Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Minnesota Regional Science Bowl for High School Students | U...  

Office of Science (SC) Website

Minnesota Regions Minnesota Regional Science Bowl for High School Students National Science Bowl (NSB) NSB Home About NSB High School High School Students High School Coaches...

2

High-school studentsĺ motivation to learn science.  

E-Print Network (OSTI)

??What motivates high-school students to learn in their science courses? How is studentsĺ motivation related to other student characteristics such as gender, middle-school science background,ů (more)

Bryan, Robert Reese

2009-01-01T23:59:59.000Z

3

High School Students Engage EM Program, Teach Classmates about Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Students Engage EM Program, Teach Classmates about High School Students Engage EM Program, Teach Classmates about Nuclear Cleanup High School Students Engage EM Program, Teach Classmates about Nuclear Cleanup May 22, 2012 - 12:00pm Addthis NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB. NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB. McMaster, left, and Sakalla were presented plaques by Dave Adler, DOE-EM liason to ORSSAB, in recognition for their service to ORSSAB. McMaster, left, and Sakalla were presented plaques by Dave Adler, DOE-EM liason to ORSSAB, in recognition for their service to ORSSAB. NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB.

4

High School Students Build Their Own Supercomputer (Almost) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Students Build Their Own Supercomputer (Almost) High School Students Build Their Own Supercomputer (Almost) High School Students Build Their Own Supercomputer (Almost) September 10, 2010 - 9:47am Addthis Eric Gedenk What are the key facts? Students built a computer cluster -- a group of computers communicating with one another to operate as a single machine -- out of Mac mini CPUs. For the third straight year, students and teachers from around Appalachia gathered at Oak Ridge National Laboratory (ORNL) this summer for an interactive training with some of the world's leading computing experts. The focal point of the training was a course called "Build a Supercomputer - Well Almost." And build they did. With guidance from ORNL staff, collaborators and interns, the high-school students went about building a

5

EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students  

E-Print Network (OSTI)

EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students By Dick Erickson ┬ş Pleasant Activity ┬ş Testing Photovoltaic Cells ..........................5 Expected Observations: ........................................................................................................8 II. LAB ACTIVITY - TESTING PHOTOVOLTAIC CELLS ..................................9 BEFORE YOU START

Oregon, University of

6

High school students' preconceptions and conceptions about Tropical Storm Allison  

E-Print Network (OSTI)

Today many people with no personal experience of living through a tropical storm reside in coastal regions in harm's way. There is a need to educate this population about storm risks. One good venue for this purpose is the public school system. Science educators have concluded it is important to establish a knowledge base about the various ways students think and learn in the classroom in order to design appropriate and effective instructional materials. There is also a need to fill the gap in hazards research about students' preconceptions and conceptions about these events. The purpose of this research study is to determine high school students' preconceptions and conceptions about tropical storms and the damage they do to coastal communities. This study used Lee's (1999) research study on Hurricane Andrew as a model and augments Lee's results. In-depth interviews, a survey, and class discussions with high school students living in Houston, Texas provided the data. The students, representing a wide variety of ethnic backgrounds, vary in their preconceptions and conceptions about tropical storms. The results of the data show conceptions students developed after personal experiences with Tropical Storm Allison formed most of the preconceptions they have regarding their scientific knowledge about tropical storms. Overall, students' scientific knowledge about tropical storms is poor.

Belknap, Julia

2003-01-01T23:59:59.000Z

7

SAT Mathematics standardized test manual for high-performing high school students  

E-Print Network (OSTI)

Most high school standardized testing preparation materials are geared towards the average student scoring in the 5 0 th percentile. There are few resources available to lower and higher scoring students who have different ...

Vasquez, Phillip A

2009-01-01T23:59:59.000Z

8

High School  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Please click on the title for more information about each program. Nano*High Nano High Saturday presentations for Bay Area high school students Science Bowl Science...

9

Effects of computer-assisted instruction on performance of senior high school biology students in Ghana  

Science Conference Proceedings (OSTI)

This study investigated the comparative efficiency of computer-assisted instruction (CAI) and conventional teaching method in biology on senior high school students. A science class was selected in each of two randomly selected schools. The pretest-posttest ... Keywords: Achievement, Cell cycle, Computer-assisted instruction, Conventional approach, ICT and senior high school

K. A. Owusu; K. A. Monney; J. Y. Appiah; E. M. Wilmot

2010-09-01T23:59:59.000Z

10

A Study of Prevention and Retention Strategies for Successful Urban Secondary High School Hispanic Students  

E-Print Network (OSTI)

Hispanic high school students have a dropout rate that ranges from 35 percent to 55 percent depending on what type of report you may be referencing. Add rates for all high school students. Hispanic youth endure the challenges of language barriers, single parent households, working to help their family, or fighting off gang involvement in their communities to graduate from high school. The purpose of this case study is to address the urban Hispanic dropout problem through an examination of strategies perceived as successful by Hispanic graduates. In order to narrow the scope, the researcher focused on the strategies suggested by the National Dropout Prevention Center. The researcher posed two questions: 1.) To what extent did students perceive that these fifteen identified strategies influenced their decision to remain in school and graduate? and 2.) What other positive influences beyond the identified strategies were credited by at-risk students and staff as contributing factors to their graduation? The study examined eight former Hispanic high school students who successfully completed high school and four of their teachers. The strategies that this study group perceived as most effective are discussed and policy implications are described. The findings stated students did not find a single path that lead to graduation, although the three highest ranked strategies were community collaboration, alternative schooling, and active learning. The conclusions one can make is that family involvement and school partnerships are very important to the outcome of Hispanic high school studentsĺ graduation success.

Lopez, Roberto I

2013-05-01T23:59:59.000Z

11

Minnesota Regional Science Bowl for Middle School Students |...  

Office of Science (SC) Website

Minnesota Regions Minnesota Regional Science Bowl for Middle School Students National Science Bowl (NSB) NSB Home About NSB High School Middle School Middle School Students...

12

Manzano High School student wins top award in 22nd New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

Manzano High School student wins Supercomputing Challenge Manzano High School student wins Supercomputing Challenge Manzano student wins top award in 22nd New Mexico Supercomputing Challenge Jordan Medlock wins for his computer algorithm. April 24, 2012 Jordan Medlock Jordan Medlock Contact Steve Sandoval Communications Office (505) 665-9206 Email LOS ALAMOS, New Mexico, April 24, 2012-Jordan Medlock of Albuquerque's Manzano High School took the top prize in the 22nd New Mexico Supercomputing Challenge for his computer algorithm that automates the process of counting and analyzing plaques in magnetic resonance images of persons diagnosed with Alzheimer's disease. The program vastly speeds up the process of identifying the very small and difficult to see plaques. For his project, "Detection of Alzheimer's Disease Plaques in a

13

Multicultural and multilingual approach: Mathematics, science, and engineering education for junior high school minority students and high school administrators. Final report  

SciTech Connect

During the 1993 school year, LLNL and the US Department of Energy`s San Francisco Field Office provided funds through grant {number_sign}DE-FG03-93SF20045/A000 to assist Cooperative Developmental Energy Program (CDEP) with its network coalition of high school counselors from 19 states and with its outreach and early intervention program in mathematics, science and engineering for minority junior high school students. The program for high school counselors is called the National Educators Orientation Program (NEOP) and the outreach program for minority junior high school students is called the Mathematics, Science and Engineering Academy (MSEA). A total of 35 minority and female rising eighth grade students participated in the Second Annual Mathematics, Science, and Engineering Academy sponsored by the Cooperative Developmental Energy Program of Fort Valley State College (FVSC). There were 24 students from the middle Georgia area, 4 students from Oakland, California, and 7 students from Portland, Oregon. Each student was selected by counselor in his or her respective school. The selection criteria were based on the students` academic performance in science and mathematics courses.

Crumbly, I.J.; Hodges, J.

1994-09-01T23:59:59.000Z

14

Renewable energy cognition and attitude of junior high school students in Kaohsiung city  

Science Conference Proceedings (OSTI)

The purpose of this study is to investigate the concepts and attitudes of renewable energy resources for the junior high school students in Kaohsiung city. Energy is an integral part of our daily lives. If energy was insufficiency, our lives would degenerate ... Keywords: energy, energy education, renewable energy

Wen-Jiuh Chiang; Rong-Jyue Fang; Hung Chien Nien; Hua-Lin Tsa

2010-04-01T23:59:59.000Z

15

STUDENT MOBILITY IN VERMONT SCHOOLS:.  

E-Print Network (OSTI)

??This dissertation project researched sudent mobilityáľ school changes not due to customary promotionáľ and its educational correlates, for students and schools in Vermont. Student mobilityů (more)

Morgan, Annabelle

16

North Texas Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

North Texas Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School...

17

Perceptions of Leadership and Student Performance in Science From Campus Leaders in Selected High Schools  

E-Print Network (OSTI)

This naturalistic study focused on the perceptions of leadership and student performance in science from campus leaders in three purposefully selected secondary campuses of ninth through twelfth grades. Each school had experienced an improvement in student passing rates on the science TAKS test that exceeded the state?s percent improvement in passing rates for the past three years and had a record of improving science TAKS scores for the period of 2003 to 2008 exceeding fifteen percentage points. The qualitative research technique of multi-case studies design was used. Data was collected through semi-structured, in-depth interviews with four campus leaders from each of the selected schools. These campus leaders included campus administrators, science department chairs, and grade-level team leaders. A framework of transformational leadership was utilized in the analysis of the data generated from the interviews. The perception from the campus leaders was that leadership has a positive impact on student success in science. The findings indicated perceptions of leadership from the campus leaders had certain leadership practices in common. These included (a) clear vision and goals from the campus principal, (b) high performance expectations for teachers and students from administrators and science department leaders, (c) encouragement and support from campus administrators and science department leaders to develop new programs to address problem areas, (d) emphasis on collaborative teams, and (e) open door policy from administrators.

Wilder, Sharon

2010-05-01T23:59:59.000Z

18

Trenches Under The Pipeline: The Educational Trajectories of Chicano Male Continuation High School Students  

E-Print Network (OSTI)

Trenches Under The Pipeline: The Educational Trajectories ofnavigate the educational pipeline, continuation high school

Malagon, Maria

2010-01-01T23:59:59.000Z

19

Armed forces career exploration for high school students in the fields of engineering and science. Final report  

SciTech Connect

Morgan State University`s School of Engineering conducted its third annual Armed Forces Career Exploration program for high school students in the fields of engineering and science. The four week program was jointly sponsored by the US Army Laboratory Command (Ballistics Research Laboratory and Human Engineering Laboratory) and US Department of Energy (Los Alamos National Laboratory). The environment in a predominantly urban school system is such that a significant number of very capable students reach the eleventh grade without plans for the future. These students as a result of teacher influence have taken lower level math and science courses and we feel by participating in this program will see reasons for pursuing higher level math and science courses their last two years in high school. Inasmuch as intervention programs have not yet significantly affected the profile of these schools this pool of students represents an opportunity to make an early impact on the number of students that enter college intending to major in math, science or engineering. This report presents the program that provided selected students with pre-engineering and science enrichment experiences designed to enhance their understanding of engineering, increase their awareness of career opportunities in science and engineering, advance their readiness to enter temporary job situation, and foster the development of self-confidence in their individual capabilities.

Not Available

1993-08-01T23:59:59.000Z

20

South Central Ohio Regional High School Science Bowl | U.S. DOE...  

Office of Science (SC) Website

South Central Ohio Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High...

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

UTPA Regional High School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

Texas Regions UTPA Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High...

22

BPA Regional Science Bowl - High School Edition | U.S. DOE Office...  

Office of Science (SC) Website

Oregon Regions BPA Regional Science Bowl - High School Edition National Science Bowl (NSB) NSB Home About NSB High School High School Students High School Coaches High School...

23

Redding Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

California Regions Redding Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School...

24

Florida Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Florida Regions Florida Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals...

25

Systemic Equity Pedagogy in Science Education: A Mixed-Method Analysis of High Achieving High Schools of Culturally Diverse Student Populations in Texas  

E-Print Network (OSTI)

The purpose of this study was to identify and describe the associations between systemic equity pedagogy (SEP) practices in highly diverse high schools and their students' science achievement and college readiness. This study focuses on science programs in ten highly diverse Texas high schools serving students who exhibit high science achievement and college readiness. According to the Policy Research Group in Science Education, only two percent of all culturally diverse high schools within the state of Texas demonstrate high science achievement and college readiness on state-tracked school-level indicators. Transforming a school context where achievement disparities exist among student groups in science classrooms necessitates that public school officials understand key factors, or ôdrivers,ö and associated indicators contributing to SEP in programs. A model for programs is suggested using a framework for SEP based on data collected from ten highly successful, high diversity high schools. The following research questions address the research gap regarding indicators of SEP associated with high science achievement and college readiness in highly culturally diverse high schools. How do data from ten highly successful, high diversity high schools inform the development of a comprehensive SEP rubric? How do high achieving high schools of culturally diverse student populations score on a comprehensive SEP rubric? How do teachersĺ perceptions toward implementing SEP practices vary in different schools? Three research papers detail the research of this dissertation. The purpose for the first paper is to increase understanding of indicators facilitating systemic and equitable teaching and learning practices, otherwise referred to as systemic equity pedagogy (SEP). Results of the study show indicators of a comprehensive SEP rubric. Together, 127 indicators, thirty categories, and eight SEP drivers form a model framing equitable teaching and learning practices associated with high science achievement and college readiness. In conclusion, indicators within the SEP rubric can be described as action-oriented descriptors that science teachers engage formally or informally in order to facilitate quality science education for all students. The purpose for paper two is to score equitable teaching and learning practices in highly successful high school science programs based on the SEP rubric. Findings reveals that implementation of various equitable teaching and learning practices vary across science programs and these practices can be described as both pedagogical and non-pedagogical. In conclusion, varying degrees of implementation exist for indicators in the SEP rubric. In paper three, the purpose is to understand science teachersĺ attitude and approach toward implementing systemic teaching and learning practices. Results from this study provide scores that indicate science teachersĺ perceptions of their approach to SEP. This study concludes by suggesting high achieving science programs may operate within a continuum for implementing equitable teaching and learning practices.

Blocker, Tyrone Dewayne

2013-08-01T23:59:59.000Z

26

Texas school district enlightens students with solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas school district enlightens students with solar Texas school district enlightens students with solar Texas school district enlightens students with solar July 21, 2010 - 11:33am Addthis Sam Rayburn High School in Pasadena, Texas is installing solar panels which will be used incorporated into the school's curriculum. | Photo courtesy of Sam Rayburn High School Sam Rayburn High School in Pasadena, Texas is installing solar panels which will be used incorporated into the school's curriculum. | Photo courtesy of Sam Rayburn High School Solar energy systems at two Houston high schools to save $15,000 annually Generate an estimated 172,000 kilowatt hours annually Avoid green house gas emissions equivalent to 14,000 gallons of gas consumed School-based solar isn't just for math and science students. At two Houston-area high schools students in core courses - ranging from

27

Texas school district enlightens students with solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas school district enlightens students with solar Texas school district enlightens students with solar Texas school district enlightens students with solar July 21, 2010 - 11:33am Addthis Sam Rayburn High School in Pasadena, Texas is installing solar panels which will be used incorporated into the school's curriculum. | Photo courtesy of Sam Rayburn High School Sam Rayburn High School in Pasadena, Texas is installing solar panels which will be used incorporated into the school's curriculum. | Photo courtesy of Sam Rayburn High School Solar energy systems at two Houston high schools to save $15,000 annually Generate an estimated 172,000 kilowatt hours annually Avoid green house gas emissions equivalent to 14,000 gallons of gas consumed School-based solar isn't just for math and science students. At two Houston-area high schools students in core courses - ranging from

28

The impact of school facilities on student achievement, attendance, behavior, completion rate and teacher turnover rate in selected Texas high schools  

E-Print Network (OSTI)

The purpose of this study was to explore the possible relationship between school facility conditions and school outcomes such as student academic achievement, attendance, discipline, completion rate and teacher turnover rate. School facility condition for the participating schools was determined by the Total Learning Environment Assessment (TLEA) as completed by the principal or principal's designee on high school campuses in Texas with enrollments between 1,000 and 2000 and economically disadvantaged enrollments less than 40%. Each school in the study population was organized by grades nine through twelve. Data for achievement, attendance, discipline, completion rate and teacher turnover rate were collected through the Public Education Information Management System (PEIMS) managed by the Texas Education Agency. Student achievement, attendance, discipline, completion rate and teacher turnover rate and their relation to school facilities were investigated using multiple regression models to compare sections and subsections of the TLEA with each of the five dependent variables. Major research findings of this study included the following: first, student achievement, attendance and completion rate measures were not found to be statistically significant in relation to school facility conditions as measured by the TLEA at the 0.05 level; second, discipline, or behavior, was found to be significantly related to the TLEA. This indicates that the subsections of the TLEA could be used to predict discipline factors for schools in the study population; third, teacher turnover rate was found to be related to the TLEA subsections of Specialized Learning Space and Support Space, with the correlation to Support Space being indirect. Literature from prior studies infers that relationships do exist between all five of the study's dependent variables. However, this study only yielded significant findings in the areas of student discipline and teacher turnover. The researchers recommendations based upon this study include the following: administrators and designers should take into account factors such as interior environment and academic learning space when planning schools to positively impact student discipline; school design and construction should focus on specialized learning spaces and other academic areas more than administrative support spaces when striving to increase teacher satisfaction with physical working conditions.

McGowen, Robert Scott

2007-12-01T23:59:59.000Z

29

The impact of school facilities on student achievement, attendance, behavior, completion rate and teacher turnover rate in selected Texas high schools  

E-Print Network (OSTI)

The purpose of this study was to explore the possible relationship between school facility conditions and school outcomes such as student academic achievement, attendance, discipline, completion rate and teacher turnover rate. School facility condition for the participating schools was determined by the Total Learning Environment Assessment (TLEA) as completed by the principal or principalĺs designee on high school campuses in Texas with enrollments between 1,000 and 2000 and economically disadvantaged enrollments less than 40%. Each school in the study population was organized by grades nine through twelve. Data for achievement, attendance, discipline, completion rate and teacher turnover rate were collected through the Public Education Information Management System (PEIMS) managed by the Texas Education Agency. Student achievement, attendance, discipline, completion rate and teacher turnover rate and their relation to school facilities were investigated using multiple regression models to compare sections and subsections of the TLEA with each of the five dependent variables. Major research findings of this study included the following: first, student achievement, attendance and completion rate measures were not found to be statistically significant in relation to school facility conditions as measured by the TLEA at the 0.05 level; second, discipline, or behavior, was found to be significantly related to the TLEA. This indicates that the subsections of the TLEA could be used to predict discipline factors for schools in the study population; third, teacher turnover rate was found to be related to the TLEA subsections of Specialized Learning Space and Support Space, with the correlation to Support Space being indirect. Literature from prior studies infers that relationships do exist between all five of the studyĺs dependent variables. However, this study only yielded significant findings in the areas of student discipline and teacher turnover. The researchers recommendations based upon this study include the following: administrators and designers should take into account factors such as interior environment and academic learning space when planning schools to positively impact student discipline; school design and construction should focus on specialized learning spaces and other academic areas more than administrative support spaces when striving to increase teacher satisfaction with physical working conditions.

McGowen, Robert Scott

2007-12-01T23:59:59.000Z

30

Designing an alternative project for a product design curriculum for high school students  

E-Print Network (OSTI)

An alternative curriculum is designed for Engineering the Future, a high school level engineering curriculum developed by the Boston Museum of Science. It is designed on the premise that a hands-on curriculum providing an ...

Kirby, Jeffrey (Jeffrey T.)

2008-01-01T23:59:59.000Z

31

A Study of School-Choice Students in the Southgate Community School District.  

E-Print Network (OSTI)

??The purpose of this study was to describe and explain the experiences of school-choice students at Southgate Anderson High School (SAHS). Qualitative methods were utilizedů (more)

Timmis, Christopher J

2007-01-01T23:59:59.000Z

32

High Performance Computing School COMSC  

E-Print Network (OSTI)

High Performance Computing School COMSC This module aims to provide the students with fundamental knowledge and understanding of techniques associated with High Performance Computing and its practical' skills in analysing and evaluating High Performance Computing and will be structured around

Martin, Ralph R.

33

A Case Study of Principal Leadership in the Practice of Multicultural Education in High-Achieving Schools Serving Hispanic Students in South Texas  

E-Print Network (OSTI)

The primary purpose of this qualitative study was to explore the educational experiences and leadership behaviors of five South Texas high school principals, in the context of the practice of multicultural education and Hispanic student achievement. Through the recounting of the principalsĺ personal stories, experiences, and artifacts, several themes emerged in the analyses of the data collected for this study: multicultural education, effective schools, and culturally Responsive Leadership. Subthemes for the study included high expectations, collaboration, relationships, empowering school culture, equity pedagogy, communication, vision for success, Hispanic principal leadership, and Hispanic student achievement. Findings for the study further revealed that: 1. Each of the five principals articulated, supported, and fostered a culture of high expectations. 2. Collaboration, among staff, students, and the extended learning community, was a designated priority in these high-performing schools. 3. Principals in each of the five high schools understood the significant value of developing, nurturing, and maintaining productive, caring relationships. 4. Principals understood the value of creating a school culture that empowered students and staff to aspire toward quality teaching and learning. 5. Principals understood and worked vehemently to provide equity pedagogy which addressed the needs of all students. 6. Principals understood the power of varied forms of communication in shaping and supporting the mission of their schools. 7. Principals in these high-performing schools developed and steadfastly articulated a clear vision of success for their schools. 8. Hispanic principals provided unique, relevant, and effective leadership in support of their Hispanic students. 9. Neither school/community demographics nor socioeconomic status determined the potential for Hispanic student success in each of the schools led by the studyĺs participants. While each of the principals in this study used a variety of means to create and support learning environments conducive to all students, each assumed personal responsibility for the success of his/her students, and each worked to empower their Hispanic students through his/her own personal histories and experiences. Thus, the significance of this study lies in the potential to impact Hispanic student achievement by developing school leaders and creating school structures that support culturally diverse students.

Rios, Sylvia 1954-

2012-12-01T23:59:59.000Z

34

Undergraduate engineering students as mentors in an inner-city high school: a pilot program  

Science Conference Proceedings (OSTI)

The paper describes a pilot program and intervention implemented in a Harlem high school in New York City during the Summer of 1999. A group of engineering undergraduates worked with over 150 9th graders to improve their skills in mathematics. The pilot ...

J. McGourty; G. Lopez

2000-10-01T23:59:59.000Z

35

Understanding the Lived Experience of Gifted Middle School Students Who Chose to Attend a New School-Within-a-School Gifted Magnet Program Located on a Highly At-Risk Campus  

E-Print Network (OSTI)

In 2008, Bryan ISD decided to establish a magnet program for gifted middle school students. The program followed the school-within-a-school model and was housed in an existing middle school situated in an area of the district where a high percentage of the student population came from low socio-economic homes. The purpose of this qualitative case study is to gain an understanding of the experience a gifted student goes through in choosing to attend a new gifted magnet program housed in a school away from their home campus. It examines how students arrived at their decision by taking an in-depth look at their thoughts and decision-making processes, the outside influences on their decision, and their expectations of the program. A qualitative case study research method guided this study. The subjects were middle school students in grades 6-8, who were selected for participation based on random sampling for maximum variation. Six students were selected for participation, of which, two were from each of the three grade levels, four were male, two were female, one was African-American, two were Hispanic, and three were Caucasian. Participant interview responses were compared to responses from the entrance applications of the other 123 magnet students at INQUIRE. The responses of the two different groups of students mirrored each other. The results of the study indicated three emergent themes: 1) the desire for challenge overruled the comfort of the familiar, 2) the need to be surrounded by other students who love learning, and 3) the focus was on the future and not the present. The findings of this study indicate that gifted students chose to attend the new magnet program for the academic challenge and the opportunity to learn alongside other gifted students. They had high expectations of what this program would be able to provide them as they strove to reach their goals. The participation of their friends in the new program was not a factor in their decision to attend. INQUIRE Academy was designed to offer something unusual in public education ľ the opportunity to cluster gifted students together, to provide them the opportunity to be intellectually stimulated and challenged by working with peers of the same ability level, to offer multi-age classes, and to offer acceleration based upon student need. For the students in this study, INQUIRE Academy accomplished these goals.

Barnes, Ann Elizabeth Akin

2010-12-01T23:59:59.000Z

36

Energy Secretary Chu Announces Montana Schools Win National Student  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Schools Win National Student Montana Schools Win National Student Efficiency Competition Energy Secretary Chu Announces Montana Schools Win National Student Efficiency Competition May 2, 2012 - 3:05pm Addthis WASHINGTON, D.C. - Secretary of Energy Steven Chu today announced the winners of the America's Home Energy Education Challenge, a national student competition designed to encourage students and their families to take action to start saving money by saving energy. A team of students from five schools in rural Carter County, Montana - Alzeda Elementary School, Carter County High School, Ekalaka Elementary School (K-8th grade), Hammond School (K-8th grade) and Hawks Home School - was declared the national winner for successfully reducing their home energy use by 3.4 percent, working with local utility companies and the community,

37

Explorations of Metacognition Among Academically Talented Middle and High School Mathematics Students  

E-Print Network (OSTI)

techniques include self-report questionnaires, student interviews,interviewsůůůůůůůůůůůůůůůůůůů.. 18 Limitations of current measurement techniquesůůůůůůůůůů. ů.and student interviews. These two techniques are described

Young, Adena Elizabeth

2010-01-01T23:59:59.000Z

38

Youth engagement in high schools: Developing a multidimensional, critical approach to improving engagement for all students  

E-Print Network (OSTI)

Eds. ), International handbook of student experience inIn P. Jackson (Ed. ), Handbook of research on curriculum (Eds. ), International handbook of student experience in

Yonezawa, Susan; Jones, Makeba; Joselowsky, Francine

2009-01-01T23:59:59.000Z

39

Risk to Resilience : : Exploring Protective Factors for Students Experiencing Homelessness at a Traditional High School and a Modified Comprehensive School  

E-Print Network (OSTI)

Layla LaĺShante Malcolm Mary Noah Molly Roman Paulina Stevengo to school, you know? ö -Noah, 9th grader ôIf I succeed inand educational challenges. Noah, a tenth-grader, explained

Garcia, Joel Romero

40

Table Set-up with Materials Target Audience: Parents of elementary school students (grades 3-6) and Middle and High School Students  

E-Print Network (OSTI)

students. BOM: LED (Light Emitting Diode), breadboard, resistor, Wires, 9V battery, Potentiometer to manage

Linhardt, Robert J.

