Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Secretary Chu Recalls Garden City High School Physics Teacher...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recalls Garden City High School Physics Teacher Secretary Chu Recalls Garden City High School Physics Teacher September 30, 2010 - 12:00am Addthis As part of President Obama's new...

2

Transforming High School Physics with Modeling and Computation  

E-Print Network (OSTI)

The Engage to Excel (PCAST) report, the National Research Council's Framework for K-12 Science Education, and the Next Generation Science Standards all call for transforming the physics classroom into an environment that teaches students real scientific practices. This work describes the early stages of one such attempt to transform a high school physics classroom. Specifically, a series of model-building and computational modeling exercises were piloted in a ninth grade Physics First classroom. Student use of computation was assessed using a proctored programming assignment, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Student views on computation and its link to mechanics was assessed with a written essay and a series of think-aloud interviews. This pilot study shows computation's ability for connecting scientific practice to the high school science classroom.

Aiken, John M

2013-01-01T23:59:59.000Z

3

PROFILE OF A HIGH SCHOOL INTERN: JOSHUA BLOOM | Princeton Plasma Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

PROFILE OF A HIGH SCHOOL INTERN: JOSHUA BLOOM PROFILE OF A HIGH SCHOOL INTERN: JOSHUA BLOOM June 15, 2013 Some students come into the high school internship program at PPPL already harboring an interest in plasma physics, knowing exactly what research they want to work on and what they want to learn. Others come in not really knowing what to expect. Josh Bloom, a graduating senior from West Windsor-Plainsboro High School North, falls into the latter category, coming into PPPL with not necessarily any particular interest in working with plasma physics, but just a desire to make the most out of his high school's Senior Option program, in which qualifying students are granted the opportunity to spend a portion of their last semester in professional internships. Josh's interests in science were not tailored specifically to plasma

4

High School  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Please click on the title for more information about each program. Nano*High Nano High Saturday presentations for Bay Area high school students Science Bowl Science...

5

Ion acoustic wave experiments in a high school plasma physics laboratory Walter Gekelman  

E-Print Network (OSTI)

address: Crossroads School, Santa Monica, California 90404 1 http://coke.physics.ucla.edu/laptag . 2 W

California at Los Angles, University of

6

Physical inactivity among adolescents with physical disabilities attending high schools in Kenya.  

E-Print Network (OSTI)

?? Physical inactivity together with overweight and obesity has emerged as a major health risk factor for chronic disease of lifestyle as coronary heart disease,ů (more)

Matheri, Joseph Mwangi.

2007-01-01T23:59:59.000Z

7

LANL | Physics | High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring high energy physics Physics Division scientists and engineers investigate the field of high energy physics through experiments that strengthen our fundamental...

8

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Untitled Document Argonne Logo DOE Logo High Energy Physics Division Home Division ES&H Personnel Publications HEP Awards HEP Computing HEP Committees Administration...

9

Brookhaven High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy Physics High-Energy Physics High-energy physicists probe the properties and behavior of the most elementary particles in the universe. At the Alternating Gradient Synchrotron (AGS), they perform experiments of unique sensitivity using high-intensity, intermediate-energy beams. The AGS currently provides the world's most intense high-energy proton beam. It is also the world's most versatile accelerator, accelerating protons, polarized protons, and heavy ions to near the speed of light. Magnet system at Brookhaven used to measure the magnetic moment of the muon. Important discoveries in high-energy physics were made at the AGS within the last decade. An international collaboration, including key physicists from Brookhaven, performed a very high-precision measurement of a property

10

http://www.soken.ac.jp/ School of Physical Sciences  

E-Print Network (OSTI)

http://www.soken.ac.jp/ 2012 2013 School of Physical Sciences Department of Structural Molecular Science Department of Functional Molecular Science Department of Astronomical Science Department of Fusion Science Department of Space and Astronautical Science School of High Energy Accelerator Science Department

Kinosita Jr., Kazuhiko

11

http://www.soken.ac.jp/ School of Physical Sciences  

E-Print Network (OSTI)

20132013 20142014 & http://www.soken.ac.jp/ School of Physical Sciences Department of Structural Molecular Science Department of Functional Molecular Science Department of Astronomical Science Department of Fusion Science Department of Space and Astronautical Science School of High Energy Accelerator Science

Kinosita Jr., Kazuhiko

12

High Performance Computing School COMSC  

E-Print Network (OSTI)

High Performance Computing School COMSC This module aims to provide the students with fundamental knowledge and understanding of techniques associated with High Performance Computing and its practical' skills in analysing and evaluating High Performance Computing and will be structured around

Martin, Ralph R.

13

High schools that bridge the achievement gap  

E-Print Network (OSTI)

top priorities for your school this year? 25. How many yearsan administrator at your school (as of June 2006)? Thank youthe myth: High poverty schools exceeding expectations:

Hargrove, Michael S.

2007-01-01T23:59:59.000Z

14

High Performance Schools Policy  

Energy.gov (U.S. Department of Energy (DOE))

In July 2002, New Jerseyĺs governor signed Executive Order No. 24 requiring all new school designs to incorporate LEED Version 2.0 guidelines in order to achieve maximum energy efficiency and...

15

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Agenda Presentations Reference Materials Participants Organizing Committee Logistics Nuclear Physics (NP) Overview Published Reports Case Study FAQs NERSC HPC Achievement Awards...

16

Minnesota Regional Science Bowl for High School Students | U...  

Office of Science (SC) Website

Minnesota Regions Minnesota Regional Science Bowl for High School Students National Science Bowl (NSB) NSB Home About NSB High School High School Students High School Coaches...

17

Oil Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Oil Study Guide - High School Oil Study Guide - High School More Documents & Publications Oil Study Guide - Middle School Fossil Energy Today - First Quarter, 2012...

18

Coal Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide - High School Coal Study Guide - High School Coal Study Guide - High School More Documents & Publications Coal Study Guide - Middle School Coal Study Guide for...

19

Fossil Fuels Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Study Guide - High School Fossil Fuels Study Guide - High School Fossil Fuels Study Guide - High School More Documents & Publications Coal Study Guide for Elementary School...

20

Mira Loma High School and Hopkins Junior High School from California Win  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mira Loma High School and Hopkins Junior High School from Mira Loma High School and Hopkins Junior High School from California Win U.S. Department of Energy National Science Bowl Mira Loma High School and Hopkins Junior High School from California Win U.S. Department of Energy National Science Bowl May 4, 2009 - 12:00am Addthis WASHINGTON, DC - High school and middle school teams from California won the 2009 U.S. Department of Energy (DOE) National Science Bowl® today at the National Building Museum in Washington. Mira Loma High School from Sacramento beat Lexington High School from Lexington, Massachusetts in the high school national championship match. Hopkins Junior High School from Fremont, California beat Jonas Clarke Middle School from Lexington, Massachusetts in the middle school national championship match.

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

North Texas Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

North Texas Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School...

22

Research in High Energy Physics  

SciTech Connect

This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

Conway, John S.

2013-08-09T23:59:59.000Z

23

Physics Pedagogy and Assessment in Secondary Schools in the U.S.  

E-Print Network (OSTI)

The objective of this project is to compare the effectiveness of teaching styles used in high school physics classes and the methods used to assess them. We would like to determine those approaches to physics at the high schools that work and those that do not work for students from different demographics. We sent out a survey to high school physics teachers in the U.S. Midwest states, inquiring about student preparation, pedagogy in the classroom, assessment and professional development. We found that there are differences in the practices of physics teachers in all of these areas, depending on the school location, be it rural, suburban or urban. Our results enable us to report on the most common successful practices in physics courses for these demographic areas.

Ramsey, Gordon P; Haberkorn, David

2013-01-01T23:59:59.000Z

24

High School Co-op Program  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Co-op Program High School Co-op Program Point your career towards LANL: work with the best minds on the planet in an inclusive environment that is rich in intellectual...

25

High-temperature plasma physics  

SciTech Connect

Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

Furth, H.P.

1988-03-01T23:59:59.000Z

26

UTPA Regional High School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

Texas Regions UTPA Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High...

27

South Central Ohio Regional High School Science Bowl | U.S. DOE...  

Office of Science (SC) Website

South Central Ohio Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High...

28

Energy Design Guidelines for High Performance Schools: Hot and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around...

29

BPA Regional Science Bowl - High School Edition | U.S. DOE Office...  

Office of Science (SC) Website

Oregon Regions BPA Regional Science Bowl - High School Edition National Science Bowl (NSB) NSB Home About NSB High School High School Students High School Coaches High School...

30

Redding Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

California Regions Redding Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School...

31

Florida Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Florida Regions Florida Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals...

32

Margaretta High School | Open Energy Information  

Open Energy Info (EERE)

Margaretta High School Margaretta High School Jump to: navigation, search Name Margaretta High School Facility Margaretta High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Margaretta High School Energy Purchaser Margaretta High School Location Castalia OH Coordinates 41.39923794┬░, -82.80122995┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.39923794,"lon":-82.80122995,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Bellevue High School | Open Energy Information  

Open Energy Info (EERE)

Bellevue High School Bellevue High School Jump to: navigation, search Name Bellevue High School Facility Bellevue High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Bellevue High School Energy Purchaser Bellevue High School Location Bellevue WA Coordinates 41.28241024┬░, -82.84591019┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.28241024,"lon":-82.84591019,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Related Links on High-Performance Schools  

Energy.gov (U.S. Department of Energy (DOE))

Below are related links to resources for incorporating energy efficiency and renewable energy into building or renovating high-performance schools.

35

NIST Summer High School Intern Program  

Science Conference Proceedings (OSTI)

Summer High School Intern Program (SHIP). SHIP is a NIST-wide summer intern program for students who will have finished ...

2013-03-20T23:59:59.000Z

36

Educational Triage: A Comparative Study of Two High School Principals in Program Improvement Schools  

E-Print Network (OSTI)

D. (2009). State High School Exit Examiniations And NAEPManaging In the Middle: School Leaders and the Enactment ofJ. (2001). Investigating School Leadership Practice: A

Garrity, Kyle M.

2013-01-01T23:59:59.000Z

37

Oklahoma Center for High Energy Physics (OCHEP)  

SciTech Connect

The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma├?┬ó├?┬?├?┬?s impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging from the search for new phenomena at the Fermilab Tevatron and the CERN Large Hadron Collider to theoretical modeling, computer simulation, detector development and testing, and physics analysis. OCHEP faculty members participating on the D0 collaboration at the Fermilab Tevatron and on the ATLAS collaboration at the CERN LHC have made major impact on the Standard Model (SM) Higgs boson search, top quark studies, B physics studies, and measurements of Quantum Chromodynamics (QCD) phenomena. The OCHEP Grid computing facility consists of a large computer cluster which is playing a major role in data analysis and Monte Carlo productions for both the D0 and ATLAS experiments. Theoretical efforts are devoted to new ideas in Higgs bosons physics, extra dimensions, neutrino masses and oscillations, Grand Unified Theories, supersymmetric models, dark matter, and nonperturbative quantum field theory. Theory members are making major contributions to the understanding of phenomena being explored at the Tevatron and the LHC. They have proposed new models for Higgs bosons, and have suggested new signals for extra dimensions, and for the search of supersymmetric particles. During the seven year period when OCHEP was partially funded through the DOE EPSCoR implementation grant, OCHEP members published over 500 refereed journal articles and made over 200 invited presentations at major conferences. The Center is also involved in education and outreach activities by offering summer research programs for high school teachers and college students, and organizing summer workshops for high school teachers, sometimes coordinating with the Quarknet programs at OSU and OU. The details of the Center can be found in http://ochep.phy.okstate.edu.

S. Nandi; M.J. Strauss; J. Snow; F. Rizatdinova; B. Abbott; K. Babu; P. Gutierrez; C. Kao; A. Khanov; K.A. Milton; H. Neaman; H. Severini, P. Skubic

2012-02-29T23:59:59.000Z

38

High School | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

High School High School National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Print Text Size: A A A RSS Feeds FeedbackShare Page 2013 High School Teams 2013 High School National Teams The high school competition began in 1991 as the National Science Bowl (NSB) as a highly competitive science education and academic event among teams of high school students who compete in a fast-paced verbal forum to solve technical problems and answer questions in all branches of science

39

Wausau High School | Open Energy Information  

Open Energy Info (EERE)

Wausau High School Wausau High School Jump to: navigation, search Name Wausau High School Facility Wausau High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Wausau WI Coordinates 44.97944687┬░, -89.59666014┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.97944687,"lon":-89.59666014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

SUPPORT FOR HU CFRT SUMMER HIGH SCHOOL FUSION WORKSHOP  

SciTech Connect

Nine summer fusion science research workshops for minority and female high school students were conducted at the Hampton University Center for Fusion Research and Training from 1996 to 2005. Each workshop was of the duration of eight weeks. In all 35 high school students were mentored. The students presented 28 contributed papers at the annual meetings of the American Physical Society Division of Plasma Physics. These contributed papers were very well received by the plasma physics and fusion science research community. The students won a number of prestigious local, state, and national honors, awards, prizes, and scholarships. The notable among these are the two regional finalist positions in the 1999 Siemens-Westinghouse Science and Technology Competitions; 1st Place U.S. Army Award, 2006; 1st Place U.S. Naval Science Award, 2006; Yale Science and Engineering Association Best 11th Grade Project, 2006; Society of Physics Students Book Award, 2006; APS Corporate Minority Scholarship and others. This workshop program conducted by the HU CFRT has been an exemplary success, and served the minority and female students exceptionally fruitfully. The Summer High School Fusion Science Workshop is an immensely successful outreach activity conducted by the HU CFRT. In this workshop, we train, motivate, and provide high quality research experiences to young and talented high school scholars with emphasis on under-represented minorities and female students in fusion science and related areas. The purpose of this workshop is to expose minority and female students to the excitement of research in science at an early stage in their academic lives. It is our hope that this may lead the high school students to pursue higher education and careers in physical sciences, mathematics, and perhaps in fusion science. To our knowledge, this workshop is the first and only one to date, of fusion science for under-represented minorities and female high school students at an HBCU. The faculty researchers in the HU CFRT mentor the students during summers. Mentors spend a considerable amount of time and efforts in training, teaching, guiding and supervising research projects. The HU CFRT has so far conducted nine workshops during the summers of 1996-2000 and 2002-2005. The first workshop was conducted in summer 1996. Students for the workshop are chosen from a national pool of exceptionally talented high school rising seniors/juniors. To our knowledge, most of these students have gone on to prestigious universities such as Duke University, John Hopkins University, CalTech, UCLA, Hampton University, etc. after completing their high school. For instance, Tiffany Fisher, participant of the 1996 summer workshop completed her BS in Mathematics at Hampton University in May 2001. She then went on to Wake Forest University at Winston-Salem, North Carolina to pursue graduate studies. Anshul Haldipur, participant of the 1999 summer workshop, began his undergraduate studies at Duke University in 2000. Christina Nguyen and Ilissa Martinez, participants of the 2000 summer workshop, are pursuing their undergraduate degrees at the UCLA and Florida State University respectively. The organizing committee of the APS DPP annual meeting invited Dr. Punjabi to deliver an invited talk on training the next generation of fusion scientists and engineers at the 2005 APS DPP meeting in Denver, CO. The organizing committee distributed a special flier with the Bulletin to highlight this invited talk and another talk on education as well the expo. This has given wide publicity and recognition to our workshops and Hampton University. Prof. Punjabi's talk: 'LI2 2: Training the next generation of fusion scientists and engineers: summer high school fusion science workshop, Bull. Amer. Phys. Soc. 50, 221 (2005)' was very well-received. He talked about HU education and outreach initiative and the HU CFRT Summer High School Workshop. The audience had a considerable number of questions about our workshops and the High School to PhD Pipeline in fusion science. Professor William Mathews of

Alkesh Punjabi

2010-02-09T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SUPPORT FOR HU CFRT SUMMER HIGH SCHOOL FUSION WORKSHOP  

Science Conference Proceedings (OSTI)

Nine summer fusion science research workshops for minority and female high school students were conducted at the Hampton University Center for Fusion Research and Training from 1996 to 2005. Each workshop was of the duration of eight weeks. In all 35 high school students were mentored. The students presented 28 contributed papers at the annual meetings of the American Physical Society Division of Plasma Physics. These contributed papers were very well received by the plasma physics and fusion science research community. The students won a number of prestigious local, state, and national honors, awards, prizes, and scholarships. The notable among these are the two regional finalist positions in the 1999 Siemens-Westinghouse Science and Technology Competitions; 1st Place U.S. Army Award, 2006; 1st Place U.S. Naval Science Award, 2006; Yale Science and Engineering Association Best 11th Grade Project, 2006; Society of Physics Students Book Award, 2006; APS Corporate Minority Scholarship and others. This workshop program conducted by the HU CFRT has been an exemplary success, and served the minority and female students exceptionally fruitfully. The Summer High School Fusion Science Workshop is an immensely successful outreach activity conducted by the HU CFRT. In this workshop, we train, motivate, and provide high quality research experiences to young and talented high school scholars with emphasis on under-represented minorities and female students in fusion science and related areas. The purpose of this workshop is to expose minority and female students to the excitement of research in science at an early stage in their academic lives. It is our hope that this may lead the high school students to pursue higher education and careers in physical sciences, mathematics, and perhaps in fusion science. To our knowledge, this workshop is the first and only one to date, of fusion science for under-represented minorities and female high school students at an HBCU. The faculty researchers in the HU CFRT mentor the students during summers. Mentors spend a considerable amount of time and efforts in training, teaching, guiding and supervising research projects. The HU CFRT has so far conducted nine workshops during the summers of 1996-2000 and 2002-2005. The first workshop was conducted in summer 1996. Students for the workshop are chosen from a national pool of exceptionally talented high school rising seniors/juniors. To our knowledge, most of these students have gone on to prestigious universities such as Duke University, John Hopkins University, CalTech, UCLA, Hampton University, etc. after completing their high school. For instance, Tiffany Fisher, participant of the 1996 summer workshop completed her BS in Mathematics at Hampton University in May 2001. She then went on to Wake Forest University at Winston-Salem, North Carolina to pursue graduate studies. Anshul Haldipur, participant of the 1999 summer workshop, began his undergraduate studies at Duke University in 2000. Christina Nguyen and Ilissa Martinez, participants of the 2000 summer workshop, are pursuing their undergraduate degrees at the UCLA and Florida State University respectively. The organizing committee of the APS DPP annual meeting invited Dr. Punjabi to deliver an invited talk on training the next generation of fusion scientists and engineers at the 2005 APS DPP meeting in Denver, CO. The organizing committee distributed a special flier with the Bulletin to highlight this invited talk and another talk on education as well the expo. This has given wide publicity and recognition to our workshops and Hampton University. Prof. Punjabi's talk: 'LI2 2: Training the next generation of fusion scientists and engineers: summer high school fusion science workshop, Bull. Amer. Phys. Soc. 50, 221 (2005)' was very well-received. He talked about HU education and outreach initiative and the HU CFRT Summer High School Workshop. The audience had a considerable number of questions about our workshops and the High School to PhD Pipeline in fusion science. Professor William Mathews of

Alkesh Punjabi

2010-02-09T23:59:59.000Z

42

High Energy Physics from High Performance Computing  

E-Print Network (OSTI)

We discuss Quantum Chromodynamics calculations using the lattice regulator. The theory of the strong force is a cornerstone of the Standard Model of particle physics. We present USQCD collaboration results obtained on Argonne National Lab's Intrepid supercomputer that deepen our understanding of these fundamental theories of Nature and provide critical support to frontier particle physics experiments and phenomenology.

T. Blum

2009-08-06T23:59:59.000Z

43

Thomas Jefferson High School for Science & Technology National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

44

Mira Loma High School and Hopkins Junior High School from California...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lexington High School from Lexington, Massachusetts. Team members include: Jaeyoon Lee, Noah Arbesfeld, Joshua Leung, Christopher Teng, and Kyumin Lee and coaches Nicholas Gould...

45

Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts  

Science Conference Proceedings (OSTI)

This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

Not Available

2006-06-01T23:59:59.000Z

46

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Computing and Storage Requirements for High Energy Physics [for High Energy Physics Computational áand áStorage áfor High Energy Physics Computational áand áStorage á

Gerber, Richard A.

2011-01-01T23:59:59.000Z

47

High Energy Physics Research at Louisiana Tech  

SciTech Connect

The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D? experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

2013-06-28T23:59:59.000Z

48

PARTICIPATION IN HIGH ENERGY PHYSICS  

SciTech Connect

This grant funded experimental and theoretical activities in elementary particles physics at the Illinois Institute of Technology (IIT). The experiments in which IIT faculty collaborated included the Daya Bay Reactor Neutrino Experiment, the MINOS experiment, the Double Chooz experiment, and FNAL E871 - HyperCP experiment. Funds were used to support summer salary for faculty, salary for postdocs, and general support for graduate and undergraduate students. Funds were also used for travel expenses related to these projects and general supplies.

White, Christopher

2012-12-20T23:59:59.000Z

49

High energy physics - The large and the small  

Science Conference Proceedings (OSTI)

In this Sixth International School on Field Theory and Gravitation, I was invited to give this talk to the students and researchers of Field Theory mainly about LHC - The Large Hadron Collider and results. I will try to summarize the main daily life of the high energy physics and give an idea about the experiments and the expectations for the near future. I will comment the present results and the prospects to LHC/CMS.

Santoro, Alberto [Universidade do Estado do Rio de Janeiro (Brazil)

2012-09-24T23:59:59.000Z

50

Personalization Efforts and the Relationship to School Climate in Select Michigan High Schools.  

E-Print Network (OSTI)

??The American high school is on the verge of a reform movement like that seen in American middle schools throughout the early and mid-1990s. Inů (more)

Pilar, Karl A

2007-01-01T23:59:59.000Z

51

[Experimental and theoretical high energy physics program  

Science Conference Proceedings (OSTI)

Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

1993-04-01T23:59:59.000Z

52

Identity and the pursuit of school success understandings of intelligence and effort in three high schools  

E-Print Network (OSTI)

of California High Schools." www.csumentor.edu. Calsyn, R.America's Elite Boarding Schools. New York: Basic Books.of Violence in Inner-City Schools. Chicago: University of

Nunn, Lisa Michele

2009-01-01T23:59:59.000Z

53

NJ Regional Middle School Science Bowl | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

February 22, 2013, 8:00am February 22, 2013, 8:00am Science Education Lab-wide Event NJ Regional Middle School Science Bowl Teams of students are invited to participate in the Department of Energy's National Science Bowl Competition. Each year PPPL hosts the New Jersey Regional Science Bowl which decides which teams from the local area can continue onto the national competition in Washington, D.C. The Science Bowl is a double elimination contest with oral question and answer rounds in the fields of chemistry, biology, physics, astronomy and mathematics plus general and earth sciences. Questions are given in a toss-up with a bonus format. For more information, visit our Science Bowl website! Contact Information Website: NJ Regional Middle School Science Bowl Coordinator(s): Deedee Ortiz

54

Trends in experimental high-energy physics  

SciTech Connect

Data from a scan of papers in Physical Review Letters and Physical Review are used to demonstrate that American high-energy physicists show a pattern of accelerator and instrumentation usage characteristic of that expected from the logistic-substitution model of Marchetti and of Fischer and Pry.

Sanford, T.W.L.

