...

  11. High-Temperature, Air-Cooled Traction Drive Inverter Packaging...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature, Air-Cooled Traction Drive Inverter Packaging High-Temperature, Air-Cooled Traction Drive Inverter Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs...

  12. Vehicle Technologies Office Merit Review 2014: High-Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Air-Cooled Power Electronics Thermal Design Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design...

  13. High Resolution and Low-Temperature Photoelectron Spectroscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Resolution and Low-Temperature Photoelectron Spectroscopy of an Oxygen-Linked Fullerene Dimer Dianion: C120O2-. High Resolution and Low-Temperature Photoelectron Spectroscopy...

  14. Development of a 100-Watt High Temperature Thermoelectric Generator

    Broader source: Energy.gov (indexed) [DOE]

    performance TEG thermal and electrical interfaces modified to withstand high temperature environment Development of a 100 watt High Temperature TE Generator DEER 2008 11 Prototype...

  15. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  16. Low and high Temperature Dual Thermoelectric Generation Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery...

  17. Rotational Rehybridization and the High Temperature Phase of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotational Rehybridization and the High Temperature Phase of UC2. Rotational Rehybridization and the High Temperature Phase of UC2. Abstract: The screened hybrid approximation...

  18. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power...

  19. Development of Advanced High Temperature Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  20. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant...

  1. High Temperature Polymer Membrane Development at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Summary of ANL’s high temperature polymer membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  2. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  3. High-temperature directional drilling turbodrill

    SciTech Connect (OSTI)

    Neudecker, J.W.; Rowley, J.C.

    1982-02-01T23:59:59.000Z

    The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

  4. Advanced nickel base alloys for high strength, corrosion applications

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  5. Advanced nickel base alloys for high strength, corrosion applications

    DOE Patents [OSTI]

    Flinn, J.E.

    1998-11-03T23:59:59.000Z

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  6. High-temperature, high-pressure bonding of nested tubular metallic components

    DOE Patents [OSTI]

    Quinby, Thomas C. (Kingston, TN)

    1980-01-01T23:59:59.000Z

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  7. High temperature hot water distribution system study

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  8. A HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon

    2012-01-01T23:59:59.000Z

    field of high temperature solar process heat. The ultimateof solar applications including industrial process heat and

  9. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications

    SciTech Connect (OSTI)

    Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

    2006-10-31T23:59:59.000Z

    The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty,cycles (high burnup, boiling, aggressive chemistry) andto investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment.

  10. High strength, thermally stable, oxidation resistant, nickel-based alloy

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Vought, Joseph D. (Rockwood, TN); Howell, C. Randal (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    A polycrystalline alloy is composed essentially of, by weight %: 15% to 30% Mo, 3% to 10% Al, up to 10% Cr, up to 10% Fe, up to 2% Si, 0.01% to 0.2% C, 0.01% to 0.04% B, balance Ni.

  11. Corrosion assessment of refractory materials for high temperature waste vitrification

    SciTech Connect (OSTI)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L. [and others

    1995-11-01T23:59:59.000Z

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.

  12. High-speed machining of cast iron and alloy steels for die and mold manufacturing

    E-Print Network [OSTI]

    Ozel, Tugrul

    to machining of aluminum alloys for manufacturing complicated parts used in the aircraft industry. This tech of automotive and electronic components, as well as plastic molding parts [2]. The de®nition of high conventional in cut- ting aluminum. Major advantages of high-speed machining are reported as: high material

  13. High Temperature Battery for Drilling Applications

    SciTech Connect (OSTI)

    Josip Caja

    2009-12-31T23:59:59.000Z

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  14. In-situ neutron scattering studies of magnetic shape memory alloys under stress, temperature, and magnetic fields

    SciTech Connect (OSTI)

    Brown, Donald W [Los Alamos National Laboratory; Sisneros, Thomas A [Los Alamos National Laboratory; Kabra, Saurabh [ANSTO/AUSTRALIA; Lograsso, Thomas A [AMES LAB; Schlagel, Deborah [AMES LAB

    2010-01-01T23:59:59.000Z

    We have utilized the SMARTS engineering neutron diffractometer to study the crystallographic orientation and phase transformations in the ferromagnetic shape memory alloy Ni 2MnGa under conditions of temperature (200-600K), stress (500MPa), and magnetic field (2T). Neutrons are uniquely suited to probe the crystallographic response of materials to external stimuli because of their high penetration, which allows them to sample the bulk of the material (as opposed to the surface) as well as pass through environmental chambers. A single crystal of Ni{sub 5}MnGa was repeatedly thermally cycled through the Austenitic-Martensitic phase transformation under varying conditions of applied stress, magnetic field or both. In-situ neutron diffraction was used to quantitatively monitor the population of the crystallographic variants in the martensitic phase as a function of the external stimuli during cooling. Neutron diffraction was used to monitor variant selection in the Ferromagnetic Shape Memory Alloy Ni{sub 2}Mn Ga during austenitic to martensitic transformation under varying conditions of externally applied stress and magnetic field. Qualitatively, the results were to be expected in this simple example. The shorter and magnetically soft c-axis of the tetragonal martensitic phase aligned with the compressive stress or magnetic field. However, neutron diffraction proved useful in directly quantifying the selection of the preferred variant by external influence. For instance, by quantifying the variant selection, the neutron diffraction results made apparent that the sample 'remembered' a loading cycle following a 'reset' cycle with no external applied stress. Moreover, the power of in-situ neutron diffraction will become more apparent when applied to more complex, less understood, samples such as polycrystalline samples or composite samples.

  15. High temperature regenerable hydrogen sulfide removal agents

    DOE Patents [OSTI]

    Copeland, Robert J. (Wheat Ridge, CO)

    1993-01-01T23:59:59.000Z

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  16. High Temperature Materials Laboratory third annual report

    SciTech Connect (OSTI)

    Tennery, V.J.; Foust, F.M.

    1990-12-01T23:59:59.000Z

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  17. Modeling forces in high-temperature superconductors

    SciTech Connect (OSTI)

    Turner, L. R.; Foster, M. W.

    1997-11-18T23:59:59.000Z

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging.

  18. Heat treated 9 Cr-1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21T23:59:59.000Z

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  19. Enabling High Efficiency Low Temperature Combustion by Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion by Adaptive In-Situ Jet Cooling Enabling High Efficiency Low Temperature Combustion by Adaptive In-Situ Jet Cooling A new approach, called...

  20. CORROSION OF Fe-10Al-Cr ALLOYS BY COAL CHAR

    E-Print Network [OSTI]

    Gordon, B.A.

    2011-01-01T23:59:59.000Z

    owned rights. LBL-6946 Corrosion of Fe-lOAl-Cr Alloys byOctober, 1977 Abstract Corrosion of iron-base alloys at 982°high-temperature induced corrosion are probably sulfides and

  1. Passive Corrosion Behavior of Alloy 22

    SciTech Connect (OSTI)

    R.B. Rebak; J.H. Payer

    2006-01-20T23:59:59.000Z

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  2. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model Zaher Abstract We have analysed low and high temperature series expansions for the three­dimensional Ising model on the simple cubic lattice. Our analysis of Butera and Comi's new 32 term high temperature series yields K c

  3. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature Abstract We have analysed low and high temperature series expansions for the three high temperature series yields Kc = 0.221659 +0.000002-0.000005and from the 32 term low

  4. High temperature insulation for ceramic matrix composites

    SciTech Connect (OSTI)

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2000-01-01T23:59:59.000Z

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  5. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13T23:59:59.000Z

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  6. High temperature insulation for ceramic matrix composites

    SciTech Connect (OSTI)

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2001-01-01T23:59:59.000Z

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  7. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOE Patents [OSTI]

    Natesan, K.

    1992-01-01T23:59:59.000Z

    This invention is comprised of an iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100{degrees}C.

  8. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    SciTech Connect (OSTI)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01T23:59:59.000Z

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  9. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    DOE Patents [OSTI]

    Otto, N.C.; Warner, B.T.; Smaga, J.A.; Battles, J.E.

    1982-07-07T23:59:59.000Z

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  10. High temperature low friction surface coating

    DOE Patents [OSTI]

    Bhushan, Bharat (Watervliet, NY)

    1980-01-01T23:59:59.000Z

    A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

  11. Multilayer ultra-high-temperature ceramic coatings

    DOE Patents [OSTI]

    Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

    2012-03-20T23:59:59.000Z

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  12. HIGH TEMPERATURE SULFIDATION BEHAVIOR OF LOW Al IRON-ALUMINUM COMPOSITIONS

    E-Print Network [OSTI]

    DuPont, John N.

    , the application of iron-aluminum alloys is currently limited due to hydrogen cracking susceptibility subsequent. Experimental Procedure Cast Fe-Al alloys, with 5, 7.5, and 10 wt% aluminum, were produced by arc-melting high-Al alloys were cast to produce nominal aluminum contents of 5, 7.5, and 10 wt% for testing in moderately

  13. Assessment of microelectronics packaging for high temperature, high reliability applications

    SciTech Connect (OSTI)

    Uribe, F.

    1997-04-01T23:59:59.000Z

    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  14. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1...

  15. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

  16. Development of a High-Temperature Diagnostics-While-Drilling...

    Energy Savers [EERE]

    Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the...

  17. Corrosion Studies in High-Temperature Molten Salt Systems for...

    Broader source: Energy.gov (indexed) [DOE]

    Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1 Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1...

  18. Fundamental Corrosion Studies in High-Temperature Molten Salt...

    Broader source: Energy.gov (indexed) [DOE]

    Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems - FY13 Q2 Fundamental Corrosion Studies in High-Temperature Molten Salt...

  19. High Temperature High Pressure Thermodynamic Measurements for Coal Model Compounds

    SciTech Connect (OSTI)

    John C. Chen; Vinayak N. Kabadi

    1998-11-12T23:59:59.000Z

    The overall objective of this project is to develop a better thermodynamic model for predicting properties of high-boiling coal derived liquids, especially the phase equilibria of different fractions at elevated temperatures and pressures. The development of such a model requires data on vapor-liquid equilibria (VLE), enthalpy, and heat capacity which would be experimentally determined for binary systems of coal model compounds and compiled into a database. The data will be used to refine existing models such as UNIQUAC and UNIFAC. The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for thk project. The modifications include better and more accurate sampling technique and addition of a digital recorder to monitor temperature, pressure and liquid level inside the VLE cell. VLE data measurements for system benzene-ethylbenzene have been completed. The vapor and liquid samples were analysed using the Perkin-Elmer Autosystem gas chromatography.

  20. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect (OSTI)

    Mike S. H. Chu

    2011-06-06T23:59:59.000Z

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  1. High Temperature Membrane Working Group Meeting, May 14, 2007

    Broader source: Energy.gov [DOE]

    This agenda provides information about the High Temperature Membrane Working Group Meeting on May 14, 2007 in Arlington, Va.

  2. Agenda for the High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    This agenda provides information about the Agenda for the High Temperature Membrane Working Group Meeting on September 14, 2006.

