Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High School Internship | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Internships, students must be: United States citizens or permanent resident alien at the time of applying Able to obtain transportation to and from the laboratory. (The...

2

Effectiveness of Tutorials for Introductory Physics in Argentinean high schools  

Science Journals Connector (OSTI)

This longitudinal study reports the results of a replication of Tutorials in Introductory Physics in high schools of a Latin-American country. The main objective of this study was to examine the suitability of Tutorials for local science education reform. Conceptual learning of simple resistive electric circuits was determined by the application of the single-response multiple-choice test ôDetermining and Interpreting Resistive Electric Circuits Concepts Testö (DIRECT) to high school classes taught with Tutorials and traditional instruction. The study included state and privately run schools of different socioeconomic profiles, without formal laboratory space and equipment, in classes of mixed-gender and female-only students, taught by novice and experienced instructors. Results systematically show that student learning is significantly higher in the Tutorials classes compared with traditional teaching for all of the studied conditions. The results also show that long-term learning (one year after instruction) in the Tutorials classes is highly satisfactory, very similar to the performance of the samples of college students used to develop the test DIRECT. On the contrary, students following traditional instruction returned one year after instruction to the poor performance (<20%) shown before instruction, a result compatible with the very low level of conceptual knowledge of basic physics recently determined by a systematic study of first-year students attending seven universities in Spain and four Latin-American countries. Some replication and adaptation problems and difficulties of this experience are noted, as well as recommendations for successful use of Tutorials in high schools of similar educational systems.

J. Benegas and J. Sirur Flores

2014-03-24T23:59:59.000Z

3

Early NYC High School Physics and Development of the Science Magnet School  

Science Journals Connector (OSTI)

The Bronx High School of Science opened in 1938 and is often considered the premier science magnet school in the country. While Bronx High may be one of the most successful science magnet schools it was not the first such school even in New York City. It owes its existence almost entirely to the development of the science magnet program in an earlier New York City school Stuyvesant High School in Manhattan and in particular to one of its early principals physicist Dr. Ernest R. von Nardroff (1864ľ1938).

Walter Hellman

2005-01-01T23:59:59.000Z

4

Whatĺs the use of high-school physics texts?  

Science Journals Connector (OSTI)

Do students read physics texts? How do teachers use physics texts? How can students be persuaded to read the text? Should physics teachers encourage the reading of texts? These questions are addressed and recommendations are given for choosing a text for your high school physics class.

Physics Textbook Review Committee

1999-01-01T23:59:59.000Z

5

PROFILE OF A HIGH SCHOOL INTERN: JOSHUA BLOOM | Princeton Plasma Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

PROFILE OF A HIGH SCHOOL INTERN: JOSHUA BLOOM PROFILE OF A HIGH SCHOOL INTERN: JOSHUA BLOOM June 15, 2013 Some students come into the high school internship program at PPPL already harboring an interest in plasma physics, knowing exactly what research they want to work on and what they want to learn. Others come in not really knowing what to expect. Josh Bloom, a graduating senior from West Windsor-Plainsboro High School North, falls into the latter category, coming into PPPL with not necessarily any particular interest in working with plasma physics, but just a desire to make the most out of his high school's Senior Option program, in which qualifying students are granted the opportunity to spend a portion of their last semester in professional internships. Josh's interests in science were not tailored specifically to plasma

6

Proceedings of the 2010 European School of High-energy Physics, Raseborg, Finland, 20 Jun - 3 Jul 2010  

E-Print Network (OSTI)

The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, heavy ion physics, physics beyond the Standard Model, neutrino physics, and cosmology.

C. Grojean; M. Spiropulu

2012-02-08T23:59:59.000Z

7

High School Teams 2015  

NLE Websites -- All DOE Office Websites (Extended Search)

School Salem, OR McNary High School Keizer, OR Mountain View High School Vancouver, WA North Bend High School North Bend, OR North Medford High School Medford, OR Olympia High...

8

Construction of a hands?on museum exhibit on physical acoustics by high school students.  

Science Journals Connector (OSTI)

High school students at the LBJ Science Academy constructed a hands?on acoustic levitation exhibit for Discovery Hall an interactive science museum in Austin Texas. In addition to the levitation apparatus itself the exhibit includes posters that explain fundamental principles associated with acoustic levitation e.g. vibration resonance standing waves radiation pressure etc. The project was sponsored by the Acoustical Society of America through an initiative of the Committee on Education in Acoustics to involve high school students in science projects based on acoustics. A review of the project will be presented in this paper. (The donation of a loudspeaker by JBL is also gratefully acknowledged.)

Tony Bertucci; Thomas W. Van Doren

1991-01-01T23:59:59.000Z

9

High School Testing  

E-Print Network (OSTI)

The High School Testing Program has been suspended. Jerry Woodward High School Testing Program Mathematical Sciences Building 150 N. University Street

10

LANL | Physics | High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

high energy physics frontiers as defined by the Department of Energy's Office of High Energy Physics. Exploring the intensity frontier On the trail of one of the greatest...

11

Scottish Universities Physics Alliance Graduate School  

E-Print Network (OSTI)

Scottish Universities Physics Alliance SUPA PaLS Graduate School Avril Manners avril.manners@supa.ac.uk Director, SUPA Graduate School www.supa.ac.uk #12;Scottish Universities Physics Alliance Total Number of Students #12;Scottish Universities Physics Alliance Existing PaLS Graduate School ┬Ě Intro Bio School

Greenaway, Alan

12

Scottish Universities Physics Alliance GRADUATE SCHOOL  

E-Print Network (OSTI)

Scottish Universities Physics Alliance GRADUATE SCHOOL SUPA II: Catalogue of Courses & Student Alliance Welcome to SUPA SUPA is the Scottish Universities Physics Alliance. It is a research alliance

Greenaway, Alan

13

Cardiff School of Physics and Astronomy  

E-Print Network (OSTI)

Cardiff School of Physics and Astronomy Postgraduate Programmes www.astro.cardiff.ac.uk #12;Welcome to the Cardiff School of Physics and Astronomy 1 Director of PG Studies welcome 2 An Introduction to the Cardiff School of Physics and Astronomy 3 Cardiff: The City 4 Cardiff: The University 6 Research Groups 8

Davies, Christopher

14

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Energy Science Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering...

15

High School Students' Modeling Knowledge High School Students' Modeling Knowledge  

E-Print Network (OSTI)

High School Students' Modeling Knowledge High School Students' Modeling Knowledge David Fortus of the authors. #12;High School Students' Modeling Knowledge Abstract Modeling is a core scientific practice. This study probed the modeling knowledge of high school students who had not any explicit exposure

16

Cardiff School of Physics and Astronomy  

E-Print Network (OSTI)

Cardiff School of Physics and Astronomy Undergraduate Degree Programmes www.astro.cardiff.ac.uk #12;Cardiff School of Physics and Astronomy SUPPORTIVE ENVIRONMENT FRIENDLY ON SITE FACILITIES TRANSFERABLE and Astronomy at Cardiff 10 Degree Programmes 13 Degree Programme Structures 17 Employability and Careers 20

Davies, Christopher

17

School of Physics and Astronomy Instructor's  

E-Print Network (OSTI)

School of Physics and Astronomy Fall 2007 Instructor's Handbook A Guide for TAs #12;#12;Table is to help students learn physics through problem solving. But what does it mean to "learn physics" and what Kubota, Brita Nellermoe and Matthew Parker. ┬ę University of Minnesota, Department of Physics, 2007 #12

Minnesota, University of

18

ANNUAL WINTER SCHOOLANNUAL WINTER SCHOOL Petersburg Nuclear Physics Institute  

E-Print Network (OSTI)

ANNUAL WINTER SCHOOLANNUAL WINTER SCHOOL Petersburg Nuclear Physics Institute National Research February ┬ş 1 March, 2014 Petersburg Nuclear Physics Institute (PNPI) conducts the XLVIII Annual Winter Physics ┬Ě Theoretical Physics School ┬Ě School on Nuclear Reactor Physics ┬Ě Accelerator Physics School

Titov, Anatoly

19

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 HEPlogo.jpg The NERSC Program Requirements Review "Large Scale Computing and Storage...

20

High Performance Computing School COMSC  

E-Print Network (OSTI)

High Performance Computing School COMSC This module aims to provide the students with fundamental knowledge and understanding of techniques associated with High Performance Computing and its practical' skills in analysing and evaluating High Performance Computing and will be structured around

Martin, Ralph R.

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Coal Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Coal Study Guide - High School Coal Study Guide - High School More Documents & Publications Coal Study Guide - Middle School Coal Study Guide for Elementary School...

22

Brookhaven High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy Physics High-Energy Physics High-energy physicists probe the properties and behavior of the most elementary particles in the universe. At the Alternating Gradient Synchrotron (AGS), they perform experiments of unique sensitivity using high-intensity, intermediate-energy beams. The AGS currently provides the world's most intense high-energy proton beam. It is also the world's most versatile accelerator, accelerating protons, polarized protons, and heavy ions to near the speed of light. Magnet system at Brookhaven used to measure the magnetic moment of the muon. Important discoveries in high-energy physics were made at the AGS within the last decade. An international collaboration, including key physicists from Brookhaven, performed a very high-precision measurement of a property

23

faculty of engineering and physical sciences School of Physics and Astronomy  

E-Print Network (OSTI)

faculty of engineering and physical sciences School of Physics and Astronomy Visit/Interview Day into the School of Physics and Astronomy at the University of Manchester. The School receives approximately 1200 of Physics at Astronomy at the University of Manchester. #12;welcome Welcome to the School of Physics

24

Department of Physics High Energy Physics Group  

E-Print Network (OSTI)

Department of Physics High Energy Physics Group Electrical Engineer (Job ref: 0004) The High Energy and experience. A job description and an application form can be obtained from http

25

Natural Gas Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Natural Gas Study Guide - High School Natural Gas Study Guide - High School Natural Gas Study Guide - High School More Documents & Publications Natural Gas Study Guide...

26

Cardiff School of Physics and Astronomy  

E-Print Network (OSTI)

for undertaking work that is of `International Excellence' and, in many cases, `world- leading in terms and enter a wide range of careers. Furthermore, the School's outreach activities boost our profile both physics and living systems. We search for gravitational radiation applying the latest techniques

Davies, Christopher

27

Microfluidics for High School Chemistry Students  

Science Journals Connector (OSTI)

Microfluidics for High School Chemistry Students ... We present a laboratory experiment that introduces high school chemistry students to microfluidics while teaching fundamental properties of acidľbase chemistry. ... Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics ...

Melissa Hemling; John A. Crooks; Piercen M. Oliver; Katie Brenner; Jennifer Gilbertson; George C. Lisensky; Douglas B. Weibel

2013-12-09T23:59:59.000Z

28

faculty of engineering and physical sciences School of Physics and Astronomy  

E-Print Network (OSTI)

faculty of engineering and physical sciences School of Physics and Astronomy Postgraduate Project....................................................................................................................................................2 Astronomy and Astrophysics available in the School of Physics & Astronomy from September 2013. The list of projects is by no means

29

High School if required  

E-Print Network (OSTI)

Chemistry II CHEM AP 4-5 Lab required @ UNLV; contact Chemistry PHYS 182 & 182L Engineering Physics III PHYS General Chemistry I CHEM AP 3 Lab required @ UNLV; contact Chemistry CHEM 241 Organic Chemistry I & CHEM 347 Lab Techniques of Organic Chem I CHEM 242 Organic Chemistry II & CHEM 348 Lab Techniques

Walker, Lawrence R.

30

Mira Loma High School and Hopkins Junior High School from California Win  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mira Loma High School and Hopkins Junior High School from Mira Loma High School and Hopkins Junior High School from California Win U.S. Department of Energy National Science Bowl Mira Loma High School and Hopkins Junior High School from California Win U.S. Department of Energy National Science Bowl May 4, 2009 - 12:00am Addthis WASHINGTON, DC - High school and middle school teams from California won the 2009 U.S. Department of Energy (DOE) National Science Bowl® today at the National Building Museum in Washington. Mira Loma High School from Sacramento beat Lexington High School from Lexington, Massachusetts in the high school national championship match. Hopkins Junior High School from Fremont, California beat Jonas Clarke Middle School from Lexington, Massachusetts in the middle school national championship match.

31

School of Engineering and Physical Sciences Undergraduate Programme Handbook for  

E-Print Network (OSTI)

School of Engineering and Physical Sciences Undergraduate Programme Handbook for Physics ┬ş Year 1 of this handbook on the internet at the Department Web site: http://www.eps.hw.ac.uk/~phywnm/PhysicsHandbooks A ┬ş SCHOOL INFORMATION 1 Summary of Key Information KEY CONTACTS IN PHYSICS Room No Head of Teaching Dr J G

Greenaway, Alan

32

Joyce Eveland Oskaloosa High School  

E-Print Network (OSTI)

Cooker As we are beginning conic sections I assign the students a project to build a solar cooker by researching solar cookers and forming teams of three to four students. During this time they are instructedJoyce Eveland Oskaloosa High School evelandj@oskaloosa.k12.ia.us Parabolic Solar

33

Theoretical High Energy Physics  

SciTech Connect

we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

Christ, Norman H.; Weinberg, Erick J.

2014-07-14T23:59:59.000Z

34

David Tsiklauri, Astronomy Unit, School of Physics and Astronomy  

E-Print Network (OSTI)

David Tsiklauri, Astronomy Unit, School of Physics and Astronomy astro.qmul.ac.uk/~tsiklauri 19 Sep oscillations, waves in magnetised plasmas, elements of plasma kinetics. David Tsiklauri Astronomy Unit Queen, Astronomy Unit, School of Physics and Astronomy astro.qmul.ac.uk/~tsiklauri 19 Sep 2012 STFC summer school

35

INT Summer School Proposal Lattice QCD for Nuclear Physics  

E-Print Network (OSTI)

INT Summer School Proposal Lattice QCD for Nuclear Physics Organizers Huey-Wen Lin Department of Nuclear Physics, Johann-Joachim-Becher-Weg 45 55099 Mainz, Germany meyerh@kph.uni-mainz.de David Richards techniques to the study of nuclear physics. The goal of this summer school is to educate and prepare the next

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

36

SCHOOL OF PHYSICS AND ASTRONOMY HONOURS HANDBOOK 2013-14  

E-Print Network (OSTI)

1 SCHOOL OF PHYSICS AND ASTRONOMY HONOURS HANDBOOK ┬ş 2013-14 CONTENTS Page Introduction 3 Aims Spaces 25 J F Allen Physics/Mathematics Library 25 Computing Facilities 26 Student-Staff Council and School President 26 Research Colloquia 27 Advanced Topics in Modern Physics 27 Programme-specific fees 27

Greenaway, Alan

37

Physics and Astronomy The Wiess School of Natural Sciences  

E-Print Network (OSTI)

233 Physics and Astronomy The Wiess School of Natural Sciences Chair F. Barry Dunning Professors of Physics and Astronomy offers undergraduate and graduate programs for a wide range of interests. The bachelor of arts degrees in physics and in #12;234 DEPARTMENTS / Physics and Astronomy All physics majors

Richards-Kortum, Rebecca

38

Physics and Astronomy The Wiess School of Natural Sciences  

E-Print Network (OSTI)

209 Physics and Astronomy The Wiess School of Natural Sciences Chair F. Barry Dunning Professors / Physics and Astronomy All physics majors must complete the following courses: PHYS 101 or 111 Mechanics Modern Physics PHYS 231 Elementary Physics Laboratory II PHYS 301 Intermediate Mechanics MATH 101

Richards-Kortum, Rebecca

39

Heat Pump for High School Heat Recovery  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-1 Heat Pump for High School Bathroom Heat Recovery Kunrong Huang Hanqing Wang Xiangjiang Zhou Associate professor Professor Professor School...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

40

The University of Manchester School of Physics and Astronomy  

E-Print Network (OSTI)

The University of Manchester School of Physics and Astronomy www. The University of Manchester was my first choice because I knew it is at the forefront of astronomy research to help international students settle in. The School of Physics and Astronomy provided me with a mentor

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

UNIVERSITY OF ST ANDREWS SCHOOL OF PHYSICS AND ASTRONOMY  

E-Print Network (OSTI)

UNIVERSITY OF ST ANDREWS SCHOOL OF PHYSICS AND ASTRONOMY Guidance notes for potential exchange and study abroad students The School of Physics and Astronomy is pleased to welcome exchange and study to the nature of the module it is not permitted to take this introductory module as well as any other astronomy

Greenaway, Alan

42

Margaretta High School | Open Energy Information  

Open Energy Info (EERE)

Margaretta High School Margaretta High School Jump to: navigation, search Name Margaretta High School Facility Margaretta High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Margaretta High School Energy Purchaser Margaretta High School Location Castalia OH Coordinates 41.39923794┬░, -82.80122995┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.39923794,"lon":-82.80122995,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Bellevue High School | Open Energy Information  

Open Energy Info (EERE)

Bellevue High School Bellevue High School Jump to: navigation, search Name Bellevue High School Facility Bellevue High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Bellevue High School Energy Purchaser Bellevue High School Location Bellevue WA Coordinates 41.28241024┬░, -82.84591019┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.28241024,"lon":-82.84591019,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

High School Students | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Students National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals Middle School Attending National Event Volunteers...

45

Physics and Astronomy The Wiess School of Natural Sciences  

E-Print Network (OSTI)

257 Physics and Astronomy The Wiess School of Natural Sciences Degrees Offered: BA, BS, MST, MS, PhD The Department of Physics and Astronomy offers undergraduate and graduate programs for a wide range of interests. The bachelor of arts degrees in physics and astronomy are suitable for students who wish to obtain a broad

Richards-Kortum, Rebecca

46

Physics and Astronomy The Wiess School of Natural Sciences  

E-Print Network (OSTI)

Physics and Astronomy The Wiess School of Natural Sciences Degrees Offered: BA, BS, MST, MS, PhD The Department of Physics and Astronomy offers undergraduate and graduate programs for a wide range of interests. The bachelor of arts degrees in physics and astronomy are suitable for students who wish to obtain a broad

Richards-Kortum, Rebecca

47

Physics and Astronomy The Wiess School of Natural Sciences  

E-Print Network (OSTI)

1 Physics and Astronomy The Wiess School of Natural Sciences Degrees Offered: BA, BS, MST, MS, PhD The Department of Physics and Astronomy offers undergraduate and graduate programs for a wide range of interests. The bachelor of arts degrees in physics and astronomy are suitable for students who wish to obtain a broad

Richards-Kortum, Rebecca

48

Physics and Astronomy The Wiess School of Natural Sciences  

E-Print Network (OSTI)

246 Physics and Astronomy The Wiess School of Natural Sciences Degrees Offered: BA, BS, MST, MS, PhD The Department of Physics and Astronomy offers undergraduate and graduate programs for a wide range of interests. The bachelor of arts degrees in physics and astronomy are suitable for students who wish to obtain a broad

Richards-Kortum, Rebecca

49

Physics and Astronomy The Wiess School of Natural Sciences  

E-Print Network (OSTI)

234 Physics and Astronomy The Wiess School of Natural Sciences Degrees Offered: BA, BS, MST, MS, PhD The Department of Physics andAstronomy offers undergraduate and graduate pro- grams for a wide range of interests.The bachelor of arts degrees in physics and in astronomy are suitable for students who wish to obtain a broad

Richards-Kortum, Rebecca

50

Physics and Astronomy The Wiess School of Natural Sciences  

E-Print Network (OSTI)

228 Physics and Astronomy The Wiess School of Natural Sciences Degrees Offered: BA, BS, MST, MS, PhD The Department of Physics andAstronomy offers undergraduate and graduate pro- grams for a wide range of interests.The bachelor of arts degrees in physics and in astronomy are suitable for students who wish to obtain a broad

Richards-Kortum, Rebecca

51

Research in High Energy Physics  

SciTech Connect

This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

Conway, John S.

2013-08-09T23:59:59.000Z

52

Physics high-ranking Journals (category 2) Advances in Physics  

E-Print Network (OSTI)

Physics high-ranking Journals (category 2) Advances in Physics Annual Review of Astronomy and Astrophysics Annual Review of Nuclear and Particle Science Applied Physics Letters Astronomy & Astrophysics Astronomy and Astrophysics Review Astrophysical Journal European Physical Journal D. Atomic, Molecular

53

High energy physics  

SciTech Connect

Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

Kernan, A.; Shen, B.C.; Ma, E.

1997-07-01T23:59:59.000Z

54

2014 ADMISSIONS HANDBOOK For high school counselors and  

E-Print Network (OSTI)

2014 ADMISSIONS HANDBOOK For high school counselors and community organizations http. In just a few months, we will also celebrate the grand opening of the new Physics and Nanotechnology of immigration status. Details are included on page 17 of this booklet. In this handbook The following handbook

Amin, S. Massoud

55

High School | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

High School High School National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Print Text Size: A A A RSS Feeds FeedbackShare Page 2013 High School Teams 2013 High School National Teams The high school competition began in 1991 as the National Science Bowl (NSB) as a highly competitive science education and academic event among teams of high school students who compete in a fast-paced verbal forum to solve technical problems and answer questions in all branches of science

56

Oil Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Oil Study Guide - High School Oil Study Guide - High School More Documents & Publications Inspection Report: INS-L-12-06 Fossil Energy Today - First Quarter, 2012 SPR...

57

Wausau High School | Open Energy Information  

Open Energy Info (EERE)

Wausau High School Wausau High School Jump to: navigation, search Name Wausau High School Facility Wausau High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Wausau WI Coordinates 44.97944687┬░, -89.59666014┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.97944687,"lon":-89.59666014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

High School Girls Honored for Math, Science Achievements at Sandia...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Girls Honored for Math, Science Achievements at Sandia National Laboratory High School Girls Honored for Math, Science Achievements at Sandia National Laboratory May...

59

Thomas Jefferson High School for Science & Technology National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

60

Secretary Chu Announces Middle and High School Finalists Set...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Phoenix Brophy College Preparatory (HS) Scottsdale BASIS Scottsdale (MS) Arkansas Fort Smith Trinity Junior High School Little Rock Little Rock Central High School California...

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SUPPORT FOR HU CFRT SUMMER HIGH SCHOOL FUSION WORKSHOP  

SciTech Connect

Nine summer fusion science research workshops for minority and female high school students were conducted at the Hampton University Center for Fusion Research and Training from 1996 to 2005. Each workshop was of the duration of eight weeks. In all 35 high school students were mentored. The students presented 28 contributed papers at the annual meetings of the American Physical Society Division of Plasma Physics. These contributed papers were very well received by the plasma physics and fusion science research community. The students won a number of prestigious local, state, and national honors, awards, prizes, and scholarships. The notable among these are the two regional finalist positions in the 1999 Siemens-Westinghouse Science and Technology Competitions; 1st Place U.S. Army Award, 2006; 1st Place U.S. Naval Science Award, 2006; Yale Science and Engineering Association Best 11th Grade Project, 2006; Society of Physics Students Book Award, 2006; APS Corporate Minority Scholarship and others. This workshop program conducted by the HU CFRT has been an exemplary success, and served the minority and female students exceptionally fruitfully. The Summer High School Fusion Science Workshop is an immensely successful outreach activity conducted by the HU CFRT. In this workshop, we train, motivate, and provide high quality research experiences to young and talented high school scholars with emphasis on under-represented minorities and female students in fusion science and related areas. The purpose of this workshop is to expose minority and female students to the excitement of research in science at an early stage in their academic lives. It is our hope that this may lead the high school students to pursue higher education and careers in physical sciences, mathematics, and perhaps in fusion science. To our knowledge, this workshop is the first and only one to date, of fusion science for under-represented minorities and female high school students at an HBCU. The faculty researchers in the HU CFRT mentor the students during summers. Mentors spend a considerable amount of time and efforts in training, teaching, guiding and supervising research projects. The HU CFRT has so far conducted nine workshops during the summers of 1996-2000 and 2002-2005. The first workshop was conducted in summer 1996. Students for the workshop are chosen from a national pool of exceptionally talented high school rising seniors/juniors. To our knowledge, most of these students have gone on to prestigious universities such as Duke University, John Hopkins University, CalTech, UCLA, Hampton University, etc. after completing their high school. For instance, Tiffany Fisher, participant of the 1996 summer workshop completed her BS in Mathematics at Hampton University in May 2001. She then went on to Wake Forest University at Winston-Salem, North Carolina to pursue graduate studies. Anshul Haldipur, participant of the 1999 summer workshop, began his undergraduate studies at Duke University in 2000. Christina Nguyen and Ilissa Martinez, participants of the 2000 summer workshop, are pursuing their undergraduate degrees at the UCLA and Florida State University respectively. The organizing committee of the APS DPP annual meeting invited Dr. Punjabi to deliver an invited talk on training the next generation of fusion scientists and engineers at the 2005 APS DPP meeting in Denver, CO. The organizing committee distributed a special flier with the Bulletin to highlight this invited talk and another talk on education as well the expo. This has given wide publicity and recognition to our workshops and Hampton University. Prof. Punjabi's talk: 'LI2 2: Training the next generation of fusion scientists and engineers: summer high school fusion science workshop, Bull. Amer. Phys. Soc. 50, 221 (2005)' was very well-received. He talked about HU education and outreach initiative and the HU CFRT Summer High School Workshop. The audience had a considerable number of questions about our workshops and the High School to PhD Pipeline in fusion science. Professor William Mathews of

Alkesh Punjabi

2010-02-09T23:59:59.000Z

62

Meet Abby HAtfield, physical science teacher and science department chair at Newmarket High School, and Matt endrizzi, science teacher at St. thomas  

E-Print Network (OSTI)

the school year, they have an enthusiasm for science that young students cannot resist. these elementary, and engineering education. KeePeRS (Kids eager for engineering Program with elementary Research-based Science-schoolers to hands-on engineering challenges and to various fields of engineering. UNH Civil, Chemical, electrical

New Hampshire, University of

63

Ecological Factors Affecting Hispanic Urban Middle School and High School Adolescentsĺ College and Career Aspirations  

E-Print Network (OSTI)

............................................................................. 43 IV RESULTS.......................................................................................... 44 Results Related to Middle School Students ...................................... 44 Results Related to Research Question One... aspirations from both adolescent development areas (a) middle school and (b) high school. Most studies have examined Hispanic adolescents? college and career aspirations using samples from either middle school or high school. Included in the review...