1982-06-01T23:59:59.000Z

55

Elementary particle physics and high energy phenomena  

SciTech Connect

This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

1992-06-01T23:59:59.000Z

56

Calling Science Stars in Middle and High Schools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools November 10, 2010 - 10:03am Addthis 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Do you know some science whizzes in middle or high school? Because now is the time for 5-student teams to register for their region's Science Bowl competition. Students are quizzed, Jeopardy-style, on topics including astronomy, biology, chemistry, Earth science, general science, mathematics and physics

57

Calling Science Stars in Middle and High Schools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools November 10, 2010 - 10:03am Addthis 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Do you know some science whizzes in middle or high school? Because now is the time for 5-student teams to register for their region's Science Bowl competition. Students are quizzed, Jeopardy-style, on topics including astronomy, biology, chemistry, Earth science, general science, mathematics and physics

58

Energy Design Guidelines for High Performance Schools: Tropical Island Climates  

SciTech Connect

The Energy Design Guidelines for High Performance Schools--Tropical Island Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in tropical island climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

Not Available

2004-11-01T23:59:59.000Z

59

Microsoft Word - Parkersburg High School Claims 2013 WV Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Parkersburg High School Claims 2013 WV Science Bowl Regional Win Parkersburg High School demonstrated its academic prowess as it defeated 12 other teams to capture the 22 nd Annual...

60

NREL: Education Programs - National Science Bowl High School  

NLE Websites -- All DOE Office Websites (Extended Search)

National Science Bowl - High School A photo of a group of high school students on a stage holding a silver trophy and a blue and white banner that reads, "U.S. Department of Energy...

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

West Windsor-Plainsboro High School South wins regional Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

West Windsor-Plainsboro High School South wins regional Science Bowl at PPPL A dramatic ending to High School Bowl sends local team to nationals By Jeanne Jackson DeVoe February...

62

CNST High School Intern Parakh Jain Selected as Semifinalist ...  

Science Conference Proceedings (OSTI)

CNST High School Intern Parakh Jain Selected as Semifinalist in Intel Science Talent Search. For Immediate Release: January 31, 2011. ...

2011-01-31T23:59:59.000Z

63

High energy physics at UC Riverside  

SciTech Connect

This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

1997-07-01T23:59:59.000Z

64

Evaluation of the Safety Collaborative Human Relations Subcommittee in LAUSD District 7 High Schools  

E-Print Network (OSTI)

adolescent drug abuse and high school dropout thoughan intensive school-based social network developmentin Max Days Suspended HRS Schools Non-HRS Schools Difference

Jessie Kim; Takaaki Miyamoto; Yoko Nakashima-Myers; Maisa Youssef

2006-01-01T23:59:59.000Z

65

Category:Wind for Schools High School Curricula | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon ┬╗ Category:Wind for Schools High School Curricula Jump to: navigation, search Category containing Wind for Schools Portal High School curricula. To add a new entry, you can upload a new file. In the summary field, type in the following text to add the file to this category: [[Category:Wind for Schools Portal Curricula]][[Category:Wind for Schools High School Curricula]] Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Media in category "Wind for Schools High School Curricula" The following 22 files are in this category, out of 22 total. Air Density Lab.pdf Air Density Lab.pdf 240 KB Anemometer activity.docx Anemometer activity.docx 64 KB Blade design modification log.docx Blade design modificat...

66

NETL: 2010 SW PA High School Science Bowl  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Science Bowl High School Science Bowl The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), and the Community College of Allegheny County (CCAC), South Campus, would like to invite you to participate in one of the premier scientific events for high school students, the Southwestern Pennsylvania High School Science Bowl 2010 on February 20, 2010. This will be NETL's 19th year sponsoring the high school competition. There is a change this year in the registration process from past years, all teams who are registering to complete, must do so through the National Science Bowl website by January 7, 2010. For those who are not familiar with the Science Bowl here are some highlights: The competition is open to high school students (school, scouts, home school) from Southwestern Pennsylvania (SW PA). Complete eligibility requirements are located at the National Science Bowl website.

67

Seasons of Change: Communities for Equity v. Michigan High School Athletic Association  

E-Print Network (OSTI)

COMMUNITIES FOR EQUITY V. MICHIGAN HIGH SCHOOL ATHLETICin Communities for Equity v. Michigan High School AthleticCommunities for Equity v. Michigan High School Athletics.

Chaudhry, Neena K.; Greenberger, Marcia D.

2003-01-01T23:59:59.000Z

68

Publications on High-Performance Schools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schools Schools Publications on High-Performance Schools Learn about building high-performance schools that incorporate energy efficiency and renewable energy in publications from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL). Building Energy-Efficient Schools in New Orleans: Lessons Learned This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. Building Energy-Efficient Schools in New Orleans: Lessons Learned Summary This summary presents the lessons learned at five schools in New Orleans that were rebuilt using energy efficiency and renewable energy technologies after Hurricanes Katrina and Rita. Energy Design Guidelines for High Performance Schools: Hot and Humid

69

Heat Pump for High School Heat Recovery  

E-Print Network (OSTI)

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system has good economic property, can conserve energy and protects the environment. Therefore, there is a large potential for its development. In addition, three projects using this system are presented and contrasted, which indicate that a joint system that uses both the heat pump and heat exchanger to recycle waste heat is a preferable option.

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

70

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure Dear Student Applicant: To be eligible to participate in the Jefferson Lab High School Summer Honors Program, you must attend a local high school (within 60 miles of Jefferson Lab), be at least 16 years old by the start date of the program, be in good academic standing, and maintain at least a 3.3 grade point average. Students who are selected to participate in the Jefferson Lab High School Summer Honors Program are chosen on the basis of demonstrated skills and merit. Dependents of Jefferson Lab employees are not eligible for this program. The 2014 Jefferson Lab High School Summer Honors Program begins on June 23, 2014 and concludes on August 1, 2014. To apply to the Jefferson Lab High School Summer Honors Program, follow the

71

High-school studentsĺ motivation to learn science.  

E-Print Network (OSTI)

??What motivates high-school students to learn in their science courses? How is studentsĺ motivation related to other student characteristics such as gender, middle-school science background,ů (more)

Bryan, Robert Reese

2009-01-01T23:59:59.000Z

72

Designing High Performance Schools (CD-ROM)  

Science Conference Proceedings (OSTI)

The EnergySmart Schools Design Guidelines and Best Practices Manual were written as a part of the EnergySmart Schools suite of documents, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy. Written for school administrators, design teams, and architects and engineers, the documents are designed to help those who are responsible for designing or retrofitting schools, as well as their project managers. This manual will help design staff make informed decisions about energy and environmental issues important to the school systems and communities.

Not Available

2002-10-01T23:59:59.000Z

73

Institutionalizing Disparities in Education: A Case Study of Segregation in Wayne County, North Carolina High Schools  

E-Print Network (OSTI)

2010: High-poverty public schools. National Center forthe dropout crisis: Which high schools produce the nationĺsin North Carolinaĺs public school classrooms (Working papers

Joyner, Ann Moss; Marsh, Ben

2011-01-01T23:59:59.000Z

74

Critical database technologies for high energy physics  

SciTech Connect

A number of large-scale high energy physics experiments loom on the horizon, several of which will generate many petabytes of scientific data annually. A variety of exploratory projects are underway within the physics computing community to investigate approaches to managing the data. There are conflicting views of this massive data problem: (1) there is far too much data to manage effectively within a genuine database; (2) there is far too much data to manage effectively without a genuine database; and many people hold both views. The purpose of this paper is to begin a dialog between the computational physics and very large database community on such problems, and to simulate research in directions that will be of benefit to both groups. This paper will attempt to outline the nature and scope of these massive data problems, survey several of the approaches being explored by the physics community, and suggest areas in which high energy physicists hope to look to the database community for assistance.

Malon, D.M.; May, E.N.

1997-09-01T23:59:59.000Z

75

Support Vector Machines in High Energy Physics  

E-Print Network (OSTI)

This lecture will introduce the Support Vector algorithms for classification and regression. They are an application of the so called kernel trick, which allows the extension of a certain class of linear algorithms to the non linear case. The kernel trick will be introduced and in the context of structural risk minimization, large margin algorithms for classification and regression will be presented. Current applications in high energy physics will be discussed.

Anselm Vossen

2008-03-16T23:59:59.000Z

76

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME March 1st 2006 to May 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

77

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME December 1, 2006 ┬ş February 28, 2007...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

Massachusetts at Amherst, University of

78

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME June 1st 2006 to August 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

79

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME December 1st 2005 to February 28th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

80

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME September 1st 2006 to November 30th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Analysis of Power Quality Concerns at a County High School  

Science Conference Proceedings (OSTI)

This case study describes the findings from the site survey at a county high school and outlines recommended procedures for dealing with the new computer loads.

2003-12-31T23:59:59.000Z

82

The Impact of High School Curriculum on College Enrollment Rates.  

E-Print Network (OSTI)

??This study examines how the mandated curriculum, specifically, "rigorous" curriculum, is associated with the percentage of a high school's graduating class that chooses to enrollů (more)

Blosveren, Kate R.

83

NIST Summer High School Intern Program Selection Process  

Science Conference Proceedings (OSTI)

... One (1) brief resume which must include name, email, high school, GPA, and graduation date (Click here to see a sample resume.); ...

2013-06-09T23:59:59.000Z

84

HU CFRT Summer 1999 Fusion Science High School Workshop  

SciTech Connect

The 1999 HU CFRT Summer Fusion High School Workshop was conducted for eight weeks in the summer of 1999. The report is on this workshop.

Ali, H.

2000-07-01T23:59:59.000Z

85

NREL: News - Lakewood High School Wins Colorado Science Bowl  

NLE Websites -- All DOE Office Websites (Extended Search)

713 713 Lakewood High School Wins Colorado Science Bowl Lakewood School Heads to Washington D.C. to Challenge for National Title January 26, 2013 Students from Lakewood High School Team 1 won the Colorado High School Science Bowl today. They will go on to the 23rd National Science Bowl in Washington D.C., Apr. 25-29, where they will compete for the national title against more than 400 students from 70 high schools. The U.S. Department of Energy (DOE) began the Science Bowl tradition in 1991 as a way to encourage high school students to explore math and science. The Department of Energy's Golden Field Office once again was one of the major sponsors of this year's Colorado Science Bowl, along with DOE's National Renewable Energy Laboratory. Teams from across the state competed in the day-long competition at Dakota

86

High-Performance Schools: Affordable Green Design for K-12 Schools; Preprint  

Science Conference Proceedings (OSTI)

Schools in the United States spend $7.8 billion on energy each year-more than the cost of computers and textbooks combined, according to a 2003 report from the National Center for Education Statistics. The U.S. Department of Energy (DOE) estimates that these high utility bills could be reduced as much as 25% if schools adopt readily available high performance design principles and technologies. Accordingly, hundreds of K-12 schools across the country have made a commitment to improve the learning and teaching environment of schools while saving money and energy and protecting the environment. DOE and its public- and private-sector partners have developed Energy Design Guidelines for High Performance Schools, customized for nine climate zones in U.S. states and territories. These design guidelines provide information for school decision makers and design professionals on the advantages of energy efficiency and renewable energy designs and technologies. With such features as natural day lighting, efficient electric lights, water conservation, and renewable energy, schools in all types of climates are proving that school buildings, and the students and teachers who occupy them, are indeed high performers. This paper describes high performance schools from each of the nine climate zones associated with the Energy Design Guidelines. The nine case studies focus on the high performance design strategies implemented in each school, as well as the cost savings and benefits realized by students, faculty, the community, and the environment.

Plympton, P.; Brown, J.; Stevens, K.

2004-08-01T23:59:59.000Z

87

High Performance Green Schools Planning Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Green Schools Planning Grants High Performance Green Schools Planning Grants High Performance Green Schools Planning Grants < Back Eligibility Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Pennsylvania Program Type State Grant Program Rebate Amount Determined on a case-by-case basis Provider Governor's Green Government Council The Governor's Green Government Council of Pennsylvania provides an incentive for new schools to be built according to green building standards. High Performance Green Schools Planning Grants are designed to cover a portion of the "soft" costs of designing a green building that are

88

GEM applications outside high energy physics  

E-Print Network (OSTI)

From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

Pinto, Serge Duarte

2013-01-01T23:59:59.000Z

89

Emerging Computing Technologies in High Energy Physics  

E-Print Network (OSTI)

While in the early 90s High Energy Physics (HEP) lead the computing industry by establishing the HTTP protocol and the first web-servers, the long time-scale for planning and building modern HEP experiments has resulted in a generally slow adoption of emerging computing technologies which rapidly become commonplace in business and other scientific fields. I will overview some of the fundamental computing problems in HEP computing and then present the current state and future potential of employing new computing technologies in addressing these problems.

Amir Farbin

2009-10-19T23:59:59.000Z

90

High school computing teachers' beliefs and practices: A case study  

Science Conference Proceedings (OSTI)

The aim of this work is threefold. Firstly, an empirical study was designed with the aim of investigating the beliefs that High School Computing (HSC) teachers hold about: (a) their motivational orientation, self-efficacy, and self-expectations as Computing ... Keywords: High school computing teachers, Secondary education, Teacher beliefs and practices, Teacher professional development, Teaching/learning strategies

Maria Kordaki

2013-10-01T23:59:59.000Z

91

California Nonresident Tuition Exemption For Eligible California High School Graduates  

E-Print Network (OSTI)

California Nonresident Tuition Exemption For Eligible California High School Graduates (The law at the California Community Colleges, the University of California, and the California State University (all public colleges and universities in California). ┬Ě Requirements: o The student must have attended a high school

Ravikumar, B.

92

California Nonresident Tuition Exemption For Eligible California High School Graduates  

E-Print Network (OSTI)

California Nonresident Tuition Exemption For Eligible California High School Graduates (The law at the California Community Colleges, the California State University and the University of California (all public colleges and universities in California). ┬Ě Requirements: o The student must have attended a high school

de Lijser, Peter

93

Highlighting High Performance: Clearview Elementary School, Hanover, Pennsylvania  

DOE Green Energy (OSTI)

Case study on high performance building features of Clearview Elementary School in Hanover, Pennsylvania. Clearview Elementary School in Hanover, Pennsylvania, is filled with natural light, not only in classrooms but also in unexpected, and traditionally dark, places like stairwells and hallways. The result is enhanced learning. Recent scientific studies conducted by the California Board for Energy Efficiency, involving 21,000 students, show test scores were 15% to 26% higher in classrooms with daylighting. Clearview's ventilation system also helps students and teachers stay healthy, alert, and focused on learning. The school's superior learning environment comes with annual average energy savings of about 40% over a conventional school. For example, with so much daylight, the school requires about a third less energy for electric lighting than a typical school. The school's innovative geothermal heating and cooling system uses the constant temperature of the Earth to cool and heat the building. The building and landscape designs work together to enhance solar heating in the winter, summer cooling, and daylighting all year long. Students and teachers have the opportunity to learn about high-performance design by studying their own school. At Clearview, the Hanover Public School District has shown that designing a school to save energy is affordable. Even with its many innovative features, the school's $6.35 million price tag is just $150,000 higher than average for elementary schools in Pennsylvania. Projected annual energy cost savings of approximately $18,000 mean a payback in 9 years. Reasonable construction costs demonstrate that other school districts can build schools that conserve energy, protect natural resources, and provide the educational and health benefits that come with high-performance buildings.

Not Available

2002-08-01T23:59:59.000Z

94

High School Visits (WI, IL, MN and other states) Arranged in alpha order  

E-Print Network (OSTI)

High School 10/5/12 8:15 a.m. Black River Falls High School 9/21/12 9:00 a.m. Bollingbrook High School High School 10/16/12 12:00 p.m. Crystal Lake Central High School 10/15/12 9:40 a.m. Cuba City High

Saldin, Dilano

95

Ponderosa High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Ponderosa High School Wind Project Ponderosa High School Wind Project Jump to: navigation, search Name Ponderosa High School Wind Project Facility Ponderosa High School Sector Wind energy Facility Type Community Wind Location CO Number of Units 1 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 109112 References Wind Powering America[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

96

Thomas Jefferson High School for Science & Technology National Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Thomas Jefferson High School for Science & Technology National Science Bowl® Champion Thomas Jefferson High School for Science & Technology National Science Bowl® Champion May 2, 2005 - 12:40pm Addthis WASHINGTON, DC -- "The Incompleteness Theorem" was the answer to a question on mathematics that today clinched the 2005 National Science Bowl® championship for the Thomas Jefferson High School for Science & Technology team from Alexandria, Va. The team received its championship trophy after triumphing over 62 other regional team champions this weekend. The team members are: Logan Kearsley, Matthew Isakowitz, Sam Lederer, Lisa Marrone, Charlotte Seid and coach Sharon Baker. The team also won a research trip to Alaska, three Computer Based Laboratories and $1,000 for their school's science

97

Forest City High School Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Forest City High School Wind Farm Facility Forest City High School Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Forest City High School Developer Forest City High School Energy Purchaser Forest City Community School District Location Forest City IA Coordinates 43.266011┬░, -93.653378┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.266011,"lon":-93.653378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Frontiers in High-Energy Astroparticle Physics  

E-Print Network (OSTI)

With the discovery of evidence for neutrino mass, a vivid gamma ray sky at multi-TeV energies, and cosmic ray particles with unexpectedly high energies, astroparticle physics currently runs through an era of rapid progress and moving frontiers. The non-vanishing neutrino mass establishes one smooth component of dark matter which does not, however, supply a critical mass to the Universe. Other dark matter particles are likely to be very massive and should produce high-energy gamma rays, neutrinos, and protons in annihilations or decays. The search for exotic relics with new gamma ray telescopes, extensive air shower arrays, and underwater/-ice neutrino telescopes is a fascinating challenge, but requires to understand the astrophysical background radiations at high energies. Among the high-energy sources in the Universe, radio-loud active galactic nuclei seem to be the most powerful accounting for at least a sizable fraction of the extragalactic gamma ray flux. They could also supply the bulk of the observed cosmic rays at ultrahigh energies and produce interesting event rates in neutrino telescopes aiming at the kubic kilometer scale such as AMANDA and ANTARES. It is proposed that the extragalactic neutrino beam can be used to search for tau lepton appearance thus allowing for a proof of the neutrino oscillation hypothesis. Furthermore, a new method for probing the era of star formation at high redshifts using gamma rays is presented which requires new-generation gamma ray telescopes operating in the 10-100 GeV regime such as MAGIC and GLAST.

Karl Mannheim

1999-02-12T23:59:59.000Z

99

Cedarville Elementary & High School Space Heating Low Temperature  

Open Energy Info (EERE)

Cedarville Elementary & High School Space Heating Low Temperature Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Facility Cedarville Elementary & High School Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606┬░, -120.1732781┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

100

Lewistown High Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

Lewistown High Schools Wind Project Lewistown High Schools Wind Project Jump to: navigation, search Name Lewistown High Schools Wind Project Facility Lewistown High Schools Sector Wind energy Facility Type Community Wind Location MT Coordinates 47.054138┬░, -109.423325┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.054138,"lon":-109.423325,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Burlington High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Burlington High School Wind Project Facility Burlington High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 39.3088┬░, -102.282715┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3088,"lon":-102.282715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Avery County High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

County High School Wind Project County High School Wind Project Jump to: navigation, search Name Avery County High School Wind Project Facility Avery County High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.068371┬░, -81.918159┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.068371,"lon":-81.918159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

USD 393 Solomon High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Solomon High School Wind Project Solomon High School Wind Project Jump to: navigation, search Name USD 393 Solomon High School Wind Project Facility USD 393 Solomon High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.924103┬░, -97.369339┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.924103,"lon":-97.369339,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Nederland High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Nederland High School Wind Project Nederland High School Wind Project Jump to: navigation, search Name Nederland High School Wind Project Facility Nederland High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 39.953613┬░, -105.525124┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.953613,"lon":-105.525124,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

USD 376 Sterling High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name USD 376 Sterling High School Wind Project Facility USD 376 Sterling High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.216789┬░, -98.202492┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.216789,"lon":-98.202492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Pretty Prairie High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Pretty Prairie High School Wind Project Pretty Prairie High School Wind Project Jump to: navigation, search Name Pretty Prairie High School Wind Project Facility Pretty Prairie High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 37.78093┬░, -98.017822┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.78093,"lon":-98.017822,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Mt. Edgecumbe High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Edgecumbe High School Wind Project Edgecumbe High School Wind Project Jump to: navigation, search Name Mt. Edgecumbe High School Wind Project Facility Mt. Edgecumbe High School Sector Wind energy Facility Type Community Wind Location AK Coordinates 57.053928┬░, -135.356903┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.053928,"lon":-135.356903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Diller-Odell High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Diller-Odell High School Wind Project Diller-Odell High School Wind Project Jump to: navigation, search Name Diller-Odell High School Wind Project Facility Diller-Odell High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 40.054523┬░, -96.806374┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.054523,"lon":-96.806374,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Cotulla High School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Cotulla High School Space Heating Low Temperature Geothermal Facility Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility Facility Cotulla High School Sector Geothermal energy Type Space Heating Location Cotulla, Texas Coordinates 28.436934┬░, -99.2350322┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

110

Henley High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Henley High School Space Heating Low Temperature Geothermal Facility Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility Henley High School Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

111

Eudora High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Eudora High School Wind Project Eudora High School Wind Project Jump to: navigation, search Name Eudora High School Wind Project Facility Eudora High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.922672┬░, -95.097763┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.922672,"lon":-95.097763,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

USD 375 Circle High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name USD 375 Circle High School Wind Project Facility USD 375 Circle High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 37.794674┬░, -96.994576┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.794674,"lon":-96.994576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Alleghany High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Alleghany High School Wind Project Facility Alleghany High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.514774┬░, -81.124809┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.514774,"lon":-81.124809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Modoc High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Modoc High School Space Heating Low Temperature Geothermal Facility Modoc High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc High School Sector Geothermal energy Type Space Heating Location Alturas, California Coordinates 41.4871146┬░, -120.5424555┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

115

Loup City High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Loup City High School Wind Project Loup City High School Wind Project Jump to: navigation, search Name Loup City High School Wind Project Facility Loup City High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.283756┬░, -98.967415┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.283756,"lon":-98.967415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Shelley High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Shelley High School Wind Project Shelley High School Wind Project Jump to: navigation, search Name Shelley High School Wind Project Facility Shelley High School Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.3727┬░, -112.134071┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3727,"lon":-112.134071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

USD 345 Seaman High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Seaman High School Wind Project Seaman High School Wind Project Jump to: navigation, search Name USD 345 Seaman High School Wind Project Facility USD 345 Seaman High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.135315┬░, -95.66996┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.135315,"lon":-95.66996,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

High School Students Build Their Own Supercomputer (Almost) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Students Build Their Own Supercomputer (Almost) High School Students Build Their Own Supercomputer (Almost) High School Students Build Their Own Supercomputer (Almost) September 10, 2010 - 9:47am Addthis Eric Gedenk What are the key facts? Students built a computer cluster -- a group of computers communicating with one another to operate as a single machine -- out of Mac mini CPUs. For the third straight year, students and teachers from around Appalachia gathered at Oak Ridge National Laboratory (ORNL) this summer for an interactive training with some of the world's leading computing experts. The focal point of the training was a course called "Build a Supercomputer - Well Almost." And build they did. With guidance from ORNL staff, collaborators and interns, the high-school students went about building a

119

Concordia High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Concordia High School Wind Project Concordia High School Wind Project Jump to: navigation, search Name Concordia High School Wind Project Facility Concordia High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.566231┬░, -97.668411┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.566231,"lon":-97.668411,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Jefferson West High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Jefferson West High School Wind Project Facility Jefferson West High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.193382┬░, -95.560616┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.193382,"lon":-95.560616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

2010 DOE National Science Bowl« Photos - Mira Loma High School...  

Office of Science (SC) Website

FeedbackShare Page The Mira Loma High School team, from Sacramento, CA, works on the oil spill challenge at the National Science Bowl in Washington, DC. Left to right: Andrew...

122

EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students  

E-Print Network (OSTI)

EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students By Dick Erickson ┬ş Pleasant Activity ┬ş Testing Photovoltaic Cells ..........................5 Expected Observations: ........................................................................................................8 II. LAB ACTIVITY - TESTING PHOTOVOLTAIC CELLS ..................................9 BEFORE YOU START

Oregon, University of

123

Sandia National Laboratories Regional High School Science Bowl...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sandia National Laboratories Regional High School Science Bowl Print Text...

