National Library of Energy BETA

Sample records for high school high

  1. High School Internship Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Internship Program High School Internship Program Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Program Manager Scott Robbins Student Programs (505) 667-3639 Email Program Coordinator Brenda Montoya Student Programs (505) 667-4866 Email Opportunities for Northern New Mexico high school seniors The High School Internship Program provides qualified

  2. High School Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Science Bowl High School Science Bowl WHEN: Feb 07, 2015 8:00 AM - 4:00 PM WHERE: Highland High School 4700 Coal Ave SE, Albuquerque, USA CATEGORY: Community INTERNAL: Calendar Login Event Description The Science Bowl is a Jeopardy-like event for high school and middle school students who have a strong interest in mathematics and science. The competition is in the form of a round robin in the morning and double elimination after lunch. Teams consist of four students and one optional

  3. Southeastern visits local high school

    Broader source: Energy.gov [DOE]

    Three employees of Southeastern Power Administration visited a local high school to discuss hydroelectric power and demonstrate power generation.

  4. High School football | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School football High School football Fancy footwork at High School football practice

  5. High Performance Schools Policy

    Broader source: Energy.gov [DOE]

    The Executive Order also requires that the New Jersey Economic Development Authority establish a subsidiary corporation, The New Jersey Schools Construction Corporation (SCC), to be responsible...

  6. Local High School Students Tour NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local High School Students Tour NERSC Local High School Students Tour NERSC Outreach educates students about careers in scientific computing February 17, 2015 Oaktech-bashor.jpg...

  7. Jefferson Lab hosts 19 schools for Virginia Regional High School...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb. 10, to compete in the Virginia Regional High School Science Bowl. Nineteen teams, representing high schools from across the region are participating in this year's...

  8. Thomas Jefferson High School for Science & Technology National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Oak Ridge High School, Oak Ridge, Tenn. Pembroke Hill School, Kansas City, Mo. Santa Monica High School, Santa Monica, Calif. Smoky Hill High School, Aurora, Colo. State College ...

  9. Students from Pueblo Centennial High School Triumph in Colorado High School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl - News Releases | NREL Students from Pueblo Centennial High School Triumph in Colorado High School Science Bowl February 3, 2007 Photo of students holding a High School Science Bowl banner. (From left) Pueblo Centennial's Jesse Hovis, Lisa Marquez, Mitch Montoya, Meara Christian, Jay Mead (coach) and Benjamin Pacheco hold their trophy and banner after winning the 2007 High School Science Bowl at Dakota Ridge High School in Littleton, Colo. Students from Pueblo Centennial High

  10. High School Internship Program Recruitment Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recruitment Calendar High School Internship Program Recruitment Calendar Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Program Coordinator Brenda Montoya Student Programs (505) 667-4866 Email Local high school campus visits Winter-Spring 2016 "All visits have been completed for the 2016-2017 academic year." High school Contact Campus visit date Capital High

  11. Natural Gas Study Guide - High School | Department of Energy

    Energy Savers [EERE]

    High School Natural Gas Study Guide - High School Natural Gas Study Guide - High School PDF icon Natural Gas Study Guide - High School More Documents & Publications Natural Gas Study Guide - Middle School Fossil Fuels Study Guide - High School Coal Study Guide - High School

  12. Local High School Students Tour NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local High School Students Tour NERSC Local High School Students Tour NERSC Outreach educates students about careers in scientific computing February 17, 2015 Oaktech-bashor.jpg Jon Bashor, computing sciences' communications manager, gives students an inside look at supercomputing. Last week, two groups of students from East Bay high schools descended on the Oakland Scientific Facility to learn more about supercomputing and networking. On Wednesday, Feb. 11, 30 students from a computer science

  13. Students from Smoky Hill High School Triumph in Colorado High School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl - News Releases | NREL Students from Smoky Hill High School Triumph in Colorado High School Science Bowl February 11, 2006 Golden, Colo. - For the fifth year in a row, students from Smoky Hill High School won top honors at the Colorado High School Science Bowl. In the final round of rapid-fire questions and answers about physics, math, biology, astronomy, chemistry, computers and the earth sciences, Smoky Hill High School from Aurora was victorious over D'Evelyn High School from

  14. Mira Loma High School and Hopkins Junior High School from California Win

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy National Science Bowl | Department of Energy Mira Loma High School and Hopkins Junior High School from California Win U.S. Department of Energy National Science Bowl Mira Loma High School and Hopkins Junior High School from California Win U.S. Department of Energy National Science Bowl May 4, 2009 - 12:00am Addthis WASHINGTON, DC - High school and middle school teams from California won the 2009 U.S. Department of Energy (DOE) National Science Bowl® today at the

  15. Energy Design Guidelines for High Performance Schools: Hot and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around the...

  16. Secretary Chu Announces Middle and High School Finalists Set...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Lincolnshire Daniel Wright Middle School Indiana Carmel Creekside Middle School West Lafayette Harrison High School Iowa Cedar Rapids Home Schools of Eastern Iowa (MS) West Des ...

  17. Oil Study Guide - High School | Department of Energy

    Energy Savers [EERE]

    High School Oil Study Guide - High School PDF icon Oil Study Guide - High School More Documents & Publications Oil Study Guide - Middle School 2009 SPR Report to Congress Fossil Energy Today - First Quarter, 2012

  18. High School Co-op Program Recruitment Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salazar Wed, Feb 18 Mesa Vista High School Mark Richmond TBD New Mexico School for the Arts Acacia McCombs Wed, Mar 4 Pecos High School Emily Ortiz Mon, Mar 2 Peasco High School...

  19. High School Rules, Forms, and Resources | U.S. DOE Office of...

    Office of Science (SC) Website

    Resources National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Strategies...

  20. AEC and Oak Ridge High School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    what happened. The Atomic Energy Commission spent 3,000,000 to build a new state- of-the-art high school in Oak Ridge in a very central and special location. This was done at a...

  1. DC High School Science Bowl Regionals

    Broader source: Energy.gov [DOE]

    This event is the Washington, D.C. High School Regional competition for the US National Science Bowl. The regional competition is run by the Office of Economic Impact and Diversity, and the...

  2. Thomas Jefferson High School for Science & Technology Takes 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high school and middle school students will compete in 70 high school and 50 middle school regional Science Bowl tournaments. Students, in teams of four or five, compete in the...

  3. Mira Loma High School and Hopkins Junior High School from California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Liu, Rowan Chakoumakos, Katherine Xue, Alborz Bejnood, and Leon Zhang and coach Anita Ganguly. The fourth place team was Santa Monica High School from Santa Monica, California. ...

  4. Coal Study Guide - High School | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    High School More Documents & Publications Coal Study Guide - Middle School Coal Study Guide for Elementary School Fossil Energy Today - First Quarter, 2011

  5. High School Academic Competition - Double Elimination | U.S....

    Office of Science (SC) Website

    NSB Home About High School Middle School Attending National Event Volunteers 2015 ... School Double Elimination Top Teams for 2015 News Media WDTS Home Contact Information ...

  6. Thomas Jefferson High School for Science & Technology Wins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School, Richmond, Takes Second NEWPORT NEWS, Va., Feb. 27, 2010 - The Thomas Jefferson High School for Science and Technology from Alexandria beat out St. Christopher's School...

  7. Modoc High School Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc...

  8. Cedarville Elementary & High School Space Heating Low Temperature...

    Open Energy Info (EERE)

    Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low...

  9. Henley High School Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility...

  10. Cotulla High School Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility...

  11. Watauga High School Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Energy Project Jump to: navigation, search Name Watauga High School Wind Energy Project Facility Watauga High School Sector Wind energy Facility Type Community Wind Facility Status...

  12. Thomas Jefferson High School takes regional Science Bowl competition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Results: Thomas Jefferson High School for Science and Technology The Thomas Jefferson High School for Science and Technology Science Bowl 2005 team includes (front...

  13. Spring high school internship application is open | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring high school internship application is open September 4, 2015 Apply by November 30 The application for PPPL's spring high school internship is open Click here for more...

  14. Thomas Jefferson High School for Science & Technology National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

  15. Fossil Fuels Study Guide - High School | Department of Energy

    Energy Savers [EERE]

    Fuels Study Guide - High School Fossil Fuels Study Guide - High School PDF icon Fossil Fuels Study Guide - High School More Documents & Publications Coal Study Guide for Elementary School Coal Study Guide - Middle School Secondary Energy Infobook and Secondary Infobook Activities (19 Activities)

  16. Thomas Jefferson High School for Science & Technology Snaps Up...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beach Schools Take 2nd, 3rd Place High School Science Bowl 1st Place The Thomas Jefferson High School for Science and Technology team from Alexandria poses with its first-place...

  17. High School Co-op Program Salary Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salary Structure High School Co-op Program Salary Structure Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Student Programs (505) 667-4866 Email High school internship program salary structure Program Description Yearly Hourly High school intern High school senior $21,320/yr $10.25/hr Post HS graduate High school graduate (limited to 90-day appointment)

  18. Sandia California Regional Middle and High School Science Bowl winners |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Regional Middle and High School Science Bowl winners Thursday, March 3, 2016 - 2:00pm San Ramon's Dougherty Valley High School won the high school division for the third year in a row. More than 240 students and 48 teams competed in the Sandia California Regional Science Bowls at Las Positas College, in Livermore, California. Hopkins Junior High School (Fremont, California) and Dougherty Valley High School (San Ramon, California) defended their titles

  19. Central High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  20. Lewistown High Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  1. Luray High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  2. Forest City High School Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    High School Energy Purchaser Forest City Community School District Location Forest City IA Coordinates 43.266011, -93.653378 Show Map Loading map... "minzoom":false,"mappings...

  3. High Technology School-to-Work Program at Argonne

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne's High Technology School-to-Work Program for Chicago Public School Students. Supported by the Illinois Department of Commerce and Economic Opportunity, Chicago Public Schools, Argonne National Laboratory and the City of Chicago.

  4. Thomas Jefferson High School for Science & Technology Wins Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Science Bowl; St. Christopher's School, Richmond, Takes Second | Jefferson Lab Wins Virginia Regional Science Bowl; St. Christopher's School, Richmond, Takes Second Thomas Jefferson High School for Science & Technology Wins Virginia Regional Science Bowl; St. Christopher's School, Richmond, Takes Second NEWPORT NEWS, Va., Feb. 27, 2010 - The Thomas Jefferson High School for Science and Technology from Alexandria beat out St. Christopher's School from Richmond, 54-44, in the

  5. High School Teams Compete in Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teams from Across Colorado Compete in Science Bowl For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 23, 1998 — On the surfaces of which three planets would you weigh more than you do on Earth? How many molecules are in two moles of sulfur trioxide? High school students from across Colorado will face such questions as they test their mental agility in the 1998 Colorado Science Bowl Feb. 28 at Metropolitan State College in Denver. More than 40 teams will compete in this

  6. High School | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Middle School Attending National Event Volunteers 2015 Competition Results News Media WDTS ... High School Print Text Size: A A A FeedbackShare Page 2015 National Science Bowl 2015 High ...

  7. Thomas Jefferson High School for Science & Technology wins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Virginia Regional High School Science Bowl was the team from the Thomas Jefferson High School for Science and Technology from Alexandria, Va. Pictured from left to right is...