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High school students use nation's top X-rays to study Illinois...  

NLE Websites -- All DOE Office Websites (Extended Search)

States and the world. These scientists come to the APS from universities, industry, medical schools, and other research institutions. Click to enlarge. Argonne's Advanced...

42

NIST Summer High School Intern Program  

Science Conference Proceedings (OSTI)

Summer High School Intern Program (SHIP). SHIP is a NIST-wide summer intern program for students who will have finished ...

2013-03-20T23:59:59.000Z

43

Solar Project to Spark Students' Studies, School's Savings | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Project to Spark Students' Studies, School's Savings Solar Project to Spark Students' Studies, School's Savings Solar Project to Spark Students' Studies, School's Savings April 14, 2010 - 3:26pm Addthis Joshua DeLung What does this project do? Even this small group of initial panels is expected to reduce carbon emissions by 39,631 pounds annually and cut the school's energy costs by a few percentage points. A solar installation on the roof of Drury High School in North Adams, Mass., and an integrated curriculum for students will be the result of $300,000 in Energy Efficiency and Conservation Block Grants, funded by the Recovery Act. North Adams and neighboring Clarksburg, which also sends students to the high school, pooled their $150,000 grants to contribute to the project. "One of the beauties about that building is we have a rough idea of what

44

Solar Project to Spark Students' Studies, School's Savings | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project to Spark Students' Studies, School's Savings Project to Spark Students' Studies, School's Savings Solar Project to Spark Students' Studies, School's Savings April 14, 2010 - 3:26pm Addthis Joshua DeLung What does this project do? Even this small group of initial panels is expected to reduce carbon emissions by 39,631 pounds annually and cut the school's energy costs by a few percentage points. A solar installation on the roof of Drury High School in North Adams, Mass., and an integrated curriculum for students will be the result of $300,000 in Energy Efficiency and Conservation Block Grants, funded by the Recovery Act. North Adams and neighboring Clarksburg, which also sends students to the high school, pooled their $150,000 grants to contribute to the project. "One of the beauties about that building is we have a rough idea of what

45

School racial composition and academic performance of african american students in an urban school district  

E-Print Network (OSTI)

The purpose of this study was to investigate the differences in the academic performance of economically disadvantaged African-American students attending schools with distinct racial composition in selected inner-city Texas high schools based on the information available in the Academic Excellence Indicator System (AEIS) database. The degree to which certain schoolsĺ racial compositions may impact the achievement of economically disadvantaged African-American students was explored. The study was conducted in order examine the academic performance of economically disadvantaged African-American student groups in three large, comprehensive high schools with distinct ratios of school racial compositions. The analyses of student performance data in these three educational settings over three years offers insight into whether school racial composition affects the academic achievement of economically disadvantaged African-American students. A quantitative, two factor factorial (with repeat on the last factor) design was used to answer the questions posed. A mixed-model analysis of variance (ANOVA) was employed to analyze school and student level differences between the percentage of minority students in a school and the academic outcomes. Specifically, the reading and mathematics TAKS scores of economically disadvantaged African-American students from three high schools with distinct ratios of school racial composition were compared and analyzed. The final sample included 428 African-American students. The first school had a racial composition of 80/20, with African-Americans being the minority. The second school had a balanced racial composition (defined as ô30/30/30ö), and the third schoolĺs racial composition was 30/70, with African-Americans being the majority. The most important finding in this study is that the differences in the reading and math performance of economically disadvantage African-American high school students attending schools with different racial composition are statistically significant. The researcher observed an increase in the average academic performance of African- American students as the concentration of minority students in the schools was reduced. Although the effect of school racial composition was minimal, the findings indicate that (even after controlling the effects of schools and studentsĺ demographic factors by holding these variables constant) reading and math TAKS scores were consistently higher in the 80/20 school than in the 30/30/30 school, followed by the 30/70 school.

Osagie, Andree O.

2007-12-01T23:59:59.000Z

46

School District Harnesses Wind to Teach Students | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

School District Harnesses Wind to Teach Students School District Harnesses Wind to Teach Students School District Harnesses Wind to Teach Students April 2, 2010 - 2:40pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE A school district in Walsh, Colo., a rural community in the breezy southeastern part of the state, is saving money with its new wind turbine, but the real payoff comes this fall. Teachers are looking forward to using the new 2.4-kilowatt wind turbine that sits behind the high school as a tool to teach students about wind energy technology. "It's always more exciting for kids to work with something real, instead of something that is hypothetical," says Kyle Hebberd, superintendent of Walsh School District. "Hopefully, the new turbine will connect better with the kids."

47

School District Harnesses Wind to Teach Students | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

School District Harnesses Wind to Teach Students School District Harnesses Wind to Teach Students School District Harnesses Wind to Teach Students April 2, 2010 - 2:40pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE A school district in Walsh, Colo., a rural community in the breezy southeastern part of the state, is saving money with its new wind turbine, but the real payoff comes this fall. Teachers are looking forward to using the new 2.4-kilowatt wind turbine that sits behind the high school as a tool to teach students about wind energy technology. "It's always more exciting for kids to work with something real, instead of something that is hypothetical," says Kyle Hebberd, superintendent of Walsh School District. "Hopefully, the new turbine will connect better with the kids."

48

Table Set-up with Modern Engineering Tools Target Aud ience: Parents of elementary school students (grades 3-6) and Middle and High School Students  

E-Print Network (OSTI)

/W by 2010 ┬Ě 1998 White LED performance: 18 Lm/W (about same as bulb) ┬Ě Goal setting was not technology based not ready for prime time ┬Ě Lack of good standards ┬Ě Very high prices ┬Ě Lots of "junk LED bulbs" Philips #12, 1878. ┬Ě The first commercial electrical lighting (outdoors) #12;The Amazing Light Bulb 8 ┬Ě Work started

L├╝, James Jian-Qiang

49

High School | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

High School High School National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Print Text Size: A A A RSS Feeds FeedbackShare Page 2013 High School Teams 2013 High School National Teams The high school competition began in 1991 as the National Science Bowl (NSB) as a highly competitive science education and academic event among teams of high school students who compete in a fast-paced verbal forum to solve technical problems and answer questions in all branches of science

50

Energy Secretary Chu Announces Montana Schools Win National Student...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Montana Schools Win National Student Efficiency Competition Energy Secretary Chu Announces Montana Schools Win National Student Efficiency Competition...

51

Green Schools Energizing Memphis Area Students | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schools Energizing Memphis Area Students Green Schools Energizing Memphis Area Students May 6, 2010 - 4:55pm Addthis Paul Lester Communications Specialist for the Office of Energy...

52

Photo of the Week: Students from Roosevelt Middle School win...  

NLE Websites -- All DOE Office Websites (Extended Search)

Students from Roosevelt Middle School win Argonne's 2013 Regional Science Bowl Photo of the Week: Students from Roosevelt Middle School win Argonne's 2013 Regional Science Bowl...

53

Exploring the cognitive loads of high-school students as they learn concepts in web-based environments  

Science Conference Proceedings (OSTI)

This study measured high-school learners' cognitive load as they interacted with different web-based curriculum components, and examined the interactions between cognitive load and web-based concept learning. Participants in this study were 105 11th ... Keywords: Improving classroom teaching, Interactive learning environments, Pedagogical issues, Secondary education

Cheng-Chieh Chang; Fang-Ying Yang

2010-09-01T23:59:59.000Z

54

Agreement of Medical and Undergraduate School Counselors about the Ways an Average Student Can Improve His Application to Medical School  

E-Print Network (OSTI)

service, volunteering in any medical setting, and obtaininggiven student applicants for medical school. Boththat volunteering in a medical/clinical setting is a highly

Shapiro, Sharon; Stanley, Kristi A; Henderson, Sean O; Massopust, Kristy

2008-01-01T23:59:59.000Z

55

NREL: Education Programs - National Science Bowl High School  

NLE Websites -- All DOE Office Websites (Extended Search)

National Science Bowl - High School A photo of a group of high school students on a stage holding a silver trophy and a blue and white banner that reads, "U.S. Department of Energy...

56

Do Earth and Environmental Science Textbooks Promote Middle and High School Students' Conceptual Development about Climate Change? Textbooks' consideration of students' misconceptions  

Science Conference Proceedings (OSTI)

Misconceptions or a lack of relevant prior concepts can hinder students from developing an understanding of scientific concepts. Science education research suggests that building on students' prior concepts is an effective way to develop students'...

Soyoung Choi; Dev Niyogi; Daniel P. Shepardson; Umarporn Charusombat

2010-07-01T23:59:59.000Z

57

An Examination of the Relationship Between School Climate and Student Growth in select Michigan Charter Schools.  

E-Print Network (OSTI)

??The purpose of this study was to determine what relationship exists between school climate and student growth in Michigan charter schools. Data were collected throughů (more)

Jankens, Benjamin P.

2011-01-01T23:59:59.000Z

58

High School | ScienceLab, Education Resources from the U.S. Department...  

Office of Scientific and Technical Information (OSTI)

GLOBE Steps to a Successful Student Research Paper Jefferson Lab Student Zone National Energy Research Scientific Computing Center National Science Bowl High School...

59

Girls in Computer Science: a Female Only Introduction Class in High School .  

E-Print Network (OSTI)

??This study examined the impact of an all girlsĺ classroom environment in a high school introductory computer science class on the studentĺs attitudes towards computerů (more)

Drobnis, Ann W.

2010-01-01T23:59:59.000Z

60

NETL: 2010 SW PA High School Science Bowl  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Science Bowl High School Science Bowl The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), and the Community College of Allegheny County (CCAC), South Campus, would like to invite you to participate in one of the premier scientific events for high school students, the Southwestern Pennsylvania High School Science Bowl 2010 on February 20, 2010. This will be NETL's 19th year sponsoring the high school competition. There is a change this year in the registration process from past years, all teams who are registering to complete, must do so through the National Science Bowl website by January 7, 2010. For those who are not familiar with the Science Bowl here are some highlights: The competition is open to high school students (school, scouts, home school) from Southwestern Pennsylvania (SW PA). Complete eligibility requirements are located at the National Science Bowl website.

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

University at Albany Students Head Back to a School Powered with Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at Albany Students Head Back to a School Powered with at Albany Students Head Back to a School Powered with Renewable Energy University at Albany Students Head Back to a School Powered with Renewable Energy August 24, 2012 - 10:00am Addthis University at Albany's new student housing center, Liberty Terrace, is the school's first LEED Gold certified facility. The building has high-efficiency lighting and uses 45 percent less water than a comparable building. | Photo courtesy of the University at Albany. University at Albany's new student housing center, Liberty Terrace, is the school's first LEED Gold certified facility. The building has high-efficiency lighting and uses 45 percent less water than a comparable building. | Photo courtesy of the University at Albany. To help regulate Liberty Terrace's temperature, the school installed a geothermal heat pump, which is expected to reduce energy use by 50 percent. | Photo courtesy of the University at Albany.

62

University at Albany Students Head Back to a School Powered with Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University at Albany Students Head Back to a School Powered with University at Albany Students Head Back to a School Powered with Renewable Energy University at Albany Students Head Back to a School Powered with Renewable Energy August 24, 2012 - 10:00am Addthis University at Albany's new student housing center, Liberty Terrace, is the school's first LEED Gold certified facility. The building has high-efficiency lighting and uses 45 percent less water than a comparable building. | Photo courtesy of the University at Albany. University at Albany's new student housing center, Liberty Terrace, is the school's first LEED Gold certified facility. The building has high-efficiency lighting and uses 45 percent less water than a comparable building. | Photo courtesy of the University at Albany. To help regulate Liberty Terrace's temperature, the school installed a geothermal heat pump, which is expected to reduce energy use by 50 percent. | Photo courtesy of the University at Albany.

63

High school students' perceptions of and attitudes toward globalization: an analysis of international baccalaureate students in Estado de Mexico, Mexico, and Texas, U.S.A.  

E-Print Network (OSTI)

As the last few decades have seen a proliferation of debate concerning today├ó┬?┬?s international system referred to as ├ó┬?┬?globalization,├ó┬?┬Ł education has seen an exponential rise in curriculum (such as that promoted by global education, international education, and the International Baccalaureate Organization) that instills students with ├ó┬?┬?international understanding├ó┬?┬Ł and ├ó┬?┬?global perspectives.├ó┬?┬Ł Through a two-site, interpretive study, this dissertation explored the nature of 15 students├ó┬?┬? international understanding and their grasp of globalization. Qualitative techniques for data collection involved open-ended questionnaires and interviews, and emergent category designation was employed for qualitative data analysis. International Baccalaureate students from Estado de M├?┬ęxico and Texas revealed complex, yet well-developed, perceptions of globalization that spoke of a system which privileges the powerful and leaves the developing world behind. Both U.S. and Mexican students were skeptical of the United States├ó┬?┬? position as the dominant player in world politics, economics, and global culture, and students from both sides of the border lamented local culture loss in globalization.

Brown, Jennifer Gayle

2006-12-01T23:59:59.000Z

64

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure Dear Student Applicant: To be eligible to participate in the Jefferson Lab High School Summer Honors Program, you must attend a local high school (within 60 miles of Jefferson Lab), be at least 16 years old by the start date of the program, be in good academic standing, and maintain at least a 3.3 grade point average. Students who are selected to participate in the Jefferson Lab High School Summer Honors Program are chosen on the basis of demonstrated skills and merit. Dependents of Jefferson Lab employees are not eligible for this program. The 2014 Jefferson Lab High School Summer Honors Program begins on June 23, 2014 and concludes on August 1, 2014. To apply to the Jefferson Lab High School Summer Honors Program, follow the

65

NREL: News - Lakewood High School Wins Colorado Science Bowl  

NLE Websites -- All DOE Office Websites (Extended Search)

713 713 Lakewood High School Wins Colorado Science Bowl Lakewood School Heads to Washington D.C. to Challenge for National Title January 26, 2013 Students from Lakewood High School Team 1 won the Colorado High School Science Bowl today. They will go on to the 23rd National Science Bowl in Washington D.C., Apr. 25-29, where they will compete for the national title against more than 400 students from 70 high schools. The U.S. Department of Energy (DOE) began the Science Bowl tradition in 1991 as a way to encourage high school students to explore math and science. The Department of Energy's Golden Field Office once again was one of the major sponsors of this year's Colorado Science Bowl, along with DOE's National Renewable Energy Laboratory. Teams from across the state competed in the day-long competition at Dakota

66

Minnesota Regional Science Bowl for Middle School Students | U.S. DOE  

Office of Science (SC) Website

Minnesota Regions » Minnesota Regional Minnesota Regions » Minnesota Regional Science Bowl for Middle School Students National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Minnesota Regions Minnesota Regional Science Bowl for Middle School Students Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Barbara Donoho Email: bdonoho@mnmas.org Regional Event Information Date: Saturday, February 15, 2014 (Tentative)

67

Pewaukee School District  

Science Conference Proceedings (OSTI)

... PSD includes four schools (two elementary schools, one middle school and one high school) housed on an 85-acre campus that serves students ...

2013-11-13T23:59:59.000Z

68

Teachers', parents', and students' perceptions of effective school characteristics of two Texas urban exemplary open-enrollment charter schools  

E-Print Network (OSTI)

The primary purpose of this study was to examine how teachers, parents, and students viewed their charter school as effective when effectiveness was defined by the following 11 characteristics: (a) instructional leadership, (b) clear mission, (c) safe and orderly environment, (d) positive school climate, (e) high expectations, (f) frequent monitoring, (g) basic skills, (h) opportunities for learning, (i) parent and community involvement, (j) professional development and (k) teacher involvement. Two exemplary open-enrollment charter schools in Texas were used in this study. All 24 teacher, parent, and student participants completed a questionnaire that addressed characteristics analyzed for each group. The 72 participants in this quantitative study were randomly chosen to respond to items on the School Effectiveness Questionnaire developed by Baldwin, Freeman, Coney, Fading, and Thomas. Data from the completed questionnaires were reported using descriptive statistics and frequency data. Major research findings for the study were as follows: 1. There was agreement among teachers, parents, and students regarding 5 characteristics. These characteristics were: (a) safe and orderly environment, (b) positive school climate, (c) high student expectations, (d) frequent student assessment, and (e) monitoring of achievement and basic skills. 2. Teachers and parents agreed their school demonstrated effective instructional leadership, a clear and focused mission, and a maximized opportunity for learning. On the other hand, students were uncertain their school provided maximum opportunities for learning. 3. Only parents and students were in agreement concerning the parental involvement in their school. In contrast, teachers were uncertain their school provided parent and community involvement. 4. Teachers were also uncertain their school provided strong professional development and included them in the decision-making process for the school.

Albert - Green, DeEadra Florence

2005-08-01T23:59:59.000Z

69

Middle School Students Go Green | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Students Go Green Middle School Students Go Green Middle School Students Go Green November 15, 2010 - 2:27pm Addthis Lindsay Gsell Kentucky's Turkey Foot Middle School is going green. In this video, see a tour from students as they showcase the school's geothermal field, green roof, green building products, daylight harvesting system, solar panels and rainwater catchment system. Through the Kentucky Department for Energy Development and Independence, Turkey Foot Middle School received nearly $2 million in Recovery Act funding to complete the project. Addthis Related Articles Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don't produce excess noise. | Photo Courtesy of Sterling Public Schools Geothermal Systems are a Breath of Fresh Air for Illinois School District

70

Middle School Students Go Green | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

School Students Go Green School Students Go Green Middle School Students Go Green November 15, 2010 - 2:27pm Addthis Lindsay Gsell Kentucky's Turkey Foot Middle School is going green. In this video, see a tour from students as they showcase the school's geothermal field, green roof, green building products, daylight harvesting system, solar panels and rainwater catchment system. Through the Kentucky Department for Energy Development and Independence, Turkey Foot Middle School received nearly $2 million in Recovery Act funding to complete the project. Addthis Related Articles Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don't produce excess noise. | Photo Courtesy of Sterling Public Schools Geothermal Systems are a Breath of Fresh Air for Illinois School District

71

High schools that bridge the achievement gap  

E-Print Network (OSTI)

top priorities for your school this year? 25. How many yearsan administrator at your school (as of June 2006)? Thank youthe myth: High poverty schools exceeding expectations:

Hargrove, Michael S.

2007-01-01T23:59:59.000Z

72

The Effects of the Texas Statewide Youth Leadership Forum Summer Training Event on the Self-Advocacy Abilities of High School Students with Disabilities  

E-Print Network (OSTI)

Self-advocates and professionals in the field agree on the critical importance of providing self-advocacy and leadership training to youth with disabilities. Youth Leadership Forum (YLF) programs have been developed and implemented nationwide to provide a training venue for youth with disabilities to gain self-advocacy and leadership skills. The problem is the lack of empirical evidence validating the effectiveness of self-advocacy training provided through the YLF training format. The purpose of this study was to evaluate the effects of the Texas Statewide Youth Leadership Forum (TXYLF) summer training event on the self-advocacy abilities of high school students with disabilities, and to examine the interaction effect of disability type and gender on the improvement of self-advocacy abilities. To accomplish this purpose, a Non-Equivalent Groups Design (NEGD) was selected and used. The target population for this study was high school youth with disabilities in the state of Texas. The final sample included 68 youth. The TXYLF Pre/Post Questionnaire was the instrument used to measure the participants? self-advocacy abilities. The pretest was administered the week prior to the training event. The posttest was administered to the treatment group immediately following the training event and to the control group in the two weeks following the training event. Descriptive and inferential analyses were conducted to answer the primary and the exploratory questions. The inferential analyses included an ANCOVA and two factorial ANOVAS. Results indicated that the training had a positive effect on the selfadvocacy abilities of the participants. The results of the ANOVAs indicated (a) type of disability did not interact with treatment to affect the self-advocacy abilities of these participants, and (b) gender did not interact with treatment to affect the self-advocacy abilities of these participants. A descriptive and inferential post hoc examination of the treatment group data yielded an interaction by treatment effect for disability type indicating the treatment was more effective for participants with Developmental Disabilities. Future research studies should focus on replication of the current study results and examination of the long term effects of the self-advocacy training for youth with disabilities. In designing these studies, group designs should be considered and used.

Grenwelge, Cheryl Hamilton

2010-05-01T23:59:59.000Z

73

California Nonresident Tuition Exemption For Eligible California High School Graduates  

E-Print Network (OSTI)

California Nonresident Tuition Exemption For Eligible California High School Graduates (The law at the California Community Colleges, the University of California, and the California State University (all public colleges and universities in California). ┬Ě Requirements: o The student must have attended a high school

Ravikumar, B.

74

California Nonresident Tuition Exemption For Eligible California High School Graduates  

E-Print Network (OSTI)

California Nonresident Tuition Exemption For Eligible California High School Graduates (The law at the California Community Colleges, the California State University and the University of California (all public colleges and universities in California). ┬Ě Requirements: o The student must have attended a high school

de Lijser, Peter

75

High Performance Schools Policy  

Energy.gov (U.S. Department of Energy (DOE))

In July 2002, New Jerseyĺs governor signed Executive Order No. 24 requiring all new school designs to incorporate LEED Version 2.0 guidelines in order to achieve maximum energy efficiency and...

76

NETL: Educational Initiatives - Students  

NLE Websites -- All DOE Office Websites (Extended Search)

Students FOR HIGH SCHOOL STUDENTS NETL works with young men and women in local high schools through a variety of internships, shadowing experiences, and assignments with...

77

Photo of the Week: Students from Roosevelt Middle School win Argonne's 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Students from Roosevelt Middle School win Students from Roosevelt Middle School win Argonne's 2013 Regional Science Bowl Photo of the Week: Students from Roosevelt Middle School win Argonne's 2013 Regional Science Bowl February 25, 2013 - 11:49am Addthis Each year, the National Science Bowl brings together thousands of middle and high school students from across the country to compete in a range of science disciplines, including biology, chemistry, earth science, physics, astronomy and math. The members of the winning team, from Roosevelt Middle School of River Forest, Illinois, competed against 14 other teams from across the Midwest in one of the regional competitions in the 23rd Annual U.S. Department of Energy National Science Bowl. This April, the winning teams from each region will compete for a national title in Washington, D.C. View a full gallery of photos from the 2013 Regional Science Bowl at Argonne. | Photo courtesy of Argonne National Laboratory.

78

High-Performance Schools: Affordable Green Design for K-12 Schools; Preprint  

Science Conference Proceedings (OSTI)

Schools in the United States spend $7.8 billion on energy each year-more than the cost of computers and textbooks combined, according to a 2003 report from the National Center for Education Statistics. The U.S. Department of Energy (DOE) estimates that these high utility bills could be reduced as much as 25% if schools adopt readily available high performance design principles and technologies. Accordingly, hundreds of K-12 schools across the country have made a commitment to improve the learning and teaching environment of schools while saving money and energy and protecting the environment. DOE and its public- and private-sector partners have developed Energy Design Guidelines for High Performance Schools, customized for nine climate zones in U.S. states and territories. These design guidelines provide information for school decision makers and design professionals on the advantages of energy efficiency and renewable energy designs and technologies. With such features as natural day lighting, efficient electric lights, water conservation, and renewable energy, schools in all types of climates are proving that school buildings, and the students and teachers who occupy them, are indeed high performers. This paper describes high performance schools from each of the nine climate zones associated with the Energy Design Guidelines. The nine case studies focus on the high performance design strategies implemented in each school, as well as the cost savings and benefits realized by students, faculty, the community, and the environment.

Plympton, P.; Brown, J.; Stevens, K.

2004-08-01T23:59:59.000Z

79

Eastern Idaho Regional Middle School Science Bowl | U.S. DOE...  

Office of Science (SC) Website

Eastern Idaho Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School...

80

Western Idaho Regional Middle School Science Bowl | U.S. DOE...  

Office of Science (SC) Website

Western Idaho Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School...

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Highlighting High Performance: Clearview Elementary School, Hanover, Pennsylvania  

DOE Green Energy (OSTI)

Case study on high performance building features of Clearview Elementary School in Hanover, Pennsylvania. Clearview Elementary School in Hanover, Pennsylvania, is filled with natural light, not only in classrooms but also in unexpected, and traditionally dark, places like stairwells and hallways. The result is enhanced learning. Recent scientific studies conducted by the California Board for Energy Efficiency, involving 21,000 students, show test scores were 15% to 26% higher in classrooms with daylighting. Clearview's ventilation system also helps students and teachers stay healthy, alert, and focused on learning. The school's superior learning environment comes with annual average energy savings of about 40% over a conventional school. For example, with so much daylight, the school requires about a third less energy for electric lighting than a typical school. The school's innovative geothermal heating and cooling system uses the constant temperature of the Earth to cool and heat the building. The building and landscape designs work together to enhance solar heating in the winter, summer cooling, and daylighting all year long. Students and teachers have the opportunity to learn about high-performance design by studying their own school. At Clearview, the Hanover Public School District has shown that designing a school to save energy is affordable. Even with its many innovative features, the school's $6.35 million price tag is just $150,000 higher than average for elementary schools in Pennsylvania. Projected annual energy cost savings of approximately $18,000 mean a payback in 9 years. Reasonable construction costs demonstrate that other school districts can build schools that conserve energy, protect natural resources, and provide the educational and health benefits that come with high-performance buildings.