124

Local high school seniors receive Edward Teller science scholarships  

NLE Websites -- All DOE Office Websites (Extended Search)

3 For immediate release: 06052013 | NR-13-06-03 Local high school seniors receive Edward Teller science scholarships Linda A Lucchetti, LLNL, (925) 422-5815, lucchetti1@llnl.gov...

125

West Windsor-Plainsboro High School South wins regional Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

West Windsor-Plainsboro High School South wins regional Science Bowl at PPPL By Jeanne Jackson DeVoe February 25, 2013 Tweet Widget Facebook Like Google Plus One Next stop...

126

DOE New Jersey Regional High School Science Bowl! NO SCIENCE...  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2014 (All day) Science On Saturday DOE New Jersey Regional High School Science Bowl NO SCIENCE ON SATURDAY LECTURE DUE TO THE NEW JERSEY REGIONAL SCIENCE BOWL COMPETITION,...

127

Stratton Middle and High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Stratton Middle and High School Wind Project Stratton Middle and High School Wind Project Jump to: navigation, search Name Stratton Middle and High School Wind Project Facility Stratton Middle and High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 39.30444┬░, -102.601151┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.30444,"lon":-102.601151,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Ferndale High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Ferndale High School Wind Project Ferndale High School Wind Project Jump to: navigation, search Name Ferndale High School Wind Project Facility Ferndale High School Sector Wind energy Facility Type Community Wind Location WA Coordinates 48.852478┬░, -122.592613┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.852478,"lon":-122.592613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Mullen High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Mullen High School Wind Project Mullen High School Wind Project Jump to: navigation, search Name Mullen High School Wind Project Facility Mullen High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 42.045742┬░, -101.046158┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.045742,"lon":-101.046158,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

We Have a Winner - DC High School Regional Science Bowl Competition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday...

131

High Energy Physics Division, ANL Lattice QCD  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Physics Division, ANL Lattice QCD in extreme environments D. K. Sinclair (HEP, Argonne) J. B. Kogut (Physics, Illinois) D. Toublan (Physics, Illinois) 1 Lattice QCD Quantum chromodynamics(QCD) de- scribes Hadrons and their strong inter- actions. Hadrons consist of quarks held together by gluons. Lattice QCD is QCD on a 4-dimensional (space-time) lattice. Allows numerical simulation of the functional integrals which define this quantum field theory, and non-perturbative QCD calculations. Physics - properties of hadrons (masses, etc.), hadronic matrix elements (HEP), hadronic matter at finite temperature and/or densities (RHIC, early universe, neutron stars). 2 Computational Methods * Functional integral is mapped to the partition function for a classical sys- tem. Molecular-dynamics methods are used to calculate the observables for this classical system.

132

Large Scale Computing and Storage Requirements for High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

for High Energy Physics for High Energy Physics Accelerator Physics P. Spentzouris, Fermilab Motivation Accelerators enable many important applications, both in basic research and applied sciences Different machine attributes are emphasized for different applications * Different particle beams and operation principles * Different energies and intensities Accelerator science and technology objectives for all applications * Achieve higher energy and intensity, faster and cheaper machine design, more reliable operation a wide spectrum of requirements for very complex instruments. Assisting their design and operation requires an equally complex set of computational tools. High Energy Physics Priorities High energy frontier * Use high-energy colliders to discover new particles and

133

High Energy Physics Presentation Videos from the Twenty-second Physics in Collision Conference  

DOE Data Explorer (OSTI)

The Physics in Collision (PIC) series of conferences has been ongoing since the early 1980s. Meetings are held all over the world and attended by scientists on the leading edge of High Energy Physics (HEP) research. The twenty-second PIC conference was held 2002 in Stanford, California. It was sponsored and hosted by DOE, Stanford University, and SLAC. Twenty-seven video presentations take you to the sessions on Flavor Physics, Astro Particle Physics, QCD, Neutrino Physics, and Electroweak Physics. Access is also provided to the PowerPoint slides and a PDF paper or presentation associated with each video.

134

Task D, Participation in high energy physics  

Science Conference Proceedings (OSTI)

This grant was initiated in December of 1989. My request for DOE funds (July 7, 1989) listed three activities which would require support from DOE. These were communication of HEP and Basic Research activities via lectures, articles, TV, etc., science education activities and participation in E789, a fixed-target research on beauty physics at Fermilab. These activities are discussed in this report.

Lederman, L.M.

1990-09-01T23:59:59.000Z

135

High energy physics advisory panel`s subpanel on vision for the future of high-energy physics  

SciTech Connect

This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

1994-05-01T23:59:59.000Z

136

Nevada High School Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Nevada High School Wind Farm Nevada High School Wind Farm Jump to: navigation, search Name Nevada High School Wind Farm Facility Nevada High School Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Nevada High School Developer Minnesota Windpower Energy Purchaser Alliant/IES Utilities Location NV - Story County IA Coordinates 42.020791┬░, -93.435997┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.020791,"lon":-93.435997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

High energy physics research. Final technical report, 1957--1994  

SciTech Connect

This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

Williams, H.H.

1995-10-01T23:59:59.000Z

138

Trenches Under The Pipeline: The Educational Trajectories of Chicano Male Continuation High School Students  

E-Print Network (OSTI)

Trenches Under The Pipeline: The Educational Trajectories ofnavigate the educational pipeline, continuation high school

Malagon, Maria

2010-01-01T23:59:59.000Z

139

High School Regionals | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Regionals Regionals National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School High School Regionals Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Team Registration For more information, please visit the High School Coach page. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

140

Electron Linacs for High Energy Physics  

Science Conference Proceedings (OSTI)

The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

Wilson, Perry B.; /SLAC

2011-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Rigby High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Rigby High School Wind Project Rigby High School Wind Project Facility Rigby High School Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.667439┬░, -111.940163┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.667439,"lon":-111.940163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Watauga High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Watauga High School Wind Project Watauga High School Wind Project Facility Watauga High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.199196┬░, -81.674736┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.199196,"lon":-81.674736,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Southeastern visits local high school | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeastern visits local high school Southeastern visits local high school Southeastern visits local high school May 10, 2013 - 11:54am Addthis Southeastern employee, Dale Jett, uses a power system mockup to explain how power is distributed to homes. Southeastern employee, Dale Jett, uses a power system mockup to explain how power is distributed to homes. Southeastern employee, Sonya Hulme, describes the Power Marketing Administations and the ares that each one supports. Southeastern employee, Sonya Hulme, describes the Power Marketing Administations and the ares that each one supports. Southeastern's Assistant Administrator for Finance and Marketing, Virgil Hobbs, describes the 22 different hydroelectric projects in Southeastern's region. Southeastern's Assistant Administrator for Finance and Marketing, Virgil

144

Walsh High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Walsh High School Wind Project Walsh High School Wind Project Facility Walsh High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 37.385723┬░, -102.285591┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.385723,"lon":-102.285591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Skyline High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Skyline High School Wind Project Skyline High School Wind Project Facility Skyline High School Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.486801┬░, -112.065613┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.486801,"lon":-112.065613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

High School Students Engage EM Program, Teach Classmates about Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Students Engage EM Program, Teach Classmates about High School Students Engage EM Program, Teach Classmates about Nuclear Cleanup High School Students Engage EM Program, Teach Classmates about Nuclear Cleanup May 22, 2012 - 12:00pm Addthis NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB. NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB. McMaster, left, and Sakalla were presented plaques by Dave Adler, DOE-EM liason to ORSSAB, in recognition for their service to ORSSAB. McMaster, left, and Sakalla were presented plaques by Dave Adler, DOE-EM liason to ORSSAB, in recognition for their service to ORSSAB. NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB.

147

School of Applied & Engineering Physics -Undergraduate Post Graduate Activities Detail & History  

E-Print Network (OSTI)

undergraduate students from the Class of 2008. Historical data is provided to allow for comparison of activity and sal- ary trends. Number Graduated: 47 Number Responded: 44 Response Rate: 94% 2008 Graduate and Professional Schools Cornell University PhD Applied Physics Cornell University PhD Electrical & Computer

Lipson, Michal

148

Machine learning for event selection in high energy physics  

Science Conference Proceedings (OSTI)

The field of high energy physics aims to discover the underlying structure of matter by searching for and studying exotic particles, such as the top quark and Higgs boson, produced in collisions at modern accelerators. Since such accelerators are extraordinarily ... Keywords: Event selection, Evolutionary computation, High energy physics, Machine learning, Neural networks

Shimon Whiteson; Daniel Whiteson

2009-12-01T23:59:59.000Z

149

Illinois and Other States High School visits, college fairs and presentations Spring 2011  

E-Print Network (OSTI)

High School Crystal Lake 4/5/11 1:15 pm Crystal Lake Central High School Crystal Lake 4/5/11 2:15 pm Crystal Lake South High School Crystal Lake 4/6/11 10:00 am Hinsdale High School Hinsdale 4/6/11 2:15 pm Oak Park / River Forest High School Oak Park 4/6/11 6:00 pm Lyons Township College Night LaGrange 4

Saldin, Dilano

150

New Jersey Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Jersey Regions » New Jersey Regional High Jersey Regions » New Jersey Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New Jersey Regions New Jersey Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Please Note: All slots for the High School Science Bowl have been filled. Any team registering after December 17, 2013, will be placed on the wait-list. Should a school drop out of the competition, a new team will be

151

JPL Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

JPL Regional High School JPL Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions JPL Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kimberly Lievense Email: Klievense@jpl.nasa.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 1

152

Alabama High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alabama Regions » Alabama High School Science Alabama Regions » Alabama High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Alabama Regions Alabama High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Pamela Quintana Email: pquintana@asms.net Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 20 Maximum Number of Teams per School: 3

153

PNNL Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

PNNL Regional High School PNNL Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington Regions PNNL Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Beth Perry Email: bethperry13@msn.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 3

154

Pantex Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Pantex Regional High School Pantex Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions Pantex Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Debra Halliday Email: dhallida@pantex.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 40 Maximum Number of Teams per School: 3

155

BPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Oregon Regions » BPA Regional High School Oregon Regions » BPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Oregon Regions BPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Christy Adams Email: cfadams@bpa.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 64 Maximum Number of Teams per School: 3

156

Kansas Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Kansas Regions » Kansas Regional High School Kansas Regions » Kansas Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Kansas Regions Kansas Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Myra Everette Email: meverette@kcp.com Regional Event Information Date: February 1, 2014 Maximum Number of Teams: 32 Maximum Number of Teams per School: 3

157

STEP Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

STEP Regional High School STEP Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions STEP Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Peter Macchia Email: mrmacchia@gmail.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 16 Maximum Number of Teams per School: 3

158

Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts  

DOE Green Energy (OSTI)

This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

Not Available

2006-10-01T23:59:59.000Z

159

WIND DATA REPORT Old Rochester Regional High School  

E-Print Network (OSTI)

Average Wind Speeds October 12, 2006 Renewable Energy Research Laboratory Page 19 UniversityWIND DATA REPORT Old Rochester Regional High School Mattapoisett, Massachusetts June 1, 2005 version 2.0 Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive

Massachusetts at Amherst, University of

160

High-Precision Computation and Mathematical Physics  

SciTech Connect

At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

Bailey, David H.; Borwein, Jonathan M.

2008-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Budget projections 1988, 1989, and 1990 for research in high energy nuclear physics  

Science Conference Proceedings (OSTI)

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. Professor R.F. Schwitters is currently chairman of this committee. The committee members are: G.W. Brandenburg, S. Geer, R.J. Glauber, K. Kinoshita, R. Nickerson, F.M. Pipkin, J. Rohlf, C. Rubbia, R.F. Schwitters, M. Shapiro, K. Strauch, R. Vanelli, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, C. Rubbia, R.F. Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg (Associate Director, High Energy Physics Laboratory) administers the High Energy Physics Laboratory and is in charge of the Computer Facility. Professor Rubbia is currently on leave of absence and will leave Harvard on December 31, 1988 to become the Director General of CERN. A reduced UA1 effort will remain at Harvard after Professor Rubbia`s departure. Harvard is planning to make one or two senior faculty appointments in experimental high energy physics sometime in 1988-89. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting 15 research students. In addition, undergraduate students work in projects at HEPL during the academic year and over summers. Many of these students have gone on to graduate school studying physics at Harvard and elsewhere.

Not Available

1988-04-01T23:59:59.000Z

162

Atomic physics with highly charged ions  

SciTech Connect

This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

Richard, P.

1991-08-01T23:59:59.000Z

163

Microsoft Word - Snohomish_High_School_Field_Improvements_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robert Thompson - TERR Snohomish Robert Thompson - TERR Snohomish Project Manager Proposed Action: Snohomish High School Field Improvements Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.9 Grant or denial of requests for multiple use of a transmission facility rights-of-way, such as grazing permits and crossing agreements, including electric lines, water lines... Location: Snohomish, Snohomish County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to grant the Snohomish School District's request to install a new synthetic turf with a subsurface drainage system on an existing sports field. The field is on fee owned property leased to the Snohomish School District and is adjacent to BPA's Snohomosh Substation.

164

National Best Practices Manual for Building High Performance Schools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Manual Best Practices Manual For Building High Performance Schools Acknowledgements The U.S. Department of Energy would like to acknowledge the help and assistance of the EnergySmart Schools team and the many authors and reviewers that provided input and feedback during the process of developing the report. Those include: US Department of Energy: David Hansen, Daniel Sze; EnergySmart Schools Team: Larry Schoff; US Environmental Protection Agency: Melissa Payne, Bob Thompson; Lawrence Berkeley National Laboratory: Rick Diamond; National Renewable Energy Laboratory: Ren Anderson, Zahra Chaudhry, Jeff Clarke, Kyra Epstein, Tony Jimenez, Patty Kappaz, Patricia Plympton, Byron Stafford, Marcy Stone, John Thornton, Paul Torcellini; Oak Ridge National Laboratory: Andre Desjarlais,

165

QSM GRANT RECIPIENTS 2011 -2012 Aimee Cowell Fifth Ward Junior High School St. Tammany  

E-Print Network (OSTI)

Orleans Cody Cole East Beauregard High School Beauregard Conchetta Tillery Live Oak Manor Jefferson Connie Conner DeRidder High School Beauregard Connie Myers Many Jr. High Sabine #12;QSM GRANT

Harms, Kyle E.

166

UIC Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

UIC Regional High School UIC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Illinois Regions UIC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anita Ramirez Email: chicago.regional.science.bowl@gmail.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24

167

Alaska Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alaska Regions » Alaska Regional High School Alaska Regions » Alaska Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Alaska Regions Alaska Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Cindy Carl Email: WellnessWorks_4u2@yahoo.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 12

168

SHPE NYC Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

SHPE NYC Regional High SHPE NYC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions SHPE NYC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dora Maria Abreu Email: Doramaria@gmail.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 20 Maximum Number of Teams per School: 3

169

LADWP Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

LADWP Regional High LADWP Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions LADWP Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Walter Zeisl Email: walter.zeisl@ladwp.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 55 Maximum Number of Teams per School: 2

170

Kern County Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Kern County Regional High Kern County Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Kern County Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Thomas Meyer Email: tmeyer@csub.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 32 Maximum Number of Teams per School: 3

171

Sacramento Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Sacramento Regional High Sacramento Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sacramento Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anita Wiley Email: wiley@wapa.gov Regional Event Information Date: March 1, 2014 Maximum Number of Teams: 26 Maximum Number of Teams per School: 2

172

Modesto Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Modesto Regional High Modesto Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Modesto Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Mike Zweifel Email: mikez@mid.org Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 2

173

UTPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

UTPA Regional High School UTPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions UTPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Joel Ruiz Email: jruiz@utpa.edu Additional Contacts: Name: Jessica Salinas Email: lopezj@utpa.edu Name: Karen Dorado Email: kadorado@utpa.edu Regional Event Information

174

High School Rules, Forms, and Resources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Resources Resources National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Make Your Own National Science Bowl® Competition Buzzer Sample Questions Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals High School Rules, Forms, and Resources Print Text Size: A A A RSS Feeds FeedbackShare Page The following are resources for high school teams of the National Science Bowl. 2014 Official National Science Bowl Rules .pdf file (517KB)

175

Nevada Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Nevada Regions » Nevada Regional High School Nevada Regions » Nevada Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Nevada Regions Nevada Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Daniel Burns Email: burnsdb@nv.doe.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 32

176

NOBCChE Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

NOBCChE Regional High NOBCChE Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions NOBCChE Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Thomas Whitt Email: twhitt523@gmail.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 10 Maximum Number of Teams per School: 2

177

Maine Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Maine Regions » Maine Regional High School Maine Regions » Maine Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Maine Regions Maine Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Rob Sanford Email: rsanford@usm.maine.edu Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 20

178

San Antonio Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

San Antonio Regional High San Antonio Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions San Antonio Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Bobby Blount Email: bb@mitre.org Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 35 Maximum Number of Teams per School: 3

179

Indiana Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Indiana Regions » Indiana Regional High School Indiana Regions » Indiana Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Indiana Regions Indiana Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Bala Dhungana Email: bkrishnad@hotmail.com Regional Event Information Date: Saturday, March 8, 2014 Maximum Number of Teams: 10

180

Iowa Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Iowa Regions » Iowa Regional High School Iowa Regions » Iowa Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Iowa Regions Iowa Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Steve Karsjen Email: karsjen@ameslab.gov Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 40

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Redding Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Redding Regional High Redding Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Redding Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Matt Madison Email: mmadison@reupower.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 28 Maximum Number of Teams per School: 3

182

Montana Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Montana Regions » Montana Regional High School Montana Regions » Montana Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Montana Regions Montana Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Josie Daggett Email: daggett@wapa.gov Regional Event Information Date: Saturday, March 8, 2014 Maximum Number of Teams: 30

183

SLAC Regional High School Science Bowl| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

SLAC Regional High School SLAC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions SLAC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Farah Rahbar Email: farah.rahbar@slac.stanford.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 18

184

Georgia Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Georgia Regions » Georgia Regional High School Georgia Regions » Georgia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Georgia Regions Georgia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Donna Mullenax Email: donna.mullenax@armstrong.edu Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 72

185

Florida Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Florida Regions » Florida Regional High School Florida Regions » Florida Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Florida Regions Florida Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Michael Chiang Email: michaelraymondchiang@gmail.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 24

186

High School Coaches | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coaches Coaches National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School High School Coaches Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome High School Coaches Team Registrations Are Open Please click "High School Regionals" on the menu to the left. Click To Return To Your Registration External link Listed below is all the information you need to lead a team to success in the National Science Bowl. Be sure to read the rules and other very helpful

187

SAT Mathematics standardized test manual for high-performing high school students  

E-Print Network (OSTI)

Most high school standardized testing preparation materials are geared towards the average student scoring in the 5 0 th percentile. There are few resources available to lower and higher scoring students who have different ...

Vasquez, Phillip A

2009-01-01T23:59:59.000Z

188

**NO SCIENCE ON SATURDAY TODAY** NJ Regional High School Science Bowl |  

NLE Websites -- All DOE Office Websites (Extended Search)

February 23, 2013, 8:00am February 23, 2013, 8:00am Science Education Lab-wide Event **NO SCIENCE ON SATURDAY TODAY** NJ Regional High School Science Bowl Teams of students are invited to participate in the Department of Energy's National Science Bowl Competition. Each year PPPL hosts the New Jersey Regional Science Bowl which decides which teams from the local area can continue onto the national competition in Washington, D.C. The Science Bowl is a double elimination contest with oral question and answer rounds in the fields of chemistry, biology, physics, astronomy and mathematics plus general and earth sciences. Questions are given in a toss-up with a bonus format. For more information, visit our Science Bowl website! Contact Information Website: NJ Regional High School Science Bowl

189

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Inertial confinement and high density Inertial confinement and high density plasma physics Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's Inertial Confinement Fusion program is conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the OMEGA Laser Facility at the University of Rochester, and the Trident Laser Facility at Los Alamos. Within inertial confinement fusion and the high energy density area, Los Alamos specializes in hohlraum energetics, symmetry tuning, warm dense matter physics, and hydrodynamics in ultra-extreme conditions. When complete, this research will enable the exploitation of fusion as an energy resource and will enable advanced research in stockpile stewardship

190

Equipment Availability in the Home and School Environment: Its Relationship on Physical Activity in Children  

E-Print Network (OSTI)

Over the past three decades, instances of childhood obesity have tripled in the United States and are recognized as a serious public concern that requires action. Environmental factors have been identified as potential influences on the physical activity behavior of children; availability of equipment is one of these factors. The overall purpose of this dissertation was to examine availability of equipment as an environmental influence on a childĺs physical activity behavior. The two environments where children spend the major of time, home and school, were evaluated for equipment availability and increased physical activity. Three studies were conducted to complete this purpose. In Manuscript 1, a systematic literature review was conducted, which included electronic databases as well as reference lists and authorĺs works as relevant. Only studies which measured home and school environments as factors in physical activity of children ages 5-12 were included. The review was conducted to determine the theoretical framework most used. Of the thirty-one studies reviewed, 67% showed little or no theoretical framework driving the study. Theoretical framework and models based on theory is needed to advance the field and this body of literature. In Manuscript 2, a systematic literature review was conducted which included electronic databases as well as reference lists and authorĺs works as relevant. Only studies which measured home and school environments and highlighted the availability of equipment as a factor in physical activity of children ages 5-12 were included. Of the twenty-one studies reviewed, only 14% clearly defined ôequipmentö and how it was measured for the particular study. With multiple definitions and confusion when comparing studies, standardization in this area is desperately needed. Manuscript 3, analyzed data from a larger study, NIH, Student Wellness Assessment and Advocacy Project (SWAAP), conducted in Waller county Texas, 2010. The results demonstrated which pieces of equipment in the home environment were available and the percentage of use. School environments were measured for availability of equipment and facilities. A linear regression analysis determined that being of Hispanic race was significant in less physical activity in an average seven day period. Given that children spend up to 80% of their day at home or school, influences in these two environments are extremely important to the development of physical activity behaviors. Future studies involving the availability and use of equipment should clearly define the type of equipment used or observed. In cases of intervention studies type and amount need to be clearly defined as well as assessment of its effect on physical activity in children. Several studies have been conducted for the specific age group of 6-12 year olds and their physical activity and multiple factors involved availability of opportunities for physical activity. Of those factors equipment availability has been shown to influence physical activity as well as not influence these opportunities. Standardization of the term equipment and how it is measured will allow researchers to have a clearer picture of the role that equipment plays in opportunities for children to be physically active.