  8. Valley wins 2016 High School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Valley wins 2016 High School Science Bowl Championship bracket results News Release First Place - Valley High School (from left) Coach Nathan Speichinger, Gabe Mintzer, Arjun Ganga, Guowei Qi, Jacob Bedia, Luke Rustin, Ames Laboratory Director Adam Schwartz. Second Place - Dubuque Wahlert High School Front (l-r) Natalie Hoy, Sam Hoelscher, Zoe Hermsen; back (l-r) Coach Tom Stierman, Andrew Wagner, Miguel Sanchez, Ames Laboratory Director Adam Schwartz. Third Place - Marshalltown High School

  9. Workplace Charging Challenge Partner: El Camino Real Charter High School |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy El Camino Real Charter High School Workplace Charging Challenge Partner: El Camino Real Charter High School Workplace Charging Challenge Partner: El Camino Real Charter High School Joined the Challenge: September 2014 Headquarters: Woodland Hills, CA Charging Location: Woodland Hills, CA Domestic Employees: 225 El Camino Real Charter High School (ECRCHS) has installed 4 plug-in electric vehicle (PEV) chargers, with plans to expand if demand increases. The charging

  10. Rube Goldberg 2013 - Hoffman Estates High School | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Rube Goldberg 2013 - Hoffman Estates High School Share Topic Community Education Rube Goldberg Machine Contest

  11. High School Semester-Long Internship | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semester-Long Internship Dr. Arturo Dominguez mentors a student on RGDX. Internship opportunities during the school year are avaialble for highly motivated high school students at PPPL! The spring internship application is open September 1 through November 30. The fall internship application is open February 1 through April 30. High School Semester Internship Application PPPL's Science Education department offers a limited number of internship positions for outstanding high school seniors

  12. High School Summer Internship | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer Internship Internship opportunities for the summer of 2017 are available for highly motivated high school students at PPPL! High School Summer Internship Application - Applications are open Thanksgiving through January 31! PPPL's Science Education department offers a limited number of internship positions for outstanding high school graduating seniors during the summer. This paid internship offers students the chance to work on a project with a member of our research or engineering staff.

  13. Fairview High School Wins Colorado Science Bowl - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fairview High School Wins Colorado Science Bowl Boulder School Heads to Washington D.C. to Challenge for National Title January 29, 2011 Golden, CO., Jan. 29, 2011 - Students from Fairview High School Team 1 won the Colorado High School Science Bowl today. They will go on to the 21st National Science Bowl in Washington D.C. on Apr. 28 - May 2, where they will compete for the national title against more than 450 students from 68 high schools. The U.S. Department of Energy (DOE) began the Science

  14. Lakewood High School Wins Colorado Science Bowl - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lakewood High School Wins Colorado Science Bowl Lakewood School Heads to Washington D.C. to Challenge for National Title January 26, 2013 Students from Lakewood High School Team 1 won the Colorado High School Science Bowl today. They will go on to the 23rd National Science Bowl in Washington D.C., Apr. 25-29, where they will compete for the national title against more than 400 students from 70 high schools. The U.S. Department of Energy (DOE) began the Science Bowl tradition in 1991 as a way to

  15. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    SciTech Connect (OSTI)

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  16. Media Advisory - Virginia Regional High School Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Science Bowl Media Advisory - Virginia Regional High School Science Bowl What: Virginia Regional High School Science Bowl When: Saturday, Feb. 1, 2014. Round robin competition runs from 9 a.m. - noon. The double elimination, semi-final and finalist rounds run from 1:30 - ~ 5 p.m. Awards presentations will be made immediately after the final round. Where: CEBAF Center Auditorium, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Va. 23606 Details:

  17. Lakewood High School Teacher Recognized for Introduction of Renewable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Curriculum - News Releases | NREL Lakewood High School Teacher Recognized for Introduction of Renewable Energy Curriculum November 17, 2005 Golden, Colo. - Students taking technology classes at Lakewood High School this semester are learning about more than construction, technical theater and computer aided drafting (CAD); they are learning about energy issues within their community. Matthew Brown, technology teacher at Lakewood High School, started a new course this year that

  18. Video: Mira Loma High School Named Science Bowl Grand Champion

    Broader source: Energy.gov [DOE]

    Today, Mira Loma High School won the 2014 National Science Bowl at the National Building Museum in Washington, D.C.

  19. Thomas Jefferson High School for Science & Technology wins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Science Bowl. Winning the daylong academic competition was the Thomas Jefferson High School for Science and Technology, from Alexandria, Va. Following in second place was...

  20. Research Projects in Renewable Energy for High School Student

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECTS IN RENEWABLE ENERGY FOR HIGH SCHOOL STUDENTS National Renewable Energy Laboratory Education Programs 1617 Cole Blvd. Golden, CO 80401 Tel: (303) 275-3044 Home page: http:...

  1. Southeastern Regional Vocational Technical High School | Open...

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  2. DOE - NNSA/NFO -- Nevada Science Bowl - HIGH SCHOOL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Nevada Science Bowl - High School February 5-6, 2016 On behalf of the National Nuclear Security Administration Nevada Field Office (NNSA/NFO), we are pleased to announce the 2016 Nevada Science Bowl for high school competition will take place February 5-6, 2016 at the National Atomic Testing Museum (NATM) and Vegas PBS. We would be honored to have your school field a team for this event. REGISTRATION INFORMATION ^ TOP ^

  3. DOE - NNSA/NFO -- Science Bowl - High School Registration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nevada High School Science Bowl Registration NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Welcome to the 25th Annual Nevada High School Science Bowl! February 5-6, 2016 Registration is due on December 2, 2015 Thirty-two teams from high schools in California, Nevada, and Utah are welcome to participate in this round robin - double-elimination competition. Monetary awards are given to the first through ninth place teams for use in their school's mathematics/science departments.

  4. PPPL now offering SUMMER high school internship! | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab PPPL now offering SUMMER high school internship! April 3, 2015 Apply by May 30! The Princeton Plasma Physics Laboratory is pleased to announce that applications are now open for internships for high school rising seniors for the SUMMER of 2015! Please click here for more information.

  5. High School Coaches | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Coaches National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School High School Coaches Print Text Size: A A A FeedbackShare Page Welcome High School Coaches Listed below

  6. Jefferson Lab hosts 19 schools for Virginia Regional High School Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bowl on Feb. 10 | Jefferson Lab hosts 19 schools for Virginia Regional High School Science Bowl on Feb. 10 Jefferson Lab hosts 19 schools for Virginia Regional High School Science Bowl on Feb. 10 January 30, 2007 Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 10, to compete in the Virginia Regional High School Science Bowl. Nineteen teams, representing high schools from across the region are participating in this

  7. Thomas Jefferson High School for Science & Technology National Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bowl® Champion | Department of Energy Thomas Jefferson High School for Science & Technology National Science Bowl® Champion Thomas Jefferson High School for Science & Technology National Science Bowl® Champion May 2, 2005 - 12:40pm Addthis WASHINGTON, DC -- "The Incompleteness Theorem" was the answer to a question on mathematics that today clinched the 2005 National Science Bowl® championship for the Thomas Jefferson High School for Science & Technology team from

  8. Secretary Chu Recalls Garden City High School Physics Teacher | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Recalls Garden City High School Physics Teacher Secretary Chu Recalls Garden City High School Physics Teacher September 30, 2010 - 12:00am Addthis As part of President Obama's new initiative to recruit teachers, U.S. Energy Secretary Steven Chu is featured in a Public Service Announcement (PSA) video recalling how his high school physics teacher inspired him to pursue a career in science. In the PSA, Secretary Chu shares how his teacher, Mr. Thomas Miner, changed his approach to

  9. High Performance Green Schools Planning Grants

    Broader source: Energy.gov [DOE]

    In addition to planning grant opportunities, the Department of Education offers an additional reimbursement to schools that build or renovate to LEED silver or higher, or achieve two or more...

  10. West Windsor-Plainsboro High School South wins regional Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at PPPL A dramatic ending to High School Bowl sends local team to nationals By Jeanne Jackson DeVoe February 25, 2013 Tweet Widget Google Plus One Share on Facebook Next stop...

  11. High School Co-op Program Salary Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salary Structure High School Co-op Program Salary Structure Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is...

  12. Sandia Energy - Successful Conclusion of SSLS EFRC's High School...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were between their junior and senior years of high school, and had strong backgrounds math and science. Our interns participated in a wide range of activities: ES&H courses,...

  13. Daniel Wright Junior High School Wins First Place In Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daniel Wright Junior High School Wins First Place In Hydrogen Fuel Cell Car Contest National "Battle of the Brains" continues June 23-24 at the University of Denver June 23, 2006 ...

  14. Hotchkiss High School Seniors Recognized for Renewable Energy Project -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Hotchkiss High School Seniors Recognized for Renewable Energy Project April 10, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) presented a special Renewable Energy Award to Christopher Snow and Alexander Farinell from Hotchkiss High School, Hotchkiss, Colo., at the 51st Colorado Science and Engineering Fair (CSEF) on April 6. The award is sponsored by NREL's corporate partners, Midwest Research Institute (MRI) and

  15. High School Students Build Their Own Supercomputer (Almost) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High School Students Build Their Own Supercomputer (Almost) High School Students Build Their Own Supercomputer (Almost) September 10, 2010 - 9:47am Addthis Eric Gedenk What are the key facts? Students built a computer cluster -- a group of computers communicating with one another to operate as a single machine -- out of Mac mini CPUs. For the third straight year, students and teachers from around Appalachia gathered at Oak Ridge National Laboratory (ORNL) this summer for an

  16. Thomas Jefferson High School for Science & Technology wins Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Science Bowl | Jefferson Lab wins Virginia Regional Science Bowl Thomas Jefferson High School for Science & Technology wins Virginia Regional Science Bowl February 8, 2003 Hundreds of the brightest young minds in the commonwealth came together at the Department of Energy's Jefferson Lab today to compete in the Virginia Regional Science Bowl. Winning the daylong academic competition was the Thomas Jefferson High School for Science and Technology, from Alexandria, Va. Following in

  17. Thomas Jefferson High School for Science and Technology from Alexandria

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wins 2002 Virginia Regional Science Bowl | Jefferson Lab and Technology from Alexandria Wins 2002 Virginia Regional Science Bowl Thomas Jefferson High School for Science and Technology from Alexandria Wins 2002 Virginia Regional Science Bowl February 14, 2002 NEWPORT NEWS, VA - Some of the brightest young minds in the state came together at Jefferson Lab on Saturday, Feb. 9, to compete in the Virginia Regional Science Bowl. Twenty teams, representing high schools from across the Commonwealth

  18. Thomas Jefferson High School takes regional Science Bowl competition at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab for 4th year running | Jefferson Lab takes regional Science Bowl competition at JLab for 4th year running Science Bowl Results: Thomas Jefferson High School for Science and Technology The Thomas Jefferson High School for Science and Technology Science Bowl 2005 team includes (front row, left to right): Coach Sharon Baker, Charlotte Seid, Sam Lederer and Lisa Marrone, and (back row, l. to r.): Matthew Isakowitz and Logan Kearsley. Photos by Steve Gagnon, JLab Science Education Thomas

  19. Media Advisory - Virginia Regional High School Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2010. Round robin competition runs from 9 a.m. - noon. The double elimination, semi-final and finalist rounds run from 1:30 - 5 p.m. Awards presentations will be made immediately after the final round. Where: CEBAF Center Auditorium, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Va. Details: Twenty teams, representing high schools from across the state are participating in this annual, academic competition. Catch the excitement as several high schools

  20. University of Denver High School Teacher Recognized for Commitment to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy - News Releases | NREL University of Denver High School Teacher Recognized for Commitment to Renewable Energy November 28, 2006 Don Cameron, physics and astronomy teacher at the University of Denver High School (DUHS), walks the talk when it comes to sustainability. He has taught units on hydrogen, wind and solar power and has tried to make biodiesel in his chemistry class. He's known for writing letters to local decision makers in support of renewable energy and for

  1. DOE's NJ HIGH SCHOOL SCIENCE BOWL® | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2012 (All day) Science Education MBG Auditorium DOE's NJ HIGH SCHOOL SCIENCE BOWL® DOE's NJ HIGH SCHOOL SCIENCE BOWL® PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL As a federal facility, the Princeton Plasma Physics Laboratory is operating under heightened security measures because of the events of September 11, 2001. Upon arrival at PPPL, adult visitors must show a government-issued photo I.D. - for example, a passport or a driver's license. Non-U.S. citizens

  2. High School Students Gear Up for Battle of the Brains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Students Gear Up for Battle of the Brains For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Holmes Barba Golden, Colo., Feb. 13, 2001 - How many prime numbers are there between 30 and 60? Starch is the polymer of what monosaccharide? High school students from across Colorado will face such questions as they test their mental agility in the U.S. Department of Energy's (DOE) Colorado Science Bowl on Feb. 24 at the Colorado School of Mines in Golden. Thirty-two

  3. Energy Design Guidelines for High Performance Schools: Arctic and Subarctic Climates

    SciTech Connect (OSTI)

    2004-11-01

    Energy Design Guidelines for High Performance Schools book detailing DOE's EnergySmart Schools Program for Arctic Climates.