  3. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure

    SciTech Connect (OSTI)

    Xie Wenjie [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634-0978 (United States); Tang Xinfeng; Yan Yonggao; Zhang Qingjie [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Tritt, Terry M. [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634-0978 (United States)

    2009-06-01T23:59:59.000Z

    We report a detailed description of an innovative route of a melt spinning (MS) technique combined with a subsequent spark plasma sintering process in order to obtain high performance p-type Bi{sub 0.52}Sb{sub 1.48}Te{sub 3} bulk material, which possesses a unique low-dimensional structure. The unique structure consists of an amorphous structure, 5-15 nm fine nanocrystalline regions, and coherent interfaces between the resulting nanocrystalline regions. Measurements of the thermopower, electrical conductivity, and thermal conductivity have been performed over a range of temperature of 300-400 K. We found that MS technique can give us considerable control over the resulting nanostructure with good thermal stability during the temperature range of 300-400 K and this unique structure can effectively adjust the transport of phonons and electrons, in a manner such that it is beneficial to the overall thermoelectric performance of the material, primarily a reduction in the lattice thermal conductivity. Subsequently, this results in a maximum figure of merit ZT value of 1.56 at 300 K for p-type Bi{sub 0.52}Sb{sub 1.48}Te{sub 3} bulk material. This ZT value is over a 50% improvement of that of the state of the art commercial Bi{sub 2}Te{sub 3} materials. We also report results of thermal cycling of this material for over one hundred cycles between 300-400 K. Our work offers an innovative route for developing high performance bismuth telluride based alloys and devices, which have even broader prospects for commercial applications. This technique may also be applicable to other thermoelectric materials.

  4. Nanoparticles as Reactive Precursors: Synthesis of Alloys, Intermetallic Compounds, and Multi-Metal Oxides Through Low-Temperature Annealing and Conversion Chemistry

    E-Print Network [OSTI]

    Bauer, John C.

    2010-07-14T23:59:59.000Z

    of metal salts in an aqueous solution and stabilized by PVP (polyvinylpyrrolidone), were mixed into nanoparticle composites in stoichometric proportions. The composite mixtures were then annealed at relatively low temperatures to form alloy...

  5. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    SciTech Connect (OSTI)

    Pramanick, S.; Giri, S.; Majumdar, S., E-mail: sspsm2@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, 2A and B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032 (India); Chatterjee, S. [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Salt Lake, Kolkata 700 098 (India)

    2014-09-15T23:59:59.000Z

    Present work reports on the observation of large magnetoresistance (??30% at 80 kOe) and magnetocaloric effect (?12?J·kg{sup ?1}·K{sup ?1} for 0–50 kOe) near room temperature (?290?K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288?K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  6. High Temperature Interactions of Antimony with Nickel

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.

    2012-07-01T23:59:59.000Z

    In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

  7. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting ace026peden2012o.pdf More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High and Low...

  8. Geochemistry of Aluminum in High Temperature Brines

    SciTech Connect (OSTI)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

    1999-05-18T23:59:59.000Z

    The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

  9. A temperature compensated pressure transducer for high temperature, high pressure applications

    E-Print Network [OSTI]

    Lippka, Sandra Margaret

    1991-01-01T23:59:59.000Z

    and content by: 2/J David G. ansson (Chair ol' Committee) c. Y~ Christian P Burger (i&Iember) Randall Getger ( Member) 5wc Fr~. Walter F. Bradley (Head of Department) May 1991 ABSTRACT A Temperature Compensated Pressure Transducer for High... of the light beam. A compensation schenle is provided through the use of thermally arljusting reflecting surfaces These surfaces can adjust for temperatures up to 1000'F with less than a. I, c error. The final light beam movenlent across the photodiode face...

  10. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

    2008-10-07T23:59:59.000Z

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  11. Vibration Isolation with High Strain Shape Memory Alloy Actuators: Case of the impulse disturbance

    E-Print Network [OSTI]

    Hayward, Vincent

    disturbance, while an active stage is used to aug- ment low frequency damping and provide attenuationVibration Isolation with High Strain Shape Memory Alloy Actuators: Case of the impulse disturbance disturbance on a mass to be isolated from vibrations. The vibration isolation testbed consists of a `strong

  12. 2494 IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 10, OCTOBER 2011 Near Room Temperature Magnetocaloric Response of an (FeNi)ZrB Alloy

    E-Print Network [OSTI]

    McHenry, Michael E.

    a good candidate for magnetic refrigeration near room temperature with additional benefits that is non2494 IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 10, OCTOBER 2011 Near Room Temperature of this powder was slightly higher than room temperature. The refrigerant capacity calculated for this alloy, kg

  13. Development of Strengthened Bundle High Temperature Superconductors

    SciTech Connect (OSTI)

    Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Demko, J.A. [Oak Ridge Inst. for Science and Education, TN (United States); Tomsic, M. [Plastronic, Inc., Troy, OH (United States); Sinha, U. [Southwire Company, Carollton, GA (United States)

    1997-12-31T23:59:59.000Z

    In the process of developing high temperature superconducting (HTS) transmission cables, it was found that mechanical strength of the superconducting tape is the most crucial property that needs to be improved. It is also desirable to increase the current carrying capacity of the conductor so that fewer layers are needed to make the kilo-amp class cables required for electric utility usage. A process has been developed by encapsulating a stack of Bi-2223/Ag tapes with a silver or non-silver sheath to form a strengthened bundle superconductor. This process was applied to HTS tapes made by the Continuous Tube Forming and Filling (CTFF) technique pursued by Plastronic Inc. and HTS tapes obtained from other manufacturers. Conductors with a bundle of 2 to 6 HTS tapes have been made. The bundled conductor is greatly strengthened by the non-silver sheath. No superconductor degradation as compared to the sum of the original critical currents of the individual tapes was seen on the finished conductors.

  14. High-power laser and arc welding of thorium-doped iridium alloys

    SciTech Connect (OSTI)

    David, S.A.; Liu, C.T.

    1980-05-01T23:59:59.000Z

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO/sub 2/ laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed.

  15. Electronic high voltage generator with a high temperature superconducting coil

    SciTech Connect (OSTI)

    Jin, J.X.; Liu, H.K.; Dou, S.X. [Univ. of Wollongong (Australia)] [and others

    1996-12-31T23:59:59.000Z

    A novel method for generating high voltages from a low voltage DC source, by using a capacitor and inductor in a R, L, C resonant circuit has been developed with the consideration of using a high temperature superconducting (HTS) coil. To generate high voltages the polarity of a low voltage battery source is reversed each half resonant cycle, the control being achieved by an electronic switch. Resistance in the circuit limits the voltages that can be built up. By replacing a copper winding inductor with another inductor which has a HTS winding, the magnitude of achievable voltages is substantially increased. A (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} multifilament HTS wire is considered in this work to make the superconducting inductor. The high voltages generated are not capable of supplying low impedance loads, however, possible applications of the generator include electrical partial discharge testing and insulation resistance testing. It could also be used as a testing method for the HTS itself with respect to the critical current and AC loss measurement.

  16. Development of high temperature, high pressure rotating shaft seals: Final report

    SciTech Connect (OSTI)

    Heshmat, H.; Shapiro, W.

    1987-06-01T23:59:59.000Z

    Rotating shaft seals used in coal gasification equipment are exposed to difficult environmental conditions including temperature from 430/sup 0/C to 816/sup 0/C (800/sup 0/F to 1500/sup 0/F), high pressure (to 10 MPa or 1500 psig), and high levels of particulate contamination (50,000 to 100,000 ppM). The program reported upon was designed to develop long-life seals that would not require external flushing or cooling. The approach taken was to develop unbalanced face that would remain closed and prevent particulate entry into the interface. Wear resistant materials and coatings with low friction coefficients are required. Significant results of the program are enumerated: The selected material combination was a rotating runner of Kentanium K162B mating against a non-rotating seal ring of Kentanium K162B. Kentanium is the trade name of a series of hard carbide alloys with pure titanium carbide as the principal ingredient. Nickel and nickel molybdenum are used as binder materials. Kentanium retains most of its strength at temperatures ..mu..p to 1100/sup 0/C (2000/sup 0/F). Since hard materials are required to resist wear and withstand the temperatures, mechanical compliance must be built into the seal configuration for the opposed faces to follow runner nutations and remain closed. Environmental and frictional heating caused the formation of very small particles of titanium oxide which lodged in the face wave formations and acted as an interfacial lubricant. The results of this program provide encouragement and optimism that dry contact face seals can be developed for long unattended operation in the hostile environment of a coal gasification plant. 40 refs., 98 figs., 20 tabs.

  17. alloys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high strength aluminum alloys. The expense and Aluminum Alloys Exposure to a moist environment degrades the fatigue resistance of all aluminum alloys Acton, Scott 16 HIGHLY...

  18. Heat treatment of NiCrFe alloy to optimize resistance to intergrannular stress corrosion

    DOE Patents [OSTI]

    Steeves, Arthur F. (Schenectady, NY); Bibb, Albert E. (Clifton Park, NY)

    1984-01-01T23:59:59.000Z

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprising heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cool the alloy body, and heat the cooled body to a temperature between 1100.degree. to 1500.degree. F. for about 1 to 30 hours.

  19. High-flux magnetorheology at elevated temperatures

    E-Print Network [OSTI]

    Ocalan, Murat

    Commercial applications of magnetorheological (MR) fluids often require operation at elevated temperatures as a result of surrounding environmental conditions or intense localized viscous heating. Previous experimental ...

  20. High Temperature 300°C Directional Drilling System

    Broader source: Energy.gov [DOE]

    Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300°C; and at depths of 10; 000 meters.

  1. High-Temperature Falling-Particle Receiver

    Broader source: Energy.gov (indexed) [DOE]

    temperatures, nitrate salt fluids become chemically unstable. In contrast, direct absorption receivers using solid particles that fall through a beam of concentrated solar...

  2. Structural and electronic properties of Si{sub 1-x}Ge{sub x} binary semiconducting alloys under the effect of temperature and pressure

    SciTech Connect (OSTI)

    Degheidy, A. R.; Elkenany, E. B., E-mail: kena@mans.edu.eg [Mansoura University, Department of Physics, Faculty of Science (Egypt)

    2013-10-15T23:59:59.000Z

    Based on the empirical pseudo-potential method which incorporates compositional disorder as an effective potential, the band structure of Si{sub 1-x}Ge{sub x} alloy are calculated for different alloy composition x. The effect of temperature and pressure on the electronic band structure of the considered alloy has been studied. Monotonic decreasing and increasing functions are obtained for the temperature and pressure dependent form factors respectively. Some physical quantities as band gaps, bowing parameters, and the refractive index of the considered alloy with different Ge concentration and under the effect of temperature and pressure are calculated. The results obtained are found in good agreement with the experimental and published data.

  3. NOvel Refractory Materials for High Alkali, High Temperature Environments

    SciTech Connect (OSTI)

    Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)

    2011-08-30T23:59:59.000Z

    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  4. Low-temperature magnetization in Ni-rich gamma-Ni100-x-yFexVy alloys

    E-Print Network [OSTI]

    Chakraborty, S.; Mukherjee, GD; Rathnayaka, KDD; Naugle, Donald G.; Majumdar, AK.