Hostrup, Judy Ann

2011-08-08T23:59:59.000Z

64

MSc NanoBio Science UCD School of Physics  

E-Print Network (OSTI)

, such as high-efficiency solar cells based on photosynthetic processes and adaptive biocompatible materials, spanning the range of modern physics, from particle physics, astrophysics and spectroscopy, to condensed

65

High School Students' Understandings and Representations of the Electric Field  

E-Print Network (OSTI)

This study investigates the understandings and representations of the electric field expressed by Chinese high school students ages 15 to 16 who have not yet received high school-level physics instruction. The literature has reported students' ideas of the electric field post-instruction as indicated by their performance on textbook-style questionnaires. However, by relying on measures such as questionnaires, previous research has inadequately captured the thinking process that led students to answer questions in the ways that they did. The present study portrays the beginning of this process by closely examining students' understandings pre-instruction. The participants in this study were asked to engage in a lesson that included informal group tasks that involved playing a Web-based hockey game that replicated an electric field and drawing comic strips that used charges as characters. The lesson was videotaped, students' work was collected, and three students were interviewed afterward to ascertain more det...

Cao, Ying

2014-01-01T23:59:59.000Z

66

Calling Science Stars in Middle and High Schools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools November 10, 2010 - 10:03am Addthis 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Do you know some science whizzes in middle or high school? Because now is the time for 5-student teams to register for their region's Science Bowl competition. Students are quizzed, Jeopardy-style, on topics including astronomy, biology, chemistry, Earth science, general science, mathematics and physics

67

Calling Science Stars in Middle and High Schools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools November 10, 2010 - 10:03am Addthis 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Do you know some science whizzes in middle or high school? Because now is the time for 5-student teams to register for their region's Science Bowl competition. Students are quizzed, Jeopardy-style, on topics including astronomy, biology, chemistry, Earth science, general science, mathematics and physics

68

West Windsor-Plainsboro High School South wins regional Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

West Windsor-Plainsboro High School South wins regional Science Bowl at PPPL A dramatic ending to High School Bowl sends local team to nationals By Jeanne Jackson DeVoe February...

69

Video: Mira Loma High School Named Science Bowl Grand Champion...  

Energy Savers (EERE)

Mira Loma High School Named Science Bowl Grand Champion Video: Mira Loma High School Named Science Bowl Grand Champion April 28, 2014 - 6:03pm Addthis Secretary Moniz speaks at the...

70

DC High School Science Bowl Regionals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DC High School Science Bowl Regionals DC High School Science Bowl Regionals February 22, 2014 1:15PM to 8:15PM EST Department of Energy headquarters - 1000 Independence Ave SW,...

71

Microsoft Word - 2014 DOE Science Bowl-high schools  

NLE Websites -- All DOE Office Websites (Extended Search)

Feb. 21, 2014 Robert.Smith@lex.doe.gov Calloway County High School Wins DOE Regional Science Bowl PADUCAH, KY - Calloway County High School won the U.S. Department of Energy's West...

72

Alternative Fuels Data Center: Missouri High School Students...  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri High School Students Get Hands-On Training With Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Missouri High School Students Get Hands-On Training...

73

ELT in Iranian high schools in Iran, Malaysia and Japan 131 ELT in Iranian high schools in  

E-Print Network (OSTI)

ELT in Iranian high schools in Iran, Malaysia and Japan 131 ELT in Iranian high schools in Iran teachers using prescribed textbooks at Iranian high schools in Iran, Japan and Malaysia. Based on my own testing instruments, influence how teachers use these textbooks. In Iran, the highly standardized national

Chaudhuri, Sanjay

74

High Energy Physics from High Performance Computing  

E-Print Network (OSTI)

We discuss Quantum Chromodynamics calculations using the lattice regulator. The theory of the strong force is a cornerstone of the Standard Model of particle physics. We present USQCD collaboration results obtained on Argonne National Lab's Intrepid supercomputer that deepen our understanding of these fundamental theories of Nature and provide critical support to frontier particle physics experiments and phenomenology.

T. Blum

2009-08-06T23:59:59.000Z

75

Microfluidics for High School Chemistry Students Melissa Hemling,,  

E-Print Network (OSTI)

Microfluidics for High School Chemistry Students Melissa Hemling,, John A. Crooks,┬ž Piercen M present a laboratory experiment that introduces high school chemistry students to microfluidics while microfluidic systems using nonspecialized equipment that is available in high school classrooms and reagents

Weibel, Douglas B.

76

Category:Wind for Schools High School Curricula | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon ┬╗ Category:Wind for Schools High School Curricula Jump to: navigation, search Category containing Wind for Schools Portal High School curricula. To add a new entry, you can upload a new file. In the summary field, type in the following text to add the file to this category: [[Category:Wind for Schools Portal Curricula]][[Category:Wind for Schools High School Curricula]] Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Media in category "Wind for Schools High School Curricula" The following 22 files are in this category, out of 22 total. Air Density Lab.pdf Air Density Lab.pdf 240 KB Anemometer activity.docx Anemometer activity.docx 64 KB Blade design modification log.docx Blade design modificat...

77

Poudre High School From Fort Collins , Colorado Wins U.S. Department...  

Energy Savers (EERE)

Scottsdale, Arizona East Brunswick High School, East Brunswick, New Jersey Edwin O. Smith High School, Storrs, Connecticut Homestead High School, Cupertino, California Mira...

78

Precision Crystal Calorimeters in High Energy Physics  

ScienceCinema (OSTI)

Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal?s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

Ren-Yuan Zhu

2010-01-08T23:59:59.000Z

79

NETL: 2010 SW PA High School Science Bowl  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Science Bowl High School Science Bowl The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), and the Community College of Allegheny County (CCAC), South Campus, would like to invite you to participate in one of the premier scientific events for high school students, the Southwestern Pennsylvania High School Science Bowl 2010 on February 20, 2010. This will be NETL's 19th year sponsoring the high school competition. There is a change this year in the registration process from past years, all teams who are registering to complete, must do so through the National Science Bowl website by January 7, 2010. For those who are not familiar with the Science Bowl here are some highlights: The competition is open to high school students (school, scouts, home school) from Southwestern Pennsylvania (SW PA). Complete eligibility requirements are located at the National Science Bowl website.

80

High energy physics - The large and the small  

SciTech Connect

In this Sixth International School on Field Theory and Gravitation, I was invited to give this talk to the students and researchers of Field Theory mainly about LHC - The Large Hadron Collider and results. I will try to summarize the main daily life of the high energy physics and give an idea about the experiments and the expectations for the near future. I will comment the present results and the prospects to LHC/CMS.

Santoro, Alberto [Universidade do Estado do Rio de Janeiro (Brazil)

2012-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Proactive campus supervision : a high school case  

E-Print Network (OSTI)

culture, the mission also plays a role in school safety andculture to be commonly discussed in reference to school safety andculture most often referred to in reference to school safety and

Steitz, Matthew Harold

2010-01-01T23:59:59.000Z

82

Publications on High-Performance Schools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schools Schools Publications on High-Performance Schools Learn about building high-performance schools that incorporate energy efficiency and renewable energy in publications from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL). Building Energy-Efficient Schools in New Orleans: Lessons Learned This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. Building Energy-Efficient Schools in New Orleans: Lessons Learned Summary This summary presents the lessons learned at five schools in New Orleans that were rebuilt using energy efficiency and renewable energy technologies after Hurricanes Katrina and Rita. Energy Design Guidelines for High Performance Schools: Hot and Humid

83

NJ Regional Middle School Science Bowl | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

February 22, 2013, 8:00am February 22, 2013, 8:00am Science Education Lab-wide Event NJ Regional Middle School Science Bowl Teams of students are invited to participate in the Department of Energy's National Science Bowl Competition. Each year PPPL hosts the New Jersey Regional Science Bowl which decides which teams from the local area can continue onto the national competition in Washington, D.C. The Science Bowl is a double elimination contest with oral question and answer rounds in the fields of chemistry, biology, physics, astronomy and mathematics plus general and earth sciences. Questions are given in a toss-up with a bonus format. For more information, visit our Science Bowl website! Contact Information Website: NJ Regional Middle School Science Bowl Coordinator(s): Deedee Ortiz

84

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure Dear Student Applicant: To be eligible to participate in the Jefferson Lab High School Summer Honors Program, you must attend a local high school (within 60 miles of Jefferson Lab), be at least 16 years old by the start date of the program, be in good academic standing, and maintain at least a 3.3 grade point average. Students who are selected to participate in the Jefferson Lab High School Summer Honors Program are chosen on the basis of demonstrated skills and merit. Dependents of Jefferson Lab employees are not eligible for this program. The 2014 Jefferson Lab High School Summer Honors Program begins on June 23, 2014 and concludes on August 1, 2014. To apply to the Jefferson Lab High School Summer Honors Program, follow the

85

HOME SCHOOLED APPLICANTS Home-schooled applicants are students who have completed their high school education either in  

E-Print Network (OSTI)

24 HOME SCHOOLED APPLICANTS Home-schooled applicants are students who have completed their high school education either in part or completely at home. Pennsylvania Act 169 of 1988 permits parents, guardians, and legal custodians to teach their children at home. The parent or guardian has responsibility

Jiang, Huiqiang

86

PARTICIPATION IN HIGH ENERGY PHYSICS  

SciTech Connect

This grant funded experimental and theoretical activities in elementary particles physics at the Illinois Institute of Technology (IIT). The experiments in which IIT faculty collaborated included the Daya Bay Reactor Neutrino Experiment, the MINOS experiment, the Double Chooz experiment, and FNAL E871 - HyperCP experiment. Funds were used to support summer salary for faculty, salary for postdocs, and general support for graduate and undergraduate students. Funds were also used for travel expenses related to these projects and general supplies.

White, Christopher

2012-12-20T23:59:59.000Z

87

Designing High Performance Schools (CD-ROM)  

SciTech Connect

The EnergySmart Schools Design Guidelines and Best Practices Manual were written as a part of the EnergySmart Schools suite of documents, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy. Written for school administrators, design teams, and architects and engineers, the documents are designed to help those who are responsible for designing or retrofitting schools, as well as their project managers. This manual will help design staff make informed decisions about energy and environmental issues important to the school systems and communities.

Not Available

2002-10-01T23:59:59.000Z

88

UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM  

SciTech Connect

The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

Rutherfoord, John P. [University of Arizona] [University of Arizona; Johns, Kenneth A. [University of Arizona] [University of Arizona; Shupe, Michael A. [University of Arizona] [University of Arizona; Cheu, Elliott C. [University of Arizona] [University of Arizona; Varnes, Erich W. [University of Arizona] [University of Arizona; Dienes, Keith [University of Arizona] [University of Arizona; Su, Shufang [University of Arizona] [University of Arizona; Toussaint, William Doug [University of Arizona] [University of Arizona; Sarcevic, Ina [University of Arizona] [University of Arizona

2013-07-29T23:59:59.000Z

89

Activities for Engaging High School Students in Energy Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

PARCI-CARES Harry Bolson, LEED Green Associate Washington University in St. Louis PARCI-CARES Activities for Engaging High School Students in Energy Studies Activities for...

90

HIGH ENERGY PHYSICS SEMINAR, 19931996 1993 Seminars  

E-Print Network (OSTI)

HIGH ENERGY PHYSICS SEMINAR, 1993┬ş1996 1993 Seminars 10/4 Joseph Boudreau Measuring the Z 0 from ZEUS University of Wisconsin 10/25 Thomas E. Browder Unsolved Problems in B Physics Cornell Ecole Normale Superieure 4/4 Naoya Hata Solar Neutrinos: Hint for Neutrino Mass University

91

NREL: News - Lakewood High School Wins Colorado Science Bowl  

NLE Websites -- All DOE Office Websites (Extended Search)

713 713 Lakewood High School Wins Colorado Science Bowl Lakewood School Heads to Washington D.C. to Challenge for National Title January 26, 2013 Students from Lakewood High School Team 1 won the Colorado High School Science Bowl today. They will go on to the 23rd National Science Bowl in Washington D.C., Apr. 25-29, where they will compete for the national title against more than 400 students from 70 high schools. The U.S. Department of Energy (DOE) began the Science Bowl tradition in 1991 as a way to encourage high school students to explore math and science. The Department of Energy's Golden Field Office once again was one of the major sponsors of this year's Colorado Science Bowl, along with DOE's National Renewable Energy Laboratory. Teams from across the state competed in the day-long competition at Dakota

92

Radboud University Nijmegen Theoretical High Energy Physics  

E-Print Network (OSTI)

Radboud University Nijmegen Theoretical High Energy Physics Bachelor thesis The High Energy;CONTENTS CONTENTS Contents 1 Introduction and Research question 2 2 Theoretical Background 3 2.1 Gauge . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 High Energy Behaviour . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.1 Renormalization

van Suijlekom, Walter

93

High Performance Green Schools Planning Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Green Schools Planning Grants High Performance Green Schools Planning Grants High Performance Green Schools Planning Grants < Back Eligibility Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Pennsylvania Program Type State Grant Program Rebate Amount Determined on a case-by-case basis Provider Governor's Green Government Council The Governor's Green Government Council of Pennsylvania provides an incentive for new schools to be built according to green building standards. High Performance Green Schools Planning Grants are designed to cover a portion of the "soft" costs of designing a green building that are

94

A Survey of High Performance Schools  

E-Print Network (OSTI)

of Indoor Air Quality Problems in Schools: Summary of Scientific Reserach (No. ORNL/M-6633/R1). Oak Ridge, Tennessee: Oak Ridge National Laboratory. Becker, B. R. 1990. A Computational parametric Study of Elementary School Energy Use. ASHRAE.... Paper presented at the IAQ 96. Fischer, J., & Sand, J. 2005. Field Test and Performance Verification:Integrated Active Desiccant Rooftop Hybrid System Installed in a School (No. ORNL/SUB/01/4000025209). Oak Ridge, Tennessee: OAK RIDGE NATIONAL...

Im, P.; Haberl, J. S.

2006-01-01T23:59:59.000Z

95

"Chinese Bridge" U.S. High School Students Summer Camp  

E-Print Network (OSTI)

- "Chinese Bridge" U.S. High School Students Summer Camp Agreement Sponsored by the Office of Chinese Language Council International #12;"Chinese Bridge" Summer Camp Agreement "" p. 2 of 5 PARENT in the "Chinese Bridge" US High Schools Students Summer Camp July 17-August 1, 2014. I also confirm that my son

Caughman, John

96

Problem: Computer Science not Taught in Most Alabama High Schools  

E-Print Network (OSTI)

will involve computing. ┬Ě High school graduates in the 21st century cannot afford to be ignorant of Computer ┬Ě Representation across entire state: ┬Ě Next event: May 13th, 2006 ┬Ě Corporate sponsors: UAB Summer Graphics Camp graphics camp for high school students. ┬Ě The camp is designed to introduce students to computer science

Gray, Jeffrey G.

97

Research projects involving inner city high school students  

Science Journals Connector (OSTI)

An account is given of some research projects undertaken by inner city high school students in the Physics Department at Drexel University during the last four years. The students from low income families are sponsored by the Neighborhood Youth Corps (which was established by the Economic Opportunity Act of 1964) with the hope that they will gain worthwhile work experience. Individual projects have included measurement of noise levels around the University frequency analysis of impulsive sounds effect of water content on Youngĺs modulus of various woods effect of sulfuric acid exposure on the mechanical properties of wood and the effect of air pollution in the form of SO2 on the mechanical properties of wet wood. This latter project is being pursued vigorously; new and interesting results appear to be emanating from these particular studies. The article ends with the authorĺs feelings and conclusions about such a program gained from four years of experience.

A. E. Lord Jr.

1975-01-01T23:59:59.000Z

98

Forest City High School Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Forest City High School Wind Farm Facility Forest City High School Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Forest City High School Developer Forest City High School Energy Purchaser Forest City Community School District Location Forest City IA Coordinates 43.266011┬░, -93.653378┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.266011,"lon":-93.653378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Ponderosa High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Ponderosa High School Wind Project Ponderosa High School Wind Project Jump to: navigation, search Name Ponderosa High School Wind Project Facility Ponderosa High School Sector Wind energy Facility Type Community Wind Location CO Number of Units 1 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 109112 References Wind Powering America[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

100

Thomas Jefferson High School for Science & Technology National Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Thomas Jefferson High School for Science & Technology National Science Bowl® Champion Thomas Jefferson High School for Science & Technology National Science Bowl® Champion May 2, 2005 - 12:40pm Addthis WASHINGTON, DC -- "The Incompleteness Theorem" was the answer to a question on mathematics that today clinched the 2005 National Science Bowl® championship for the Thomas Jefferson High School for Science & Technology team from Alexandria, Va. The team received its championship trophy after triumphing over 62 other regional team champions this weekend. The team members are: Logan Kearsley, Matthew Isakowitz, Sam Lederer, Lisa Marrone, Charlotte Seid and coach Sharon Baker. The team also won a research trip to Alaska, three Computer Based Laboratories and $1,000 for their school's science

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Frontiers for Discovery in High Energy Density Physics  

SciTech Connect

The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

2004-07-20T23:59:59.000Z

102

Student Trust: Impacting High School Outcomes  

E-Print Network (OSTI)

and validating a measure of student trust. In W. K. Hoy & M.Perseus. Bidwell, C. E. (1970). Students and schools: Somesocial capital perspective on students' chances of academic

Romero, Lisa

2010-01-01T23:59:59.000Z

103

A report on high-energy physics  

Science Journals Connector (OSTI)

...their subject "high-energy particle physics," and their goal...the energy of the interacting particles (Fig. 1). There is a trend...Pauli once said, 'What God hath put asunder no man shall...12 leptons. There are the particles that carry the forces, the...

Leon M. Lederman

1982-01-01T23:59:59.000Z

104

Density Estimation Trees in High Energy Physics  

E-Print Network (OSTI)

Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.

Anderlini, Lucio

2015-01-01T23:59:59.000Z

105

Status of (US) high energy physics networking  

Science Journals Connector (OSTI)

The current status of networking to and between computers used by the high energy physics community is discussed. Particular attention is given to developments over the last year and to future prospects. Comparison between the current status and that of two years ago indicates that considerable strides have been made but that much remains to be done to achieve an acceptable level of functionality.

H.E. Montgomery

1987-01-01T23:59:59.000Z

106

Status of (US) High Energy Physics Networking  

SciTech Connect

The current status of Networking to and between computers used by the High Energy Physics community is discussed. Particular attention is given to developments over the last year and to future prospects. Comparison between the current status and that of two years ago indicates that considerable strides have been made but that much remains to be done to achieve an acceptable level of functionality.

Montgomery, H.E.

1987-02-01T23:59:59.000Z

107

STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS  

E-Print Network (OSTI)

1 STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS - High Energy Physics Energy Physics" BNPI, Novosibirsk, September 2010 #12;2 STATE RESEARCH CENTER OF RUSSIA INSTITUTE

108

Cedarville Elementary & High School Space Heating Low Temperature  

Open Energy Info (EERE)

Cedarville Elementary & High School Space Heating Low Temperature Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Facility Cedarville Elementary & High School Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606┬░, -120.1732781┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

109

Lewistown High Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

Lewistown High Schools Wind Project Lewistown High Schools Wind Project Jump to: navigation, search Name Lewistown High Schools Wind Project Facility Lewistown High Schools Sector Wind energy Facility Type Community Wind Location MT Coordinates 47.054138┬░, -109.423325┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.054138,"lon":-109.423325,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Burlington High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Burlington High School Wind Project Facility Burlington High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 39.3088┬░, -102.282715┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3088,"lon":-102.282715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Avery County High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

County High School Wind Project County High School Wind Project Jump to: navigation, search Name Avery County High School Wind Project Facility Avery County High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.068371┬░, -81.918159┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.068371,"lon":-81.918159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

USD 393 Solomon High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Solomon High School Wind Project Solomon High School Wind Project Jump to: navigation, search Name USD 393 Solomon High School Wind Project Facility USD 393 Solomon High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.924103┬░, -97.369339┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.924103,"lon":-97.369339,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Nederland High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Nederland High School Wind Project Nederland High School Wind Project Jump to: navigation, search Name Nederland High School Wind Project Facility Nederland High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 39.953613┬░, -105.525124┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.953613,"lon":-105.525124,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

USD 376 Sterling High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name USD 376 Sterling High School Wind Project Facility USD 376 Sterling High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.216789┬░, -98.202492┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.216789,"lon":-98.202492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Pretty Prairie High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Pretty Prairie High School Wind Project Pretty Prairie High School Wind Project Jump to: navigation, search Name Pretty Prairie High School Wind Project Facility Pretty Prairie High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 37.78093┬░, -98.017822┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.78093,"lon":-98.017822,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Mt. Edgecumbe High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Edgecumbe High School Wind Project Edgecumbe High School Wind Project Jump to: navigation, search Name Mt. Edgecumbe High School Wind Project Facility Mt. Edgecumbe High School Sector Wind energy Facility Type Community Wind Location AK Coordinates 57.053928┬░, -135.356903┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.053928,"lon":-135.356903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Diller-Odell High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Diller-Odell High School Wind Project Diller-Odell High School Wind Project Jump to: navigation, search Name Diller-Odell High School Wind Project Facility Diller-Odell High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 40.054523┬░, -96.806374┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.054523,"lon":-96.806374,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Cotulla High School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Cotulla High School Space Heating Low Temperature Geothermal Facility Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility Facility Cotulla High School Sector Geothermal energy Type Space Heating Location Cotulla, Texas Coordinates 28.436934┬░, -99.2350322┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

119

Henley High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Henley High School Space Heating Low Temperature Geothermal Facility Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility Henley High School Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

120

Eudora High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Eudora High School Wind Project Eudora High School Wind Project Jump to: navigation, search Name Eudora High School Wind Project Facility Eudora High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.922672┬░, -95.097763┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.922672,"lon":-95.097763,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

USD 375 Circle High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name USD 375 Circle High School Wind Project Facility USD 375 Circle High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 37.794674┬░, -96.994576┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.794674,"lon":-96.994576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Alleghany High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Alleghany High School Wind Project Facility Alleghany High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.514774┬░, -81.124809┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.514774,"lon":-81.124809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Modoc High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Modoc High School Space Heating Low Temperature Geothermal Facility Modoc High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc High School Sector Geothermal energy Type Space Heating Location Alturas, California Coordinates 41.4871146┬░, -120.5424555┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

124

Loup City High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Loup City High School Wind Project Loup City High School Wind Project Jump to: navigation, search Name Loup City High School Wind Project Facility Loup City High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.283756┬░, -98.967415┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.283756,"lon":-98.967415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Shelley High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Shelley High School Wind Project Shelley High School Wind Project Jump to: navigation, search Name Shelley High School Wind Project Facility Shelley High School Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.3727┬░, -112.134071┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3727,"lon":-112.134071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

USD 345 Seaman High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Seaman High School Wind Project Seaman High School Wind Project Jump to: navigation, search Name USD 345 Seaman High School Wind Project Facility USD 345 Seaman High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.135315┬░, -95.66996┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.135315,"lon":-95.66996,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

High School Students Build Their Own Supercomputer (Almost) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Students Build Their Own Supercomputer (Almost) High School Students Build Their Own Supercomputer (Almost) High School Students Build Their Own Supercomputer (Almost) September 10, 2010 - 9:47am Addthis Eric Gedenk What are the key facts? Students built a computer cluster -- a group of computers communicating with one another to operate as a single machine -- out of Mac mini CPUs. For the third straight year, students and teachers from around Appalachia gathered at Oak Ridge National Laboratory (ORNL) this summer for an interactive training with some of the world's leading computing experts. The focal point of the training was a course called "Build a Supercomputer - Well Almost." And build they did. With guidance from ORNL staff, collaborators and interns, the high-school students went about building a

128

High School Co-op Program Recruitment Calendar  

NLE Websites -- All DOE Office Websites (Extended Search)

Recruitment Calendar High School Co-op Program Recruitment Calendar Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment...

129

Workplace Charging Challenge Partner: El Camino Real Charter High School  

Energy.gov (U.S. Department of Energy (DOE))

El Camino Real Charter High School (ECRCHS) has installed 4 plug-in electric vehicle (PEV) chargers, with plans to expand if demand increases. The charging stations play an integral role in...

130

Fermilab | Newsroom | Press Releases | April 2, 2013: High-school...  

NLE Websites -- All DOE Office Websites (Extended Search)

05 April 2, 2013 FOR IMMEDIATE RELEASE Media Contacts: Susan Dahl, Fermilab Education Office, 630-840-3094 Spencer Pasero, Fermilab Education Office, 630-840-3076 High-school...

131

Fermilab | Newsroom | Press Releases | April 9, 2014: High-school...  

NLE Websites -- All DOE Office Websites (Extended Search)

7 April 9, 2014 FOR IMMEDIATE RELEASE High-school students get real-world advice at Fermilab STEM Career Expo on Wednesday, April 23 photo What does a scientist actually do all...

132

Concordia High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Concordia High School Wind Project Concordia High School Wind Project Jump to: navigation, search Name Concordia High School Wind Project Facility Concordia High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.566231┬░, -97.668411┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.566231,"lon":-97.668411,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Jefferson West High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Jefferson West High School Wind Project Facility Jefferson West High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.193382┬░, -95.560616┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.193382,"lon":-95.560616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Stratton Middle and High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Stratton Middle and High School Wind Project Stratton Middle and High School Wind Project Jump to: navigation, search Name Stratton Middle and High School Wind Project Facility Stratton Middle and High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 39.30444┬░, -102.601151┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.30444,"lon":-102.601151,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Ferndale High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Ferndale High School Wind Project Ferndale High School Wind Project Jump to: navigation, search Name Ferndale High School Wind Project Facility Ferndale High School Sector Wind energy Facility Type Community Wind Location WA Coordinates 48.852478┬░, -122.592613┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.852478,"lon":-122.592613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Mullen High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Mullen High School Wind Project Mullen High School Wind Project Jump to: navigation, search Name Mullen High School Wind Project Facility Mullen High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 42.045742┬░, -101.046158┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.045742,"lon":-101.046158,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

We Have a Winner - DC High School Regional Science Bowl Competition...  

Office of Environmental Management (EM)

We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday...

138

State College Area High School From State College, PA Wins DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State College Area High School From State College, PA Wins DOE's National Science Bowl State College Area High School From State College, PA Wins DOE's National Science Bowl...

139

Asthma & Physical Activity in the School MAKING A DIFFERENCE  

E-Print Network (OSTI)

2012 #12;NAEPP School Subcommittee Members* Lani S. M. Wheeler, M.D., F.A.A.P., F.A.S.H.A. Chair, NAEPP Association of School Administrators Katherine Pruitt American Lung Association Paul V. Williams, M.D. Chair

Bandettini, Peter A.