Not Available

2002-08-01T23:59:59.000Z

82

Coal Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide - High School Coal Study Guide - High School Coal Study Guide - High School More Documents & Publications Coal Study Guide - Middle School Coal Study Guide for...

83

Oil Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Oil Study Guide - High School Oil Study Guide - High School More Documents & Publications Oil Study Guide - Middle School Fossil Energy Today - First Quarter, 2012...

84

Fossil Fuels Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Study Guide - High School Fossil Fuels Study Guide - High School Fossil Fuels Study Guide - High School More Documents & Publications Coal Study Guide for Elementary School...

85

Heath Middle School Science Students Study Environmental Issue at Paducah  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heath Middle School Science Students Study Environmental Issue at Heath Middle School Science Students Study Environmental Issue at Paducah Site Heath Middle School Science Students Study Environmental Issue at Paducah Site April 1, 2012 - 12:00pm Addthis Mentor Jim Erickson of the LATA Kentucky team shows Heath Middle School sixthgrader Ian Morgan how to use red cabbage to indicate if a watery solution is acidic, basic, or neutral. Mentor Jim Erickson of the LATA Kentucky team shows Heath Middle School sixthgrader Ian Morgan how to use red cabbage to indicate if a watery solution is acidic, basic, or neutral. Heath Middle School eighth-grader Travis Crouch performs a pH (acidity-basicity) test using red cabbage. Heath Middle School eighth-grader Travis Crouch performs a pH (acidity-basicity) test using red cabbage. Kelly Layne of the LATA Kentucky team tells Heath Middle School students how to use zinc pennies in an experiment with differing known and unknown solutions. Facing, from left, are students Atherton Milford, McKenzie Moss, Trevor Kendall, Max Kolb, and James Michael Dodd.

86

Daylighting in schools: Improving student performance and health at a price schools can afford: Preprint  

SciTech Connect

Over the next seven years, at least 5,000 new schools will be designed and constructed to meet the needs of American students in kindergarten through grade 12. National efforts are underway to encourage the use of daylighting, energy efficiency, and renewable energy technologies in school designs, which can significantly enhance the learning environment. Recent rigorous statistical studies, involving 21,000 students in three states, reveal that students perform better in daylit classrooms and indicate the health benefits of daylighting. This paper discusses the evidence regarding daylighting and student performance and development, and presents four case studies of schools that have cost effectively implemented daylighting into their buildings.

Plympton, P.; Conway, S.; Epstein, K.

2000-06-14T23:59:59.000Z

87

California South/West Bay Area Regional Middle School Science...  

Office of Science (SC) Website

California SouthWest Bay Area Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School...

88

Science Fair Participation by Public School Student In Minnesota  

Science Conference Proceedings (OSTI)

This article is a major extract from a position paper addressed to the Executive Director, Governor's Task Force on Public Education Policy, State of Minnesota. The author shows a real and significant underrepresentation by public school students ...

William F. Cross

1980-12-01T23:59:59.000Z

89

Mira Loma High School and Hopkins Junior High School from California Win  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mira Loma High School and Hopkins Junior High School from Mira Loma High School and Hopkins Junior High School from California Win U.S. Department of Energy National Science Bowl Mira Loma High School and Hopkins Junior High School from California Win U.S. Department of Energy National Science Bowl May 4, 2009 - 12:00am Addthis WASHINGTON, DC - High school and middle school teams from California won the 2009 U.S. Department of Energy (DOE) National Science Bowl® today at the National Building Museum in Washington. Mira Loma High School from Sacramento beat Lexington High School from Lexington, Massachusetts in the high school national championship match. Hopkins Junior High School from Fremont, California beat Jonas Clarke Middle School from Lexington, Massachusetts in the middle school national championship match.

90

High School Regionals | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Regionals Regionals National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School High School Regionals Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Team Registration For more information, please visit the High School Coach page. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

91

SUPPORT FOR HU CFRT SUMMER HIGH SCHOOL FUSION WORKSHOP  

SciTech Connect

Nine summer fusion science research workshops for minority and female high school students were conducted at the Hampton University Center for Fusion Research and Training from 1996 to 2005. Each workshop was of the duration of eight weeks. In all 35 high school students were mentored. The students presented 28 contributed papers at the annual meetings of the American Physical Society Division of Plasma Physics. These contributed papers were very well received by the plasma physics and fusion science research community. The students won a number of prestigious local, state, and national honors, awards, prizes, and scholarships. The notable among these are the two regional finalist positions in the 1999 Siemens-Westinghouse Science and Technology Competitions; 1st Place U.S. Army Award, 2006; 1st Place U.S. Naval Science Award, 2006; Yale Science and Engineering Association Best 11th Grade Project, 2006; Society of Physics Students Book Award, 2006; APS Corporate Minority Scholarship and others. This workshop program conducted by the HU CFRT has been an exemplary success, and served the minority and female students exceptionally fruitfully. The Summer High School Fusion Science Workshop is an immensely successful outreach activity conducted by the HU CFRT. In this workshop, we train, motivate, and provide high quality research experiences to young and talented high school scholars with emphasis on under-represented minorities and female students in fusion science and related areas. The purpose of this workshop is to expose minority and female students to the excitement of research in science at an early stage in their academic lives. It is our hope that this may lead the high school students to pursue higher education and careers in physical sciences, mathematics, and perhaps in fusion science. To our knowledge, this workshop is the first and only one to date, of fusion science for under-represented minorities and female high school students at an HBCU. The faculty researchers in the HU CFRT mentor the students during summers. Mentors spend a considerable amount of time and efforts in training, teaching, guiding and supervising research projects. The HU CFRT has so far conducted nine workshops during the summers of 1996-2000 and 2002-2005. The first workshop was conducted in summer 1996. Students for the workshop are chosen from a national pool of exceptionally talented high school rising seniors/juniors. To our knowledge, most of these students have gone on to prestigious universities such as Duke University, John Hopkins University, CalTech, UCLA, Hampton University, etc. after completing their high school. For instance, Tiffany Fisher, participant of the 1996 summer workshop completed her BS in Mathematics at Hampton University in May 2001. She then went on to Wake Forest University at Winston-Salem, North Carolina to pursue graduate studies. Anshul Haldipur, participant of the 1999 summer workshop, began his undergraduate studies at Duke University in 2000. Christina Nguyen and Ilissa Martinez, participants of the 2000 summer workshop, are pursuing their undergraduate degrees at the UCLA and Florida State University respectively. The organizing committee of the APS DPP annual meeting invited Dr. Punjabi to deliver an invited talk on training the next generation of fusion scientists and engineers at the 2005 APS DPP meeting in Denver, CO. The organizing committee distributed a special flier with the Bulletin to highlight this invited talk and another talk on education as well the expo. This has given wide publicity and recognition to our workshops and Hampton University. Prof. Punjabi's talk: 'LI2 2: Training the next generation of fusion scientists and engineers: summer high school fusion science workshop, Bull. Amer. Phys. Soc. 50, 221 (2005)' was very well-received. He talked about HU education and outreach initiative and the HU CFRT Summer High School Workshop. The audience had a considerable number of questions about our workshops and the High School to PhD Pipeline in fusion science. Professor William Mathews of

Alkesh Punjabi

2010-02-09T23:59:59.000Z

92

SUPPORT FOR HU CFRT SUMMER HIGH SCHOOL FUSION WORKSHOP  

Science Conference Proceedings (OSTI)

Nine summer fusion science research workshops for minority and female high school students were conducted at the Hampton University Center for Fusion Research and Training from 1996 to 2005. Each workshop was of the duration of eight weeks. In all 35 high school students were mentored. The students presented 28 contributed papers at the annual meetings of the American Physical Society Division of Plasma Physics. These contributed papers were very well received by the plasma physics and fusion science research community. The students won a number of prestigious local, state, and national honors, awards, prizes, and scholarships. The notable among these are the two regional finalist positions in the 1999 Siemens-Westinghouse Science and Technology Competitions; 1st Place U.S. Army Award, 2006; 1st Place U.S. Naval Science Award, 2006; Yale Science and Engineering Association Best 11th Grade Project, 2006; Society of Physics Students Book Award, 2006; APS Corporate Minority Scholarship and others. This workshop program conducted by the HU CFRT has been an exemplary success, and served the minority and female students exceptionally fruitfully. The Summer High School Fusion Science Workshop is an immensely successful outreach activity conducted by the HU CFRT. In this workshop, we train, motivate, and provide high quality research experiences to young and talented high school scholars with emphasis on under-represented minorities and female students in fusion science and related areas. The purpose of this workshop is to expose minority and female students to the excitement of research in science at an early stage in their academic lives. It is our hope that this may lead the high school students to pursue higher education and careers in physical sciences, mathematics, and perhaps in fusion science. To our knowledge, this workshop is the first and only one to date, of fusion science for under-represented minorities and female high school students at an HBCU. The faculty researchers in the HU CFRT mentor the students during summers. Mentors spend a considerable amount of time and efforts in training, teaching, guiding and supervising research projects. The HU CFRT has so far conducted nine workshops during the summers of 1996-2000 and 2002-2005. The first workshop was conducted in summer 1996. Students for the workshop are chosen from a national pool of exceptionally talented high school rising seniors/juniors. To our knowledge, most of these students have gone on to prestigious universities such as Duke University, John Hopkins University, CalTech, UCLA, Hampton University, etc. after completing their high school. For instance, Tiffany Fisher, participant of the 1996 summer workshop completed her BS in Mathematics at Hampton University in May 2001. She then went on to Wake Forest University at Winston-Salem, North Carolina to pursue graduate studies. Anshul Haldipur, participant of the 1999 summer workshop, began his undergraduate studies at Duke University in 2000. Christina Nguyen and Ilissa Martinez, participants of the 2000 summer workshop, are pursuing their undergraduate degrees at the UCLA and Florida State University respectively. The organizing committee of the APS DPP annual meeting invited Dr. Punjabi to deliver an invited talk on training the next generation of fusion scientists and engineers at the 2005 APS DPP meeting in Denver, CO. The organizing committee distributed a special flier with the Bulletin to highlight this invited talk and another talk on education as well the expo. This has given wide publicity and recognition to our workshops and Hampton University. Prof. Punjabi's talk: 'LI2 2: Training the next generation of fusion scientists and engineers: summer high school fusion science workshop, Bull. Amer. Phys. Soc. 50, 221 (2005)' was very well-received. He talked about HU education and outreach initiative and the HU CFRT Summer High School Workshop. The audience had a considerable number of questions about our workshops and the High School to PhD Pipeline in fusion science. Professor William Mathews of

Alkesh Punjabi

2010-02-09T23:59:59.000Z

93

New Jersey Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Jersey Regions » New Jersey Regional High Jersey Regions » New Jersey Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New Jersey Regions New Jersey Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Please Note: All slots for the High School Science Bowl have been filled. Any team registering after December 17, 2013, will be placed on the wait-list. Should a school drop out of the competition, a new team will be

94

Transforming High School Physics with Modeling and Computation  

E-Print Network (OSTI)

The Engage to Excel (PCAST) report, the National Research Council's Framework for K-12 Science Education, and the Next Generation Science Standards all call for transforming the physics classroom into an environment that teaches students real scientific practices. This work describes the early stages of one such attempt to transform a high school physics classroom. Specifically, a series of model-building and computational modeling exercises were piloted in a ninth grade Physics First classroom. Student use of computation was assessed using a proctored programming assignment, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Student views on computation and its link to mechanics was assessed with a written essay and a series of think-aloud interviews. This pilot study shows computation's ability for connecting scientific practice to the high school science classroom.

Aiken, John M

2013-01-01T23:59:59.000Z

95

High School Co-op Program  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Co-op Program High School Co-op Program Point your career towards LANL: work with the best minds on the planet in an inclusive environment that is rich in intellectual...

96

JPL Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

JPL Regional High School JPL Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions JPL Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kimberly Lievense Email: Klievense@jpl.nasa.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 1

97

Alabama High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alabama Regions » Alabama High School Science Alabama Regions » Alabama High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Alabama Regions Alabama High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Pamela Quintana Email: pquintana@asms.net Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 20 Maximum Number of Teams per School: 3

98

PNNL Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

PNNL Regional High School PNNL Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington Regions PNNL Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Beth Perry Email: bethperry13@msn.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 3

99

Pantex Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Pantex Regional High School Pantex Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions Pantex Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Debra Halliday Email: dhallida@pantex.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 40 Maximum Number of Teams per School: 3

100

BPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Oregon Regions » BPA Regional High School Oregon Regions » BPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Oregon Regions BPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Christy Adams Email: cfadams@bpa.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 64 Maximum Number of Teams per School: 3

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Kansas Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Kansas Regions » Kansas Regional High School Kansas Regions » Kansas Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Kansas Regions Kansas Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Myra Everette Email: meverette@kcp.com Regional Event Information Date: February 1, 2014 Maximum Number of Teams: 32 Maximum Number of Teams per School: 3

102

STEP Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

STEP Regional High School STEP Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions STEP Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Peter Macchia Email: mrmacchia@gmail.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 16 Maximum Number of Teams per School: 3

103

Effects of the A+ Schools program on attendance, dropout rate, and student achievement.  

E-Print Network (OSTI)

?? In this study, the results of Missouri Assessment Program student achievement and average daily attendance of schools designated A+ Schools by the Missouri Departmentů (more)

Hyatt, Jeffrey L.

2009-01-01T23:59:59.000Z

104

DC Regional Middle School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

Washington DC Regions DC Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches...

105

Chicago Regional Middle School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

Illinois Regions Chicago Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About NSB High School Middle School Middle School Students Middle School...

106

High School Coaches | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coaches Coaches National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School High School Coaches Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome High School Coaches Team Registrations Are Open Please click "High School Regionals" on the menu to the left. Click To Return To Your Registration External link Listed below is all the information you need to lead a team to success in the National Science Bowl. Be sure to read the rules and other very helpful

107

UIC Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

UIC Regional High School UIC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Illinois Regions UIC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anita Ramirez Email: chicago.regional.science.bowl@gmail.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24

108

Alaska Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alaska Regions » Alaska Regional High School Alaska Regions » Alaska Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Alaska Regions Alaska Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Cindy Carl Email: WellnessWorks_4u2@yahoo.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 12

109

SHPE NYC Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

SHPE NYC Regional High SHPE NYC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions SHPE NYC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dora Maria Abreu Email: Doramaria@gmail.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 20 Maximum Number of Teams per School: 3

110

LADWP Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

LADWP Regional High LADWP Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions LADWP Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Walter Zeisl Email: walter.zeisl@ladwp.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 55 Maximum Number of Teams per School: 2

111

Kern County Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Kern County Regional High Kern County Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Kern County Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Thomas Meyer Email: tmeyer@csub.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 32 Maximum Number of Teams per School: 3

112

Sacramento Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Sacramento Regional High Sacramento Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sacramento Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anita Wiley Email: wiley@wapa.gov Regional Event Information Date: March 1, 2014 Maximum Number of Teams: 26 Maximum Number of Teams per School: 2

113

Modesto Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Modesto Regional High Modesto Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Modesto Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Mike Zweifel Email: mikez@mid.org Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 2

114

UTPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

UTPA Regional High School UTPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions UTPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Joel Ruiz Email: jruiz@utpa.edu Additional Contacts: Name: Jessica Salinas Email: lopezj@utpa.edu Name: Karen Dorado Email: kadorado@utpa.edu Regional Event Information

115

High School Rules, Forms, and Resources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Resources Resources National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Make Your Own National Science Bowl® Competition Buzzer Sample Questions Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals High School Rules, Forms, and Resources Print Text Size: A A A RSS Feeds FeedbackShare Page The following are resources for high school teams of the National Science Bowl. 2014 Official National Science Bowl Rules .pdf file (517KB)

116

Nevada Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Nevada Regions » Nevada Regional High School Nevada Regions » Nevada Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Nevada Regions Nevada Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Daniel Burns Email: burnsdb@nv.doe.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 32

117

NOBCChE Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

NOBCChE Regional High NOBCChE Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions NOBCChE Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Thomas Whitt Email: twhitt523@gmail.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 10 Maximum Number of Teams per School: 2

118

Maine Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Maine Regions » Maine Regional High School Maine Regions » Maine Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Maine Regions Maine Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Rob Sanford Email: rsanford@usm.maine.edu Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 20

119

San Antonio Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

San Antonio Regional High San Antonio Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions San Antonio Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Bobby Blount Email: bb@mitre.org Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 35 Maximum Number of Teams per School: 3

120

Indiana Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Indiana Regions » Indiana Regional High School Indiana Regions » Indiana Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Indiana Regions Indiana Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Bala Dhungana Email: bkrishnad@hotmail.com Regional Event Information Date: Saturday, March 8, 2014 Maximum Number of Teams: 10

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Iowa Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Iowa Regions » Iowa Regional High School Iowa Regions » Iowa Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Iowa Regions Iowa Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Steve Karsjen Email: karsjen@ameslab.gov Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 40

122

Redding Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Redding Regional High Redding Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Redding Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Matt Madison Email: mmadison@reupower.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 28 Maximum Number of Teams per School: 3

123

Montana Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Montana Regions » Montana Regional High School Montana Regions » Montana Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Montana Regions Montana Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Josie Daggett Email: daggett@wapa.gov Regional Event Information Date: Saturday, March 8, 2014 Maximum Number of Teams: 30

124

SLAC Regional High School Science Bowl| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

SLAC Regional High School SLAC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions SLAC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Farah Rahbar Email: farah.rahbar@slac.stanford.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 18

125

Georgia Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Georgia Regions » Georgia Regional High School Georgia Regions » Georgia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Georgia Regions Georgia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Donna Mullenax Email: donna.mullenax@armstrong.edu Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 72

126

Florida Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Florida Regions » Florida Regional High School Florida Regions » Florida Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Florida Regions Florida Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Michael Chiang Email: michaelraymondchiang@gmail.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 24

127

Energy Design Guidelines for High Performance Schools: Hot and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around...

128

Oklahoma Regional Science Bowl - Middle School Edition | U.S...  

Office of Science (SC) Website

Oklahoma Regions Oklahoma Regional Science Bowl - Middle School Edition National Science Bowl (NSB) NSB Home About NSB High School Middle School Middle School Students Middle...

129

Daylighting in schools: Energy costs reduced, student performance improved  

Science Conference Proceedings (OSTI)

Ordinarily, architectural-engineering firms are only indirectly concerned with psychological and physical benefits to the occupants of the buildings they design. However, a firm in North Carolina, Innovative Design, is not ordinary. Their use of daylighting in schools yields considerable economic benefits: energy costs reduced up to 64%, cooling and electrical equipment costs reduced, long-term mechanical and lighting equipment maintenance costs reduced. But equally impressive are the benefits of daylighting on student performance. Students in schools using daylighting have higher achievement scores in reading and math tests. Further, as shown in a related study, because of additional vitamin D received by students via daylighting, they will have less dental decay--and grow taller. In the two performance reports which follow, authors Nicklas and Bailey analyze specific win-win benefits of daylighting. Their findings are startling.

Nicklas, M.H.; Bailey, G.B. [Innovative Design, Raleigh, NC (United States)

1997-11-01T23:59:59.000Z

130

Bellevue High School | Open Energy Information  

Open Energy Info (EERE)

Bellevue High School Bellevue High School Jump to: navigation, search Name Bellevue High School Facility Bellevue High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Bellevue High School Energy Purchaser Bellevue High School Location Bellevue WA Coordinates 41.28241024┬░, -82.84591019┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.28241024,"lon":-82.84591019,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Margaretta High School | Open Energy Information  

Open Energy Info (EERE)

Margaretta High School Margaretta High School Jump to: navigation, search Name Margaretta High School Facility Margaretta High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Margaretta High School Energy Purchaser Margaretta High School Location Castalia OH Coordinates 41.39923794┬░, -82.80122995┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.39923794,"lon":-82.80122995,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

DC Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DC Regions » DC Regional High DC Regions » DC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington DC Regions DC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Jamie T. Scipio Email: jamie.scipio@hq.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 12

133

San Diego Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

San Diego Regional High San Diego Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions San Diego Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Ronald Lewis Email: sandiegonobcche@earthlink.net Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 24

134

Tennessee Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Tennessee Regions » Tennessee Regional High Tennessee Regions » Tennessee Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Tennessee Regions Tennessee Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Martha Hammond Email: Martha.Hammond@orau.org Additional Contact: Name: Marolyn Randolph Email: Marolyn.Randolph@orau.org

135

SWPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Pennsylvania Regions » SWPA Regional High Pennsylvania Regions » SWPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Pennsylvania Regions SWPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Lilas Soukup Email: lilas.soukup@netl.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 48

136

North Texas Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

North Texas Regional High North Texas Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions North Texas Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Rommel Alonzo Email: rommel.alonzo@mavs.uta.edu Regional Event Information Date: Saturday, February 15, 2014 Maximum Number of Teams: 12

137

Wisconsin Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Wisconsin Regions » Wisconsin Regional High Wisconsin Regions » Wisconsin Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Wisconsin Regions Wisconsin Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Julie Schuster Email: schuster@msoe.edu Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 20

138

Michigan Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Michigan Regions » Michigan Regional High Michigan Regions » Michigan Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Michigan Regions Michigan Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Andrew Chubb Email: achubb@svsu.edu Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 15

139

Maryland Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Maryland Regions » Maryland Regional High Maryland Regions » Maryland Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Maryland Regions Maryland Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Michael Mehalick Email: michael.mehalick@montgomerycollege.edu Regional Event Information Date: Saturday, January 18, 2014

140

West Kentucky Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Kentucky Regions » West Kentucky Regional High Kentucky Regions » West Kentucky Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Kentucky Regions West Kentucky Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Robert Smith Email: robert.smith@lex.doe.gov Additional Contact: Name: Donald Dihel Email: don.dihel@lex.doe.gov

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nebraska Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Nebraska Regions » Nebraska Regional High Nebraska Regions » Nebraska Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Nebraska Regions Nebraska Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Todd Young Email: toyoung1@wsc.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 40

142

Poudre High School From Fort Collins , Colorado Wins U.S. Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poudre High School From Fort Collins , Colorado Wins U.S. Poudre High School From Fort Collins , Colorado Wins U.S. Department of Energy National Science Bowl® Poudre High School From Fort Collins , Colorado Wins U.S. Department of Energy National Science Bowl® April 30, 2007 - 12:45pm Addthis WASHINGTON, DC - Poudre High School from Fort Collins, Colorado won the 2007 U.S. Department of Energy (DOE) National Science Bowl® for high school students today at the National 4-H Youth Conference Center. Poudre High School beat State College Area High School from State College, Pennsylvania in the national championship match. Teams representing 64 high schools from across the United States competed in the National Finals. Members of the winning team include Patrick Chaffey, Sam Elder, Winston Gao, Sam Sun, Logan Wright and coach Jack Lundt. The team won a science

143

Virginia Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Virginia Regions » Virginia Regional High Virginia Regions » Virginia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Virginia Regions Virginia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Jan Tyler Email: tyler@jlab.org Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 23

144

Missouri Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Missouri Regions » Missouri Regional High Missouri Regions » Missouri Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Missouri Regions Missouri Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Myra Everette Email: meverette@kcp.com Regional Event Information Date: February 1, 2014 Maximum Number of Teams: 32

145

Colorado Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Colorado Region » Colorado Regional High Colorado Region » Colorado Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Colorado Region Colorado Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Linda Lung Email: linda.lung@nrel.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 48

146

Oklahoma Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Oklahoma Regions » Oklahoma Regional High Oklahoma Regions » Oklahoma Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Oklahoma Regions Oklahoma Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Gail Bliss Email: gnbliss@carnegienet.net Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 32

147

Minnesota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Minnesota Regions » Minnesota Regional High Minnesota Regions » Minnesota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Minnesota Regions Minnesota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Barbara Donoho Email: bdonoho@mnmas.org Regional Event Information Date: Friday, January 24, 2014 Maximum Number of Teams: 32

148

Barriers to school inclusion : an investigation into the exclusion of disabled students from and within New Zealand schools.  

E-Print Network (OSTI)

??Research evidence suggests that disabled students are experiencing forms of exclusion from and within schools, however little is known of the nature of this phenomenon.ů (more)

Kearney, Alison

2009-01-01T23:59:59.000Z

149

Related Links on High-Performance Schools  

Energy.gov (U.S. Department of Energy (DOE))

Below are related links to resources for incorporating energy efficiency and renewable energy into building or renovating high-performance schools.

150

Educational Triage: A Comparative Study of Two High School Principals in Program Improvement Schools  

E-Print Network (OSTI)

D. (2009). State High School Exit Examiniations And NAEPManaging In the Middle: School Leaders and the Enactment ofJ. (2001). Investigating School Leadership Practice: A

Garrity, Kyle M.