    2000-01-01T23:59:59.000Z

    transition-metal alloys have PRB 620163-1829/2000/62~1!/476~5!/$15.00 Ni-rich g-Ni100?x?yFexVy alloys G. D. Mukherjee , Kanpur 208016, Uttar Pradesh, India and D. G. Naugle , College Station, Texas 77843-4242 r? , Kanpur 208016, Uttar Pradesh, India... 83-10-7 48662 8.60 56.7 3 80.5-10.5-9 41763 8.54 64.5 4 77-12-11 39361 8.45 47.2 5 82.5-5.5-12 36263 8.54 41.2 2BT 6 77-7-16 15561 8.38 26.7 7 79-5-16 6260.5 8.40 16.2 8 78-4-18 4360.5 8.35 13.9 PRB 62 LOW-TEMPERATURE MAGNETIZATIO present set...

  5. Calcite Mineral Scaling Potentials of High-Temperature Geothermal Wells

    E-Print Network [OSTI]

    Karlsson, Brynjar

    #12;i Calcite Mineral Scaling Potentials of High-Temperature Geothermal Wells Alvin I. Remoroza-Temperature Geothermal Wells Alvin I. Remoroza 60 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum #12;iv Calcite Mineral Scaling Potentials of High-Temperature Geothermal Wells 60 ECTS thesis

  6. Vibrational Raman Spectroscopy of High-temperature Superconductors

    E-Print Network [OSTI]

    Nabben, Reinhard

    Vibrational Raman Spectroscopy of High-temperature Superconductors C. Thomsen and G. Kaczmarczyk-temperature Superconductors C. Thomsen and G. Kaczmarczyk Technical University of Berlin, Berlin, Germany 1 INTRODUCTION Raman after the discovery of high- critical-temperature Tc superconductors:2 while reports on Raman scattering

  7. High-temperature piezoresponse force microscopy B. Bhatia,1

    E-Print Network [OSTI]

    King, William P.

    High-temperature piezoresponse force microscopy B. Bhatia,1 J. Karthik,2 D. G. Cahill,1,2 L. W September 2011; published online 24 October 2011) We report high temperature piezoresponse force microscopy resistive heater allows local temperature control up to 1000 C with minimal electrostatic interactions

  8. Quark number susceptibility of high temperature and finite density QCD

    E-Print Network [OSTI]

    Ari Hietanen; Kari Rummukainen

    2007-10-26T23:59:59.000Z

    We utilize lattice simulations of the dimensionally reduced effective field theory (EQCD) to determine the quark number susceptibility of QCD at high temperature ($T>2T_c$). We also use analytic continuation to obtain results at finite density. The results extrapolate well from known perturbative expansion (accurate in extremely high temperatures) to 4d lower temperature lattice data

  9. High temperature pressurized high frequency testing rig and test method

    DOE Patents [OSTI]

    De La Cruz, Jose; Lacey, Paul

    2003-04-15T23:59:59.000Z

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  10. Design of High Field Solenoids made of High Temperature Superconductors

    SciTech Connect (OSTI)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01T23:59:59.000Z

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  11. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01T23:59:59.000Z

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  12. Tritium Formation and Mitigation in High-Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots

    2012-10-01T23:59:59.000Z

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  13. Tritium Formation and Mitigation in High Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots

    2012-08-01T23:59:59.000Z

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. In order to prevent the tritium contamination of proposed reactor buildings and surrounding sites, this paper examines the root causes and potential solutions for the production of this radionuclide, including materials selection and inert gas sparging. A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750°C. Results of the diffusion model are presented for one steadystate value of tritium production in the reactor.

  14. Expansion Joint Concepts for High Temperature Insulation Systems

    E-Print Network [OSTI]

    Harrison, M. R.

    1980-01-01T23:59:59.000Z

    As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently...

  15. Ultra-High Temperature Distributed Wireless Sensors

    SciTech Connect (OSTI)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

    2013-03-31T23:59:59.000Z

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  16. High temperature, minimally invasive optical sensing modules

    DOE Patents [OSTI]

    Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

    2008-02-05T23:59:59.000Z

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  17. Sulfur Tolerant Pd/Cu and Pd/Au Alloy Membranes for H2 Separation with High Pressure CO2 for Sequestration

    SciTech Connect (OSTI)

    Yi Hua Ma; Natalie Pomerantz; Chao-Huang Chen

    2008-09-30T23:59:59.000Z

    The effect of H{sub 2}S poisoning on Pd, Pd/Cu, and Pd/Au alloy composite membranes prepared by the electroless deposition method on porous Inconel supports was investigated to provide a fundamental understanding of the durability and preparation of sulfur tolerant membranes. X-ray photoelectron spectroscopy (XPS) studies showed that the exposure of pure Pd to 50 ppm H{sub 2}S/H{sub 2} mixtures caused bulk sulfide formation at lower temperatures and surface sulfide formation at higher temperatures. Lower temperatures, longer exposure times, and higher H{sub 2}S concentrations resulted in a higher degree of sulfidation. In a Pd membrane, the bulk sulfide formation caused a drastic irrecoverable H{sub 2} permeance decline and an irreparable loss in selectivity. Pd/Cu and Pd/Au alloy membranes exhibited permeance declines due to surface sulfide formation upon exposure to 50 ppm H{sub 2}S/H{sub 2} gas mixtures. However in contrast to the pure Pd membrane, the permeances of the Pd/Cu and Pd/Au alloy membranes were mostly recovered in pure H{sub 2} and the selectivity of the Pd alloy layers remained essentially intact throughout the characterization in H{sub 2}, He and H{sub 2}S/H{sub 2} mixtures which lasted several thousand hours. The amount of irreversible sulfur poisoning decreased with increasing temperature due to the exothermicity of H{sub 2}S adsorption. Longer exposure times increased the amount of irreversible poisoning of the Pd/Cu membrane but not the Pd/Au membrane. Pd/Au coupon studies of the galvanic displacement method showed that higher Au{sup 3+} concentrations, lower pH values, higher bath temperatures and stirring the bath at a rate of 200 rpm yielded faster displacement rates, more uniform depositions, and a higher Au content within the layers. While 400 C was found to be sufficient to form a Pd/Au alloy on the surface, high temperature X-ray diffraction (HTXRD) studies showed that even after annealing between 500-600 C, the Pd/Cu alloys could have part or all of the surface in the less sulfur resistant {beta} phase.

  18. Options Extending the Applicability of High-Temperature Irradiation-Resistant Thermocouples

    SciTech Connect (OSTI)

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; John C. Crepeau; Joshua E. Daw

    2009-07-01T23:59:59.000Z

    Several options have been identified that could further enhance the reliability and extend the applicability of High Temperature Irradiation Resistant ThermoCouples (HTIR-TCs) developed by the Idaho National Laboratory (INL) for in-pile testing, allowing their use in temperature applications as high as 1800 °C. The INL and the University of Idaho (UI) investigated these options with the ultimate objective of providing recommendations for alternate thermocouple designs that are optimized for various applications. This paper reports results from INL/UI investigations. Results are reported from tests completed to evaluate the ductility, resolution, transient response, and stability of thermocouples made from specially formulated alloys of molybdenum and niobium. In addition, this paper reports insights gained by comparing the performance of thermocouples fabricated with various heat treatments and alternate geometries.

  19. A summary of high-temperature electronics research and development

    SciTech Connect (OSTI)

    Thome, F.V.; King, D.B.

    1991-10-18T23:59:59.000Z

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab.

  20. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment.

  1. ambient temperature shocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NANOLAMINATES . Open Access Theses and Dissertations Summary: ??To characterize the self-propagating, high-temperature exothermic alloying reactions of NiAl nanoscaled...

  2. First high-temperature electronics products survey 2005.

    SciTech Connect (OSTI)

    Normann, Randy Allen

    2006-04-01T23:59:59.000Z

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  3. High Permeability Ternary Palladium Alloy Membranes with Improved Sulfur and Halide Tolerances

    SciTech Connect (OSTI)

    K. Coulter

    2010-12-31T23:59:59.000Z

    The project team consisting of Southwest Research Institute{reg_sign} (SwRI{reg_sign}), Georgia Institute of Technology (GT), the Colorado School of Mines (CSM), TDA Research, and IdaTech LLC was focused on developing a robust, poison-tolerant, hydrogen selective free standing membrane to produce clean hydrogen. The project completed on schedule and on budget with SwRI, GT, CSM, TDA and IdaTech all operating independently and concurrently. GT has developed a robust platform for performing extensive DFT calculations for H in bulk palladium (Pd), binary alloys, and ternary alloys of Pd. Binary alloys investigated included Pd96M4 where M = Li, Na, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Ce, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. They have also performed a series of calculations on Pd{sub 70}Cu{sub 26}Ag{sub 4}, Pd{sub 70}Cu{sub 26}Au{sub 4}, Pd{sub 70}Cu{sub 26}Ni{sub 4}, Pd{sub 70}Cu{sub 26}Pt{sub 4}, and Pd{sub 70}Cu{sub 26}Y{sub 4}. SwRI deposited and released over 160 foils of binary and ternary Pd alloys. There was considerable work on characterizing and improving the durability of the deposited foils using new alloy compositions, post annealing and ion bombardment. The 10 and 25 {micro}m thick films were sent to CSM, TDA and IdaTech for characterization and permeation testing. CSM conducted over 60 pure gas permeation tests with SwRI binary and ternary alloy membranes. To date the PdAu and PdAuPt membranes have exhibited the best performance at temperatures in the range of 423-773 C and their performance correlates well with the predictions from GT. TDA completed testing under the Department of Energy (DOE) WGS conditions on over 16 membranes. Of particular interest are the PdAuPt alloys that exhibited only a 20% drop in flux when sulfur was added to the gas mixture and the flux was completely recovered when the sulfur flow was stopped. IdaTech tested binary and ternary membranes on a simulated flue gas stream and experienced significant difficulty in mounting and testing the sputter deposited membranes. IdaTech was able to successfully test PdAu and PdAuPt membranes and saw similar sulfur tolerance to what TDA found. The Program met all the deliverables on schedule and on budget. Over ten presentations at national and international conferences were made, four papers were published (two in progress) in technical journals, and three students (2 at GT and 1 at CSM) completed their doctorates using results generated during the course of the program. The three major findings of program were; (1) the DFT modeling was verified as a predictive tool for the permeability of Pd based ternary alloys, (2) while magnetron sputtering is useful in precisely fabricating binary and ternary alloys, the mechanical durability of membranes fabricated using this technique are inferior compared to cold rolled membranes and this preparation method is currently not ready for industrial environments, (3) based on both modeling and experimental verification in pure gas and mixed gas environments PdAu and PdAuPt alloys were found to have the combination of the highest permeability and tolerance to sulfur.

  4. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    E-Print Network [OSTI]

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2013-01-01T23:59:59.000Z

    deep rolled as-quenched aluminium alloy AA6110 at elevatedT, editor. Aluminium Alloys, Theory and Applications,shock processing of aluminium alloys. Application to high

  5. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    E-Print Network [OSTI]

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2013-01-01T23:59:59.000Z

    T, editor. Aluminium Alloys, Theory and Applications,deep rolled as-quenched aluminium alloy AA6110 at elevatedshock processing of aluminium alloys. Application to high

  6. Overview of Fraunhofer IPM Activities in High Temperature Bulk...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric...

  7. Detecting Fractures Using Technology at High Temperatures and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting...

  8. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    developed an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system. This technology increases the efficiency of fuel cells and improves...

  9. Detecting Fractures Using Technology at High Temperatures and...

    Broader source: Energy.gov (indexed) [DOE]

    7 4.4.1 Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI) Presentation Number: 015 Investigator: Patterson, Doug...