  4. Category:Wind for Schools High School Curricula | Open Energy...

    Open Energy Info (EERE)

    School Curricula" The following 39 files are in this category, out of 39 total. Air Density Lab.pdf Air Density Lab.pdf 240 KB Anemometer activity.docx Anemometer activity.docx...

  5. Poudre High School From Fort Collins , Colorado Wins U.S. Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... East Brunswick, New Jersey Edwin O. Smith High School, Storrs, Connecticut Homestead ... North Dakota Southside High School, Fort Smith, Arkansas Texas Academy of Mathematics and ...

  6. West Windsor-Plainsboro South High School & William Annin Middle School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virginia win N.J. Regional Science Bowl at PPPL | Princeton Plasma Physics Lab

    West Windsor-Plainsboro South High School & William Annin Middle School win N.J. Regional Science Bowl at PPPL Top science whizzes will go to national contest in Washington, D.C. By Jeanne Jackson DeVoe February 23, 2016 Tweet Widget Google Plus One Share on Facebook The West Windsor-Plainsboro South High School team buzzes in an answer as they compete against Millburn High School in Round 12 of the New

  7. Princeton High School and Grover Middle School Win Top Prizes at Regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowls | Princeton Plasma Physics Lab Princeton High School and Grover Middle School Win Top Prizes at Regional Science Bowls Princeton Plasma Physics Laboratory Hosts Competitions February 27, 2012 Tweet Widget Google Plus One Share on Facebook Thomas Grover Middle School took home the top prize Feb. 24 during the middle school Science Bowl® competition at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Grover team members (from left) are Coach Rae

  8. High schools compete for Nevada Science Bowl title | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration High schools compete for Nevada Science Bowl title Monday, February 15, 2016 - 3:37pm NNSA Blog The winner of the 2016 Nevada Science Bowl was the team from Reno's Davidson Academy of Nevada. From left: Matthew Bauer, Rinik Kumar, Haydn Bradstreet, Paolo Adajar, Eric Liu, and Coach Brett Guisti. While sports fans across the U.S. prepared for last weekend's game day, 160 Nevada high school students went head-to-head in a different kind of competition. Sponsored and

  9. Media Advisory - Virginia Regional High School Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2009. Round robin competition runs from 9 a.m. - noon. The double elimination, semi-final and finalist rounds run from 1:30 - 5 p.m. Awards presentations will be made immediately after the final round. Where: CEBAF Center Auditorium, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Va. Details: Twenty-two teams, representing high schools from across the state are participating in this annual, academic competition. Catch the excitement as several high

  10. High School Academic Competition - Round Robin | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Round Robin National Science Bowl® (NSB) NSB Home About High School Middle School Attending the National Finals Volunteers 2016 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination Top Teams for 2016 News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us 2016

  11. High School Students Gear Up for Battle of the Brains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb. 17, 1999 — What is the maximum distance an electron can travel in a nanosecond? Which planet has a moon almost as big as the planet itself? High school students from across Colorado will face such questions as they test their mental agility in the U.S. Department of Energy's (DOE) 1999 Denver Regional Science Bowl Feb. 27 at the Colorado School of Mines in Golden. More than 20 student teams from rural communities to metropolitan areas across the state will compete in this rapid-fire

  12. High School Students Gear Up for Battle of the Brains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jan. 31, 2000 - Which planet in the solar system has a day that lasts longer than its year? If 64 sugar cubes were glued into one solid cube and spray-painted red, how many of the original cubes would have exactly two red surfaces? High school students from across Colorado will face such questions as they test their mental agility in the U.S. Department of Energy's (DOE) Colorado Science Bowl on Feb. 12 at the Colorado School of Mines in Golden. More than 25 student teams from rural communities

  13. High School Co-op Program Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selection Process High School Co-op Program Selection Process Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Student Programs (505) 665-0987 Email Student selection process Once all application materials are submitted, they will be reviewed for program eligibility. Students who meet the minimum program requirements will have their application materials posted

  14. Centauri High School Teacher Honored as Colorado Outstanding Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cement (2010 MECS) Cement (2010 MECS) Manufacturing Energy and Carbon Footprint for Cement Sector (NAICS 327310) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Cement More Documents & Publications MECS 2006 - Cement Glass and Glass Products (2010 MECS) Textiles Teacher

    Centauri High School Teacher Honored as Colorado Outstanding Biology Teacher For

  15. Media Advisory - Virginia Regional High School Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2012. Round robin competition runs from 9 a.m. - noon. The double elimination, semi-final and finalist rounds run from 1:30 - ~ 5 p.m. Awards presentations will be made immediately after the final round. Where: CEBAF Center Auditorium, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Va. 23606 Details: Teams from 22 high schools from across the commonwealth are participating in this annual, academic competition. Catch the excitement as local teams from

  16. Media Advisory - Virginia Regional High School Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2011. Round robin competition runs from 9 a.m. - noon. The double elimination, semi-final and finalist rounds run from 1:30 - 5 p.m. Awards presentations will be made immediately after the final round. Where: CEBAF Center Auditorium, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Va. Details: Twenty-three teams, representing high schools from across the state are participating in this annual, academic competition. Catch the excitement as Patrick Henry

  17. Thomas Jefferson High School for Science & Technology Snaps Up Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Championship; Virginia Beach Schools Take 2nd, 3rd Place | Jefferson Lab Snaps Up Virginia Science Bowl Championship; Virginia Beach Schools Take 2nd, 3rd Place Thomas Jefferson High School for Science & Technology Snaps Up Virginia Science Bowl Championship; Virginia Beach Schools Take 2nd, 3rd Place High School Science Bowl 1st Place The Thomas Jefferson High School for Science and Technology team from Alexandria poses with its first-place trophy after the competition.

  18. High School Students | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Middle School Attending National Event Volunteers 2015 Competition Results News Media WDTS ... Click to view 2015 High School National Science Bowl Final Matches YouTube link: https:...

  19. Papillion-LaVista South High School Wind Project | Open Energy...

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  20. SUPPORT FOR HU CFRT SUMMER HIGH SCHOOL FUSION WORKSHOP

    SciTech Connect (OSTI)

    Punjabi, Alkesh

    2010-02-09

    Nine summer fusion science research workshops for minority and female high school students were conducted at the Hampton University Center for Fusion Research and Training from 1996 to 2005. Each workshop was of the duration of eight weeks. In all 35 high school students were mentored. The students presented 28 contributed papers at the annual meetings of the American Physical Society Division of Plasma Physics. These contributed papers were very well received by the plasma physics and fusion science research community. The students won a number of prestigious local, state, and national honors, awards, prizes, and scholarships. The notable among these are the two regional finalist positions in the 1999 Siemens-Westinghouse Science and Technology Competitions; 1st Place U.S. Army Award, 2006; 1st Place U.S. Naval Science Award, 2006; Yale Science and Engineering Association Best 11th Grade Project, 2006; Society of Physics Students Book Award, 2006; APS Corporate Minority Scholarship and others. This workshop program conducted by the HU CFRT has been an exemplary success, and served the minority and female students exceptionally fruitfully. The Summer High School Fusion Science Workshop is an immensely successful outreach activity conducted by the HU CFRT. In this workshop, we train, motivate, and provide high quality research experiences to young and talented high school scholars with emphasis on under-represented minorities and female students in fusion science and related areas. The purpose of this workshop is to expose minority and female students to the excitement of research in science at an early stage in their academic lives. It is our hope that this may lead the high school students to pursue higher education and careers in physical sciences, mathematics, and perhaps in fusion science. To our knowledge, this workshop is the first and only one to date, of fusion science for under-represented minorities and female high school students at an HBCU. The faculty researchers in the HU CFRT mentor the students during summers. Mentors spend a considerable amount of time and efforts in training, teaching, guiding and supervising research projects. The HU CFRT has so far conducted nine workshops during the summers of 1996-2000 and 2002-2005. The first workshop was conducted in summer 1996. Students for the workshop are chosen from a national pool of exceptionally talented high school rising seniors/juniors. To our knowledge, most of these students have gone on to prestigious universities such as Duke University, John Hopkins University, CalTech, UCLA, Hampton University, etc. after completing their high school. For instance, Tiffany Fisher, participant of the 1996 summer workshop completed her BS in Mathematics at Hampton University in May 2001. She then went on to Wake Forest University at Winston-Salem, North Carolina to pursue graduate studies. Anshul Haldipur, participant of the 1999 summer workshop, began his undergraduate studies at Duke University in 2000. Christina Nguyen and Ilissa Martinez, participants of the 2000 summer workshop, are pursuing their undergraduate degrees at the UCLA and Florida State University respectively. The organizing committee of the APS DPP annual meeting invited Dr. Punjabi to deliver an invited talk on training the next generation of fusion scientists and engineers at the 2005 APS DPP meeting in Denver, CO. The organizing committee distributed a special flier with the Bulletin to highlight this invited talk and another talk on education as well the expo. This has given wide publicity and recognition to our workshops and Hampton University. Prof. Punjabi's talk: 'LI2 2: Training the next generation of fusion scientists and engineers: summer high school fusion science workshop, Bull. Amer. Phys. Soc. 50, 221 (2005)' was very well-received. He talked about HU education and outreach initiative and the HU CFRT Summer High School Workshop. The audience had a considerable number of questions about our workshops and the High School to PhD Pipeline in fusion science. Professor William Mathews of University of Delaware offered to give the HU Team MHD codes to use, and Professor Birdsall of University of California, Berkeley, plasma theory and simulation group, offered to give the team simple simulation codes to use. We are very happy and proud and very gratified by this, and we thank the US DOE OFES, Dr. Sam Barish and Dr. Michael Crisp for their support and encouragement.

  1. Cherry Creek High School Wins Colorado Science Bowl - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chernobyl Nuclear Accident Chernobyl Nuclear Accident Chernobyl, Ukraine A catastrophic nuclear accident occurs at Chernobyl Reactor #4 in the then Soviet Republic of Ukraine

    Cherry Creek High School Wins Colorado Science Bowl Greenwood Village School Heads to Washington D.C. to Challenge for National Title January 28, 2012 Golden, Colo., Jan. 28, 2012 - Students from Cherry Creek High School won the Colorado High School Science Bowl today. The school will go on to the 22nd National Science

  2. High School Students Compete in Solar-Powered Bike Race

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compete in Solar-Powered Bike Race For more information contact: e:mail: Public Affairs Golden, Colo., April 23, 1998 — Photo opportunity: Media are invited to cover the workshop and solar-powered bicycle race designed to give students hands-on learning experiences with renewable energy technologies. What: The Colorado Solar BikeRayce is a competition for high school students to race solar-powered bikes that they design and build. The event will prepare the teams for the national Solar

  3. Thomas Jefferson High School for Science & Technology Wins Feb. 5 Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl; Warwick High Wins Math and Science Challenges | Jefferson Lab Wins Feb. 5 Virginia Science Bowl; Warwick High Wins Math and Science Challenges Thomas Jefferson High School for Science & Technology Wins Feb. 5 Virginia Science Bowl; Warwick High Wins Math and Science Challenges fellowship The Thomas Jefferson High School for Science and Technology, Alexandria, won the Feb. 5 Virginia Regional High School Science Bowl. Pictured, left to right, are Coach Sharon Webb; Alexander

  4. National Science Bowl Update: Teams from North Carolina and California to Compete for High School Championship

    Broader source: Energy.gov [DOE]

    The field of high school finalists in the Department of Energy (DOE) National Science Bowl has narrowed once more, and now only two high school teams remain in the competition.