2013-01-01T23:59:59.000Z

151

Inland Northwest Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Inland Northwest Regional Inland Northwest Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington Regions Inland Northwest Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kaye Kamp Email: kkamp@whitworth.edu Regional Event Information Date: February 8, 2014 Maximum Number of Teams: 42

152

West Virginia Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

West Virginia Regions » West Virginia Regional West Virginia Regions » West Virginia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov West Virginia Regions West Virginia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kirk Gerdes Email: Kirk.Gerdes@NETL.DOE.GOV Regional Event Information Date: Saturday, February 1, 2014

153

U.S. Virgin Islands Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

U.S. Virgin Islands Regions » U.S. Virgin U.S. Virgin Islands Regions » U.S. Virgin Islands High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov U.S. Virgin Islands Regions U.S. Virgin Islands High School Regional Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Gerald Walters Email: gwalters@sttj.k12.vi Regional Event Information

154

Savannah River Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Carolina Regions » Savannah River Carolina Regions » Savannah River Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov South Carolina Regions Savannah River Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kim Mitchell Email: kimberly.mitchell@srs.gov Regional Event Information Date: Saturday, March 1, 2014

155

Puerto Rico Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Puerto Rico Regions » Puerto Rico Regional Puerto Rico Regions » Puerto Rico Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Puerto Rico Regions Puerto Rico Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Julienne Sanchez Email: julienne.sanchez@upr.edu Regional Event Information Date: Saturday, February 22, 2014

156

Brookhaven National Lab Regional High School Science Bowl | U.S. DOE Office  

Office of Science (SC) Website

Brookhaven National Lab Brookhaven National Lab Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Brookhaven National Lab Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Catherine Osiecki Email: Osiecki@bnl.gov Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 20

157

Mississippi Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Mississippi Regions » Mississippi Regional Mississippi Regions » Mississippi Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Mississippi Regions Mississippi Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dionne Fortenberry Email: dfortenberry@as.muw.edu Regional Event Information Date: Friday, January 31, 2014

158

Northeast Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Massachusetts Regions » Northeast Regional Massachusetts Regions » Northeast Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Massachusetts Regions Northeast Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kevin McLaughlin Email: kjm@engr.uconn.edu Regional Event Information Date: Saturday, March 1, 2014

159

Capital District Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Capital District Regional Capital District Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Capital District Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dominic Fulgieri Email: dominic.fulgieri@unnpp.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 18

160

South Dakota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Daktoa Regions » South Dakota Regional Daktoa Regions » South Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov South Daktoa Regions South Dakota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Lesley Berg Email: lberg@wapa.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 32

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Connecticut Regional High School Science Bowl| U.S. DOE Office of Science  

Office of Science (SC) Website

Connecticut Regions » Connecticut Regional Connecticut Regions » Connecticut Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Connecticut Regions Connecticut Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kevin McLaughlin Email: kjm@engr.uconn.edu Regional Event Information Date: Saturday, March 1, 2014

162

Sandia National Laboratories Regional High School Science Bowl | U.S. DOE  

Office of Science (SC) Website

Sandia National Sandia National Laboratories Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sandia National Laboratories Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Timothy Shepodd Email: tjshepo@sandia.gov Regional Event Information Date: January 25, 2014

163

South Central Ohio Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

South Central Ohio Regional South Central Ohio Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Ohio Regions South Central Ohio Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Greg Simonton Email: greg.simonton@lex.doe.gov Regional Event Information Date: Friday, March 7, 2014 Maximum Number of Teams: 32

164

Greater Cincinnati Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Greater Cincinnati Regional Greater Cincinnati Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Ohio Regions Greater Cincinnati Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Betsy Volk Email: betsy.volk@emcbc.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24

165

North Dakota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Dakota Regions » North Dakota Regional Dakota Regions » North Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov North Dakota Regions North Dakota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Tom Atkinson Phone: 701-221-4559 Email: tatkinson@wapa.gov Regional Event Information Date: Saturday, February 8, 2014

166

North Carolina Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Carolina Regions » North Carolina Carolina Regions » North Carolina Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov North Carolina Regions North Carolina Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Fredrick Johnson Email: fjohnson@nccu.edu Regional Event Information Date: Saturday, January 25, 2014

167

We Have a Winner - DC High School Regional Science Bowl Competition Held  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

We Have a Winner - DC High School Regional Science Bowl Competition We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday February 11, 2013 - 10:30am Addthis We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday Annie Whatley Annie Whatley Deputy Director, Office of Minority Economic Impact As part of the National Science Bowl, more than 9,500 high school students take place in 70 high school regional competitions around the United States and Puerto Rico. The winners of these regions advance to the National Science Bowl competition held every April in Chevy Chase, Maryland. On Saturday, February 9, the Office of Economic Impact and Diversity hosted the Washington, D.C. High School Regional Science Bowl competition at Cesar

168

Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Santa Monica High School From Santa Monica, Calif. Wins U.S. Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of Energy National Science Bowl® Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of Energy National Science Bowl® May 5, 2008 - 11:30am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Santa Monica High School from Santa Monica, Calif. is the winner of the 2008 DOE National Science Bowl®. Santa Monica High School beat Mira Loma High School from Sacramento, Calif. in the championship match today at the National Building Museum in Washington, DC. Teams representing 67 high schools from across the United States competed in the National Finals. "I congratulate all of the students who competed in this year's U.S. Department of Energy National Science Bowl," U.S. Secretary of Energy

169

Calling Science Stars in Middle and High Schools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools November 10, 2010 - 10:03am Addthis 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Do you know some science whizzes in middle or high school? Because now is the time for 5-student teams to register for their region's Science Bowl competition. Students are quizzed, Jeopardy-style, on topics including astronomy, biology, chemistry, Earth science, general science, mathematics and physics

170

Calling Science Stars in Middle and High Schools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools November 10, 2010 - 10:03am Addthis 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Do you know some science whizzes in middle or high school? Because now is the time for 5-student teams to register for their region's Science Bowl competition. Students are quizzed, Jeopardy-style, on topics including astronomy, biology, chemistry, Earth science, general science, mathematics and physics

171

Wausau High School | Open Energy Information  

Open Energy Info (EERE)

Wausau High School Wausau High School Jump to: navigation, search Name Wausau High School Facility Wausau High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Wausau WI Coordinates 44.97944687┬░, -89.59666014┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.97944687,"lon":-89.59666014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Thomas Jefferson High School for Science & Technology National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

173

PROFILE OF A HIGH SCHOOL INTERN: JOSHUA BLOOM | Princeton Plasma Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

PROFILE OF A HIGH SCHOOL INTERN: JOSHUA BLOOM PROFILE OF A HIGH SCHOOL INTERN: JOSHUA BLOOM June 15, 2013 Some students come into the high school internship program at PPPL already harboring an interest in plasma physics, knowing exactly what research they want to work on and what they want to learn. Others come in not really knowing what to expect. Josh Bloom, a graduating senior from West Windsor-Plainsboro High School North, falls into the latter category, coming into PPPL with not necessarily any particular interest in working with plasma physics, but just a desire to make the most out of his high school's Senior Option program, in which qualifying students are granted the opportunity to spend a portion of their last semester in professional internships. Josh's interests in science were not tailored specifically to plasma

174

ALTERNATIVE EDUCATION IN CONTINUATION HIGH SCHOOLS: MEETING THE NEEDS OF OVER-AGED UNDER-CREDITED YOUTH  

E-Print Network (OSTI)

California school districts operate 519 continuation high schools that enrolled over 115,000 students over the course of the 2006-07 school year. 1 Originally designed to provide a flexible schedule for working students to continuing their schooling, the modern continuation high school now serves a diverse population of students. The single common denominator is that most continuation students have reached the 9 th or 10 th grades lacking sufficient academic credits to remain on track to graduate with their age cohort. Since 1965, state law has mandated that all school districts enrolling over 100 12 th grade students make available a continuation program or school to provide an alternative route to the high school diploma for youth vulnerable to academic or behavioral failure. The law, unique to California, contemplates accelerated credit accrual strategies and more intensive services ôincluding, but not limited to, independent study, regional occupation programs, work study, career counseling, and job placement services ö so that students might have a renewed opportunity to ôcomplete the required academic courses of instruction to graduate from high school. ö 2 This legislative design thus makes clear that continuation schools constitute the stateĺs primary drop-out

Jorge Ruiz De Velasco

2008-01-01T23:59:59.000Z

175

Texas A&M Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Texas A&M Regional High School Texas A&M Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions Texas A&M Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Vince Schielack Email: vinces@math.tamu.edu Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 32

176

Learning is Now Much 'Cooler' for Maryland School Students | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learning is Now Much 'Cooler' for Maryland School Students Learning is Now Much 'Cooler' for Maryland School Students Learning is Now Much 'Cooler' for Maryland School Students September 21, 2010 - 4:30pm Addthis Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more energy efficient than the previous roof. | U.S. Department of Energy Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more energy efficient than the previous roof. | U.S. Department of Energy Loretta Prencipe Senior Communications Analyst, Office of Energy Efficiency & Renewable Energy It is back to school time for the 513 students at Ring Factory Elementary School in Harford County, Md. And there's something new and cool --

177

Learning is Now Much 'Cooler' for Maryland School Students | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is Now Much 'Cooler' for Maryland School Students is Now Much 'Cooler' for Maryland School Students Learning is Now Much 'Cooler' for Maryland School Students September 21, 2010 - 4:30pm Addthis Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more energy efficient than the previous roof. | U.S. Department of Energy Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more energy efficient than the previous roof. | U.S. Department of Energy Loretta Prencipe Senior Communications Analyst, Office of Energy Efficiency & Renewable Energy It is back to school time for the 513 students at Ring Factory Elementary School in Harford County, Md. And there's something new and cool --

178

Mira Loma High School and Hopkins Junior High School from California...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lexington High School from Lexington, Massachusetts. Team members include: Jaeyoon Lee, Noah Arbesfeld, Joshua Leung, Christopher Teng, and Kyumin Lee and coaches Nicholas Gould...

179

State-of-the-State of Texas Retention of High School Science Teachers  

E-Print Network (OSTI)

Concerns about turnover of highly qualified science teachers have pervaded education stakeholder discussions for several years. Yet little is known about where are we in retaining high science teachers in Texas public schools. The three empirical studies included in this dissertation used mixed research methods to explore data collected by the Policy Research Initiative in Science Education (PRISE) Research Group during the 2007-2010 school years. The first study examined mobility patterns and hiring patterns of high school science teachers after two school years. I used descriptive statistical analyses to investigate relationships between teacher-level variables (i.e., teacher type, age, ethnicity, and gender) and school-level variables (i.e., school size and minority student enrollment proportion) with respect to movement out and into Texas schools. Findings revealed variations in mobility patterns of science teachers, based on size and minority student enrollment proportion of the schools in which they worked. Hiring patterns revealed that schools typically hired young, novice White female teachers regardless of school size or minority student enrollment proportion. The second study explored the relationships between schoolsĺ retention strategies and retention challenges with schoolsĺ science teacher retention rates, respectively. I used multiple regression and descriptive statistical analyses to investigate the relationships between study variables. While regression models predicting science teacher retention were not remarkable, descriptive statistical analyses revealed notable relationships between several school-level variables and school retention status. The third study investigated relationships among three variables: school retention strategies, science teacher job satisfaction, and science teacher mobility. Multilevel analyses were used to investigate relationships between two-level variables. Findings revealed no relationships of significance between school retention strategies or teacher job satisfaction with teacher mobility. However, interactions between predictor variables indicated that satisfied science teachers were more likely to remain at schools that expressed and showed appreciation for teachers than to leave the profession. Findings from these studies were used to make state-, district-, and school-level policy recommendations for high school science teachers that included: (a) tailoring recruitment and retention supports to meet the needs of underrepresented teacher populations leading science classrooms, (b) recognizing schools that successfully retain science teachers, and (c) providing professional development for high school principals to assist with the design of strategic plans to improve job satisfaction and retention of teachers.

Spikes, Sara Elizabeth

2011-08-01T23:59:59.000Z

180

from Savannah River Nuclear Solutions, LLC NEWS Area High School Teams Compete during DOE's National Science  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Teams Compete during DOE's National Science High School Teams Compete during DOE's National Science Bowl® Regional Championship: Lakeside and Evans High School Finish Second and Third - Dorman Wins AIKEN, S.C. - Feb. 25, 2013 - Using a format similar to the television show "Jeopardy," America's next generation of scientists and engineers put their knowledge to the test at the University of South Carolina Aiken during the DOE National Science Bowl regional compe- tition this past weekend. High School teams from across South Carolina and the greater Augusta, Ga. area relied on their collective knowledge as they participated in one of the coun- try's largest science tournaments. This regional competition, managed by Savannah River Nuclear Solutions, LLC (SRNS), hosted 120 high school students from 12 high schools. It is the only educational event

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Personalization Efforts and the Relationship to School Climate in Select Michigan High Schools.  

E-Print Network (OSTI)

??The American high school is on the verge of a reform movement like that seen in American middle schools throughout the early and mid-1990s. Inů (more)

Pilar, Karl A

2007-01-01T23:59:59.000Z

182

2010 DOE National Science Bowl┬« Photos - Little Rock Central High School  

Office of Science (SC) Website

Little Rock Central High School Little Rock Central High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Little Rock Central High School Print Text Size: A A A RSS Feeds FeedbackShare Page Little Rock Central High School students from Little Rock, AR tour the

183

2010 DOE National Science Bowl┬« Photos - Farmingdale High School | U.S.  

Office of Science (SC) Website

Farmingdale High School Farmingdale High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Farmingdale High School Print Text Size: A A A RSS Feeds FeedbackShare Page Farmingdale High School students from Farmingdale, NY take part in the

184

The Gender Gap in Secondary School Mathematics at High Achievement Levels: Evidence from the American Mathematics Competitions  

E-Print Network (OSTI)

This paper uses a new data source, American Mathematics Competitions, to examine the gender gap among high school students at very high achievement levels. The data bring out several new facts. There is a large gender gap ...

Ellison, Glenn

2010-01-01T23:59:59.000Z

185

Identity and the pursuit of school success understandings of intelligence and effort in three high schools  

E-Print Network (OSTI)

of California High Schools." www.csumentor.edu. Calsyn, R.America's Elite Boarding Schools. New York: Basic Books.of Violence in Inner-City Schools. Chicago: University of

Nunn, Lisa Michele

2009-01-01T23:59:59.000Z

186

Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts  

Science Conference Proceedings (OSTI)

This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

Not Available

2006-06-01T23:59:59.000Z

187

The effects of technology enriched mathematics instruction on at-risk secondary school students  

Science Conference Proceedings (OSTI)

An obstacle to student learning with many at-risk students is not the lack of ability of the student, but rather the inability of the school system to design and implement options suited to their unique learning styles. This study examined the effectiveness ...

Fred L. Pellerito / Ronald Aust

2011-01-01T23:59:59.000Z

188

Secretary Chu Announces Middle and High School Finalists Set to Compete in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle and High School Finalists Set to Middle and High School Finalists Set to Compete in the 2012 National Science Bowl in Washington, D.C. Secretary Chu Announces Middle and High School Finalists Set to Compete in the 2012 National Science Bowl in Washington, D.C. April 12, 2012 - 2:12pm Addthis Washington D.C. - Demonstrating the Obama Administration's commitment to improving the participation and performance of America's students in science, technology, engineering and mathematics, U.S. Energy Secretary Steven Chu today announced the list of 113 regional middle and high school finalists that will compete in the Energy Department's National Science Bowl Finals in Washington, D.C., at the end of April. Since January, nearly 14,000 students have competed in regional tournaments in which teams of

189

The Impact of Social Space Design on Studentsĺ Behavioral Problems in Middle Schools  

E-Print Network (OSTI)

This study examined the impact of social space design on student behavioral problems in middle schools. A mixed-method approach was used in the form of focus groups and surveys with teachers and students from four central Texas middle schools (7th and 8th grade). Social space was defined as any space that students use while not in the classroom (e.g., hallways, cafeteria and outdoor spaces). Negative behavioral patterns were defined by the schools themselves but typically were any act that is physically or emotionally harmful to another student, oneself, or school property (e.g., stealing, fighting and name-calling). For each space, design elements that were analyzed included seating, privacy, equipment, structure, and open space. Within one school, four key spaces were identified and students were surveyed regarding their opinions of the design and behavioral patterns within each space. Comparisons across spaces within and among the four schools showed areas that are overcrowded or lack supervision exhibit higher accounts of negative behavior. Structured social spaces and outdoor spaces have less instances of problematic behavior but only when overcrowding is not a problem. This study also uncovered design factors that were important to the students but were not originally considered such as their desire for safety. This result highlights the importance of student voice in design. Overcrowding, supervision and the balance of privacy and safety emerged as the main issues regarding social space design and behavioral patterns in middle schools.

Schneider, Raechel

2011-05-01T23:59:59.000Z

190

Students Learn about Wind Power First-Hand through Wind for Schools Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learn about Wind Power First-Hand through Wind for Schools Learn about Wind Power First-Hand through Wind for Schools Program Students Learn about Wind Power First-Hand through Wind for Schools Program February 18, 2011 - 3:48pm Addthis JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What will the project do? Wind for Schools raises awareness in rural America about the benefits of wind energy while simultaneously developing a wind energy knowledge base in communities across the nation. For years, Jenny Christman tried to find a way to get a wind turbine to

191

A critical policy analysis: the impact of zero tolerance on out-of-school suspensions and expulsions of students of color in the state of Texas by gender and school level  

E-Print Network (OSTI)

This study focused on the disciplining actions given to students of color after the implementation of the zero tolerance (ZT) policy in Texasĺ schools. Out-of-school suspension and expulsion data were analyzed to depict trends and/or patterns across school levels as well as gender and race/ethnicity. More specifically, the disciplinary action of 34,047 elementary, middle and high school students of color suspended out-of-school and expelled in Texasĺ public schools during the1999-2000 and 2002-2003 academic school years were statistically analyzed then evaluated via specific tenets of critical race theory (CRT). A critical policy analysis, as defined by the researcher, was discussed using the results of the data analysis. In addition, the predictive power of the variables school level, gender and race/ethnicity on the disciplinary action given to students of color were analyzed during the school terms under study. The most statistically significant finding of the study was the influence of ethnicity on out-of-school suspension and expulsion rates of students of color in the State of Texas after the implementation of the policy known as ZT during the selected school terms. Furthermore, of the students enrolled in public schools in Texas during the 1999-2000 and 2002-2003 school years, African-American students comprised 14.3 and 14.4 percent of the population; yet, they received more than one-third of all disciplining actions, second to European Americans who comprised 43 and 40 percent of the enrolled population. When compared to other students of color, African-American students received 53.6 and 53.9 percent of the out-of-school suspensions and 64.3 and 65.1 of the expulsions. Even though the data presented were aligned with previous research studies, the view of disciplinary actions for students of color from a critical race theory (CRT) lens highlights the deficiencies outlined via a critical policy analysis of the ZT policy as it is used to fortify the safety of schools.

Sullivan, Earnestyne LaShonne

2007-08-01T23:59:59.000Z

192

Energy Design Guidelines for High Performance Schools: Tropical Island Climates  

SciTech Connect

The Energy Design Guidelines for High Performance Schools--Tropical Island Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in tropical island climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

Not Available

2004-11-01T23:59:59.000Z

193

Assessing the relationships among PSAT and TAKS scores in selected Texas high schools  

E-Print Network (OSTI)

The purpose of this research study was to determine the relationships among PSAT scores and TAKS scores in selected Texas high schools in order to inform state policy makers, school district administrators and teachers as they strive to implement policies to improve student achievement. In addition the findings of this study can be vital for curriculum planning pre-K-16. The population for this study was the 3,243 sophomores at the 55 Texas high schools involved in the Texas AP/IB Center's PSAT Pilot Program. The schools participating in this program were selected based on the high proportion of students from low-income homes and the lack of an AP program or low AP program participation. Students at participating high schools were predominantly minority and from homes identified by the Texas Education agency as low socioeconomic status. This study's significance is based on its potential to provide school district administrators additional information on which to base decisions regarding budget allocations for Advanced Placement programs. With greater stress on high-stakes testing and greater competition to enter higher education, Texas school districts will have initial data upon which to strengthen curricular offerings. Additionally, this study will provide policymakers at the state and local level the data necessary to make decisions when marketing and promoting the Advanced Placement program. Research findings of this study included: 1. The degree of association between PSAT score and TAKS scores was moderate. 2. Caucasian students consistently outperformed their minority counterparts on all examinations. 3. Economically disadvantaged students achieved lower scores than their more affluent counterparts on all tests. 4. Females outperformed males on most exams, but the results are not conclusive.

Wilson, Eric Daryl

2004-08-01T23:59:59.000Z

194

Evaluation of the Safety Collaborative Human Relations Subcommittee in LAUSD District 7 High Schools  

E-Print Network (OSTI)

adolescent drug abuse and high school dropout thoughan intensive school-based social network developmentin Max Days Suspended HRS Schools Non-HRS Schools Difference

Jessie Kim; Takaaki Miyamoto; Yoko Nakashima-Myers; Maisa Youssef

2006-01-01T23:59:59.000Z

195

The Effect of Online Collaborative Learning on Middle School Student Science Literacy and Sense of Community.  

E-Print Network (OSTI)

??This study examines the effects of online collaborative learning on middle school students' science literacy and sense of community. A quantitative, quasi-experimental pretest/posttest control groupů (more)

Wendt, Jillian

2013-01-01T23:59:59.000Z

196

Student-Led Conferences| Perceptions Held By Parents of Children Attending a Christian Elementary School.  

E-Print Network (OSTI)

?? This concurrent multiple methods study was to inform the work at Ontario Christian School (OCS) related to student-led conferences in grades K-3rd during theů (more)

Foster King, Angele'

2011-01-01T23:59:59.000Z

197

Microsoft Word - Parkersburg High School Claims 2013 WV Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Parkersburg High School Claims 2013 WV Science Bowl Regional Win Parkersburg High School demonstrated its academic prowess as it defeated 12 other teams to capture the 22 nd Annual...

198

West Windsor-Plainsboro High School South wins regional Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

West Windsor-Plainsboro High School South wins regional Science Bowl at PPPL A dramatic ending to High School Bowl sends local team to nationals By Jeanne Jackson DeVoe February...

199

Secretary Chu Recalls Garden City High School Physics Teacher...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recalls Garden City High School Physics Teacher Secretary Chu Recalls Garden City High School Physics Teacher September 30, 2010 - 12:00am Addthis As part of President Obama's new...

200

Category:Wind for Schools High School Curricula | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon ┬╗ Category:Wind for Schools High School Curricula Jump to: navigation, search Category containing Wind for Schools Portal High School curricula. To add a new entry, you can upload a new file. In the summary field, type in the following text to add the file to this category: [[Category:Wind for Schools Portal Curricula]][[Category:Wind for Schools High School Curricula]] Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Media in category "Wind for Schools High School Curricula" The following 22 files are in this category, out of 22 total. Air Density Lab.pdf Air Density Lab.pdf 240 KB Anemometer activity.docx Anemometer activity.docx 64 KB Blade design modification log.docx Blade design modificat...

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Classroom Observations of Instructional Practices and Technology Use by Elementary School Teachers and Students in an Ethnically-and Economically-Diverse School District  

E-Print Network (OSTI)

The purpose of this study was to observe pre-kindergarten through fifth-grade public school classrooms to examine differences among instructional practices and technology use by teachers, students and the overall classroom. The current study differed from and built upon previous classroom observational research in a number of major ways. First, the observational data examined both student and teacher technology use and the availability of technology in the classroom. Second, authentic classroom behaviors were examined in relation to technology use; specifically, behaviors related to the impact of technology use on student engagement as well as differences among technology use in classrooms and differences by student socio-economic status. Finally, unlike previous studies, this study focused specifically on pre-kindergarten through fifth-grade classrooms from the same large public school district that was diverse by both socio-economic status (SES) and by student ethnicity. Overall, the results of this study suggest that technology has not been adequately implemented into the observed classrooms. Technology was available but was not used to a great extent. When technology was implemented, teachers were primarily observed using it to present material and students were observed using it almost exclusively for basic skills activities. This low-level of technology integration occurred in elementary schools of a high performing school district which had a technology plan in place, a low student to computer ratio, and 100 percent of the classrooms had Internet access. Furthermore, only 15 percent of teachers were observed integrating technology to a great extent; however, students in these classrooms were observed on task significantly more frequently than students in classrooms where technology was observed less or not at all. On the other hand, students were observed off task significantly more in classrooms where either no technology integration was observed or where it was only observed a moderate amount. These findings support and build upon previous observational studies. There is still a need, however, for strong, empirical research to be conducted to further examine the use of technology in elementary classrooms.

Rollins, Kayla Braziel

2011-08-01T23:59:59.000Z

202

CNST High School Intern Parakh Jain Selected as Semifinalist ...  

Science Conference Proceedings (OSTI)

CNST High School Intern Parakh Jain Selected as Semifinalist in Intel Science Talent Search. For Immediate Release: January 31, 2011. ...

2011-01-31T23:59:59.000Z

203

A code reuse interface for non-programmer middle school students  

Science Conference Proceedings (OSTI)

We describe a code reuse tool for use in the Looking Glass IDE, the successor to Storytelling Alice [17], which enables middle school students with little to no programming experience to reuse functionality they find in programs written by others. Users ... Keywords: code reuse, end user, looking glass, middle school, non-programmer, storytelling alice

Paul A. Gross; Micah S. Herstand; Jordana W. Hodges; Caitlin L. Kelleher

2010-02-01T23:59:59.000Z

204

Seasons of Change: Communities for Equity v. Michigan High School Athletic Association  

E-Print Network (OSTI)

COMMUNITIES FOR EQUITY V. MICHIGAN HIGH SCHOOL ATHLETICin Communities for Equity v. Michigan High School AthleticCommunities for Equity v. Michigan High School Athletics.

Chaudhry, Neena K.; Greenberger, Marcia D.

2003-01-01T23:59:59.000Z

205

Publications on High-Performance Schools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schools Schools Publications on High-Performance Schools Learn about building high-performance schools that incorporate energy efficiency and renewable energy in publications from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL). Building Energy-Efficient Schools in New Orleans: Lessons Learned This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. Building Energy-Efficient Schools in New Orleans: Lessons Learned Summary This summary presents the lessons learned at five schools in New Orleans that were rebuilt using energy efficiency and renewable energy technologies after Hurricanes Katrina and Rita. Energy Design Guidelines for High Performance Schools: Hot and Humid

206

Biomass Company Sets Up Shop in High School Lab | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Company Sets Up Shop in High School Lab Biomass Company Sets Up Shop in High School Lab Biomass Company Sets Up Shop in High School Lab March 30, 2010 - 2:45pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Unlike most biotechnology students who have to go to a research facility to see scientists in action, those at Greeneville High just need to turn their heads. For the last four years, Larry Cosenza, of C2 Biotechnologies, a one-man shop in Germantown, N.Y, has been working in his basement to construct fusion enzymes, a new technology that converts biomass into energy more easily. But in January, he took over Greeneville High School's agriculture room, a move that will not only expand his workspace and put him steps closer to commercialization but also encourage project-based

207

Minnesota Regional Science Bowl for Middle School Students |...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

208

Middle School Students Using Tomorrow's Technology 1 ... - CECM  

E-Print Network (OSTI)

Due to the nature of the technology, it requires the user ... by such constructionist technologies. ... 3Headed by Dr. Ellen Balka, School of Communications.