  10. advanced high temperature: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John 3 Lake surface water temperature retrieval using advanced very high resolution radiometer and Geosciences Websites Summary: and Moderate Resolution Imaging Spectroradiometer...

  11. Project Profile: Fundamental Corrosion Studies in High-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems Savannah River National Laboratory logo The Savannah River National Laboratory (SRNL), under the...

  12. Enhanced High and Low Temperature Performance of NOx Reduction...

    Energy Savers [EERE]

    High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  13. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office Merit Review 2014: Nanostructured...

  14. Feasibility and Design Studies for a High Temperature Downhole Tool

    Broader source: Energy.gov [DOE]

    Project objective: Perform feasibility and design studies for a high temperature downhole tool; which uses nuclear techniques for characterization purposes; using measurements and modeling/simulation.

  15. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Annual Merit Review and Peer Evaluation ace026peden2011o.pdf More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials...

  16. Combining Raman Microprobe and XPS to Study High Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy. Citation: Windisch CF, Jr, CH Henager, MH Engelhard, and WD Bennett.2011."Combining Raman Microprobe and XPS to Study High Temperature Oxidation of...

  17. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion to Power Program...

  18. Metallic substrates for high temperature superconductors

    DOE Patents [OSTI]

    Truchan, Thomas G. (Chicago, IL); Miller, Dean J. (Darien, IL); Goretta, Kenneth C. (Downers Grove, IL); Balachandran, Uthamalingam (Hinsdale, IL); Foley, Robert (Chicago, IL)

    2002-01-01T23:59:59.000Z

    A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

  19. Effective theory of high-temperature superconductors

    E-Print Network [OSTI]

    Igor F. Herbut

    2005-06-16T23:59:59.000Z

    General field theory of a fluctuating d-wave superconductor is constructed and proposed as an effective description of superconducting cuprates at low energies. The theory is used to resolve a puzzle posed by recent experiments on superfluid density in severely underdoped YBCO. In particular, the overall temperature dependence of the superfluid density at low dopings is argued to be described well by the strongly anisotropic weakly interacting three-dimensional Bose gas, and thus approximately linear in temperature with an almost doping-independent slope.

  20. Quantum gravitational proton decay at high temperature

    E-Print Network [OSTI]

    Ulf H. Danielsson

    2005-12-29T23:59:59.000Z

    One of the most important challenges of contemporary physics is to find experimental signatures of quantum gravity. It is expected that quantum gravitational effects lead to proton decay but on time scales way beyond what is of any relevance to experiments. At non-zero temperatures there are reasons to believe that the situation is much more favourable. We will argue that at the temperatures and densities reached at present and future fusion facilities there is a realistic possibility that proton decay could be detectable.

  1. alloys development-inconel alloys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high strength aluminum alloys. The expense and Aluminum Alloys Exposure to a moist environment degrades the fatigue resistance of all aluminum alloys Acton, Scott 16 HIGHLY...

  2. High temperature ceramic composition for hydrogen retention

    DOE Patents [OSTI]

    Webb, R.W.

    1974-01-01T23:59:59.000Z

    A ceramic coating for H retention in fuel elements is described. The coating has relatively low thermal neutron cross section, is not readily reduced by H at 1500 deg F, is adherent to the fuel element base metal, and is stable at reactor operating temperatures. (JRD)

  3. High-Temperature Viscosity of Commercial Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2006-08-31T23:59:59.000Z

    Arrhenius models were developed for glass viscosity within the processing temperature of six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Both local models (for each of the six glass types) and a global model (for the composition region of commercial glasses, i.e., the six glass types taken together) are presented. The models are based on viscosity data previously obtained with rotating spindle viscometers within the temperature range between 900 C and 1550 C; the viscosity varied from 1 Pa?s to 750 Pa?s. First-order models were applied to relate Arrhenius coefficients to the mass fractions of 15 components: SiO2, TiO2, ZrO2, Al2O3, Fe2O3, B2O3, MgO, CaO, SrO, BaO, PbO, ZnO, Li2O, Na2O, K2O. The R2 is 0.98 for the global model and ranges from .097 to 0.99 for the six local models. The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100 C to 1550 C and viscosity range from 5 to 400 Pa?s.

  4. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    SciTech Connect (OSTI)

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01T23:59:59.000Z

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  5. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect (OSTI)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01T23:59:59.000Z

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  6. Rotational viscometer for high-pressure high-temperature fluids

    DOE Patents [OSTI]

    Carr, Kenneth R. (Knoxville, TN)

    1985-01-01T23:59:59.000Z

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  7. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01T23:59:59.000Z

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  8. Critical temperature of the leadbismuth eutectic (LBE) alloy Abdul-Majeed Azad *

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    -cooled thermal nuclear reactors as well as the liquid metal-cooled fast breeder nuclear reactors (LMFBRs materials constituting the nuclear reactor system. Liquid sodium had been the choice coolant for the LMFBRs­Bi eutectic alloy are serious contenders for use as coolant in LMFBRs in lieu of sodium due to a number

  9. Enhancement and Commercialization of the Alloy Selection System for Elevated Temperatures - ASSET

    SciTech Connect (OSTI)

    Randy C. John

    2005-11-05T23:59:59.000Z

    A corrosion engineering information system was created to manage, correlate and predict corrosion of alloys and also to use thermochemical calculations to predict the occurrence of dominant corrosion mechanisms in hot gases found in many different chemical processes and other related industrial processes.

  10. Low-temperature solution synthesis of alloys and intermetallic compounds as nanocrystals

    E-Print Network [OSTI]

    Vasquez, Yolanda

    2009-05-15T23:59:59.000Z

    with K2PtCl6, which resulted in the formation of alloys in the case of Co-Pt and Ni-Pt. PbPt intermetallic hollow particles were synthesized by heating a composite of PbO and hollow Pt nanoparticles in tetraethylene glycol (TEG) at 140 °C. With n...

  11. In situ study of temperature dependent magnetothermoelastic correlated behavior in ferromagnetic shape memory alloys

    E-Print Network [OSTI]

    Chopra, Harsh Deep

    refrigeration J. Appl. Phys. 111, 07A923 (2012) Oscillation of the magnetic moment in modulated martensites by the American Institute of Physics. Related Articles A less expensive NiMnGa based Heusler alloy for magnetic G. H. Wu State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences

  12. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objective: Advance the technology for well fluids lifting systems to meet the foreseeable pressure; temperature; and longevity needs of the Enhanced Geothermal Systems (EGS) industry.

  13. High temperature expanding cement composition and use

    DOE Patents [OSTI]

    Nelson, Erik B. (Tulsa County, OK); Eilers, Louis H. (Rogers County, OK)

    1982-01-01T23:59:59.000Z

    A hydratable cement composition useful for preparing a pectolite-containing expanding cement at temperatures above about 150.degree. C. comprising a water soluble sodium salt of a weak acid, a 0.1 molar aqueous solution of which salt has a pH of between about 7.5 and about 11.5, a calcium source, and a silicon source, where the atomic ratio of sodium to calcium to silicon ranges from about 0.3:0.6:1 to about 0.03:1:1; aqueous slurries prepared therefrom and the use of such slurries for plugging subterranean cavities at a temperature of at least about 150.degree. C. The invention composition is useful for preparing a pectolite-containing expansive cement having about 0.2 to about 2 percent expansion, by volume, when cured at at least 150.degree. C.

  14. High Temperature Materials for Aerospace Applications

    E-Print Network [OSTI]

    Adamczak, Andrea Diane

    2011-08-08T23:59:59.000Z

    Chair of Advisory Committee: Dr. Jaime C. Grunlan Further crosslinking of the fluorinated polyimide was examined to separate the cure reactions from degradation and to determine the optimum post curing conditions. Glass transition... ranging from 225 ? 362 ?C, with 1.7 - 3.0 wt% absorbed moisture, and the polyimide composite had blister temperatures from 246 ? 294 ?C with 0.5 - 1.5 wt% moisture. iv Weight loss of the fluorinated polyimide and its corresponding polyimide carbon...

  15. High-Temperature Viscosity Of Commercial Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.; See, Clem A.; Lam, Oanh P.; Minister, Kevin B.

    2005-01-01T23:59:59.000Z

    Viscosity was measured for six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Viscosity data were obtained with rotating spindle viscometers within the temperature range between 900°C and 1550°C; the viscosity varied from 1 Pa?s to 750 Pa?s. Arrhenius coefficients were calculated for individual glasses and linear models were applied to relate them to the mass fractions of 11 major components (SiO2, CaO, Na2O, Al2O3, B2O3, BaO, SrO, K2O, MgO, PbO, and ZrO2) and 12 minor components (Fe2O3, ZnO, Li2O, TiO2, CeO2, F, Sb2O3, Cr2O3, As2O3, MnO2, SO3, and Co3O4). The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100°C to 1550°C and viscosity range from 10 to 400 Pa?s.

  16. To Crack or Not to Crack: Strain in High Temperature Superconductors

    E-Print Network [OSTI]

    Godeke, Arno

    2008-01-01T23:59:59.000Z

    in High Temperature Superconductors Arno Godeke August 22,in High Temperature Superconductors Motivation Magneticin High Temperature Superconductors How do Nb 3 Sn magnets

  17. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael Swanson; Daniel Laudal

    2008-03-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

  18. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  19. High Temperature Evaluation of Tantalum Capacitors - Test 1

    SciTech Connect (OSTI)

    Cieslewski, Grzegorz

    2014-09-28T23:59:59.000Z

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  20. ANALYSIS OF FUTURE PRICES AND MARKETS FOR HIGH TEMPERATURE SUPERCONDUCTORS

    E-Print Network [OSTI]

    1 ANALYSIS OF FUTURE PRICES AND MARKETS FOR HIGH TEMPERATURE SUPERCONDUCTORS BY JOSEPH MULHOLLAND temperature superconductors (HTS) may impact the national electrical system over the next 25 years dollars. However, the savings from superconductivity are offset somewhat by the high cost of manufacturing

  1. Calculated Phonon Spectra of Plutonium at High Temperatures

    E-Print Network [OSTI]

    Savrasov, Sergej Y.

    Calculated Phonon Spectra of Plutonium at High Temperatures X. Dai,1 S. Y. Savrasov,2 * G. Kotliar dynamical proper- ties of plutonium using an electronic structure method, which incorporates correlation anharmonic and can be stabilized at high temperatures by its phonon entropy. Plutonium (Pu) is a material

  2. High Temperature Electrolysis of Steam and Carbon Dioxide

    E-Print Network [OSTI]

    High Temperature Electrolysis of Steam and Carbon Dioxide Søren Højgaard Jensen+,#, Jens V. T. Høgh + O2 #12;Electrolysis of steam at high temperature Interesting because · Improved thermodynamic of electrolysis of steam Picture taken from E. Erdle, J. Gross, V. Meyringer, "Solar thermal central receiver

  3. Apparatus for monitoring high temperature ultrasonic characterization

    DOE Patents [OSTI]

    Lanagan, M.T.; Kupperman, D.S.; Yaconi, G.A.