  5. Santa Monica High School From Santa Monica, Calif. Wins U.S....

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of Energy National Science Bowl Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of ...

  6. Chillicothe High School wins 2015 South Central Ohio Regional Science Bowl

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Chillicothe High School wins 2015 South Central Ohio Regional Science Bowl Chillicothe High School wins 2015 South Central Ohio Regional Science Bowl March 13, 2015 - 6:43pm Addthis DOE Regional Coordinator Greg Simonton (left), and Chillicothe High School coach Joshua Queen join members of the Regional-winning Chillicothe High School Science Bowl team. (Left to right) Dylan Crisp, Matthew Wagner, Noah Wright-Piekarski, Claire Schmitt and Keegan Francis. DOE Regional

  7. Thomas Jefferson High School for Science & Technology Takes 2015 Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl | Jefferson Lab Takes 2015 Virginia Science Bowl Thomas Jefferson High School for Science & Technology Takes 2015 Virginia Science Bowl 2014 Virginia High School Science Bowl The team from Thomas Jefferson High School for Science and Technology, Alexandria, swept through the Virginia Regional High School Science Bowl undefeated on Feb. 7. The team of (back row, left to right) Matthew Barbano, Tiger Zhang and Janice Ong, and (front, l. to r.) Franklyn Wang and Ross Dempsey

  8. News Media invited to cover Feb. 12 Virginia Regional High School Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bowl at Jefferson Lab; 22 teams competing | Jefferson Lab Feb. 12 Virginia Regional High School Science Bowl at Jefferson Lab; 22 teams competing World Year of Physics News Media invited to cover Feb. 12 Virginia Regional High School Science Bowl at Jefferson Lab; 22 teams competing February 7, 2005 The Department of Energy's Jefferson Lab in Newport News, Va., is hosting this year's Virginia Regional High School Science Bowl on Saturday, Feb. 12. Twenty-two teams, representing high schools

  9. We Have a Winner - DC High School Regional Science Bowl Competition Held

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Last Saturday | Department of Energy We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday February 11, 2013 - 10:30am Addthis We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday Annie Whatley Annie Whatley Deputy Director, Office of Minority Education and Community Development As part of the National Science Bowl, more than 9,500 high

  10. High School Academic Competition - Round Robin | U.S. DOE Office...

    Office of Science (SC) Website

    ... & Technical High School 0 0 2 0 0 0 0 0 2 4 6. North Carolina School of Science and Mathematics 2 2 2 2 2 0 2 2 14 1 7. John Foster Dulles High School 2 2 2 0 2 2 2 2 14 5 8. ...

  11. Calling Science Stars in Middle and High Schools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools November 10, 2010 - 10:03am Addthis 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office

  12. Thomas Jefferson High School for Science & Technology wins the Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Science Bowl | Jefferson Lab #38; Technology wins the Virginia Regional Science Bowl Thomas Jefferson High School for Science & Technology wins the Virginia Regional Science Bowl February 15, 2006 TJHSST Finishing in first place at the Virginia Regional High School Science Bowl was the team from the Thomas Jefferson High School for Science and Technology from Alexandria, Va. Pictured from left to right is Coach Sharon Webb, Charlotte Seid, Daniel Schafer, Lisa Marrone, Neel

  13. Twenty High School Teams Compete in Virginia Regional Science Bowl Being

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Held At Jefferson Lab | Jefferson Lab Twenty High School Teams Compete in Virginia Regional Science Bowl Being Held At Jefferson Lab Media Advisory: Twenty High School Teams Compete in Virginia Regional Science Bowl Being Held At Jefferson Lab February 7, 2002 The Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Va., is hosting this year's Virginia Regional Science Bowl on February 9, 2002. Twenty teams, representing high schools from

  14. Students from Grand Junction High School Triumph in Colorado Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Junction High School Triumph in Colorado Science Bowl For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 12, 2000 - Students from Grand Junction High School won top honors at the Colorado Science Bowl today at the Colorado School of Mines in Golden. In the final round of rapid-fire questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students from Grand Junction were victorious over one of two teams from Douglas County High

  15. Jefferson Lab Hosts 20 Teams for High School Science Bowl on Feb. 2 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab High School Science Bowl on Feb. 2 Jefferson Lab Hosts 20 Teams for High School Science Bowl on Feb. 2 NEWPORT NEWS, Va., Jan. 25, 2008 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 2, to compete in the Virginia Regional High School Science Bowl. Twenty teams, representing high schools from across the region are registered for this year's academic competition. The National Science Bowl®

  16. Jefferson Lab Hosts 22 Teams for High School Science Bowl on Feb. 7 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab 2 Teams for High School Science Bowl on Feb. 7 Jefferson Lab Hosts 22 Teams for High School Science Bowl on Feb. 7 NEWPORT NEWS, Va., Feb. 2, 2009 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 7, to compete in the Virginia Regional High School Science Bowl. Twenty-two teams, representing high schools from across the region, are registered for this year's academic competition. The National Science

  17. Colorado Regional High School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    Beginning 5 weeks prior to the event and space permitting, second registered teams will be approved to participate. Competition Location Dakota Ridge High School 13399 W Coal Mine ...

  18. Twenty Teams to Compete in Virginia High School Science Bowl on Feb. 7 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Twenty Teams to Compete in Virginia High School Science Bowl on Feb. 7 The final match of the 2014 Virginia High School Science Bowl pitted Warwick High School, Newport News, against Thomas Jefferson High School for Science and Technology, Alexandria, the long-standing Virginia Science Bowl champs. The team from TJHSST won the day and advanced to the national finals. A number of teams that didn't make it into the semi-finals participated in the Stay All Day design and

  19. D.C. Middle and High School Students Get a Chance to Experience...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Are you a teacher or a middle or high school student looking for ways to test your ... The mock competition allows students to experience the competition, practice answering ...

  20. Jefferson Lab hosts 23 teams for Virginia High School Science Bowl on Feb.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 | Jefferson Lab hosts 23 teams for Virginia High School Science Bowl on Feb. 11 Jefferson Lab Hosts 23 teams for Virginia High School Science Bowl on Feb. 11 February 3, 2006 Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 11, to compete in the Virginia Regional High School Science Bowl. Twenty-three teams, representing high schools from across the region are participating in this year's academic competition.

  1. Nineteen Teams to Compete in Virginia Regional High School Science Bowl on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb. 6 | Jefferson Lab Nineteen Teams to Compete in Virginia Regional High School Science Bowl on Feb. 6 The final match of the 2015 Virginia Regional High School Science Bowl pitted Langley High School, McLean, against Thomas Jefferson High School for Science and Technology, Alexandria. The team from TJHSST won the day and advanced to the national finals. Teams that didn't make it into the semi-finals participated in the Stay All Day design and engineering challenge. Pictured are photos

  2. Manzano High School student wins top award in 22nd New Mexico...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and Innovation Award for their project, "Language Acquisition in Computers." ... A Los Alamos High School team won the Python Programming Award for their project "ExcellAnts." ...

  3. 2010 DOE National Science Bowl® Photos - Campbell High School...

    Office of Science (SC) Website

    Campbell High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National ...

  4. 2010 DOE National Science Bowl® Photos - Onate High School ...

    Office of Science (SC) Website

    Onate High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National ...

  5. 2010 DOE National Science Bowl® Photos - C.M. Russell High School...

    Office of Science (SC) Website

    C.M. Russell High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  6. 2010 DOE National Science Bowl® Photos - LaFayette High School...

    Office of Science (SC) Website

    LaFayette High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  7. 2010 DOE National Science Bowl® Photos - Lexington High School...

    Office of Science (SC) Website

    Lexington High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  8. 2010 DOE National Science Bowl® Photos - Farmingdale High School...

    Office of Science (SC) Website

    Farmingdale High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  9. 2010 DOE National Science Bowl® Photos - Palo Alto High School...

    Office of Science (SC) Website

    Palo Alto High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  10. 2010 DOE National Science Bowl® Photos - Shasta High School...

    Office of Science (SC) Website

    Shasta High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National ...

  11. Students from Smoky Hill High School Triumph in Colorado Science Bowl -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Students from Smoky Hill High School Triumph in Colorado Science Bowl February 7, 2004 Golden, Colo. - Students from Smoky Hill High School won top honors today at the Colorado Science Bowl for the third year in a row. In the final round of rapid-fire questions and answers about physics, math, biology, astronomy, chemistry, computers and the earth sciences, Smoky Hill High School was victorious over Pueblo Centennial High School. Thirty-nine student teams from across the

  12. Students from Smoky Hill High School Triumph in Colorado Science Bowl -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Students from Smoky Hill High School Triumph in Colorado Science Bowl February 12, 2005 Golden, Colo. - Students from Smoky Hill High School won top honors at the Colorado Science Bowl today for the fourth year in a row. In the final round of rapid-fire questions and answers about physics, math, biology, astronomy, chemistry, computers and the earth sciences, Smoky Hill High School team #2 from Aurora was victorious over Smoky Hill High School team #1. Thirty-six student

  13. Stratton Middle and High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  14. Ponderosa High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  15. Skyline High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  16. Shelley High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  17. Eudora High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  18. USD 376 Sterling High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  19. Walsh High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  20. Santa Fe Trail High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  1. Diller-Odell High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  2. James Buchanan High School Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  3. Watauga High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  4. Rigby High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  5. Mullen High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  6. Northwestern High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  7. Florence High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  8. Loup City High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  9. Grassfield High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  10. Nederland High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  11. USD 393 Solomon High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  12. North Wilkes Middle and High School Wind Project | Open Energy...

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  13. Burlington High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  14. USD 375 Circle High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  15. USD 345 Seaman High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  16. Clover Hill High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  17. Avery County High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  18. Ferndale High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  19. Concordia High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  20. Alleghany High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  1. Mt. Edgecumbe High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  2. Jefferson West High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  3. Pretty Prairie High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  4. Thomas Jefferson High School for Science & Technology Wins Feb...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wins Feb. 5 Virginia Science Bowl; Warwick High Wins Math and Science Challenges ... in science, technology, engineering and math among our nation's youth," Tyler said. "It ...

  5. Biomass Company Sets Up Shop in High School Lab

    Broader source: Energy.gov [DOE]

    Unlike most biotechnology students who have to go to a research facility to see scientists in action, those at Greeneville High just need to turn their heads.

  6. Twenty-three Teams to Compete in Virginia High School Science Bowl |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Twenty-three Teams to Compete in Virginia High School Science Bowl Twenty-three Teams to Compete in Virginia High School Science Bowl NEWPORT NEWS, Va., Jan. 30, 2014 - Some of the brightest young minds in the Commonwealth will meet at the U.S. Department of Energy's Jefferson Lab on Saturday, Feb. 1, to compete in the Virginia Regional High School Science Bowl. Teams from 23 schools are registered for this year's academic competition. The National Science Bowl tournament -

  7. State College Area High School From State College, PA Wins DOE's National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl® | Department of Energy College Area High School From State College, PA Wins DOE's National Science Bowl® State College Area High School From State College, PA Wins DOE's National Science Bowl® May 1, 2006 - 10:34am Addthis WASHINGTON , DC - State College Area High School from State College, Pennsylvania, today won the Department of Energy's (DOE) National Science Bowl®. Teams representing 65 schools from across the United States competed in this "Science Jeopardy"

  8. Students from Smoky Hill High School Triumph in Colorado Science Bowl -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Students from Smoky Hill High School Triumph in Colorado Science Bowl February 8, 2003 Golden, CO. - Students from Smoky Hill High School won top honors at the Colorado Science Bowl today at the Colorado School of Mines. In the final round of rapid-fire questions and answers about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students from Smoky Hill High School team #2 were victorious over their peers, Smoky Hill team #3. At the end of

  9. High School Science Bowl 25th Anniversary Video | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Science Bowl 25th Anniversary Video The Ames Laboratory/Iowa State University Regional High School Science Bowl celebrated its 25th anniversary on Saturday, Jan. 23. Here's a video that recaps some of the teams, volunteers and fun from a quarter century of Science Bowl.