209

NREL: Education Programs - Middle School Students Compete in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pennsylvania Wind for Schools Project, funded by the U.S. Department of Energy's Wind Powering America initiative and the National Renewable Energy Laboratory and administered by...

210

Solar Energy Education. Renewable energy activities for junior high/middle school science  

DOE Green Energy (OSTI)

Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

Not Available

1985-01-01T23:59:59.000Z

211

Heat Pump for High School Heat Recovery  

E-Print Network (OSTI)

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system has good economic property, can conserve energy and protects the environment. Therefore, there is a large potential for its development. In addition, three projects using this system are presented and contrasted, which indicate that a joint system that uses both the heat pump and heat exchanger to recycle waste heat is a preferable option.

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

212

Student Temporary Employment Program | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Employment Program Student Temporary Employment Program The Student Temporary Employment Program (STEP) is the perfect work-study combination for high school through graduate...

213

Institutionalizing Disparities in Education: A Case Study of Segregation in Wayne County, North Carolina High Schools  

E-Print Network (OSTI)

2010: High-poverty public schools. National Center forthe dropout crisis: Which high schools produce the nationĺsin North Carolinaĺs public school classrooms (Working papers

Joyner, Ann Moss; Marsh, Ben

2011-01-01T23:59:59.000Z

214

Designing High Performance Schools (CD-ROM)  

Science Conference Proceedings (OSTI)

The EnergySmart Schools Design Guidelines and Best Practices Manual were written as a part of the EnergySmart Schools suite of documents, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy. Written for school administrators, design teams, and architects and engineers, the documents are designed to help those who are responsible for designing or retrofitting schools, as well as their project managers. This manual will help design staff make informed decisions about energy and environmental issues important to the school systems and communities.

Not Available

2002-10-01T23:59:59.000Z

215

Doing the impossible : making urban schools excellent  

E-Print Network (OSTI)

Every 29 seconds a student drops out of high school in the United States and more than one million students stop attending school annually. African Americans, Latinos and Native Americans are disproportionately represented ...

Gonzßlez, Eric Rafael

2009-01-01T23:59:59.000Z

216

The effects of the middle school concept on student achievement as identified by principals and the Academic Excellence Indicator System (AEIS) reports in selected middle schools in Texas  

E-Print Network (OSTI)

The purpose of this study was to investigate the possible relationship between the level of implementation of the middle school concept and student achievement. The level of implementation of the middle school concept was determined by the Texas Assessment of Middle Level Schools (TAMLS) which was completed by a random sample of middle school principals from across Texas. Student achievement and selected demographic data were obtained from the Academic Excellence Indicator System (AEIS) reports on the various campuses as published on the Texas Education Agency (TEA, 2003a) website. Student achievement, school size, and demographic variables were investigated using frequency counts, mean scores, standard deviations, analysis of variance (ANOVA), and Pearson product?moment correlations across independent variable categories. The independent variable categories were the five criteria and the total score as rated by principals on the TAMLS survey. Major research findings of this study include: 1. Relationships were found between the TAMLS criteria of developmental responsiveness and teacher preparation and professional development with student achievement across all of the research questions examined. 2. Relationships were found between school size, the TAMLS criteria and student achievement. 3. Relationships were found between student ethnicity, the TAMLS criteria, and student achievement. The study results with regard to the relationship between the level of implementation of the middle school concept, taken in its totality, are inconclusive. This finding is supported in a review of the literature. Based on the findings of the study, researcher recommendations include: 1. Middle schools involved in reform efforts to improve student achievement should focus their efforts in the areas of developmental responsiveness and teacher professional development. 2. Principals of large middle schools (n ? 801 students) should consider the implementation of the middle school concept as a design strategy when reform efforts are undertaken.

Brundrett, Robert Clinton

2004-12-01T23:59:59.000Z

217

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME March 1st 2006 to May 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

218

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME December 1, 2006 ┬ş February 28, 2007...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

Massachusetts at Amherst, University of

219

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME June 1st 2006 to August 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

220

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME December 1st 2005 to February 28th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME September 1st 2006 to November 30th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

222

Analysis of Power Quality Concerns at a County High School  

Science Conference Proceedings (OSTI)

This case study describes the findings from the site survey at a county high school and outlines recommended procedures for dealing with the new computer loads.

2003-12-31T23:59:59.000Z

223

The Impact of High School Curriculum on College Enrollment Rates.  

E-Print Network (OSTI)

??This study examines how the mandated curriculum, specifically, "rigorous" curriculum, is associated with the percentage of a high school's graduating class that chooses to enrollů (more)

Blosveren, Kate R.

224

NIST Summer High School Intern Program Selection Process  

Science Conference Proceedings (OSTI)

... One (1) brief resume which must include name, email, high school, GPA, and graduation date (Click here to see a sample resume.); ...

2013-06-09T23:59:59.000Z

225

HU CFRT Summer 1999 Fusion Science High School Workshop  

SciTech Connect

The 1999 HU CFRT Summer Fusion High School Workshop was conducted for eight weeks in the summer of 1999. The report is on this workshop.

Ali, H.

2000-07-01T23:59:59.000Z

226

From Truancy and Alienation to School Fluency and Graduation: Increasing Student Engagement by Bridging Institutions  

E-Print Network (OSTI)

of caring. Albany: State University of New York Press.high school. Albany:State University of New York Press. Fry,

Conchas, Gilberto Q.; Drake, Sean J.

2011-01-01T23:59:59.000Z

227

High Performance Green Schools Planning Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Green Schools Planning Grants High Performance Green Schools Planning Grants High Performance Green Schools Planning Grants < Back Eligibility Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Pennsylvania Program Type State Grant Program Rebate Amount Determined on a case-by-case basis Provider Governor's Green Government Council The Governor's Green Government Council of Pennsylvania provides an incentive for new schools to be built according to green building standards. High Performance Green Schools Planning Grants are designed to cover a portion of the "soft" costs of designing a green building that are

228

High School Principals' Perceptions of Central Office Administrator Support For Planning, Coordinating, and Evaluating Teaching and the Curriculum  

E-Print Network (OSTI)

This dissertation was designed to gain insight in the area of central office instructional leadership support from the perception of the high school principal. With increasing standards and high student performance expectations coupled with strict federal and state accountability measures, it is impossible for the high school principal to bear the sole responsibility of meeting the needs of their students, staff, and community without further support. Central office is a critical factor in school improvement. The primary aim of this study was to provide insight and a deep understanding how successful high school principals feel supported as the instructional leader specifically in the area of planning, coordinating, and evaluating teaching and the curriculum. The research was guided by a single overarching question: What are high school principal perceptions of support given to them by district central office administrators in the areas of planning, coordinating, and evaluating teaching and the curriculum? Qualitative research was selected for this study to allow for deep and thorough investigation of a small group of high school principals' beliefs regarding the central office administrator instructional leadership support. Interviews were conducted with six successful high school principals from three large school districts. The findings that emerged from the interviews were categorized into eight themes including: the school district focus; instructional leader toolbox; effective use of data; deployment of curriculum and instruction; quality professional development; collaboration; connections; and communication. A synthesis of participants' responses and prior research lead to three overall conclusions: setting high learning expectations; focusing on curriculum and instruction; and establishing district-campus partnerships. Campus principals need assistance in meeting the high standards and challenges they face today. District central office administrators can assist principals become the instructional leader all schools need. This study begins to fill the gap in the literature on how high school principals can be supported by district central office administrators in the areas of planning, coordinating, and evaluating of teaching and the curriculum.

Lawson, Kimberly Kelleher

2011-08-01T23:59:59.000Z

229

High school computing teachers' beliefs and practices: A case study  

Science Conference Proceedings (OSTI)

The aim of this work is threefold. Firstly, an empirical study was designed with the aim of investigating the beliefs that High School Computing (HSC) teachers hold about: (a) their motivational orientation, self-efficacy, and self-expectations as Computing ... Keywords: High school computing teachers, Secondary education, Teacher beliefs and practices, Teacher professional development, Teaching/learning strategies

Maria Kordaki

2013-10-01T23:59:59.000Z

230

High School Visits (WI, IL, MN and other states) Arranged in alpha order  

E-Print Network (OSTI)

High School 10/5/12 8:15 a.m. Black River Falls High School 9/21/12 9:00 a.m. Bollingbrook High School High School 10/16/12 12:00 p.m. Crystal Lake Central High School 10/15/12 9:40 a.m. Cuba City High

Saldin, Dilano

231

Beedie School of Business Career Network Student User Manual  

E-Print Network (OSTI)

to be successful in their job search; and store job search documents such as resumes, cover letters, etc the `Policy Affirmation' box by which you are agreeing to abide by the terms and conditions of the Code the following page: Enter your 9-digit SFU student identification number as the username (not your SFU computing

232

High School Research at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

As a Department of Energy National Lab, Jefferson Lab has a responsibility to help train the next generation of scientists. See the research projects students participating in the...

233

Ponderosa High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Ponderosa High School Wind Project Ponderosa High School Wind Project Jump to: navigation, search Name Ponderosa High School Wind Project Facility Ponderosa High School Sector Wind energy Facility Type Community Wind Location CO Number of Units 1 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 109112 References Wind Powering America[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

234

Thomas Jefferson High School for Science & Technology National Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Thomas Jefferson High School for Science & Technology National Science Bowl® Champion Thomas Jefferson High School for Science & Technology National Science Bowl® Champion May 2, 2005 - 12:40pm Addthis WASHINGTON, DC -- "The Incompleteness Theorem" was the answer to a question on mathematics that today clinched the 2005 National Science Bowl® championship for the Thomas Jefferson High School for Science & Technology team from Alexandria, Va. The team received its championship trophy after triumphing over 62 other regional team champions this weekend. The team members are: Logan Kearsley, Matthew Isakowitz, Sam Lederer, Lisa Marrone, Charlotte Seid and coach Sharon Baker. The team also won a research trip to Alaska, three Computer Based Laboratories and $1,000 for their school's science

235

Forest City High School Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Forest City High School Wind Farm Facility Forest City High School Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Forest City High School Developer Forest City High School Energy Purchaser Forest City Community School District Location Forest City IA Coordinates 43.266011┬░, -93.653378┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.266011,"lon":-93.653378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Principals' distributed leadership behaviors and their impact on student achievement in selected elementary schools in Texas  

E-Print Network (OSTI)

Educators are frequently faced with the challenges of politics, hostility, selfishness, and violence; it is unwise to think that the principal is the only one providing leadership for school improvement. Thus a distributed perspective of leadership urges us to take leadership practice as the focus of interest and address both teachers and administrators as leaders. The purpose of this descriptive statistical study was to explore principalsĺ leadership practices as perceived by teacher leaders and its possible affect to student achievement. Data were collected by using the Leadership Practices Inventory (LPI) (self and observer) instrument (Kouzes & Posner, 2003) from all willing teacher leaders to determine the leadership practices of the principals in Region VI, Texas. Also, statewide assessment data available from three school years (2004-2006) were obtained from the Academic Excellence Indicator System (AEIS) report. In order to answer research questions one to four, descriptive statistics including frequency, percentage, mean and standard deviation were calculated for the LPI results. The distributed framework offers considerable influence for studying leadership as a schoolwide rather than individual practice. Based on the literature, six conclusions were drawn and recommendations were made regarding practice, future study and policy. First, the findings indicated that principalsĺ collaborative working style with teacher leaders seems to have positive impact on student achievement. Second, failing to enlist teacher leaders in a common vision might have a negative affect on student academic performance. Third, the perceptions of teacher leaders in School 7, School 5 and School 16 reflected a need for the principal to take challenges and seek challenging opportunities to change and grow. Fourth, recognizing teacher leadersĺ contributions and celebrating team accomplishments is likely to have a positive and indirect impact on school academic performance. Fifth, schools that had higher principal self and observer LPI scores tended to have better TAKS scores. Last, the findings from the study complement studies of the effects of site-based management teams. The positive impact of ôEnabling Others to Actö and ôInspiring a Shared Visionö on student achievement implies that distributed leadership is most likely to contribute to school improvement and to build school capacity for improvement.

Chen, Yi-Hsuan

2007-08-01T23:59:59.000Z

237

Do indoor environments in schools influence student performance? A review of the literature  

SciTech Connect

Limited research is available on potential adverse effects of school environments on academic performance, despite strong public concern. We examine the scientific evidence relevant to this relationship by reviewing available research relating schools and other indoor environments to human performance or attendance. As a primary focus, we critically review evidence for direct relationships between indoor environmental quality (IEQ) in buildings and performance or attendance. As a secondary focus, we summarize, without critique, evidence on potential connections indirectly linking IEQ to performance or attendance: relationships between IEQ and health, between health and performance or attendance, and between attendance and performance. The most persuasive direct evidence showed increases in indoor concentrations of nitrogen dioxide and outdoor concentrations of several specific pollutants to be related to reduced school attendance. The most persuasive indirect evidence showed indoor dampness and microbiologic pollutants to be related to asthma and respiratory infections, which have in turn been related to reduced performance and attendance. Furthermore, a substantial scientific literature links poor IEQ (e.g., low ventilation rate, excess moisture or formaldehyde) with respiratory and other health effects in children and adults. Overall, evidence suggests that poor IEQ in schools can influence the performance and attendance of students, primarily through health effects from indoor pollutants. Also, inadequate IEQ in schools seems sufficiently common to merit strong public concern. Evidence is available to justify (1) immediate actions to protect IEQ in schools and (2) focused research on exposures, prevention, and causation, to better guide policies and actions on IEQ in schools.

Mendell, Mark J.; Heath, Garvin A.

2004-11-24T23:59:59.000Z

238

STEP Regional High School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

Fee: NA Regional Geographic Information: New York State STEP students from schools NOT already participating in a regional event Team Approval Process Teams are...

239

Students in the shadow of IT jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

of 45 students from Granada High School and Livermore High School came to the Lab for a tour of the High Performance Computing Facility and the National Atmospheric Release...

240

Loup City High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Loup City High School Wind Project Loup City High School Wind Project Jump to: navigation, search Name Loup City High School Wind Project Facility Loup City High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.283756┬░, -98.967415┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.283756,"lon":-98.967415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Shelley High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Shelley High School Wind Project Shelley High School Wind Project Jump to: navigation, search Name Shelley High School Wind Project Facility Shelley High School Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.3727┬░, -112.134071┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3727,"lon":-112.134071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

USD 345 Seaman High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Seaman High School Wind Project Seaman High School Wind Project Jump to: navigation, search Name USD 345 Seaman High School Wind Project Facility USD 345 Seaman High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.135315┬░, -95.66996┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.135315,"lon":-95.66996,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Cedarville Elementary & High School Space Heating Low Temperature  

Open Energy Info (EERE)

Cedarville Elementary & High School Space Heating Low Temperature Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Facility Cedarville Elementary & High School Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606┬░, -120.1732781┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

244

Lewistown High Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

Lewistown High Schools Wind Project Lewistown High Schools Wind Project Jump to: navigation, search Name Lewistown High Schools Wind Project Facility Lewistown High Schools Sector Wind energy Facility Type Community Wind Location MT Coordinates 47.054138┬░, -109.423325┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.054138,"lon":-109.423325,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Burlington High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Burlington High School Wind Project Facility Burlington High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 39.3088┬░, -102.282715┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3088,"lon":-102.282715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

Avery County High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

County High School Wind Project County High School Wind Project Jump to: navigation, search Name Avery County High School Wind Project Facility Avery County High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.068371┬░, -81.918159┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.068371,"lon":-81.918159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

USD 393 Solomon High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Solomon High School Wind Project Solomon High School Wind Project Jump to: navigation, search Name USD 393 Solomon High School Wind Project Facility USD 393 Solomon High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.924103┬░, -97.369339┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.924103,"lon":-97.369339,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Nederland High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Nederland High School Wind Project Nederland High School Wind Project Jump to: navigation, search Name Nederland High School Wind Project Facility Nederland High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 39.953613┬░, -105.525124┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.953613,"lon":-105.525124,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

USD 376 Sterling High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name USD 376 Sterling High School Wind Project Facility USD 376 Sterling High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.216789┬░, -98.202492┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.216789,"lon":-98.202492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Pretty Prairie High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Pretty Prairie High School Wind Project Pretty Prairie High School Wind Project Jump to: navigation, search Name Pretty Prairie High School Wind Project Facility Pretty Prairie High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 37.78093┬░, -98.017822┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.78093,"lon":-98.017822,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Mt. Edgecumbe High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Edgecumbe High School Wind Project Edgecumbe High School Wind Project Jump to: navigation, search Name Mt. Edgecumbe High School Wind Project Facility Mt. Edgecumbe High School Sector Wind energy Facility Type Community Wind Location AK Coordinates 57.053928┬░, -135.356903┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.053928,"lon":-135.356903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Diller-Odell High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Diller-Odell High School Wind Project Diller-Odell High School Wind Project Jump to: navigation, search Name Diller-Odell High School Wind Project Facility Diller-Odell High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 40.054523┬░, -96.806374┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.054523,"lon":-96.806374,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Cotulla High School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Cotulla High School Space Heating Low Temperature Geothermal Facility Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility Facility Cotulla High School Sector Geothermal energy Type Space Heating Location Cotulla, Texas Coordinates 28.436934┬░, -99.2350322┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

254

Henley High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Henley High School Space Heating Low Temperature Geothermal Facility Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility Henley High School Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

255

Eudora High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Eudora High School Wind Project Eudora High School Wind Project Jump to: navigation, search Name Eudora High School Wind Project Facility Eudora High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.922672┬░, -95.097763┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.922672,"lon":-95.097763,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

USD 375 Circle High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name USD 375 Circle High School Wind Project Facility USD 375 Circle High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 37.794674┬░, -96.994576┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.794674,"lon":-96.994576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Alleghany High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Alleghany High School Wind Project Facility Alleghany High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.514774┬░, -81.124809┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.514774,"lon":-81.124809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Modoc High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Modoc High School Space Heating Low Temperature Geothermal Facility Modoc High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc High School Sector Geothermal energy Type Space Heating Location Alturas, California Coordinates 41.4871146┬░, -120.5424555┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

259

Sandia National Laboratories Regional High School Science Bowl...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sandia National Laboratories Regional High School Science Bowl Print Text...

260

Local high school seniors receive Edward Teller science scholarships  

NLE Websites -- All DOE Office Websites (Extended Search)

3 For immediate release: 06052013 | NR-13-06-03 Local high school seniors receive Edward Teller science scholarships Linda A Lucchetti, LLNL, (925) 422-5815, lucchetti1@llnl.gov...

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

2010 DOE National Science Bowl« Photos - Mira Loma High School...  

Office of Science (SC) Website

FeedbackShare Page The Mira Loma High School team, from Sacramento, CA, works on the oil spill challenge at the National Science Bowl in Washington, DC. Left to right: Andrew...

262

West Windsor-Plainsboro High School South wins regional Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

West Windsor-Plainsboro High School South wins regional Science Bowl at PPPL By Jeanne Jackson DeVoe February 25, 2013 Tweet Widget Facebook Like Google Plus One Next stop...

263

DOE New Jersey Regional High School Science Bowl! NO SCIENCE...  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2014 (All day) Science On Saturday DOE New Jersey Regional High School Science Bowl NO SCIENCE ON SATURDAY LECTURE DUE TO THE NEW JERSEY REGIONAL SCIENCE BOWL COMPETITION,...

264

Concordia High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Concordia High School Wind Project Concordia High School Wind Project Jump to: navigation, search Name Concordia High School Wind Project Facility Concordia High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.566231┬░, -97.668411┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.566231,"lon":-97.668411,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Jefferson West High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Jefferson West High School Wind Project Facility Jefferson West High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.193382┬░, -95.560616┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.193382,"lon":-95.560616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Stratton Middle and High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Stratton Middle and High School Wind Project Stratton Middle and High School Wind Project Jump to: navigation, search Name Stratton Middle and High School Wind Project Facility Stratton Middle and High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 39.30444┬░, -102.601151┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.30444,"lon":-102.601151,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Ferndale High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Ferndale High School Wind Project Ferndale High School Wind Project Jump to: navigation, search Name Ferndale High School Wind Project Facility Ferndale High School Sector Wind energy Facility Type Community Wind Location WA Coordinates 48.852478┬░, -122.592613┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.852478,"lon":-122.592613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Mullen High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Mullen High School Wind Project Mullen High School Wind Project Jump to: navigation, search Name Mullen High School Wind Project Facility Mullen High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 42.045742┬░, -101.046158┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.045742,"lon":-101.046158,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

We Have a Winner - DC High School Regional Science Bowl Competition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday...

270

Hispanic Student Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

strives to recruit and hire a highly skilled workforce representing America's rich diversity. Are you a Hispanic high school student interested in building your leadership and...

271

New design concepts for energy-conserving buildings. Results of a national competition among students in schools of architecture  

Science Conference Proceedings (OSTI)

The National Student Competition in Energy Conscious Design held among professional schools of architecture in 1976 is documented. Fifty-five schools participated, submitting 115 entries; twelve were chosen as finalists. Details are presented on the twelve winning designs and excerpts from the remaining 103 entries are published. (MCW)

None

1982-01-01T23:59:59.000Z

272

An Examination of Bullying in Georgia Schools: Demographic and School Climate Factors Associated with Willingness to Intervene in Bullying Situations  

E-Print Network (OSTI)

of adolescent bullying at school. J Sch Health. 2007;77(9):Olweus D. Bullying at school. Basic facts and an effectiveamong middle and high school students in Georgia. West J

Goldammer, Lori; Swahn, Monica; Strasser, Sheryl; Ashby, Jeffrey; Meyers, Joel

2013-01-01T23:59:59.000Z

273

UCSC Student Health Services Student Health Insurance Office 1156 High Street Phone: (831) 459-2389  

E-Print Network (OSTI)

UCSC Student Health Services Student Health Insurance Office 1156 High Street Phone: (831) 459 your health plan's customer service number for assistance.** 5. Does your health insurance plan cover conditions? Yes / No Emergency room services? Yes / No Diagnostic services including laboratory tests? Yes

274

Nevada High School Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Nevada High School Wind Farm Nevada High School Wind Farm Jump to: navigation, search Name Nevada High School Wind Farm Facility Nevada High School Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Nevada High School Developer Minnesota Windpower Energy Purchaser Alliant/IES Utilities Location NV - Story County IA Coordinates 42.020791┬░, -93.435997┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.020791,"lon":-93.435997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Cost and Area Comparison Per Student of the Public Elementary Schools in Texas based on the Project Delivery Systems  

E-Print Network (OSTI)

It has been shown that there exists a correlation between the cost of construction of elementary schools and the project delivery systems. Previous research showed that Competitive Sealed proposal contract method of construction is $4000 cheaper than the Construction Manager at Risk method of construction per student for elementary school construction in Texas. This research investigates the elements causing construction cost variation in elementary schools of Texas by comparing and contrasting the two forms of contract documents, CSP and CMR. Two schools were selected for the study, although the schools are technically in different regions of Texas, the geological record suggests that there is not much difference in the techniques used for foundation construction and hence a reasonable comparison is possible. A comparison was completed of the contract documents for two elementary schools. School A was built using CSP and School B using CMR. The two schools were built for about $13000 per student in line with A. N. Reinischĺs findings for CSP contracts in Texas, but not CMR average costs. The two ISDĺs who supplied the documents were clearly concerned at cost control and appear to have managed this process. The earlier findings of a cost difference between CSP and CMR are not overturned by this study. Future studies involving a greater number of schools and the development of a central database are recommended.

Goyal Rakesh, Sheetal

2013-08-01T23:59:59.000Z

276

Southeastern visits local high school | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeastern visits local high school Southeastern visits local high school Southeastern visits local high school May 10, 2013 - 11:54am Addthis Southeastern employee, Dale Jett, uses a power system mockup to explain how power is distributed to homes. Southeastern employee, Dale Jett, uses a power system mockup to explain how power is distributed to homes. Southeastern employee, Sonya Hulme, describes the Power Marketing Administations and the ares that each one supports. Southeastern employee, Sonya Hulme, describes the Power Marketing Administations and the ares that each one supports. Southeastern's Assistant Administrator for Finance and Marketing, Virgil Hobbs, describes the 22 different hydroelectric projects in Southeastern's region. Southeastern's Assistant Administrator for Finance and Marketing, Virgil

277

Rigby High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Rigby High School Wind Project Rigby High School Wind Project Facility Rigby High School Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.667439┬░, -111.940163┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.667439,"lon":-111.940163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Watauga High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Watauga High School Wind Project Watauga High School Wind Project Facility Watauga High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.199196┬░, -81.674736┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.199196,"lon":-81.674736,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Skyline High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Skyline High School Wind Project Skyline High School Wind Project Facility Skyline High School Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.486801┬░, -112.065613┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.486801,"lon":-112.065613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Walsh High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Walsh High School Wind Project Walsh High School Wind Project Facility Walsh High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 37.385723┬░, -102.285591┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.385723,"lon":-102.285591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

**NO SCIENCE ON SATURDAY TODAY** NJ Regional High School Science Bowl |  

NLE Websites -- All DOE Office Websites (Extended Search)

February 23, 2013, 8:00am February 23, 2013, 8:00am Science Education Lab-wide Event **NO SCIENCE ON SATURDAY TODAY** NJ Regional High School Science Bowl Teams of students are invited to participate in the Department of Energy's National Science Bowl Competition. Each year PPPL hosts the New Jersey Regional Science Bowl which decides which teams from the local area can continue onto the national competition in Washington, D.C. The Science Bowl is a double elimination contest with oral question and answer rounds in the fields of chemistry, biology, physics, astronomy and mathematics plus general and earth sciences. Questions are given in a toss-up with a bonus format. For more information, visit our Science Bowl website! Contact Information Website: NJ Regional High School Science Bowl

282

Illinois and Other States High School visits, college fairs and presentations Spring 2011  

E-Print Network (OSTI)

High School Crystal Lake 4/5/11 1:15 pm Crystal Lake Central High School Crystal Lake 4/5/11 2:15 pm Crystal Lake South High School Crystal Lake 4/6/11 10:00 am Hinsdale High School Hinsdale 4/6/11 2:15 pm Oak Park / River Forest High School Oak Park 4/6/11 6:00 pm Lyons Township College Night LaGrange 4

Saldin, Dilano

283

Volunteer Opportunities: Speaking to School Tours  

NLE Websites -- All DOE Office Websites (Extended Search)

Volunteer Opportunities: Speaking to Student Tour Groups The Education Office hosts middle and high school tours throughout the year. A highlight of their tour is the time spent...