140

You are eligible to be reviewed by SF State if you meet the following criteria: You are a high school graduate, or equivalent (GED or High School Proficiency)  

E-Print Network (OSTI)

are a high school graduate, or equivalent (GED or High School Proficiency) You must complete the required meet or exceed the minimum eligibility index. The eligibility index is a weighted combination of high of a California high school must have a mini- mum index of 3502 using the SAT or 842 using the ACT The CSU

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Trenches Under The Pipeline: The Educational Trajectories of Chicano Male Continuation High School Students  

E-Print Network (OSTI)

Trenches Under The Pipeline: The Educational Trajectories ofnavigate the educational pipeline, continuation high school

Malagon, Maria

2010-01-01T23:59:59.000Z

142

High School Regionals | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Regionals Regionals National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School High School Regionals Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Team Registration For more information, please visit the High School Coach page. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

143

PV Solar Site Assessment (Milwaukee High School)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

144

Nevada High School Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Nevada High School Wind Farm Nevada High School Wind Farm Jump to: navigation, search Name Nevada High School Wind Farm Facility Nevada High School Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Nevada High School Developer Minnesota Windpower Energy Purchaser Alliant/IES Utilities Location NV - Story County IA Coordinates 42.020791┬░, -93.435997┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.020791,"lon":-93.435997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

High Energy Physics and Nuclear Physics Network Requirements  

SciTech Connect

The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily reliant on transoceanic connectivity, which is subject to longer term service disruptions than terrestrial connectivity. The network engineering aspects of undersea connectivity will continue to be a significant part of the planning, deployment, and operation of the data analysis infrastructure for HEP and NP experiments for the foreseeable future. Given their critical dependency on networking services, the experiments have expressed the need for tight integration (both technically and operationally) of the domestic and the transoceanic parts of the network infrastructure that supports the experiments. 4. The datasets associated with simulations continue to increase in size, and the need to move these datasets between analysis centers is placing ever-increasing demands on networks and on data management systems at the supercomputing centers. In addition, there is a need to harmonize cybersecurity practice with the data transfer performance requirements of the science. This report expands on these points, and addresses others as well. The report contains a findings section in addition to the text of the case studies discussed during the review.

Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

2014-03-02T23:59:59.000Z

146

Rigby High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Rigby High School Wind Project Rigby High School Wind Project Facility Rigby High School Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.667439┬░, -111.940163┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.667439,"lon":-111.940163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Watauga High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Watauga High School Wind Project Watauga High School Wind Project Facility Watauga High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.199196┬░, -81.674736┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.199196,"lon":-81.674736,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Skyline High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Skyline High School Wind Project Skyline High School Wind Project Facility Skyline High School Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.486801┬░, -112.065613┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.486801,"lon":-112.065613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

High School Students Engage EM Program, Teach Classmates about Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Students Engage EM Program, Teach Classmates about High School Students Engage EM Program, Teach Classmates about Nuclear Cleanup High School Students Engage EM Program, Teach Classmates about Nuclear Cleanup May 22, 2012 - 12:00pm Addthis NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB. NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB. McMaster, left, and Sakalla were presented plaques by Dave Adler, DOE-EM liason to ORSSAB, in recognition for their service to ORSSAB. McMaster, left, and Sakalla were presented plaques by Dave Adler, DOE-EM liason to ORSSAB, in recognition for their service to ORSSAB. NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB.

150

Southeastern visits local high school | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeastern visits local high school Southeastern visits local high school Southeastern visits local high school May 10, 2013 - 11:54am Addthis Southeastern employee, Dale Jett, uses a power system mockup to explain how power is distributed to homes. Southeastern employee, Dale Jett, uses a power system mockup to explain how power is distributed to homes. Southeastern employee, Sonya Hulme, describes the Power Marketing Administations and the ares that each one supports. Southeastern employee, Sonya Hulme, describes the Power Marketing Administations and the ares that each one supports. Southeastern's Assistant Administrator for Finance and Marketing, Virgil Hobbs, describes the 22 different hydroelectric projects in Southeastern's region. Southeastern's Assistant Administrator for Finance and Marketing, Virgil

151

Walsh High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Walsh High School Wind Project Walsh High School Wind Project Facility Walsh High School Sector Wind energy Facility Type Community Wind Location CO Coordinates 37.385723┬░, -102.285591┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.385723,"lon":-102.285591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

New Jersey Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Jersey Regions » New Jersey Regional High Jersey Regions » New Jersey Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New Jersey Regions New Jersey Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Please Note: All slots for the High School Science Bowl have been filled. Any team registering after December 17, 2013, will be placed on the wait-list. Should a school drop out of the competition, a new team will be

153

SCHOOL OF PHYSICAL SCIENCES PRINCIPAL INVESTIGATOR / ACCOUNT ASSIGNMENTS  

E-Print Network (OSTI)

(Chem) AirUCI Magnusdottir (ESS) Enciso (Math) Cal Teach Chamberlin (Chem) Casper (Physics) Mukamel (Chem) Famiglietti (ESS) Committee on Research (COR) Cicerone (ESS) Czimczik Green (ESS) Newman (Physics) Gorodetski (Math) Freeman (Chem) Dos Santos Winston (ESS) Nowick (Chem) Jarvo (Chem) Dean's Office Sub

Burke, Kieron

154

JPL Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

JPL Regional High School JPL Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions JPL Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kimberly Lievense Email: Klievense@jpl.nasa.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 1

155

Alabama High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alabama Regions » Alabama High School Science Alabama Regions » Alabama High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Alabama Regions Alabama High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Pamela Quintana Email: pquintana@asms.net Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 20 Maximum Number of Teams per School: 3

156

PNNL Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

PNNL Regional High School PNNL Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington Regions PNNL Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Beth Perry Email: bethperry13@msn.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 3

157

Pantex Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Pantex Regional High School Pantex Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions Pantex Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Debra Halliday Email: dhallida@pantex.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 40 Maximum Number of Teams per School: 3

158

BPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Oregon Regions » BPA Regional High School Oregon Regions » BPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Oregon Regions BPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Christy Adams Email: cfadams@bpa.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 64 Maximum Number of Teams per School: 3

159

Kansas Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Kansas Regions » Kansas Regional High School Kansas Regions » Kansas Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Kansas Regions Kansas Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Myra Everette Email: meverette@kcp.com Regional Event Information Date: February 1, 2014 Maximum Number of Teams: 32 Maximum Number of Teams per School: 3

160

STEP Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

STEP Regional High School STEP Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions STEP Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Peter Macchia Email: mrmacchia@gmail.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 16 Maximum Number of Teams per School: 3

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Children's achievement goals, attitudes, and disruptive behaviors in an after-school physical activity program  

E-Print Network (OSTI)

CHILDRENĺSáACHIEVEMENTáGOALS,áATTITUDES,áANDáDISRUPTIVEáBEHAVIORSáINáANáAFTERşSCHOOLáPHYSICALáACTIVITYáPROGRAMá AáDissertationábyá BULENTáAGBUGAá SubmittedátoátheáOfficeáofáGraduateáStudiesáofáTexasáA&MáUniversityáin...ápartialáfulfillmentáofátheárequirementsáforátheádegreeáofá DOCTORáOFáPHILOSOPHYá May207á MajoráSubject:áKinesiology CHILDRENĺSáACHIEVEMENTáGOALS,áATTITUDES,áANDáDISRUPTIVEáBEHAVIORSáINáANáAFTERşSCHOOLáPHYSICALáACTIVITYáPROGRAMá AáDissertationábyá BULENTáAGBUGAá SubmittedátoátheáOfficeáofáGraduateáStudiesáofáTexas...

Agbuga, Bulent

2007-09-17T23:59:59.000Z

162

Application for Middle and High School Science Teachers  

E-Print Network (OSTI)

of the Willamette Valley and --new ways to teach ecology to students? Want to learn in the field as well Valley Watershed Partnership Project (WVWPP) Willamette Valley Watershed Partnership Project, 2006-07 #12) institute July 17-July 21 and August 14-18, 2006 8:00 to 4:00 daily at West Salem High School that combines

Ford, Jesse

163

"Chinese Bridge" U.S. High School Students Summer Camp  

E-Print Network (OSTI)

short answer essay. If selected a s a c h a p e r o n to participate in the Chinese Bridge for American- "Chinese Bridge" U.S. High School Students Summer Camp Agreement Sponsored by the Office Of Chinese Language Council International #12;"Chinese Bridge" Summer Camp Agreement "" p. 2 of 4 CHAPERON

Caughman, John

164

UIC Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

UIC Regional High School UIC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Illinois Regions UIC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anita Ramirez Email: chicago.regional.science.bowl@gmail.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24

165

Alaska Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alaska Regions » Alaska Regional High School Alaska Regions » Alaska Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Alaska Regions Alaska Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Cindy Carl Email: WellnessWorks_4u2@yahoo.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 12

166

SHPE NYC Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

SHPE NYC Regional High SHPE NYC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions SHPE NYC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dora Maria Abreu Email: Doramaria@gmail.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 20 Maximum Number of Teams per School: 3

167

LADWP Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

LADWP Regional High LADWP Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions LADWP Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Walter Zeisl Email: walter.zeisl@ladwp.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 55 Maximum Number of Teams per School: 2

168

Kern County Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Kern County Regional High Kern County Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Kern County Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Thomas Meyer Email: tmeyer@csub.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 32 Maximum Number of Teams per School: 3

169

Sacramento Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Sacramento Regional High Sacramento Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sacramento Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anita Wiley Email: wiley@wapa.gov Regional Event Information Date: March 1, 2014 Maximum Number of Teams: 26 Maximum Number of Teams per School: 2

170

Modesto Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Modesto Regional High Modesto Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Modesto Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Mike Zweifel Email: mikez@mid.org Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 2

171

UTPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

UTPA Regional High School UTPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions UTPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Joel Ruiz Email: jruiz@utpa.edu Additional Contacts: Name: Jessica Salinas Email: lopezj@utpa.edu Name: Karen Dorado Email: kadorado@utpa.edu Regional Event Information

172

High School Rules, Forms, and Resources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Resources Resources National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Make Your Own National Science Bowl® Competition Buzzer Sample Questions Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals High School Rules, Forms, and Resources Print Text Size: A A A RSS Feeds FeedbackShare Page The following are resources for high school teams of the National Science Bowl. 2014 Official National Science Bowl Rules .pdf file (517KB)

173

Nevada Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Nevada Regions » Nevada Regional High School Nevada Regions » Nevada Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Nevada Regions Nevada Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Daniel Burns Email: burnsdb@nv.doe.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 32

174

NOBCChE Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

NOBCChE Regional High NOBCChE Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions NOBCChE Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Thomas Whitt Email: twhitt523@gmail.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 10 Maximum Number of Teams per School: 2

175

Maine Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Maine Regions » Maine Regional High School Maine Regions » Maine Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Maine Regions Maine Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Rob Sanford Email: rsanford@usm.maine.edu Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 20

176

San Antonio Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

San Antonio Regional High San Antonio Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions San Antonio Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Bobby Blount Email: bb@mitre.org Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 35 Maximum Number of Teams per School: 3

177

Indiana Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Indiana Regions » Indiana Regional High School Indiana Regions » Indiana Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Indiana Regions Indiana Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Bala Dhungana Email: bkrishnad@hotmail.com Regional Event Information Date: Saturday, March 8, 2014 Maximum Number of Teams: 10

178

Iowa Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Iowa Regions » Iowa Regional High School Iowa Regions » Iowa Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Iowa Regions Iowa Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Steve Karsjen Email: karsjen@ameslab.gov Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 40

179

Redding Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Redding Regional High Redding Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Redding Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Matt Madison Email: mmadison@reupower.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 28 Maximum Number of Teams per School: 3

180

Montana Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Montana Regions » Montana Regional High School Montana Regions » Montana Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Montana Regions Montana Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Josie Daggett Email: daggett@wapa.gov Regional Event Information Date: Saturday, March 8, 2014 Maximum Number of Teams: 30

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SLAC Regional High School Science Bowl| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

SLAC Regional High School SLAC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions SLAC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Farah Rahbar Email: farah.rahbar@slac.stanford.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 18

182

Georgia Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Georgia Regions » Georgia Regional High School Georgia Regions » Georgia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Georgia Regions Georgia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Donna Mullenax Email: donna.mullenax@armstrong.edu Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 72

183

Florida Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Florida Regions » Florida Regional High School Florida Regions » Florida Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Florida Regions Florida Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Michael Chiang Email: michaelraymondchiang@gmail.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 24

184

High School Coaches | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coaches Coaches National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School High School Coaches Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome High School Coaches Team Registrations Are Open Please click "High School Regionals" on the menu to the left. Click To Return To Your Registration External link Listed below is all the information you need to lead a team to success in the National Science Bowl. Be sure to read the rules and other very helpful

185

Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG  

E-Print Network (OSTI)

This article presents the physics case for a new high-energy, ultra-high statistics neutrino scattering

Adams, T.

186

Microsoft Word - Snohomish_High_School_Field_Improvements_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robert Thompson - TERR Snohomish Robert Thompson - TERR Snohomish Project Manager Proposed Action: Snohomish High School Field Improvements Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.9 Grant or denial of requests for multiple use of a transmission facility rights-of-way, such as grazing permits and crossing agreements, including electric lines, water lines... Location: Snohomish, Snohomish County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to grant the Snohomish School District's request to install a new synthetic turf with a subsurface drainage system on an existing sports field. The field is on fee owned property leased to the Snohomish School District and is adjacent to BPA's Snohomosh Substation.

187

National Best Practices Manual for Building High Performance Schools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Manual Best Practices Manual For Building High Performance Schools Acknowledgements The U.S. Department of Energy would like to acknowledge the help and assistance of the EnergySmart Schools team and the many authors and reviewers that provided input and feedback during the process of developing the report. Those include: US Department of Energy: David Hansen, Daniel Sze; EnergySmart Schools Team: Larry Schoff; US Environmental Protection Agency: Melissa Payne, Bob Thompson; Lawrence Berkeley National Laboratory: Rick Diamond; National Renewable Energy Laboratory: Ren Anderson, Zahra Chaudhry, Jeff Clarke, Kyra Epstein, Tony Jimenez, Patty Kappaz, Patricia Plympton, Byron Stafford, Marcy Stone, John Thornton, Paul Torcellini; Oak Ridge National Laboratory: Andre Desjarlais,

188

SAT Mathematics standardized test manual for high-performing high school students  

E-Print Network (OSTI)

Most high school standardized testing preparation materials are geared towards the average student scoring in the 5 0 th percentile. There are few resources available to lower and higher scoring students who have different ...

Vasquez, Phillip A

2009-01-01T23:59:59.000Z

189

**NO SCIENCE ON SATURDAY TODAY** NJ Regional High School Science Bowl |  

NLE Websites -- All DOE Office Websites (Extended Search)

February 23, 2013, 8:00am February 23, 2013, 8:00am Science Education Lab-wide Event **NO SCIENCE ON SATURDAY TODAY** NJ Regional High School Science Bowl Teams of students are invited to participate in the Department of Energy's National Science Bowl Competition. Each year PPPL hosts the New Jersey Regional Science Bowl which decides which teams from the local area can continue onto the national competition in Washington, D.C. The Science Bowl is a double elimination contest with oral question and answer rounds in the fields of chemistry, biology, physics, astronomy and mathematics plus general and earth sciences. Questions are given in a toss-up with a bonus format. For more information, visit our Science Bowl website! Contact Information Website: NJ Regional High School Science Bowl

190

Large Scale Computing and Storage Requirements for High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

for High Energy Physics for High Energy Physics Accelerator Physics P. Spentzouris, Fermilab Motivation Accelerators enable many important applications, both in basic research and applied sciences Different machine attributes are emphasized for different applications * Different particle beams and operation principles * Different energies and intensities Accelerator science and technology objectives for all applications * Achieve higher energy and intensity, faster and cheaper machine design, more reliable operation a wide spectrum of requirements for very complex instruments. Assisting their design and operation requires an equally complex set of computational tools. High Energy Physics Priorities High energy frontier * Use high-energy colliders to discover new particles and

191

DC Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DC Regions » DC Regional High DC Regions » DC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington DC Regions DC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Jamie T. Scipio Email: jamie.scipio@hq.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 12

192

San Diego Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

San Diego Regional High San Diego Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions San Diego Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Ronald Lewis Email: sandiegonobcche@earthlink.net Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 24

193

Tennessee Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Tennessee Regions » Tennessee Regional High Tennessee Regions » Tennessee Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Tennessee Regions Tennessee Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Martha Hammond Email: Martha.Hammond@orau.org Additional Contact: Name: Marolyn Randolph Email: Marolyn.Randolph@orau.org

194

SWPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Pennsylvania Regions » SWPA Regional High Pennsylvania Regions » SWPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Pennsylvania Regions SWPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Lilas Soukup Email: lilas.soukup@netl.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 48

195

North Texas Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

North Texas Regional High North Texas Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions North Texas Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Rommel Alonzo Email: rommel.alonzo@mavs.uta.edu Regional Event Information Date: Saturday, February 15, 2014 Maximum Number of Teams: 12

196

Wisconsin Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Wisconsin Regions » Wisconsin Regional High Wisconsin Regions » Wisconsin Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Wisconsin Regions Wisconsin Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Julie Schuster Email: schuster@msoe.edu Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 20

197

Michigan Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Michigan Regions » Michigan Regional High Michigan Regions » Michigan Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Michigan Regions Michigan Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Andrew Chubb Email: achubb@svsu.edu Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 15

198

Maryland Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Maryland Regions » Maryland Regional High Maryland Regions » Maryland Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Maryland Regions Maryland Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Michael Mehalick Email: michael.mehalick@montgomerycollege.edu Regional Event Information Date: Saturday, January 18, 2014

199

West Kentucky Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Kentucky Regions » West Kentucky Regional High Kentucky Regions » West Kentucky Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Kentucky Regions West Kentucky Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Robert Smith Email: robert.smith@lex.doe.gov Additional Contact: Name: Donald Dihel Email: don.dihel@lex.doe.gov

200

Nebraska Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Nebraska Regions » Nebraska Regional High Nebraska Regions » Nebraska Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Nebraska Regions Nebraska Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Todd Young Email: toyoung1@wsc.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 40

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Poudre High School From Fort Collins , Colorado Wins U.S. Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poudre High School From Fort Collins , Colorado Wins U.S. Poudre High School From Fort Collins , Colorado Wins U.S. Department of Energy National Science Bowl® Poudre High School From Fort Collins , Colorado Wins U.S. Department of Energy National Science Bowl® April 30, 2007 - 12:45pm Addthis WASHINGTON, DC - Poudre High School from Fort Collins, Colorado won the 2007 U.S. Department of Energy (DOE) National Science Bowl® for high school students today at the National 4-H Youth Conference Center. Poudre High School beat State College Area High School from State College, Pennsylvania in the national championship match. Teams representing 64 high schools from across the United States competed in the National Finals. Members of the winning team include Patrick Chaffey, Sam Elder, Winston Gao, Sam Sun, Logan Wright and coach Jack Lundt. The team won a science

202

Virginia Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Virginia Regions » Virginia Regional High Virginia Regions » Virginia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Virginia Regions Virginia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Jan Tyler Email: tyler@jlab.org Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 23

203

Missouri Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Missouri Regions » Missouri Regional High Missouri Regions » Missouri Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Missouri Regions Missouri Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Myra Everette Email: meverette@kcp.com Regional Event Information Date: February 1, 2014 Maximum Number of Teams: 32

204

Colorado Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Colorado Region » Colorado Regional High Colorado Region » Colorado Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Colorado Region Colorado Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Linda Lung Email: linda.lung@nrel.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 48

205

Oklahoma Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Oklahoma Regions » Oklahoma Regional High Oklahoma Regions » Oklahoma Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Oklahoma Regions Oklahoma Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Gail Bliss Email: gnbliss@carnegienet.net Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 32

206

Minnesota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Minnesota Regions » Minnesota Regional High Minnesota Regions » Minnesota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Minnesota Regions Minnesota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Barbara Donoho Email: bdonoho@mnmas.org Regional Event Information Date: Friday, January 24, 2014 Maximum Number of Teams: 32

207

D.C. Middle and High School Students Get a Chance to Experience...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D.C. Middle and High School Students Get a Chance to Experience the Regional Science Bowl Competition Setting D.C. Middle and High School Students Get a Chance to Experience the...

208

Santa Monica High School From Santa Monica, Calif. Wins U.S....  

Energy Savers (EERE)

Monica High School From Santa Monica, Calif. Wins U.S. Department of Energy National Science Bowl Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of...

209

Muon Collider Physics at Very High Energies  

E-Print Network (OSTI)

Muon colliders might greatly extend the energy frontier of collider physics. One can contemplate circular colliders with center-of-mass energies in excess of 10 TeV. Some physics issues that might be relevant at such a machine are discussed.

M. S. Berger

2000-01-03T23:59:59.000Z

210

Data mining in high energy physics Bertrand Brelier  

E-Print Network (OSTI)

Bertrand Brelier (SOSCIP) Data mining in high energy physics July 3, 2014 5 / 8 #12;Jobs User submit job if failing Output of job downloaded on local computer Bertrand Brelier (SOSCIP) Data mining in high energyData mining in high energy physics Bertrand Brelier SOSCIP July 3, 2014 Bertrand Brelier (SOSCIP

Prodi├Ž, Aleksandar

211

Inland Northwest Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Inland Northwest Regional Inland Northwest Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington Regions Inland Northwest Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kaye Kamp Email: kkamp@whitworth.edu Regional Event Information Date: February 8, 2014 Maximum Number of Teams: 42

212

West Virginia Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

West Virginia Regions » West Virginia Regional West Virginia Regions » West Virginia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov West Virginia Regions West Virginia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kirk Gerdes Email: Kirk.Gerdes@NETL.DOE.GOV Regional Event Information Date: Saturday, February 1, 2014

213

U.S. Virgin Islands Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

U.S. Virgin Islands Regions » U.S. Virgin U.S. Virgin Islands Regions » U.S. Virgin Islands High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov U.S. Virgin Islands Regions U.S. Virgin Islands High School Regional Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Gerald Walters Email: gwalters@sttj.k12.vi Regional Event Information

214

Savannah River Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Carolina Regions » Savannah River Carolina Regions » Savannah River Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov South Carolina Regions Savannah River Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kim Mitchell Email: kimberly.mitchell@srs.gov Regional Event Information Date: Saturday, March 1, 2014

215

Puerto Rico Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Puerto Rico Regions » Puerto Rico Regional Puerto Rico Regions » Puerto Rico Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Puerto Rico Regions Puerto Rico Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Julienne Sanchez Email: julienne.sanchez@upr.edu Regional Event Information Date: Saturday, February 22, 2014

216

Brookhaven National Lab Regional High School Science Bowl | U.S. DOE Office  

Office of Science (SC) Website

Brookhaven National Lab Brookhaven National Lab Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Brookhaven National Lab Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Catherine Osiecki Email: Osiecki@bnl.gov Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 20

217

Mississippi Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Mississippi Regions » Mississippi Regional Mississippi Regions » Mississippi Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Mississippi Regions Mississippi Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dionne Fortenberry Email: dfortenberry@as.muw.edu Regional Event Information Date: Friday, January 31, 2014

218

Northeast Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Massachusetts Regions » Northeast Regional Massachusetts Regions » Northeast Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Massachusetts Regions Northeast Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kevin McLaughlin Email: kjm@engr.uconn.edu Regional Event Information Date: Saturday, March 1, 2014

219

Capital District Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Capital District Regional Capital District Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Capital District Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dominic Fulgieri Email: dominic.fulgieri@unnpp.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 18

220

South Dakota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Daktoa Regions » South Dakota Regional Daktoa Regions » South Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov South Daktoa Regions South Dakota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Lesley Berg Email: lberg@wapa.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 32

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Connecticut Regional High School Science Bowl| U.S. DOE Office of Science  

Office of Science (SC) Website

Connecticut Regions » Connecticut Regional Connecticut Regions » Connecticut Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Connecticut Regions Connecticut Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kevin McLaughlin Email: kjm@engr.uconn.edu Regional Event Information Date: Saturday, March 1, 2014

222

Sandia National Laboratories Regional High School Science Bowl | U.S. DOE  

Office of Science (SC) Website

Sandia National Sandia National Laboratories Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sandia National Laboratories Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Timothy Shepodd Email: tjshepo@sandia.gov Regional Event Information Date: January 25, 2014

223

South Central Ohio Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

South Central Ohio Regional South Central Ohio Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Ohio Regions South Central Ohio Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Greg Simonton Email: greg.simonton@lex.doe.gov Regional Event Information Date: Friday, March 7, 2014 Maximum Number of Teams: 32

224

Greater Cincinnati Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Greater Cincinnati Regional Greater Cincinnati Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Ohio Regions Greater Cincinnati Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Betsy Volk Email: betsy.volk@emcbc.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24

225

North Dakota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Dakota Regions » North Dakota Regional Dakota Regions » North Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov North Dakota Regions North Dakota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Tom Atkinson Phone: 701-221-4559 Email: tatkinson@wapa.gov Regional Event Information Date: Saturday, February 8, 2014

226

North Carolina Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Carolina Regions » North Carolina Carolina Regions » North Carolina Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov North Carolina Regions North Carolina Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Fredrick Johnson Email: fjohnson@nccu.edu Regional Event Information Date: Saturday, January 25, 2014

227

High School Academic Competition - Round Robin | U.S. DOE Office...  

Office of Science (SC) Website

Dulles High School 2 2 2 0 2 2 2 2 14 5 8. Amarillo High School 2 0 2 2 2 0 0 2 10 2 9. Kelly Walsh High School 2 2 2 0 2 0 0 0 8 3 Note: A score of "2" means that the team to the...

228

Illinois and Other States High School visits, college fairs and presentations Spring 2011  

E-Print Network (OSTI)

High School Mundelein 4/4/11 1:30 pm Vernon Hills High School Vernon Hills 4/4/11 6:00 pm ICE Oak Park / River Forest High School Oak Park 4/6/11 6:00 pm Lyons Township College Night LaGrange 4

Saldin, Dilano

229

High Energy Physics Division, ANL Lattice QCD  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Physics Division, ANL Lattice QCD in extreme environments D. K. Sinclair (HEP, Argonne) J. B. Kogut (Physics, Illinois) D. Toublan (Physics, Illinois) 1 Lattice QCD Quantum chromodynamics(QCD) de- scribes Hadrons and their strong inter- actions. Hadrons consist of quarks held together by gluons. Lattice QCD is QCD on a 4-dimensional (space-time) lattice. Allows numerical simulation of the functional integrals which define this quantum field theory, and non-perturbative QCD calculations. Physics - properties of hadrons (masses, etc.), hadronic matrix elements (HEP), hadronic matter at finite temperature and/or densities (RHIC, early universe, neutron stars). 2 Computational Methods * Functional integral is mapped to the partition function for a classical sys- tem. Molecular-dynamics methods are used to calculate the observables for this classical system.