  10. Past High School National Science Bowl Winners (1991 - 2014) | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) High School National Science Bowl Winners (1991 - 2015) National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S.

  11. Jefferson Lab hosts 22 teams for Virginia High School Science Bowl on Feb.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 | Jefferson Lab hosts 22 teams for Virginia High School Science Bowl on Feb. 12 Science Bowl Click above for print version (tiff) of the Jefferson Lab Science Bowl logo. Jefferson Lab hosts 22 teams for Virginia High School Science Bowl on Feb. 12 February 1, 2005 Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 12, to compete in the Virginia Regional High School Science Bowl. Twenty-two teams, representing high

  12. National Best Practices Manual for Building High Performance Schools

    SciTech Connect (OSTI)

    2007-10-01

    The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy.

  13. National Best Practices Manual for Building High Performance Schools

    Broader source: Energy.gov [DOE]

    The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy.

  14. Twenty-one high school teams compete in Virginia Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hosted by Jefferson Lab | Jefferson Lab Twenty-one high school teams compete in Virginia Regional Science Bowl hosted by Jefferson Lab MEDIA ADVISORY: Twenty-one high school teams compete in Virginia Regional Science Bowl hosted by Jefferson Lab February 4, 2003 The Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Va., is hosting this year's Virginia Regional Science Bowl on Saturday, February 8, 2003. Twenty-one teams, representing high

  15. La Cueva High School team takes top award in 23rd New Mexico Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge 23rd New Mexico Supercomputing Challenge La Cueva High School team takes top award in 23rd New Mexico Supercomputing Challenge The team, Ari Echt-Wilson, Eli Echt-Wilson, and Justin Sanchez also won the CHECS Teamwork and Cray High Performance Computing awards. April 23, 2013 Justin Sanchez of Albuquerque La Cueva High School during the finalist team judging at the New Mexico Supercomputing Challenge expo and awards ceremony at Los Alamos National Laboratory. The styrofoam balls

  16. Calling Science Stars in Middle and High Schools | Department...

    Broader source: Energy.gov (indexed) [DOE]

    2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national...

  17. High school interns opt for research over relaxation | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High power ring methods in ADS-R application Citation Details In-Document Search Title: High power ring methods in ADS-R application Authors: Meot F. Publication Date: 2013-04-29 OSTI Identifier: 1087553 Report Number(s): BNL--100892-2013-CP R&D Project: KBCH139; 18031; KB0202011 DOE Contract Number: DE-AC02-98CH10886 Resource Type: Conference Resource Relation: Conference: Thorium Fuel Cycles and Nuclear Spectra Workshop; Huddersfield, UK; 20130429 through 20130429 Research Org: Brookhaven

  18. Jefferson Lab Hosts High School Science Bowl on Feb. 27 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 Jefferson Lab Hosts High School Science Bowl on Feb. 27 Please note the date change from Feb. 6 to Saturday, Feb. 27 NEWPORT NEWS, Va., Feb. 5, 2010 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 27, to compete in the Virginia Regional High School Science Bowl. Teams from 20 high schools from across the region are registered for this year's academic competition. The National Science Bowl tournament - sponsored by

  19. Jefferson Lab Hosts High School Science Bowl on Feb. 4 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Jefferson Lab Hosts High School Science Bowl on Feb. 4 NEWPORT NEWS, Va., Jan. 31. , 2012 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 4, to compete in the Virginia Regional High School Science Bowl. Teams from 22 high schools from across the region are registered for this year's academic competition. The National Science Bowl tournament - sponsored by the U.S. Department of Energy since 1991 - is an annual

  20. Jefferson Lab Hosts High School Science Bowl on Feb. 5 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Jefferson Lab Hosts High School Science Bowl on Feb. 5 NEWPORT NEWS, Va., Feb. 2, 2011 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 5, to compete in the Virginia Regional High School Science Bowl. Teams from 23 high schools from across the region are registered for this year's academic competition. The National Science Bowl tournament - sponsored by the U.S. Department of Energy since 1991 - is an annual

  1. West Windsor-Plainsboro High School South wins regional Science Bowl at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL | Princeton Plasma Physics Lab West Windsor-Plainsboro High School South wins regional Science Bowl at PPPL A dramatic ending to High School Bowl sends local team to nationals By Jeanne Jackson DeVoe February 25, 2013 Tweet Widget Google Plus One Share on Facebook Next stop Washington DC: Members of the West Windsor-Plainsboro High School South team pose after winning the New Jersey Regional Science Bowl at the Princeton Plasma Physics Laboratory on Feb. 23. From left to right: Coach

  2. High School Girls Honored for Math, Science Achievements at Sandia National Laboratory

    Broader source: Energy.gov [DOE]

    Now in its 23rd year, the Math and Science Awards program is sponsored by the Sandia Women’s Connection. This year’s event honored more students, with the addition of four high schools in Oakland, Calif., and included recognition of the students by federal and state officials. Teachers from 15 high schools in Livermore, Dublin, Pleasanton, Tracy, Manteca and Oakland nominated high school juniors whom they deemed outstanding in math and science, so the students can include the award on college and scholarship applications.

  3. Poudre High School From Fort Collins, Colorado Wins U.S. Department of Energy National Science Bowl®

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - Poudre High School from Fort Collins, Colorado won the 2007 U.S. Department of Energy (DOE) National Science Bowl® for high school students today at the National 4-H Youth...

  4. High School Students Engage EM Program, Teach Classmates about Nuclear Cleanup

    Broader source: Energy.gov [DOE]

    LAS VEGAS – Two high school students are aspiring to educate their classmates on the Nevada National Security Site’s (NNSS) environmental cleanup program after surveying them to gauge their knowledge of it.

  5. High School Students Begin Battle for Trip to the National Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    who will showcase their science and math knowledge at the Colorado Science Bowl on ... 20 years ago as a way to encourage high school students to explore math and science. ...

  6. La Cueva High School team takes top award in 23rd New Mexico...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    La Cueva High School team takes top award in 23rd New Mexico Supercomputing Challenge The team, Ari Echt-Wilson, Eli Echt-Wilson, and Justin Sanchez also won the CHECS Teamwork and ...

  7. Thomas Jefferson High School Wins Virginia Science Bowl for 7th...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWPORT NEWS, Va., Feb. 20, 2008 - The Thomas Jefferson High School for Science and Technology team pummeled its competition at the Virginia Regional Science Bowl held Feb. 2 at...

  8. D.C. Middle and High School Students Get a Chance to Experience the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Science Bowl Competition Setting | Department of Energy D.C. Middle and High School Students Get a Chance to Experience the Regional Science Bowl Competition Setting D.C. Middle and High School Students Get a Chance to Experience the Regional Science Bowl Competition Setting March 26, 2014 - 1:07pm Addthis Annie Whatley Annie Whatley Deputy Director, Office of Minority Education and Community Development Have you ever heard of the Washington, D.C. regional science bowl competition?

  9. Manzano High School student wins top award in 22nd New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge Manzano High School student wins Supercomputing Challenge Manzano student wins top award in 22nd New Mexico Supercomputing Challenge Jordan Medlock wins for his computer algorithm. April 24, 2012 Jordan Medlock Jordan Medlock Contact Steve Sandoval Communications Office (505) 665-9206 Email LOS ALAMOS, New Mexico, April 24, 2012-Jordan Medlock of Albuquerque's Manzano High School took the top prize in the 22nd New Mexico Supercomputing Challenge for his computer

  10. High School Students Gear Up for Battle of the Brains - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL High School Students Gear Up for Battle of the Brains February 3, 2003 Golden, CO. - In what part of the chloroplast is carbon fixed during the Calvin cycle? Yellow fever is transmitted by what genus of mosquito? High school students from across Colorado will face such questions as they test their mental agility in the U.S. Department of Energy's (DOE) Colorado Science Bowl on Feb. 8 at the Colorado School of Mines in Golden. Thirty-nine teams from across the state will compete in this

  11. High School Students Gear Up for Battle of the Brains - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL High School Students Gear Up for Battle of the Brains January 30, 2004 Golden, Colo. - The Andes Mountains of South America were formed at what kind of margin? How many prime numbers are there between 30 and 60? High school students from across Colorado will face such questions as they test their mental agility in the U.S. Department of Energy's (DOE) Colorado Science Bowl on Feb. 7 at the Colorado School of Mines in Golden. Forty teams will compete in this rapid-fire

  12. NREL: News - High School Students Gear Up for Battle of the Brains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Students Gear Up for Battle of the Brains Golden, Colo., Feb. 05, 2002 What does URL stand for? What is the term for the movement of minerals and chemical compounds within a plant? High school students from across Colorado will face such questions as they test their mental agility in the U.S. Department of Energy's (DOE) Colorado Science Bowl on Feb. 9 at the Colorado School of Mines in Golden. Forty student teams from across the state will compete in this rapid-fire

  13. High School Girls Honored for Math, Science Achievements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School Girls Honored for Math, Science Achievements - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  14. High School Science Bowl Coaching Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Coaching Information January 23, 2016 Online team registration opens October 1 - 11:00 AM (CST) There is a 40-team limit for this event so don't delay. Schools whose applications are received after the roster is filled will be placed on a waiting list. Hints, tips and tricks: Registration opens October 1, 11:00 AM. Any coach or team data entered into the system PRIOR to the October 1 launch will be deleted. Plan ahead! Form your team and gather the following information from each

  15. La Cueva High School team takes top award in 24th New Mexico Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge 24th New Mexico Supercomputing Challenge La Cueva High School team takes top award in 24th New Mexico Supercomputing Challenge Eli Echt-Wilson and Albert Zuo from La Cueva High in Albuquerque won the top award at the 24th New Mexico Supercomputing Challenge. April 22, 2014 Albert Zuo, left, and Eli Echt-Wilson of Albuquerque La Cueva High School with their poster. They won the top award at the 24th New Mexico Supercomputing Challenge at Los Alamos National Laboratory. Albert Zuo,

  16. High School Students Gear Up for Battle of the Brains - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL High School Students Gear Up for Battle of the Brains February 6, 2006 Golden, Colo. - The next generation of scientists, mathematicians and engineers will test their mental agility in the U.S. Department of Energy's (DOE) Colorado Science Bowl on Feb. 11 at the Colorado School of Mines in Golden. Forty teams from across Colorado will compete in this rapid-fire question-and-answer tournament, which focuses on physics, math, biology, astronomy, chemistry, computers, general science and

  17. High School Academic Competition - Double Elimination | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Double Elimination National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building

  18. High School Academic Competition - Double Elimination | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Double Elimination National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building

  19. High School Academic Competition - Round Robin | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Round Robin National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000

  20. West Windsor-Plainsboro High School South wins regional Science Bowl at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL | Princeton Plasma Physics Lab West Windsor-Plainsboro High School South wins regional Science Bowl at PPPL By Jeanne Jackson DeVoe February 25, 2013 Tweet Widget Google Plus One Share on Facebook Next stop Washington DC: Members of the West Windsor-Plainsboro High School South team pose after winning the New Jersey Regional Science Bowl at the Princeton Plasma Physics Laboratory on Feb. 23. From left to right: Coach Sunila Sharma, Arnav Sood, Chaitanya Asawa, Team Captain Alexander

  1. Secretary Chu Announces Middle and High School Finalists Set to Compete in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the 2012 National Science Bowl in Washington, D.C. | Department of Energy Middle and High School Finalists Set to Compete in the 2012 National Science Bowl in Washington, D.C. Secretary Chu Announces Middle and High School Finalists Set to Compete in the 2012 National Science Bowl in Washington, D.C. April 12, 2012 - 2:12pm Addthis Washington D.C. - Demonstrating the Obama Administration's commitment to improving the participation and performance of America's students in science, technology,

  2. Discussing spent nuclear fuel in high school classrooms: addressing public fears through early education

    SciTech Connect (OSTI)

    Winkel, S.; Sullivan, J.; Jones, S.; Sullivan, K.; Hyland, B.; Pencer, J.; Colton, A.