Montandon, Kristi

2012-12-01T23:59:59.000Z

191

DOE's NJ HIGH SCHOOL SCIENCE BOWL« | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

192

Energy Design Guidelines for High Performance Schools: Arctic and Subarctic Climates  

Science Conference Proceedings (OSTI)

The Energy Design Guidelines for High Performance Schools--Arctic and Subarctic Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in arctic and subarctic climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

Not Available

2004-11-01T23:59:59.000Z

193

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

194

DC Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DC Regions » DC Regional High DC Regions » DC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington DC Regions DC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Jamie T. Scipio Email: jamie.scipio@hq.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 12

195

San Diego Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

San Diego Regional High San Diego Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions San Diego Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Ronald Lewis Email: sandiegonobcche@earthlink.net Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 24

196

Tennessee Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Tennessee Regions » Tennessee Regional High Tennessee Regions » Tennessee Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Tennessee Regions Tennessee Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Martha Hammond Email: Martha.Hammond@orau.org Additional Contact: Name: Marolyn Randolph Email: Marolyn.Randolph@orau.org

197

SWPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Pennsylvania Regions » SWPA Regional High Pennsylvania Regions » SWPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Pennsylvania Regions SWPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Lilas Soukup Email: lilas.soukup@netl.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 48

198

North Texas Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

North Texas Regional High North Texas Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions North Texas Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Rommel Alonzo Email: rommel.alonzo@mavs.uta.edu Regional Event Information Date: Saturday, February 15, 2014 Maximum Number of Teams: 12

199

Wisconsin Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Wisconsin Regions » Wisconsin Regional High Wisconsin Regions » Wisconsin Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Wisconsin Regions Wisconsin Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Julie Schuster Email: schuster@msoe.edu Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 20

200

Michigan Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Michigan Regions » Michigan Regional High Michigan Regions » Michigan Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Michigan Regions Michigan Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Andrew Chubb Email: achubb@svsu.edu Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 15

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Maryland Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Maryland Regions » Maryland Regional High Maryland Regions » Maryland Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Maryland Regions Maryland Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Michael Mehalick Email: michael.mehalick@montgomerycollege.edu Regional Event Information Date: Saturday, January 18, 2014

202

West Kentucky Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Kentucky Regions » West Kentucky Regional High Kentucky Regions » West Kentucky Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Kentucky Regions West Kentucky Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Robert Smith Email: robert.smith@lex.doe.gov Additional Contact: Name: Donald Dihel Email: don.dihel@lex.doe.gov

203

Nebraska Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Nebraska Regions » Nebraska Regional High Nebraska Regions » Nebraska Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Nebraska Regions Nebraska Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Todd Young Email: toyoung1@wsc.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 40

204

Poudre High School From Fort Collins , Colorado Wins U.S. Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poudre High School From Fort Collins , Colorado Wins U.S. Poudre High School From Fort Collins , Colorado Wins U.S. Department of Energy National Science Bowl® Poudre High School From Fort Collins , Colorado Wins U.S. Department of Energy National Science Bowl® April 30, 2007 - 12:45pm Addthis WASHINGTON, DC - Poudre High School from Fort Collins, Colorado won the 2007 U.S. Department of Energy (DOE) National Science Bowl® for high school students today at the National 4-H Youth Conference Center. Poudre High School beat State College Area High School from State College, Pennsylvania in the national championship match. Teams representing 64 high schools from across the United States competed in the National Finals. Members of the winning team include Patrick Chaffey, Sam Elder, Winston Gao, Sam Sun, Logan Wright and coach Jack Lundt. The team won a science

205

Virginia Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Virginia Regions » Virginia Regional High Virginia Regions » Virginia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Virginia Regions Virginia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Jan Tyler Email: tyler@jlab.org Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 23

206

Missouri Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Missouri Regions » Missouri Regional High Missouri Regions » Missouri Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Missouri Regions Missouri Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Myra Everette Email: meverette@kcp.com Regional Event Information Date: February 1, 2014 Maximum Number of Teams: 32

207

Colorado Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Colorado Region » Colorado Regional High Colorado Region » Colorado Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Colorado Region Colorado Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Linda Lung Email: linda.lung@nrel.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 48

208

Oklahoma Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Oklahoma Regions » Oklahoma Regional High Oklahoma Regions » Oklahoma Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Oklahoma Regions Oklahoma Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Gail Bliss Email: gnbliss@carnegienet.net Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 32

209

Minnesota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Minnesota Regions » Minnesota Regional High Minnesota Regions » Minnesota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Minnesota Regions Minnesota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Barbara Donoho Email: bdonoho@mnmas.org Regional Event Information Date: Friday, January 24, 2014 Maximum Number of Teams: 32

210

Poudre High School From Fort Collins , Colorado Wins U.S. Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poudre High School From Fort Collins , Colorado Wins U.S. Department of Energy National Science Bowl Poudre High School From Fort Collins , Colorado Wins U.S. Department of...

211

University of California Nonresident Tuition Exemption Application and Affidavit for Eligible California High School Graduates  

E-Print Network (OSTI)

University of California Nonresident Tuition Exemption Application and Affidavit for Eligible California High School Graduates Instructions Application Affidavit Declaration of True and Accurate of California Nonresident Tuition Exemption for Eligible California High School Graduates and declare that ALL

Grether, Gregory

212

Experimental And Theoretical High Energy Physics Research At UCLA  

SciTech Connect

This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERNĺs Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

Cousins, Robert D. [University of California Los Angeles] [University of California Los Angeles

2013-07-22T23:59:59.000Z

213

Energy recovery linacs in high-energy and nuclear physics  

Science Conference Proceedings (OSTI)

Energy Recovery Linacs (ERL) have significant potential uses in High Energy Physics and Nuclear Physics. We describe some of the potential applications which are under development by our laboratories in this area and the technology issues that are associated with these applications. The applications that we discuss are electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for some of these applications are high currents of polarized electrons, high-charge and high-current electron beams and the associated issues of High-Order Modes. The advantages of ERLs for these applications are numerous and will be outlined in the text. It is worth noting that some of these advantages are the high-brightness of the ERL beams and their relative immunity to beam-beam disturbances.

I. Ben-Zvi; Ya. Derbenev; V. Litvinenko; L. Merminga

2005-03-01T23:59:59.000Z

214

Physics at a High-Luminosity LHC with ATLAS  

E-Print Network (OSTI)

The physics accessible at the high-luminosity phase of the LHC extends well beyond that of the earlier LHC program. This white paper, submitted as input to the Snowmass Community Planning Study 2013, contains preliminary studies of selected topics, spanning from Higgs boson studies to new particle searches and rare top quark decays. They illustrate the substantially enhanced physics reach with an increased integrated luminosity of 3000 fb-1, and motivate the planned upgrades of the LHC machine and ATLAS detector.

ATLAS Collaboration

2013-07-27T23:59:59.000Z

215

Inland Northwest Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Inland Northwest Regional Inland Northwest Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington Regions Inland Northwest Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kaye Kamp Email: kkamp@whitworth.edu Regional Event Information Date: February 8, 2014 Maximum Number of Teams: 42

216

West Virginia Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

West Virginia Regions » West Virginia Regional West Virginia Regions » West Virginia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov West Virginia Regions West Virginia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kirk Gerdes Email: Kirk.Gerdes@NETL.DOE.GOV Regional Event Information Date: Saturday, February 1, 2014

217

U.S. Virgin Islands Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

U.S. Virgin Islands Regions » U.S. Virgin U.S. Virgin Islands Regions » U.S. Virgin Islands High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov U.S. Virgin Islands Regions U.S. Virgin Islands High School Regional Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Gerald Walters Email: gwalters@sttj.k12.vi Regional Event Information

218

Savannah River Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Carolina Regions » Savannah River Carolina Regions » Savannah River Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov South Carolina Regions Savannah River Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kim Mitchell Email: kimberly.mitchell@srs.gov Regional Event Information Date: Saturday, March 1, 2014

219

Puerto Rico Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Puerto Rico Regions » Puerto Rico Regional Puerto Rico Regions » Puerto Rico Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Puerto Rico Regions Puerto Rico Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Julienne Sanchez Email: julienne.sanchez@upr.edu Regional Event Information Date: Saturday, February 22, 2014

220

Brookhaven National Lab Regional High School Science Bowl | U.S. DOE Office  

Office of Science (SC) Website

Brookhaven National Lab Brookhaven National Lab Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Brookhaven National Lab Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Catherine Osiecki Email: Osiecki@bnl.gov Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 20

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mississippi Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Mississippi Regions » Mississippi Regional Mississippi Regions » Mississippi Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Mississippi Regions Mississippi Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dionne Fortenberry Email: dfortenberry@as.muw.edu Regional Event Information Date: Friday, January 31, 2014

222

Northeast Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Massachusetts Regions » Northeast Regional Massachusetts Regions » Northeast Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Massachusetts Regions Northeast Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kevin McLaughlin Email: kjm@engr.uconn.edu Regional Event Information Date: Saturday, March 1, 2014

223

Capital District Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Capital District Regional Capital District Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Capital District Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dominic Fulgieri Email: dominic.fulgieri@unnpp.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 18

224

South Dakota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Daktoa Regions » South Dakota Regional Daktoa Regions » South Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov South Daktoa Regions South Dakota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Lesley Berg Email: lberg@wapa.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 32

225

Connecticut Regional High School Science Bowl| U.S. DOE Office of Science  

Office of Science (SC) Website

Connecticut Regions » Connecticut Regional Connecticut Regions » Connecticut Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Connecticut Regions Connecticut Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kevin McLaughlin Email: kjm@engr.uconn.edu Regional Event Information Date: Saturday, March 1, 2014

226

Sandia National Laboratories Regional High School Science Bowl | U.S. DOE  

Office of Science (SC) Website

Sandia National Sandia National Laboratories Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sandia National Laboratories Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Timothy Shepodd Email: tjshepo@sandia.gov Regional Event Information Date: January 25, 2014

227

South Central Ohio Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

South Central Ohio Regional South Central Ohio Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Ohio Regions South Central Ohio Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Greg Simonton Email: greg.simonton@lex.doe.gov Regional Event Information Date: Friday, March 7, 2014 Maximum Number of Teams: 32

228

Greater Cincinnati Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Greater Cincinnati Regional Greater Cincinnati Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Ohio Regions Greater Cincinnati Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Betsy Volk Email: betsy.volk@emcbc.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24

229

North Dakota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Dakota Regions » North Dakota Regional Dakota Regions » North Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov North Dakota Regions North Dakota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Tom Atkinson Phone: 701-221-4559 Email: tatkinson@wapa.gov Regional Event Information Date: Saturday, February 8, 2014

230

North Carolina Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Carolina Regions » North Carolina Carolina Regions » North Carolina Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov North Carolina Regions North Carolina Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Fredrick Johnson Email: fjohnson@nccu.edu Regional Event Information Date: Saturday, January 25, 2014

231

Theoretical Research in Cosmology, High-Energy Physics and String Theory  

Science Conference Proceedings (OSTI)

The research was in the area of Theoretical Physics: Cosmology, High-Energy Physics and String Theory

Ng, Y Jack; Dolan, Louise; Mersini-Houghton, Laura; Frampton, Paul

2013-07-29T23:59:59.000Z

232

Computational thinking for the sciences: a three day workshop for high school science teachers  

Science Conference Proceedings (OSTI)

This paper describes "Computational Thinking for the Sciences", a 3-day summer workshop for high school science and mathematics teachers. Our workshop emphasizes the deep connections between the natural sciences, mathematics and computer science through ... Keywords: computational thinking, high school mathematics, high school science, k-12 outreach

Sheikh Iqbal Ahamed; Dennis Brylow; Rong Ge; Praveen Madiraju; Stephen J. Merrill; Craig A. Struble; James P. Early

2010-03-01T23:59:59.000Z

233

High school students' preconceptions and conceptions about Tropical Storm Allison  

E-Print Network (OSTI)

Today many people with no personal experience of living through a tropical storm reside in coastal regions in harm's way. There is a need to educate this population about storm risks. One good venue for this purpose is the public school system. Science educators have concluded it is important to establish a knowledge base about the various ways students think and learn in the classroom in order to design appropriate and effective instructional materials. There is also a need to fill the gap in hazards research about students' preconceptions and conceptions about these events. The purpose of this research study is to determine high school students' preconceptions and conceptions about tropical storms and the damage they do to coastal communities. This study used Lee's (1999) research study on Hurricane Andrew as a model and augments Lee's results. In-depth interviews, a survey, and class discussions with high school students living in Houston, Texas provided the data. The students, representing a wide variety of ethnic backgrounds, vary in their preconceptions and conceptions about tropical storms. The results of the data show conceptions students developed after personal experiences with Tropical Storm Allison formed most of the preconceptions they have regarding their scientific knowledge about tropical storms. Overall, students' scientific knowledge about tropical storms is poor.

Belknap, Julia

2003-01-01T23:59:59.000Z

234

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Print Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

235

Selected Practices and Characteristics of Highly Effective Elementary Schools.  

E-Print Network (OSTI)

?? The federal government, through NCLB legislation, has provided target proficiency goals schools will be accountable to meet. Missouri public elementary schools use these targetů (more)

Lauritson, George Allen

2013-01-01T23:59:59.000Z

236

An Experimental and Theoretical High Energy Physics Program  

Science Conference Proceedings (OSTI)

The Purdue High Energy Physics Group conducts research in experimental and theoretical elementary particle physics and experimental high energy astrophysics. Our goals, which we share with high energy physics colleagues around the world, are to understand at the most fundamental level the nature of matter, energy, space and time, and in order to explain the birth, evolution and fate of the Universe. The experiments in which we are currently involved are: CDF, CLEO-c, CMS, LSST, and VERITAS. We have been instrumental in establishing two major in-house facilities: The Purdue Particle Physics Microstructure Detector Facility (P3MD) in 1995 and the CMS Tier-2 center in 2005. The research efforts of the theory group span phenomenological and theoretical aspects of the Standard Model as well as many of its possible extensions. Recent work includes phenomenological consequences of supersymmetric models, string theory and applications of gauge/gravity duality, the cosmological implications of massive gravitons, and the physics of extra dimensions.

Shipsey, Ian

2012-07-31T23:59:59.000Z

237

Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Santa Monica High School From Santa Monica, Calif. Wins U.S. Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of Energy National Science Bowl® Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of Energy National Science Bowl® May 5, 2008 - 11:30am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Santa Monica High School from Santa Monica, Calif. is the winner of the 2008 DOE National Science Bowl®. Santa Monica High School beat Mira Loma High School from Sacramento, Calif. in the championship match today at the National Building Museum in Washington, DC. Teams representing 67 high schools from across the United States competed in the National Finals. "I congratulate all of the students who competed in this year's U.S. Department of Energy National Science Bowl," U.S. Secretary of Energy

238

We Have a Winner - DC High School Regional Science Bowl Competition Held  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

We Have a Winner - DC High School Regional Science Bowl Competition We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday February 11, 2013 - 10:30am Addthis We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday Annie Whatley Annie Whatley Deputy Director, Office of Minority Economic Impact As part of the National Science Bowl, more than 9,500 high school students take place in 70 high school regional competitions around the United States and Puerto Rico. The winners of these regions advance to the National Science Bowl competition held every April in Chevy Chase, Maryland. On Saturday, February 9, the Office of Economic Impact and Diversity hosted the Washington, D.C. High School Regional Science Bowl competition at Cesar

239

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

e-prints - see the 'hep' sections CERN Document Server Over a million records on high-energy physics (HEP) from CERN INSPIRE HEP papers updated daily (a collaboration of CERN,...

240

Effects of computer-assisted instruction on performance of senior high school biology students in Ghana  

Science Conference Proceedings (OSTI)

This study investigated the comparative efficiency of computer-assisted instruction (CAI) and conventional teaching method in biology on senior high school students. A science class was selected in each of two randomly selected schools. The pretest-posttest ... Keywords: Achievement, Cell cycle, Computer-assisted instruction, Conventional approach, ICT and senior high school

K. A. Owusu; K. A. Monney; J. Y. Appiah; E. M. Wilmot

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High School Research at Jefferson Lab - The Setup and Monitoring of a  

NLE Websites -- All DOE Office Websites (Extended Search)

12 GeV Safety Systems 12 GeV Safety Systems Previous Project (12 GeV Safety Systems) High School Research Main Index Next Project (Computational Physics) Computational Physics The Setup and Monitoring of a Honeypot at Jefferson Lab A honeypot is software that emulates an operating system and therefore can be used in many projects that should not be tested on a computer that could lose data. For my project it was put onto the network unprotected to see what hackers would do to it. This way we can research what the new or common methods of hacking are. Also, the honeypot does not install any of the malicious software, yet it saves a copy for further analysis. This allows Systems Security to see what bug the program exploits and the information found gives them the ability to fix the issue before hackers

242

Modular safety interlock system for high energy physics experiments  

Science Conference Proceedings (OSTI)

A frequent problem in electronics systems for high energy physics experiments is to provide protection for personnel and equipment. Interlock systems are typically designed as an afterthought and as a result, the working environment around complex experiments with many independent high voltages or hazardous gas subsystems, and many different kinds of people involved, can be particularly dangerous. A set of modular hardware has been designed which makes possible a standardized, intergrated, hierarchical system's approach and which can be easily tailored to custom requirements.

Kieffer, J.; Golceff, B.V.

1980-10-01T23:59:59.000Z

243

High School Academic Competition - Round Robin | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Round Robin Round Robin National Science Bowl® (NSB) NSB Home About High School Middle School Attending National Event Volunteers 2013 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2013 Competition Results High School Academic Competition - Round Robin Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome to the National Science Bowl Score Center! Looking for Round Robin Updates? Click on the division to go straight to the bracket - otherwise, scroll down the page and browse all the scores.

244

High School Academic Competition - Double Elimination | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

Double Double Elimination National Science Bowl® (NSB) NSB Home About High School Middle School Attending National Event Volunteers 2013 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2013 Competition Results High School Academic Competition - Double Elimination Print Text Size: A A A RSS Feeds FeedbackShare Page No-Loss Bracket .pdf file (45KB)(Final Results) Challengers' Bracket .pdf file (42KB) (Final Results) Last modified: 4/29/2013 11:56:04 AM

245

High Energy Density Physics and Exotic Acceleration Schemes  

Science Conference Proceedings (OSTI)

The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.

Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

2005-09-27T23:59:59.000Z

246

Future high precision experiments and new physics beyond Standard Model  

SciTech Connect

High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

Luo, Mingxing.

1993-01-01T23:59:59.000Z

247

Future high precision experiments and new physics beyond Standard Model  

SciTech Connect

High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

Luo, Mingxing

1993-04-01T23:59:59.000Z

248

Computing trends using graphic processor in high energy physics  

E-Print Network (OSTI)

One of the main challenges in Heavy Energy Physics is to make fast analysis of high amount of experimental and simulated data. At LHC-CERN one p-p event is approximate 1 Mb in size. The time taken to analyze the data and obtain fast results depends on high computational power. The main advantage of using GPU(Graphic Processor Unit) programming over traditional CPU one is that graphical cards bring a lot of computing power at a very low price. Today a huge number of application(scientific, financial etc) began to be ported or developed for GPU, including Monte Carlo tools or data analysis tools for High Energy Physics. In this paper, we'll present current status and trends in HEP using GPU.

Niculescu, Mihai

2011-01-01T23:59:59.000Z

249

Computing trends using graphic processor in high energy physics  

E-Print Network (OSTI)

One of the main challenges in Heavy Energy Physics is to make fast analysis of high amount of experimental and simulated data. At LHC-CERN one p-p event is approximate 1 Mb in size. The time taken to analyze the data and obtain fast results depends on high computational power. The main advantage of using GPU(Graphic Processor Unit) programming over traditional CPU one is that graphical cards bring a lot of computing power at a very low price. Today a huge number of application(scientific, financial etc) began to be ported or developed for GPU, including Monte Carlo tools or data analysis tools for High Energy Physics. In this paper, we'll present current status and trends in HEP using GPU.

Mihai Niculescu; Sorin-Ion Zgura

2011-06-30T23:59:59.000Z

250

The impact of school facilities on student achievement, attendance, behavior, completion rate and teacher turnover rate in selected Texas high schools  

E-Print Network (OSTI)

The purpose of this study was to explore the possible relationship between school facility conditions and school outcomes such as student academic achievement, attendance, discipline, completion rate and teacher turnover rate. School facility condition for the participating schools was determined by the Total Learning Environment Assessment (TLEA) as completed by the principal or principal's designee on high school campuses in Texas with enrollments between 1,000 and 2000 and economically disadvantaged enrollments less than 40%. Each school in the study population was organized by grades nine through twelve. Data for achievement, attendance, discipline, completion rate and teacher turnover rate were collected through the Public Education Information Management System (PEIMS) managed by the Texas Education Agency. Student achievement, attendance, discipline, completion rate and teacher turnover rate and their relation to school facilities were investigated using multiple regression models to compare sections and subsections of the TLEA with each of the five dependent variables. Major research findings of this study included the following: first, student achievement, attendance and completion rate measures were not found to be statistically significant in relation to school facility conditions as measured by the TLEA at the 0.05 level; second, discipline, or behavior, was found to be significantly related to the TLEA. This indicates that the subsections of the TLEA could be used to predict discipline factors for schools in the study population; third, teacher turnover rate was found to be related to the TLEA subsections of Specialized Learning Space and Support Space, with the correlation to Support Space being indirect. Literature from prior studies infers that relationships do exist between all five of the study's dependent variables. However, this study only yielded significant findings in the areas of student discipline and teacher turnover. The researchers recommendations based upon this study include the following: administrators and designers should take into account factors such as interior environment and academic learning space when planning schools to positively impact student discipline; school design and construction should focus on specialized learning spaces and other academic areas more than administrative support spaces when striving to increase teacher satisfaction with physical working conditions.

McGowen, Robert Scott

2007-12-01T23:59:59.000Z

251

The impact of school facilities on student achievement, attendance, behavior, completion rate and teacher turnover rate in selected Texas high schools  

E-Print Network (OSTI)

The purpose of this study was to explore the possible relationship between school facility conditions and school outcomes such as student academic achievement, attendance, discipline, completion rate and teacher turnover rate. School facility condition for the participating schools was determined by the Total Learning Environment Assessment (TLEA) as completed by the principal or principalĺs designee on high school campuses in Texas with enrollments between 1,000 and 2000 and economically disadvantaged enrollments less than 40%. Each school in the study population was organized by grades nine through twelve. Data for achievement, attendance, discipline, completion rate and teacher turnover rate were collected through the Public Education Information Management System (PEIMS) managed by the Texas Education Agency. Student achievement, attendance, discipline, completion rate and teacher turnover rate and their relation to school facilities were investigated using multiple regression models to compare sections and subsections of the TLEA with each of the five dependent variables. Major research findings of this study included the following: first, student achievement, attendance and completion rate measures were not found to be statistically significant in relation to school facility conditions as measured by the TLEA at the 0.05 level; second, discipline, or behavior, was found to be significantly related to the TLEA. This indicates that the subsections of the TLEA could be used to predict discipline factors for schools in the study population; third, teacher turnover rate was found to be related to the TLEA subsections of Specialized Learning Space and Support Space, with the correlation to Support Space being indirect. Literature from prior studies infers that relationships do exist between all five of the studyĺs dependent variables. However, this study only yielded significant findings in the areas of student discipline and teacher turnover. The researchers recommendations based upon this study include the following: administrators and designers should take into account factors such as interior environment and academic learning space when planning schools to positively impact student discipline; school design and construction should focus on specialized learning spaces and other academic areas more than administrative support spaces when striving to increase teacher satisfaction with physical working conditions.

McGowen, Robert Scott

2007-12-01T23:59:59.000Z

252

Pulsed power drivers for ICF and high energy density physics  

SciTech Connect

Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates {approximately}500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed {approximately}15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

1995-12-31T23:59:59.000Z

253

Nuclear Physics Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion in the Sun Quark Matter 2004 Teacher Workshop - There are a number of presentations at a high school level which show the field of high energy nuclear physics - the search...

254

Determining teachersĺ behaviors concerning the NCTM standards in low and high performing rural high schools in Kansas.  

E-Print Network (OSTI)

??This study was designed to investigate teaching practices of mathematics teachers in rural high schools in Kansas in the context of the NCTM Principles andů (more)

Young, Lanee

2007-01-01T23:59:59.000Z

255

National Best Practices Manual for Building High Performance Schools  

Energy.gov (U.S. Department of Energy (DOE))

The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy.