230

September 27, 2010 HIGH ENERGY PHYSICS DIVISION  

E-Print Network (OSTI)

and energy at the most fundamental level. This includes particle physics experiments, theoretical research and development projects by outside committees of peers appointed by DOE or the University of Chicago as well

Kemner, Ken

231

HIGH-ENERGY PHYSICS LABORATORIES AND AGENCIES Particle Data Group  

E-Print Network (OSTI)

HIGH-ENERGY PHYSICS LABORATORIES AND AGENCIES Particle Data Group Lawrence Berkeley National, write to: List of Addresses of High-Energy Physics Institutes Scientific Information Service CERN to postmaster at a node ARGENTINA UT=[+3] ┬Ě Entrance code = 54. Exit code = 00. Area exit code = 0. Univ. de

232

Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Santa Monica High School From Santa Monica, Calif. Wins U.S. Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of Energy National Science Bowl® Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of Energy National Science Bowl® May 5, 2008 - 11:30am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Santa Monica High School from Santa Monica, Calif. is the winner of the 2008 DOE National Science Bowl®. Santa Monica High School beat Mira Loma High School from Sacramento, Calif. in the championship match today at the National Building Museum in Washington, DC. Teams representing 67 high schools from across the United States competed in the National Finals. "I congratulate all of the students who competed in this year's U.S. Department of Energy National Science Bowl," U.S. Secretary of Energy

233

We Have a Winner - DC High School Regional Science Bowl Competition Held  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

We Have a Winner - DC High School Regional Science Bowl Competition We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday February 11, 2013 - 10:30am Addthis We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday Annie Whatley Annie Whatley Deputy Director, Office of Minority Economic Impact As part of the National Science Bowl, more than 9,500 high school students take place in 70 high school regional competitions around the United States and Puerto Rico. The winners of these regions advance to the National Science Bowl competition held every April in Chevy Chase, Maryland. On Saturday, February 9, the Office of Economic Impact and Diversity hosted the Washington, D.C. High School Regional Science Bowl competition at Cesar

234

High School Academic Competition - Round Robin | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Round Robin Round Robin National Science Bowl® (NSB) NSB Home About High School Middle School Attending National Event Volunteers 2013 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2013 Competition Results High School Academic Competition - Round Robin Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome to the National Science Bowl Score Center! Looking for Round Robin Updates? Click on the division to go straight to the bracket - otherwise, scroll down the page and browse all the scores.

235

High School Academic Competition - Double Elimination | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

Double Double Elimination National Science Bowl® (NSB) NSB Home About High School Middle School Attending National Event Volunteers 2013 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2013 Competition Results High School Academic Competition - Double Elimination Print Text Size: A A A RSS Feeds FeedbackShare Page No-Loss Bracket .pdf file (45KB)(Final Results) Challengers' Bracket .pdf file (42KB) (Final Results) Last modified: 4/29/2013 11:56:04 AM

236

Access to the University of California for Graduates of Low-API High Schools  

E-Print Network (OSTI)

for Graduates of Low-API High Schools By Lisa Chavez andon the 2004 California Academic Performance Index (API).The API is an accountabil- ity measurement of school

Chavez, Lisa; Arredondo, Gabino

2006-01-01T23:59:59.000Z

237

Budget projections 1988, 1989, and 1990 for research in high energy nuclear physics  

SciTech Connect

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. Professor R.F. Schwitters is currently chairman of this committee. The committee members are: G.W. Brandenburg, S. Geer, R.J. Glauber, K. Kinoshita, R. Nickerson, F.M. Pipkin, J. Rohlf, C. Rubbia, R.F. Schwitters, M. Shapiro, K. Strauch, R. Vanelli, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, C. Rubbia, R.F. Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg (Associate Director, High Energy Physics Laboratory) administers the High Energy Physics Laboratory and is in charge of the Computer Facility. Professor Rubbia is currently on leave of absence and will leave Harvard on December 31, 1988 to become the Director General of CERN. A reduced UA1 effort will remain at Harvard after Professor Rubbia`s departure. Harvard is planning to make one or two senior faculty appointments in experimental high energy physics sometime in 1988-89. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting 15 research students. In addition, undergraduate students work in projects at HEPL during the academic year and over summers. Many of these students have gone on to graduate school studying physics at Harvard and elsewhere.

Not Available

1988-04-01T23:59:59.000Z

238

Towards research-based strategies for using PhET simulations in middle school physical science classes  

E-Print Network (OSTI)

simulations (`sims') for middle school physical science. PhET sims have typically been aimed at the college level, but many sims are used in middle school classrooms. Thus, we aim to study the use of PhET sims at this level more systematically, particularly investigating elements of effective sim design and classroom

Colorado at Boulder, University of

239

High School Research at Jefferson Lab - The Setup and Monitoring of a  

NLE Websites -- All DOE Office Websites (Extended Search)

12 GeV Safety Systems 12 GeV Safety Systems Previous Project (12 GeV Safety Systems) High School Research Main Index Next Project (Computational Physics) Computational Physics The Setup and Monitoring of a Honeypot at Jefferson Lab A honeypot is software that emulates an operating system and therefore can be used in many projects that should not be tested on a computer that could lose data. For my project it was put onto the network unprotected to see what hackers would do to it. This way we can research what the new or common methods of hacking are. Also, the honeypot does not install any of the malicious software, yet it saves a copy for further analysis. This allows Systems Security to see what bug the program exploits and the information found gives them the ability to fix the issue before hackers

240

Using acoustics to lure high school students into a career in science  

Science Journals Connector (OSTI)

As part of a National Science Foundation STEP grant to stimulate recruitment and improve retention of students in science mathematics and technology several science faculty at Central Washington University developed a 2?week summer program for high school students entering their senior year. From June 23 to July 2 2003 13 high school juniors from the primarily agricultural region of central Washington lived on the CWU campus and spent their days working on college?level science projects with CWU faculty. Each week the students worked in groups of three or four with a faculty mentor from one of five disciplines: chemistry biology geology physics and computer science. The week?long physics project consisted of a series of simple experiments designed to build an understanding of standing waves and resonance. By the end of the week students were testing hypotheses relating the resonance frequency of a wineglass to its thickness height and opening diameter. They also measured Q for several glasses and chose the one with the highest Q to break with sound from a loudspeaker. Although the students were in the lab for an average of 4.5 h per day they showed unflagging enthusiasm.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Secretary Chu Recalls Garden City High School Physics Teacher...  

NLE Websites -- All DOE Office Websites (Extended Search)

Articles Are You Ready to Make a Difference? Secretaries Chu and Duncan, NSTA Announce New Energy Education Initiative to Promote Energy Awareness and Efficiency STEM-ing the Tide...

242

Mathematics of complexity in experimental high energy physics  

E-Print Network (OSTI)

Mathematical ideas and approaches common in complexity-related fields have been fruitfully applied in experimental high energy physics also. We briefly review some of the cross-pollination that is occurring.

H. C. Eggers

2005-12-12T23:59:59.000Z

243

High Rydberg Atoms: Newcomers to the Atomic Physics Scene  

Science Journals Connector (OSTI)

...HYDROGEN ATOM, NUCLEAR FUSION 5 : 41 ( 1965 ). BAYFIELD...HIGHLY-EXCITED KR ATOMS BY HF AND HCL MOLECULES, BULLETIN...USING A CW TUNABLE DYE LASER, PHYSICAL REVIEW LETTERS...such diverse fields as laser development, laser isotopeseparation, energy...

Ronald F. Stebbings

1976-08-13T23:59:59.000Z

244

Evolution of Parallel Computing in High Energy Physics  

Science Journals Connector (OSTI)

Computing in High Energy Physics (HEP) has always required more computing power than could be provided by a single machine. In fact, HEP has been pushing the capabilities of computers since the first mainframe...

Fons Rademakers

2012-01-01T23:59:59.000Z

245

Future of High Energy Physics | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

of High Energy Physics has made dramatic progress in the last several years. The Higgs boson discovery has confirmed the last untested prediction of the Standard Model. We have...

246

Revised 3/30/09 High Energy Physics  

E-Print Network (OSTI)

Revised 3/30/09 1 High Energy Physics INTERNAL CONTROLS Procedures for FY 2009 Organizational Chart updated on 3/27/2009 2. Only appropriate individuals with the proper degree of job responsibility

Kemner, Ken

247

National Best Practices Manual for Building High Performance Schools  

Office of Energy Efficiency and Renewable Energy (EERE)

The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy.

248

from Savannah River Nuclear Solutions, LLC NEWS Area High School Teams Compete during DOE's National Science  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Teams Compete during DOE's National Science High School Teams Compete during DOE's National Science Bowl® Regional Championship: Lakeside and Evans High School Finish Second and Third - Dorman Wins AIKEN, S.C. - Feb. 25, 2013 - Using a format similar to the television show "Jeopardy," America's next generation of scientists and engineers put their knowledge to the test at the University of South Carolina Aiken during the DOE National Science Bowl regional compe- tition this past weekend. High School teams from across South Carolina and the greater Augusta, Ga. area relied on their collective knowledge as they participated in one of the coun- try's largest science tournaments. This regional competition, managed by Savannah River Nuclear Solutions, LLC (SRNS), hosted 120 high school students from 12 high schools. It is the only educational event

249

High Schools Served by Regional Admissions Representatives (by County) Lisa Overstreet  

E-Print Network (OSTI)

High Schools Served by Regional Admissions Representatives (by County) Region 1 Lisa Overstreet San Joaquin El Dorado San Mateo Fresno Sierra Kings Solano Lake Sonoma Madera Stanislaus Mariposa

Belanger, David P.

250

Lovato learning: a guide for interactive, differential instruction in a high school remedial math class.  

E-Print Network (OSTI)

??The implementation of different instructional strategies and their affects on student attitudes toward learning will be investigated in two Northern Humboldt High School remedial mathů (more)

Lovato, Susan

2006-01-01T23:59:59.000Z

251

Jefferson Lab Hosts High School Science Bowl on Feb. 4 | Jefferson...  

NLE Websites -- All DOE Office Websites (Extended Search)

at: http:science.energy.govnsb Science Bowl rules, the locations of regional high school competitions and sample questions are posted at: http:science.energy.govnsb...

252

Twenty-three Teams to Compete in Virginia High School Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

http:science.energy.govwdtsnsb Science Bowl rules, the locations of regional high school competitions and sample questions are posted at: http:science.energy.govwdts...

253

2010 DOE National Science Bowl┬« Photos - Little Rock Central High School  

Office of Science (SC) Website

Little Rock Central High School Little Rock Central High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Little Rock Central High School Print Text Size: A A A RSS Feeds FeedbackShare Page Little Rock Central High School students from Little Rock, AR tour the

254

2010 DOE National Science Bowl┬« Photos - Lexington High School | U.S.  

Office of Science (SC) Website

Lexington High School Lexington High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Lexington High School Print Text Size: A A A RSS Feeds FeedbackShare Page Lexington High School from Lexington, MA. competes in the academic

255

2010 DOE National Science Bowl┬« Photos - Montgomery Blair High School |  

Office of Science (SC) Website

Montgomery Blair High School Montgomery Blair High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Montgomery Blair High School Print Text Size: A A A RSS Feeds FeedbackShare Page Secretary of Energy Steven Chu and the Montgomery Blair High School Science

256

2010 DOE National Science Bowl┬« Photos - Onate High School | U.S. DOE  

Office of Science (SC) Website

Onate High School Onate High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Onate High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Onate High School team from Las Cruces, NM stands before the Apollo

257

2010 DOE National Science Bowl┬« Photos - Palo Alto High School | U.S.  

Office of Science (SC) Website

Palo Alto High School Palo Alto High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Palo Alto High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Palo Alto High School at the Smithsonian Air and Space Museum in

258

2010 DOE National Science Bowl┬« Photos - North Hollywood High School |  

Office of Science (SC) Website

North Hollywood High School North Hollywood High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - North Hollywood High School Print Text Size: A A A RSS Feeds FeedbackShare Page The North Hollywood High School team from North Hollywood, CA competes in

259

2010 DOE National Science Bowl┬« Photos - LaFayette High School | U.S.  

Office of Science (SC) Website

LaFayette High School LaFayette High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - LaFayette High School Print Text Size: A A A RSS Feeds FeedbackShare Page The LaFayette High School team tours the National Mall in Washington, DC on

260

Past High School National Science Bowl Winners (1991 - 2012) | U.S. DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

Winners » Past High School National Science Bowl Winners » Past High School National Science Bowl Winners (1991 - 2012) National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Past National Science Bowl Winners Past High School National Science Bowl Winners (1991 - 2012) Print Text Size: A A A RSS Feeds FeedbackShare Page Year Winning High School Teams

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

2010 DOE National Science Bowl┬« Photos - Vigil I. Grissom High School |  

Office of Science (SC) Website

Vigil I. Grissom High School Vigil I. Grissom High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Vigil I. Grissom High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Vigil I. Grissom High School team, from Huntsville, AL, tours the

262

2010 DOE National Science Bowl┬« Photos - George Walton High School |  

Office of Science (SC) Website

George Walton High School George Walton High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - George Walton High School Print Text Size: A A A RSS Feeds FeedbackShare Page Secretary of Energy Steven Chu and the George Walton High School Science

263

2010 DOE National Science Bowl┬« Photos - Shasta High School | U.S. DOE  

Office of Science (SC) Website

Shasta High School Shasta High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Shasta High School Print Text Size: A A A RSS Feeds FeedbackShare Page The Shasta High School team, from Redding, CA, at work on a challenge at

264

2010 DOE National Science Bowl┬« Photos - Campbell High School | U.S. DOE  

Office of Science (SC) Website

Campbell High School Campbell High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Campbell High School Print Text Size: A A A RSS Feeds FeedbackShare Page Campbell High School team members, from Gillette, WY, work on a challenge

265

2010 DOE National Science Bowl┬« Photos - Farmingdale High School | U.S.  

Office of Science (SC) Website

Farmingdale High School Farmingdale High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Farmingdale High School Print Text Size: A A A RSS Feeds FeedbackShare Page Farmingdale High School students from Farmingdale, NY take part in the

266

Speculative Physics: the Ontology of Theory and Experiment in High Energy Particle Physics and Science Fiction  

E-Print Network (OSTI)

The dissertation brings together approaches across the fields of physics, critical theory, literary studies, philosophy of physics, sociology of science, and history of science to synthesize a hybrid approach for instigating more rigorous and intense cross-disciplinary interrogations between the sciences and the humanities. There are two levels of conversations going on in the dissertation; at the first level, the discussion is centered on a critical historiography and philosophical implications of the discovery Higgs boson in relation to its position at the intersection of old (current) and the potential for new possibilities in quantum physics; I then position my findings on the Higgs boson in connection to the double-slit experiment that represents foundational inquiries into quantum physics, to demonstrate the bridge between fundamental physics and high energy particle physics. The conceptualization of the variants of the double-slit experiment informs the aforementioned critical comparisons. At the secon...

Lee, Clarissa Ai Ling

2014-01-01T23:59:59.000Z

267

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Inertial confinement and high density Inertial confinement and high density plasma physics Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's Inertial Confinement Fusion program is conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the OMEGA Laser Facility at the University of Rochester, and the Trident Laser Facility at Los Alamos. Within inertial confinement fusion and the high energy density area, Los Alamos specializes in hohlraum energetics, symmetry tuning, warm dense matter physics, and hydrodynamics in ultra-extreme conditions. When complete, this research will enable the exploitation of fusion as an energy resource and will enable advanced research in stockpile stewardship

268

Indiana University high energy physics, Task A  

SciTech Connect

During this reporting period the group has been carrying out programs in several areas. These are presented in this paper is follows: The group was a collaborator in the Mark II experiment at the SLC and completed analysis on the experiment. Three students completed their theses this reporting period; the group is the prime mover in (E672), a high mass dimuon experiment which now in its final data collection period. Our group is also a collaborator in the DO collider experiment which is now preparing for the first data run in 1992; the group is a collaborator in the OPAL experiment at LEP which is now taking data. The group also is working on the development of a major offline facility shift and on a silicon vertex chamber for 1993; the group is the prime mover in the construction of a major new experiment (E852) in precision meson spectroscopy. A test run is presently underway and data taking will begin in 1993; and the group is a prime mover in the tracking design of the SDC experiment. The SDC has completed the Technical Design report. Construction will begin in 1993.

Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

1992-01-01T23:59:59.000Z

269

The impact of school facilities on student achievement, attendance, behavior, completion rate and teacher turnover rate in selected Texas high schools  

E-Print Network (OSTI)

determines reporting criteria and validity. School Facilities: Defined through the use of the Total Learning Environment Assessment (TLEA), developed for a prior study of Texas public schools (OĺNeill, 2000). It is an instrument that rates facility..., discipline, completion rate and teacher turnover rate. School facility condition for the participating schools was determined by the Total Learning Environment Assessment (TLEA) as completed by the principal or principalĺs designee on high school campuses...

McGowen, Robert Scott

2008-10-10T23:59:59.000Z

270

State College Area High School From State College, PA Wins DOE's National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

College Area High School From State College, PA Wins DOE's College Area High School From State College, PA Wins DOE's National Science Bowl® State College Area High School From State College, PA Wins DOE's National Science Bowl® May 1, 2006 - 10:34am Addthis WASHINGTON , DC - State College Area High School from State College, Pennsylvania, today won the Department of Energy's (DOE) National Science Bowl®. Teams representing 65 schools from across the United States competed in this "Science Jeopardy" competition, which concluded this afternoon. Members of the winning team include Jason Ma, Ylaine Gerardin, Barry Liu, Galen Lynch, Francois Greer and coach, Julie Gittings. This team won a research trip to France and $1,000 for their school's science department. The answer that clinched the championship was in response to an earth

271

CERN and high energy physics, the grand picture  

SciTech Connect

The lecture will touch on several topics, to illustrate the role of CERN in the present and future of high-energy physics: how does CERN work? What is the role of the scientific community, of bodies like Council and SPC, and of international cooperation, in the definition of CERN's scientific programme? What are the plans for the future of the LHC and of the non-LHC physics programme? What is the role of R&D; and technology transfer at CERN?

None

2010-06-21T23:59:59.000Z

272

CERN and high energy physics, the grand picture  

ScienceCinema (OSTI)

The lecture will touch on several topics, to illustrate the role of CERN in the present and future of high-energy physics: how does CERN work? What is the role of the scientific community, of bodies like Council and SPC, and of international cooperation, in the definition of CERN's scientific programme? What are the plans for the future of the LHC and of the non-LHC physics programme? What is the role of R&D; and technology transfer at CERN?

None

2011-10-06T23:59:59.000Z

273

Grassfield High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Label":"","visitedicon":"" Hide Map Number of Units 1 Commercial Online Date 2014 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 120104 Loading map......

274

Central High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

el":"","visitedicon":"" Display map Number of Units 1 Commercial Online Date 2012 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 120430 References Wind...

275

Luray High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

el":"","visitedicon":"" Display map Number of Units 1 Commercial Online Date 2013 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 109825 References Wind...

276

Clover Hill High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Label":"","visitedicon":"" Hide Map Number of Units 1 Commercial Online Date 2014 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 121057 Loading map......

277

Performance of Learning Disabled High School Students on the Armed Services Vocational Aptitude Battery  

E-Print Network (OSTI)

This study examined the performance of 24 LD high school students on the Armed Services Vocational Aptitude Battery, A total of 29.2/. of the LD subjects ware found to qualify for enlistment in the Army based on the requirements for high school...

Harnden, G. Mack; Meyen, Edward L.; Alley, Gordon R.; Deshler, Donald D.

1980-01-01T23:59:59.000Z

278

Texas A&M Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Texas A&M Regional High School Texas A&M Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions Texas A&M Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Vince Schielack Email: vinces@math.tamu.edu Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 32

279

Speculative Physics: the Ontology of Theory and Experiment in High Energy Particle Physics and Science Fiction  

E-Print Network (OSTI)

The dissertation brings together approaches across the fields of physics, critical theory, literary studies, philosophy of physics, sociology of science, and history of science to synthesize a hybrid approach for instigating more rigorous and intense cross-disciplinary interrogations between the sciences and the humanities. There are two levels of conversations going on in the dissertation; at the first level, the discussion is centered on a critical historiography and philosophical implications of the discovery Higgs boson in relation to its position at the intersection of old (current) and the potential for new possibilities in quantum physics; I then position my findings on the Higgs boson in connection to the double-slit experiment that represents foundational inquiries into quantum physics, to demonstrate the bridge between fundamental physics and high energy particle physics. The conceptualization of the variants of the double-slit experiment informs the aforementioned critical comparisons. At the second level of the conversation, theories are produced from a close study of the physics objects as speculative engine for new knowledge generation that are then reconceptualized and re-articulated for extrapolation into the speculative ontology of hard science fiction, particularly the hard science fiction written with the double intent of speaking to the science while producing imaginative and socially conscious science through the literary affordances of science fiction. The works of science fiction examined here demonstrate the tension between the internal values of physics in the practice of theory and experiment and questions on ethics, culture, and morality.

Clarissa Ai Ling Lee

2014-06-21T23:59:59.000Z

280

Assessing High School Student Learning on Science Outreach Lab Activities  

Science Journals Connector (OSTI)

The GC instrument is connected to a laptop computer running PeakSimple software for data collection. ... During the 2007ľ2008 school year, 182 students in two schools participated. ... Funding for this study was provided by The Commonwealth of Pennsylvania through a grant to fund Science in Motion programs. ...

Courtney L. Thomas

2012-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Compilation of current high-energy-physics experiments  

SciTech Connect

This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976.

Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

1980-04-01T23:59:59.000Z

282

High-Energy Physics Outstanding Junior Investigating Program  

SciTech Connect

Throughout the past ?ve years I have worked to uncover what physics lies beyond that of the standard model. My main focus in the ?rst two and a half years has been to understand physics at the electroweak scale, and to a lesser extent understand the relationship between particle physics and cosmology. My ?nal two and a half years was spent on studying the feasibility of discovering ônon-standardö models of electroweak physics at hadron colliders, working in close contact with experimentalists at the Tevatron and the LHC. My biggest successes during this period has been both in electroweak physics ľ expanding our understanding of the Higgs sector in supersymmetric theories and ultraviolet completions of little Higgs theories ľ and in collider physics ľ discovering a method for identifying high momentum top quarks and realizing the potential for LHCb to discover some versions of supersymmetry. I have also made some progress towards a particle physics/e?ective ?eld theory solution of the cosmological constant problem.

Kaplan, David, E.

2009-10-12T23:59:59.000Z

283

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

284

High Energy Physics at the University of Illinois  

SciTech Connect

This is the final report for DOE award DE-FG02-91ER40677 (ôHigh Energy Physics at the University of Illinoisö), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

Liss, Tony M. [University of Illinois] [University of Illinois; Thaler, Jon J. [University of Illinois] [University of Illinois

2013-07-26T23:59:59.000Z

285

The Office of High Energy Physics Announces the Launch of Its...  

Office of Science (SC) Website

News & Resources News Archives 2013 The Office of High Energy Physics Announces the Launch of Its New Accelerator R&D Stewardship Webpages High Energy Physics (HEP) HEP...

286

2010 DOE National Science Bowl┬« Photos - Hunter College High School |  

Office of Science (SC) Website

Hunter College High School Hunter College High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Hunter College High School Print Text Size: A A A RSS Feeds FeedbackShare Page Eric Mannes (left) and Pearson Miller do some last minute cramming as they

287

Factors related to high school student behavior toward marijuana  

E-Print Network (OSTI)

. 20 This school, chosen because it had a large number of Mexican- American students, was middle or lower-middle in socio-economic status. Slightly over 21 percent of the sample attended the predominantly Anglo school which was lower-middle... in the prescriptiveness of school norms. Whether or not a student, was classified as a marijuana "user" or abstainer" was determined by his response to the question, "Have you ever used marijuana?" Over 23 percent of the students answered "yes" to this question...

Fry, Patricia Ann Mumford

2012-06-07T23:59:59.000Z

288

Beam Dynamics Challenges in High Energy Physics Accelerators!  

E-Print Network (OSTI)

Beam Dynamics Challenges in High Energy Physics Accelerators! Alexander Valishev! University/1/2014!A. Valishev | Beam Dynamics Challenges in HEP Accelerators!2! #12;The Olympic Motto for Accelerators! 12/1/2014!A. Valishev | Beam Dynamics Challenges in HEP Accelerators!3! ENERGY INTENSITY BRIGHTNESS

289

Hindawi Publishing Corporation Advances in High Energy Physics  

E-Print Network (OSTI)

Hindawi Publishing Corporation Advances in High Energy Physics Volume 2012, Article ID 235686, 34 to resolve mantle models with current detection methods. Multiple-site measurement in oceanic areas away from . The initial hot state 4.5 billion years ago was a result of gravitational energy of accretion and global

Mcdonough, William F.

290

PHYSICS AT HIGH LUMINOSITY MUON COLLIDERS AND A FACILITY OVERVIEW.  

SciTech Connect

Physics potentials at future colliders including high luminosity {mu}{sup +}{mu}{sup -} colliders are discussed. Luminosity requirement, estimates for Muon collider energies of interest (0.1 TeV to 100 TeV) are calculated. Schematics and an overview of Muon Collider facility concept are also included.

PARSA,Z.

2001-07-01T23:59:59.000Z

291

High Energy Density Physics and Exotic Acceleration Schemes  

SciTech Connect

The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.

Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

2005-09-27T23:59:59.000Z

292

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Print Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

293

Future high precision experiments and new physics beyond Standard Model  

SciTech Connect

High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

Luo, Mingxing.

1993-01-01T23:59:59.000Z

294

Future high precision experiments and new physics beyond Standard Model  

SciTech Connect

High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

Luo, Mingxing

1993-04-01T23:59:59.000Z

295

St Albans Boys High School Visit 12th ST ALBANS VISITS FABI  

E-Print Network (OSTI)

St Albans Boys High School Visit 12th March 2009 ST ALBANS VISITS FABI Prepared by Kershney Naidoo Biotechnology (CTHB). Under her supervision and that of two of their school teachers, the very keen group metD, introduced discussions in her group by showing the boys samples of different fungi collected from ordinary

296

School of Mathematical and Physical Sciences, University of Reading, Silver Renewal, November 2013. Athena SWAN Silver Department award renewal  

E-Print Network (OSTI)

School of Mathematical and Physical Sciences, University of Reading, Silver Renewal, November 2013. 1 Athena SWAN Silver Department award renewal application Name of institution: University of Reading of university Bronze award: renewed November 2011 Level of award applied for: Silver renewal Athena SWAN Silver

Mottram, Nigel

297

Biomass Company Sets Up Shop in High School Lab | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Company Sets Up Shop in High School Lab Biomass Company Sets Up Shop in High School Lab Biomass Company Sets Up Shop in High School Lab March 30, 2010 - 2:45pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Unlike most biotechnology students who have to go to a research facility to see scientists in action, those at Greeneville High just need to turn their heads. For the last four years, Larry Cosenza, of C2 Biotechnologies, a one-man shop in Germantown, N.Y, has been working in his basement to construct fusion enzymes, a new technology that converts biomass into energy more easily. But in January, he took over Greeneville High School's agriculture room, a move that will not only expand his workspace and put him steps closer to commercialization but also encourage project-based

298

Job submission system and its execution monitoring for improving data processing in high energy physics experiments  

E-Print Network (OSTI)

Job submission system and its execution monitoring for improving data processing in high energy physics experiments

Jurkowski, Igor; Czekierda, ?ukasz

299

Education in nuclear science at IPEN - CNEN, SŃo Paulo, Brazil: Advanced School of Nuclear EnergyŚEAEN  

Science Journals Connector (OSTI)

EAEN (Advanced School of Nuclear Energy, 2010) is an annual school that ... a week of activities in the area of Nuclear Physics, Radiochemistry and uses of Nuclear Energy for a public made of high school students...