    2013-07-01

    The Inreach program combines the Deep River Science Academy (DRSA) 'learning through research' approach with state of the art communication technology to bring scientific research to high school classrooms. The Inreach program follows the DRSA teaching model where a university student tutor works on a research project with scientific staff at AECL's Chalk River Laboratories. Participating high school classes are located across Canada. The high school students learn about the ongoing research activities via weekly web conferences. In order to engage the students and encourage participation in the conferences, themed exercises linked to the research project are provided to the students. The DRSA's Inreach program uses a cost-effective internet technology to reach a wide audience, in an interactive setting, without anyone leaving their desks or offices. An example Inreach research project is presented here: an investigation of the potential of the Canadian supercritical water cooled reactor (SCWR) concept to burn transuranic elements (Np, Pu, Am, Cm) to reduce the impact of used nuclear fuel. During this project a university student worked with AECL (Atomic Energy of Canada Limited) researchers on technical aspects of the project, and high school students followed their progress and learned about the composition, hazards, and disposition options for used nuclear fuel. Previous projects included the effects of tritium on cellular viability and neutron diffraction measurement of residual stresses in automobile engines.

  3. DOE New Jersey Regional High School Science Bowl *NO LECTURE* | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab 1, 2015, 9:00am to 4:00pm Science Education Lab-wide DOE New Jersey Regional High School Science Bowl *NO LECTURE* Contact Information Coordinator(s): Deedee Ortiz-Arias, Science Education Department Program Administraor dortiz@ppl.gov Host(s): Dr. Andrew Zwicker, Science Education Department Head azwicker@pppl.gov

  4. DOE New Jersey Regional High School Science Bowl! NO SCIENCE ON SATURDAY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LECTURE | Princeton Plasma Physics Lab 2, 2014 (All day) Science On Saturday DOE New Jersey Regional High School Science Bowl! NO SCIENCE ON SATURDAY LECTURE DUE TO THE NEW JERSEY REGIONAL SCIENCE BOWL COMPETITION, THERE WILL BE NO SCIENCE ON SATURDAY LECTURE TODAY.

  5. About 900 High School Students, Educators Attend Third Annual DOE Science Alliance

    Broader source: Energy.gov [DOE]

    PIKETON, OH – The U.S. Department of Energy (DOE) welcomed about 900 high school juniors and educators for its third annual Science Alliance, a science fair that took place September 25-26, 2012, at the Portsmouth Gaseous Diffusion Plant.

  6. Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of Energy National Science Bowl®

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Santa Monica High School from Santa Monica, Calif. is the winner of the 2008 DOE National Science Bowl®.  Santa Monica High...

  7. Calloway Middle School Honored at DOE National Science Bowl, Lone Oak Competes Among High Schools

    Broader source: Energy.gov [DOE]

    PADUCAH, KY – Calloway County Middle School won the Civility Award and was named one of the top six battery-powered model car design teams at the Department of Energy’s National Science Bowl in Washington, D.C.

  8. Thomas Jefferson High School Wins Virginia Science Bowl for 7th Year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running | Jefferson Lab Wins Virginia Science Bowl for 7th Year Running NEWPORT NEWS, Va., Feb. 20, 2008 - The Thomas Jefferson High School for Science and Technology team pummeled its competition at the Virginia Regional Science Bowl held Feb. 2 at Jefferson Lab. The team finished the day winning all of its matches. This marked the seventh time since Jefferson Lab has been hosting this annual event that the Thomas Jefferson team, from Alexandria, took the regional title. Eighteen teams

  9. La Vida Robot - High School Engineering Program Combats Engineering Brain Drain

    ScienceCinema (OSTI)

    Cameron, Allan; Fredi, Lajvardi

    2009-09-01

    Carl Hayden High School has built an impressive reputation with its robotics club. At a time when interest in science, math and engineering is declining, the Falcon Robotics club has young people fired up about engineering. Their program in underwater robots (MATE) and FIRST robotics is becoming a national model, not for building robots, but for building engineers. Teachers Fredi Lajvardi and Allan Cameron will present their story (How kids 'from the mean streets of Phoenix took on the best from M.I.T. in the national underwater bot championship' - Wired Magazine, April 2005) and how every student needs the opportunity to 'do real engineering.'

  10. Topics in nuclear and radiochemistry for college curricula and high school science programs

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

  11. Spearfish High School, Sparfish, South Dakota solar energy system performance evaluation, September 1980-June 1981

    SciTech Connect (OSTI)

    Howard, B.D.

    1981-01-01

    Spearfish High School in South Dakota contains 43,000 square feet of conditioned space. Its active solar energy system is designed to supply 57% of the space heating and 50% of the hot water demand. The system is equipped with 8034 square feet of flat plate collectors, 4017 cubic feet of rock bin sensible heat storage, and auxiliary equipment including 8 heat pumps, 6 of which are solar supplied and instrumented, air conditioning units, and natural-gas-fired boilers. Performance data are given for the system including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor and solar system coefficient of performance. Insolation, solar energy utilization and operation data are also given. The performance of the collector, storage, domestic hot water and space heating subsystems, the operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, long-term weather data, sensor technology, and typical monthly data. (LEW)

  12. La Cueva High School team takes top award in 24th New Mexico...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...ht-Wilson and Albert Zuo from La Cueva High in Albuquerque won the top award at the 24th New Mexico Supercomputing Challenge. April 22, 2014 Albert Zuo, left, and Eli Echt-Wilson ...

  13. High PRF high current switch

    DOE Patents [OSTI]

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  14. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect (OSTI)

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  15. Energy Design Guidelines for High Performance Schools: Hot and Humid Climates

    SciTech Connect (OSTI)

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

  16. Energy Design Guidelines for High Performance Schools: Cool and Humid Climates

    SciTech Connect (OSTI)

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

  17. Energy Design Guidelines for High Performance Schools: Cool and Dry Climates

    SciTech Connect (OSTI)

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

  18. Energy Design Guidelines for High Performance Schools: Temperate and Mixed Climates

    SciTech Connect (OSTI)

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

  19. Energy Design Guidelines for High Performance Schools: Hot and Dry Climates

    SciTech Connect (OSTI)

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

  20. Energy Design Guidelines for High Performance Schools: Cold and Humid Climates

    SciTech Connect (OSTI)

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

  1. Energy Design Guidelines for High Performance Schools: Temperate and Humid Climates

    SciTech Connect (OSTI)

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

  2. Alternative Fuel School Buses Earn High Marks: Reprint from Alternative Fuel News, Vol. 5, No. 3

    SciTech Connect (OSTI)

    Not Available

    2002-11-01

    A two-page article on school buses that run on alternative fuels including biodiesel and compressed natural gas. Reprinted from Alternative Fuel News, published by the Clean Cities Program of DOE.

  3. Energy Design Guidelines for High Performance Schools: Hot and Humid Climates

    Broader source: Energy.gov [DOE]

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

  4. High e

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e ne rgy data s am ple ● NuMI beam events provide an useful calibration sample ● Collected over 70K candidates before shutdown The highest energy events are prim arily from kaon decays. Two sam ples at high energy provide normalization and shape inform ation for kaon backgrounds to oscillation analysis: ● ν e events passing oscillation event selection cuts ● ν µ induced CCQE, CCπ+events Reconstructed neutrino energy EνQE(GeV) ν from other particles ν from pions ν from Kaons -

  5. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Energy Physics science-innovationassetsimagesicon-science.jpg High Energy Physics Investigating the field of high energy physics through experiments that strengthen our ...

  6. High efficiency and high concentration in photovoltaics

    SciTech Connect (OSTI)

    Yamaguchi, Masafumi; Luque, A.

    1999-10-01

    In this paper, the authors present the state-of-the-art of multijunction solar cells and the future prospects of this technology. Their use in terrestrial applications will likely be for concentrators operating at very high concentrations. Some trends are also discussed and the authors present a cost calculation showing that highly efficient cells under very high concentration would be able to produce electricity at costs competitive with electricity generation costs for some utilities.

  7. High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC INL Logo Home High-Performance Computing INL's high-performance computing center provides general use scientific computing capabilities to support the lab's efforts in advanced...

  8. High pressure, high current, low inductance, high reliability sealed terminals

    DOE Patents [OSTI]

    Hsu, John S. [Oak Ridge, TN; McKeever, John W. [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  9. High Temperature, High Pressure Devices for Zonal Isolation in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, ...

  10. High strength, high ductility low carbon steel

    DOE Patents [OSTI]

    Koo, Jayoung; Thomas, Gareth

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  11. High strength and high toughness steel

    DOE Patents [OSTI]

    Parker, Earl R.; Zackay, Victor F.

    1979-01-01

    A structural steel which possess both high strength and high toughness and has particular application of cryogenic uses. The steel is produced by the utilization of thermally induced phase transformation following heating in a three-phase field in iron-rich alloys of the Fe-Ni-Ti system, with a preferred composition of 12% nickel, 0.5% titanium, the remainder being iron.

  12. High Explosives Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration High Explosives Application Facility A Livermore scientist uses a laser spectroscopic method with a diamond anvil DOE/NNSA has identified LLNL's High Explosives Applications Facility (HEAF) as the complex-wide "Center of Excellence" for High-Explosives Research and Development. In this capacity, HEAF is a source of subject matter expertise for high explosives and other energetic materials. Its mission is to provide this expertise to serve multiple government

  13. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, Carl A. (Albuquerque, NM)

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  14. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  15. High performance systems

    SciTech Connect (OSTI)

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  16. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  17. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  18. Durham County- High-Performance Building Policy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Durham County adopted a resolution in October 2008 that requires new non-school public buildings and facilities to meet high-performance standards. New construction of public buildings and...

  19. High Tech Halloween

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Tech Halloween High Tech Halloween WHEN: Oct 30, 2015 4:00 PM - 6:30 PM WHERE: Bradbury Science Museum 1350 Central Avenue, Los Alamos, New Mexico, 87544 USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login High Tech Halloween Event Description High-Tech Halloween is the Bradbury Science Museum's contribution to Downtown Los Alamos' annual Trick-or-Treat on MainStreet event taking place the Friday before Halloween. At this year's High-Tech Halloween, you

  20. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...

  1. High-pressure, high-temperature plastic deformation of sintered...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-pressure, high-temperature plastic deformation of sintered diamonds Citation Details In-Document Search Title: High-pressure, high-temperature plastic ...

  2. High pressure and high temperature apparatus

    DOE Patents [OSTI]

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  3. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOE Patents [OSTI]

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  4. High output lamp with high brightness

    DOE Patents [OSTI]

    Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.

    2002-01-01

    An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

  5. Thomas Jefferson High Takes 2016 Virginia Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Jefferson High Takes 2016 Virginia Science Bowl Thomas Jefferson High School for Science & Technology Takes 2016 Virginia Science Bowl NEWPORT NEWS, Va., February 9, 2016 -- Eighteen teams arrived at Jefferson Lab bright and early and ready to compete in the Virginia Regional High School Science Bowl on Feb. 6. At the end of the day, Thomas Jefferson High School for Science and Technology (TJHSST), Alexandria, prevailed and will represent Virginia at the Department of Energy's

  6. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  7. High voltage coaxial switch

    DOE Patents [OSTI]

    Rink, John P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.

  8. High voltage coaxial switch

    DOE Patents [OSTI]

    Rink, J.P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.