    1998-03-24T23:59:59.000Z

    A method and an apparatus for nondestructive detecting and evaluating changes in the microstructural properties of a material by employing one or more magnetostrictive transducers linked to the material by means of one or more sonic signal conductors. The magnetostrictive transducer or transducers are connected to a pulser/receiver which in turn is connected to an oscilloscope. The oscilloscope is connected to a computer which employs an algorithm to evaluate changes in the velocity of a signal transmitted to the material sample as function of time and temperature. 6 figs.

  4. Apparatus for monitoring high temperature ultrasonic characterization

    DOE Patents [OSTI]

    Lanagan, Michael T. (Woodridge, IL); Kupperman, David S. (Oak Park, IL); Yaconi, George A. (Berwyn, IL)

    1998-01-01T23:59:59.000Z

    A method and an apparatus for nondestructive detecting and evaluating chas in the microstructural properties of a material by employing one or more magnetostrictive transducers linked to the material by means of one or more sonic signal conductors. The magnetostrictive transducer or transducers are connected to a pulser/receiver which in turn is connected to an oscilloscope. The oscilloscope is connected to a computer which employs an algorithm to evaluate changes in the velocity of a signal transmitted to the material sample as function of time and temperature.

  5. High Energy Novel Cathode / Alloy Automotive Cell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh Efficiency Low -1 DOE0Novel

  6. High Temperature Oxidation Resistance and Surface Electrical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Filtered Arc Cr-Al-N Abstract: The requirements for low cost and high-tempurater corrosion resistance for bipolar interconnect plates in solid oxide fuel cell (SOFC) stacks...

  7. An experimental investigation of high temperature, high pressure paper drying

    E-Print Network [OSTI]

    Patel, Kamal Raoji

    1994-01-01T23:59:59.000Z

    % moisture removed oven dried mass of handsheet, g mass of handsheet after drying test, g mass of handsheet before drying test, g relative moisture removed from handsheet moisture removed by drying, % initial moisture (im) initial handsheet sample mass..., and the effects on the paper sheet and drying felt can be detrimental. Elevated temperatures reduce water viscosity which permits reduced resistance to water flow in the sheet. Pressing with a drying temperature of 95 C gives increased drying capacity, reduced...

  8. High Temperature Interfacial Superconductivity - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High School football Fancy footwork by C. Kim

  9. High Temperature PEM - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High School football Fancy footwork by C.

  10. High Temperature and Pressure Steam-H2 Interaction with Candidate Advanced LWR Fuel Claddings

    SciTech Connect (OSTI)

    Pint, Bruce A [ORNL

    2012-08-01T23:59:59.000Z

    This report summarizes the work completed to evaluate cladding materials that could serve as improvements to Zircaloy in terms of accident tolerance. This testing involved oxidation resistance to steam or H{sub 2}-50% steam environments at 800-1350 C at 1-20 bar for short times. A selection of conventional alloys, SiC-based ceramics and model alloys were used to explore a wide range of materials options and provide guidance for future materials development work. Typically, the SiC-based ceramic materials, alumina-forming alloys and Fe-Cr alloys with {ge}25% Cr showed the best potential for oxidation resistance at {ge}1200 C. At 1350 C, FeCrAl alloys and SiC remained oxidation resistant in steam. Conventional austenitic steels do not have sufficient oxidation resistance with only {approx}18Cr-10Ni. Higher alloyed type 310 stainless steel is protective but Ni is not a desirable alloy addition for this application and high Cr contents raise concern about {alpha}{prime} formation. Higher pressures (up to 20.7 bar) and H{sub 2} additions appeared to have a limited effect on the oxidation behavior of the most oxidation resistant alloys but higher pressures accelerated the maximum metal loss for less oxidation resistant steels and less metal loss was observed in a H{sub 2}-50%H{sub 2}O environment at 10.3 bar. As some of the results regarding low-alloyed FeCrAl and Fe-Cr alloys were unexpected, further work is needed to fundamentally understand the minimum Cr and Al alloy contents needed for protective behavior in these environments in order to assist in alloy selection and guide alloy development.

  11. HIGH TEMPERATURE ELECTROLYZER MATERIALS PROJECT GOAL

    E-Print Network [OSTI]

    Mease, Kenneth D.

    a fuel for the SOFC itself, as a fuel for other devices (e.g., fuel cell vehicles), or as a raw material with compatible electrodes to develop reversible solid oxide fuel cells for low-cost, high efficient power fuel cell concept has been proven, no complete reversible fuel cell materials set has yet been

  12. Thermocouples For High Temperature In-Pile Testing

    SciTech Connect (OSTI)

    J. L. Rempe

    2005-11-01T23:59:59.000Z

    Many advanced nuclear reactor designs require new fuel, cladding and structural materials. Data are needed to characeterize the performance of these new materials in high temperature, oxidizing and radiation conditions. To obtain this data, robust instrumentation is needed htat can survive proposed test conditions. Traditional methods for measuring temperature in-pile degrade at temperatures above 1080 degrees C. Hence, a project was intiated to develop specialized thermocouples for high temperature in-pile applications (see Rempe and Wilkins, 2005). This paper summarizes efforts to develop, fabricate and evaluate these specialized thermocouples.

  13. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    DOE Patents [OSTI]

    Fishman, Ilya M. (Palo Alto, CA); Kino, Gordon S. (Stanford, CA)

    1996-11-12T23:59:59.000Z

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  14. Advanced High Temperature Reactor Neutronic Core Design

    SciTech Connect (OSTI)

    Ilas, Dan [ORNL] [ORNL; Holcomb, David Eugene [ORNL] [ORNL; Varma, Venugopal Koikal [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The AHTR is a 3400 MW(t) FHR class reactor design concept intended to serve as a central generating station type power plant. While significant technology development and demonstration remains, the basic design concept appears sound and tolerant of much of the remaining performance uncertainty. No fundamental impediments have been identified that would prevent widespread deployment of the concept. This paper focuses on the preliminary neutronic design studies performed at ORNL during the fiscal year 2011. After a brief presentation of the AHTR design concept, the paper summarizes several neutronic studies performed at ORNL during 2011. An optimization study for the AHTR core is first presented. The temperature and void coefficients of reactivity are then analyzed for a few configurations of interest. A discussion of the limiting factors due to the fast neutron fluence follows. The neutronic studies conclude with a discussion of the control and shutdown options. The studies presented confirm that sound neutronic alternatives exist for the design of the AHTR to maintain full passive safety features and reasonable operation conditions.

  15. High Temperature Superconductivity in Cuprates: a model

    E-Print Network [OSTI]

    P. R. Silva

    2010-07-16T23:59:59.000Z

    A model is proposed such that quasi-particles (electrons or holes) residing in the CuO2 planes of cuprates may interact leading to metallic or superconducting behaviors. The metallic phase is obtained when the quasi-particles are treated as having classical kinetic energies and the superconducting phase occurs when the quasi-particles are taken as extremely relativistic objects. The interaction between both kinds of particles is provided by a force dependent-on-velocity. In the case of the superconducting behavior, the motion of apical oxygen ions provides the glue to establish the Cooper pair. The model furnishes explicit relations for the Fermi velocity, the perpendicular and the in-plane coherence lengths, the zero-temperature energy gap, the critical current density, the critical parallel and perpendicular magnetic fields. All these mentioned quantities are expressed in terms of fundamental physical constants as: charge and mass of the electron, light velocity in vacuum, Planck constant, electric permittivity of the vacuum. Numerical evaluation of these quantities show that their values are close those found for the superconducting YBaCuO, leading to think the model as being a possible scenario to explain superconductivity in cuprates.

  16. Method for synthesizing extremely high-temperature melting materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2007-11-06T23:59:59.000Z

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  17. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2005-11-22T23:59:59.000Z

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  18. Method for Synthesizing Extremeley High Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22T23:59:59.000Z

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  19. Recent Developments in High Temperature Superconductivity

    E-Print Network [OSTI]

    Hor, P. H.

    -Ca-Ba-Cu-O (TCBCO) [5] have been found to be superconducting at as high at 125K in TCBCO. Superconductivity up to - 30K has also been found in the Ba-K-Bi-O type perovskite system [6,7]. Without a copper-oxygen planar structure involved, this system offers a...Can-1 Cu n 04+2n where A =Bi or Tl and B =Ba or Sr and n is the number of CU-O layers stacked consecutively in the unit cell. For the BCSCO and TCBCO compound series, they all have layers of perovskite-like structures (with n =1, 2, or 3...

  20. High Temperature Cements | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name:Hidralia EnergiaFalls,High

  1. High Temperature Materials Laboratory (HTML) - PSD Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST CenterAboutHigh Flux

  2. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01T23:59:59.000Z

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  3. Multi-range force sensors utilizing shape memory alloys

    DOE Patents [OSTI]

    Varma, Venugopal K. (Knoxville, TN)

    2003-04-15T23:59:59.000Z

    The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.

  4. High Temperature Irradiation Resistant Thermocouple (HTIR-TC)

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    INL researchers have created a new thermocouple that can resist high temperature and radiation. This device will improve safety and reduce costs associated with unit failures. Learn more about INL research at http://www.facebook.com/idahonationallaboratory

  5. Enabling high-temperature nanophotonics for energy applications

    E-Print Network [OSTI]

    Yeng, YiXiang

    The nascent field of high-temperature nanophotonics could potentially enable many important solid-state energy conversion applications, such as thermophotovoltaic energy generation, selective solar absorption, and selective ...

  6. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion DE-FC26-05NT42413 William de Ojeda International Truck and Engine Company 26 Feb 2008 This...

  7. Electronic properties of doped Mott insulators and high temperature superconductors

    E-Print Network [OSTI]

    Ribeiro, Tiago Castro

    2005-01-01T23:59:59.000Z

    High-temperature superconducting cuprates, which are the quintessential example of a strongly correlated system and the most extensively studied materials after semiconductors, spurred the development in the fields of ...

  8. Copper Aluminate as a potential material for high temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copper Aluminate as a potential material for high temperature thermoelectric power generation Home Author: D. T. Morelli, E. D. Case, B. D. Hall, S. Wang Year: 2008 Abstract: URL:...

  9. High-Temperature Thermal Array for Next Generation Solar Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

  10. Fabrication and Characterization of Uranium-based High Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication...

  11. Stability and quench protection of high-temperature superconductors

    E-Print Network [OSTI]

    Ang, Ing Chea

    2006-01-01T23:59:59.000Z

    In the design and operation of a superconducting magnet, stability and protection are two key issues that determine the magnet's reliability and safe operation. Although the high-temperature superconductor (HTS) is considered ...

  12. High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

  13. Assessment of Moderate- and High-Temperature Geothermal Resources...

    Open Energy Info (EERE)

    Moderate- and High-Temperature Geothermal Resources of the United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Moderate- and...

  14. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Department of Energy Project ID ace37deojeda 2 Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion DE-FC26-05NT42413 Project Overview...

  15. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14T23:59:59.000Z

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  16. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, Curtis L. (Espanola, NM); Morris, John S. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  17. Dual-phase Cr-Ta alloys for structural applications

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Brady, Michael P. (Oak Ridge, TN); Zhu, Jiahong (Knoxville, TN); Tortorelli, Peter F. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    Dual phase alloys of chromium containing 2 to 11 atomic percent tantalum with minor amounts of Mo, Cr, Ti, Y, La, Cr, Si and Ge are disclosed. These alloys contain two phases including Laves phase and Cr-rich solid solution in either eutectic structures or dispersed Laves phase particles in the Cr-rich solid solution matrix. The alloys have superior mechanical properties at high temperature and good oxidation resistance when heated to above 1000.degree. C. in air.