R. Semmler; M. G. M. Catharinoů

2012-01-01T23:59:59.000Z

300

ARGONNE NATIONAL LABORATORY HIGH ENERGY PHYSICS ARGONNE NATIONAL  

NLE Websites -- All DOE Office Websites (Extended Search)

HIGH ENERGY PHYSICS HIGH ENERGY PHYSICS ARGONNE NATIONAL LABORATORY Y. CHO DEC 2 01985 LS-45 INTRA-LABORATORY MEMO December 20, 1985 TO: Y. Cho HEP FROM: w. praeg(~ ETP SUBJECT: Frequency Response of Storage Ring Magnets, Eddy Current Shielding of Vacuum Chamber It is planned to use feedback to correction coils on ring magnets to reduce beam motion at frequencies of 120 Hz or less. The magnet cores, made from 1.5 mm thick laminations of 1010 steel, will readily carry flux of ~ 400 Hz. However, due to eddy currents, the aluminum vacuum chamber will attenuate verticle ac fields above 8 Hz and horizontal fields above 25 Hz. Eddy currents will also cause phase shifts between the field generated by the correction coils, Bo' and the field inside the vacuum

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Secretary Chu Announces Middle and High School Finalists Set to Compete in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle and High School Finalists Set to Middle and High School Finalists Set to Compete in the 2012 National Science Bowl in Washington, D.C. Secretary Chu Announces Middle and High School Finalists Set to Compete in the 2012 National Science Bowl in Washington, D.C. April 12, 2012 - 2:12pm Addthis Washington D.C. - Demonstrating the Obama Administration's commitment to improving the participation and performance of America's students in science, technology, engineering and mathematics, U.S. Energy Secretary Steven Chu today announced the list of 113 regional middle and high school finalists that will compete in the Energy Department's National Science Bowl Finals in Washington, D.C., at the end of April. Since January, nearly 14,000 students have competed in regional tournaments in which teams of

302

Papillion-LaVista South High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Papillion-LaVista South High School Wind Project Papillion-LaVista South High School Wind Project Jump to: navigation, search Name Papillion-LaVista South High School Wind Project Facility Papillion-LaVista South High School Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.146679┬░, -96.079178┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.146679,"lon":-96.079178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

North Wilkes Middle and High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Wilkes Middle and High School Wind Project Wilkes Middle and High School Wind Project Jump to: navigation, search Name North Wilkes Middle and High School Wind Project Facility North Wilkes Middle and High School Sector Wind energy Facility Type Community Wind Location NC Coordinates 36.261246┬░, -81.148483┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.261246,"lon":-81.148483,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Thermal Storage for Energy Efficient Structures (Poteet High School Case Study)  

E-Print Network (OSTI)

Poteet High School, in Mesquite, Texas, is a facility that demonstrates state-of-the-art environmental control through the application of energy conserving technologies relative to architecture, HVAC and lighting. It is also recognized...

Utesch, A. L.

1988-01-01T23:59:59.000Z

305

Volunteers Needed to Help With High- and Middle-School Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Volunteers Needed to Help With High- and Middle-School Science Bowls on Feb. 7 & March 7 at Lab 2015 Science Bowl 2015 Science Bowl The 2015 National Science Bowl season is right...

306

Lehigh Valley Chapter, ASM International ASM Materials Camp -Lehigh Valley for High School Students  

E-Print Network (OSTI)

Lehigh Valley Chapter, ASM International ASM Materials Camp - Lehigh Valley for High School careers. The week-long day camp is conducted by graduate students at Lehigh University, overseen

Gilchrist, James F.

307

A17-year-oldBloomingtonHighSchool North student was killed in a motorcycle  

E-Print Network (OSTI)

A17-year-oldBloomingtonHighSchool North student was killed in a motorcycle crash early Sunday beneath the motorcycle. Police said Sorrells was pronounced dead on the scene by a coroner at 1:30 a

Gupta, Minaxi

308

Keys to Financial Success--The high school  

E-Print Network (OSTI)

Finance Posters-- CEEE partnered with students from Cab Calloway School of the Arts to design a poster to Financial Success" teachers will receive a set of these posters for the classroom. This project was made possible through a grant from the Financial Literacy Education Fund administered by the Office of the State

Firestone, Jeremy

309

Calculating Energy and Demand Retrofit Savings for Victoria High School: Interim Report  

E-Print Network (OSTI)

ESL-TR-92/12-03 Calculating Energy and Demand Retrofit Savings For Victoria High School Yue Liu, T. Agami Reddy, S. Katipamula and David E. Claridge. Interim Report Energy Systems Laboratory Texas A&M University College Station, TX 77843 December... 1992 Calculating Energy and Demand Retrofit Savings For Victoria High School Yue Liu, T. Agami Reddy, S. Katipamula and David E. Claridge. Interim Report Energy Systems Laboratory Texas A&M University College Station, TX 77843 December 1992 Abstract...

Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

310

Systemic Equity Pedagogy in Science Education: A Mixed-Method Analysis of High Achieving High Schools of Culturally Diverse Student Populations in Texas  

E-Print Network (OSTI)

the state of Texas demonstrate high science achievement and college readiness on state-tracked school-level indicators. Transforming a school context where achievement disparities exist among student groups in science classrooms necessitates...

Blocker, Tyrone Dewayne

2013-08-14T23:59:59.000Z

311

A pedagogical introduction to quantum integrability, with a view towards theoretical high-energy physics  

E-Print Network (OSTI)

These are lecture notes of an introduction to quantum integrability given at the Tenth Modave Summer School in Mathematical Physics, 2014, aimed at PhD candidates and junior researchers in theoretical physics. We introduce spin chains and discuss the coordinate Bethe Ansatz (CBA) for a representative example: the Heisenberg XXZ model. The focus lies on the structure of the CBA and on its main results, deferring a detailed treatment of the CBA for the general $M$-particle sector of the XXZ model to an appendix. Subsequently the transfer-matrix method is discussed for the six-vertex model, uncovering a relation between that model and the XXZ spin chain. Equipped with this background the quantum inverse-scattering method (QISM) and algebraic Bethe Ansatz (ABA) are treated. We emphasize the use of graphical notation for algebraic quantities as well as computations. Finally we turn to quantum integrability in the context of theoretical high-energy physics. We discuss factorized scattering in two-dimensional QFT, a...

Lamers, J

2015-01-01T23:59:59.000Z

312

Energy Design Guidelines for High Performance Schools: Cold and Humid Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

313

Energy Design Guidelines for High Performance Schools: Temperate and Mixed Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

314

Energy Design Guidelines for High Performance Schools: Hot and Dry Climates (CD-ROM)  

SciTech Connect

School districts around the country are finding that smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs. The design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-03-01T23:59:59.000Z

315

Energy Design Guidelines for High Performance Schools: Hot and Dry Climates  

SciTech Connect

School districts around the country are finding that smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create an exemplary building that is both energy and resource efficient.

Not Available

2002-01-01T23:59:59.000Z

316

Energy Design Guidelines for High Performance Schools: Cool and Humid Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

317

Energy Design Guidelines for High Performance Schools: Temperate and Humid Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

318

Energy Design Guidelines for High Performance Schools: Cool and Dry Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

319

Energy Design Guidelines for High Performance Schools: Hot and Humid Climates  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

320

Energy Design Guidelines for High Performance Schools: Hot and Dry Climates (Revision)  

SciTech Connect

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

Not Available

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Teaching, Learning, and Modeling with Geometry in the Middle and High School  

E-Print Network (OSTI)

, such as Geometer's Sketchpad, Cabri, and GeoGebra SketchUp POV-Ray (ray tracer) Blender (has features akin to both SketchUp and POV-Ray) -- used in some High School design classes Carl Lee (UK) MS and HS Geometry Fields InstituteAugust 2014 10 / 26 #12;Second Project: SketchUp in Middle School Partner and Project Initiator: Dr

Lee, Carl

322

High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices  

SciTech Connect

Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

2005-01-01T23:59:59.000Z

323

You are eligible to be reviewed by SF State if you meet the following criteria: You are a high school graduate, or equivalent  

E-Print Network (OSTI)

are a high school graduate, or equivalent You must complete the required high school courses with grades eligibility index. The eligibility index is a weighted combination of high school grade point average during the ACT. Nonresidents who are not graduates of a California high school must have a mini- mum index

324

High Energy Physics: Report of research accomplishments and future goals, FY 1983  

SciTech Connect

Continuing research in high energy physics carried out by the group from the California Institute of Technology. The program includes research in theory, phenomenology, and experimental high energy physics. The experimental program includes experiments at SLAC, FERMILAB, and DESY.

Barish, B C

1983-12-31T23:59:59.000Z

325

High-energy nuclear physics and nuclear astrophysics at the Radium Institute  

Science Journals Connector (OSTI)

Research into high-energy nuclear physics and nuclear astrophysics at the Radium Institute is briefly ... well as the history of research on high-energy physics. The basic work on nuclear astrophysics, cosmochron...

O. V. Lozhkin

1999-06-01T23:59:59.000Z

326

picoCTF: Teaching 10,000 High School Students to Hack Preliminary Report  

E-Print Network (OSTI)

picoCTF: Teaching 10,000 High School Students to Hack Preliminary Report Peter Chapman peter on offensive hacking skills presented in the form of a web-based video game to better excite students about of our knowledge, the largest hacking competition ever held. The competition introduced thousands of high

Brumley, David

327

Research in High Energy Physics at Duke University  

SciTech Connect

This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, #12;ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22; ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water-#12;lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

Kotwal, Ashutosh V. [PI] [PI; Goshaw, Al [Co-PI] [Co-PI; Kruse, Mark [Co-PI] [Co-PI; Oh, Seog [Co-PI] [Co-PI; Scholberg, Kate [Co-PI] [Co-PI; Walter, Chris [Co-PI] [Co-PI

2013-07-29T23:59:59.000Z

328

Research in High Energy Physics at Duke University  

SciTech Connect

This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22;{mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

2013-07-29T23:59:59.000Z

329

High Performance Computing Modeling Advances Accelerator Science for High Energy Physics  

SciTech Connect

The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

2014-04-29T23:59:59.000Z

330

Concept Maps: a Multipurpose Tool for Environmental Education John Jung, Mesa High School Environmental Science Master of Natural Science Program, School of Life Science, ASU  

E-Print Network (OSTI)

Concept Maps: a Multipurpose Tool for Environmental Education John Jung, Mesa High School Environmental Science Master of Natural Science Program, School of Life Science, ASU Concept Map about Concept Maps by J. Novak, the "father" of concept maps. Environmental Science Curriculum Planning Unit Plan

Hall, Sharon J.

331

Materials Physics Applications: The National High Magnetic Field Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search National High Magnetic Field Laboratory, NHMFL Home About Us Organization DIVISION Materials Physics and Applications Division GROUPS Superconductivity Technology Center Condensed Matter and Magnet Science Center for Integrated Nanotechnologies Sensors & Electrochemical Devices Materials Chemistry CONTACTS Group Leader Mike Hundley Director, NHMFL-PFF/Deputy Group Leader Chuck Mielke Head of Users Program Operations Jon Betts Professional Staff Assistant Julie T. Gallegos TA-03 Group Office TA-03, Building 0034, Room 101 Office Administrator Juanita Armijo TA-35 Group Office TA-35, Building 0127, Room C117 Office Administrator Angeline Willow 505-667-5032 National High Magnetic Field Laboratory, Pulsed Field Facility The Pulsed Field Facility at Los Alamos National Laboratory in Los Alamos, New Mexico, is one of three campuses of the National High Magnetic Field Laboratory (NHMFL), the other two being at Florida State University, Tallahassee (continuous fields, magnetic resonance, and general headquarters) and the University of Florida ,Gainesville(ultra-low temperatures at high magnetic fields). The NHMFL is sponsored primarily by the National Science Foundation, Division of Materials Research, with additional support from the State of Florida and the US Department of Energy.

332

Secure and efficient high-performance PROOF-based cluster system for high-energy physics  

Science Journals Connector (OSTI)

The particle detectors at the LHC produced about 25 PB data in a year, and the total size of data recorded on tape media at the CERN data center reached almost 100 PB in 2013. In order to preserve such a large-scale data safely and process them fast ... Keywords: Cluster system, High-energy physics, Large hadron collider, PROOF

Sang Un Ahn, Il Yeon Yeo, Sang Oh Park

2014-10-01T23:59:59.000Z

333

An Interpretive Case Study of Stakeholders' Perceptions on the Enrollment and Progression of African American Students in High School Foreign Language Courses  

E-Print Network (OSTI)

school campuses in Texas. Future studies should also investigate the equity trap avoidance and employment of the gaze in the context of public high school foreign language courses....

Schoener III, Herbert

2012-10-19T23:59:59.000Z

334

Manzano High School student wins top award in 22nd New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

Manzano High School student wins Supercomputing Challenge Manzano High School student wins Supercomputing Challenge Manzano student wins top award in 22nd New Mexico Supercomputing Challenge Jordan Medlock wins for his computer algorithm. April 24, 2012 Jordan Medlock Jordan Medlock Contact Steve Sandoval Communications Office (505) 665-9206 Email LOS ALAMOS, New Mexico, April 24, 2012-Jordan Medlock of Albuquerque's Manzano High School took the top prize in the 22nd New Mexico Supercomputing Challenge for his computer algorithm that automates the process of counting and analyzing plaques in magnetic resonance images of persons diagnosed with Alzheimer's disease. The program vastly speeds up the process of identifying the very small and difficult to see plaques. For his project, "Detection of Alzheimer's Disease Plaques in a

335

ATLAS Physics Prospects at the High-Luminosity LHC  

E-Print Network (OSTI)

Run-I at the LHC has been very successful, including the discovery of a new particle with a mass of about 125 GeV compatible within uncertainties with the Higgs boson predicted by Standard Model. Precise measurements of the properties of this boson, and the discovery of new physics beyond the Standard Model, are primary goals of future running at the LHC. The physics prospects with a proton-proton centre-of-mass energy of 14 TeV are presented for 300 fb-1 (Phase I) and 3000 fb-1 at the high-luminositiy LHC (Phase II). The ultimate precision attainable on measurements of the couplings of the 125 GeV particle to elementary fermions and bosons is discussed, as well as perspectives on the searches for partners associated with this new object, predicted by several extensions of the standard theory. Supersymmetry is one of the best motivated and well-studied extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as ...

Ochoa, Jean-pierre; The ATLAS collaboration

2014-01-01T23:59:59.000Z

336

Selected Physical Characteristics of Polystyrene/High Density Polyethylene Composites Prepared from Virgin  

E-Print Network (OSTI)

Selected Physical Characteristics of Polystyrene/High Density Polyethylene Composites Prepared from: Mixtures of polystyrene and high density polyethylene were injection molded from recycled and virgin

337

Sex education in Connecticut high schools| Teachers' reports of content and importance ratings according to the SIECUS Guidelines.  

E-Print Network (OSTI)

?? The purpose of this study was to examine Connecticut teachersĺ reports of the sex education content taught to high school students as well asů (more)

Wallace Obloj, Donna Lynn

2010-01-01T23:59:59.000Z

338

An Analysis of Student Performance in Connecticut Technical High Schools as Measured by 2001 CAPT and 2003 NOCTI Assessments.  

E-Print Network (OSTI)

??The purpose of this study was to investigate academic underperformances in Connecticut technical high schools from 1999 to 2003. Gaps existed in students' academic performanceů (more)

Vaz, Alvin W.

2006-01-01T23:59:59.000Z

339

2010 DOE National Science Bowl┬« Photos - C.M. Russell High School | U.S.  

Office of Science (SC) Website

C.M. Russell High School C.M. Russell High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - C.M. Russell High School Print Text Size: A A A RSS Feeds FeedbackShare Page C.M. Russell High School from Great Falls, MT. competes in the academic

340

Building Science-Relevant Literacy with Technical Writing in High School  

SciTech Connect

By drawing on the in-class work of an on-going literacy outreach project, this paper explains how well-chosen technical writing activities can earn time in high-school science courses by enabling underperforming students (including ESL students) to learn science more effectively. We adapted basic research-based text-design and usability techniques into age-appropriate exercises and cases using the cognitive apprenticeship approach. This enabled high-school students, aided by explicit guidelines, to build their cognitive maturity, learn how to craft good instructions and descriptions, and apply those skills to better note taking and technical talks in their science classes.

Girill, T R

2006-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dropouts and a Dropout Recovery Program at a Suburban High-poverty High School Near a Large Urban Area  

E-Print Network (OSTI)

The decision to drop out of high school is a serious problem for the individual making the decision to drop out, but it also has dramatic implications for their families, their communities, and the economic health of the greater community. As a...

Butler, Pamela W

2013-12-11T23:59:59.000Z

342

High School Academic Competition - Round Robin | U.S. DOE Office of Science  

Office of Science (SC) Website

Round Robin Round Robin National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2012 Competition Results High School Academic Competition - Round Robin Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome to the National Science Bowl Score Center! Looking for Round Robin Updates? Click on the division to go straight to

343

High School Academic Competition - Double Elimination | U.S. DOE Office of  

Office of Science (SC) Website

Double Double Elimination National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2012 Competition Results High School Academic Competition - Double Elimination Print Text Size: A A A RSS Feeds FeedbackShare Page No-Loss Bracket .pdf file (76KB) Challengers' Bracket .pdf file (67KB) Last modified: 4/15/2013 1:39:57

344

Partial Statement of Social Ethics for High Schools  

E-Print Network (OSTI)

to go in t h i s book. Another volume could we l l be wri t ten , po int ing out the agreements and d i s ş agreements o f our present moral standards with C h r i s t i a n i t y . There i s much in what Socrates sa id , that most s i n s are caused... f requent ly pro tec t the physic ian. There are many complaints that are incurab le , and a l l that can be done i s to make the su f ferer comfort ş a b l e . In case of cancer , the sore may be dressed and kept c l ean , and a pleasant p lace...

Wilson, Matthew Hale

1913-01-01T23:59:59.000Z

345

Computer-simulated laboratory explorations for middle school life, earth, and physical Science  

Science Journals Connector (OSTI)

Explorations in Middle School Science is a set of 72 computer-simulated laboratory lessons in life, earth, ... 6ľ9 developed by Jostens Learning Corporation with grants from the California State ...

Ruth Von Blum

1992-06-01T23:59:59.000Z

346

Discussing spent nuclear fuel in high school classrooms: addressing public fears through early education  

SciTech Connect

The Inreach program combines the Deep River Science Academy (DRSA) 'learning through research' approach with state of the art communication technology to bring scientific research to high school classrooms. The Inreach program follows the DRSA teaching model where a university student tutor works on a research project with scientific staff at AECL's Chalk River Laboratories. Participating high school classes are located across Canada. The high school students learn about the ongoing research activities via weekly web conferences. In order to engage the students and encourage participation in the conferences, themed exercises linked to the research project are provided to the students. The DRSA's Inreach program uses a cost-effective internet technology to reach a wide audience, in an interactive setting, without anyone leaving their desks or offices. An example Inreach research project is presented here: an investigation of the potential of the Canadian supercritical water cooled reactor (SCWR) concept to burn transuranic elements (Np, Pu, Am, Cm) to reduce the impact of used nuclear fuel. During this project a university student worked with AECL (Atomic Energy of Canada Limited) researchers on technical aspects of the project, and high school students followed their progress and learned about the composition, hazards, and disposition options for used nuclear fuel. Previous projects included the effects of tritium on cellular viability and neutron diffraction measurement of residual stresses in automobile engines.

Winkel, S. [Deep River Science Academy, 20 Forest Ave. P.O. Box 600, Deep River, Ontario K0J 1P0 (Canada); Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada); Sullivan, J.; Jones, S.; Sullivan, K. [Deep River Science Academy, 20 Forest Ave. P.O. Box 600, Deep River, Ontario K0J 1P0 (Canada); Hyland, B.; Pencer, J.; Colton, A. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

2013-07-01T23:59:59.000Z

347

LHC Physics Center | (none)  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Center Physics Center Fermilab Home Visit LPC Physics Programs LPC Guest and Visitors HATS@LPC, Workshops and CMSDAS Jet-Substructure HATS CMS Data Analysis School 2013 CMS Data Analysis School 2012 CMS Data Analysis School 2011 EJTERM (CMS Data Analysis School 2010) Confronting Theory with Experiment: November 2011 Standard Model Benchmarks at the Tevatron and LHC Standard Model Benchmarks at High-Energy Hadron Colliders GED workshop 20-22 Aug, 2012 Topic of the Week Upcoming Past Speakers Archive Program Info LPC Physics Forum LPC Snowmass Efforts The INFIERI Project Fellows LPC Fellows Program Newsletter - LPC Fellows LPC Fellows - 2014 LPC Fellows - 2013 LPC Fellows - 2012 LPC Fellows - 2011 Community Faces of the LPC LPC Fellows - Current LPC Coffee Hour Calendar LPC Conf. Room Calendar

348

Risk to Resilience : : Exploring Protective Factors for Students Experiencing Homelessness at a Traditional High School and a Modified Comprehensive School  

E-Print Network (OSTI)

1994). School culture components including safety, educatorCulture and Climate ..41 Safety Culture and Climate ..82 Safety

Garcia, Joel Romero

349

High Energy Physics: Report of research accomplishments and future goals, FY 1988  

SciTech Connect

This report discusses high energy physics research in the following areas: Research in elementary particle physics; QCD phenomenology; lattice gauge theory; Mark III; MARK J and Mark II/SLC.

Barish, B C; Stone, E C; Ames, C A

1987-07-10T23:59:59.000Z

350

High Energy Physics: Report of research accomplishments and future goals, FY 1987  

SciTech Connect

This report discusses high energy physics research in the following areas: Research in elementary particle physics; QCD phenomenology; lattice gauge theory; Mark III; MARK J and Mark II/SLC.

Barish, B C; Stone, E C; Johnson, F H

1986-07-30T23:59:59.000Z

351

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics1354608000000PhysicsSome of these resources are LANL-only and will require Remote Access.No Physics Some of these resources are LANL-only and will require Remote...

352

Operational radiation protection in high-energy physics accelerators  

Science Journals Connector (OSTI)

......material control. At physics research accelerators...account the predicted dose rate levels in routine and...technicians need to have a good physics background, which is...few minutes in a one-pass accelerator. Special...above a certain peak dose rate level. Skyshine (neutrons......

S. H. Rokni; A. Fass˛; J. C. Liu

2009-11-01T23:59:59.000Z

353

A survey of elementary school physical education requirements in the state of Wyoming  

E-Print Network (OSTI)

, including Australia (Siedentop 5 Siedentop, 1985), Finland (Andrews, 1986), and Canada (Martens, 1982), have established the need for daily physical education based on their own surveys regarding motor development, physical fitness, and sport development... as a norm in Australia and Finland. Canada is in the process of adapting a daily physical education program to their curriculum. Bailey (1976) believes that the concept of establishing an exercise pattern would benefit the individual later in life...

Balestrieri, Jay Alan

1989-01-01T23:59:59.000Z

354

DOE High Energy Physics Reports | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DOE DOE High Energy Physics Reports High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources SC Graduate Fellowship Program: HEP 2010 Awardees External link Quick Links DOE High Energy Physics Reports HEP Sponsored Workshops and Conferences Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information ┬╗ News & Resources DOE High Energy Physics Reports Print Text Size: A A A RSS Feeds FeedbackShare Page The following are DOE High Energy Physics Reports for projects under construction and experiments operating using accelerators as well as

355

Physics of neutralization of intense high-energy ion beam pulses by electronsa...  

E-Print Network (OSTI)

Physics of neutralization of intense high-energy ion beam pulses by electronsa... I. D. Kaganovich beams,13 the physics of solar flares,14 high-intensity high- energy particle beam propagation Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range

Kaganovich, Igor

356

A comparison of the attitudes of Texas high school superintendents and athletic personnel regarding selected athletic concerns  

E-Print Network (OSTI)

of any of these differences to encourage a more harmonious relationship between the athletic personnel and the school administrators toward a common goal of enhancement of the total student. Procedure Eight hundred and fifty Texas high school... administrators, selected from the schools surveyed in a 1981 survey of Pender and Elledge, in the state of Texas were sent a packet containing a cover letter explaining the purpose of the study and a survey instrument regarding athletic concern categories. A...

Yawn, Patricia Fullagar

2012-06-07T23:59:59.000Z

357

Development of a Simplified Simulation Tool for High Performance K-5 Schools in Hot and Humid Climates  

E-Print Network (OSTI)

hourly building energy usage: The great energy predictor shootout-overview and discussion of results. ASHRAE Transactions 100(2):1104-1118. Perkins, B. 2001. Building type basics for elementary and secondary schools, John Wiley & Sons, INC. New York... new school building. OBJECTIVES The purpose of this study is to develop a simplified simulation tool for K-5 high performance schools in hot and humid climates. The tool will be developed using the DOE-2.1e building energy simulation program...

Im, P.; Haberl, J. S.

358

High incidence of sleep problems in children with developmental disorders: Results of a questionnaire survey in a Japanese elementary school  

Science Journals Connector (OSTI)

Objective: The aim of the present school-based questionnaire was to analyze the sleep problems of children with developmental disorders, such as pervasive developmental disorder and attention deficit hyperactivity disorder. Methods: The sleep problems of 43 children with developmental disorders were compared with those of 372 healthy children (control group). All children attended one public elementary school in Kurume, Japan; thus, the study avoided the potential bias associated with hospital-based surveys (i.e. a high prevalence of sleep disturbance) and provided a more complete picture of the childrenĺs academic performance and family situation compared with a control group under identical conditions. Childrenĺs sleep problems were measured with the Japanese version of the Childrenĺs Sleep Habits Questionnaire (CSHQ). Results: Children with developmental disorders had significantly higher total CSHQ scores, as well as mean scores on the parasomnias and sleep breathing subscales, than children in the control group. The total CSHQ score, bedtime resistance, sleep onset delay, and daytime sleepiness worsened with increasing age in children with developmental disorders; in contrast, these parameters were unchanged or became better with age in the control group. In children with developmental disorders, there was a significant association between a higher total CSHQ score and lower academic performance, but no such association was found in the control group. For both groups, childrenĺs sleep problems affected their parentsĺ quality of sleep. There were no significant differences in physical, lifestyle, and sleep environmental factors, or in sleep/wake patterns, between the two groups. Conclusions: Children with developmental disorders have poor sleep quality, which may affect academic performance. It is important for physicians to be aware of age-related differences in sleep problems in children with developmental disorders. Further studies are needed to identify the association between sleep quality and school behavioral performance.