  9. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  10. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  11. high renewable energy penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high renewable energy penetration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  12. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and bioscience capabiities. Occupational Medicine will become a High Performance Sustainable Building in 2013. On the former County landfill, a photovoltaic array field...

  13. High power, high frequency, vacuum flange

    DOE Patents [OSTI]

    Felker, Brian (Livermore, CA); McDaniel, Michael R. (Manteca, CA)

    1993-01-01

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counterbores surrounding the waveguide tubes. When the sections are bolted together the counterbores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  14. High power, high frequency, vacuum flange

    DOE Patents [OSTI]

    Felker, B.; McDaniel, M.R.

    1993-03-23

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counter bores surrounding the waveguide tubes. When the sections are bolted together the counter bores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  15. 2015 High School Team Photos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  16. High coking value pitch

    SciTech Connect (OSTI)

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  17. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  18. High density photovoltaic

    SciTech Connect (OSTI)

    Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S.

    1997-10-14

    Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

  19. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  20. High pressure furnace

    DOE Patents [OSTI]

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  1. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  2. High pressure furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  3. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  4. High-Speed Photography

    SciTech Connect (OSTI)

    Paisley, D.L.; Schelev, M.Y.

    1998-08-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}

  5. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide highlights the DOE O 413.3B drivers for incorporating high performance sustainable building (HPSB) principles into Critical Decisions 1 through 4 and provides guidance for implementing the Order's HPSB requirements.

  6. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements of DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets. Supersedes DOE G 413.3-6.

  7. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  8. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  9. High conductivity composite metal

    DOE Patents [OSTI]

    Zhou, Ruoyi; Smith, James L.; Embury, John David

    1998-01-01

    Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.

  10. High conductivity composite metal

    DOE Patents [OSTI]

    Zhou, R.; Smith, J.L.; Embury, J.D.

    1998-01-06

    Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.

  11. HIGH TEMPERATURE THERMOCOUPLE

    DOE Patents [OSTI]

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  12. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible the exploration of matter at extremely high energy density in the laboratory. Exciting new experimental regimes are being realized by exploiting the scientific capabilities of existing ICF Office facilities, as well as the relevant Department of Defense (DoD) and university

  13. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Goal 3: High Performance Sustainable Buildings Maintaining the conditions of a building improves the health of not only the surrounding ecosystems, but also the well-being of its occupants. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL The Radiological Laboratory

  14. High Temperature Aqueous Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accurate knowledge of aqueous chemistry at high temperatures and pressures is important in many applications including nuclear waste disposal and energy extraction. Sandia's Defense Waste Management Programs is equipped with a state-of-the-art hydrothermal experimental system that allows us to obtain high quality kinetic and equilibrium data at temperatures and pressures of interest up to 600 o C and 1,000 bars (100 MPa). This state-of-the-art hydrothermal experimental system includes the

  15. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  16. High Burnup Effects Program

    SciTech Connect (OSTI)

    Barner, J.O.; Cunningham, M.E.; Freshley, M.D.; Lanning, D.D.

    1990-04-01

    This is the final report of the High Burnup Effects Program (HBEP). It has been prepared to present a summary, with conclusions, of the HBEP. The HBEP was an international, group-sponsored research program managed by Battelle, Pacific Northwest Laboratories (BNW). The principal objective of the HBEP was to obtain well-characterized data related to fission gas release (FGR) for light water reactor (LWR) fuel irradiated to high burnup levels. The HBEP was organized into three tasks as follows: Task 1 -- high burnup effects evaluations; Task 2 -- fission gas sampling; and Task 3 -- parameter effects study. During the course of the HBEP, a program that extended over 10 years, 82 fuel rods from a variety of sources were characterized, irradiated, and then examined in detail after irradiation. The study of fission gas release at high burnup levels was the principal objective of the program and it may be concluded that no significant enhancement of fission gas release at high burnup levels was observed for the examined rods. The rim effect, an as yet unquantified contributor to athermal fission gas release, was concluded to be the one truly high-burnup effect. Though burnup enhancement of fission gas release was observed to be low, a full understanding of the rim region and rim effect has not yet emerged and this may be a potential area of further research. 25 refs., 23 figs., 4 tabs.

  17. High-Temperature-High-Volume Lifting for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy ...

  18. High surface area, high permeability carbon monoliths

    SciTech Connect (OSTI)

    Lagasse, R.R.; Schroeder, J.L. [Sandia National Labs., Albuquerque, NM (United States). Organic Materials Processing Dept.

    1994-12-31

    The goal of this work is to prepare carbon monoliths having precisely tailored pore size distribution. Prior studies have demonstrated that poly(acrylonitrile) can be processed into a precursor having tailored macropore structure. Since the macropores were preserved during pyrolysis, this synthetic process provided a route to porous carbon having macropores with size =0.1 to 10{mu}m. No micropores of size <2 nm could be detected in the carbon, however, by nitrogen adsorption. In the present work, the authors have processed a different polymer, poly(vinylidene chloride) into a macroporous precursor, Pyrolysis produced carbon monoliths having macropores derived from the polymer precursor as well as extensive microporosity produced during the pyrolysis of the polymer. One of these carbons had BET surface area of 1,050 m{sup 2}/g and about 1.2 cc/g total pore volume, with about 1/3 of the total pore volume in micropores and the remainder in 1{mu}m macropores. No mesopores in the intermediate size range could be detected by nitrogen adsorption. Carbon materials having high surface area as well as micron size pores have potential applications as electrodes for double layer supercapacitors containing liquid electrolyte, or as efficient media for performing chemical separations.

  19. Computing Sciences Staff Help East Bay High Schoolers Upgrade...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IT fields, the Laney College Computer Information Systems Department offered its Upgrade: Computer Science Program. Thirty-eight students from 10 East Bay high schools registered...

  20. High-Pressure and High-Temperature Powder Diffraction (Journal...

    Office of Scientific and Technical Information (OSTI)

    High-Pressure and High-Temperature Powder Diffraction Citation Details In-Document Search Title: High-Pressure and High-Temperature Powder Diffraction Authors: Fei, Yingwei ; Wang, ...

  1. Sandia Energy - High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Computing Home Energy Research Advanced Scientific Computing Research (ASCR) High Performance Computing High Performance Computingcwdd2015-03-18T21:41:24+00:00...

  2. High temperature interface superconductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  3. High brightness electron accelerator

    DOE Patents [OSTI]

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  4. HIGH POWER PULSED OSCILLATOR

    DOE Patents [OSTI]

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  5. High-energy detector

    DOE Patents [OSTI]

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  6. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  7. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  8. High Availability Electronics Standards

    SciTech Connect (OSTI)

    Larsen, R.S.; /SLAC

    2006-12-13

    Availability modeling of the proposed International Linear Collider (ILC) predicts unacceptably low uptime with current electronics systems designs. High Availability (HA) analysis is being used as a guideline for all major machine systems including sources, utilities, cryogenics, magnets, power supplies, instrumentation and controls. R&D teams are seeking to achieve total machine high availability with nominal impact on system cost. The focus of this paper is the investigation of commercial standard HA architectures and packaging for Accelerator Controls and Instrumentation. Application of HA design principles to power systems and detector instrumentation are also discussed.

  9. High strength alloys

    DOE Patents [OSTI]

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  10. High strength alloys

    DOE Patents [OSTI]

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  11. High Impact Technology Hub

    Broader source: Energy.gov [DOE]

    The High Impact Technology Hub is a one stop shop for information associated with technology demonstrations in occupied, operational buildings. Resources posted to Hub should accelerate the selection and evaluation of technology demonstration projects and enable transparency into DOEs market stimulation and tech to market activities.

  12. High Power Cryogenic Targets

    SciTech Connect (OSTI)

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  13. CSTI high capacity power

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  14. Highly oxidized superconductors

    DOE Patents [OSTI]

    Morris, Donald E.

    1994-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  15. Highly oxidized superconductors

    DOE Patents [OSTI]

    Morris, D.E.

    1994-09-20

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known synthesis in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

  16. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-20

    The guide supports DOE O 413.3A and provides useful information on the incorporation of high performance sustainable building principles into building-related General Plant Projects and Institutional General Plant Projects at DOE sites. Canceled by DOE G 413.3-6A. Does not cancel other directives.

  17. High expression Zymomonas promoters

    DOE Patents [OSTI]

    Viitanen, Paul V.; Tao, Luan; Zhang, Yuying; Caimi, Perry G.; McCole, Laura : Zhang, Min; Chou, Yat-Chen; McCutchen, Carol M.; Franden, Mary Ann

    2011-08-02

    Identified are mutants of the promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene, which direct improved expression levels of operably linked heterologous nucleic acids. These are high expression promoters useful for expression of chimeric genes in Zymomonas, Zymobacter, and other related bacteria.

  18. High speed door assembly

    DOE Patents [OSTI]

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  19. High speed door assembly

    DOE Patents [OSTI]

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  20. High Temperature ESP Monitoring

    Broader source: Energy.gov [DOE]

    The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 °C for measuring motor temperature; pump discharge pressure; and formation temperature and pressure.

  1. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Arthur J. Ragauskas Lucian A. Lucia Hasan Jameel

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

  2. High-Deductible Health Plan (HDHP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration High schools compete for Nevada Science Bowl title Monday, February 15, 2016 - 3:37pm NNSA Blog The winner of the 2016 Nevada Science Bowl was the team from Reno's Davidson Academy of Nevada. From left: Matthew Bauer, Rinik Kumar, Haydn Bradstreet, Paolo Adajar, Eric Liu, and Coach Brett Guisti. While sports fans across the U.S. prepared for last weekend's game day, 160 Nevada high school students went head-to-head in a different kind of competition. Sponsored and

  3. High voltage pulse generator

    DOE Patents [OSTI]

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  4. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

  5. High-performance steels

    SciTech Connect (OSTI)

    Barsom, J.M.

    1996-03-01

    Steel is the material of choice in structures such as storage tanks, gas and oil distribution pipelines, high-rise buildings, and bridges because of its strength, ductility, and fracture toughness, as well as its repairability and recyclability. Furthermore, these properties are continually being improved via advances in steelmaking, casting, rolling, and chemistry. Developments in steelmaking have led to alloys having low sulfur, sulfide shape control, and low hydrogen. They provide reduced chemical segregation, higher fracture toughness, better through-thickness and weld heat-affected zone properties, and lower susceptibility to hydrogen cracking. Processing has moved beyond traditional practices to designed combinations of controlled rolling and cooling known as thermomechanical control processes (TMCP). In fact, chemical composition control and TMCP now enable such precise adjustment of final properties that these alloys are now known as high-performance steels (HPS), engineered materials having properties tailored for specific applications.

  6. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  7. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  8. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  9. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  10. HIGH VOLTAGE GENERATOR

    DOE Patents [OSTI]

    Schwemin, A.J.