284

WIND DATA REPORT Old Rochester Regional High School  

E-Print Network (OSTI)

Average Wind Speeds October 12, 2006 Renewable Energy Research Laboratory Page 19 UniversityWIND DATA REPORT Old Rochester Regional High School Mattapoisett, Massachusetts June 1, 2005 version 2.0 Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive

Massachusetts at Amherst, University of

285

QSM GRANT RECIPIENTS 2011 -2012 Aimee Cowell Fifth Ward Junior High School St. Tammany  

E-Print Network (OSTI)

Orleans Cody Cole East Beauregard High School Beauregard Conchetta Tillery Live Oak Manor Jefferson Connie Conner DeRidder High School Beauregard Connie Myers Many Jr. High Sabine #12;QSM GRANT

Harms, Kyle E.

286

Microsoft Word - Snohomish_High_School_Field_Improvements_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robert Thompson - TERR Snohomish Robert Thompson - TERR Snohomish Project Manager Proposed Action: Snohomish High School Field Improvements Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.9 Grant or denial of requests for multiple use of a transmission facility rights-of-way, such as grazing permits and crossing agreements, including electric lines, water lines... Location: Snohomish, Snohomish County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to grant the Snohomish School District's request to install a new synthetic turf with a subsurface drainage system on an existing sports field. The field is on fee owned property leased to the Snohomish School District and is adjacent to BPA's Snohomosh Substation.

287

National Best Practices Manual for Building High Performance Schools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Manual Best Practices Manual For Building High Performance Schools Acknowledgements The U.S. Department of Energy would like to acknowledge the help and assistance of the EnergySmart Schools team and the many authors and reviewers that provided input and feedback during the process of developing the report. Those include: US Department of Energy: David Hansen, Daniel Sze; EnergySmart Schools Team: Larry Schoff; US Environmental Protection Agency: Melissa Payne, Bob Thompson; Lawrence Berkeley National Laboratory: Rick Diamond; National Renewable Energy Laboratory: Ren Anderson, Zahra Chaudhry, Jeff Clarke, Kyra Epstein, Tony Jimenez, Patty Kappaz, Patricia Plympton, Byron Stafford, Marcy Stone, John Thornton, Paul Torcellini; Oak Ridge National Laboratory: Andre Desjarlais,

288

Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts  

DOE Green Energy (OSTI)

This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

Not Available

2006-10-01T23:59:59.000Z

289

Source: Office of Institutional Research, Assessment and Planning: OIT frozen database on 09/2010 and the David A. Clark School of Law, Office of the Registrar, 2010 Fall 2010 FALL SEMESTER UNDERGRADUATE, GRADUATE, COMMUNITY COLLEGE AND LAW SCHOOL STUDENT  

E-Print Network (OSTI)

UNDERGRADUATE, GRADUATE, COMMUNITY COLLEGE AND LAW SCHOOL STUDENT ENROLLMENT PROFILE* TOTAL ENROLLMENT Number/2010 and the David A. Clark School of Law, Office of the Registrar, 2010 Fall Semester. ENROLLMENT BY ACADEMIC LOAD-degree students FULL-TIME CONTINUING FACULTY PROFILE1 : RANK: Headcount Percentage Professor 81 35.1 Associate

District of Columbia, University of the

290

Frontiers in Microbiology: Envisioning a Curriculum Unit for High School Biology  

Science Conference Proceedings (OSTI)

Microbiology is undergoing a quiet revolution. Techniques such as polymerase chain reaction, high throughput DNA sequencing, whole genome shotgun sequencing, DNA microarrays, and bioinformatics analyses are greatly aiding our understanding of the estimated one billion species of microbes that inhabit the Earth. Unfortunately, the rapid pace of research in microbiology stands in contrast to the much slower pace of change in educational reform. Biological Sciences Curriculum Study (BSCS) hosted a two-day planning meeting to discuss whether or not a new curriculum unit on microbiology is desirable for the high school audience. Attending the meeting were microbiologists, high school biology teachers, and science educators. The consensus of the participants was that an inquiry-based unit dealing with advances in microbiology should be developed for a high school biology audience. Participants established content priorities for the unit, discussed the unit's conceptual flow, brainstormed potential student activities, and discussed the role of educational technology for the unit. As a result of the planning meeting discussions, BSCS staff sought additional funding to develop, disseminate, and evaluate the Frontiers in Microbiology curriculum unit. This unit was intended to be developed as a replacement unit suitable for an introductory biology course. The unit would feature inquiry-based student activities and provide approximately four weeks of instruction. As appropriate, activities would make use of multimedia. The development and production processes would require about two years for completion. Unfortunately, BSCS staff was not able to attract sufficient funding to develop the proposed curriculum unit. Since there were some unexpended funds left over from the planning meeting, BSCS requested and received permission from DOE to use the balance of the funds to prepare background materials about advances in microbiology that would be useful to teachers. These materials were developed and placed on the BSCS Web site (http://www.bscs.org).

Mark Bloom

2004-06-18T23:59:59.000Z

291

Energy Design Guidelines for High Performance Schools: Arctic and Subarctic Climates  

Science Conference Proceedings (OSTI)

The Energy Design Guidelines for High Performance Schools--Arctic and Subarctic Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in arctic and subarctic climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

Not Available

2004-11-01T23:59:59.000Z

292

University of California Nonresident Tuition Exemption Application and Affidavit for Eligible California High School Graduates  

E-Print Network (OSTI)

University of California Nonresident Tuition Exemption Application and Affidavit for Eligible California High School Graduates Instructions Application Affidavit Declaration of True and Accurate of California Nonresident Tuition Exemption for Eligible California High School Graduates and declare that ALL

Grether, Gregory

293

Poudre High School From Fort Collins , Colorado Wins U.S. Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poudre High School From Fort Collins , Colorado Wins U.S. Department of Energy National Science Bowl Poudre High School From Fort Collins , Colorado Wins U.S. Department of...

294

Argonne CNM Highlight: Nanoscience Student Cooperative  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscience Cooperative for Students Nanoscience Cooperative for Students Nanoscience Collective Students The NanoBusiness Alliance's "Nanoscience High School Talent Fellowship" sponsored 25 students from Illinois, North Carolina and Colorado at Argonne's Center for Nanoscale Materials for one week in June 2010. The NanoBusiness Alliance has partnered with Argonne's Center for Nanoscale Materials (CNM) and Division of Educational Programs (DEP) to better prepare high school juniors and seniors pursuing science and engineering careers. Named the Nanoscience High School Talent Fellowship, the program hosted 25 students from Illinois, North Carolina, and Colorado, who participated in a "boot camp" of hands-on laboratory experiments, demonstrations, and lectures by CNM scientists.

295

Computational thinking for the sciences: a three day workshop for high school science teachers  

Science Conference Proceedings (OSTI)

This paper describes "Computational Thinking for the Sciences", a 3-day summer workshop for high school science and mathematics teachers. Our workshop emphasizes the deep connections between the natural sciences, mathematics and computer science through ... Keywords: computational thinking, high school mathematics, high school science, k-12 outreach

Sheikh Iqbal Ahamed; Dennis Brylow; Rong Ge; Praveen Madiraju; Stephen J. Merrill; Craig A. Struble; James P. Early

2010-03-01T23:59:59.000Z

296

A Survey of Students from the National School on Neutron and X-ray Scattering: Communication Habits and Preferences  

Science Conference Proceedings (OSTI)

Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world. And the SNS is one of the world's most intense pulse neutron beams. Management of these resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD started conducting the National School on Neutron and X-ray Scattering (NXS) in conjunction with the Advanced Photon Source (APS) at Argonne National Laboratory in 2007. This survey was conducted to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites and social media, for communicating with students about neutron science The survey was conducted in two phases using a classic qualitative investigation to confirm language and content followed by a survey designed to quantify issues, assumptions, and working hypotheses. Phase I consisted of a focus group in late June 2010 with students attending NXS. The primary intent of the group was to inform development of an online survey. Phase two consisted of an online survey that was developed and pre-tested in July 2010 and launched on August 9, 2010 and remained in the field until September 9, 2010. The survey achieved an overall response rate of 48% for a total of 157 completions. The objective of this study is to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites, social media, for communicating with students about neutron science.

Bryant, Rebecca [Bryant Research, LLC

2010-12-01T23:59:59.000Z

297

Students gain work experience at WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

Students Gain Work Experience at WIPP Students Gain Work Experience at WIPP CARLSBAD, N.M., January 10, 2000 -- Students from two Eddy County high schools are gaining valuable experience by spending time with employees of the Westinghouse Waste Isolation Division and Day & Zimmermann, LLC at the Waste Isolation Pilot Plant (WIPP). Six students from Carlsbad High School and four students from Loving High School are participating in the 1999-2000 WIPP Shadow Program. A "shadow" is a student who teams up with an employee to gain hands-on experience in the workplace. This activity helps the students identify career options and develop confidence. Each student spends three days during the school year with a volunteer mentor at the work location. "This program offers our employees the opportunity to share their knowledge and

298

The relevance of the effective school correlates, to alternative education settings, for student in a correctional system, as identified by the teachers and adminstrators in selected charter schools, in Harris County, Texas  

E-Print Network (OSTI)

The State of Texas accepted the Effective School Research model and its correlates as a way of determining whether the stateĺs schools are effective. This included all juvenile justice alternative educational facilities. The purpose of the study was to assess the relevance of the Effective School Correlates to alternative educational settings for students in a correctional system as identified by the teachers and administrators in selected charter schools in Harris County, Texas. Secondly, the study was to suggest modification to the Effective School Correlates to make them relevant to an alternative educational setting for students in the correctional system in selected charter schools in Harris County, Texas. The literature revealed a potential lack of fit between the Effective School Correlates as the ôKey Characteristic of Effective Schoolsö and their relevance to the context of alternative schools for students in the correctional systems. This study led to the postulation that the Effective School Correlates as written may need altering to meet the needs of the specialized correctional school setting. However, it is not clear what shape or direction this alteration would take. Findings of this study indicated that problems existed with the application of the Correlates as they related to the selected Charter Schools in Harris County, Texas. The population size limited the study and caution should be taken not to over-generalize the data.

Cortez-Rucker, Vance

2007-12-01T23:59:59.000Z

299

Selected Practices and Characteristics of Highly Effective Elementary Schools.  

E-Print Network (OSTI)

?? The federal government, through NCLB legislation, has provided target proficiency goals schools will be accountable to meet. Missouri public elementary schools use these targetů (more)

Lauritson, George Allen

2013-01-01T23:59:59.000Z

300

Restructuring and Reculturing Schools to Provide Students with Multiple Pathways to College and Career  

E-Print Network (OSTI)

Child and the curriculum/The school and society. Chicago:Parsons, T. (1959). The school classroom as a social system.in the charter school debate at the University of

Mehan, Hugh

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Green Your School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Your School Green Your School Green Your School Illustration of a school bus. Schools around the country are finding ways to use energy as efficiently as possible, not only to set an example for their students and communities, but also to save on the bottom line. Given that energy costs are second only to salaries in terms of school budgets, many school leaders are investing in energy-efficiency technologies in their buildings and fuel-saving technologies in their buses. Check out a few facts about making your school green. Schools spend more on energy than any other expense except personnel. A high-performance school doesn't have to cost more to construct than a conventionally built school. High-performance schools can lower a school district's operating costs by up to 30%.

302

High School Academic Competition - Round Robin | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Round Robin Round Robin National Science Bowl® (NSB) NSB Home About High School Middle School Attending National Event Volunteers 2013 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2013 Competition Results High School Academic Competition - Round Robin Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome to the National Science Bowl Score Center! Looking for Round Robin Updates? Click on the division to go straight to the bracket - otherwise, scroll down the page and browse all the scores.

303

High School Academic Competition - Double Elimination | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

Double Double Elimination National Science Bowl® (NSB) NSB Home About High School Middle School Attending National Event Volunteers 2013 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2013 Competition Results High School Academic Competition - Double Elimination Print Text Size: A A A RSS Feeds FeedbackShare Page No-Loss Bracket .pdf file (45KB)(Final Results) Challengers' Bracket .pdf file (42KB) (Final Results) Last modified: 4/29/2013 11:56:04 AM

304

Schools?: Evidence from Trinidad and Tobago  

E-Print Network (OSTI)

Abstract: Using exogenous secondary school assignments to remove self-selection bias to schools and peers within schools, I credibly estimate both (1) the effect of attending schools with higher-achieving peers, and (2) the direct effect of short-run peer quality improvements within schools, on the same population. While students at schools with higher-achieving peers have better academic achievement, within-school short-run increases in peer achievement improve outcomes only at high-achievement schools. Short-run (direct) peer quality accounts for only one tenth of school value-added on average, but at least one-third among the most selective schools. There are large and important differences by gender. In many nations, there is fierce competition for scarce slots at selective schools (Hsieh and Urquiola 2006, Hastings and Weinstein 2008). This is, in part, because students at more selective schools typically have better outcomes ? giving the impression of sizable benefits to attending selective, and often prestigious, schools. However, because motivated and highachieving students tend to select to these schools, these differences may reflect selection rather than selective schools providing greater value-added. Addressing this selection problem, Jackson (2010) uses a quasi-experimental design and finds that attending a more selective school in Trinidad and Tobago has positive effects on exam performance and high-school graduation.

C. Kirabo Jackson

2009-01-01T23:59:59.000Z

305

Students from Stafford County University of Kansas  

E-Print Network (OSTI)

Page 1 10/17/11 10:19:19 Students from Stafford County Fall 2011 University of Kansas All Campuses Overall counts include students whose permanent residence or last high school attended is in Stafford students from Stafford County. In Fall 2011, KU has 10 students from Stafford County: ┬Ě 10 undergraduate KU

Peterson, Blake R.

306

Demographic profiles associated with academic performance for third grade students in North Forest and Aldine Independent School Districts in Texas  

E-Print Network (OSTI)

The study examined the demographic profiles associated with academic performance for third grade students in North Forest and Aldine Independent School Districts (ISDs) in Texas. Specifically, the study showed the impact that gender, ethnicity, and whether students receive free or reduced lunch (parent income level), had on third grade reading Texas Assessment of Academic Skills (TAAS) scores. The population for this study was 368 of the 9,007 third grade students from both the North Forest and Aldine Independent School Districts. Students in this study were of the predominant ethnicities at the schools: Black, Hispanic, and White. Utilizing this sample size allowed the study results to be generalized as trend data for all third grade students in the two districts. Data were collected during the spring semester of the 2002-2003 school year. Information for the study was provided through the Public Education Information Management System (PEIMS) and Academic Excellence Indicator System (AEIS) reports of both school districts. Results showed that gender does not relate to the TAAS score in North Forest, but the income level is related to third grade reading TAAS performance. Income showed a significant relationship in that North Forest had a higher percentage of students receiving free and reduced lunch. This impacted the third grade TAAS reading scores. Gender was significantly related to third grade TAAS performances at Aldine ISD in that Aldine had 66 more girls to take the test than boys. There were only 54 boys who took the test. Gender had no significance in North Forest ISD because there was an even number of girls and boys who took the test. Ethnicity would not be analyzed at North Forest ISD due to the small percentage of non-Black students in the third grade. At Aldine ISD, no relationship was found between ethnicity and third grade TAAS performers. The success rate on third grade TAAS was significantly higher at Aldine ISD (percent passed 85.1) than at North Forest ISD (percent passed 39.6).

Slaughter, Steven Darryll

2007-05-01T23:59:59.000Z

307

Sixty-five New Mexico students receive Los Alamos Employees'...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 May Los Alamos Employees' Scholarship Fund recipients Sixty-five New Mexico students receive Los Alamos Employees' Scholarship Fund scholarships Los Alamos High School...

308

Sixty-seven New Mexico students receive LAESF scholarships  

NLE Websites -- All DOE Office Websites (Extended Search)

April Sixty-seven New Mexico students receive LAESF scholarships LAESF scholarships winners Taos High School senior Majdolene Khweis received this year's platinum scholarship,...

309

Fifty-five New Mexico students receive Los Alamos Employees'...  

NLE Websites -- All DOE Office Websites (Extended Search)

Employees' Scholarship Fund scholarships Fifty-five New Mexico students receive Los Alamos Employees' Scholarship Fund scholarships Escalante High School senior Estevan Trujillo is...

310

Middle School | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle School Middle School National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Print Text Size: A A A RSS Feeds FeedbackShare Page 2013 Middle School Teams 2013 Middle School National Teams The National Science Bowl® for Middle School Students was started in 2002 and includes two types of competitions - an academic math and science competition and a model car race. The car race provides the students with a

311

Surface Ozone Measured at GLOBE Schools in the Czech Republic: A Demonstration of the Importance of Student Contribution to the Larger Science Picture  

Science Conference Proceedings (OSTI)

Global Learning and Observations to Benefit the Environment (GLOBE) is a worldwide, hands-on, primary and secondary schoolľbased education and science program, which is developed to give students a chance to perform real science by making ...

John K. Creilson; Margaret R. Pippin; Irene H. Ladd; Jack Fishman; Bryana L. Henderson; Dana Votßpkovß; Ilona Krpcovß

2008-04-01T23:59:59.000Z

312

National Best Practices Manual for Building High Performance Schools  

Energy.gov (U.S. Department of Energy (DOE))

The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy.

313

Benchmarks for Transition: Do St. Louis High Schools Promote Graduates That Can Make the Transition to Higher Education?.  

E-Print Network (OSTI)

?? Are St. Louis area high schools designed to create graduates that are prepared to enter schools of higher education, or are their graduation requirementsů (more)

Harrman, Kevin

2011-01-01T23:59:59.000Z

314

Determining teachersĺ behaviors concerning the NCTM standards in low and high performing rural high schools in Kansas.  

E-Print Network (OSTI)

??This study was designed to investigate teaching practices of mathematics teachers in rural high schools in Kansas in the context of the NCTM Principles andů (more)

Young, Lanee

2007-01-01T23:59:59.000Z

315

2010 DOE National Science Bowl┬« Photos - Lexington High School | U.S.  

Office of Science (SC) Website

Lexington High School Lexington High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Lexington High School Print Text Size: A A A RSS Feeds FeedbackShare Page Lexington High School from Lexington, MA. competes in the academic

316

2010 DOE National Science Bowl┬« Photos - Montgomery Blair High School |  

Office of Science (SC) Website

Montgomery Blair High School Montgomery Blair High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Montgomery Blair High School Print Text Size: A A A RSS Feeds FeedbackShare Page Secretary of Energy Steven Chu and the Montgomery Blair High School Science

317

2010 DOE National Science Bowl┬« Photos - Onate High School | U.S. DOE  

Office of Science (SC) Website

Onate High School Onate High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Onate High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Onate High School team from Las Cruces, NM stands before the Apollo

318

2010 DOE National Science Bowl┬« Photos - Palo Alto High School | U.S.  

Office of Science (SC) Website

Palo Alto High School Palo Alto High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Palo Alto High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Palo Alto High School at the Smithsonian Air and Space Museum in

319

2010 DOE National Science Bowl┬« Photos - North Hollywood High School |  

Office of Science (SC) Website

North Hollywood High School North Hollywood High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - North Hollywood High School Print Text Size: A A A RSS Feeds FeedbackShare Page The North Hollywood High School team from North Hollywood, CA competes in

320

2010 DOE National Science Bowl┬« Photos - LaFayette High School | U.S.  

Office of Science (SC) Website

LaFayette High School LaFayette High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - LaFayette High School Print Text Size: A A A RSS Feeds FeedbackShare Page The LaFayette High School team tours the National Mall in Washington, DC on

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Past High School National Science Bowl Winners (1991 - 2012) | U.S. DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

Winners » Past High School National Science Bowl Winners » Past High School National Science Bowl Winners (1991 - 2012) National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Past National Science Bowl Winners Past High School National Science Bowl Winners (1991 - 2012) Print Text Size: A A A RSS Feeds FeedbackShare Page Year Winning High School Teams

322

2010 DOE National Science Bowl┬« Photos - Vigil I. Grissom High School |  

Office of Science (SC) Website

Vigil I. Grissom High School Vigil I. Grissom High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Vigil I. Grissom High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Vigil I. Grissom High School team, from Huntsville, AL, tours the

323

2010 DOE National Science Bowl┬« Photos - George Walton High School |  

Office of Science (SC) Website

George Walton High School George Walton High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - George Walton High School Print Text Size: A A A RSS Feeds FeedbackShare Page Secretary of Energy Steven Chu and the George Walton High School Science

324

2010 DOE National Science Bowl┬« Photos - Shasta High School | U.S. DOE  

Office of Science (SC) Website

Shasta High School Shasta High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Shasta High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Shasta High School team, from Redding, CA, at work on a challenge at

325

2010 DOE National Science Bowl┬« Photos - Campbell High School | U.S. DOE  

Office of Science (SC) Website

Campbell High School Campbell High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Campbell High School Print Text Size: A A A RSS Feeds FeedbackShare Page Campbell High School team members, from Gillette, WY, work on a challenge

326

Colorado High School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

National Renewable Energy Laboratory Address: Dakota Ridge High School; 13399 W. Coal Mine Ave; Littleton, CO 80127 Regional Date: January 26, 2013 Fee: NA Regional...

327

State College Area High School From State College, PA Wins DOE's National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

College Area High School From State College, PA Wins DOE's College Area High School From State College, PA Wins DOE's National Science Bowl® State College Area High School From State College, PA Wins DOE's National Science Bowl® May 1, 2006 - 10:34am Addthis WASHINGTON , DC - State College Area High School from State College, Pennsylvania, today won the Department of Energy's (DOE) National Science Bowl®. Teams representing 65 schools from across the United States competed in this "Science Jeopardy" competition, which concluded this afternoon. Members of the winning team include Jason Ma, Ylaine Gerardin, Barry Liu, Galen Lynch, Francois Greer and coach, Julie Gittings. This team won a research trip to France and $1,000 for their school's science department. The answer that clinched the championship was in response to an earth

328

Energy: options for the future. Curriculum development project for high school teachers. Final report. [Packet  

DOE Green Energy (OSTI)

Recent state and regional energy crises demonstrate the delicate balance between energy systems, the environment, and the economy. Indeed, the interaction between these three elements of society is very complex. This project develops curriculum materials that would better provide students with an understanding and awareness of fundamental principles of energy supply, conversion processes, and utilization now and in the future. The project had two specific objectives: to transfer knowledge of energy systems, analysis techniques, and advanced technologies from the energy analyst community to the teacher participants; and to involve teachers in the preparation of modular case studies on energy issues for use within the classroom. These curriculum modules are intended to enhance the teacher's ability to provide energy-related education to students within his or her own academic setting. The project is organized as a three-week summer program, as noted in the flyer (Appendix A). Mornings are spent in seminars with energy and environmental specialists (their handout lecture notes are included as Appendix B); afternoons are devoted to high school curriculum development based on the seminar discussions. The curriculum development is limited to five areas: conservation, electricity demand scheduling, energy in the food system, new technologies (solar, wind, biomass), and environment. Appendix C consists of one-day lession plans in these areas.

Carroll, T.O.

1978-04-01T23:59:59.000Z

329

Newport High School Retrofit of Heating and Cooling Systems with...  

Open Energy Info (EERE)

technology. - Provide jobs, and reduce requirements of funds for the capital budget of the School District, and thus give relief to taxpayers in this economically...

330

Brookhaven National Lab Regional High School Science Bowl | U...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

331

National Best Practices Manual for Building High Performance Schools (Revised)  

Science Conference Proceedings (OSTI)

The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy. Written specifically for architects and engineers, The Best Practices Manual is designed to help those who are responsible for designing or retrofitting schools, as well as their project managers. This manual will help design staff make informed decisions about energy and environmental issues important to the school systems and communities.

Not Available

2007-10-01T23:59:59.000Z

332

P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students  

Science Conference Proceedings (OSTI)

This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

Intrator, Thomas P. [Los Alamos National Laboratory; Bauer, Bruno [Univ Nevada, Reno; Fernandez, Juan C. [Los Alamos National Laboratory; Daughton, William S. [Los Alamos National Laboratory; Flippo, Kirk A. [Los Alamos National Laboratory; Weber, Thomas [Los Alamos National Laboratory; Awe, Thomas J. [Los Alamos National Laboratory; Kim, Yong Ho [Los Alamos National Laboratory

2012-09-07T23:59:59.000Z

333

NERSC Hosts HS Students on Job Shadow Day- NERSC Center News...  

NLE Websites -- All DOE Office Websites (Extended Search)

HS Students on Job Shadow Day NERSC Hosts HS Students on Job Shadow Day Albany High-schoolers Learn About Careers in Computing March 15, 2011 As part of Albany High School's annual...

334

La Cueva High School team takes top award in 23rd New Mexico...  

NLE Websites -- All DOE Office Websites (Extended Search)

Eli Echt-Wilson, and Justin Sanchez also won the CHECS Teamwork and Cray High Performance Computing awards. April 23, 2013 Justin Sanchez of Albuquerque La Cueva High School...

335

Does the Use of Co-teaching Models in Algebra Result in an Increase in Student Achievement Among Students with Disabilities and Their Non-disabled Peers?.  