  18. Low GWP Working Fluid for High Temperature Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Low GWP Working Fluid for High Temperature Heat Pumps: DR-2 Chemical Stability at High Temperatures Temp Heat Pumps: DR-2 Very Low GWP AND Non-Flammable HFC-245fa DR-2 Chemical Formula CF3CH2CHF2 HFO 171.3 Pcr [MPa] 3.65 2.9 Kontomaris-DuPont; European Heat Pump Summit, Nuremberg, October 15th, 2013

  19. Dislocation density evolution during high pressure torsion of a nanocrystalline Ni-Fe alloy

    SciTech Connect (OSTI)

    Li, Hongqi [Los Alamos National Laboratory; Wang, Y B [NON LANL; Ho, J C [NON LANL; Cao, Y [NON LANL; Liao, X Z [NON LANL; Ringer, S P [NON LANL; Zhu, Y T [NON LANL; Zhao, Y H [NON LANL; Lavernia, E J [NON LANL

    2009-01-01T23:59:59.000Z

    High-pressure torsion (HPT) induced dislocation density evolution in a nanocrystalline Ni-20wt.%Fe alloy was investigated using X-ray diffraction and transmission electron microscopy. Results suggest that the dislocation density evolution is different from that in coarse-grained materials. An HPT process first reduces the dislocation density within nanocrystalline grains and produces a large number of dislocations located at small-angle sub grain boundaries that are formed via grain rotation and coalescence. Continuing the deformation process eliminates the sub grain boundaries but significantly increases the dislocation density in grains. This phenomenon provides an explanation of the mechanical behavior of some nanostructured materials.

  20. Microwave characterization of high-temperature superconductors

    SciTech Connect (OSTI)

    Cooke, D.W.; Gray, E.R.; Arendt, P.N.; Beery, J.G.; Bennett, B.L.; Brown, D.R.; Houlton, R.J.; Jahan, M.S.; Klapetzky, A.J.; Maez, M.A.; Raistrick, I.D.; Reeves, G.A.; Rusnak, B.

    1989-01-01T23:59:59.000Z

    Thick (10-15 {mu}m) Tl-Ba-Ca-Cu-O films have been deposited onto yttria-stabilized zirconia and Ag substrates by d.c. magnetron sputtering techniques. Direct deposition onto 1'' diameter yttria-stabilized zirconia yields films with typical 22 GHz surface resistance (R{sub s}) values of 5.2 {plus minus} 2 m{Omega} and 52 {plus minus} 2 m{Omega} at 10 K and 77 K, respectively. For comparison, R{sub s} of Cu at this same frequency is 10 m{Omega} at 4 K and 22 m{Omega} at 77 K. Tl-Ba-Ca-Cu-O films have also been deposited onto 1'' diameter Ag substrates using Au/Cu, Cu, and BaF{sub 2} buffer layers. The lowest R{sub s} values were obtained on films with a BaF{sub 2} buffer layer, typical values being 7.8 {plus minus} 2 m{Omega} and 30.6 {plus minus} 2 m{Omega} (measured at 22 GHz) at 10 K and 77 K, respectively. Larger films (1.5'' diameter) with similar R{sub s} values were prepared using this same technique, demonstrating that the fabrication process can be scaled to larger surface areas. These films are promising for radiofrequency cavity applications because they are thick (50-75 times the London penetration depth), have relatively large surface areas, are fabricated on metallic substrates, and have R{sub s} values that are competitive with Cu at 77 K and are lower than Cu at 4 K. Because they are polycrystalline and unoriented, it is anticipated that their R{sub s} values can be lowered by improving the processing technique. High-quality films of YBa{sub 2}Cu{sub 3}O{sub 7} have been electron-beam deposited onto 1'' LaGaO{sub 3} and 1.5'' LaAlO{sub 3} substrates. The 1'' sample is characterized by R{sub s} values of 0.2 {plus minus} 0.1 m{Omega} at 4 K and 18.6 {plus minus} 2 m{Omega} at 77 K. The 4-K value is only 2-4 times higher than Nb. The 1.5'' sample has R{sub s} values (measured at 18 GHz) of 0.93 {plus minus} 2 m{Omega} and 71 {plus minus} 3 m{Omega} at 10 K and 77 K, respectively. 18 refs., 8 figs.

  1. Microstructural Evolution of Alloy 718 at High Helium and Hydrogen Generation Rates during Irradiation with 600-800 MeV protons

    SciTech Connect (OSTI)

    Sencer, Bulent H. (PNNL); Bond, G M. (PNNL); Garner, F.A. (Pacific Northwest National Laboratory); Hamilton, M L. (PNNL); Oliver, Brian M. (BATTELLE (PACIFIC NW LAB)); Thomas, L E. (PNNL); Maloy, S A. (Los Alamos National Laboratory); Sommer, Walter F. (LOS ALAMOS NATL LAB); James, M R. (Los Alamos National Laboratory); Ferguson, P D. (Los Alamos National Laboratory)

    2000-12-01T23:59:59.000Z

    When precipitation hardened Alloy 718 is irradiated with high-energy protons (600?800 MeV) and spallation neutrons at temperatures below > 60 C, it quickly hardens and loses almost all uniform elongation. It later softens somewhat at higher exposures but does not regain any elongation. This behavior is explained in terms of the evolution of Frank loop formation, disordering and eventual dissolution of the?? and?? strengthening phases, and the steady accumulation of very large levels of helium and hydrogen. These gases must be dispersed on a very fine scale in the matrix since no cavities could be found.

  2. alloys by properties: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALLOYED STEEL X20 CiteSeer Summary: In this paper, the effect of service temperature and life on high-cycle fatigue properties of base metal, steel X20 CrMoV 12-1, has been...

  3. Modeling of the Thermal Field in Dissimilar Alloy Ultrasonic Welding

    E-Print Network [OSTI]

    Jedrasiak, P.; Shercliff, H. R.; Chen, Y. C.; Wang, L.; Prangnell, P.; Robson, J.

    2014-12-10T23:59:59.000Z

    This paper describes a finite element model for predicting the temperature field in high power ultrasonic welding aluminum AA6111 to two dissimilar alloys, magnesium AZ31, and low carbon steel DC04. Experimental thermocouple and other evidence...

  4. Viscosities of natural gases at high pressures and high temperatures

    E-Print Network [OSTI]

    Viswanathan, Anup

    2007-09-17T23:59:59.000Z

    Estimation of viscosities of naturally occurring petroleum gases provides the information needed to accurately work out reservoir-engineering problems. Existing models for viscosity prediction are limited by data, especially at high pressures...

  5. Oxynitrided Surface Layer Produced On Ti6Al4V Titanium Alloy Under Low Temperature Glow Discharge Conditions For Medical Applications

    SciTech Connect (OSTI)

    Wierzchon, T.; Ossowski, M.; Borowski, T. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str, 02-507 Warsaw (Poland); Morgiel, J. [Institute of Metallurgy and Materials Science, Polish Academy of Science, 25 Reymonta Str, 30-059 Cracow (Poland); Czarnowska, E. [Department of Pathology, The Children's Memorial Health Institute, 20 Dzieci Polskich Av., 04-730 Warsaw (Poland)

    2011-01-17T23:59:59.000Z

    In spite that titanium oxides increase biocompatibility of titanium implants but their functional life is limited due to the problems arising from brittles and metalosis. Therefore technology, that allow to produce composite surface layer with controlled microstructure, chemical and phase composition and surface morphology on titanium alloy and eliminates the oxides disadvantages has been existing till now is searched. The requirements of titanium and its alloys implants can be fulfill by the low-temperature glow discharge assisted oxynitriding.The paper describes the surface layer of TiO{sub 2}+TiN+Ti{sub 2}N+{alpha}Ti(N) type produced at temperature 680 deg. C that preserves mechanical properties of titanium alloy Ti6Al4V. Characteristics of produced diffusion multi-phase surface layers in range of phase composition, microstructure (SEM, TEM, XRD) and its properties, such as frictional wear resistance are presented. The biological properties in dependency to the applied sterilization method are also analyzed.Properties of produced surface layers are discussed with reference to titanium alloy. The obtained data show that produced surface layers improves titanium alloy properties both frictional wear and biological. Preliminary in vitro examinations show good biocompatibility and antithrombogenic properties.

  6. Atomic dynamics in molten AlCu alloys of different compositions and at different temperatures by cold neutron scattering

    SciTech Connect (OSTI)

    Dahlborg, U. [University of Rouen; Besser, M. [Ames Laboratory; Kramer, Matthew J. [Ames Laboratory; Morris, J. R. [Oak Ridge National Laboratory; Calvo-Dahlborg, M. [University of Rouen

    2013-12-21T23:59:59.000Z

    The atomic motions in molten Al1?xCux (x=0.10, 0.171 and 0.25) around the eutectic composition (x=0.171) were studied by cold neutron inelastic scattering at three different temperatures (973 K, 1173 K and 1373 K). An alloy of eutectic composition containing the 63Cu isotope was also studied. Self-diffusion coefficients for the Cu ions were determined from the width of quasielastic peaks and were found to decrease slightly with increasing Cu concentration. Longitudinal current correlation functions Jl(Q,E) exhibit at all temperatures and at all compositions a shoulder at energies below 10 meV and one main maximum at higher energies. These features can be interpreted in terms of excitations of acoustic and optic nature. The shape of Jl(Q,E) is sensitive to composition, being considerably more structured for larger Cu content. This can be coupled to the existence of a prepeak in the measured zeroth moment of dynamic scattering function indicating an increased chemical ordering with increasing Cu concentration for all temperatures. Indications for an existence of a liquid–liquid phase transition are presented.

  7. alloy nimonic 80a: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high strength aluminum alloys. The expense and Aluminum Alloys Exposure to a moist environment degrades the fatigue resistance of all aluminum alloys Acton, Scott 18 HIGHLY...

  8. alloying primenenie obratimogo: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high strength aluminum alloys. The expense and Aluminum Alloys Exposure to a moist environment degrades the fatigue resistance of all aluminum alloys Acton, Scott 16 HIGHLY...

  9. alloys otrabotka tekhnologii: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high strength aluminum alloys. The expense and Aluminum Alloys Exposure to a moist environment degrades the fatigue resistance of all aluminum alloys Acton, Scott 16 HIGHLY...

  10. alloys vikoristannya modelej: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high strength aluminum alloys. The expense and Aluminum Alloys Exposure to a moist environment degrades the fatigue resistance of all aluminum alloys Acton, Scott 16 HIGHLY...

  11. alloys vliyanie vysokoskorostnogo: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high strength aluminum alloys. The expense and Aluminum Alloys Exposure to a moist environment degrades the fatigue resistance of all aluminum alloys Acton, Scott 16 HIGHLY...

  12. alloys tochechnye defekty: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high strength aluminum alloys. The expense and Aluminum Alloys Exposure to a moist environment degrades the fatigue resistance of all aluminum alloys Acton, Scott 16 HIGHLY...

  13. alloy 800h: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high strength aluminum alloys. The expense and Aluminum Alloys Exposure to a moist environment degrades the fatigue resistance of all aluminum alloys Acton, Scott 16 HIGHLY...