256

ARGONNE NATIONAL LABORATORY HIGH ENERGY PHYSICS ARGONNE NATIONAL  

NLE Websites -- All DOE Office Websites (Extended Search)

HIGH ENERGY PHYSICS HIGH ENERGY PHYSICS ARGONNE NATIONAL LABORATORY Y. CHO DEC 2 01985 LS-45 INTRA-LABORATORY MEMO December 20, 1985 TO: Y. Cho HEP FROM: w. praeg(~ ETP SUBJECT: Frequency Response of Storage Ring Magnets, Eddy Current Shielding of Vacuum Chamber It is planned to use feedback to correction coils on ring magnets to reduce beam motion at frequencies of 120 Hz or less. The magnet cores, made from 1.5 mm thick laminations of 1010 steel, will readily carry flux of ~ 400 Hz. However, due to eddy currents, the aluminum vacuum chamber will attenuate verticle ac fields above 8 Hz and horizontal fields above 25 Hz. Eddy currents will also cause phase shifts between the field generated by the correction coils, Bo' and the field inside the vacuum

257

Cost forecasts: Euyropean International High-Energy Physics facilities - Million Swiss Francs at 1966 prices  

E-Print Network (OSTI)

Cost forecasts: Euyropean International High-Energy Physics facilities - Million Swiss Francs at 1966 prices

ECFA meeting

1966-01-01T23:59:59.000Z

258

from Savannah River Nuclear Solutions, LLC NEWS Area High School Teams Compete during DOE's National Science  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Teams Compete during DOE's National Science High School Teams Compete during DOE's National Science Bowl® Regional Championship: Lakeside and Evans High School Finish Second and Third - Dorman Wins AIKEN, S.C. - Feb. 25, 2013 - Using a format similar to the television show "Jeopardy," America's next generation of scientists and engineers put their knowledge to the test at the University of South Carolina Aiken during the DOE National Science Bowl regional compe- tition this past weekend. High School teams from across South Carolina and the greater Augusta, Ga. area relied on their collective knowledge as they participated in one of the coun- try's largest science tournaments. This regional competition, managed by Savannah River Nuclear Solutions, LLC (SRNS), hosted 120 high school students from 12 high schools. It is the only educational event

259

Benchmarks for Transition: Do St. Louis High Schools Promote Graduates That Can Make the Transition to Higher Education?.  

E-Print Network (OSTI)

?? Are St. Louis area high schools designed to create graduates that are prepared to enter schools of higher education, or are their graduation requirementsů (more)

Harrman, Kevin

2011-01-01T23:59:59.000Z

260

Colorado High School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

National Renewable Energy Laboratory Address: Dakota Ridge High School; 13399 W. Coal Mine Ave; Littleton, CO 80127 Regional Date: January 26, 2013 Fee: NA Regional...

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High School | ScienceLab, Education Resources from the U.S. Department...  

Office of Scientific and Technical Information (OSTI)

GLOBE Steps to a Successful Student Research Paper Jefferson Lab Student Zone National Energy Research Scientific Computing Center National Science Bowl High School...

262

Girls in Computer Science: a Female Only Introduction Class in High School .  

E-Print Network (OSTI)

??This study examined the impact of an all girlsĺ classroom environment in a high school introductory computer science class on the studentĺs attitudes towards computerů (more)

Drobnis, Ann W.

2010-01-01T23:59:59.000Z

263

2010 DOE National Science Bowl┬« Photos - Little Rock Central High School  

Office of Science (SC) Website

Little Rock Central High School Little Rock Central High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Little Rock Central High School Print Text Size: A A A RSS Feeds FeedbackShare Page Little Rock Central High School students from Little Rock, AR tour the

264

2010 DOE National Science Bowl┬« Photos - Lexington High School | U.S.  

Office of Science (SC) Website

Lexington High School Lexington High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Lexington High School Print Text Size: A A A RSS Feeds FeedbackShare Page Lexington High School from Lexington, MA. competes in the academic

265

2010 DOE National Science Bowl┬« Photos - Montgomery Blair High School |  

Office of Science (SC) Website

Montgomery Blair High School Montgomery Blair High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Montgomery Blair High School Print Text Size: A A A RSS Feeds FeedbackShare Page Secretary of Energy Steven Chu and the Montgomery Blair High School Science

266

2010 DOE National Science Bowl┬« Photos - Onate High School | U.S. DOE  

Office of Science (SC) Website

Onate High School Onate High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Onate High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Onate High School team from Las Cruces, NM stands before the Apollo

267

2010 DOE National Science Bowl┬« Photos - Palo Alto High School | U.S.  

Office of Science (SC) Website

Palo Alto High School Palo Alto High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Palo Alto High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Palo Alto High School at the Smithsonian Air and Space Museum in

268

2010 DOE National Science Bowl┬« Photos - North Hollywood High School |  

Office of Science (SC) Website

North Hollywood High School North Hollywood High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - North Hollywood High School Print Text Size: A A A RSS Feeds FeedbackShare Page The North Hollywood High School team from North Hollywood, CA competes in

269

2010 DOE National Science Bowl┬« Photos - LaFayette High School | U.S.  

Office of Science (SC) Website

LaFayette High School LaFayette High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - LaFayette High School Print Text Size: A A A RSS Feeds FeedbackShare Page The LaFayette High School team tours the National Mall in Washington, DC on

270

Past High School National Science Bowl Winners (1991 - 2012) | U.S. DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

Winners » Past High School National Science Bowl Winners » Past High School National Science Bowl Winners (1991 - 2012) National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Past National Science Bowl Winners Past High School National Science Bowl Winners (1991 - 2012) Print Text Size: A A A RSS Feeds FeedbackShare Page Year Winning High School Teams

271

2010 DOE National Science Bowl┬« Photos - Vigil I. Grissom High School |  

Office of Science (SC) Website

Vigil I. Grissom High School Vigil I. Grissom High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Vigil I. Grissom High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Vigil I. Grissom High School team, from Huntsville, AL, tours the

272

2010 DOE National Science Bowl┬« Photos - George Walton High School |  

Office of Science (SC) Website

George Walton High School George Walton High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - George Walton High School Print Text Size: A A A RSS Feeds FeedbackShare Page Secretary of Energy Steven Chu and the George Walton High School Science

273

2010 DOE National Science Bowl┬« Photos - Shasta High School | U.S. DOE  

Office of Science (SC) Website

Shasta High School Shasta High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Shasta High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Shasta High School team, from Redding, CA, at work on a challenge at

274

2010 DOE National Science Bowl┬« Photos - Campbell High School | U.S. DOE  

Office of Science (SC) Website

Campbell High School Campbell High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Campbell High School Print Text Size: A A A RSS Feeds FeedbackShare Page Campbell High School team members, from Gillette, WY, work on a challenge

275

2010 DOE National Science Bowl┬« Photos - Farmingdale High School | U.S.  

Office of Science (SC) Website

Farmingdale High School Farmingdale High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Farmingdale High School Print Text Size: A A A RSS Feeds FeedbackShare Page Farmingdale High School students from Farmingdale, NY take part in the

276

State-of-the-State of Texas Retention of High School Science Teachers  

E-Print Network (OSTI)

Concerns about turnover of highly qualified science teachers have pervaded education stakeholder discussions for several years. Yet little is known about where are we in retaining high science teachers in Texas public schools. The three empirical studies included in this dissertation used mixed research methods to explore data collected by the Policy Research Initiative in Science Education (PRISE) Research Group during the 2007-2010 school years. The first study examined mobility patterns and hiring patterns of high school science teachers after two school years. I used descriptive statistical analyses to investigate relationships between teacher-level variables (i.e., teacher type, age, ethnicity, and gender) and school-level variables (i.e., school size and minority student enrollment proportion) with respect to movement out and into Texas schools. Findings revealed variations in mobility patterns of science teachers, based on size and minority student enrollment proportion of the schools in which they worked. Hiring patterns revealed that schools typically hired young, novice White female teachers regardless of school size or minority student enrollment proportion. The second study explored the relationships between schoolsĺ retention strategies and retention challenges with schoolsĺ science teacher retention rates, respectively. I used multiple regression and descriptive statistical analyses to investigate the relationships between study variables. While regression models predicting science teacher retention were not remarkable, descriptive statistical analyses revealed notable relationships between several school-level variables and school retention status. The third study investigated relationships among three variables: school retention strategies, science teacher job satisfaction, and science teacher mobility. Multilevel analyses were used to investigate relationships between two-level variables. Findings revealed no relationships of significance between school retention strategies or teacher job satisfaction with teacher mobility. However, interactions between predictor variables indicated that satisfied science teachers were more likely to remain at schools that expressed and showed appreciation for teachers than to leave the profession. Findings from these studies were used to make state-, district-, and school-level policy recommendations for high school science teachers that included: (a) tailoring recruitment and retention supports to meet the needs of underrepresented teacher populations leading science classrooms, (b) recognizing schools that successfully retain science teachers, and (c) providing professional development for high school principals to assist with the design of strategic plans to improve job satisfaction and retention of teachers.

Spikes, Sara Elizabeth

2011-08-01T23:59:59.000Z

277

Physical and mechanical metallurgy of high purity Nb accelerator cavities.  

Science Conference Proceedings (OSTI)

In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

Wright, N. T.; Bieler, T. R.; Pourgoghart , F.; Compton, C.; Hartwig, K. T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; Skoug, E.; Balachandran, S.; Ice, G. E.; Liu, W.; Michigan State Univ.; Texas A & M Univ.; ORNL

2010-01-01T23:59:59.000Z

278

Brookhaven National Lab Regional High School Science Bowl | U...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

279

National Best Practices Manual for Building High Performance Schools (Revised)  

Science Conference Proceedings (OSTI)

The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy. Written specifically for architects and engineers, The Best Practices Manual is designed to help those who are responsible for designing or retrofitting schools, as well as their project managers. This manual will help design staff make informed decisions about energy and environmental issues important to the school systems and communities.

Not Available

2007-10-01T23:59:59.000Z

280

Newport High School Retrofit of Heating and Cooling Systems with...  

Open Energy Info (EERE)

technology. - Provide jobs, and reduce requirements of funds for the capital budget of the School District, and thus give relief to taxpayers in this economically...

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

State College Area High School From State College, PA Wins DOE's National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

College Area High School From State College, PA Wins DOE's College Area High School From State College, PA Wins DOE's National Science Bowl® State College Area High School From State College, PA Wins DOE's National Science Bowl® May 1, 2006 - 10:34am Addthis WASHINGTON , DC - State College Area High School from State College, Pennsylvania, today won the Department of Energy's (DOE) National Science Bowl®. Teams representing 65 schools from across the United States competed in this "Science Jeopardy" competition, which concluded this afternoon. Members of the winning team include Jason Ma, Ylaine Gerardin, Barry Liu, Galen Lynch, Francois Greer and coach, Julie Gittings. This team won a research trip to France and $1,000 for their school's science department. The answer that clinched the championship was in response to an earth

282

Atomic physics with highly charged ions. Progress report  

SciTech Connect

The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

Richard, P.

1994-08-01T23:59:59.000Z

283

Operational Radiation Protection in High-Energy Physics Accelerators  

SciTech Connect

An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

2012-04-03T23:59:59.000Z

284

A Study of Prevention and Retention Strategies for Successful Urban Secondary High School Hispanic Students  

E-Print Network (OSTI)

Hispanic high school students have a dropout rate that ranges from 35 percent to 55 percent depending on what type of report you may be referencing. Add rates for all high school students. Hispanic youth endure the challenges of language barriers, single parent households, working to help their family, or fighting off gang involvement in their communities to graduate from high school. The purpose of this case study is to address the urban Hispanic dropout problem through an examination of strategies perceived as successful by Hispanic graduates. In order to narrow the scope, the researcher focused on the strategies suggested by the National Dropout Prevention Center. The researcher posed two questions: 1.) To what extent did students perceive that these fifteen identified strategies influenced their decision to remain in school and graduate? and 2.) What other positive influences beyond the identified strategies were credited by at-risk students and staff as contributing factors to their graduation? The study examined eight former Hispanic high school students who successfully completed high school and four of their teachers. The strategies that this study group perceived as most effective are discussed and policy implications are described. The findings stated students did not find a single path that lead to graduation, although the three highest ranked strategies were community collaboration, alternative schooling, and active learning. The conclusions one can make is that family involvement and school partnerships are very important to the outcome of Hispanic high school studentsĺ graduation success.

Lopez, Roberto I

2013-05-01T23:59:59.000Z

285

High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices  

DOE Green Energy (OSTI)

Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

2005-01-01T23:59:59.000Z

286

High energy physics program at Texas A M University  

Science Conference Proceedings (OSTI)

The Texas A M high energy physics program has achieved significant mile-stones in each of its research initiatives. We are participating in two major operating experiments, CDF and MACRO; the development of two new detector technologies, liquid scintillating fiber calorimetry and knife-edge chambers; and two SSC detector proposals, SDC and TEXAS/EMPACT. We have developed prototypes of a liquid-scintillator fiber calorimeter system, in which internally reflecting channels are imbedded in a lead matrix and filled with liquid scintillator. This approach combines the performance features of fiber calorimetry and the radiation hardness of liquid scintillator, and is being developed for forward calorimetry in TEXAS/EMPACT. A new element in this program is the inclusion of a theoretical high energy physics research program being carried out by D. Nanopoulos and C. Pope. D. Nanopoulos has succeeded in building a string-derived model that unifies all known interactions: flipped SU(5), which is the leading candidate for a TOE. The impact of this work on string phenomenology certainly has far reaching consequences. C. Pope is currently working on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two- dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity, and W-string theory. The following report presents details of the accomplishments of the Texas A M program over the past year and the proposed plan of research for the coming year.

Not Available

1990-10-01T23:59:59.000Z

287

Texas A&M Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Texas A&M Regional High School Texas A&M Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions Texas A&M Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Vince Schielack Email: vinces@math.tamu.edu Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 32

288

Multicultural and multilingual approach: Mathematics, science, and engineering education for junior high school minority students and high school administrators. Final report  

SciTech Connect

During the 1993 school year, LLNL and the US Department of Energy`s San Francisco Field Office provided funds through grant {number_sign}DE-FG03-93SF20045/A000 to assist Cooperative Developmental Energy Program (CDEP) with its network coalition of high school counselors from 19 states and with its outreach and early intervention program in mathematics, science and engineering for minority junior high school students. The program for high school counselors is called the National Educators Orientation Program (NEOP) and the outreach program for minority junior high school students is called the Mathematics, Science and Engineering Academy (MSEA). A total of 35 minority and female rising eighth grade students participated in the Second Annual Mathematics, Science, and Engineering Academy sponsored by the Cooperative Developmental Energy Program of Fort Valley State College (FVSC). There were 24 students from the middle Georgia area, 4 students from Oakland, California, and 7 students from Portland, Oregon. Each student was selected by counselor in his or her respective school. The selection criteria were based on the students` academic performance in science and mathematics courses.

Crumbly, I.J.; Hodges, J.

1994-09-01T23:59:59.000Z

289

Physics of high performance deuterium-tritium plasmas in TFTR  

Science Conference Proceedings (OSTI)

During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I{sub i}) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I{sub i} discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed.

McGuire, K.M. [Princeton Univ., NJ (United States). Princeton Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States); Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)] [and others

1996-11-01T23:59:59.000Z

290

Materials Physics Applications: The National High Magnetic Field Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search National High Magnetic Field Laboratory, NHMFL Home About Us Organization DIVISION Materials Physics and Applications Division GROUPS Superconductivity Technology Center Condensed Matter and Magnet Science Center for Integrated Nanotechnologies Sensors & Electrochemical Devices Materials Chemistry CONTACTS Group Leader Mike Hundley Director, NHMFL-PFF/Deputy Group Leader Chuck Mielke Head of Users Program Operations Jon Betts Professional Staff Assistant Julie T. Gallegos TA-03 Group Office TA-03, Building 0034, Room 101 Office Administrator Juanita Armijo TA-35 Group Office TA-35, Building 0127, Room C117 Office Administrator Angeline Willow 505-667-5032 National High Magnetic Field Laboratory, Pulsed Field Facility The Pulsed Field Facility at Los Alamos National Laboratory in Los Alamos, New Mexico, is one of three campuses of the National High Magnetic Field Laboratory (NHMFL), the other two being at Florida State University, Tallahassee (continuous fields, magnetic resonance, and general headquarters) and the University of Florida ,Gainesville(ultra-low temperatures at high magnetic fields). The NHMFL is sponsored primarily by the National Science Foundation, Division of Materials Research, with additional support from the State of Florida and the US Department of Energy.

291

La Cueva High School team takes top award in 23rd New Mexico...  

NLE Websites -- All DOE Office Websites (Extended Search)

Eli Echt-Wilson, and Justin Sanchez also won the CHECS Teamwork and Cray High Performance Computing awards. April 23, 2013 Justin Sanchez of Albuquerque La Cueva High School...

292

2010 DOE National Science Bowl┬« Photos - Hunter College High School |  

Office of Science (SC) Website

Hunter College High School Hunter College High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Hunter College High School Print Text Size: A A A RSS Feeds FeedbackShare Page Eric Mannes (left) and Pearson Miller do some last minute cramming as they

293

30th Anniversary Symposium of the US/Japan Collaboration in High Energy Physics  

Science Conference Proceedings (OSTI)

Proceedings of the Symposium that celebrated the 30th Anniversary of the US/Japan Collaboration in High Energy Physics

Ozaki, S.

2011-02-18T23:59:59.000Z

294

NCNR Summer School Home  

Science Conference Proceedings (OSTI)

... Neutron Physics. With 15 years of summer schools, we are the most experienced neutron scattering school in the nation.

295

Biomass Company Sets Up Shop in High School Lab | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Company Sets Up Shop in High School Lab Biomass Company Sets Up Shop in High School Lab Biomass Company Sets Up Shop in High School Lab March 30, 2010 - 2:45pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Unlike most biotechnology students who have to go to a research facility to see scientists in action, those at Greeneville High just need to turn their heads. For the last four years, Larry Cosenza, of C2 Biotechnologies, a one-man shop in Germantown, N.Y, has been working in his basement to construct fusion enzymes, a new technology that converts biomass into energy more easily. But in January, he took over Greeneville High School's agriculture room, a move that will not only expand his workspace and put him steps closer to commercialization but also encourage project-based

296

A new ôVariable Resolution Associative Memoryö for High Energy Physics  

E-Print Network (OSTI)

We describe an important advancement for the Associative Memory device (AM). The AM is a VLSI processor for pattern recognition based on Content Addressable Memory (CAM) architecture. The AM is optimized for on-line track finding in high-energy physics experiments. Pattern matching is carried out finding track candidates in coarse resolution ôroadsö. A large AM bank stores all trajectories of interest, called ôpatternsö, for a given detector resolution. The AM extracts roads compatible with a given event during detector read-out. Two important variables characterize the quality of the AM bank: its ôcoverageö and the level of ôfound fakesö. The coverage, which describes the geometric efficiency of a bank, is defined as the fraction of tracks that match at least a pattern in the bank. Given a certain road size, the coverage of the bank can be increased just adding patterns to the bank, while the number of found fakes unfortunately is roughly proportional to this number of patterns in the bank. M...

Annovi, A; The ATLAS collaboration; Beretta, M; Bossini, E; Crescioli, F; Dell'Orso, M; Giannetti, P; Hoff, J; Liberali, V; Liu, T; Magalotti, D; Piendibene, M; Sacco, A; Schoening, A; Soltveit, H K; Stabile, A; Tripiccione, R; Vitillo, R; Volpi, G

2011-01-01T23:59:59.000Z

297

A new Variable Resolution Associative Memory for High Energy Physics  

E-Print Network (OSTI)

We describe an important advancement for the Associative Memory device (AM). The AM is a VLSI processor for pattern recognition based on Content Addressable Memory (CAM) architecture. The AM is optimized for on-line track finding in high-energy physics experiments. Pattern matching is carried out finding track candidates in coarse resolution ôroadsö. A large AM bank stores all trajectories of interest, called ôpatternsö, for a given detector resolution. The AM extracts roads compatible with a given event during detector read-out. Two important variables characterize the quality of the AM bank: its ôcoverageö and the level of ôfound fakesö. The coverage, which describes the geometric efficiency of a bank, is defined as the fraction of tracks that match at least a pattern in the bank. Given a certain road size, the coverage of the bank can be increased just adding patterns to the bank, while the number of found fakes unfortunately is roughly proportional to this number of patterns in the bank. M...

Annovi, A; The ATLAS collaboration; Beretta, M; Bossini, E; Crescioli, F; Dell'Orso, M; Giannetti, P; Hoff, J; Liberali, V; Liu, T; Magalotti, D; Piendibene, M; Sacco, A; Schoening, A; Soltveit, H K; Stabile, A; Tripiccione, R; Vitillo, R; Volpi, G

2011-01-01T23:59:59.000Z

298

Indiana University High Energy Physics Group, Task C  

Science Conference Proceedings (OSTI)

The Indiana University High Energy Physics Group, Task C has been actively involved in the MACRO experiment at Gran Sasso and the SSC experiment L during the current contract year. MACRO is a large US-Italian Monopole, Astrophysics, and Cosmic Ray Observatory being built under the Gran Sasso Mountain outside of Rome. Indiana University is in charge of organizing the United States software effort. We have built a state-of-the-art two-meter spectrophotometer for the MACRO liquid scintillator. We are in charge of ERP, the Event Reconstruction Processor online trigger processor for muons and stellar collapse. We are designing an air Cerenkov array to be placed on top of the Gran Sasso. Our other activity involves participation in the SSC experiment L. As long-standing members of L we have done proposal writing and have worked on important L planning and organization matters. We are now doing development work on the L Central Tracker straw drift tubes, including gas optimization, readout, and Monte Carlos. 12 refs., 20 figs., 1 tab.

Heinz, R.M.; Mufson, S.L.; Musser, J.

1991-01-01T23:59:59.000Z

299

Secretary Chu Announces Middle and High School Finalists Set to Compete in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle and High School Finalists Set to Middle and High School Finalists Set to Compete in the 2012 National Science Bowl in Washington, D.C. Secretary Chu Announces Middle and High School Finalists Set to Compete in the 2012 National Science Bowl in Washington, D.C. April 12, 2012 - 2:12pm Addthis Washington D.C. - Demonstrating the Obama Administration's commitment to improving the participation and performance of America's students in science, technology, engineering and mathematics, U.S. Energy Secretary Steven Chu today announced the list of 113 regional middle and high school finalists that will compete in the Energy Department's National Science Bowl Finals in Washington, D.C., at the end of April. Since January, nearly 14,000 students have competed in regional tournaments in which teams of

300

Papillion-LaVista South High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Papillion-LaVista South High School Wind Project Papillion-LaVista South High School Wind Project Jump to: navigation, search Name Papillion-LaVista South High School Wind Project Facility Papillion-LaVista South High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.146679┬░, -96.079178┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.146679,"lon":-96.079178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

North Wilkes Middle and High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Wilkes Middle and High School Wind Project Wilkes Middle and High School Wind Project Jump to: navigation, search Name North Wilkes Middle and High School Wind Project Facility North Wilkes Middle and High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.261246┬░, -81.148483┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.261246,"lon":-81.148483,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

San Antonio Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions San Antonio Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

303

El Paso Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions El Paso Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

304

Pantex Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions Pantex Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

305

Georgia Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Sites will be announced after registration. The top two teams from different high schools will be invited to the regional (State) competition to be held at Armstrong on Feb....

306

Designing an alternative project for a product design curriculum for high school students  

E-Print Network (OSTI)

An alternative curriculum is designed for Engineering the Future, a high school level engineering curriculum developed by the Boston Museum of Science. It is designed on the premise that a hands-on curriculum providing an ...

Kirby, Jeffrey (Jeffrey T.)

2008-01-01T23:59:59.000Z

307

SLAC Regional High School Science Bowl| U.S. DOE Office of Science...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions SLAC Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

308

Kern County Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Kern County Regional High School Science Bowl Print Text Size: A A A RSS...

309

Sacramento Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sacramento Regional High School Science Bowl Print Text Size: A A A RSS...

310

San Diego Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions San Diego Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

311

Secretary Chu Announces Middle and High School Finalists Set...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

via a fast-paced Jeopardy-style format on a range of science-related topics including biology, chemistry, earth science, physics, astronomy and math. "Congratulations to the...