E-Print Network (OSTI)

?? This study investigated high school students with special needs and their non-disabled peers in a Maryland public school system who were taught by co-teachersů (more)

Whisted, Melissa Lembo

2011-01-01T23:59:59.000Z

336

2010 DOE National Science Bowl┬« Photos - Hunter College High School |  

Office of Science (SC) Website

Hunter College High School Hunter College High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Hunter College High School Print Text Size: A A A RSS Feeds FeedbackShare Page Eric Mannes (left) and Pearson Miller do some last minute cramming as they

337

Students from Stafford County University of Kansas  

E-Print Network (OSTI)

Page 1 10/10/12 15:23:31 Students from Stafford County Fall 2012 University of Kansas All Campuses Overall counts include students whose permanent residence or last high school attended is in Stafford from Stafford County. In Fall 2012, KU has 11 students from Stafford County: ┬Ě 10 undergraduate ┬Ě 1

Peterson, Blake R.

338

The Efficacy of Foundations & Frameworks on Elementary Students' Reading Achievement in Urban Christian Schools.  

E-Print Network (OSTI)

??This study was designed to assess the efficacy of Foundations & Frameworks (F&F), an instructional program emphasizing reading comprehension, on fourth and fifth grade students'ů (more)

Blackmon, Cheryl McClure

2008-01-01T23:59:59.000Z

339

Broadening the Base: School/Community Partnerships Serving Language Minority Students at Risk  

E-Print Network (OSTI)

led to the program director's resignation, which put the program in jeopardy for further funding.led eventually to a partnership between the Seattle Public Schools and the Filipino Community of Seattle with funding

Adger, Carolyn Temple; Locke, Jennifer

2000-01-01T23:59:59.000Z

340

Students' and Teachers' Perceptions of Motivation and Learning Through the Use in Schools of  

E-Print Network (OSTI)

, & Eraut, 1992). By 1997, the writers of the McKinsey Report, which discussed the future of informa- tion technology in UK schools (McKinsey & Company, 1997), were able to assume that there were at least 20

Paris-Sud XI, Universit├ę de

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Teacher Participation in Professional Activities and Job Satisfaction: Prevalence and Associative Relationship to Retention for High School Science Teachers  

E-Print Network (OSTI)

In this dissertation, I used survey response data from 385 science teachers situated in 50 randomly selected Texas high schools to describe the prevalence of high school science teacher participation in professional activities and levels of job satisfaction. Using relative risk statistics, I determined the direction and significance of multiple associative relationships involving teachersĺ participation in professional activities, satisfaction with working conditions, and retention state. Finally, I used these results to make specific policy recommendations. Teachers participate in diverse professional activities. Descriptive analyses of responses from teachers revealed higher rates of participation in development activities than in maintenance or management activities. Relative risk statistics exposed several positive and significant associative relationships between participation in specific professional activities (i.e., observation of other science teachers, involvement in a science education study group) and teacher retention. Additionally, results of risk analyses suggest teacher participation in maintenance activities, more than development or management, is associated with teacher retention. Researchers consider job satisfaction an important factor in teacher retention. Descriptive analyses revealed high rates of satisfaction with occupational choice and the interpersonal relationships shared with professional colleagues and administrators. Conversely, teachers expressed low rates of satisfaction with their schoolĺs science laboratory facilities and equipment or support for student involvement in informal science activities. Results of risk analyses exposed no positive associations between job satisfaction and retention for teachers. The interaction between teacher participation in professional activities and satisfaction with occupational choice was also examined. Descriptive analyses of responses from retained teachers (n=291) revealed high rates of participation in development activities in comparison to maintenance or management activities. Results of risk analyses exposed both positive and negative associations between teacher participation in professional activities and satisfaction with occupational choice, suggesting an interactive effect exists between participation in activities and satisfaction with occupational choice on retention. I used results from analyses to make state and school level policy recommendations, which included: (a) development of state standards for classroom equipment and facilities; (b) greater state involvement in defining teacher professional activities; and, (c) increasing school support for teacher participation in maintenance activities.

Bozeman, Todd Dane

2010-12-01T23:59:59.000Z

342

Arizona Teachers Prepare Students for Green Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona Teachers Prepare Students for Green Economy Arizona Teachers Prepare Students for Green Economy Arizona Teachers Prepare Students for Green Economy April 2, 2010 - 2:26pm Addthis Using a curriculum they hope to spread across the United States, two Arizona high school teachers are giving their students hands-on experience in renewable energy jobs. Students led by Kevin English, a building trades teacher at Raymond S. Kellis High School in Glendale, Ariz., are wiring parts of the school for solar power. Kevin's colleague, marketing teacher Deb Moore, has her students learning about environmentally friendly marketing and planning a Green Fair. The two teachers are also helping to launch the Green Clubs of America, an educational nonprofit seeking to spread their curriculum to other schools and encourage students to consider renewable energy careers.

343

CenterLineBowles Center for Alcohol Studies School of Medicine, University of North Carolina at Chapel Hill  

E-Print Network (OSTI)

the National Institute of Alcohol Abuse and Alcoholism--is designed for middle-school and high-school scienceCenterLineBowles Center for Alcohol Studies School of Medicine, University of North Carolina grant to develop a second science-based curriculum. Designed for high-school students,Fetal Alcohol

Crews, Stephen

344

Papillion-LaVista South High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Papillion-LaVista South High School Wind Project Papillion-LaVista South High School Wind Project Jump to: navigation, search Name Papillion-LaVista South High School Wind Project Facility Papillion-LaVista South High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.146679┬░, -96.079178┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.146679,"lon":-96.079178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

North Wilkes Middle and High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Wilkes Middle and High School Wind Project Wilkes Middle and High School Wind Project Jump to: navigation, search Name North Wilkes Middle and High School Wind Project Facility North Wilkes Middle and High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.261246┬░, -81.148483┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.261246,"lon":-81.148483,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

SLAC Regional High School Science Bowl| U.S. DOE Office of Science...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions SLAC Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

347

Kern County Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Kern County Regional High School Science Bowl Print Text Size: A A A RSS...

348

Sacramento Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sacramento Regional High School Science Bowl Print Text Size: A A A RSS...

349

San Diego Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions San Diego Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

350

Georgia Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Sites will be announced after registration. The top two teams from different high schools will be invited to the regional (State) competition to be held at Armstrong on Feb....

351

San Antonio Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions San Antonio Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

352

El Paso Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions El Paso Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

353

Pantex Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions Pantex Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

354

Student Programs and Internships | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Student Programs and Internships Student Programs and Internships Student Programs and Internships Student Internships These student programs allow participants taking at least a half-time academic, technical, or vocational course load in an accredited high school, technical, vocational, two- or four- year college or university, graduate or professional school to be part of a cooperative-learning environment. The program is comprised of two different types of paid internships: The Student Temporary Employment Program (STEP) provides maximum flexibility because the nature of the work does not have to be related to the student's academic or career choice. The Student Career Experience Program (SCEP) provides the opportunity to perform work that is directly related to your area of study. Student Stipend-Based Internships Programs

355

Animated Engineering Tutors: Middle School Students' Preferences and Rationales on Multiple  

E-Print Network (OSTI)

Dimensions Gamze Ozogul, Amy Johnson, and Martin Reisslein School of Electrical, Computer and Energy tutor such as gender, age, personality, and clothing. Results showed that for teaching engineering to their age, matching their own gender, with a fun personality, and that speaks slowly. Keywords: animated

Reisslein, Martin

356

The Impact of the Katy Management of Automated Curriculum System on Planning for Learning, Delivery of Instruction and Evaluation of Student Learning as Perceived by Teachers in the Katy Independent School District in Texas  

E-Print Network (OSTI)

The purpose of this study was to determine teachersĺ perceptions of the relationship of the Katy Management of Automated Curriculum (KMAC) system developed by Katy ISD in Katy, Texas, on planning for learning, delivery of instruction and evaluation of student learning in the classroom. KMAC is a customized, proprietary networked technology curriculum management system created for online access to curriculum and the creation and sharing of lesson plans. Data was collected from 635 teachers district-wide through an online survey. This data was used to determine whether there were differences between/among teachers and teacher leaders and between/among elementary, junior high and high school teachers in their perceived impact of the KMAC on planning for learning, delivery of instruction and evaluation of student learning. Regarding planning for learning, teachers were found to have a moderately positive perception of KMAC with teacher leaders being slightly more positive. In addition, statistically significant differences were found between grade levels with elementary teachers more positive than secondary teachers. Regarding delivery of instruction, teacher leaders again perceived a more positive relationship with KMAC than the teacher non-leaders. Statistically significant differences were also found between elementary and junior high, elementary and high school and between junior high and high school teachers, with elementary teachers being the most positive. Teachers were the least positive toward KMAC and the evaluation of student learning. While a statistically significant relationship was found in relationship to the grade level taught and evaluation, this area was admittedly weaker than the other two areas in district development and teachersĺ perceptions. While the position of teacher leader seemed to impact the results in all categories, the grade level taught was found to have the greatest statistical impact on the teacher perceptions.

Hogue, Sharon L.

2010-08-01T23:59:59.000Z

357

The University of Tennessee High School Arts Academy  

E-Print Network (OSTI)

's leaders. For my students, past and present, I continue my work. As Wisconsin political history gets to their hair using bronze pins. Both wool and linen fabrics have been recovered adhering to metal finds. Red, Professor Anthropology Fieldwork in the German area known as Swabia A reconstructed wool and linen early

Tennessee, University of

358

PhD student in Energy Technology, specifically in Magnetic Refrigeration The School of Industrial Engineering and Management at the Royal Institute of  

E-Print Network (OSTI)

PhD student in Energy Technology, specifically in Magnetic Refrigeration Processes The School Technology, specifically Magnetic Refrigeration Processes. KTH is the largest technical university in Sweden and the environment. Core knowledge areas include energy technology, industrial design and innovation, product

Kazachkov, Ivan

359

Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates  

E-Print Network (OSTI)

A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the accelerated dissemination of energy efficient design. For the development of the toolkit, first, a survey was performed to identify high performance measures available today being implemented in new K-5 school buildings. Then an existing case-study school building in a hot and humid climate was selected and analyzed to understand the energy use pattern in a school building and to be used in developing a calibrated simulation. Based on the information from the previous step, an as-built and calibrated simulation was then developed. To accomplish this, five calibration steps were performed to match the simulation results with the measured energy use. The five steps include: 1) Using an actual 2006 weather file with measured solar radiation, 2) Modifying lighting & equipment schedule using ASHRAEĺs RP-1093iv methods, 3) Using actual equipment performance curves (i.e., scroll chiller), 4) Using the Winkelmannĺs method for the underground floor heat transfer, and 5) Modifying the HVAC and room setpoint temperature based on the measured field data. Next, the calibrated simulation of the case-study K-5 school was compared to an ASHRAE Standard 90.1-1999 code-compliant school. In the next step, the energy savings potentials from the application of several high performance measures to an equivalent ASHRAE Standard 90.1-1999 codecompliant school. The high performance measures applied included the recommendations from the ASHRAE Advanced Energy Design Guides (AEDG) for K-12 and other high performance measures from the literature review as well as a daylighting strategy and solar PV and thermal systems. The results show that the net energy consumption of the final high performance school with the solar thermal and a solar PV system would be 1,162.1 MMBtu, which corresponds to the 14.9 kBtu/sqft-yr of EUI. The calculated final energy and cost savings over the code compliant school are 68.2% and 69.9%, respectively. As a final step of the research, specifications for a simplified easy-to-use toolkit were then developed, and a prototype screenshot of the toolkit was developed. The toolkit is expected to be used by non-technical decision-maker to select and evaluate high performance measures for a new school building in terms of energy and cost savings in a quick and easy way.

Im, Piljae

2009-12-01T23:59:59.000Z

360

Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates  

E-Print Network (OSTI)

A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the accelerated dissemination of energy efficient design. For the development of the toolkit, first, a survey was performed to identify high performance measures available today being implemented in new K-5 school buildings. Then an existing case-study school building in a hot and humid climate was selected and analyzed to understand the energy use pattern in a school building and to be used in developing a calibrated simulation. Based on the information from the previous step, an as-built and calibrated simulation was then developed. To accomplish this, five calibration steps were performed to match the simulation results with the measured energy use. The five steps include: 1) Using an actual 2006 weather file with measured solar radiation, 2) Modifying lighting & equipment schedule using ASHRAE's RP-1093 methods, 3) Using actual equipment performance curves (i.e., scroll chiller), 4) Using the Winkelmann's method for the underground floor heat transfer, and 5) Modifying the HVAC and room setpoint temperature based on the measured field data. Next, the calibrated simulation of the case-study K-5 school was compared to an ASHRAE Standard 90.1-1999 code-compliant school. In the next step, the energy savings potentials from the application of several high performance measures to an equivalent ASHRAE Standard 90.1-1999 codecompliant school. The high performance measures applied included the recommendations from the ASHRAE Advanced Energy Design Guides (AEDG) for K- 12 and other high performance measures from the literature review as well as a daylighting strategy and solar PV and thermal systems. The results show that the net energy consumption of the final high performance school with the solar thermal and a solar PV system would be 1,162.1 MMBtu, which corresponds to the 14.9 kBtu/sqft-yr of EUI. The calculated final energy and cost savings over the code compliant school are 68.2% and 69.9%, respectively. As a final step of the research, specifications for a simplified easy-to-use toolkit were then developed, and a prototype screenshot of the toolkit was developed. The toolkit is expected to be used by non-technical decision-maker to select and evaluate high performance measures for a new school building in terms of energy and cost savings in a quick and easy way.

Im, Piljae

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Design Guidelines for High Performance Schools: Hot and Dry Climates  

Science Conference Proceedings (OSTI)

School districts around the country are finding that smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create an exemplary building that is both energy and resource efficient.

Not Available

2002-01-01T23:59:59.000Z

362

Energy Design Guidelines for High Performance Schools: Temperate and Humid Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

363

Energy Design Guidelines for High Performance Schools: Cool and Dry Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

364

Energy Design Guidelines for High Performance Schools: Cold and Humid Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

365

Energy Design Guidelines for High Performance Schools: Hot and Dry Climates (CD-ROM)  

Science Conference Proceedings (OSTI)

School districts around the country are finding that smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs. The design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-03-01T23:59:59.000Z

366

Energy Design Guidelines for High Performance Schools: Cool and Humid Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

367

Energy Design Guidelines for High Performance Schools: Temperate and Mixed Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

368

Energy Design Guidelines for High Performance Schools: Hot and Dry Climates (Revision)  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

369

Energy Design Guidelines for High Performance Schools: Hot and Humid Climates  

Science Conference Proceedings (OSTI)

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

370

New Mexico Students Plan Solar Energy Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Students Plan Solar Energy Project Students Plan Solar Energy Project New Mexico Students Plan Solar Energy Project July 14, 2010 - 5:07pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? New Mexico received $4.5 million through State Energy Program Recovery Act Grant Los Lunas High School received $300,000 to build solar energy system Renewable energy to save school $20,000 a year Engineering students at Los Lunas High School in New Mexico put their knowledge to work by scoping out the optimal site for a new solar energy system that's expected to save the school district more than $20,000 a year. In September 2009, the school district learned of a grant opportunity through the State Energy Program with funds from the American Recovery and Reinvestment Act to install a photovoltaic system. By October, students,

371

Accountability and Flexibility in Public Schools: Evidence from Bostonĺs Charters and Pilots.ö Working paper 15549  

E-Print Network (OSTI)

We use student assignment lotteries to estimate the effect of charter school attendance on student achievement in Boston. We also evaluate a related alternative, Bostonĺs pilot schools. Pilot schools have some of the independence of charter schools, but operate within the Boston Public School district and are covered by some collective bargaining provisions. Lottery estimates show large and significant score gains for charter students in middle and high school. In contrast, lottery estimates for pilot school students are mostly small and insignificant, with some significant negative effects. Charter schools with binding assignment lotteries appear to generate larger gains than other charters. The authors are grateful to the Boston Foundation for financial support and to Bostonĺs charter schools, the Boston

Joshua D. Angrist; Susan M. Dynarski; Thomas J. Kane; Parag A. Pathak

2009-01-01T23:59:59.000Z

372

2010 DOE National Science Bowl┬« Photos - C.M. Russell High School | U.S.  

Office of Science (SC) Website

C.M. Russell High School C.M. Russell High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - C.M. Russell High School Print Text Size: A A A RSS Feeds FeedbackShare Page C.M. Russell High School from Great Falls, MT. competes in the academic

373

Teachers' perceptions| Differences in the principals' leadership skills in higher and lower performing high poverty South Carolina middle schools.  

E-Print Network (OSTI)

?? This study was conducted to examine principalsĺ leadership skills from the perspective of the teachers in schools with high poverty indices. The focus ofů (more)

Sinha, Vijju

2009-01-01T23:59:59.000Z

374

Women and the high school principalship: metropolitan detroit principals' and superintendents' perceptions regarding barriers and facilitators for job attainment.  

E-Print Network (OSTI)

??WOMEN AND THE HIGH SCHOOL PRINCIPALSHIP: METROPOLITAN DETROIT PRINCIPALS' AND SUPERINTENDENTS' PERCEPTIONS REGARDING BARRIERS AND FACILITATORS FOR JOB ATTAINMENT by HEIDI SCHNABEL KATTULA 2011 Advisor:ů (more)

Schnabel Kattula, Heidi

2011-01-01T23:59:59.000Z

375

West Texas high school agriscience teachers' knowledge, confidence, and attitudes towards teaching water quantity-related topics.  

E-Print Network (OSTI)

??As the nations population grows, the water supply is depleting. Since agricultural education plays a large role in many Texas high schools, it is importantů (more)

Miller, Pamela Marie

2006-01-01T23:59:59.000Z

376

High school interns opt for research over relaxation | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education department, work on an experiment investigating small bright sparks in gas bubbles inside liquids to better understand the way fluids respond to high voltages....

377

High School Academic Competition - Round Robin | U.S. DOE Office of Science  

Office of Science (SC) Website

Round Robin Round Robin National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2012 Competition Results High School Academic Competition - Round Robin Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome to the National Science Bowl Score Center! Looking for Round Robin Updates? Click on the division to go straight to

378

High School Academic Competition - Double Elimination | U.S. DOE Office of  

Office of Science (SC) Website

Double Double Elimination National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2012 Competition Results High School Academic Competition - Double Elimination Print Text Size: A A A RSS Feeds FeedbackShare Page No-Loss Bracket .pdf file (76KB) Challengers' Bracket .pdf file (67KB) Last modified: 4/15/2013 1:39:57

379

The Effects of High Stakes High School Achievement Awards: Evidence from a Randomized Trial  

E-Print Network (OSTI)

The Israeli matriculation certificate is a prerequisite for most postsecondary schooling. In a randomized trial, we attempted to increase certification rates among low-achievers with cash incentives. The experiment used a ...

Angrist, Joshua

2009-01-01T23:59:59.000Z

380

California Nonresident Tuition Exemption Request For Eligible California High School Graduates  

E-Print Network (OSTI)

California Nonresident Tuition Exemption Request For Eligible California High School Graduates Note: This form is accepted by all California Community Colleges and all Universities in the both the University of California and California State University systems. Complete and sign this form to request an exemption from

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

GT MENTOR: A High School Education Program in Systems Engineering and Additive Manufacturing  

E-Print Network (OSTI)

-manufacturing infrastructure will be developed that integrates CAD, CAE, design-for-manufacturing, and CAM software tools, and to ensure that high school-age youths are exposed to the principles of modern prize-based design and foundry of user-friendly, open-source tools to enable the utilization of conventional social network media (e

382

Towards a curriculum for electronic textiles in the high school classroom  

Science Conference Proceedings (OSTI)

This paper proposes a curriculum for a high school e-textile course-a curriculum rooted in our experiences in developing an e-textile construction kit and in holding several courses and workshops with these materials. The paper briefly describes the ... Keywords: computational crafts, e-textiles, electronic textiles, wearable computing

Leah Buechley; Mike Eisenberg; Nwanua Elumeze

2007-06-01T23:59:59.000Z

383

30 ASHRAEJournal ashrae.org May2007 High-Performance Schools  

E-Print Network (OSTI)

30 ASHRAEJournal ashrae.org May2007 High-Performance Schools John Fischer is director of research By John Fischer, Member ASHRAE; Kirk Mescher, P.E., Member ASHRAE; Ben Elkin, P.E., Member ASHRAE; Stephen operatedtocomplywithASHRAE'sventilation,energyandthermal comfortstandards1,2,3whileremainingenergyefficientandcostef

Oak Ridge National Laboratory

384

Students (K-12)  

NLE Websites -- All DOE Office Websites (Extended Search)

Students (K-12) Students (K-12) Students (K-12) Our K-12 education programs' goal is to encourage students in Northern New Mexico to pursue science, technology, engineering and math careers. Contact Education Janelle Vigil-Maestas Community Programs Office (505) 665-4329 Email "When the going gets tough, encourage them to keep going." - LANL Director Charlie McMillan Student Challenge Opportunities High School Co-Op Program and Internship Opportunities at LANL LANL Foundation Scholarships Programs & competitions Discover E (pdf) Frontiers in Science Lecture Series (all) Future City (pdf) (grades 6-8) LANL STEM Challenge (pdf) (grades 6-12) New Mexico Hydrogen Fuels Challenge (pdf) (grades 6-8) Northern New Mexico Expanding Your Horizons (pdf) (grades 5-8) RoboRave International (grades 6-12)

385

Development of a Simplified Simulation Tool for High Performance K-5 Schools in Hot and Humid Climates  

E-Print Network (OSTI)

This paper presents the preliminary results of an effort to develop a simplified simulation-based tool for designing K-5 high performance schools in hot and humid climates. As a first step of the research, a survey to define the dominant school building shape was conducted in an independent school district in Central Texas. This survey used satellite views of the K-5 schools, where each school shape was classified based on the classification defined by Perkins (2001). In addition, more surveys and a literature review was performed to verify input parameters to drive the building size and other building characteristics. Once the simulation tool and the default parameters are developed, this tool is intended to be used to estimate building energy consumption with limited information about the school building. This paper reports on the classification scheme and automatic building shape generator, as well as preliminary results describing calibration of the simulation to a case study K-5 school.

Im, P.; Haberl, J. S.

2008-08-01T23:59:59.000Z

386

Chugach School District Profile - 2001  

Science Conference Proceedings (OSTI)

... school graduation requirements exceed Alaska's requirements in ... of the United States are working ... student performance exceeds state and national ...

2011-07-13T23:59:59.000Z

387

NREL: Learning - Student Resources on Bioproducts  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioproducts Bioproducts Photo of a student at a desk. Many of the materials we use in school, such as glue and the plastic for colored markers, can be developed from biomass. The following resources provide information on bioproduct or biobased product technologies. If you are unfamiliar with these technologies, see the introduction to bioproducts. Grades 6-8 NREL Renewable Energy Activities-Choices for Tomorrow Has biomass activities for students. High School and College Level Biomass Pyrolysis Network Provides information on scientific and technological developments in biomass pyrolysis. Printable Version Learning About Renewable Energy Home Renewable Energy Basics Using Renewable Energy Energy Delivery & Storage Basics Advanced Vehicles & Fuels Basics Student Resources

388

Associated Students of the Colorado School of Mines October 20, 2011, 7:04 p.m.  

E-Print Network (OSTI)

lunch is tomorrow at noon Wants as many Student Gov. members to attend Caitlin, Noah, Ryan I are with Noah Oliver advocates student death, (chubby bunny) yay!! Seniors mash potato pie throwing contest

389

Los Alamos Public Schools recommended for accreditation  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos Schools Recommended For Accreditation Los Alamos Schools Recommended For Accreditation Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues ┬╗ submit Los Alamos Public Schools recommended for accreditation Los Alamos Public Schools has taken the unusual step of working to obtain accreditation for its entire district. January 1, 2013 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email We knew as a school system we had a lot going for us, but we wanted additional perspectives on areas where we needed to do more work. While virtually all high schools in the country are accredited so their students can qualify for admission to a full array of colleges, Los Alamos Public Schools has taken the unusual step of working to obtain

390

Calculating Energy and Demand Retrofit Savings for Victoria High School: Interim Report  

E-Print Network (OSTI)

As part of the LoanSTAR program, Victoria High School in Victoria, Texas underwent two retrofits: a) an absorption chiller was changed to an electric vapor compression chiller, and b) an EMCS system was installed after about 5 months in the post retrofit period. Moreover, retrofit savings calculation was complex since pre-retrofit data consisted of only monthly utility data while hourly monitored data are available for the post-retrofit period. This report describes the method in which we have performed retrofit energy and demand savings in Victoria High School. A previous report described the procedure adopted when no pre-retrofit data are available. We have only used Unnormalized Utility Bills Comparison ,or the Level-0 approach to determine electricity (energy and demand) and gas energy savings for VHS.

Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

391

NETL: 2010 SW PA Middle School Science Bowl  

NLE Websites -- All DOE Office Websites (Extended Search)

is open to middle school students (school, scouts, home school) from Southwestern Pennsylvania (SW PA). Complete eligibility requirements are located at the National...

392

Science Teaching in Texas: Investigating Relationships among Texas High School Science Teachers' Working Conditions, Job Satisfaction, and Retention  

E-Print Network (OSTI)

In many critical subject areas our schools are facing a need for teachers, particularly in the "high-need" areas of mathematics, science, and bilingual education. Educators and researchers alike have identified teacher turnover as a major contributor to the challenge of finding and keeping highly-qualified teachers in American classrooms. The purpose of the three studies in this dissertation was to investigate the potential role of working conditions in explaining the turnover rates of high school science teachers. I used data collected by the Policy Research Initiative in Science Education (PRISE) Research Group during the 2007-2008 and 2008-2009 academic years, from their random, stratified sample of 50 Texas high schools and their 385 science teachers. The first study focuses on the development of a rubric assessing individual science teachers' working conditions, which involved the examination of multiple data sources, including school master schedules and AEIS reports to determine the working conditions of 385 science teachers. Analyses from this study suggested that (a) science teachers from small schools experience tougher working conditions than science teachers from both medium and large schools; (b) veteran science teachers experience tougher working conditions than both induction and mid-career teachers; and (c) science teachers from lower minority schools experience tougher working conditions than science teachers from schools with higher MSEPs. The second study focuses on the relationship between high school science teachers? working conditions and their levels of job satisfaction. Findings included that (1) science teachers from small schools experienced tougher working conditions, even though they were more satisfied with their jobs; (2) veteran science teachers experienced tougher working conditions and were more satisfied with their jobs; and (3) science teachers from lower minority schools experienced tougher working conditions and were more satisfied with their jobs. The final study focuses on the relationship between high school science teachers' school size, MSEP, teacher type, working condition scores, job satisfaction scores, and retention status. Results of independent samples T-test revealed no significant difference in working condition scores for "stayers" versus "non-stayers." Pearson's correlation revealed school size and the experience level of the science teacher as significant predictors of working condition and job satisfaction scores. Results of the discriminant analysis revealed (a) working condition scores and job satisfaction scores as not significantly predicting science teacher retention; and (b) teacher type (beginning, mid-career, and veteran) as the only significant predictor of teacher retention.