  14. alloy su31: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high strength aluminum alloys. The expense and Aluminum Alloys Exposure to a moist environment degrades the fatigue resistance of all aluminum alloys Acton, Scott 18 HIGHLY...

  15. Reduced activation ferritic alloys for fusion

    SciTech Connect (OSTI)

    Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

    1992-12-31T23:59:59.000Z

    Reduced activation martensitic alloys can now be developed with properties similar to commercial counterparts, and oxide dispersion strengthened alloys are under consideration. However, low chromium Bainitic alloys with vanadium additions undergo severe irradiation hardening at low irradiation temperatures and excessive softening at high temperatures, resulting in a very restricted application window. Manganese additions result in excessive embrittlement, as demonstrated by post-irradiation Charpy impact testing. The best composition range for martensitic alloys appears to be 7 to 9 Cr and 2 W, with swelling of minor concern and low temperature irradiation embrittlement perhaps eliminated. Therefore, reduced activation martensitic steels in the 7 to 9 Cr range should be considered leading contenders for structural materials applications in power-producing fusion machines.

  16. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    DOE Patents [OSTI]

    Mazias, Philip J. (Oak Ridge, TN); McGreevy, Tim (Morton, IL); Pollard,Michael James (East Peoria, IL); Siebenaler, Chad W. (Peoria, IL); Swindeman, Robert W. (Oak Ridge, TN)

    2007-08-14T23:59:59.000Z

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  17. Method of forming components for a high-temperature secondary electrochemical cell

    DOE Patents [OSTI]

    Mrazek, F.C.; Battles, J.E.

    1981-05-22T23:59:59.000Z

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes is described. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutectic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  18. High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel

    SciTech Connect (OSTI)

    Maziasz, Philip J [ORNL; Pint, Bruce A [ORNL

    2011-01-01T23:59:59.000Z

    Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600-900 C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor.

  19. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect (OSTI)

    None

    2011-05-15T23:59:59.000Z

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  20. Electrostatic Interchange Instabilities of a Rotating, High-Temperature Plasma

    E-Print Network [OSTI]

    Mauel, Michael E.

    Electrostatic Interchange Instabilities of a Rotating, High-Temperature Plasma Confined by a Dipole #2 Mach Probe #1 Mach Probe #2 High-field, 0.2 MA-turn Water-cooled Magnet #12;Interchange Modes-sized/global... Fast hot electron interchange instability: drift-resonant transport; Gryokinetics; phase-space holes

  1. Synthesis of Aliphatic-Aromatic Copolyesters by a High Temperature

    E-Print Network [OSTI]

    Khan, Saad A.

    -aromatic polyesters. #12;Full Paper: Reverse-selective polymer membranes exhibiting high CO2 affinity can be used for purification of H2 in industrial gasification processes. In this work, the phy- sical properties of CO2Synthesis of Aliphatic-Aromatic Copolyesters by a High Temperature Bulk Reaction Between Poly

  2. Evolution of sputtered tungsten coatings at high temperature

    SciTech Connect (OSTI)

    Stelmakh, Veronika; Rinnerbauer, Veronika; Joannopoulos, John D.; Solja?i?, Marin; Celanovic, Ivan; Senkevich, Jay J. [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tucker, Charles; Ives, Thomas; Shrader, Ronney [Materion Corporation, Buellton, California 93427 (United States)] [Materion Corporation, Buellton, California 93427 (United States)

    2013-11-15T23:59:59.000Z

    Sputtered tungsten (W) coatings were investigated as potential high temperature nanophotonic material to replace bulk refractory metal substrates. Of particular interest are materials and coatings for thermophotovoltaic high-temperature energy conversion applications. For such applications, high reflectance of the substrate in the infrared wavelength range is critical in order to reduce losses due to waste heat. Therefore, the reflectance of the sputtered W coatings was characterized and compared at different temperatures. In addition, the microstructural evolution of sputtered W coatings (1 and 5 ?m thick) was investigated as a function of anneal temperature from room temperature to 1000 °C. Using in situ x-ray diffraction analysis, the microstrain in the two samples was quantified, ranging from 0.33% to 0.18% for the 1 ?m sample and 0.26% to 0.20% for the 5 ?m sample, decreasing as the temperature increased. The grain growth could not be as clearly quantified due to the dominating presence of microstrain in both samples but was in the order of 20 to 80 nm for the 1 ?m sample and 50 to 100 nm for the 5 ?m sample, as deposited. Finally, the 5 ?m thick layer was found to be rougher than the 1 ?m thick layer, with a lower reflectance at all wavelengths. However, after annealing the 5 ?m sample at 900 °C for 1 h, its reflectance exceeded that of the 1 ?m sample and approached that of bulk W found in literature. Overall, the results of this study suggest that thick coatings are a promising alternative to bulk substrates as a low cost, easily integrated platform for nanostructured devices for high-temperature applications, if the problem of delamination at high temperature can be overcome.

  3. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14T23:59:59.000Z

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  4. Microstructures and oxidation behavior of some Molybdenum based alloys

    SciTech Connect (OSTI)

    Ray, Pratik Kumar

    2010-12-15T23:59:59.000Z

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  5. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOE Patents [OSTI]

    Maziasz, Philip J. (Oak Ridge, TN); McGreevy, Tim (Washington, IL); Pollard, Michael James (Peoria, IL); Siebenaler, Chad W. (Dunlap, IL); Swindeman, Robert W. (Oak Ridge, TN)

    2010-08-17T23:59:59.000Z

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  6. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOE Patents [OSTI]

    Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2006-12-26T23:59:59.000Z

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  7. Singapore Welding Society Newsletter, September 1999 Problems in Welding of High Strength Aluminium Alloys

    E-Print Network [OSTI]

    Zhou, Wei

    Aluminium Alloys Wei Zhou Nanyang Technological University, Singapore E-mail: WZhou@Cantab.Net Pure aluminium has very low strength, yet many of its alloys are stronger than ordinary structural steels. Some aluminium alloys especially those in the 5XXX and 7XXX series (e.g., 5083, 7020, and 7039) are so strong

  8. Viability of Pushrod Dilatometry Techniques for High Temperature In-Pile Measurements

    SciTech Connect (OSTI)

    J. E. Daw; J. L. Rempe; D. L. Knudson; K. G. Condie; J. C. Crepeau

    2008-03-01T23:59:59.000Z

    To evaluate the performance of new fuel, cladding, and structural materials for use in advanced and existing nuclear reactors, robust instrumentation is needed. Changes in material deformation are typically evaluated out-of-pile, where properties of materials are measured after samples were irradiated for a specified length of time. To address this problem, a series of tests were performed to examine the viability of using pushrod dilatometer techniques for in-pile instrumentation to measure deformation. The tests were performed in three phases. First, familiarity was gained in the use and accuracy of this system by testing samples with well defined thermal elongation characteristics. Second, high temperature data for steels, specifically SA533 Grade B, Class 1 (SA533B1) Low Alloy Steel and Stainless Steel 304 (SS304), found in Light Water Reactor (LWR) vessels, were aquired. Finally, data were obtained from a short pushrod in a horizontal geometry to data obtained from a longer pushrod in a vertical geometry, the configuration likely to be used for in-situ measurements. Results of testing show that previously accepted data for the structural steels tested, SA533B1 and SS304, are inaccurate at high temperatures (above 500 oC) due to extrpolation of high temperature data. This is especially true for SA533B1, as previous data do not account for the phase transformation of the material between 730 oC and 830 oC. Also, comparison of results for horizontal and vertical configurations show a maximum percent difference of 2.02% for high temperature data.

  9. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs

    SciTech Connect (OSTI)

    Corwin, William R [ORNL; Ballinger, R. [Massachusetts Institute of Technology (MIT); Majumdar, S. [Argonne National Laboratory (ANL); Weaver, K. D. [Idaho National Laboratory (INL)

    2008-03-01T23:59:59.000Z

    The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures for on-site welding, post-weld heat treatment (PWHT), and inspections will be required for the materials of construction. High-importance phenomena related to the RPV include crack initiation and subcritical crack growth; field fabrication process control; property control in heavy sections; and the maintenance of high emissivity of the RPV materials over their service lifetime to enable passive heat rejection from the reactor core. All identified phenomena related to the materials of construction for the IHX, RPV, and other components were evaluated and ranked for their potential impact on reactor safety.

  10. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19T23:59:59.000Z

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  11. Nanofluid-based receivers for high-temperature, high-flux direct solar collectors

    E-Print Network [OSTI]

    Lenert, Andrej

    2010-01-01T23:59:59.000Z

    Solar power plants with surface receivers have low overall energy conversion efficiencies due to large emissive losses at high temperatures. Alternatively, volumetric receivers promise increased performance because solar ...

  12. High Temperature Thermocouples For In-pile Applications

    SciTech Connect (OSTI)

    J. L. Rempe; S. C. Wilkins

    2005-10-01T23:59:59.000Z

    Traditional methods for measuring temperature in-pile degrade at temperatures above 1080 degrees C. Hence, a project has been initiated to explore the use of specialized thermocouples that are composed of materials that are able to withstand higher temperature, in-pile test conditions. Results from efforts to develop, fabricate and evaluate the performance of these specialized thermocouples are reported in this paper. Candidate materials were evaluated for their ability to withstand irradiation, to resit material interactions and to remain ductile at high temperatures. In addition, candidate thermocouples were evaluated based on their resolution over the temperature ranges of interest. Results from these evaluations are reported, and additional on-going development activities are summarized.

  13. High Reliability, High TemperatureThermoelectric Power Generation Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHighLouisianaDepartmentHighand

  14. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, Weite (Tainan, TW); Chu, Cha Y. (Garnerville, NY); Goretta, Kenneth C. (Downers Grove, IL); Routbort, Jules L. (Darien, IL)

    1995-01-01T23:59:59.000Z

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  15. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  16. Furnace Controls Using High Temperature Preheated Combustion Air

    E-Print Network [OSTI]

    Gonzales, J. M.; Rebello, W. J.

    1981-01-01T23:59:59.000Z

    FURNACE CONTROLS USING HIGH TEMPERATURE PREHEATED COMBUSTION AIR Jeffrey M. Gonzalez Wilfred J. Rebello GTE Products Corporation PAR Enterprises, Inc. Towanda, Pennsylvania Fairfax, Virginia ABSTRACT GTE Products Corporation (Towanda... available ratio control apparatus. Various control sys (I) was the development of a different way of looking at combustion. As preheated combustion air temperatures increase, excess air Industrial furnaces generally utilize air as the basic source...

  17. Cryocooler applications for high-temperature superconductor magnetic bearings.

    SciTech Connect (OSTI)

    Niemann, R. C.

    1998-05-22T23:59:59.000Z

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping.

  18. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C. (La Crescenta, CA); Rohatgi, Naresh K. (W. Corine, CA)

    1987-01-01T23:59:59.000Z

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  19. Nearly Perfect Fluidity in a High Temperature Superconductor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rameau, J. D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Reber, T. J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Yang, H. -B. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Akhanjee, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Gu, G. D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Johnson, P. D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Campbell, S. [Iowa State University, Ames, IA (United States)

    2014-10-01T23:59:59.000Z

    Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, ?/s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the quark-gluon plasma and in unitary atomic Fermi gases, exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use angle resolved photoemission spectroscopy to measure the temperature dependence of an electronic analog of ?/s in an optimally doped cuprate high-temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature Tc.