312

Design and verification of high-speed VLSI physical design  

Science Conference Proceedings (OSTI)

With the rapid development of deep submicron (DSM) VLSI circuit designs, many issues such as time closure and power consumption are making the physical designs more and more challenging. In this review paper we provide readers with some recent progress ... Keywords: VLSI, buffer insertion, clock distribution, delay, floorplanning and placement, interconnect, order reduction, parameter extraction, physical design, power, power grid, wire sizing

Dian Zhou; Rui-Ming Li

2005-03-01T23:59:59.000Z

313

Large Scale Computing and Storage Requirements for High Energy Physics  

Science Conference Proceedings (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

Gerber, Richard A.; Wasserman, Harvey

2010-11-24T23:59:59.000Z

314

Theoretical studies in high energy nuclear physics. Progress report  

SciTech Connect

This paper is a progress report for the period 1-1-93 to 6-30-95 on a project primarily directed at the application of high energy physics techniques to nuclear structure studies, and the ability to study hadron dynamics through interactions with nuclear targets. This work has included the first legitimate QCD calculations of hard coherent diffractive processes off nucleon (nuclear) targets which established novel features of color transparency phenomenon not anticipated in the previous intuitive or QCD inspired model calculations and predicted the fast increase of the cross section for electroproduction of {rho}-mesons with increase of the energy, which was confirmed very recently by the first HERA data on this reaction. First theoretical demonstration that color transparency phenomenon for the hard diffractive processes follow from QCD in the kinematics when both x{yields}0 and Q{sup 2}{yields}{infinity}. Establishing the pattern of color (cross section) fluctuations in hadrons. Confirmed by the FNAL inelastic diffraction data. Finding that in realistic quark, skyrmion models of a hadron large momentum transfer elastic lepton-hadron scattering occurs through formation of small spatial size configurations. Discovering a novel class of color transparency sensitive double interaction processes which is complementary to quasielastic reactions originally suggested by S. Brodsky and A. Mueller. Adopting ideas suggested elsewhere for hadron initiated reactions they developed a method for taking into account nuclear correlations in (e,e{prime}p) reactions. Such an approach gives practical possibility to overcome ambiguities of optical model approximation used before and to reliably interpret color transparency effects at intermediate Q{sup 2}.

1995-08-01T23:59:59.000Z

315

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

at NERSC, Intrepid at ALCF, and Linux clusters. Most of themoved to Intrepid at the ALCF. The completion of this taskEnergy Physics Appendix áC. ALCF AMR ASCR BAO BELLA CCSE

Gerber, Richard A.

2011-01-01T23:59:59.000Z

316

The Future of High Energy Nuclear Physics in Europe  

E-Print Network (OSTI)

In less than two years from now, the LHC at CERN will start operating with protons and later with heavy ions in the multi TeV energy range. With its unique physics potential and a strong, state-of-the complement of detectors, the LHC will provide the European, and in fact worldwide Nuclear Physics community, with a forefront facility to study nuclear matter under extreme conditions well into the next decade.

J. Schukraft

2006-02-14T23:59:59.000Z

317

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

the application of high performance computing (HPC) to theacceleration and high performance computing. He was thelibraries, and high performance computing. Lee is an active

Gerber, Richard A.

2011-01-01T23:59:59.000Z

318

Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates  

E-Print Network (OSTI)

A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the accelerated dissemination of energy efficient design. For the development of the toolkit, first, a survey was performed to identify high performance measures available today being implemented in new K-5 school buildings. Then an existing case-study school building in a hot and humid climate was selected and analyzed to understand the energy use pattern in a school building and to be used in developing a calibrated simulation. Based on the information from the previous step, an as-built and calibrated simulation was then developed. To accomplish this, five calibration steps were performed to match the simulation results with the measured energy use. The five steps include: 1) Using an actual 2006 weather file with measured solar radiation, 2) Modifying lighting & equipment schedule using ASHRAEĺs RP-1093iv methods, 3) Using actual equipment performance curves (i.e., scroll chiller), 4) Using the Winkelmannĺs method for the underground floor heat transfer, and 5) Modifying the HVAC and room setpoint temperature based on the measured field data. Next, the calibrated simulation of the case-study K-5 school was compared to an ASHRAE Standard 90.1-1999 code-compliant school. In the next step, the energy savings potentials from the application of several high performance measures to an equivalent ASHRAE Standard 90.1-1999 codecompliant school. The high performance measures applied included the recommendations from the ASHRAE Advanced Energy Design Guides (AEDG) for K-12 and other high performance measures from the literature review as well as a daylighting strategy and solar PV and thermal systems. The results show that the net energy consumption of the final high performance school with the solar thermal and a solar PV system would be 1,162.1 MMBtu, which corresponds to the 14.9 kBtu/sqft-yr of EUI. The calculated final energy and cost savings over the code compliant school are 68.2% and 69.9%, respectively. As a final step of the research, specifications for a simplified easy-to-use toolkit were then developed, and a prototype screenshot of the toolkit was developed. The toolkit is expected to be used by non-technical decision-maker to select and evaluate high performance measures for a new school building in terms of energy and cost savings in a quick and easy way.

Im, Piljae

2009-12-01T23:59:59.000Z

319

Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates  

E-Print Network (OSTI)

A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the accelerated dissemination of energy efficient design. For the development of the toolkit, first, a survey was performed to identify high performance measures available today being implemented in new K-5 school buildings. Then an existing case-study school building in a hot and humid climate was selected and analyzed to understand the energy use pattern in a school building and to be used in developing a calibrated simulation. Based on the information from the previous step, an as-built and calibrated simulation was then developed. To accomplish this, five calibration steps were performed to match the simulation results with the measured energy use. The five steps include: 1) Using an actual 2006 weather file with measured solar radiation, 2) Modifying lighting & equipment schedule using ASHRAE's RP-1093 methods, 3) Using actual equipment performance curves (i.e., scroll chiller), 4) Using the Winkelmann's method for the underground floor heat transfer, and 5) Modifying the HVAC and room setpoint temperature based on the measured field data. Next, the calibrated simulation of the case-study K-5 school was compared to an ASHRAE Standard 90.1-1999 code-compliant school. In the next step, the energy savings potentials from the application of several high performance measures to an equivalent ASHRAE Standard 90.1-1999 codecompliant school. The high performance measures applied included the recommendations from the ASHRAE Advanced Energy Design Guides (AEDG) for K- 12 and other high performance measures from the literature review as well as a daylighting strategy and solar PV and thermal systems. The results show that the net energy consumption of the final high performance school with the solar thermal and a solar PV system would be 1,162.1 MMBtu, which corresponds to the 14.9 kBtu/sqft-yr of EUI. The calculated final energy and cost savings over the code compliant school are 68.2% and 69.9%, respectively. As a final step of the research, specifications for a simplified easy-to-use toolkit were then developed, and a prototype screenshot of the toolkit was developed. The toolkit is expected to be used by non-technical decision-maker to select and evaluate high performance measures for a new school building in terms of energy and cost savings in a quick and easy way.

Im, Piljae

2009-12-01T23:59:59.000Z

320

Pewaukee School District  

Science Conference Proceedings (OSTI)

... PSD includes four schools (two elementary schools, one middle school and one high school) housed on an 85-acre campus that serves students ...

2013-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE High Energy Physics Reports | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DOE DOE High Energy Physics Reports High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources SC Graduate Fellowship Program: HEP 2010 Awardees External link Quick Links DOE High Energy Physics Reports HEP Sponsored Workshops and Conferences Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information ┬╗ News & Resources DOE High Energy Physics Reports Print Text Size: A A A RSS Feeds FeedbackShare Page The following are DOE High Energy Physics Reports for projects under construction and experiments operating using accelerators as well as

322

LHC Physics Center | (none)  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Center Physics Center Fermilab Home Visit LPC Physics Programs LPC Guest and Visitors HATS@LPC, Workshops and CMSDAS Jet-Substructure HATS CMS Data Analysis School 2013 CMS Data Analysis School 2012 CMS Data Analysis School 2011 EJTERM (CMS Data Analysis School 2010) Confronting Theory with Experiment: November 2011 Standard Model Benchmarks at the Tevatron and LHC Standard Model Benchmarks at High-Energy Hadron Colliders GED workshop 20-22 Aug, 2012 Topic of the Week Upcoming Past Speakers Archive Program Info LPC Physics Forum LPC Snowmass Efforts The INFIERI Project Fellows LPC Fellows Program Newsletter - LPC Fellows LPC Fellows - 2014 LPC Fellows - 2013 LPC Fellows - 2012 LPC Fellows - 2011 Community Faces of the LPC LPC Fellows - Current LPC Coffee Hour Calendar LPC Conf. Room Calendar

323

National Research Council Study on Frontiers in High-Energy-Density Physics  

E-Print Network (OSTI)

of Fusion Fusion Power Associates Washington, DC 19┬ş21 November 2003 #12;E12541 High-energy-density physicsNational Research Council Study on Frontiers in High-Energy-Density Physics David D. Meyerhofer (HEDP) is a rapidly growing research area ┬Ě Pressures in excess of 1 Mbar constitute high-energy

324

Energy Design Guidelines for High Performance Schools: Hot and Dry Climates  

Science Conference Proceedings (OSTI)

School districts around the country are finding that smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create an exemplary building that is both energy and resource efficient.

Not Available

2002-01-01T23:59:59.000Z

325

Energy Design Guidelines for High Performance Schools: Temperate and Humid Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

326

Energy Design Guidelines for High Performance Schools: Cool and Dry Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

327

Energy Design Guidelines for High Performance Schools: Cold and Humid Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

328

Energy Design Guidelines for High Performance Schools: Hot and Dry Climates (CD-ROM)  

Science Conference Proceedings (OSTI)

School districts around the country are finding that smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs. The design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-03-01T23:59:59.000Z

329

Energy Design Guidelines for High Performance Schools: Cool and Humid Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

330

Energy Design Guidelines for High Performance Schools: Temperate and Mixed Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

331

Energy Design Guidelines for High Performance Schools: Hot and Dry Climates (Revision)  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

332

Energy Design Guidelines for High Performance Schools: Hot and Humid Climates  

Science Conference Proceedings (OSTI)

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

333

Quadrature-based moment methods: High-order realizable schemes and multi-physics applications.  

E-Print Network (OSTI)

??Kinetic equations occur in mesoscopic models for many physical phenomena. The direct solution of the kinetic equation is prohibitively expensive due to the high dimensionalityů (more)

Vikas, Varun

2012-01-01T23:59:59.000Z

334

High Energy Physics Division semiannual report of research activities, July 1, 1992--December 30, 1992  

Science Conference Proceedings (OSTI)

This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1992--December 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. [eds.

1993-07-01T23:59:59.000Z

335

High Energy Physics Division semiannual report of research activities July 1, 1997 - December 31, 1997.  

SciTech Connect

This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1997--December 31, 1997. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R. [eds.

1998-08-11T23:59:59.000Z

336

High Energy Physics division semiannual report of research activities, January 1, 1998--June 30, 1998.  

SciTech Connect

This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1998 through June 30, 1998. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

Ayres, D. S.; Berger, E. L.; Blair, R.; Bodwin, G. T.; Drake, G.; Goodman, M. C.; Guarino, V.; Klasen, M.; Lagae, J.-F.; Magill, S.; May, E. N.; Nodulman, L.; Norem, J.; Petrelli, A.; Proudfoot, J.; Repond, J.; Schoessow, P. V.; Sinclair, D. K.; Spinka, H. M.; Stanek, R.; Underwood, D.; Wagner, R.; White, A. R.; Yokosawa, A.; Zachos, C.

1999-03-09T23:59:59.000Z

337

High Energy Physics Division semiannual report of research activities, July 1, 1991--December 31, 1991  

SciTech Connect

This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1991--December 31, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. [eds.

1992-04-01T23:59:59.000Z

338

Online Particle Physics Information - Conferences  

NLE Websites -- All DOE Office Websites (Extended Search)

Conferences Database of more than 12,300 past, present and future conferences, schools, and meetings of interest to high-energy physics and related fields. Covers 1973 to...

339

Assessing the relationships among PSAT and TAKS scores in selected Texas high schools  

E-Print Network (OSTI)

The purpose of this research study was to determine the relationships among PSAT scores and TAKS scores in selected Texas high schools in order to inform state policy makers, school district administrators and teachers as they strive to implement policies to improve student achievement. In addition the findings of this study can be vital for curriculum planning pre-K-16. The population for this study was the 3,243 sophomores at the 55 Texas high schools involved in the Texas AP/IB Center's PSAT Pilot Program. The schools participating in this program were selected based on the high proportion of students from low-income homes and the lack of an AP program or low AP program participation. Students at participating high schools were predominantly minority and from homes identified by the Texas Education agency as low socioeconomic status. This study's significance is based on its potential to provide school district administrators additional information on which to base decisions regarding budget allocations for Advanced Placement programs. With greater stress on high-stakes testing and greater competition to enter higher education, Texas school districts will have initial data upon which to strengthen curricular offerings. Additionally, this study will provide policymakers at the state and local level the data necessary to make decisions when marketing and promoting the Advanced Placement program. Research findings of this study included: 1. The degree of association between PSAT score and TAKS scores was moderate. 2. Caucasian students consistently outperformed their minority counterparts on all examinations. 3. Economically disadvantaged students achieved lower scores than their more affluent counterparts on all tests. 4. Females outperformed males on most exams, but the results are not conclusive.

Wilson, Eric Daryl

2004-08-01T23:59:59.000Z

340

Prevalence of physical inactivity among school going adolescents in Nairobi, Kenya.  

E-Print Network (OSTI)

??In developing economies and specifically Sub-Saharan Africa physical inactivity has been identified as a risk factor along with tobacco use, poorů (more)

Kibet, Jepkemoi Joanne

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High Energy Physics Advisory Panel (HEPAP) Homepage | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

HEPAP Home HEPAP Home High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Members .pdf file (20KB) Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors HEP Home Print Text Size: A A A RSS Feeds FeedbackShare Page P5 Planning The high energy physics research community is engaged in developing a ten-year plan for U.S. particle physics. To learn more about the so-called "P5" process, and to stay abreast of meetings, please click on the following external link: Particle Physics Project Prioritization Panel (P5) External link The High Energy Physics Advisory Panel (HEPAP) has advised the Federal Government on the national program in experimental and theoretical high energy physics (HEP) research since its inception in 1967. Since October 2000, the Panel now has joint ownership and continues to be chartered by

342

High school interns opt for research over relaxation | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education department, work on an experiment investigating small bright sparks in gas bubbles inside liquids to better understand the way fluids respond to high voltages....

343

High Resolution Physical Mapping of DNA - Lawrence Berkeley ...  

The technique finds numerous applications in genome research, ... mapping of expressed sequences and sequence tagged sites (STSs) with high ...

344

Manzano High School student wins top award in 22nd New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

Manzano High School student wins Supercomputing Challenge Manzano High School student wins Supercomputing Challenge Manzano student wins top award in 22nd New Mexico Supercomputing Challenge Jordan Medlock wins for his computer algorithm. April 24, 2012 Jordan Medlock Jordan Medlock Contact Steve Sandoval Communications Office (505) 665-9206 Email LOS ALAMOS, New Mexico, April 24, 2012-Jordan Medlock of Albuquerque's Manzano High School took the top prize in the 22nd New Mexico Supercomputing Challenge for his computer algorithm that automates the process of counting and analyzing plaques in magnetic resonance images of persons diagnosed with Alzheimer's disease. The program vastly speeds up the process of identifying the very small and difficult to see plaques. For his project, "Detection of Alzheimer's Disease Plaques in a

345

High Energy Physics Division semiannual report of research activities, July 1, 1996 - December 31, 1996  

Science Conference Proceedings (OSTI)

This report is divided into the following areas: (1) experimental research program; (2) theoretical research program; (3) accelerator research and development; (4) divisional computing activities; (5) publications; (6) colloquia and conference talks; (7) high energy physics community activities; and (7) High Energy Physics Division research personnel. Summaries are given for individual research programs for activities (1), (2) and (3).

Norem, J.; Rezmer, R.; Wagner, R.

1997-12-01T23:59:59.000Z

346

The Effects of High Stakes High School Achievement Awards: Evidence from a Randomized Trial  

E-Print Network (OSTI)

The Israeli matriculation certificate is a prerequisite for most postsecondary schooling. In a randomized trial, we attempted to increase certification rates among low-achievers with cash incentives. The experiment used a ...

Angrist, Joshua

2009-01-01T23:59:59.000Z

347

Basic Research Needs for High Energy Density Laboratory Physics  

National Nuclear Security Administration (NNSA)

those of high-power lasers, pulsed-power machines and particle accelerators, and advanced energy systems. Furthermore, the program will help develop the workforce needed for future...

348

Women and the high school principalship: metropolitan detroit principals' and superintendents' perceptions regarding barriers and facilitators for job attainment.  

E-Print Network (OSTI)

??WOMEN AND THE HIGH SCHOOL PRINCIPALSHIP: METROPOLITAN DETROIT PRINCIPALS' AND SUPERINTENDENTS' PERCEPTIONS REGARDING BARRIERS AND FACILITATORS FOR JOB ATTAINMENT by HEIDI SCHNABEL KATTULA 2011 Advisor:ů (more)

Schnabel Kattula, Heidi

2011-01-01T23:59:59.000Z

349

Teachers' perceptions| Differences in the principals' leadership skills in higher and lower performing high poverty South Carolina middle schools.  

E-Print Network (OSTI)

?? This study was conducted to examine principalsĺ leadership skills from the perspective of the teachers in schools with high poverty indices. The focus ofů (more)

Sinha, Vijju

2009-01-01T23:59:59.000Z

350

West Texas high school agriscience teachers' knowledge, confidence, and attitudes towards teaching water quantity-related topics.  

E-Print Network (OSTI)

??As the nations population grows, the water supply is depleting. Since agricultural education plays a large role in many Texas high schools, it is importantů (more)

Miller, Pamela Marie

2006-01-01T23:59:59.000Z

351

2010 DOE National Science Bowl┬« Photos - C.M. Russell High School | U.S.  

Office of Science (SC) Website

C.M. Russell High School C.M. Russell High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - C.M. Russell High School Print Text Size: A A A RSS Feeds FeedbackShare Page C.M. Russell High School from Great Falls, MT. competes in the academic

352

Center for Beam Physics  

E-Print Network (OSTI)

for Heavy Ion Fusion," Research Trends in Physics, La JollaInternational School of Physics, New York, New York (1992),Professor and Chairman Physics Department University of

Chattopadhyay, S.

2010-01-01T23:59:59.000Z

353

High School Academic Competition - Round Robin | U.S. DOE Office of Science  

Office of Science (SC) Website

Round Robin Round Robin National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2012 Competition Results High School Academic Competition - Round Robin Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome to the National Science Bowl Score Center! Looking for Round Robin Updates? Click on the division to go straight to

354

High School Academic Competition - Double Elimination | U.S. DOE Office of  

Office of Science (SC) Website

Double Double Elimination National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2012 Competition Results High School Academic Competition - Double Elimination Print Text Size: A A A RSS Feeds FeedbackShare Page No-Loss Bracket .pdf file (76KB) Challengers' Bracket .pdf file (67KB) Last modified: 4/15/2013 1:39:57

355

Renewable energy cognition and attitude of junior high school students in Kaohsiung city  

Science Conference Proceedings (OSTI)

The purpose of this study is to investigate the concepts and attitudes of renewable energy resources for the junior high school students in Kaohsiung city. Energy is an integral part of our daily lives. If energy was insufficiency, our lives would degenerate ... Keywords: energy, energy education, renewable energy

Wen-Jiuh Chiang; Rong-Jyue Fang; Hung Chien Nien; Hua-Lin Tsa

2010-04-01T23:59:59.000Z

356

Solar Energy Education. Renewable energy activities for junior high/middle school science  

DOE Green Energy (OSTI)

Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

Not Available

1985-01-01T23:59:59.000Z

357

Towards a curriculum for electronic textiles in the high school classroom  

Science Conference Proceedings (OSTI)

This paper proposes a curriculum for a high school e-textile course-a curriculum rooted in our experiences in developing an e-textile construction kit and in holding several courses and workshops with these materials. The paper briefly describes the ... Keywords: computational crafts, e-textiles, electronic textiles, wearable computing

Leah Buechley; Mike Eisenberg; Nwanua Elumeze

2007-06-01T23:59:59.000Z

358

30 ASHRAEJournal ashrae.org May2007 High-Performance Schools  

E-Print Network (OSTI)

30 ASHRAEJournal ashrae.org May2007 High-Performance Schools John Fischer is director of research By John Fischer, Member ASHRAE; Kirk Mescher, P.E., Member ASHRAE; Ben Elkin, P.E., Member ASHRAE; Stephen operatedtocomplywithASHRAE'sventilation,energyandthermal comfortstandards1,2,3whileremainingenergyefficientandcostef

Oak Ridge National Laboratory

359

California Nonresident Tuition Exemption Request For Eligible California High School Graduates  

E-Print Network (OSTI)

California Nonresident Tuition Exemption Request For Eligible California High School Graduates Note: This form is accepted by all California Community Colleges and all Universities in the both the University of California and California State University systems. Complete and sign this form to request an exemption from

360

Undergraduate engineering students as mentors in an inner-city high school: a pilot program  

Science Conference Proceedings (OSTI)

The paper describes a pilot program and intervention implemented in a Harlem high school in New York City during the Summer of 1999. A group of engineering undergraduates worked with over 150 9th graders to improve their skills in mathematics. The pilot ...

J. McGourty; G. Lopez

2000-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

GT MENTOR: A High School Education Program in Systems Engineering and Additive Manufacturing  

E-Print Network (OSTI)

-manufacturing infrastructure will be developed that integrates CAD, CAE, design-for-manufacturing, and CAM software tools, and to ensure that high school-age youths are exposed to the principles of modern prize-based design and foundry of user-friendly, open-source tools to enable the utilization of conventional social network media (e

362

Budget projections 1990, 1991, and 1992 for research in high energy nuclear physics  

Science Conference Proceedings (OSTI)

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. The committee members are: G.W. Brandenburg, M. Franklin, S. Geer, R. J. Glauber, K. Kinoshita, F. M. Pipkin, R. F. Schwitters, K. Strauch, M. E. Law, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, R.F.Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. Professor Schwitters is currently on leave of absence as Director of the Superconducting Super Collider project. In the fall of 1990 Professor G. Feldman, who is currently at SLAC, will join the Harvard faculty and become a principal investigator. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared equally by the experimental groups.

Not Available

1990-05-01T23:59:59.000Z

363

Budget projections - 1991 through 1996 for research in high energy physics  

Science Conference Proceedings (OSTI)

This research program in high energy physics is carried out under the general supervision of a committee which is composed of G.W. Brandenburg, G.J. Feldman, M.E. Franklin, R.J. Glauber, K. Kinoshita, F.M. Pipkin, K. Strauch, R. Wilson, and H. Yamamoto. Professor G.J. Feldman currently serves as chair of this committee. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. In the fall of 1991 S. Mishra will join this committee. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting thirteen research students. In addition, undergraduate students work in projects at HEPL during the academic year and over summers. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared proportionally by the experimental groups. Harvard financially supports this high energy physics research program in many ways.

Not Available

1991-05-01T23:59:59.000Z

364

High School Principals' Perceptions of Central Office Administrator Support For Planning, Coordinating, and Evaluating Teaching and the Curriculum  

E-Print Network (OSTI)

This dissertation was designed to gain insight in the area of central office instructional leadership support from the perception of the high school principal. With increasing standards and high student performance expectations coupled with strict federal and state accountability measures, it is impossible for the high school principal to bear the sole responsibility of meeting the needs of their students, staff, and community without further support. Central office is a critical factor in school improvement. The primary aim of this study was to provide insight and a deep understanding how successful high school principals feel supported as the instructional leader specifically in the area of planning, coordinating, and evaluating teaching and the curriculum. The research was guided by a single overarching question: What are high school principal perceptions of support given to them by district central office administrators in the areas of planning, coordinating, and evaluating teaching and the curriculum? Qualitative research was selected for this study to allow for deep and thorough investigation of a small group of high school principals' beliefs regarding the central office administrator instructional leadership support. Interviews were conducted with six successful high school principals from three large school districts. The findings that emerged from the interviews were categorized into eight themes including: the school district focus; instructional leader toolbox; effective use of data; deployment of curriculum and instruction; quality professional development; collaboration; connections; and communication. A synthesis of participants' responses and prior research lead to three overall conclusions: setting high learning expectations; focusing on curriculum and instruction; and establishing district-campus partnerships. Campus principals need assistance in meeting the high standards and challenges they face today. District central office administrators can assist principals become the instructional leader all schools need. This study begins to fill the gap in the literature on how high school principals can be supported by district central office administrators in the areas of planning, coordinating, and evaluating of teaching and the curriculum.