Michiko Matsuoka; Shinichiro Nagamitsu; Mizue Iwasaki; Akiko Iemura; Yushiro Yamashita; Masaharu Maeda; Shingo Kitani; Tatsuyuki Kakuma; Naohisa Uchimura; Toyojiro Matsuishi

2014-01-01T23:59:59.000Z

359

The Future of High Energy Nuclear Physics in Europe  

E-Print Network (OSTI)

In less than two years from now, the LHC at CERN will start operating with protons and later with heavy ions in the multi TeV energy range. With its unique physics potential and a strong, state-of-the complement of detectors, the LHC will provide the European, and in fact worldwide Nuclear Physics community, with a forefront facility to study nuclear matter under extreme conditions well into the next decade.

J. Schukraft

2006-02-14T23:59:59.000Z

360

Physics reach of high-energy and high-statistics IceCube atmospheric neutrino data  

Science Journals Connector (OSTI)

This paper investigates the physics reach of the IceCube neutrino detector when it will have collected a data set of order one million atmospheric neutrinos with energies in the 0.1?104??TeV range. The paper consists of three parts. We first demonstrate how to simulate the detector performance using relatively simple analytic methods. Because of the high energies of the neutrinos, their oscillations, propagation in the Earth and regeneration due to ? decay must be treated in a coherent way. We set up the formalism to do this and discuss the implications. In a final section we apply the methods developed to evaluate the potential of IceCube to study new physics beyond neutrino oscillations. Not surprisingly, because of the increased energy and statistics over present experiments, existing bounds on violations of the equivalence principle and of Lorentz invariance can be improved by over 2 orders of magnitude. The methods developed can be readily applied to other nonconventional physics associated with neutrinos.

M. C. Gonzalez-Garcia; Francis Halzen; Michele Maltoni

2005-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Physics Issues in the Design of Low Aspect-Ratio, High-, Quasi-Axisymmetric Stellarators  

E-Print Network (OSTI)

, Lausanne, Switzerland 5 Max Planck Institute for Plasma Physics,Greifswald, Germany 6 Kurchatov InstitutePhysics Issues in the Design of Low Aspect-Ratio, High-, Quasi-Axisymmetric Stellarators M Princeton Plasma Physics Laboratory, Princeton, NJ 08543 USA 2 Oak Ridge National Laboratory, Oak Ridge, TN

Lin, Zhihong

362

A Study of Prevention and Retention Strategies for Successful Urban Secondary High School Hispanic Students  

E-Print Network (OSTI)

A STUDY OF PREVENTION AND RETENTION STRATEGIES FOR SUCCESSFUL URBAN SECONDARY HIGH SCHOOL HISPANIC STUDENTS A Dissertation by ROBERTO IBARRA LOPEZ Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of DOCTOR OF EDUCATION Approved by: Chair of Committee, Mario S. Torres Committee Members, Virginia Collier Larry Dooley Ben Welch Head of Department, Fredrick M. Nafukho May 2013...

Lopez, Roberto I

2013-01-14T23:59:59.000Z

363

Equipment Availability in the Home and School Environment: Its Relationship on Physical Activity in Children  

E-Print Network (OSTI)

activity behavior of children; availability of equipment is one of these factors. The overall purpose of this dissertation was to examine availability of equipment as an environmental influence on a childĺs physical activity behavior. The two environments...

Montandon, Kristi

2013-01-14T23:59:59.000Z

364

Introducing Bond-Line Organic Structures in High School Biology: An Activity That Incorporates Pleasant-Smelling Molecules  

Science Journals Connector (OSTI)

General Public; High School/Introductory Chemistry; Biochemistry; Interdisciplinary/Multidisciplinary; Organic Chemistry; Computer-Based Learning; Inquiry-Based/Discovery Learning; Food Science; Nomenclature/Units/Symbols ... In addition to its development in our own high school classes, this activity has been implemented by biology teachers at other high schools. ... This project was developed and performed while the authors Andro Rios (Socrates Fellow) and Gerald French (Mentor Teacher) were supported by a National Science Foundation GK-12 grant (NSF 0742551) to the University of California, San Diego (Principal Investigator, Maarten J. Chrispeels). ...

Andro C. Rios; Gerald French

2011-05-06T23:59:59.000Z

365

High Energy Physics Advisory Panel (HEPAP) Homepage | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

HEPAP Home HEPAP Home High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Members .pdf file (20KB) Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors HEP Home Print Text Size: A A A RSS Feeds FeedbackShare Page P5 Planning The high energy physics research community is engaged in developing a ten-year plan for U.S. particle physics. To learn more about the so-called "P5" process, and to stay abreast of meetings, please click on the following external link: Particle Physics Project Prioritization Panel (P5) External link The High Energy Physics Advisory Panel (HEPAP) has advised the Federal Government on the national program in experimental and theoretical high energy physics (HEP) research since its inception in 1967. Since October 2000, the Panel now has joint ownership and continues to be chartered by

366

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

research program in Quantum Chromodynamics (QCD). This research addresses fundamental questions in high energy and nuclear

Gerber, Richard A.

2011-01-01T23:59:59.000Z

367

Experimental High Energy Physics Brandeis University Final Report  

SciTech Connect

During the past three years, the Brandeis experimental particle physics group was comprised of four faculty (Bensinger, Blocker, Sciolla, and Wellenstein), one research scientist, one post doc, and ten graduate students. The group focused on the ATLAS experiment at LHC. In 2011, the LHC delivered 5/fb of pp colliding beam data at a center-of-mass energy of 7 TeV. In 2012, the center-of-mass energy was increased to 8 TeV, and 20/fb were delivered. The Brandeis group focused on two aspects of the ATLAS experiment -- the muon detection system and physics analysis. Since data taking began at the LHC in 2009, our group actively worked on ATLAS physics analysis, with an emphasis on exploiting the new energy regime of the LHC to search for indications of physics beyond the Standard Model. The topics investigated were Z' -> ll, Higgs -> ZZ* -. 4l, lepton flavor violation, muon compositeness, left-right symmetric theories, and a search for Higgs -> ee. The Brandeis group has for many years been a leader in the endcap muon system, making important contributions to every aspect of its design and production. During the past three years, the group continued to work on commissioning the muon detector and alignment system, development of alignment software, and installation of remaining chambers.

Blocker, Craig A. [Brandeis University] [Brandeis University; Bensinger, James [Brandeis University] [Brandeis University; Sciolla, Gabriella [Brandeis University] [Brandeis University; Wellenstein, Hermann [Brandeis University] [Brandeis University

2013-07-26T23:59:59.000Z

368

High Energy Physics: Report of research accomplishments and future goals, FY 1992  

SciTech Connect

This report discusses high energy physics research in the following areas: Research in theoretical physics; phenomenology; experimental computer facility at Caltech; Beijing BES; MACRO; CLEO II; SLD; L3 at LEP; the B Factory R & D Program; SSC GEM Detector; and a high resolution barium fluoride calorimeter for the SSC.

none,

1991-09-05T23:59:59.000Z

369

Proceedings of the conference on numerical methods in high temperature physics  

SciTech Connect

These proceedings contain full papers presented at the Los Alamos Conference on High Temperature Physics. This conference discussed many aspects of high temperature physics including hydrodynamics, radiation and particle transport and some computational issues important for efficient calculations. The meetings was held between researchers from Los Alamos and the French Commissariat a L'Energy Atomique (CEA).

Alcouffe, R.E.; Holm, D.D.; O'Rourke, P.J. (comps.)

1988-11-01T23:59:59.000Z

370

Center for Beam Physics  

E-Print Network (OSTI)

for Heavy Ion Fusion," Research Trends in Physics, La JollaInternational School of Physics, New York, New York (1992),Professor and Chairman Physics Department University of

Chattopadhyay, S.

2010-01-01T23:59:59.000Z

371

Investigations in Experimental and Theoretical High Energy Physics  

SciTech Connect

We report on the work done under DOE grant DE-FG02-01ER41155. The experimental tasks have ongoing efforts at CERN (ATLAS), the Whipple observatory (VERITAS) and R&D work on dual readout calorimetry and neutrino-less double beta decay. The theoretical task emphasizes the weak interaction and in particular CP violation and neutrino physics. The detailed descriptions of the final report on each project are given under the appropriate task section of this report.

Krennrich, Frank [Iowa State University

2013-07-29T23:59:59.000Z

372

High School Principals' Perceptions of Central Office Administrator Support For Planning, Coordinating, and Evaluating Teaching and the Curriculum  

E-Print Network (OSTI)

and the curriculum. The research was guided by a single overarching question: What are high school principal perceptions of support given to them by district central office administrators in the areas of planning, coordinating, and evaluating teaching...

Lawson, Kimberly Kelleher

2011-10-21T23:59:59.000Z

373

Registered Lasers -School of Physics and Astronomy Registered Lasers as at 15 June 2012  

E-Print Network (OSTI)

ps Information: 4100 Spectra Physics Nd+SHGMillenia X 658 CW 10 W -532 nm - Information: 499 Spectra: not currently operational 4139 SDL+ SC? ? CW 2.2 W -800-830 nm - Information: pump diodes for uchip - multiple devices in existence. not currently operational #12;Group ID cfr ClassAsset ID Pulse Duration Manufacturer

Greenaway, Alan

374

Research in high energy physics. Annual technical progress report, December 1, 1993--November 30, 1998  

SciTech Connect

The high energy physics research program at the University of Hawaii is directed toward the study of the properties of the elementary particles and the application of the results of these studies to the understanding of the physical world. Experiments using high energy accelerators are aimed at searching for new particles, testing current theories, and measuring properties of the known particles. Experiments using cosmic rays address particle physics and astrophysical issues. Theoretical physics research evaluates experimental results in the context of existing theories and projects the experimental consequences of proposed new theories.

Olsen, S.L.; Tata, X.

1996-11-01T23:59:59.000Z

375

Frontiers in Microbiology: Envisioning a Curriculum Unit for High School Biology  

SciTech Connect

Microbiology is undergoing a quiet revolution. Techniques such as polymerase chain reaction, high throughput DNA sequencing, whole genome shotgun sequencing, DNA microarrays, and bioinformatics analyses are greatly aiding our understanding of the estimated one billion species of microbes that inhabit the Earth. Unfortunately, the rapid pace of research in microbiology stands in contrast to the much slower pace of change in educational reform. Biological Sciences Curriculum Study (BSCS) hosted a two-day planning meeting to discuss whether or not a new curriculum unit on microbiology is desirable for the high school audience. Attending the meeting were microbiologists, high school biology teachers, and science educators. The consensus of the participants was that an inquiry-based unit dealing with advances in microbiology should be developed for a high school biology audience. Participants established content priorities for the unit, discussed the unit's conceptual flow, brainstormed potential student activities, and discussed the role of educational technology for the unit. As a result of the planning meeting discussions, BSCS staff sought additional funding to develop, disseminate, and evaluate the Frontiers in Microbiology curriculum unit. This unit was intended to be developed as a replacement unit suitable for an introductory biology course. The unit would feature inquiry-based student activities and provide approximately four weeks of instruction. As appropriate, activities would make use of multimedia. The development and production processes would require about two years for completion. Unfortunately, BSCS staff was not able to attract sufficient funding to develop the proposed curriculum unit. Since there were some unexpended funds left over from the planning meeting, BSCS requested and received permission from DOE to use the balance of the funds to prepare background materials about advances in microbiology that would be useful to teachers. These materials were developed and placed on the BSCS Web site (http://www.bscs.org).

Mark Bloom

2004-06-18T23:59:59.000Z

376

HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS  

E-Print Network (OSTI)

used to inject plasma into the final focus region right inplasma flow is slowed down once entering the high field region of the final focus

Bieniosek, F.M.

2008-01-01T23:59:59.000Z

377

HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS  

E-Print Network (OSTI)

used to inject plasma into the final focus region right inplasma flow is slowed down once entering the high field region of the final focus

Henestroza, E.

2012-01-01T23:59:59.000Z

378

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Magnetic Spectrometer, Dark Energy Survey, Palomar Transientform the basis for dark energy surveys. Unlike high-redshiftDark Energy Mission (JDEM) and the Large Synoptic Sky Survey (

Gerber, Richard A.

2011-01-01T23:59:59.000Z

379

Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos  

SciTech Connect

This reports presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

Heeger, Karsten M [Yale University

2014-09-13T23:59:59.000Z

380

LAPTAG: Los Angeles Physics Teachers Alliance Group and t h e UCLA Basic Plasma User Facility. W. Gekelman, Department of  

E-Print Network (OSTI)

LAPTAG: Los Angeles Physics Teachers Alliance Group and t h e UCLA Basic Plasma User Facility. W to form alliances. There are currently about twenty high schools, several community colleges and two.S.* The Los Angeles Physics Teachers Alliance Group (LAPTAG) represents high school physics teachers from

Carter, Troy

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fermilab | Science | Inquiring Minds | Questions About Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering matrix You Wrote: Hello: I am a high school physics teacher with a problem One of my students is very interested in superstring theories and often asks me to explain...

382

Operational radiation protection in high-energy physics accelerators  

Science Journals Connector (OSTI)

......monitors with a good energy response have been built...to increase their response at high energies(6)). Prompt radiation...often pulsed, with a frequency that can range between millions of Hz in a storage ring and less than......

S. H. Rokni; A. Fass˛; J. C. Liu

2009-11-01T23:59:59.000Z

383

Operational radiation protection in high-energy physics accelerators  

Science Journals Connector (OSTI)

......transportation, movement, storage, handling, processing...radioactive materials and wastes are properly controlled...measurements for radioactive waste characterisation, on-site storage of radioactive materials...short-term active or long-term passive, high-radiation-level......

S. H. Rokni; A. Fass˛; J. C. Liu

2009-11-01T23:59:59.000Z

384

High energy density physics generated by intense heavy ion beams  

Science Journals Connector (OSTI)

Intense ion beams from accelerators are now available to generate high energy density matter and to study astrophysical phenomena in the laboratory under controlled and reproducible conditions. A detailed unde...

D. H. H. Hoffmann; V. E. Fortov; M. Kuster; V. Mintsevů

2009-08-01T23:59:59.000Z

385

Submitted to the XXXIst International Conference on High Energy Physics  

E-Print Network (OSTI)

detector can be found elsewhere [1]. The high┬ş resolution uranium--scintillator calorimeter (CAL) [2 level for photon (Z)┬şphoton (Z) collisions and internal photon (Z) conversions. For the proton vertex

386

Experimental High Energy Physics Research: Direct Detection of Dark Matter  

SciTech Connect

The grant supported research on an experimental search for evidence of dark matter interactions with normal matter. The PI carried out the research as a member of the LUX and LZ collaborations. The LUX research team collected a first data set with the LUX experiment, a large liquid xenon detector installed in the Sanford Underground Research Facility (SURF). The first results were published in Physical Review Letters on March 4, 2014. The journal Nature named the LUX result a scientific highlight of the year for 2013. In addition, the LZ collaboration submitted the full proposal for the Lux Zeplin experiment, which has since been approved by DOE-HEP as a second-generation dark matter experiment. Witherell is the Level 2 manager for the Outer Detector System on the LUX-Zeplin experiment.

Witherell, Michael S.

2014-10-02T23:59:59.000Z

387

Calculating Energy and Demand Retrofit Savings for Stroman High School: Interim Report  

E-Print Network (OSTI)

As part of the LoanSTAR program, Stroman High School in Victoria Texas underwent two retrofits: a) an absorption chiller was changed to an electric vapor compression chiller, and b) an EMCS system was installed after about 5 months in the post retrofit... be used for both heating and cooling, while the retrofit involved a change from the absorption chiller to an electric chiller (i.e., an absorption chiller is used). Thus, in the post-retrofit period, gas is used exclusively for heating , and electricity...

Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

388

PREP Program: High school urban engineering technical progress report, Summer 1993  

SciTech Connect

The Urban Engineering Program at the New Jersey Institute of Technology which as its primary objective is to introduce the students to the excitement of science and engineering as potential career opportunities, and to encourage the youngsters to adequately prepare in high school and in college for such an attainable endeavor. Through the course work, workshops, projects, guest speakers, and laboratory experiences, the students are not only introduced to the problems in urban areas, but also are introduced to the tools and analysis available to solve such problems.

Not Available

1993-09-01T23:59:59.000Z

389

Budget projections - 1991 through 1996 for research in high energy physics  

SciTech Connect

This research program in high energy physics is carried out under the general supervision of a committee which is composed of G.W. Brandenburg, G.J. Feldman, M.E. Franklin, R.J. Glauber, K. Kinoshita, F.M. Pipkin, K. Strauch, R. Wilson, and H. Yamamoto. Professor G.J. Feldman currently serves as chair of this committee. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. In the fall of 1991 S. Mishra will join this committee. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting thirteen research students. In addition, undergraduate students work in projects at HEPL during the academic year and over summers. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared proportionally by the experimental groups. Harvard financially supports this high energy physics research program in many ways.

Not Available

1991-05-01T23:59:59.000Z

390

Budget projections 1990, 1991, and 1992 for research in high energy nuclear physics  

SciTech Connect

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. The committee members are: G.W. Brandenburg, M. Franklin, S. Geer, R. J. Glauber, K. Kinoshita, F. M. Pipkin, R. F. Schwitters, K. Strauch, M. E. Law, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, R.F.Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. Professor Schwitters is currently on leave of absence as Director of the Superconducting Super Collider project. In the fall of 1990 Professor G. Feldman, who is currently at SLAC, will join the Harvard faculty and become a principal investigator. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared equally by the experimental groups.

Not Available

1990-05-01T23:59:59.000Z

391

Obesity, High Energy Intake, Lack of Physical Activity, and the Risk of Kidney Cancer  

Science Journals Connector (OSTI)

...modification of energy intake and physical...The respective ethics review boards of...classification of energy costs of human physical...factors affecting the development of renal cell cancer...family in cancer development and progression...Obesity, high energy intake, lack of...

Sai Yi Pan; Marie DesMeules; Howard Morrison; and Shi Wu Wen

2006-12-01T23:59:59.000Z

392

Obesity, High Energy Intake, Lack of Physical Activity, and the Risk of Kidney Cancer  

Science Journals Connector (OSTI)

...Article Research Articles Obesity, High Energy Intake, Lack of Physical Activity, and...controls to assess the effect of obesity, energy intake, and recreational physical activity...by age, whereas the effect of excess energy intake was stronger among older people...

Sai Yi Pan; Marie DesMeules; Howard Morrison; Shi Wu Wen

2006-12-01T23:59:59.000Z

393

Coal Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Coal Study Guide - Middle School Coal Study Guide - Middle School More Documents & Publications Coal Study Guide for Elementary School Coal Study Guide - High School...

394

High-performance computing in the chemistry and physics of materials  

Science Journals Connector (OSTI)

...Special feature 1005 117 45 High-performance computing in the chemistry and physics...London WC1H OAJ, UK High performance computing (HPC) is now a key enabling...exploited the UKs national high-performance computing facilities-over two...

2011-01-01T23:59:59.000Z

395

Optimizing a physical security configuration using a highly detailed simulation model  

E-Print Network (OSTI)

Optimizing a physical security configuration using a highly detailed simulation model Marechal, T. Email: tommarechal@hotmail.com Abstract This chapter focuses on using a highly detailed simulation model. In this chapter describes the use of a highly detailed simulation model to find a superior security configuration

Smith, Alice E.

396

D.C. Middle and High School Students Get a Chance to Experience the Regional Science Bowl Competition Setting  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energyĺs Office of Minority Education and Community Development will demonstrate how middle schools and high schools in D.C. can get involved by providing a hands-on, interactive science bowl demonstration. The mock competition allows students to get a feel for the competition style, practice answering science questions at rapid pace, and meet staff from the Department of Energy.

397

Elementary particle physics and high energy phenomena. Progress report for FY92  

SciTech Connect

This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

1992-06-01T23:59:59.000Z

398

Modeling the Dynamics of Gel Electrophorresis in the High School Classroom  

Science Journals Connector (OSTI)

Gel electrophoresis used by geneticists and forensic experts alike is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level a dye or complex protein like DNA is passed through agarose a gelatinous three-dimensional matrix of pores and nano-sized tunnels. When forced through a maze of holes the molecule unravels forming a long chain slithering through the field of pores in a process colloquially coined ôreputation.ö1 As a result the smaller molecules travel farther through the gel when compared to molecules of larger molecular weight. This highly effective ômolecular sieveö provides consistent data and allows scientists to compare similar sequences of DNA base pairs in a routine fashion.2 When performed at the high school level gel electrophoresis provides students the opportunity to learn about a contemporary lab technique of great scientific relevance. Doing real science certainly excites students and motivates them to learn more.

Skyler R. Saucedo

2013-01-01T23:59:59.000Z

399

Budget projections 1989, 1990, and 1991 for research in high energy nuclear physics  

SciTech Connect

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. The committee members are: G.W. Brandenburg, S. Geer, R.J. Glauber, K. Kinoshita, R. Nickerson, F.M. Pipkin, R.F. Schwitters, M. Shapiro, K. Strauch, R. Vanelli, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, R.F. Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. Professor Schwitters is currently on leave of absence as Director of the Superconducting Super Collider project. In the fall of 1990 Professor G. Feldman, who is currently at SLAC, will join the Harvard faculty and become a principal investigator. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting 15 research students. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared equally by the experimental groups.

Not Available

1989-05-01T23:59:59.000Z

400

A new integrated pixel detector for high energy physics  

SciTech Connect

In this paper, the authors have fabricated integrated pixel devices which have the high-resistivity, signal-charge collecting volume and the readout circuitry in a single piece of silicon. The integration of both detecting elements and circuitry is carried out by building the circuitry on top of the detecting elements maximizing spatial resolution. Loss of signal charge into the circuitry where it would be lost for readout is avoided. Both circuitry and detecting elements are fully functional. Tests with infrared illumination and gamma irradiation have been carried out on wafer before dicing and packaging. Here the authors present noise measurements illustrating the excellent signal to single-channel noise performance of this device of about 150 to 1 for a minimum ionizing particle, which is an order of magnitude better than silicon strip detectors currently used. The authors also made a setup for packaged devices, and gamma irradiation measurement results obtained with this setup illustrate the high signal to noise performance and good uniformity in sensitivity over the different pixels.

Snoeys, W.; Plummer, J. (Stanford Univ., CA (United States). Center for Integrated Systems); Parker, S.; Kenney, C. (Hawaii Univ., Honolulu, HI (United States))

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Special Colloquium : Looking at High Energy Physics from a gender studies perspective  

ScienceCinema (OSTI)

Human actors, workplace cultures and knowledge production: Gender studies analyse the social constructions and cultural representations of gender. Using methods and tools from the humanities and social science, we look at all areas, including the natural sciences and technology, science education and research labs. After a short introduction to gender studies, the main focus of my talk will be the presentation of selected research findings on gender and high energy physics. You will hear about an ongoing research project on women in neutrino physics and learn about a study on the world of high energy physicists characterised by "rites of passage" and "male tales" told during a life in physics. I will also present a study on how the HEP community communicates, and research findings on the naming culture in HEP. Getting to know findings from another field on your own might contribute to create a high energy physics culture that is fair and welcoming to all genders.

None

2011-04-25T23:59:59.000Z

402

Expectations for old and new physics at high energy colliders  

SciTech Connect

During the past year, the first data from the SPS collider at CERN have become available. The initial results are only a glimpse at a new energy regime and we can reasonably expect an increase in the extent of the data by a factor of 10/sup 4/ to 10/sup 5/. Moreover, within a few years, the Fermilab Tevatron Collider will be in operation with a center of mass energy nearly four times as great as that at CERN. Beyond these machines are other possibilities: a high luminosity pp machine at Brookhaven with a center of mass energy of 0.8 TeV; a p anti p or pp machine in the LEP tunnel at CERN; a desetron in the southwestern United States with many TeV in the center of mass. The purpose of these lectures is to provide an orientation for the wealth of data that these machines will provide.

Cahn, R.N.

1982-12-01T23:59:59.000Z

403

Physics Teachers Workshop  

ScienceCinema (OSTI)

INL is looking for the nation's top high school physics teachers to attend our July workshop in Idaho Falls. Participants get to learn from nuclear researchers, tour facilities including a research reactor and interact with peers from across the country. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory

Huggins, DaNel; Calhoun, John; Palmer, Alyson; Thorpe, Steve; Vanderveen, Anne;

2013-05-28T23:59:59.000Z

404

Recruitment Experiences and Decision Factors of High School Science Teachers in Texas  

E-Print Network (OSTI)

student enrollment profile (MSEP) and size of school. The second study explores reasons for teachers' decisions to accept their positions. New-to-school teachers indicated 12 categories of reasons. Subjective factors relating to non-pecuniary aspects...

Richardson, Rasheedah 1978-

2012-08-02T23:59:59.000Z

405

Testing the physics of heat conduction using high pressure: crystals, glasses, and interfaces  

E-Print Network (OSTI)

, simplest case of thermal conductivity where resistive scattering dominates C() v() l() d C() = heatTesting the physics of heat conduction using high pressure: crystals, glasses, and interfaces David supported by CDAC and AFOSR #12;The story... ┬Ě Use high pressure (gem anvil cells) to modify vibrational

Braun, Paul

406

Physical Design for Reduced Delay Uncertainty in High Performance Clock Distribution Networks  

E-Print Network (OSTI)

531 Physical Design for Reduced Delay Uncertainty in High Performance Clock Distribution Networks, the design of a clock distribution network represents one of the most challenging tasks in the integrated in the design of a high performance clock distribution network [1]. The uncertainty of the clock signal delay

Friedman, Eby G.

407

Volume 28A, number 2 PHYSICS LETTERS 4 November 1968 HIGH ENERGY K CONVERSION COEFFICIENTS  

E-Print Network (OSTI)

Volume 28A, number 2 PHYSICS LETTERS 4 November 1968 HIGH ENERGY K CONVERSION COEFFICIENTS C. 0V) Fig. 1. Theoretical values for K conversion coefficients for 2 = 48. gamma-ray transition energies 1 and Astronomy: Louisiana State University, Baton Rouge, Louisiana. USA Received 21 September 1968 High energy K

O'Connell, Robert F.

408

The Impact of the Samantha Academy of Creative Education (SACE) on Students Placed At-Risk at a Suburban High School in Southwest Texas  

E-Print Network (OSTI)

-risk can be developed within the context of a regular high school setting. Recommendations for further research and implications for practice were provided....