  20. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOE Patents [OSTI]

    Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1990-10-16T23:59:59.000Z

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  1. Oxidation of advanced steam turbine alloys

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01T23:59:59.000Z

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  2. Visbreaking-enhanced thermal recovery method utilizing high temperature steam

    SciTech Connect (OSTI)

    Shu, W.R.

    1984-06-26T23:59:59.000Z

    The displacement efficiency of a steam drive process is improved and steam override reduced by rapidly injecting a predetermined amount of high temperature steam via an injection well into the formation to visbreak a portion of the oil in the formation prior to a steam drive wherein steam is injected into the formation via the injection well to displace oil to a spaced-apart production well through which oil is recovered. The visbroken oil provides a more favorable transition of mobility ratio between the phases in the formation thereby reducing viscous fingering and increasing the displacement efficiency of the steam drive. In addition, after a predetermined amount of high temperature steam has been injected into the formation, the formation may be allowed to undergo a soak period prior to the steam drive. The high temperature steam injection and soaking steps may be sequentially repeated for a plurality of cycles.

  3. High-temperature corrosion control of lagged piping system components

    SciTech Connect (OSTI)

    Parks, R. (Dept. of the Navy, Naval Sea Systems Command, Code 05M11, Washington, DC (US)); Kogler, R.A. (Advanced Technology Inc., Arlington, VA (US))

    1990-07-01T23:59:59.000Z

    Over the past several years, the U.S. Navy has stepped up efforts to eliminate corrosion aboard its ships. One of the most effective techniques the Navy has employed is the application of sprayed aluminum for high-temperature corrosion protection. This sacrificial coating has performed well in the corrosion protection of high-temperature lagged steam valves and associated piping systems. Because of the superiority of the sprayed aluminum system over the conventional methods of protection for these piping systems, the Navy has realized considerable cost savings. These savings are the direct result of major reductions in routine maintenance associated with the application of sprayed aluminum coatings for corrosion protection purposes. This article discusses specific U.S. Navy experience with the use of sprayed aluminum coatings for high-temperature applications as well as current Navy practice regarding the use of this corrosion control coating.

  4. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael L. Swanson

    2005-08-30T23:59:59.000Z

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

  5. Which Chiral Symmetry is Restored in High Temperature QCD?

    E-Print Network [OSTI]

    Claude Bernard; Tom Blum; Carleton DeTar; Steven Gottlieb; Urs M. Heller; James E. Hetrick; K. Rummukainen; R. Sugar; D. Toussaint; Matthew Wingate

    1996-11-27T23:59:59.000Z

    Sigma models for the high temperature phase transition in quantum chromodynamics (QCD) suggest that at high temperature the SU(N_f) x SU(N_f) chiral symmetry becomes exact, but the anomalous axial U(1) symmetry need not be restored. In numerical lattice simulations, traditional methods for detecting symmetry restoration have sought multiplets in the screening mass spectrum. However, these methods were imprecise and the results, so far, incomplete. With improved statistics and methodology, we are now able to offer evidence for a restoration of the SU(2) x SU(2) chiral symmetry just above the crossover, but not of the axial U(1) chiral symmetry.

  6. Margins in high temperature leak-before-break assessments

    SciTech Connect (OSTI)

    Budden, P.J.; Hooton, D.G.

    1997-04-01T23:59:59.000Z

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  7. Optimum high temperature strength of two-dimensional nanocomposites

    SciTech Connect (OSTI)

    Monclús, M. A.; Molina-Aldareguía, J. M., E-mail: jon.molina@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Zheng, S. J.; Mayeur, J. R.; Beyerlein, I. J.; Mara, N. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Polcar, T. [Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Llorca, J. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain)

    2013-11-01T23:59:59.000Z

    High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  8. Enhanced Oil Recovery in High Salinity High Temperature Reservoir by Chemical Flooding 

    E-Print Network [OSTI]

    Bataweel, Mohammed Abdullah

    2012-02-14T23:59:59.000Z

    Studying chemical enhanced oil recovery (EOR) in a high-temperature/high-salinity (HT/HS) reservoir will help expand the application of chemical EOR to more challenging environments. Until recently, chemical EOR was not recommended at reservoirs...

  9. Experimental Investigation on High-pressure, High-temperature Viscosity of Gas Mixtures

    E-Print Network [OSTI]

    Davani, Ehsan

    2012-02-14T23:59:59.000Z

    Modeling the performance of high-pressure, high-temperature (HPHT) natural gas reservoirs requires the understanding of gas behavior at such conditions. In particular, gas viscosity is an important fluid property that directly affects fluid flow...

  10. Enhanced Oil Recovery in High Salinity High Temperature Reservoir by Chemical Flooding

    E-Print Network [OSTI]

    Bataweel, Mohammed Abdullah

    2012-02-14T23:59:59.000Z

    Studying chemical enhanced oil recovery (EOR) in a high-temperature/high-salinity (HT/HS) reservoir will help expand the application of chemical EOR to more challenging environments. Until recently, chemical EOR was not recommended at reservoirs...

  11. Numerical Modeling of Cased-hole Instability in High Pressure and High Temperature Wells 

    E-Print Network [OSTI]

    Shen, Zheng 1983-

    2012-11-12T23:59:59.000Z

    of cemented sections in High Pressure High Temperature (HPHT) wells. The existing analysis shows that, in the perforation zones, casing/cement is subject to instability, particularly in the presence of cavities. This dissertation focuses on the instability...

  12. High-Temperature Quantum Coherence from Dissipative Environments

    E-Print Network [OSTI]

    George E. Cragg

    2014-11-14T23:59:59.000Z

    The Feynman-Vernon path integral formalism is used to derive the density matrix of a quantum oscillator that is linearly coupled to an environmental reservoir. Although low-temperature reservoirs thermalize the oscillator to the usual Boltzmann distribution, reservoirs at intermediate temperatures reduce this distribution to a single, coherent ground state. Associated with this state is an imaginary frequency indicating an environment which absorbs energy from the oscillator through the suppression of all excited modes. Further increase of the environmental temperature results again in the thermalization of the quantum oscillator to the expected Boltzmann distribution. Qualitatively, this result could account for high-temperature quantum effects including the superconducting properties of graphite grains as well as the quantum coherence observed in photosynthetic systems.

  13. High Temperature Materials Interim Data Qualification Report FY 2011

    SciTech Connect (OSTI)

    Nancy Lybeck

    2011-08-01T23:59:59.000Z

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the Next Generation Nuclear Plant (NGNP) Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim fiscal year (FY) 2011 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under the Nuclear Quality Assurance (NQA)-1 guidelines and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from seven test series within the High Temperature Materials data stream have been entered into the NDMAS vault, including tensile tests, creep tests, and cyclic tests. Of the 5,603,682 records currently in the vault, 4,480,444 have been capture passed, and capture testing is in process for the remaining 1,123,238.

  14. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Phillip, Bradley L. (Shaker Heights, OH)

    1997-01-01T23:59:59.000Z

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100.degree. C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  15. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J. (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Phillip, Bradley L. (20976 Fairmount Blvd., Shaker Heights, Cuyahoga County, OH 44120)

    1997-01-01T23:59:59.000Z

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  16. High-temperature internal oxidation of Ag/1.2at.% Mg and Ag/0.25at.% Mg-0.25at.% Ni.

    SciTech Connect (OSTI)

    Balachandran, U.; Goretta, K. C.; McNallan, M. J.; Park, J.-H.; Prorok, B. C.

    1999-09-08T23:59:59.000Z

    High-temperature oxygen diffusion and internal oxidation in Ag, Ag/1.2 at.% Mg (Ag-Mg), and Ag/0.25 at.% Mg-0.25 at.% Ni (Ag-Mg-Ni) have been studied, mostly in air and 8% O{sub 2}, at 450-835 C. The focus of the studies was on thermogravimetric analysis, microhardness tests, and optical and electron microscopy observations of grain growth and its inhibition by oxidation. The internal oxidation of both alloys exhibited nearly identical activation energies (0.81 eV for Ag-Mg and 0.83 eV for Ag-Mg-Ni) and rate constants. The maximum O content of both alloys was superstoichiometric (e.g., O/Mg > 1.0) and the maximum O/Mg ratios were higher at lower temperatures than at higher temperatures (e.g., 1.25 at 500 C and 1.05 at 800 C). Diffusion of O in pure Ag was {approx}60 times faster at 825 C and {approx}400 times faster at 500 C than internal oxidation of either of the Ag alloys. Grain growth of both alloys and of the Ag was quantified between 450-800 C and related to internal oxidation.

  17. On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg{sub 2}Ni alloys

    SciTech Connect (OSTI)

    Kou, Hongchao; Hou, Xiaojiang; Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Hu, Rui; Li, Jinshan; Xue, Xiangyi

    2013-06-15T23:59:59.000Z

    Amorphous Mg{sub 2}Ni alloy was prepared by high energy ball-milling starting with polycrystalline Mg{sub 2}Ni which was prepared with the help of a metallurgy method by using a SPEX 8000D mill. The microstructural and phase structure characterization of the prepared materials was performed via scanning electron microscopy, transition electron microscope and X-ray diffraction. The thermal stabilities were investigated by differential scanning calorimetry. The apparent activation energies were determined by means of the Kissinger method. The first and second crystallization reactions take place at ? 255 °C and ? 410 °C, and the corresponding activation energy of crystallization is E{sub a1} = 276.9 and E{sub a2} = 382.4 kJ/mol, respectively. At 3 MPa hydrogen pressure and 250 °C, the hydrogen absorption capacities of crystalline, partially and fully amorphous Mg{sub 2}Ni alloy are 2.0 wt.%, 3.2 wt.% and 3.5 wt.% within 30 min, respectively. - Graphical Abstract: We mainly focus on the amorphization behavior of crystalline Mg{sub 2}Ni alloy in the high energy ball-milling process and the crystallization behavior of the amorphous Mg{sub 2}Ni alloy in a follow-up heating process. The relationship of milling, microstructure and hydrogenation properties is established and explained by models. - Highlights: • Amorphous Mg{sub 2}Ni has been obtained by high energy ball milling the as-cast alloy. • The amorphization behavior of polycrystalline Mg{sub 2}Ni is presented. • The crystallization behavior of the amorphous Mg{sub 2}Ni alloy is illustrated. • Establish the relationship of milling, microstructure and hydrogenation properties.

  18. PSO project: 4760 High Temperature PEM Fuel Cell

    E-Print Network [OSTI]

    PSO project: 4760 High Temperature PEM Fuel Cell Final report - Public part - #12;Project, Technical University of Denmark Partners: IRD Fuel Cells A/S Danish Power Systems Aps DONG Energy Authors, and a steady reduction of production cost is also desired (as in general for fuel cells). However, during

  19. High-temperature pressure-coupled ultrasonic waveguide

    DOE Patents [OSTI]

    Caines, M.J.

    1981-02-11T23:59:59.000Z

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  20. A high temperature furnace The Sample Environment Group

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ). It is designed to accommodate large samples, and use low quality cooling water. The furnace uses a tantalum heat also minimizing mass at the furnace centre. Tantalum and alumina were specified for these items723 A high temperature furnace The Sample Environment Group Neutron Division, Rutherford Appleton