Lawson, Kimberly Kelleher

2011-08-01T23:59:59.000Z

365

ALTERNATIVE EDUCATION IN CONTINUATION HIGH SCHOOLS: MEETING THE NEEDS OF OVER-AGED UNDER-CREDITED YOUTH  

E-Print Network (OSTI)

California school districts operate 519 continuation high schools that enrolled over 115,000 students over the course of the 2006-07 school year. 1 Originally designed to provide a flexible schedule for working students to continuing their schooling, the modern continuation high school now serves a diverse population of students. The single common denominator is that most continuation students have reached the 9 th or 10 th grades lacking sufficient academic credits to remain on track to graduate with their age cohort. Since 1965, state law has mandated that all school districts enrolling over 100 12 th grade students make available a continuation program or school to provide an alternative route to the high school diploma for youth vulnerable to academic or behavioral failure. The law, unique to California, contemplates accelerated credit accrual strategies and more intensive services ôincluding, but not limited to, independent study, regional occupation programs, work study, career counseling, and job placement services ö so that students might have a renewed opportunity to ôcomplete the required academic courses of instruction to graduate from high school. ö 2 This legislative design thus makes clear that continuation schools constitute the stateĺs primary drop-out

Jorge Ruiz De Velasco

2008-01-01T23:59:59.000Z

366

Primordial Black Holes as a Probe of Cosmology and High Energy Physics  

E-Print Network (OSTI)

Recent developments in the study of primordial black holes (PBHs) will be reviewed, with particular emphasis on their formation and evaporation. PBHs could provide a unique probe of the early Universe, gravitational collapse, high energy physics and quantum gravity. Indeed their study may place interesting constraints on the physics relevant to these areas even if they never formed.

B. J. Carr

2003-10-29T23:59:59.000Z

367

Theoretical and high energy physics programs. Progress report, September 1, 1972--August 31, 1973  

SciTech Connect

Research in nuclear physics and elementary particle physics is described. The nuclear research is all theoretical, but the high energy research is both theoretical and experimental. The report is organized according to this three- way division of the research activities. It is warned that some of the results presented are tentative and may be modified before publication. A list of publications is presented. (auth)

1973-01-01T23:59:59.000Z

368

High energy physics experiment triggers and the trustworthiness of software  

SciTech Connect

For all the time and frustration that high energy physicists expend interacting with computers, it is surprising that more attention is not paid to the critical role computers play in the science. With large, expensive colliding beam experiments now dependent on complex programs working at startup, questions of reliability -- the trustworthiness of software -- need to be addressed. This issue is most acute in triggers, used to select data to record -- and data to discard -- in the real time environment of an experiment. High level triggers are built on codes that now exceed 2 million source lines -- and for the first time experiments are truly dependent on them. This dependency will increase at the accelerators planned for the new millennium (SSC and LHC), where cost and other pressures will reduce tolerance for first run problems, and the high luminosities will make this on-line data selection essential. A sense of this incipient crisis motivated the unusual juxtaposition to topics in these lectures. 37 refs., 1 fig.

Nash, T.

1991-10-01T23:59:59.000Z

369

School of Applied & Engineering Physics -Undergraduate Post Graduate Activities Detail & History  

E-Print Network (OSTI)

undergraduate students from the Class of 2007. Historical data is provided to allow for comparison of activity and sal- ary trends. Number Graduated: 32 Number Responded: 29 Response Rate: 91% (-N) denotes graduate Physics Cornell University MENG ( 3 ) Electrical & Computer Engineering Georgia Institute of Technology Ph

Lipson, Michal

370

School of Applied & Engineering Physics -Undergraduate Post Graduate Activities Detail & History  

E-Print Network (OSTI)

undergraduate students from the Class of 2010. Historical data is provided to allow for comparison of activity and salary trends. Number Graduated: 45 Number Responded: 34 Response Rate: 76% 2010 Graduate University of Michigan-Ann Arbor PhD Electrical Engineering Yale University PhD Applied Physics Institution

Lipson, Michal

371

Systemic Equity Pedagogy in Science Education: A Mixed-Method Analysis of High Achieving High Schools of Culturally Diverse Student Populations in Texas  

E-Print Network (OSTI)

The purpose of this study was to identify and describe the associations between systemic equity pedagogy (SEP) practices in highly diverse high schools and their students' science achievement and college readiness. This study focuses on science programs in ten highly diverse Texas high schools serving students who exhibit high science achievement and college readiness. According to the Policy Research Group in Science Education, only two percent of all culturally diverse high schools within the state of Texas demonstrate high science achievement and college readiness on state-tracked school-level indicators. Transforming a school context where achievement disparities exist among student groups in science classrooms necessitates that public school officials understand key factors, or ôdrivers,ö and associated indicators contributing to SEP in programs. A model for programs is suggested using a framework for SEP based on data collected from ten highly successful, high diversity high schools. The following research questions address the research gap regarding indicators of SEP associated with high science achievement and college readiness in highly culturally diverse high schools. How do data from ten highly successful, high diversity high schools inform the development of a comprehensive SEP rubric? How do high achieving high schools of culturally diverse student populations score on a comprehensive SEP rubric? How do teachersĺ perceptions toward implementing SEP practices vary in different schools? Three research papers detail the research of this dissertation. The purpose for the first paper is to increase understanding of indicators facilitating systemic and equitable teaching and learning practices, otherwise referred to as systemic equity pedagogy (SEP). Results of the study show indicators of a comprehensive SEP rubric. Together, 127 indicators, thirty categories, and eight SEP drivers form a model framing equitable teaching and learning practices associated with high science achievement and college readiness. In conclusion, indicators within the SEP rubric can be described as action-oriented descriptors that science teachers engage formally or informally in order to facilitate quality science education for all students. The purpose for paper two is to score equitable teaching and learning practices in highly successful high school science programs based on the SEP rubric. Findings reveals that implementation of various equitable teaching and learning practices vary across science programs and these practices can be described as both pedagogical and non-pedagogical. In conclusion, varying degrees of implementation exist for indicators in the SEP rubric. In paper three, the purpose is to understand science teachersĺ attitude and approach toward implementing systemic teaching and learning practices. Results from this study provide scores that indicate science teachersĺ perceptions of their approach to SEP. This study concludes by suggesting high achieving science programs may operate within a continuum for implementing equitable teaching and learning practices.

Blocker, Tyrone Dewayne

2013-08-01T23:59:59.000Z

372

High-Resolution Simulations of Wintertime Precipitation in the Colorado Headwaters Region: Sensitivity to Physics Parameterizations  

Science Conference Proceedings (OSTI)

An investigation was conducted on the effects of various physics parameterizations on wintertime precipitation predictions using a high-resolution regional climate model. The objective was to evaluate the sensitivity of cold-season mountainous ...

Changhai Liu; Kyoko Ikeda; Gregory Thompson; Roy Rasmussen; Jimy Dudhia

2011-11-01T23:59:59.000Z

373

Elementary particle physics and high energy phenomena. Progress report for FY92  

Science Conference Proceedings (OSTI)

This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

1992-06-01T23:59:59.000Z

374

Development of a Simplified Simulation Tool for High Performance K-5 Schools in Hot and Humid Climates  

E-Print Network (OSTI)

This paper presents the preliminary results of an effort to develop a simplified simulation-based tool for designing K-5 high performance schools in hot and humid climates. As a first step of the research, a survey to define the dominant school building shape was conducted in an independent school district in Central Texas. This survey used satellite views of the K-5 schools, where each school shape was classified based on the classification defined by Perkins (2001). In addition, more surveys and a literature review was performed to verify input parameters to drive the building size and other building characteristics. Once the simulation tool and the default parameters are developed, this tool is intended to be used to estimate building energy consumption with limited information about the school building. This paper reports on the classification scheme and automatic building shape generator, as well as preliminary results describing calibration of the simulation to a case study K-5 school.

Im, P.; Haberl, J. S.

2008-08-01T23:59:59.000Z

375

The Gender Gap in Secondary School Mathematics at High Achievement Levels: Evidence from the American Mathematics Competitions  

E-Print Network (OSTI)

This paper uses a new data source, American Mathematics Competitions, to examine the gender gap among high school students at very high achievement levels. The data bring out several new facts. There is a large gender gap ...

Ellison, Glenn

2010-01-01T23:59:59.000Z

376

Discharge Physics of High Power Impulse Magnetron Sputtering  

SciTech Connect

High power impulse magnetron sputtering (HIPIMS) is pulsed sputtering where the peak power exceeds the time-averaged power by typically two orders of magnitude. The peak power density, averaged over the target area, can reach or exceed 107 W/m2, leading to plasma conditions that make ionization of the sputtered atoms very likely. A brief review of HIPIMS operation is given in a tutorial manner, illustrated by some original data related to the self-sputtering of niobium in argon and krypton. Emphasis is put on the current-voltage-time relationships near the threshold of self-sputtering runaway. The great variety of current pulse shapes delivers clues on the very strong gas rarefaction, self-sputtering runaway conditions, and the stopping of runaway due to the evolution of atom ionization and ion return probabilities as the gas plasma is replaced by metal plasma. The discussions are completed by considering instabilities and the special case of ?gasless? self-sputtering.

Anders, Andre

2010-10-13T23:59:59.000Z

377

Budget projections 1989, 1990, and 1991 for research in high energy nuclear physics  

Science Conference Proceedings (OSTI)

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. The committee members are: G.W. Brandenburg, S. Geer, R.J. Glauber, K. Kinoshita, R. Nickerson, F.M. Pipkin, R.F. Schwitters, M. Shapiro, K. Strauch, R. Vanelli, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, R.F. Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. Professor Schwitters is currently on leave of absence as Director of the Superconducting Super Collider project. In the fall of 1990 Professor G. Feldman, who is currently at SLAC, will join the Harvard faculty and become a principal investigator. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting 15 research students. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared equally by the experimental groups.

Not Available

1989-05-01T23:59:59.000Z

378

Argonne National Laboratory, High Energy Physics Division, semiannual report of research activities, July 1, 1989--December 31, 1989  

Science Conference Proceedings (OSTI)

This report discusses research being conducted at the Argonne National Laboratory in the following areas: Experimental High Energy Physics; Theoretical High Energy Physics; Experimental Facilities Research; Accelerator Research and Development; and SSC Detector Research and Development.

Not Available

1989-01-01T23:59:59.000Z

379

XOP, a fast versatile processor, as a building block for parallel processing in high energy physics experiments  

E-Print Network (OSTI)

XOP, a fast versatile processor, as a building block for parallel processing in high energy physics experiments

Bńhler, P; Lingjaerde, Tor; Ljuslin, C; Van Praag, A; Werner, P

1986-01-01T23:59:59.000Z

380

Calculating Energy and Demand Retrofit Savings for Victoria High School: Interim Report  

E-Print Network (OSTI)

As part of the LoanSTAR program, Victoria High School in Victoria, Texas underwent two retrofits: a) an absorption chiller was changed to an electric vapor compression chiller, and b) an EMCS system was installed after about 5 months in the post retrofit period. Moreover, retrofit savings calculation was complex since pre-retrofit data consisted of only monthly utility data while hourly monitored data are available for the post-retrofit period. This report describes the method in which we have performed retrofit energy and demand savings in Victoria High School. A previous report described the procedure adopted when no pre-retrofit data are available. We have only used Unnormalized Utility Bills Comparison ,or the Level-0 approach to determine electricity (energy and demand) and gas energy savings for VHS.

Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Investigating physical and chemical changes in high-k gate stacks using nanoanalytical electron microscopy  

Science Conference Proceedings (OSTI)

The thermal budget involved in processing high-k gate stacks can cause undesirable physical and chemical changes which limit device performance. The transmission electron microscope and associated analytical techniques provide a way of investigating ... Keywords: Electron energy loss near edge structure, Electron energy loss spectroscopy, High-k dielectrics, Nanoanalytical electron microscopy

A. J. Craven; M. MacKenzie; D. W. McComb; F. T. Docherty

2005-06-01T23:59:59.000Z

382

[Experimental and theoretical high energy physics program]. [Purdue Univ. , West Lafayette, Indiana  

Science Conference Proceedings (OSTI)

Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac[endash]Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e[sup +]e[sup [minus

Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

1993-04-01T23:59:59.000Z

383

High Energy Physics Advisory Panel August 2012 Meeting | U.S. DOE Office of  

Office of Science (SC) Website

High Energy Physics Advisory Panel August 2012 Meeting High Energy Physics Advisory Panel August 2012 Meeting High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Previous Meetings Members .pdf file (20KB) Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors HEP Home Meetings High Energy Physics Advisory Panel August 2012 Meeting Print Text Size: A A A RSS Feeds FeedbackShare Page Agenda High Energy Physics Advisory Panel Hilton Hotel 1750 Rockville Pike Rockville, Maryland August 27-28, 2012 Monday, August 27, 2012 NEWS FROM THE AGENCIES 9:00 a.m. DOE News .pdf file (2.7MB) J. Siegrist 9:30 a.m. Discussion 9:45 a.m. NSF News .pdf file (1.3MB) J. Dehmer 10:05 a.m. Discussion 10:20 a.m. BREAK ENERGY FRONTIER - LHC 10:50 a.m. Higgs Discovery - ATLAS .pdf file (10.1MB) F. Gianotti 11:30 a.m. Higgs Discovery - CMS .pdf file (7.6MB) D. Marlow

384

Physics Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Find people (by last name) Go Advanced search Physics Home High Energy & Nuclear Physics Directorate Research Current Research Areas BNL Physics Timeline Administrative...

385

Introduction to the Scottish Universities Physics Alliance Welcome from the Director of the SUPA Graduate School  

E-Print Network (OSTI)

neutron production and interaction with matter, nuclear energy and nuclear fuel cycle, nuclear reactors theory. The de- partment constructs and operates facilities for x-ray scat- tering, spectroscopy include on-campus x-ray diffraction fa- cilities, thin-film growth facilities, a high-field nuclear

Painter, Kevin

386

Science Teaching in Texas: Investigating Relationships among Texas High School Science Teachers' Working Conditions, Job Satisfaction, and Retention  

E-Print Network (OSTI)

In many critical subject areas our schools are facing a need for teachers, particularly in the "high-need" areas of mathematics, science, and bilingual education. Educators and researchers alike have identified teacher turnover as a major contributor to the challenge of finding and keeping highly-qualified teachers in American classrooms. The purpose of the three studies in this dissertation was to investigate the potential role of working conditions in explaining the turnover rates of high school science teachers. I used data collected by the Policy Research Initiative in Science Education (PRISE) Research Group during the 2007-2008 and 2008-2009 academic years, from their random, stratified sample of 50 Texas high schools and their 385 science teachers. The first study focuses on the development of a rubric assessing individual science teachers' working conditions, which involved the examination of multiple data sources, including school master schedules and AEIS reports to determine the working conditions of 385 science teachers. Analyses from this study suggested that (a) science teachers from small schools experience tougher working conditions than science teachers from both medium and large schools; (b) veteran science teachers experience tougher working conditions than both induction and mid-career teachers; and (c) science teachers from lower minority schools experience tougher working conditions than science teachers from schools with higher MSEPs. The second study focuses on the relationship between high school science teachers? working conditions and their levels of job satisfaction. Findings included that (1) science teachers from small schools experienced tougher working conditions, even though they were more satisfied with their jobs; (2) veteran science teachers experienced tougher working conditions and were more satisfied with their jobs; and (3) science teachers from lower minority schools experienced tougher working conditions and were more satisfied with their jobs. The final study focuses on the relationship between high school science teachers' school size, MSEP, teacher type, working condition scores, job satisfaction scores, and retention status. Results of independent samples T-test revealed no significant difference in working condition scores for "stayers" versus "non-stayers." Pearson's correlation revealed school size and the experience level of the science teacher as significant predictors of working condition and job satisfaction scores. Results of the discriminant analysis revealed (a) working condition scores and job satisfaction scores as not significantly predicting science teacher retention; and (b) teacher type (beginning, mid-career, and veteran) as the only significant predictor of teacher retention.

Hollas, Victoria

2011-12-01T23:59:59.000Z

387

United States special format report: Northview Junior High solar energy school heating augmentation experiment  

DOE Green Energy (OSTI)

The program described in this report demonstrates the ability of solar collectors to supplement the heating and hot water requirements of North View Junior High School in suburban Minneapolis. The program is obtaining engineering data which may be used to improve collector performance and system performance or design. In addition, data are being compiled which may be used to define investment requirements for similar installations. The program is also helping to determine community acceptance of solar heated school buildings. Construction was initiated during January 1974 and completed during May 1974. The basic rationale for the program is the necessity of obtaining firm answers in three areas: (1) validation of system performance, (2) determination of overall system costs, and (3) acquisition of data to determine the benefits of such a system. (WDM)

Merrill, G.; Dib, A.

1976-06-01T23:59:59.000Z

388

Risk to Resilience : : Exploring Protective Factors for Students Experiencing Homelessness at a Traditional High School and a Modified Comprehensive School  

E-Print Network (OSTI)

Layla LaĺShante Malcolm Mary Noah Molly Roman Paulina Stevengo to school, you know? ö -Noah, 9th grader ôIf I succeed inand educational challenges. Noah, a tenth-grader, explained

Garcia, Joel Romero

389

A comparative study of teacher characteristics in high-poverty and low-poverty elementary schools in South Carolina.  

E-Print Network (OSTI)

?? The purpose of this quantitative study was to measure teacher characteristics in high-poverty and low-poverty elementary schools in South Carolina. The similarities and differencesů (more)

Pickett, Tracy M.

2013-01-01T23:59:59.000Z

390

Summary of the 9th international symposium on high energy spin-physics  

Science Conference Proceedings (OSTI)

Summarizing an international conference in high energy spin physics is never an easy task, because of the wide-ranging subjects in physics and technology that are involved. I have chosen to organize the topics of this conference into three broad categories relating to spin; intrinsic spin; composite spin; and spin, the experimental tool. In the first category, I will briefly revisit some historical and recent developments to set a background. In the second category, composite spin, I will discuss the status and developments in several areas, including magnetic moments of baryons, hyperon polarization in high energy high p {perpendicular} production, transverse polarization and asymmetries from transversely polarized targets in high p {perpendicular} scattering, spin structure of the proton, and the Bjorken sum rule. In the third category, I will discuss the steady, and at times rapid, progress in spin technology. In this part I include recent progress in high energy facilities, and comment on the highlights of the Workshops.

Prescott, C.Y.

1990-11-01T23:59:59.000Z

391

Frontiers in Microbiology: Envisioning a Curriculum Unit for High School Biology  

Science Conference Proceedings (OSTI)

Microbiology is undergoing a quiet revolution. Techniques such as polymerase chain reaction, high throughput DNA sequencing, whole genome shotgun sequencing, DNA microarrays, and bioinformatics analyses are greatly aiding our understanding of the estimated one billion species of microbes that inhabit the Earth. Unfortunately, the rapid pace of research in microbiology stands in contrast to the much slower pace of change in educational reform. Biological Sciences Curriculum Study (BSCS) hosted a two-day planning meeting to discuss whether or not a new curriculum unit on microbiology is desirable for the high school audience. Attending the meeting were microbiologists, high school biology teachers, and science educators. The consensus of the participants was that an inquiry-based unit dealing with advances in microbiology should be developed for a high school biology audience. Participants established content priorities for the unit, discussed the unit's conceptual flow, brainstormed potential student activities, and discussed the role of educational technology for the unit. As a result of the planning meeting discussions, BSCS staff sought additional funding to develop, disseminate, and evaluate the Frontiers in Microbiology curriculum unit. This unit was intended to be developed as a replacement unit suitable for an introductory biology course. The unit would feature inquiry-based student activities and provide approximately four weeks of instruction. As appropriate, activities would make use of multimedia. The development and production processes would require about two years for completion. Unfortunately, BSCS staff was not able to attract sufficient funding to develop the proposed curriculum unit. Since there were some unexpended funds left over from the planning meeting, BSCS requested and received permission from DOE to use the balance of the funds to prepare background materials about advances in microbiology that would be useful to teachers. These materials were developed and placed on the BSCS Web site (http://www.bscs.org).

Mark Bloom

2004-06-18T23:59:59.000Z

392

P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students  

Science Conference Proceedings (OSTI)

This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

Intrator, Thomas P. [Los Alamos National Laboratory; Bauer, Bruno [Univ Nevada, Reno; Fernandez, Juan C. [Los Alamos National Laboratory; Daughton, William S. [Los Alamos National Laboratory; Flippo, Kirk A. [Los Alamos National Laboratory; Weber, Thomas [Los Alamos National Laboratory; Awe, Thomas J. [Los Alamos National Laboratory; Kim, Yong Ho [Los Alamos National Laboratory

2012-09-07T23:59:59.000Z

393

High Energy Physics (HEP) Homepage | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs ┬╗ HEP Home Programs ┬╗ HEP Home High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information ┬╗ Higgs Boson Discovery Leads to Nobel Prize External link Fran├žois Englert and Peter Higgs were awarded the 2013 Nobel Prize in Physics for their contributions to our understanding of the origin of mass, confirmed by the discovery of the Higgs boson in 2012 by the ATLAS and CMS experiments at CERN's Large Hadron Collider.Read More External linkage US Participation in the Higgs Discovery External link

394

A Thousand Invisible Cords Binding Astronomy and High-Energy Physics  

E-Print Network (OSTI)

The traditional realm of astronomy is the observation and study of the largest objects in the Universe, while the traditional domain of high-energy physics is the study of the smallest things in nature. But these two sciences concerned with opposite ends of the size spectrum are, in Muir's words, bound fast by a thousand invisible cords that cannot be broken. In this essay I propose that collaborations of astronomers and high-energy physicists on common problems are beneficial for both fields, and that both astronomy and high-energy physics can advance by this close and still growing relationship. Dark matter and dark energy are two of the binding cords I will use to illustrate how collaborations of astronomers and high-energy physicists on large astronomical projects can be good for astronomy, and how discoveries in astronomy can guide high-energy physicists in their quest for understanding nature on the smallest scales. Of course, the fields have some different intellectual and collaborative traditions, neither of which is ideal. The cultures of the different fields cannot be judged to be right or wrong; they either work or they don't. When astronomers and high-energy physicists work together, the binding cords can either encourage or choke creativity. The challenge facing the astronomy and high-energy physics communities is to adopt the best traditions of both fields. It is up to us to choose wisely.

Rocky Kolb

2007-08-09T23:59:59.000Z

395

Services for High Energy Physics EGI-InSPIRE EU deliverable: MS603  

E-Print Network (OSTI)

The computing systems of the LHC experiments at CERN are probably the most complex grid-integrated applications currently in production. This milestone describes the critical services on which the computing systems are based and how they interact with each other. This description represents the current state of the art in the high energy physics community.