Valdez, Patrick J.

2010-01-16T23:59:59.000Z

409

High School Research at Jefferson Lab - Development of the GRINCH Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonlinear Particle Dynamics Nonlinear Particle Dynamics Previous Project (Nonlinear Particle Dynamics) High School Research Main Index Next Project (Fire Alarm Monitoring Systems) Fire Alarm Monitoring Systems Development of the GRINCH Gas Cherenkov Detector This project was done as a summation of all of the projects I have done referencing A1n and the GRINCH detector. To assist in the preparation of the A1n experiment, I helped develop and model a magnetic shielding box for an array of PMT's in the GRINCH detector. Using this box, as well as a compensation coil, seemed to provide ample shielding from the BigBite magnets magnetic field. The PMT's in the array were salvaged from a detector where they were submerged in water and sustained damage (micro-fractures) on their acceptance windows. By putting a layer of glue

410

Alternative Energy Saving Technology Analysis Report for Richland High School Renovation Project  

SciTech Connect

On July 8, 2004, L&S Engineering, Inc. submitted a technical assistance request to Pacific Northwest National Laboratory (PNNL) to help estimate the potential energy savings and cost effectiveness of the solar energy and daylighting design alternatives for Richland High School Renovation Project in Richland, WA. L&S Engineering expected PNNL to evaluate the potential energy savings and energy cost savings, the probable installation costs, incentives or grants to reduce the installed costs and simple payback for the following alternative measures: (1) Daylighting in New Gym; (2) Solar Photovoltaics; (3) Solar Domestic Hot Water Pre-Heat; and (4) Solar Outside Air Pre-Heat Following are the findings of the energy savings and cost-effectiveness analysis of above alternative energy saving technologies.

Liu, Bing

2004-08-09T23:59:59.000Z

411

High Energy Physics Advisory Panel August 2012 Meeting | U.S. DOE Office of  

Office of Science (SC) Website

High Energy Physics Advisory Panel August 2012 Meeting High Energy Physics Advisory Panel August 2012 Meeting High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Previous Meetings Members .pdf file (20KB) Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors HEP Home Meetings High Energy Physics Advisory Panel August 2012 Meeting Print Text Size: A A A RSS Feeds FeedbackShare Page Agenda High Energy Physics Advisory Panel Hilton Hotel 1750 Rockville Pike Rockville, Maryland August 27-28, 2012 Monday, August 27, 2012 NEWS FROM THE AGENCIES 9:00 a.m. DOE News .pdf file (2.7MB) J. Siegrist 9:30 a.m. Discussion 9:45 a.m. NSF News .pdf file (1.3MB) J. Dehmer 10:05 a.m. Discussion 10:20 a.m. BREAK ENERGY FRONTIER - LHC 10:50 a.m. Higgs Discovery - ATLAS .pdf file (10.1MB) F. Gianotti 11:30 a.m. Higgs Discovery - CMS .pdf file (7.6MB) D. Marlow

412

The impact of school facilities on student achievement, attendance, behavior, completion rate and teacher turnover rate in selected Texas high schools  

E-Print Network (OSTI)

The purpose of this study was to explore the possible relationship between school facility conditions and school outcomes such as student academic achievement, attendance, discipline, completion rate and teacher turnover rate. School facility...

McGowen, Robert Scott

2009-05-15T23:59:59.000Z

413

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A'Hearn, Michael F. - Department of Astronomy, University of Maryland at College Park Aalberts, Daniel P. - Department of Physics,...

414

High-energy-density physics experiments with intense heavy ion beams  

Science Journals Connector (OSTI)

In this paper we discuss physical and technical issues of high-energy-density physics (HEDP) experiments with intense heavy ion beams that are being performed at the Gesellschaft fŘr Schwerionenforschung (GSI), Darmstadt. Special attention is given to a comparison of some recent results on expansion dynamics of evaporating lead that have been obtained in heavy ion beam driven HIHEX (Heavy-Ion Heating and Expansion) experiments at GSI-Darmstadt and in high-explosive driven shock wave loading and release experiments at IPCPľChernogolovka.

D. Varentsov; V. Ya. Ternovoi; M. Kulish; D. Fernengel; A. Fertman; A. Hug; J. Menzel; P. Ni; D.N. Nikolaev; N. Shilkin; V. Turtikov; S. Udrea; V.E. Fortov; A.A. Golubev; V.K. Gryaznov; D.H.H. Hoffmann; V. Kim; I.V. Lomonosov; V. Mintsev; B.Yu. Sharkov; A. Shutov; P. Spiller; N.A. Tahir; H. Wahl

2007-01-01T23:59:59.000Z

415

Paradigm Changes in High Temperature Plasma Physics Research and Implications for ITER  

SciTech Connect

Significant high temperature plasma research in both the magnetic and inertial confinement regimes led to the official launching of the International Thermonuclear Experimental Reactor (ITER) project which is aimed at challenging controlled fusion power for human kind. In particular, such an endeavor originated from the fruitful research outcomes from the world wide magnetic confinement devices (primarily based on the Tokamak approach) mainly in advanced countries (US, EU, and Japan). In recent years, all new steady state capable Tokamak devices are operated and/or constructed in Asian countries and incidentally, the majority of the ITER consortium consists of Asian countries. This provides an opportunity to revisit the unresolved essential physics issues and/or extend the understanding of the transient physics to the required steady state operation so that ITER can benefit from these efforts. The core physics of a magnetically confined hot plasma has two essential components; plasma stability and cross-field energy transport physics. Complete understanding of these two areas is critical for the successful operation of ITER and perhaps, Demo reactor construction. In order to have stable high beta plasmas with a sufficiently long confinement time, the physics of an abrupt disruption and sudden deterioration of the energy transport must be understood and conquered. Physics issues associated with transient harmful MHD behavior and turbulence based energy transport are extremely complicated and theoretical understanding needs a clear validation and verification with a new research approach such as a multi-dimensional visualization.

Hyeon K. Park

2008-02-22T23:59:59.000Z

416

New Jersey Regional Science Bowl | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

New Jersey Regional Science Bowl New Jersey Regional Science Bowl Competition Overview: Each year PPPL hosts the New Jersey Regional Science Bowl which decides which teams from the local area can continue onto the national competition in Washington, D.C.! The Science Bowl is a double elimination contest with question and answer rounds in the fields of chemistry, biology, physics, astronomy, mathematics and general and earth sciences. Middle School: Teams of a coach and five middle school students (four members and an alternate) in grades 6-8 from middle schools and home schools are invited to enter. High School: Teams of a coach and five high school students (four members and an alternate) in grades 9-12 from high schools and home schools are invited to enter. The NJ Regional Competition is open to all of NJ and surrounding areas that

417

A multi-level distance learning-based course for high-school computer science leading-teachers  

Science Journals Connector (OSTI)

In this poster we present a flexible model for a multi-level distance learning-based teacher training. The model was implemented to introduce curricular and pedagogical aspects of teaching logic programming (LP) to high-school computer science in-service ... Keywords: computer science education, distance learning, teacher training

Noa Ragonis; Bruria Haberman

2003-06-01T23:59:59.000Z

418

Teacher Participation in Professional Activities and Job Satisfaction: Prevalence and Associative Relationship to Retention for High School Science Teachers  

E-Print Network (OSTI)

in the Job Satisfaction Dataset .................................................................................... 109 21 A Review of the Frequency Distribution of Teachers Classified as Leaver, Mover, and Stayer (n=385... teacher satisfaction does not divide teachers into specific content areas. As a result, few large-sample studies of job satisfaction exist that are specific to high school science teachers. Hean and Garrett (2001), however, studied 47 Chilean secondary...

Bozeman, Todd Dane

2012-02-14T23:59:59.000Z

419

Argonne National Laboratory, High Energy Physics Division: Semiannual report of research activities, July 1, 1986-December 31, 1986  

SciTech Connect

This paper discusses the research activity of the High Energy Physics Division at the Argonne National Laboratory for the period, July 1986-December 1986. Some of the topics included in this report are: high resolution spectrometers, computational physics, spin physics, string theories, lattice gauge theory, proton decay, symmetry breaking, heavy flavor production, massive lepton pair production, collider physics, field theories, proton sources, and facility development. (LSP)

Not Available

1987-01-01T23:59:59.000Z

420

"It's Like Giving Us a Car, Only Without the Wheels": Performance of Latina Students at an Early College High School  

E-Print Network (OSTI)

School. (December 2011) Leslie Ann Locke, B.S.; M.L.S, University of Minnesota?Twin Cities Chair of Advisory Committee: Dr. Kathryn McKenzie This dissertation presents the results from an empirical study of the perspectives of Latina students who... ?IT?S LIKE GIVING US A CAR, ONLY WITHOUT THE WHEELS?: PERFORMANCE OF LATINA STUDENTS AT AN EARLY COLLEGE HIGH SCHOOL A Dissertation by LESLIE ANN LOCKE Submitted to the Office of Graduate Studies of Texas A&M University...

Locke, Leslie Ann

2012-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High Energy Physics (HEP) Homepage | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs ┬╗ HEP Home Programs ┬╗ HEP Home High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information ┬╗ Higgs Boson Discovery Leads to Nobel Prize External link Fran├žois Englert and Peter Higgs were awarded the 2013 Nobel Prize in Physics for their contributions to our understanding of the origin of mass, confirmed by the discovery of the Higgs boson in 2012 by the ATLAS and CMS experiments at CERN's Large Hadron Collider.Read More External linkage US Participation in the Higgs Discovery External link

422

ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, VOL. 83 LVSEM for High Resolution Topographic and Density  

E-Print Network (OSTI)

ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, VOL. 83 LVSEM for High Resolution Topographic Surface-Imaging Scanning Electron Microscope 205 C. Electrons as Probes in Scanning Microscopes 205 D. Limitations Associated with the Use of Electrons as the Probing Radiation 206 E. Response to These Limitations

Pawley, James

423

High Energy Solar Physics: Anticipating HESSI ASP Conference Series, Vol. xxx, 2000  

E-Print Network (OSTI)

High Energy Solar Physics: Anticipating HESSI ASP Conference Series, Vol. xxx, 2000 R. Ramaty and N. Mandzhavidze, eds. Solar Flare Theory and the Status of Flare Understanding E.R. Priest Department current understanding of the mag┬ş netohydrodynamics of solar flares. The theory of reconnection in 2D

Priest, Eric

424

ATLAS Post-doctoral Research Associate Position in Experimental High Energy Physics  

E-Print Network (OSTI)

ATLAS Post-doctoral Research Associate Position in Experimental High Energy Physics York University to work on the ATLAS experiment at the CERN Large Hadron Collider. The York ATLAS group is collaborating electronics for the ATLAS silicon detector upgrade. The successful candidate will be expected to take

425

Submitted to the XXXII th International Conference on High Energy Physics  

E-Print Network (OSTI)

of primary soft gluons into the gap gives rise to so┬şcalled global logarithms which can be resummed [9Submitted to the XXXII th International Conference on High Energy Physics August 16th -- 22nd, 2004, Beijing, China 6┬ş0289 Parallel Session: QCD Soft Interjet Energy Flow in photoproduction at HERA ZEUS

426

Present and future perspectives for high energy density physics with intense heavy ion and laser beams  

E-Print Network (OSTI)

Present and future perspectives for high energy density physics with intense heavy ion and laser18, deliver an intense uranium beam that deposit about 1 kJ0g specific energy in solid matter. Using 2004! Abstract Intense heavy ion beams from the Gesellschaft f├╝r Schwerionenforschung ~GSI, Darmstadt

427

Quasi-model-independent search for new high p(T) physics at D0  

E-Print Network (OSTI)

We apply a quasi-model-independent strategy ("Sleuth") to search for new high p(T) physics in approximate to 100 pb(-1) of p (p) over bar collisions at roots = 1.8 TeV collected by the D0 experiment during 1992-1990 at the ...

Baringer, Philip S.; Bean, Alice; Coppage, Don; Hebert, C.

2001-04-01T23:59:59.000Z

428

Status of networking for high energy physics in the United States  

SciTech Connect

Networks are used extensively for High Energy Physics in the United States. Although the networks have grown in an ad hoc manner with connections typically being made to satisfy the needs of one detector group, they now encompass to large fraction of the US HEP community in one form or another. This paper summarizes the current status and experience with networks.

Kunz, P.F.

1985-06-01T23:59:59.000Z

429

Report of the Interagency Task Force on High Energy Density Physics  

SciTech Connect

Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.

None

2007-08-01T23:59:59.000Z

430

Fundamental particles and interactions A wall chart of modern physics  

Science Journals Connector (OSTI)

The chart produced by the Fundamental Particles and Interactions Chart Committee is explained. This chart describes the properties of elementary particles according to the Standard Model and is intended for physics instruction at the high school and undergraduate levels. (AIP)

The Fundamental Particles and InteractionsChart Committee

1988-01-01T23:59:59.000Z

431

Spearfish High School, Sparfish, South Dakota solar energy system performance evaluation, September 1980-June 1981  

SciTech Connect

Spearfish High School in South Dakota contains 43,000 square feet of conditioned space. Its active solar energy system is designed to supply 57% of the space heating and 50% of the hot water demand. The system is equipped with 8034 square feet of flat plate collectors, 4017 cubic feet of rock bin sensible heat storage, and auxiliary equipment including 8 heat pumps, 6 of which are solar supplied and instrumented, air conditioning units, and natural-gas-fired boilers. Performance data are given for the system including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor and solar system coefficient of performance. Insolation, solar energy utilization and operation data are also given. The performance of the collector, storage, domestic hot water and space heating subsystems, the operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, long-term weather data, sensor technology, and typical monthly data. (LEW)

Howard, B.D.

1981-01-01T23:59:59.000Z

432

Bowling together or bowling alone : continuation high school students tell their stories  

E-Print Network (OSTI)

education, rewards/incentives, teachers, time, physical campus, and visual representations (e.g. posters,

Holt, Kevin Daniel

2008-01-01T23:59:59.000Z

433

Physics based analytical modelling of Gallium Nitride(GaN) MESFET considering different ion implantation energy with high temperature annealing.  

E-Print Network (OSTI)

??A physics based analytical model of ion implanted GaN MESFET has been presented considering high temperature annealing effects. Choosing appropriate activation energy of impurity atoms,ů (more)

Raghavan, Vinay

2015-01-01T23:59:59.000Z

434

Physics based analytical modelling of silicon carbide (SiC) MESFET considering different ion implantation energy with high temperature annealing.  

E-Print Network (OSTI)

??A Physics based analytical model of ion implanted SiC MESFET has been developed considering the high temperature annealing effects. The diffusion of implanted impurities hasů (more)

Yadavalli, Karthik Vishwanath

2015-01-01T23:59:59.000Z

435

Physics modeling of tandem mirror devices with high-field test cell inserts  

SciTech Connect

Recently developed plasma physics models of tandem mirror operation with a high-field technology test cell insert in the central cell are described in detail. These models have been incorporated in the TMRBAR tandem mirror reactor physics code. Results of a benchmark case for the code models against previous analysis of the MFTF - ..cap alpha.. /sup +/ T configuration are given. A brief users guide to the new TMRBAR with the test cell models is also presented. Some description of the applications of the models to MFTF - ..cap alpha.. /sup +/ T and FPD - II + T configurations is made. References are given to separate reports on these studies.

Fenstermacher, M.E.; Campbell, R.B.

1985-04-15T23:59:59.000Z

436

The impact of master scheduling models on student performance as identified by the Academic Excellence Indicator System (AEIS) database in the high schools of the San Antonio Independent School District, San Antonio, Texas  

E-Print Network (OSTI)

This study determined the impact of master scheduling models on student performance as reported by the AEIS database in the high schools of the SAISD. General student performance and the Texas Assessment of Knowledge and Skills were the primary...

Morgan, Scott Edwin

2005-11-01T23:59:59.000Z

437

Clicks versus Citations: Click Count as a Metric in High Energy Physics Publishing  

SciTech Connect

High-energy physicists worldwide rely on online resources such as SPIRES and arXiv to perform gather research and share their own publications. SPIRES is a tool designed to search the literature within high-energy physics, while arXiv provides the actual full-text documents of this literature. In high-energy physics, papers are often ranked according to the number of citations they acquire - meaning the number of times a later paper references the original. This paper investigates the correlation between the number of times a paper is clicked in order to be downloaded and the number of citations it receives following the click. It explores how physicists truly read what they cite.

Bitton, Ayelet; /UC, San Diego /SLAC

2011-06-22T23:59:59.000Z

438

PHYSICAL REVIEW A 90, 063412 (2014) Effect of nuclear vibration on high-order-harmonic generation of aligned H2  

E-Print Network (OSTI)

PHYSICAL REVIEW A 90, 063412 (2014) Effect of nuclear vibration on high-order-harmonic generation of aligned H2 + molecules Dmitry A. Telnov,1,* John Heslar,2, and Shih-I Chu2,3, 1 Department of Physics, St. Petersburg State University, St. Petersburg 198504, Russia 2 Department of Physics, Center for Quantum

Chu, Shih-I

439

Intermediate/high energy nuclear physics. [Iowa State Univ. , Ames, Iowa  

SciTech Connect

Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e[sup +]e[sup [minus

Vary, J.P.

1992-01-01T23:59:59.000Z

440

Analysis of the Energy Savings Potential in K-5 Schools in Hot and Humid Climates: Application of High Performance Measures and Renewable Energy Systems  

E-Print Network (OSTI)

ANALYSIS OF THE ENERGY SAVINGS POTENTIAL IN K-5 SCHOOLS IN HOT AND HUMID CLIMATES: APPLICATION OF HIGH PERFORMANCE MEASURES AND RENEWABLE ENERGY SYSTEMS1 Piljae Im1, and Jeff S. Haberl2 1Oak Ridge National Laboratory, Oak Ridge, TN 2Texas... the energy savings measures recommended as in the ASHRAE Advanced Energy Design Guides for K-12 Schools. As an effort to investigate more energy savings potential for the school building, several other energy savings measures and renewable energy...

Im, P.; Haberl, J.

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Design Guidelines for High Performance Schools: Hot and Humid Climates  

Office of Energy Efficiency and Renewable Energy (EERE)

School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

442

When high schools game the system, other teams left with little chance to win  

E-Print Network (OSTI)

a dome anytime soon." Black parents in a school that is 76 percent black have lost confidence in Lakes, Jefferson said. Twenty years ago, Lakes was 47 percent black. At Dwyer, Jefferson said, black parents

Belogay, Eugene A.

443

Perceptions of Leadership and Student Performance in Science From Campus Leaders in Selected High Schools  

E-Print Network (OSTI)

This naturalistic study focused on the perceptions of leadership and student performance in science from campus leaders in three purposefully selected secondary campuses of ninth through twelfth grades. Each school had experienced an improvement...

Wilder, Sharon

2010-07-14T23:59:59.000Z

444

Natural Gas Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Natural Gas Study Guide - Middle School Natural Gas Study Guide - Middle School More Documents & Publications Natural Gas Study Guide - High School What is shale gas?...

445

Oil Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Oil Study Guide - Middle School Oil Study Guide - Middle School More Documents & Publications Oil Study Guide - High School evaluationegstech2008.pdf A History of...

446

Middle School Students | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Students National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Attending National Event...

447

Physics of High?Power ECH Plasmas in T?10 Tokamak  

Science Journals Connector (OSTI)

Physics of plasma confinement and stability under the conditions of electron cyclotron heating (ECH) is under investigation in T?10 tokamak. High?density plasmas with energy confinement time that exceeds the H?mode scaling predictions have been obtained both with gas puffing and with deuterium pellet injection. Transient internal transport barrier formation has been observed with ECH during the current ramp?up and after off?central ECH switch off. A systematic study of plasma turbulence in a wide range of operating regimes has been performed and a possible link between transport and turbulence properties is under consideration. The value of critical for neoclassical tearing mode onset beta was found to be dependent on q(r) profile. Physical mechanism of sawtooth control by highly localized ECH is analyzed.

D. A. Kislov; T?10 Team

2006-01-01T23:59:59.000Z

448

The effects of bus transportation on grades, attendance records, and participation in extra-curricular activities of high school students in Tyler County, Texas, 1953  

E-Print Network (OSTI)

stated in the introductory section Prom the information ob- tained through the use of questionnaires~ the students were divided into the following four groupsz (1) boys who do not z ide a bus to school) (2) boys who ride a bus to school each day) (3..., 0 miles and over. Table I was prepared to show the distribution of students in each group mentioned, Of the f74 students included in this study, 2Q were boys who attended high school in Tyler County. Of this group, + percent commuted to school...

McEntire, Gerald

2012-06-07T23:59:59.000Z

449

Integrated high-resolution physical and comparative gene maps in horses  

E-Print Network (OSTI)

INTEGRATED HIGH-RESOLUTION PHYSICAL AND COMPARATIVE GENE MAPS IN HORSES A Dissertation by CANDICE LEA BRINKMEYER LANGFORD Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Bhanu P. Chowdhary Committee Members, James E. Womack Loren C...

Brinkmeyer Langford, Candice Lea

2007-04-25T23:59:59.000Z

450

Nuclear Instruments and Methods in Physics Research A 507 (2003) 537540 Production of high power femtosecond terahertz radiation  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 507 (2003) 537┬ş540 Production of high power for Superconductor Photonics, Osaka University, 2-1 Yamadaoko, Suita, Osaka 565-0871, Japan e Physics Department semiconductors or electro-optic crystals by high peak power lasers. For example, this was done by using an un

451

Cerium Doped LSO/LYSO Crystal Development for future High Energy Physics Experiments  

SciTech Connect

Because of their high stopping power and fast and bright scintillation, cerium doped LSO and LYSO crystals have attracted a broad interest in the physics community pursuing precision electromagnetic calorimeter for future high energy physics experiments. Their excellent radiation hardness against gamma-rays, neutrons and charged hadrons also makes them a preferred material for calorimeters to be operated in a severe radiation environment, such as the HL-LHC. An effort was made at SIPAT to grow 25 X{sub 0} (28 cm) long LYSO crystals for high energy physics applications. In this paper, the optical and scintillation properties and its radiation hardness against gamma-ray irradiations up to 1 Mrad are presented for the first 2.5 X 2.5 X 28 cm LYSO sample. An absorption band was found at the seed end of this sample and three other 20 cm long samples, which was traced back to a bad seed crystal used in the corresponding crystal growth process. Significant progresses in optical and scintillation properties were achieved for large size LYSO crystals after eliminating this absorption band.

Ren-Yuan Zhu

2012-03-25T23:59:59.000Z

452

School of Physics: guidelines for academic staff who are serving on postgraduate (PhD/MPhil/MRes) annual review Panels  

E-Print Network (OSTI)

, and the School to review all aspects of the candidature, develop a plan of action for the next yearD/MPhil/MRes) annual review Panels The annual review meeting is an opportunity for students, their supervisors, and to provide an independent and objective view of progress. A review will normally be completed with 20 minutes

Ashley, Michael C. B.

453

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network (OSTI)

CA, 94551, USA Princeton Plasma Physics Laboratory,Laboratory, and Princeton Plasma Physics Laboratory (theEng-48, and by the Princeton Plasma Physics Laboratory under

Logan, B.G.

2007-01-01T23:59:59.000Z

454

Final Report for Research in High Energy Physics (University of Hawaii)  

SciTech Connect

Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).

Browder, Thomas E.

2013-08-31T23:59:59.000Z

455

HIGH-RESOLUTION OBSERVATIONS AND THE PHYSICS OF HIGH-VELOCITY CLOUD A0  

SciTech Connect

The neutral hydrogen structure of high-velocity cloud A0 (at about -180 km s{sup -1}) has been mapped with a 9.'1 resolution. Gaussian decomposition of the profiles is used to separately map families of components defined by similarities in center velocities and line widths. About 70% of the H I gas is in the form of a narrow, twisted filament whose typical line widths are of the order of 24 km s{sup -1}. Many bright features with narrow line widths of the order of 6 km s{sup -1}, clouds, are located in and near the filament. A third category with properties between those of the filament and clouds appears in the data. The clouds are not always co-located with the broader line width filament emission as seen projected on the sky. Under the assumption that magnetic fields underlie the presence of the filament, a theorem is developed for its stability in terms of a toroidal magnetic field generated by the flow of gas along field lines. It is suggested that the axial magnetic field strength may be derived from the excess line width of the H I emission over and above that due to kinetic temperature by invoking the role of Alfven waves that create what is in essence a form of magnetic turbulence. At a distance of 200 pc the axial and the derived toroidal magnetic field strengths in the filament are then about 6 {mu}G while for the clouds they are about 4 {mu}G. The dependence of the derived field strength on distance is discussed.

Verschuur, Gerrit L., E-mail: verschuur@aol.com [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

2013-04-01T23:59:59.000Z

456

Duke University High Energy Physics; Progress report, December 1, 1990--March 15, 1993  

SciTech Connect

The research program of the Duke High Energy Physics Group is described in this Progress Report and a separate Proposal containing their plans for 1994. These two documents are supplemented by compilations of selected publications, thesis abstracts, and the curriculum vitae of the eleven Ph.D. physicists who are carrying out this research program. This Progress Report contains a review of the research which has been done over the first half (1992 and 1993 to date) of the current three-year DOE grant, plus some earlier research to establish a broader perspective of the research interests. High energy physics research at Duke has three components. The first, Task A, is based upon experiments carried out at Fermilab`s Tevatron Collider. The group is finishing the analysis of data from their first collider experiment (E735), a study of inclusive particle production from {bar p} p collisions at {radical}{bar s} = 1.8 TeV. The second component of the research, Task B, deals primarily with heavy flavor physics. The third part of the research program, Task D, deals with preparation for research at the SSC. The authors have been active in the development of tracking detectors for the SSC since 1989, and are now concentrating on the design and construction of straw tube drift chambers for the solenoid detector.

Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

1993-03-01T23:59:59.000Z

457

Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics  

ScienceCinema (OSTI)

Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided About the speaker Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2Ż years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

None

2011-10-06T23:59:59.000Z

458

Compact muon production and collection scheme for high-energy physics experiments  

Science Journals Connector (OSTI)

The relative immunity of muons to synchrotron radiation suggests that they might be used in place of electrons as probes in fundamental high-energy physics experiments. Muons are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. However, the large angle and energy dispersion of the initial beams as well as the short muon lifetime limits many potential applications. Here, we describe a fast method for manipulating the longitudinal and transverse phase-space of a divergent pionľmuon beam to enable efficient capture and downstream transport with minimum losses. We also discuss the design of a handling system for the removal of unwanted secondary particles from the target region and thus reduce activation of the machine. The compact muon source we describe can be used for fundamental physics research in neutrino experiments.