Hollas, Victoria

2011-12-01T23:59:59.000Z

393

Business School Student Handbook  

E-Print Network (OSTI)

Academic Management Structure.............................................12 3 Postgraduate Facilities specifications and Academic Fraud are available on Moodle at https://moodle.mmu.ac.uk/. It is essential that you use this facility on a regular basis. We are sure that you will find your experience on the programme

394

Business School Student Handbook  

E-Print Network (OSTI)

Structure.............................................13 3 Postgraduate Facilities specifications and Academic Fraud are available on Moodle at https://moodle.mmu.ac.uk/. It is essential that you use this facility on a regular basis. We are sure that you will find your experience on the programme

395

Business School Student Handbook  

E-Print Network (OSTI)

://moodle.mmu.ac.uk/. It is essential that you use this facility on a regular basis. We are sure that you will find your experience Academic Management Structure.............................................12 3 Postgraduate Facilities

396

Student's algorithm solves real-world problem  

NLE Websites -- All DOE Office Websites (Extended Search)

Student's algorithm solves real-world problem Student's algorithm solves real-world problem Supercomputing Challenge: student's algorithm solves real-world problem Students learn how to use powerful computers to analyze, model, and solve real-world problems. April 3, 2012 Jordon Medlock of Albuquerque's Manzano High School won the 2012 Lab-sponsored Supercomputing Challenge Jordon Medlock of Albuquerque's Manzano High School won the 2012 Lab-sponsored Supercomputing Challenge by creating a computer algorithm that automates the process of counting and analyzing plaques, substances in the blood such as fat and cholesterol found in persons diagnosed with Alzheimer's disease. Contact Kurt Steinhaus (505) 665-7370 Email "The mission of the Supercomputing Challenge is to teach students how to use powerful computers to analyze, model, and solve real-world problems,"

397

United States special format report: Northview Junior High solar energy school heating augmentation experiment  

DOE Green Energy (OSTI)

The program described in this report demonstrates the ability of solar collectors to supplement the heating and hot water requirements of North View Junior High School in suburban Minneapolis. The program is obtaining engineering data which may be used to improve collector performance and system performance or design. In addition, data are being compiled which may be used to define investment requirements for similar installations. The program is also helping to determine community acceptance of solar heated school buildings. Construction was initiated during January 1974 and completed during May 1974. The basic rationale for the program is the necessity of obtaining firm answers in three areas: (1) validation of system performance, (2) determination of overall system costs, and (3) acquisition of data to determine the benefits of such a system. (WDM)

Merrill, G.; Dib, A.

1976-06-01T23:59:59.000Z

398

A comparative study of teacher characteristics in high-poverty and low-poverty elementary schools in South Carolina.  

E-Print Network (OSTI)

?? The purpose of this quantitative study was to measure teacher characteristics in high-poverty and low-poverty elementary schools in South Carolina. The similarities and differencesů (more)

Pickett, Tracy M.

2013-01-01T23:59:59.000Z

399

Examination of Factors Contributing to the Achievement Gap of Native American Students in Select School Districts in Michigan.  

E-Print Network (OSTI)

??Most of the studies on student achievement gaps involve the Black-White achievement gap due to the availability of significant sample populations in order to drawů (more)

Harwood, Thomas R.

2011-01-01T23:59:59.000Z

400

School-Home Performance Feedback with Home-Based Writing Activities: the Effects on Elementary Studentsĺ Writing Fluency.  

E-Print Network (OSTI)

??Parent involvement in education has been identified as influential in children's learning and associated with positive outcomes on students' academic and behavioral competency (Christenson, 2004;ů (more)

Rymanowski, Jennifer Lynn

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SERVICE LEARNING At Boston University School of Medicine  

E-Print Network (OSTI)

and 25% of the children live below the poverty line. 40% have less than a high school education. Many students with handson involvement in working with the underserved. OVP provides reliable and consistent accompanied by a licensed physician. Students work together with physicians to address immediate medical

402

Arkansas Students Get Their Hands Dirty in Solar Panel Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Students Get Their Hands Dirty in Solar Panel Project Arkansas Students Get Their Hands Dirty in Solar Panel Project Arkansas Students Get Their Hands Dirty in Solar Panel Project September 9, 2010 - 5:47pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this mean for me? Lamar School District installed four solar panels with Recovery Act funds,10 more on the way Students helped install solar panels as part of school-to-work transition program 45 panels at City Hall to be installed by students Wallie Shaw remembers where he got the idea to do a hands-on solar panel project for his Jobs for America's Graduates (JAG) students, a school-to-work transition program focused on helping at-risk youth graduate from high school. "Having been in the military and stationed in Germany, I saw a magazine

403

Field Monitoring of a Geothermal Heat Pump Water Heater: Unicoi County High School, Erwin, Tennessee  

Science Conference Proceedings (OSTI)

A geothermal heat pump water heater (HPWH) system -- installed to preheat water entering a 250-gallon gas-fired water heater (GWH) at a Tennessee high school -- reduced water-heating costs by 34 percent per year, compared to the base case GWH system. This report provides results from field monitoring of the geothermal HPWH system, tested in three distinct operating modes for five months. The program goal was to assess the energy and economic benefits of the GWH system with and without the geothermal HPWH...

2003-10-15T23:59:59.000Z

404

Thermal Storage for Energy Efficient Structures (Poteet High School Case Study)  

E-Print Network (OSTI)

Poteet High School, in Mesquite, Texas, is a facility that demonstrates state-of-the-art environmental control through the application of energy conserving technologies relative to architecture, HVAC and lighting. It is also recognized as an "Intelligent Building" by virtue of the fact that it automatically adjusts to, and supports the needs of, its occupants without help from facility operating personnel. This paper provides information relative to the system components groupings of envelope, electrical system and equipment and mechanical systems and equipment. Each of the systems operating cycles are described and the major benefits of this design concept are summarized.

Utesch, A. L.

1988-01-01T23:59:59.000Z

405

NXS 2010 - Neutron Scattering School  

NLE Websites -- All DOE Office Websites (Extended Search)

2-26, 2010 2-26, 2010 Argonne National Laboratory, Argonne, IL Oak Ridge National Laboratory, Oak Ridge, TN NXS2010 Travel Airport Shuttles Departure Flights Schedule Participants Lectures Lecturers Lecture Notes/Videos Experiments Schedule, Desc, Groups Student Presentations ANL Facilities APS Facility ANL Map ANL Visitor's Guide ORNL Facilities HFIR Facility SNS Facility HFIR/SNS Map Access Requirements ANL ORNL Rad Worker Training Study Guide Wireless Networks ANL ORNL Safety & Security Rules ANL ORNL NSSA New Initiatives NSSA Weblink Contacts ANL ORNL 12th National School on Neutron & X-ray Scattering 2009 Neutron Scattering School participants 2010 National School Participants Students share their thoughts about NXS 2010. Purpose: The main purpose of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major neutron and x-ray facilities. Lectures, presented by researchers from academia, industry, and national laboratories, will include basic tutorials on the principles of scattering theory and the characteristics of the sources, as well as seminars on the application of scattering methods to a variety of scientific subjects. Students will conduct four short experiments at Argonne's Advanced Photon Source and Oak Ridge's Spallation Neutron Source and High Flux Isotope Reactor facilities to provide hands-on experience for using neutron and synchrotron sources.

406

NREL: Learning - Student Resources on Biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Student Resources on Biofuels Photo of a school bus and children. Many school buses can run on alternative fuels, including biodiesel. The following resources can provide you with...

407

GRADUATE SCHOOL OF ARTS & SCIENCES ACADEMIC AND PROFESSIONAL INTEGRITY POLICY  

E-Print Network (OSTI)

.D. students on the Danforth & Medical campuses, including those home-based in another School (Engineering

Wang, David

408

High School Students | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

409

Investigating the impact of video games on high school students' engagement and learning about genetics  

Science Conference Proceedings (OSTI)

The popularity of video games has transcended entertainment crossing into the world of education. While the literature base on educational gaming is growing, there is still a lack of systematic study of this emerging technology's efficacy. This quasi-experimental ... Keywords: Applications in subject areas, Interactive learning environments, Pedagogical issues, Secondary education, Virtual reality

Leonard A. Annetta; James Minogue; Shawn Y. Holmes; Meng-Tzu Cheng

2009-08-01T23:59:59.000Z

410

NREL: Learning - Student Resources on Geothermal Heat Pumps  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Search More Search Options Site Map Printable Version Student Resources on Geothermal Heat Pumps Photo of students at an elementary school. Students at Slocomb Elementary...

411

Launched in 2006, the Energy Management Concentration at the Haskayne School of Business provides students with basic  

E-Print Network (OSTI)

for favorable forward buying opportunities Perform market analysis including information gathering, database students with basic concepts, principles, and information for managing energy operations. Developed the energy market, identify growth opportunities, and forecast future demands liaise with outside parties

Calgary, University of

412

ENERY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect

This multi-state collaborative project will coordinate federal, state, and private sector resources and high-priority school-related energy research under a comprehensive initiative that includes tasks that increase adoption of advanced energy efficiency high-performance technologies in both renovation of existing schools and building new ones; educate and inform school administrators, architects, engineers, and manufacturers nationwide as to the energy, economic, and environmental benefits of energy efficiency technologies; and improve the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in schools.

Kate Burke

2004-01-01T23:59:59.000Z

413

ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect

This multi-state collaborative project will coordinate federal, state, and private sector resources and high-priority school-related energy research under a comprehensive initiative that includes tasks that increase adoption of advanced energy efficiency high-performance technologies in both renovation of existing schools and building new ones; educate and inform school administrators, architects, engineers, and manufacturers nationwide as to the energy, economic, and environmental benefits of energy efficiency technologies; and improve the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in schools.

Kate Burke

2004-01-01T23:59:59.000Z

414

New Jersey Regional Middle School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Jersey Regions » New Jersey Regional Jersey Regions » New Jersey Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New Jersey Regions New Jersey Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page PLEASE NOTE: All New Jersey middle school regional slots have been filled. Any school that registering after November 13, 2013 will be placed

415

Middle School Regionals | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Regionals Regionals National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Middle School Regionals Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Team Registration For more information, please visit the Middle School Coach page. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

416

Students Innovate to Address Gas Shortages Following Hurricane Sandy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Students Innovate to Address Gas Shortages Following Hurricane Students Innovate to Address Gas Shortages Following Hurricane Sandy Students Innovate to Address Gas Shortages Following Hurricane Sandy November 9, 2012 - 3:43pm Addthis Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Bob Brese Bob Brese Chief Information Officer Ian Kalin Director of the Energy Data Initiative What are the key facts? Students in New Jersey are using open data and online maps to support their community in the aftermath of Hurricane Sandy. As part of our efforts in helping with Hurricane Sandy restoration efforts, the Energy Department is working closely with other federal partners, state

417

A successful rural school model as perceived by local stakeholders in the Pinewoods Independent School District, Texas  

E-Print Network (OSTI)

This research was a qualitative case study involving 24 participants of a rural junior/senior high school in East Texas. The purpose of this study was to document the perceptions of students, faculty, administration, and community members in a small rural Texas community, exploring why they perceive their school to be a successful learning environment. The main objective of this basic interpretative case study was to interpret the meaning of how the participants make sense of their lives and their worlds. This study was guided by the following research questions: What factors determine success as identified by stakeholders in Pinewoods Independent School District? How do stakeholders in Pinewoods Independent School District perceive success in their junior/senior high school? The method of inquiry was an informal conversational interview with each participant. These interviews triangulated with a focus group, examination of historical documents, observations, and member checks. The themes revealed in the research included: (a) the rural advantage with three sub-themes, community safe and supportive of its citizens, a community without racial tension, and a nurturing community; (b) pride and tradition with two sub-themes, high expectations and competitive nature of school and school pride; and (c) quality of the school, Pinewoods style with four sub-themes, good discipline in school, dedicated teachers, high expectations in academic and extracurricular activities, and Pinewoods as a successful school. There are implications for policy, practice, and additional research that are necessary for all demographic factors of a rural community. The demographic factors include administrators, teachers, students, and citizens. The intent of the researcher is that the findings of this study be shared with other interested individuals throughout the state and nation to help them better understand how students are taught by a dedicated faculty, staff, and administration, while working through various difficulties such as low socioeconomic students, a continually decreasing community economy, and a lack of sufficient resources for the school.

Centilli, Jeroladette

2008-12-01T23:59:59.000Z

418

Table Set-up with equipment Target Audience: Parents of elementary school students (grades 3-6), Middle and High School Students  

E-Print Network (OSTI)

engineering measurement tool 2. Introduce the range of light bulb options available for home use. 3. Describe-on experience with the measurement of the time-dependence of light output from three or more light bulbs based on significantly different technology (e.g. incandescent, CFL, LED) as an example of information on light bulbs

Linhardt, Robert J.

419

Ion acoustic wave experiments in a high school plasma physics laboratory Walter Gekelman  

E-Print Network (OSTI)

address: Crossroads School, Santa Monica, California 90404 1 http://coke.physics.ucla.edu/laptag . 2 W

California at Los Angles, University of

420

Office of Educational Programs | Student Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

and Contests for Students and Contests for Students Displaying all programs and contests. [ Narrow Search ] (INCREASE) Historically Black Colleges and Universities / National Synchrotron Light Source Consortium (Internship - CCI) Community College Internship (Internship - SULI) Science Undergraduate Laboratory Internship (Internship - VFP) Visiting Faculty Program (NCSS) Nuclear Chemistry Summer School (NNSS) Nuclear Nonproliferation Safeguards and Security Summer Course (OEP) College Mini-Semester Program (OEP) InSynC (OEP) New York State Collegiate Science & Technology Entry Program Mini-Course (CSTEP) (OEP) Professional Development Workshops for Teachers (OEP) The G.R.E.En. Institute (OSSP) GREEN Institute's Open Space Stewardship Program (Postdoc) AGEP-T FRAME (Research - HSRP) High School Research Program

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Middle School Natural Gas Study Guide - Middle School More Documents & Publications Oil Study Guide - Middle School Fossil Fuels Study Guide - High School Oil Study Guide - High...

422

Coal Study Guide for Elementary School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide: Coal (for Elementary School) More Documents & Publications Coal Study Guide - Middle School Coal Study Guide - High School Fossil Fuels Study Guide - High School...

423

The relationship between teacher Levels of Technology Integration (LoTi) on 3rd-5th Grade Students on the Texas Assessment of Knowledge and Skills (TAKS) scores at Alamo Heights Independent School District, San Antonio, Texas  

E-Print Network (OSTI)

The purpose of this study was to examine Levels of Technology Implementation (LoTi) teacher self-ratings and Texas Assessment of Knowledge and Skills (TAKS) scores. The study assessed the relationship between LoTi ratings and TAKS scores of 3rd, 4th, and 5th grade students as reported in student records at Alamo Heights Independent School District (AHISD), San Antonio, Texas. The study determined the degree to which teacher LoTi ratings were a predictor of success on TAKS exam scores as reported in student records at Alamo Heights Independent School District, San Antonio, Texas. In addition, the study determined whether a teacher's LoTi scores impacted students' achievement levels for the variable of socioeconomic status. School and student performance analysis included only Cambridge and Woodridge Elementary Schools in the Alamo Heights Independent School District. The student data in the study came from approximately 278 3rd graders, 268 4th graders, and 283 5th graders (829 total students). A total of 47 3rd, 4th, and 5th grade reading and math teachers from the two elementary campuses made up the population under study. The research findings of this study included: 1. There was no significant relationship at the elementary level between teacher LoTi ratings and TAKS scores for reading and math for grades 3, 4, 5 students. 2. The grade 4 reading analysis results demonstrate that teachers with a higher LoTi level do impact student achievement on the TAKS test for students who are in the economically disadvantaged subpopulation. The following recommendations were made: 1. Additional research is needed to examine how technology is specifically implemented in both reading and math classrooms at the elementary level. 2. Additional research is needed to examine how staff development on the LoTi instrument affected classroom practice and teacher responses on the LoTi survey. 3. Continued support is needed to provide teachers with professional development regarding the integration of technology as a teaching tool and repeat the research procedures after this initial year of using the LoTi instrument.

Bashara, Dana Marie

2008-08-01T23:59:59.000Z

424

The Edwards School of Business is once again taking proposals for consulting projects to be completed by MBA students. Accepted projects will cost $2,500 depending on scope, plus expenses, which typically run between $500  

E-Print Network (OSTI)

to be completed by MBA students. Accepted projects will cost $2,500 depending on scope, plus expenses, whichThe Edwards School of Business is once again taking proposals for consulting projects typically run between $500 and $1,000. Though you are not limited to these, typically projects fall within

Saskatchewan, University of

425

Middle School Academic Competition - Round Robin | U.S. DOE Office...  

Office of Science (SC) Website

Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact...

426

African American Parent Involvement: An examination of the characteristics that determine the most successful school and parent relationships between lower socioeconomic, African American parents, and highly effective schools  

E-Print Network (OSTI)

94(1), 95 Columbia County School Title I Policy, (2007).Parent involvement in schools: An ecological approach.The Elementary School Journal, 91(3). Compton-Lilly, C. (

Williams, Marcheta Ganther

2011-01-01T23:59:59.000Z

427

Topics in nuclear and radiochemistry for college curricula and high school science programs  

Science Conference Proceedings (OSTI)

The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

Not Available

1990-01-01T23:59:59.000Z

428

High School Research at Jefferson Lab - The Setup and Monitoring of a  

NLE Websites -- All DOE Office Websites (Extended Search)

12 GeV Safety Systems 12 GeV Safety Systems Previous Project (12 GeV Safety Systems) High School Research Main Index Next Project (Computational Physics) Computational Physics The Setup and Monitoring of a Honeypot at Jefferson Lab A honeypot is software that emulates an operating system and therefore can be used in many projects that should not be tested on a computer that could lose data. For my project it was put onto the network unprotected to see what hackers would do to it. This way we can research what the new or common methods of hacking are. Also, the honeypot does not install any of the malicious software, yet it saves a copy for further analysis. This allows Systems Security to see what bug the program exploits and the information found gives them the ability to fix the issue before hackers

429

High School Research at Jefferson Lab - Development of the GRINCH Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonlinear Particle Dynamics Nonlinear Particle Dynamics Previous Project (Nonlinear Particle Dynamics) High School Research Main Index Next Project (Fire Alarm Monitoring Systems) Fire Alarm Monitoring Systems Development of the GRINCH Gas Cherenkov Detector This project was done as a summation of all of the projects I have done referencing A1n and the GRINCH detector. To assist in the preparation of the A1n experiment, I helped develop and model a magnetic shielding box for an array of PMT's in the GRINCH detector. Using this box, as well as a compensation coil, seemed to provide ample shielding from the BigBite magnets magnetic field. The PMT's in the array were salvaged from a detector where they were submerged in water and sustained damage (micro-fractures) on their acceptance windows. By putting a layer of glue

430

Calculating Energy and Demand Retrofit Savings for Stroman High School: Interim Report  

E-Print Network (OSTI)

As part of the LoanSTAR program, Stroman High School in Victoria Texas underwent two retrofits: a) an absorption chiller was changed to an electric vapor compression chiller, and b) an EMCS system was installed after about 5 months in the post retrofit period. Moreover, retrofit savings calculation was complex since pre-retrofit data consisted only of monthly utility data while hourly monitored data are available for the post-retrofit period. The retrofit savings in electricity and gas were computed by two different approaches: Unnormalized Utility Bill Comparison and Weather and Schedule Normalized Utility Bill Comparison Using Post-Retrofit Daily Models. (For purpose of simplicity, in this report, we will refer them as Level-0 and Level-1, respectively.) This report describes these approaches and discusses how well the retrofit savings predicted by both approaches compare with each other. It also describes the procedure for determining demand savings.

Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

431

Design of a 20-kWp photovoltaic concentrator experiment at Fauquier High School, Warrenton, VA  

DOE Green Energy (OSTI)

The design and systems analysis of the photovoltaic concentrator system for Fauquier High School in Warrenton, Virginia, are presented. The system provides both electrical energy from the photovoltaic modules and thermal energy from the cooling of those modules. The dc electrical energy from the photovoltaic modules will be first converted to ac and then used to provide power for lighting in the vocational/technical building and the system control building. The thermal energy collected is stored in a 6500-gallon tank for use in the wintertime to provide heat for a greenhouse located adjacent to the array. The photovoltaic system supplies 20 kWp of electrical power by means of 40 6' wide by 10' long parabolic-cylinder collectors mounted in a polar mode. (WHK)

None

1979-10-18T23:59:59.000Z

432

Alternative Energy Saving Technology Analysis Report for Richland High School Renovation Project  

DOE Green Energy (OSTI)

On July 8, 2004, L&S Engineering, Inc. submitted a technical assistance request to Pacific Northwest National Laboratory (PNNL) to help estimate the potential energy savings and cost effectiveness of the solar energy and daylighting design alternatives for Richland High School Renovation Project in Richland, WA. L&S Engineering expected PNNL to evaluate the potential energy savings and energy cost savings, the probable installation costs, incentives or grants to reduce the installed costs and simple payback for the following alternative measures: (1) Daylighting in New Gym; (2) Solar Photovoltaics; (3) Solar Domestic Hot Water Pre-Heat; and (4) Solar Outside Air Pre-Heat Following are the findings of the energy savings and cost-effectiveness analysis of above alternative energy saving technologies.

Liu, Bing

2004-08-09T23:59:59.000Z

433

Perceptions Regarding the Michigan Merit Curriculum Reform Policy and Its Impact on CTE and Dual Enrollment in a Southeastern Michigan High School.  

E-Print Network (OSTI)

??Michigan joined Arkansas, Indiana, Massachusetts, Oregon, and Rhode Island in the high school reform effort. The Michigan Merit Curriculum (MMC), mandated in 2006, contained aů (more)

Green, Winifred L.

2012-01-01T23:59:59.000Z

434

Rebuilding It Better: Greensburg, Kansas. USD 422 Greensburg K-12 School (Revised) (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USD 422 Greensburg K-12 School USD 422 Greensburg K-12 School The tornado destroyed Greensburg's original school, so the new school was built green from the ground up. School leaders and the design/construction team worked closely together to design an environmentally responsible, student-focused academic environment that reinforces Greensburg's community-wide commitment to sustain- ability. The 120,000-square-foot, two-story facility has the capacity to hold more than 300 students ranging from preschoolers to high-school seniors. LEED® Platinum The school is designed to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) for Schools Platinum designation. NREL, with the support of DOE, provided technical assistance to determine the

435

Middle School Rules, Forms, and Resources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Resources Resources National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Academic Question Resources Make Your Own National Science Bowl® Competition Buzzer Sample Questions Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Middle School Rules, Forms, and Resources Print Text Size: A A A RSS Feeds FeedbackShare Page The following are resources for the middle school teams of the National Science Bowl. 2014 Official National Science Bowl Rules .pdf file (517KB)

436

Middle School Coaches | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coaches Coaches National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Middle School Coaches Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome Middle School Coaches Team Registrations Are Open Please click "Middle School Regionals" on the menu to the left. Click To Return To Your Registration External link Listed below is all the information you need to lead a team to success in the National Science Bowl. Be sure to read the rules and other very helpful

437

Eastern Idaho Regional Middle School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Eastern Idaho Regional Eastern Idaho Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Idaho Regions Eastern Idaho Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Steve Zollinger Email: zollingers@byui.edu Regional Event Information Date: TBD Maximum Number of Teams: 10 Maximum Number of Teams per School: 2

438

BPA Regional Middle School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Oregon Regions » BPA Regional Middle School Oregon Regions » BPA Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Oregon Regions BPA Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Christy Adams Email: cfadams@bpa.gov Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 64

439

Iowa Regional Middle School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Iowa Regions » Iowa Regional Middle School Iowa Regions » Iowa Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Iowa Regions Iowa Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Steve Karsjen Email: karsjen@ameslab.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24

440

Illinois Regional Middle School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Illinois Regional Middle Illinois Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Illinois Regions Illinois Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Ken Wester Email: kwester@ilstu.edu Regional Event Information Date: March 1, 2014 Maximum Number of Teams: 18 Maximum Number of Teams per School: 3

Note: This page contains sample records for the topic "high school students" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

USD 422 Greensburg K-12 School  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Originally destroyed by the tornado, Greensburg's new K-12 Originally destroyed by the tornado, Greensburg's new K-12 School was built green from the ground up and completed in time for the 2010-2011 academic school year. The 120,000-square- foot, two-story facility holds more than 300 students ranging from preschoolers to high-school seniors. With the goal of achieving 60% energy savings and the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum for Schools certification, the school incorporates many energy efficiency and renewable energy features. ENERGY EFFICIENCY FEATURES * East to west building orientation takes advantage of abundant natural daylight and helps warm the interior in the winter * Daylighting significantly reduces electrical lighting in classrooms, corridors, the gym, and regularly

442

North Florida Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

443

Missouri Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

444

Indiana Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

teams taking precedence over second teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...