Sciaba, A; Barreiro Megino, F; Lanciotti, E; Santinelli, R; Spiga, D; Trentadue, R; Valassi, A; Van Der Ster, D C; Cinquilli, M; CERN. Geneva. IT Department

2010-01-01T23:59:59.000Z

396

Parallelization of an existing high-energy physics event reconstruction software package  

E-Print Network (OSTI)

Software parallelization allows an efficient use of available computing power to in- crease the performance of applications. In a case study we have investigated the parallelization of high-energy physics event reconstruction software in terms of costs (effort, computing resource requirements), benefits (performance increase), and the feasibility of a systematic parallelization approach. Guidelines facilitating a parallel implementation are proposed for future software development.

Schiefer, R

1995-01-01T23:59:59.000Z

397

AIP study of multi-institutional collaborations: Phase 1, high-energy physics  

Science Conference Proceedings (OSTI)

This document presents a report on project activities, archival findings (analysis and future actions), records creation in the context of laboratory operations and research at the Stanford Linear Accelerator Center, and appraisal guidelines for records of collaborations in high-energy physics.

Warnow-Blewett, J.; Maloney, L.; Nilan, R.

1992-01-01T23:59:59.000Z

398

Field Monitoring of a Geothermal Heat Pump Water Heater: Unicoi County High School, Erwin, Tennessee  

Science Conference Proceedings (OSTI)

A geothermal heat pump water heater (HPWH) system -- installed to preheat water entering a 250-gallon gas-fired water heater (GWH) at a Tennessee high school -- reduced water-heating costs by 34 percent per year, compared to the base case GWH system. This report provides results from field monitoring of the geothermal HPWH system, tested in three distinct operating modes for five months. The program goal was to assess the energy and economic benefits of the GWH system with and without the geothermal HPWH...

2003-10-15T23:59:59.000Z

399

Thermal Storage for Energy Efficient Structures (Poteet High School Case Study)  

E-Print Network (OSTI)

Poteet High School, in Mesquite, Texas, is a facility that demonstrates state-of-the-art environmental control through the application of energy conserving technologies relative to architecture, HVAC and lighting. It is also recognized as an "Intelligent Building" by virtue of the fact that it automatically adjusts to, and supports the needs of, its occupants without help from facility operating personnel. This paper provides information relative to the system components groupings of envelope, electrical system and equipment and mechanical systems and equipment. Each of the systems operating cycles are described and the major benefits of this design concept are summarized.

Utesch, A. L.

1988-01-01T23:59:59.000Z

400

(The 25th international conference on high-energy physics at Singapore)  

SciTech Connect

The traveler attended the 25th International Conference on High-Energy Physics in Singapore, August 1--8, 1990. The conference was dominated by results from the new LEP accelerator at CERN. The precision of the data from LEP is impressive, and all results are consistent with the standard model. No new physics'' has emerged at LEP. The traveler presented a talk on CERN/SPS WA80 results and had several interesting, private discussions on both L* and WA80 topics.

Plasil, F.

1990-08-17T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions  

SciTech Connect

The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

Not Available

1987-01-01T23:59:59.000Z

402

High Energy Physics Division semiannual report of research activities. Semi-annual progress report, July 1, 1995--December 31, 1995  

Science Conference Proceedings (OSTI)

This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1995 - December 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

Norem, J.; Bajt, D.; Rezmer, R.; Wagner, R.

1996-10-01T23:59:59.000Z

403

Final technical report: DOE-High Energy Physics contract with the University of Hawaii  

Science Conference Proceedings (OSTI)

This report is divided into two sections: (1) experimental program; and (2) theoretical program. In each case the report includes a highly condensed summary of the major developments on various Hawaii projects. The various experimental programs in which Hawaii played a significant role during this period are: (1) neutrino bubble chamber experiments; (2) electron-positron colliding beams; (3) development of silicon particle-position detectors for HEP; (4) proton decay search; (5) high energy gamma-ray astronomy; and (6) DUMAND project. The theoretical programs are: (1) research in neutrino physics; (2) supernova neutrinos; (3) solar neutrinos; (4) atmospheric neutrinos; (5) searching for supersymmetry; (6) Higgs boson searches; (7) simulation of supersymmetry; (8) signals of R-parity violation; (9) leptoquarks, stable heavy particles and other exotica; (10) CP non conservation; (11) neutron electron dipole moment; (12) heavy quark physics; and (13) hadron spectroscopy.

Not Available

1995-12-31T23:59:59.000Z

404

The comparison and selection of programming languages for high energy physics applications  

Science Conference Proceedings (OSTI)

This paper discusses the issues surrounding the comparison and selection of a programming language to be used in high energy physics software applications. The evaluation method used was specifically devised to address the issues of particular importance to high energy physics (HEP) applications, not just the technical features of the languages considered. The method assumes a knowledge of the requirements of current HEP applications, the data-processing environments expected to support these applications and relevant non-technical issues. The languages evaluated were Ada, C, FORTRAN 77, FORTRAN 99 (formerly 8X), Pascal and PL/1. Particular emphasis is placed upon the past, present and anticipated future role of FORTRAN in HEP software applications. Upon examination of the technical and practical issues, conclusions are reached and some recommendations are made regarding the role of FORTRAN and other programming languages in the current and future development of HEP software. 54 refs.

White, B.

1991-06-01T23:59:59.000Z

405

Compilation of high energy physics reaction data: inventory of the particle data group holdings 1980  

Science Conference Proceedings (OSTI)

A compilation is presented of reaction data taken from experimental high energy physics journal articles, reports, preprints, theses, and other sources. Listings of all the data are given, and the data points are indexed by reaction and momentum, as well as by their source document. Much of the original compilation was done by others working in the field. The data presented also exist in the form of a computer-readable and searchable database; primitive access facilities for this database are available.

Fox, G.C.; Stevens, P.R.; Rittenberg, A.

1980-12-01T23:59:59.000Z

406

Basics of Feature Selection and Statistical Learning for High Energy Physics  

E-Print Network (OSTI)

This document introduces basics in data preparation, feature selection and learning basics for high energy physics tasks. The emphasis is on feature selection by principal component analysis, information gain and significance measures for features. As examples for basic statistical learning algorithms, the maximum a posteriori and maximum likelihood classifiers are shown. Furthermore, a simple rule based classification as a means for automated cut finding is introduced. Finally two toolboxes for the application of statistical learning techniques are introduced.

Anselm Vossen

2008-03-16T23:59:59.000Z

407

Perceptions of Leadership and Student Performance in Science From Campus Leaders in Selected High Schools  

E-Print Network (OSTI)

This naturalistic study focused on the perceptions of leadership and student performance in science from campus leaders in three purposefully selected secondary campuses of ninth through twelfth grades. Each school had experienced an improvement in student passing rates on the science TAKS test that exceeded the state?s percent improvement in passing rates for the past three years and had a record of improving science TAKS scores for the period of 2003 to 2008 exceeding fifteen percentage points. The qualitative research technique of multi-case studies design was used. Data was collected through semi-structured, in-depth interviews with four campus leaders from each of the selected schools. These campus leaders included campus administrators, science department chairs, and grade-level team leaders. A framework of transformational leadership was utilized in the analysis of the data generated from the interviews. The perception from the campus leaders was that leadership has a positive impact on student success in science. The findings indicated perceptions of leadership from the campus leaders had certain leadership practices in common. These included (a) clear vision and goals from the campus principal, (b) high performance expectations for teachers and students from administrators and science department leaders, (c) encouragement and support from campus administrators and science department leaders to develop new programs to address problem areas, (d) emphasis on collaborative teams, and (e) open door policy from administrators.

Wilder, Sharon

2010-05-01T23:59:59.000Z

408

Silicon detectors for the next generation of high energy physics experiments: expected degradation  

E-Print Network (OSTI)

There exists an enormous interest for the study of very high energy domain in particle physics, both theoretically and experimentally, in the aim to construct a general theory of the fundamental constituents of matter and of their interactions. Until now, semiconductor detectors have widely been used in modern high energy physics experiments. They are elements of the high resolution vertex and tracking system, as well as of calorimeters. The main motivation of this work is to discuss how to prepare some possible detectors - only silicon option being considered, for the new era of HEP challenges because the bulk displacement damage in the detector, consequence of irradiation, produces effects at the device level that limit their long time utilisation, increasing the leakage current and the depletion voltage, eventually up to breakdown, and thus affecting the lifetime of detector systems. In this paper, physical phenomena that conduce to the degradation of the detector are discussed and effects are analysed at the device level (leakage current and effective carrier concentration) in the radiation environments expected in the next generation of hadron colliders after LHC, at the next lepton and gamma-gamma colliders, as well as in astroparticle experiments, in conditions of long time continuum irradiations, for different technological options. The predicted results permit a better decision to obtain devices with harder parameters to radiation.

I. Lazanu; S. Lazanu

2005-12-31T23:59:59.000Z

409

Topics in nuclear and radiochemistry for college curricula and high school science programs  

Science Conference Proceedings (OSTI)

The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

Not Available

1990-01-01T23:59:59.000Z

410

Calculating Energy and Demand Retrofit Savings for Stroman High School: Interim Report  

E-Print Network (OSTI)

As part of the LoanSTAR program, Stroman High School in Victoria Texas underwent two retrofits: a) an absorption chiller was changed to an electric vapor compression chiller, and b) an EMCS system was installed after about 5 months in the post retrofit period. Moreover, retrofit savings calculation was complex since pre-retrofit data consisted only of monthly utility data while hourly monitored data are available for the post-retrofit period. The retrofit savings in electricity and gas were computed by two different approaches: Unnormalized Utility Bill Comparison and Weather and Schedule Normalized Utility Bill Comparison Using Post-Retrofit Daily Models. (For purpose of simplicity, in this report, we will refer them as Level-0 and Level-1, respectively.) This report describes these approaches and discusses how well the retrofit savings predicted by both approaches compare with each other. It also describes the procedure for determining demand savings.

Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

411

Alternative Energy Saving Technology Analysis Report for Richland High School Renovation Project  

DOE Green Energy (OSTI)

On July 8, 2004, L&S Engineering, Inc. submitted a technical assistance request to Pacific Northwest National Laboratory (PNNL) to help estimate the potential energy savings and cost effectiveness of the solar energy and daylighting design alternatives for Richland High School Renovation Project in Richland, WA. L&S Engineering expected PNNL to evaluate the potential energy savings and energy cost savings, the probable installation costs, incentives or grants to reduce the installed costs and simple payback for the following alternative measures: (1) Daylighting in New Gym; (2) Solar Photovoltaics; (3) Solar Domestic Hot Water Pre-Heat; and (4) Solar Outside Air Pre-Heat Following are the findings of the energy savings and cost-effectiveness analysis of above alternative energy saving technologies.

Liu, Bing

2004-08-09T23:59:59.000Z

412

Design of a 20-kWp photovoltaic concentrator experiment at Fauquier High School, Warrenton, VA  

DOE Green Energy (OSTI)

The design and systems analysis of the photovoltaic concentrator system for Fauquier High School in Warrenton, Virginia, are presented. The system provides both electrical energy from the photovoltaic modules and thermal energy from the cooling of those modules. The dc electrical energy from the photovoltaic modules will be first converted to ac and then used to provide power for lighting in the vocational/technical building and the system control building. The thermal energy collected is stored in a 6500-gallon tank for use in the wintertime to provide heat for a greenhouse located adjacent to the array. The photovoltaic system supplies 20 kWp of electrical power by means of 40 6' wide by 10' long parabolic-cylinder collectors mounted in a polar mode. (WHK)

None

1979-10-18T23:59:59.000Z

413

High School Research at Jefferson Lab - Development of the GRINCH Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonlinear Particle Dynamics Nonlinear Particle Dynamics Previous Project (Nonlinear Particle Dynamics) High School Research Main Index Next Project (Fire Alarm Monitoring Systems) Fire Alarm Monitoring Systems Development of the GRINCH Gas Cherenkov Detector This project was done as a summation of all of the projects I have done referencing A1n and the GRINCH detector. To assist in the preparation of the A1n experiment, I helped develop and model a magnetic shielding box for an array of PMT's in the GRINCH detector. Using this box, as well as a compensation coil, seemed to provide ample shielding from the BigBite magnets magnetic field. The PMT's in the array were salvaged from a detector where they were submerged in water and sustained damage (micro-fractures) on their acceptance windows. By putting a layer of glue

414

California South/West Bay Area Regional Middle School Science...  

Office of Science (SC) Website

California SouthWest Bay Area Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School...

415

New Jersey Regional Science Bowl | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

New Jersey Regional Science Bowl New Jersey Regional Science Bowl Competition Overview: Each year PPPL hosts the New Jersey Regional Science Bowl which decides which teams from the local area can continue onto the national competition in Washington, D.C.! The Science Bowl is a double elimination contest with question and answer rounds in the fields of chemistry, biology, physics, astronomy, mathematics and general and earth sciences. Middle School: Teams of a coach and five middle school students (four members and an alternate) in grades 6-8 from middle schools and home schools are invited to enter. High School: Teams of a coach and five high school students (four members and an alternate) in grades 9-12 from high schools and home schools are invited to enter. The NJ Regional Competition is open to all of NJ and surrounding areas that

416

Quarkonium at the Frontiers of High Energy Physics: A Snowmass White Paper  

E-Print Network (OSTI)

In this Snowmass White Paper, we discuss physics opportunities involving heavy quarkonia at the intensity and energy frontiers of high energy physics. We focus primarily on two specific aspects of quarkonium physics for which significant advances can be expected from experiments at both frontiers. The first aspect is the spectroscopy of charmonium and bottomonium states above the open-heavy-flavor thresholds. Experiments at e^+ e^- colliders and at hadron colliders have discovered many new, unexpected quarkonium states in the last 10 years. Many of these states are surprisingly narrow, and some have electric charge. The observations of these charged quarkonium states are the first definitive discoveries of manifestly exotic hadrons. These results challenge our understanding of the QCD spectrum. The second aspect is the production of heavy quarkonium states with large transverse momentum. Experiments at the LHC are measuring quarkonium production with high statistics at unprecedented values of p_T. Recent theoretical developments may provide a rigorous theoretical framework for inclusive production of quarkonia at large p_T. Experiments at the energy frontier will provide definitive tests of this framework. Experiments at the intensity frontier also provide an opportunity to understand the exclusive production of quarkonium states.

Geoffrey T. Bodwin; Eric Braaten; Estia Eichten; Stephen Lars Olsen; Todd K. Pedlar; James Russ

2013-07-29T23:59:59.000Z

417

Perceptions Regarding the Michigan Merit Curriculum Reform Policy and Its Impact on CTE and Dual Enrollment in a Southeastern Michigan High School.  

E-Print Network (OSTI)

??Michigan joined Arkansas, Indiana, Massachusetts, Oregon, and Rhode Island in the high school reform effort. The Michigan Merit Curriculum (MMC), mandated in 2006, contained aů (more)

Green, Winifred L.

2012-01-01T23:59:59.000Z

418

Eastern Idaho Regional Middle School Science Bowl | U.S. DOE...  

Office of Science (SC) Website

Eastern Idaho Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School...

419

Western Idaho Regional Middle School Science Bowl | U.S. DOE...  

Office of Science (SC) Website

Western Idaho Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School...

420

African American Parent Involvement: An examination of the characteristics that determine the most successful school and parent relationships between lower socioeconomic, African American parents, and highly effective schools  

E-Print Network (OSTI)

94(1), 95 Columbia County School Title I Policy, (2007).Parent involvement in schools: An ecological approach.The Elementary School Journal, 91(3). Compton-Lilly, C. (

Williams, Marcheta Ganther

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Physical and mechanical metallurgy of high purity Nb for accelerator cavities  

SciTech Connect

In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

Bieler, T. R. [Michigan State University, East Lansing; Wright, N. T. [Michigan State University, East Lansing; Pourboghrat, F. [Michigan State University, East Lansing; Compton, C. [Michigan State University, East Lansing; Hartwig, K. T. [Texas A& M University; Baars, D. [Michigan State University, East Lansing; Zamiri, A. [Michigan State University, East Lansing; Chandrasekaran, S. [Michigan State University, East Lansing; Darbandi, P. [Michigan State University, East Lansing; Jiang, H. [Michigan State University, East Lansing; Skoug, E. [Michigan State University, East Lansing; Balachandran, S. [Texas A& M University; Ice, Gene E [ORNL; Liu, W. [Argonne National Laboratory (ANL)

2010-01-01T23:59:59.000Z

422

Zettawatt-Exawatt Lasers and Their Applications in Ultrastrong-Field Physics High Energy Front  

E-Print Network (OSTI)

Since its birth, the laser has been extraordinarily effective in the study and applications of laser-matter interaction at the atomic and molecular level and in the nonlinear optics of the bound electron. In its early life, the laser was associated with the physics of electron volts and of the chemical bond. Over the past fifteen years, however, we have seen a surge in our ability to produce high intensities, five to six orders of magnitude higher than was possible before. At these intensities, particles, electrons and protons, acquire kinetic energy in the mega-electron-volt range through interaction with intense laser fields. This opens a new age for the laser, the age of nonlinear relativistic optics coupling even with nuclear physics. We suggest a path to reach an extremely high-intensity level $10^{26-28} $W/cm$^2$ in the coming decade, much beyond the current and near future intensity regime $10^{23} $W/cm$^2$, taking advantage of the megajoule laser facilities. Such a laser at extreme high intensity co...

Tajima, T

2001-01-01T23:59:59.000Z

423

Armed forces career exploration for high school students in the fields of engineering and science. Final report  

SciTech Connect

Morgan State University`s School of Engineering conducted its third annual Armed Forces Career Exploration program for high school students in the fields of engineering and science. The four week program was jointly sponsored by the US Army Laboratory Command (Ballistics Research Laboratory and Human Engineering Laboratory) and US Department of Energy (Los Alamos National Laboratory). The environment in a predominantly urban school system is such that a significant number of very capable students reach the eleventh grade without plans for the future. These students as a result of teacher influence have taken lower level math and science courses and we feel by participating in this program will see reasons for pursuing higher level math and science courses their last two years in high school. Inasmuch as intervention programs have not yet significantly affected the profile of these schools this pool of students represents an opportunity to make an early impact on the number of students that enter college intending to major in math, science or engineering. This report presents the program that provided selected students with pre-engineering and science enrichment experiences designed to enhance their understanding of engineering, increase their awareness of career opportunities in science and engineering, advance their readiness to enter temporary job situation, and foster the development of self-confidence in their individual capabilities.

Not Available

1993-08-01T23:59:59.000Z

424

Iowa Regional High School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

School: 3 Registration Fee: NA Regional Geographic Information: Iowa Team Approval Process Teams are approved on a first-come, first-served basis determined by the datetime...

425

Montana Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

School: 2 Registration Fee: NA Regional Geographic Information: Montana Team Approval Process Teams are approved on a first-come, first-served basis determined by the datetime...

426

North Florida Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

427

Missouri Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

428

Indiana Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

teams taking precedence over second teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

429

South Florida Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

430

Capital District Regional High School Science Bowl | U.S. DOE...  

Office of Science (SC) Website

teams taking precedence over second teams - the goal is to have as many different schools participating as possible. Eligible first teams will be approved by the regional...

431

Puerto Rico Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

432

Savannah River Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over second teams - the goal is to have as many different schools participating as possible. Eligible first teams will be approved by the regional...

433

Minnesota Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

434

Oklahoma Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

435

Nebraska Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

436

Wisconsin Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over second teams - the goal is to have as many different schools participating as possible. Eligible first teams will be approved by the regional...

437

North Carolina Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over second teams - the goal is to have as many different schools participating as possible. Eligible first teams will be approved by the regional...

438

New Jersey Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over second teams - the goal is to have as many different schools participating as possible. Eligible first teams will be approved by the regional...

439

U.S. Virgin Islands Regional High School Science Bowl | U.S....  

Office of Science (SC) Website

teams taking precedence over second teams - the goal is to have as many different schools participating as possible. Eligible first teams will be approved by the regional...

440

South Dakota Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over second teams - the goal is to have as many different schools participating as possible. Eligible first teams will be approved by the regional...

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

North Dakota Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over second teams - the goal is to have as many different schools participating as possible. Eligible first teams will be approved by the regional...

442

Michigan Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

443

SHPE NYC Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

444

Maryland Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over third teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

445

Tennessee Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over second teams - the goal is to have as many different schools participating as possible. Eligible first and second teams will be approved to...

446

Mississippi Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

teams taking precedence over second teams, with the goal of having as many different schools participating as possible. Eligible first teams will be approved by the regional...

447

STEP Regional High School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

Fee: NA Regional Geographic Information: New York State STEP students from schools NOT already participating in a regional event Team Approval Process Teams are...

448

Evaluation of the Safety Collaborative Human Relations Subcommittee in LAUSD District 7 High Schools  

E-Print Network (OSTI)

and attendance rate increases, as school administratorshigher attendance rates and the increase rate was higher inthat the attendance rate would increase even without Safety

Jessie Kim; Takaaki Miyamoto; Yoko Nakashima-Myers; Maisa Youssef

2006-01-01T23:59:59.000Z

449

UIC Regional High School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl U.S. Department of Energy SC-27...

450

High school students use nation's top X-rays to study Illinois...  

NLE Websites -- All DOE Office Websites (Extended Search)

States and the world. These scientists come to the APS from universities, industry, medical schools, and other research institutions. Click to enlarge. Argonne's Advanced...

451

Maine Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

2014 Maximum Number of Teams: 20 Maximum Number of Teams per School: 2 Registration Fee: NA Regional Geographic Information: Maine Team Approval Process Teams are approved on a...

452

The study of multi-institutional collaborations in high-energy physics  

SciTech Connect

Since World War II, the organizational framework for scientific research is increasingly the multi-institutional collaboration, especially in high-energy physics. A broad preliminary survey, into the functioning of research collaborations involving three or more institutions is described. The study is designed to identify patterns of collaborations, define the scope of the documentation problems, field-test possible solutions, recommend future actions, and build an archives of oral history interviews and other resources for scholarly use. Once the study is completed, its findings will be used to promote systems to document significant collaborative research.

Not Available

1991-01-01T23:59:59.000Z

453

High-energy-physics studies. Progress report, Part I. Experimental program  

SciTech Connect

The experimental high energy physics program at Ohio State University for 1982 is described. The following topics are discussed: a search for neutrino oscillations at LAMPF; measuring charm and beauty decays via hadronic production in a hybrid emulsion spectrometer; prompt neutrino production experiment; search for long-lived particles from neutrino interactions in a tagged emulsion spectrometer; electron-positron interactions at CESR-CLEO; a search for exotic forms of stable matter; and development of computer systems for data processing and for development of detectors. (GHT)

1982-01-01T23:59:59.000Z

454

Dictionary of high-energy physics in English, German, French and Russian  

Science Conference Proceedings (OSTI)

The dictionary contains approximately 5,000 entries in each of the four languages covered (English, German, French and Russian). This dictionary provides a comprehensive collection of terms used in high-energy physics. The terms were compiled from specialized literature, including the most recent reports from research institutes and proceedings of conferences. The dictionary uses the approved lexicographical system of the other dictionaries. To each entry is added the special field from which the term derives and further information that may help in understanding the correct meaning of the term. The alphanumeric arrangement allows the user to translate from any of the four languages into any of the other languages included.

Sube, R.

1987-01-01T23:59:59.000Z

455

Exploring the cognitive loads of high-school students as they learn concepts in web-based environments  

Science Conference Proceedings (OSTI)

This study measured high-school learners' cognitive load as they interacted with different web-based curriculum components, and examined the interactions between cognitive load and web-based concept learning. Participants in this study were 105 11th ... Keywords: Improving classroom teaching, Interactive learning environments, Pedagogical issues, Secondary education

Cheng-Chieh Chang; Fang-Ying Yang

2010-09-01T23:59:59.000Z

456

High School SMILE Club Activities Summer 2009 Teacher Resources Booklet SMILE Summer Teacher Workshop Aug 11th 2009  

E-Print Network (OSTI)

- coastal wetland system. Louisiana's coastal marshes produce an annual commercial fish and shellfish Workshop Aug 11th 2009 High