Diktys Stratakis; David V Neuffer

2014-01-01T23:59:59.000Z

459

The Impact of Collaborative Literacy Coaching on Middle and High School Teachers' Personal and General Sense of Efficacy for Literacy Teaching  

E-Print Network (OSTI)

The purpose of this qualitative multiple participant case study was to understand the impact of a nine month collaborative literacy coaching (CLC) initiative on middle and high school content teachers' personal and general ...

Howe, Kathleen Schmiedeler

2012-05-31T23:59:59.000Z

460

An examination of the extent and endurance of a technology-based staff development program on the epistemological, ontological, and methodological beliefs of high school chemistry teachers  

E-Print Network (OSTI)

The purpose of this qualitative, narrative study was to examine the extent and endurance of influence a technology-based professional development program had on the epistemological, ontological, and methodological beliefs of selected high school...

Harper, Deena San

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

24 October 1994 PhysicsLetters A 194 (1994) 49-56  

E-Print Network (OSTI)

of Theoretical Physics and Plasma Research Laboratory, Research School of Physical Sciences and Engineering

Dewar, Robert L.

462

Intermediate/high energy nuclear physics. Technical progress report, June 15, 1992--June 14, 1993  

SciTech Connect

Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e{sup +}e{sup {minus}} resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs.

Vary, J.P.

1992-12-31T23:59:59.000Z

463

Targets for R&D on Nb3Sn conductor for High Energy Physics  

E-Print Network (OSTI)

High Energy Physics has been consistently pushing the performance of technical superconductors, for the benefit of high field magnet technology. So far the workhorse for particle accelerators has been Nb-Ti, but the practical performance limit has been attained with the LHC. Calls for higher beam luminosity (e.g. HL-LHC), and higher beam energy (e.g. FCC), demand a transition from Nb-Ti to Nb3Sn, presently the only practical candidate material offering the required high field performance. This paper provides a summary of desirable properties and performance targets for Nb3Sn to satisfy the challenging magnet specifications for upgrades of existing and future HEP accelerators.

Ballarino, A

2015-01-01T23:59:59.000Z

464

The physics program of a high-luminosity asymmetric B Factory at SLAC  

SciTech Connect

A high-luminosity asymmetric energy B Factory, proposed as an upgrade to the PEP storage ring at SLAC, provides the best opportunity to study CP violation as a means of testing the consistency of the Standard Model. If the phenomenon of CP violation is explained by the Standard Model simply through the non-zero angles and phase of the Kobayashi-Maskawa matrix, then there are precise relations between the K-M parameters and the various measurable CP-violating asymmetries in B meson decay. Should these consistency relations fail, the origin of CP violation must lie outside the Standard Model framework. Our measurements would then lead to the first experiment-driven extensions of the Standard Model. The B Factory will also carry out a varied, high-quality program of studies of other aspects of the physics of b quarks, as well as high-precision measurements in {tau} and charm physics. We describe a detailed series of measurements to be carried out in the first few years at a peak luminosity of 3 {times} 10{sup 33} cm{sup -2}sec{sup -1}, the initial luminosity goal of the B Factory, as well as the program accessible to a larger data sample.

Not Available

1989-10-01T23:59:59.000Z

465

The Physics Program of a High-Luminosity Asymmetric B Factory at SLAC  

SciTech Connect

A high-luminosity asymmetric energy B Factory, proposed as an upgrade to the PEP storage ring at SLAC, provides the best opportunity to study CP violation as a means of testing the consistency of the Standard Model. If the phenomenon of CP violation is xplained by the Standard Model simply through the non-zero angles and phase of the Kobayashi-Maskawa matrix, then there are precise relations between the K-M parameters and the various measurable CP-violating asymmetries in B meson decay. Should these onsistency relations fail, the origin of CP violation must lie outside the Standard Model framework. Our measurements would then lead to the first experiment-driven extensions of the Standard Model. The B Factory will also carry out a varied, high-quality program of studies f other aspects of the physics of b quarks, as well as high-precision measurements in r and charm physics. We describe a detailed series of measurements to be carried out in the first few years at a peak luminosity of 3 x 10{sup 33} cm{sup -2}sec{sup -1}, the initial luminosity goal of the B Factory, as well as the program accessible to a larger data sample.

Eisner, A.; Mandelkern, M.; Morrison, R.; Witherell, M.; Burchat, P.; Kent, J.; Erbacher, R.; Vernon, W.; Eigen, G.; Hitlin, D.; Porter, F.; Weinstein, A.; Wisniewski, W.; Wagner, S.; Franzini, P.; Tuts, M.; Averill, D.; Snyder, A.; Goldhaber, G.; Oddone, P.; Roe, N.; Ronan, M.; Spahn, M.; MacFarlane, D.; Bartelt, J.; Bloom, E.; Bulos, F.; Cords, D.; Dib, C.; Dorfan, J.; Dunietz, I.; Gilman, F.; Godfrey, G.; Hyer, T.; Jensen, G.; Leith, D.; Marsiske, H.; Nir, Y.; Lee-Franzini, J.

1989-10-01T23:59:59.000Z

466

Integrating INIS into a high energy physics information environment thoughts from CERN  

E-Print Network (OSTI)

Information searchers from the high energy physics community expect an integrated information environment. The CERN Library offers its print and electronic collections through a combined Web interface and maintains the database by semi-automated processes to upload bibliographic and full-text records. Suggestions are offered by which INIS could develop its own Web interface and better match HEP usersĺ expectations. These include implementing full-text linking, increasing currency, expanding search and display functions and developing the richness of the data. Links with the National Nuclear Data Center and Crossref could also increase its visibility.

Yeomans, Joanne; Baudic, Romain; Picchioli, Ingrid; International Conference on Nuclear Knowledge Management : Strategies, Information Management and Human Resource Development. Special Session : The Role of INIS in Knowledge Preservation

2004-01-01T23:59:59.000Z

467

Workshop on data acquisition and trigger system simulations for high energy physics  

SciTech Connect

This report discusses the following topics: DAQSIM: A data acquisition system simulation tool; Front end and DCC Simulations for the SDC Straw Tube System; Simulation of Non-Blocklng Data Acquisition Architectures; Simulation Studies of the SDC Data Collection Chip; Correlation Studies of the Data Collection Circuit & The Design of a Queue for this Circuit; Fast Data Compression & Transmission from a Silicon Strip Wafer; Simulation of SCI Protocols in Modsim; Visual Design with vVHDL; Stochastic Simulation of Asynchronous Buffers; SDC Trigger Simulations; Trigger Rates, DAQ & Online Processing at the SSC; Planned Enhancements to MODSEM II & SIMOBJECT -- an Overview -- R.; DAGAR -- A synthesis system; Proposed Silicon Compiler for Physics Applications; Timed -- LOTOS in a PROLOG Environment: an Algebraic language for Simulation; Modeling and Simulation of an Event Builder for High Energy Physics Data Acquisition Systems; A Verilog Simulation for the CDF DAQ; Simulation to Design with Verilog; The DZero Data Acquisition System: Model and Measurements; DZero Trigger Level 1.5 Modeling; Strategies Optimizing Data Load in the DZero Triggers; Simulation of the DZero Level 2 Data Acquisition System; A Fast Method for Calculating DZero Level 1 Jet Trigger Properties and Physics Input to DAQ Studies.

NONE

1992-12-31T23:59:59.000Z

468

PHYSICAL REVIEW A 89, 023408 (2014) High-spectral-resolution attosecond absorption spectroscopy of autoionization in xenon  

E-Print Network (OSTI)

formalism is introduced that correctly accounts for the observed energy dependence. DOI: 10.1103/PhysRevA.89PHYSICAL REVIEW A 89, 023408 (2014) High-spectral-resolution attosecond absorption spectroscopy Department of Physics, University of California, Berkeley, California, USA (Received 25 November 2013

Neumark, Daniel M.

469

The Ultimate Structure of Matter: The High Energy Physics Program from the 1950s through the 1980s  

DOE R&D Accomplishments (OSTI)

This discusses the following topics in High Energy Physics: The Particle Zoo; The Strong and the Weak; The Particle Explosion; Deep Inside the Nucleon; The Search for Unity; Physics in Collision; The Standard Model; Particles and the Cosmos; and Practical Benefits.

1990-02-00T23:59:59.000Z

470

Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics  

SciTech Connect

Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research covered in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle acceleration, physicists model LWFAs computationally. The datasets produced by LWFA simulations are (i) extremely large, (ii) of varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-dimensional, making analysis and knowledge discovery from complex LWFA simulation data a challenging task. To address these challenges this thesis describes the integration of the visualization system VisIt and the state-of-the-art index/query system FastBit, enabling interactive visual exploration of extremely large three-dimensional particle datasets. Researchers are especially interested in beams of high-energy particles formed during the course of a simulation. This thesis describes novel methods for automatic detection and analysis of particle beams enabling a more accurate and efficient data analysis process. By integrating these automated analysis methods with visualization, this research enables more accurate, efficient, and effective analysis of LWFA simulation data than previously possible.

Ruebel, Oliver

2009-12-01T23:59:59.000Z

471

Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments  

E-Print Network (OSTI)

CMOS pixel sensors (CPS) represent a novel technological approach to building charged particle detectors. CMOS processes allow to integrate a sensing volume and readout electronics in a single silicon die allowing to build sensors with a small pixel pitch ($\\sim 20 \\mu m$) and low material budget ($\\sim 0.2-0.3\\% X_0$) per layer. These characteristics make CPS an attractive option for vertexing and tracking systems of high energy physics experiments. Moreover, thanks to the mass production industrial CMOS processes used for the manufacturing of CPS the fabrication construction cost can be significantly reduced in comparison to more standard semiconductor technologies. However, the attainable performance level of the CPS in terms of radiation hardness and readout speed is mostly determined by the fabrication parameters of the CMOS processes available on the market rather than by the CPS intrinsic potential. The permanent evolution of commercial CMOS processes towards smaller feature sizes and high resistivity ...

Senyukov, Serhiy; Besson, Auguste; Claus, Giles; Cousin, Loic; Dulinski, Wojciech; Goffe, Mathieu; Hippolyte, Boris; Maria, Robert; Molnar, Levente; Castro, Xitzel Sanchez; Winter, Marc

2014-01-01T23:59:59.000Z

472

Fundamental physics on natures of the macroscopic vacuum under high intense electromagnetic fields with accelerators  

E-Print Network (OSTI)

High intense electromagnetic fields can be unique probes to study natures of macroscopic vacua by themselves. Combining accelerators with the intense field can provide more fruitful probes which can neither be achieved by only intense fields nor only high energy accelerators. We will overview the natures of vacua which can be accessible via intense laser-laser and intense laser-electron interactions. In the case of the laser-laser interaction, we propose how to observe nonlinear QED effects and effects of new fields like light scalar and pseudo scalar fields which may contribute to a macroscopic nature of our universe such as dark energy. In the case of the laser-electron interaction, in addition to nonlinear QED effects, we can further discuss the nature of accelerating field in the vacuum where we can access physics related with event horizons such as Hawking-Unruh radiations. We will introduce a recent experimental trial to search for this kind of odd radiations.

Kensuke Homma

2009-11-30T23:59:59.000Z

473

Closeout Report: Experimental High Energy Physics Group at the University of South Alabama  

SciTech Connect

The High Energy Physics group at the University of South Alabama has been supported by this research grant (DE-FG02-96ER40970) since 1996. One researcher, Dr. Merrill Jenkins, has been supported on this grant during this time worked on fixed target experiments at the Fermi National Accelerator Laboratory, west of Chicago, Illinois. These experiments have been E-705, E-771, E-871 (HyperCP) and E-921 (CKM) before it was canceled for budgetary reasons. After the cancellation of CKM, Dr. Jenkins joined the Compact Muon Solenoid (CMS) experiment as an associate member via the High Energy Physics Group at the Florida State University. A second, recently tenured faculty member, Dr. Romulus Godang joined the group in 2009 and has been supported by this grant since then. Dr. Godang is working on the BaBaR experiment at SLAC and has joined the Belle-II experiment located in Japan at KEK. According to the instructions sent to us by our grant monitor, we are to concentrate on the activities over the last three years in this closeout report.

Jenkins, Charles M; Godang, Romulus

2013-06-25T23:59:59.000Z

474

From the earliest days of high energy physics in the 1930s to the latest 21st ce  

NLE Websites -- All DOE Office Websites (Extended Search)

the earliest days of high energy physics in the 1930s to the latest 21st century initiatives, the innovative ideas and technologies of particle the earliest days of high energy physics in the 1930s to the latest 21st century initiatives, the innovative ideas and technologies of particle physics have entered the mainstream of society to transform the way we live. Selected examples illustrate a long and growing list of beneficial practical applications with contributions from particle physics. Particle Physics: Benefits to Society Medicine: cancer therapy Every major medical center in the nation uses accelerators producing x-rays, protons, neutrons or heavy ions for the diagnosis and treatment of disease. It is estimated that there are over 7,000 operating medical linacs around the world

475

Acoustic design of a new elementary school to meet high performance prerequisites using a school districts base design: Predictions and results from commissioning  

Science Journals Connector (OSTI)

An architectural firm was selected to design a new elementary school using the school districtĺs standard building but with modifications to meet the prerequisites of the Collaborative for Performance Schools (CHPS). Two acoustic prerequisites are a part of the CHPS programs including a background limit of 45 dB(A) and a reverberation time of 0.6 seconds. A 2-story design forms the basis of design. First tests were done at an existing elementary school with the same design. Acoustical recommendations for wall designs room finishes and HVAC design were incorporated into the design and construction of the new school. The school was not near significant transportation noise sources. After construction was mostly complete tests were done to learn the sound transmission loss of walls and floor/ceiling systems. Reverberation time tests and background sound levels were measured after construction was complete. Background sound met design goals in all but one space except for the sound generated by a wind turbine mounted on one end of the buildings. This was added by the schools Principal during the latter part of construction without consulting everyone. This proved to be a significant source that had to be removed.

Steve Pettyjohn

2012-01-01T23:59:59.000Z

476

Physics with a High Intensity Proton Source at Fermilab: Project X Golden Book  

SciTech Connect

Within the next ten years the Standard Model will likely have to be modified to encompass a wide range of newly discovered phenomena, new elementary particles, new symmetries, and new dynamics. These phenomena will be revealed through experiment with high energy particle accelerators, mainly the LHC. This will represent a revolution in our understanding of nature, and will either bring us closer to an understanding of all phenomena, through existing ideas such as supersymmetry to superstrings, or will cause us to scramble to find new ideas and a new sense of direction. We are thus entering a dramatic and important time in the quest to understand the fundamental laws of nature and their role in shaping the universe. The energy scales now probed by the Tevatron, of order hundreds of GeV, will soon be subsumed by the LHC and extended up to a few TeV. We expect the unknown structure of the mysterious symmetry breaking of the Standard Model to be revealed. We will then learn the answer to a question that has a fundamental bearing upon our own existence: 'What is the origin of mass?' All modern theories of 'electroweak symmetry breaking' involve many new particles, mainly to provide a 'naturalness' rationale for the weak scale. Supersymmetry (SUSY) represents extra (fermionic) dimensions of space, leading to a doubling of the number of known elementary particles and ushering in many additional new particles and phenomena associated with the various symmetry breaking sectors. The possibility of additional bosonic dimensions of space would likewise usher in an even greater multitude of new states and new phenomena. Alternatively, any new spectroscopy may indicate new principles we have not yet anticipated, and we may see new strong forces and/or a dynamical origin of mass. The wealth of new particles, parameters, CP-phases, and other phenomena carries important implications for precision quark flavor physics experiments that are uniquely sensitive probes of new phenomena. We have already begun to see the enlargement of the Standard Model in the leptonic sector. Neutrino masses and mixing angles, which in the early 1990's were unknown, must now be incorporated into our full description of nature. In a minimal scenario of Majorana masses and mixings amongst the three known left-handed neutrinos, we see a strong hint of a new and very large mass scale, possibly associated with grand unification or the scale of quantum gravity, the Planck mass. We are not yet sure what the proper description of neutrino masses and mixing angles will be. Experiments may reveal additional unexpected particles coupled to the neutrino sector. New phenomena, such as leptonic CP-violation, will be major focal points of our expanding understanding of the lepton sector. There is much to be done with experiment to attack the issues that neutrinos now present. Already, developments in neutrino physics and the possibility of a novel source of CP-violation in the lepton sector have spawned hopes that the cosmic matter-antimatter asymmetry may be explained through leptogenesis. Neutrino physics, together with the search for new energy frontier physics, offers the possibility of experimental handles on the questions of dark matter and dark energy. Without the discovery of new particles in accelerator experiments, the telescope-based cosmological observations of the early universe would remain unexplained puzzles. The process of understanding the laws of physics in greater detail through accelerator-based high energy physics will potentially have incisive impact on our understanding of dark matter and dark energy. Precision flavor physics in both the quark and the lepton sectors offers a window on the sensitive entanglement of beyond-the-Standard-Model physics with rare processes, through quantum loop effects involving known or new states. Flavor physics offers sensitive indirect probes and may be the first place to reveal additional key components of the post-Standard Model physics. The main arenas for quark flavor physics include strange, charm and beauty, hence

Appel, Jeffrey; /Fermilab; Asner, David; /Carleton U.; Bigi, Ikaros; /Notre Dame U.; Bryman, Douglas; /British Columbia U.; Buras, Andrzej; /Munich, Tech. U.; Carena, Marcela /Fermilab; Carosi, Roberto; /INFN, Pisa; Christian, Dave; /Fermilab; Conrad, Janet; /Columbia U.; Diwan, Milind; /Brookhaven; Dukes, Craig; /Virginia U. /Fermilab

2008-02-03T23:59:59.000Z

477

Energy Design Guidelines for High Performance Schools: Hot and Humid Climates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acknowledgements Acknowledgements The US Department of Energy would like to acknowledge the help and assistance of the EnergySmart Schools team and the many reviewers who provided input and feedback during the process of developing this report. Those include: National Laboratories Lawrence Berkeley National Laboratory: Dariush Arasteh, Doug Avery; National Renewable Energy Laboratory: Ren Anderson, Zahra Chaudhry, Kate Darby, Kyra Epstein, Patty Kappaz, Bryan King, Patricia Plympton, Amy Vaughn; Oak Ridge National Laboratory: Sherry Livengood, Ron Shelton; Pacific Northwest National Laboratory: Michael Baechler, Kim Fowler, Eric Richman, David Winiarski US Department of Energy David Hansen, George James, Arun Vohra; Chicago Regional Office: John Devine, Peter Dreyfuss; Seattle Regional Office:

478

BELLE High Energy Physics Experiment at the KEK B-factory: Data and Physics Results for CPV, Rare, DKM, 5S, Charm, Tau, and New Particles  

DOE Data Explorer (OSTI)

Belle is a high-energy physics (HEP) experiment that began in 1999 at the KEK B-factory in Japan under the direction of the International Belle Collaboration. The Collaboration was formed around the common interest of clarifying a long standing physics puzzle, that of CP violation. The goal of the experiments was to make a definitive test of the Standard Models predictions for CP violations in the decays of B mesons. The original Belle experiment verified the KM theory, leading to a Nobel prize in 2008 for Kobayashi and Maskawa. Belle II Collaboration is now working on additional discoveries.

479

Every year, 300 high school stu-dents are recognized as semifi-  

E-Print Network (OSTI)

to incorporate aspects rang- ing from quantum physics to biology in a project," said Sim- merling. "Ruoyi is very. They conduct basic research in core science and engineering disciplines that are expected to underpin future efficient transmission of electri- cal power and to lighter weight electrical motors that would operate

Ohta, Shigemi

480

High Energy Physics User Facilities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

HEP User Facilities HEP User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 HEP User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The High Energy Physics program supports the operation of the following national scientific user facilities: Fermilab Accelerator Complex External link The Fermilab Accelerator Complex at Fermi National Accelerator Laboratory is composed of the accelerator complex and several experiments-both actual and proposed--that utilize its protons. The complex currently

Note: This page contains sample records for the topic "high school physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Information Resources in High-Energy Physics Surveying the Present Landscape and Charting the Future Course  

E-Print Network (OSTI)

Access to previous results is of paramount importance in the scientific process. Recent progress in information management focuses on building e-infrastructures for the optimization of the research workflow, through both policy-driven and user-pulled dynamics. For decades, High-Energy Physics (HEP) has pioneered innovative solutions in the field of information management and dissemination. In light of a transforming information environment, it is important to assess the current usage of information resources by researchers and HEP provides a unique test-bed for this assessment. A survey of about 10% of practitioners in the field reveals usage trends and information needs. Community-based services, such as the pioneering arXiv and SPIRES systems, largely answer the need of the scientists, with a limited but increasing fraction of younger users relying on Google. Commercial services offered by publishers or database vendors are essentially unused in the field. The survey offers an insight into the most importan...

Gentil-Beccot, Anne; Holtkamp, Annette; O'Connell, Heath B; Brooks, Travis C; 10.1002/asi.20944

2009-01-01T23:59:59.000Z

482

The design of high-speed data transmission method for a small nuclear physics DAQ system  

E-Print Network (OSTI)

A large number of data need to be transmitted in high-speed between Field Programmable Gate Array (FPGA) and Advanced RISC Machines 11 micro-controller (ARM11) when we design a small data acquisition (DAQ) system for nuclear experiments. However, it is a complex problem to beat the target. In this paper, we will introduce a method which can realize the high-speed data transmission. By this way, FPGA is designed to acquire massive data from Front-end electronics (FEE) and send it to ARM11, which will transmit the data to other computer through the TCP/IP protocol. This paper mainly introduces the interface design of the high-speed transmission between FPGA and ARM11, the transmission logic of FPGA and the driver program of ARM11. The research shows that the maximal transmission speed between FPGA and ARM11 by this way can reach 50MB/s theoretically, while in nuclear physics experiment, the system can acquire data with the speed of 2.2MB/s.

Zhou, Wenxiong; Nan, Gangyang; Zhang, Jianchuan

2013-01-01T23:59:59.000Z

483

2003 National Middle School Science Bowl  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Middle School Science Bowl National Middle School Science Bowl Participating Teams and Sponsoring Sites School Location Sponsoring Site Albuquerque Academy Albuquerque, NM Sandia National Laboratories Andrew Jackson Middle School Titusville, FL Florida Solar Energy Center Auburn Junior High School Auburn, AL Alabama School of Math & Science Bell / North Valley Middle Schools Golden, CO Natl. Renewable Energy Laboratory College Station Middle School College Station, TX Texas A&M University Crockett Middle School Amarillo, TX Pantex Plant Excel Academic League Vancouver, WA Bonneville Power Administration Halstead Middle School Newton, NJ TransOptions, Inc. Inza R. Wood Middle School Wilsonville, OR Bonneville Power Administration Jordan Middle School San Antonio, TX San Antonio

484

Science Teaching in Texas: Investigating Relationships among Texas High School Science Teachers' Working Conditions, Job Satisfaction, and Retention  

E-Print Network (OSTI)

the working conditions of 385 science teachers. Analyses from this study suggested that (a) science teachers from small schools experience tougher working conditions than science teachers from both medium and large schools; (b) veteran science teachers...

Hollas, Victoria

2012-02-14T23:59:59.000Z

485

Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging  

E-Print Network (OSTI)

Spheromak formation and sustainment studies at the sustained spheromak physics experiment using image the formation and evolution of the sustained spheromak physics experiment SSPX E. B. Hooper et al The sustained spheromak physics experiment1 SSPX routinely produces spheromaks from a coaxial magnetized plasma

Bellan, Paul M.

486

Final Technical Report for "High Energy Physics at The University of Iowa"  

SciTech Connect

Particle Physics explores the very fundamental building blocks of our universe: the nature of forces, of space and time. By exploring very energetic collisions of sub-nuclear particles with sophisticated detectors at the colliding beam accelerators (as well as others), experimental particle physicists have established the current theory known as the Standard Model (SM), one of the several theoretical postulates to explain our everyday world. It explains all phenomena known up to a very small fraction of a second after the Big Bang to a high precision; the Higgs boson, discovered recently, was the last of the particle predicted by the SM. However, many other phenomena, like existence of dark energy, dark matter, absence of anti-matter, the parameters in the SM, neutrino masses etc. are not explained by the SM. So, in order to find out what lies beyond the SM, i.e., what conditions at the earliest fractions of the first second of the universe gave rise to the SM, we constructed the Large Hadron Collider (LHC) at CERN after the Tevatron collider at Fermi National Accelerator Laboratory. Each of these projects helped us push the boundary further with new insights as we explore a yet higher energy regime. The experiments are extremely complex, and as we push the boundaries of our existing knowledge, it also requires pushing the boundaries of our technical knowhow. So, not only do we pursue humankindĺs most basic intellectual pursuit of knowledge, we help develop technology that benefits todayĺs highly technical society. Our trained Ph.D. students become experts at fast computing, manipulation of large data volumes and databases, developing cloud computing, fast electronics, advanced detector developments, and complex interfaces in several of these areas. Many of the Particle physics Ph.D.s build their careers at various technology and computing facilities, even financial institutions use some of their skills of simulation and statistical prowess. Additionally, last but not least, todayĺs discoveries make for tomorrowĺs practical uses of an improved life style, case in point, internet technology, fiber optics, and many such things. At The University of Iowa we are involved in the LHC experiments, ATLAS and CMS, building equipment, with calibration and maintenance, supporting the infrastructure in hardware, software and analysis as well as participating in various aspects of data analyses. Our theory group works on fundamentals of field theories and on exploration of non-accelerator high energy neutrinos and possible dark matter searches.

Mallik, Usha; Meurice, Yannick; Nachtman, Jane; Onel, Yasar; Reno, Mary

2013-07-31T23:59:59.000Z

487

A high throughput platform for understanding the influence of excipients on physical and chemical stability  

Science Journals Connector (OSTI)

The present study puts forward a miniaturized high-throughput platform to understand influence of excipient selection and processing on the stability of a given drug compound. Four model drugs (sodium naproxen, theophylline, amlodipine besylate and nitrofurantoin) and ten different excipients were selected. Binary physical mixtures of drug and excipient were transferred to a 96-well plate followed by addition of water to simulate aqueous granulation environment. The plate was subjected for XRPD measurements followed by drying and subsequent XRPD and HPLC measurements of the dried samples. Excipients with different water sorbing potential were found to influence distinctly on the phase transformation behaviour of each drug. Moreover, the amount of water addition was also a critical factor affecting phase transformation behaviour. HPLC analysis revealed one of the drug:excipient pairs with a tendency for chemical degradation. The proposed high-throughput platform can be used during early drug development to simulate typical processing induced stress in a small scale and to understand possible phase transformation behaviour and influence of excipients on this.

Dhara Raijada; Claus Cornett; Jukka Rantanen

2013-01-01T23:59:59.000Z

488