    1959-03-17

    A generator is presented for producing relatively large currents at high voltages. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  11. High-Tc Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Donghui Lu, Kyle Shen, and Zhi-Xun Shen Departments of Applied Physics, Physics, and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA 94305 High-temperature superconductors (HTSC's), following their remarkable discovery in 1986, continue to be at the center stage of modern condensed matter physics. Despite great efforts from both theoretical and experimental sides, the mechanism of HTSC still remains elusive. One of the most peculiar aspects of HTSC's is that their

  12. High-speed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    speed three-wave polarimeter-interferometer diagnostic for Madison symmetric torus B. H. Deng, D. L. Brower, and W. X. Ding Electrical Engineering Department, University of California, Los Angeles, California 90095 M. D. Wyman, B. E. Chapman, and J. S. Sarff Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 ͑Received 5 May 2006; presented on 10 May 2006; accepted 11 June 2006; published online 27 September 2006͒ A high-speed three-wave polarimeter-interferometer

  13. High-␤,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    speed CARIBU and Other Behemoths High-speed CARIBU and Other Behemoths April 8, 2011 - 12:11pm Addthis Argonne physicist Richard Pardo stands next to CARIBU | Photo Courtesy of ANL's Flickr page. Argonne physicist Richard Pardo stands next to CARIBU | Photo Courtesy of ANL's Flickr page. Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) Question: Why did the caribou cross the road, at 76 million miles per hour? Answer: To catch up with the chicken. Visitors to the

  14. high-power LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-power LEDs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  15. High current ion source

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805); Galvin, James E. (2 Commodore Dr. #276, Emeryville, CA 94608)

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  16. High Performance Window Attachments

    Energy Savers [EERE]

    High Performance Window Attachments D. Charlie Curcija Lawrence Berkeley National Laboratory dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make improvements in Window systems U-Factors, SHGC and daylighting utilization * Increase awareness of benefits from energy efficient window attachments Problem Statement: * A wide range of residential window attachments are available, but

  17. High efficiency gas burner

    DOE Patents [OSTI]

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  18. High Voltage Connector

    SciTech Connect (OSTI)

    Kurita, C.H.; /Fermilab

    1987-03-06

    The originally designed high voltage connectors were to be made of brass. However, if treated like a Bellevile spring with the initially given dimensions, the stresses of the connector when crimped were calculated to be much higher than the yield stress of brass. Since the flange and outer diameters of the connector are to remain small, it was necessary to alter the other dimensions and choice of material in order to bring down the stresses applied to the connector.

  19. High voltage pulse conditioning

    DOE Patents [OSTI]

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  20. High energy physics

    SciTech Connect (OSTI)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  1. HIGH VOLTAGE ION SOURCE

    DOE Patents [OSTI]

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  2. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  3. High pressure ceramic joint

    DOE Patents [OSTI]

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  4. High pressure ceramic joint

    DOE Patents [OSTI]

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  5. High Energy Density Microwaves

    SciTech Connect (OSTI)

    Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  6. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect (OSTI)

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.

  7. High Energy QCD

    SciTech Connect (OSTI)

    Yuri Kovchegov

    2012-05-31

    The project significantly advanced our understanding of the theory of strong interactions known as quantum chromodynamics (QCD) in high energy collisions of elementary particles and nuclei. QCD is one of the four fundamental forces of nature, but is understood quite poorly due to the complexity of strong interactions. This project advanced our understanding of QCD in the very high energy collisions of protons and nuclei, where densities of quarks and gluons inside the colliding particles are so high (due to high energy) that complicated nonlinear interactions between quarks and gluons become important. This regime is known as gluon (or parton) saturation. The result of the project is a significant improvement of our understanding of the physics of gluon saturation: important (running coupling) corrections to the existing description of the process (the so-called Balitsky-Kovchegov equation) have been calculated, placing the BK equation in good agreement with the experimental data on deep inelastic scattering (DIS), a process where an electron is collided with the proton to probe the proton's internal structure. Corresponding cross section for quark and gluon production in DIS and nuclear collisions have been calculated and corrected correspondingly, resulting in new and interesting predictions for the physics to be probed in heavy ion collisions at the Large Hadron Collider (LHC). The dense gluon systems play an important role in collisions of ultrarelativistic large nuclei, which are performed in order to create a plasma of quarks and gluons (QGP). An important question in the field is how exactly this QGP is produced in a collision of two heavy ions. The conclusion of this project is that QGP production happens due to strong coupling effects between quarks and gluons. This made theoretical description of QGP production only possible using the methods emerging from string theory. Using these methods QGP production was well understood as a result of this project. The project was mainly accomplished by analytic calculations, with occasional use of personal computers and a supercomputer to perform numerical calculations. As such it is very economic and technically effective. The benefit to public is by broadening our understanding of fundamental physics. Strong interactions are responsible for about 98$\\%$ of the visible mass in the Universe, and their understanding is vital both for understanding how the Universe works and for which physics lies beyond the known interactions of Standard Model of particle physics.

  8. High temperature detonator

    DOE Patents [OSTI]

    Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  9. Theoretical High Energy Physics

    SciTech Connect (OSTI)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  10. High power microwave generator

    DOE Patents [OSTI]

    Minich, Roger W. (Patterson, CA)

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  11. High-nitrogen explosives

    SciTech Connect (OSTI)

    Naud, D.; Hiskey, M. A.; Kramer, J. F.; Bishop, R. L.; Harry, H. H.; Son, S. F.; Sullivan, G. K.

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAzF is equal to that of hexanitrostilbene (HNS), yet it has a greater CJ pressure and detonation velocity. In an effort to reduce the critical diameter of TATB without sacrificing its insensitivity, we have studied the explosive performances of TATB mixed with DAAzlF (X-0561) and TATB mixed with DAAF (X-0563).

  12. High flux reactor

    DOE Patents [OSTI]

    Lake, James A.; Heath, Russell L.; Liebenthal, John L.; DeBoisblanc, Deslonde R.; Leyse, Carl F.; Parsons, Kent; Ryskamp, John M.; Wadkins, Robert P.; Harker, Yale D.; Fillmore, Gary N.; Oh, Chang H.

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  13. HIGH PRESSURE DIES

    DOE Patents [OSTI]

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  14. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  15. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  16. High speed flywheel

    DOE Patents [OSTI]

    McGrath, Stephen V.

    1991-01-01

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  17. Response of High-Tc Superconductor Metamaterials to High Intensity...

    Office of Scientific and Technical Information (OSTI)

    Title: Response of High-Tc Superconductor Metamaterials to High Intensity THz Radiation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  18. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  19. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon ape003tolbert2010p.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart ...

  20. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. PDF icon ape03marlino.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module ...

  1. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and ... Testing Overview and Progress of the Battery Testing, Analysis, and Design Activity ...

  2. High throughput optical scanner

    DOE Patents [OSTI]

    Basiji, David A. (Seattle, WA); van den Engh, Gerrit J. (Seattle, WA)

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  3. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  4. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  5. High speed transient sampler

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1995-01-01

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.

  6. High speed transient sampler

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-11-28

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.

  7. High Performance Window Retrofit

    SciTech Connect (OSTI)

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  8. High Performance Buildings Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  9. Middle School Rules, Forms, and Resources | U.S. DOE Office of...

    Office of Science (SC) Website

    Resources National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms,...

  10. High-fidelity Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines Phillip W. Richards Graduate Research Assistant, Daniel Guggenheim School of Aerospace Engineering. Georgia Institute of Technology, Atlanta, Georgia 30332-0150 E-mail: phillip@gatech.edu D. Todd Griffith Principal Member of the Technical Staff. Associate Fellow, AIAA. Sandia National Laboratories, Albuquerque, New Mexico 87123 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia

  11. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

  12. High-Level Waste Inventory

    Office of Environmental Management (EM)

    Analysis of Alternatives for Disposition of the Idaho Calcined High-Level Waste Inventory ... of the Idaho Calcined High-Level Waste Inventory Volume 1- Summary Report April ...

  13. ULTRA HIGH VACUUM VALVE

    DOE Patents [OSTI]

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  14. High voltage feedthrough bushing

    DOE Patents [OSTI]

    Brucker, John P.

    1993-01-01

    A feedthrough bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.

  15. HIGH PRESSURE GAS REGULATOR

    DOE Patents [OSTI]

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  16. HIGH VOLTAGE GENERATOR

    DOE Patents [OSTI]

    Zito, G.V.

    1959-04-21

    This patent relates to high voltage supply circuits adapted for providing operating voltages for GeigerMueller counter tubes, and is especially directed to an arrangement for maintaining uniform voltage under changing conditions of operation. In the usual power supply arrangement for counter tubes the counter voltage is taken from across the power supply output capacitor. If the count rate exceeds the current delivering capaciiy of the capacitor, the capacitor voltage will drop, decreasing the counter voltage. The present invention provides a multivibrator which has its output voltage controlled by a signal proportional to the counting rate. As the counting rate increases beyond the current delivering capacity of the capacitor, the rectified voltage output from the multivibrator is increased to maintain uniform counter voltage.

  17. HIGH SPEED CAMERA

    DOE Patents [OSTI]

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  18. North Carolina School of Science and Mathematics from Durham...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Jose, CA Montgomery Blair High School, Silver Spring, MD Palo Alto High School, Palo ... Takoma Park Middle School, Silver Spring, MD Van Antwerp Middle School, Niskayuna, NY St. ...

  19. High Power Coax Window

    SciTech Connect (OSTI)

    Neubauer, M. L.; Dudas, A.; Sah, R.; Elliott, T. S.; Rimmer, R. A.; Stirbet, M. S.

    2010-05-23

    A su­per­con­duct­ing RF (SRF) power cou­pler ca­pa­ble of han­dling 500 kW CW RF power is re­quired for pre­sent and fu­ture stor­age rings and linacs. There are over 35 cou­pler de­signs for SRF cav­i­ties rang­ing in fre­quen­cy from 325 to 1500 MHz. Cou­pler win­dows vary from cylin­ders to cones to disks, and RF power cou­plers are lim­it­ed by the abil­i­ty of ce­ram­ic win­dows to with­stand the stress­es due to heat­ing and me­chan­i­cal flex­ure. We pro­pose a novel ro­bust co-ax­i­al SRF cou­pler de­sign which uses com­pressed win­dow tech­nol­o­gy. This tech­nol­o­gy will allow the use of high­ly ther­mal­ly con­duc­tive ma­te­ri­als for cryo­genic win­dows. Using com­pressed win­dow tech­niques on disk co-ax­i­al win­dows will make sig­nif­i­cant im­prove­ments in the power han­dling of SRF cou­plers. We pre­sent the bench test re­sults of two win­dow as­sem­blies back to back, as well as in­di­vid­u­al win­dow VSWR in EIA3.125 coax. A vac­u­um test as­sem­bly was made and the win­dows baked out at 155C. The pro­cess­es used to build win­dows is scal­able to larg­er di­am­e­ter coax and to high­er power lev­els.

  20. FSU High Energy Physics

    SciTech Connect (OSTI)

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the non-zero neutrino masses or the overwhelming astrophysical evidence for an invisible form of matter, called dark matter, that has had a marked effect on the evolution of structure in the universe. The report highlights the main, recent, experimental achievements of the experimental group, which include the investigation of properties of the W and Z bosons; the search for new heavy stable charged particles and the search for a proposed property of nature called supersymmetry in proton-proton collisions that yield high energy photons. In addition, we report a few results from a more general search for supersymmetry at the LHC, initiated by the group. The report also highlights the group's significant contributions, both theoretical and experimental, to the 2012 discovery of the Higgs boson and the measurement of its properties.

  1. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  2. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B20 (biodiesel). (5) To further improve the brake thermal efficiency of the engine as integrated into the vehicle. To demonstrate robustness and commercial viability of the HECC engine technology as integrated into the vehicles. The Cummins HECC program supported the Advanced Combustion Engine R&D and Fuels Technology initiatives of the DoE Vehicle Technologies Multi-Year Program Plan (MYPP). In particular, the HECC project goals enabled the DoE Vehicle Technologies Program (VTP) to meet energy-efficiency improvement targets for advanced combustion engines suitable for passenger and commercial vehicles, as well as addressing technology barriers and R&D needs that are common between passenger and commercial vehicle applications of advanced combustion engines.

  3. High power connection system

    DOE Patents [OSTI]

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  4. High Performance Network Monitoring

    SciTech Connect (OSTI)

    Martinez, Jesse E

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  5. High pressure capillary connector

    SciTech Connect (OSTI)

    Renzi, Ronald F.

    2005-08-09

    A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.

  6. High capacity oil burner

    SciTech Connect (OSTI)

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  7. High-efficiency CARM

    SciTech Connect (OSTI)

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B.

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  8. Highly Stable Porous Polymer Networks with Exceptionally High...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities Previous Next List Daqiang Yuan, Weigang Lu, Dan Zhao, Hong-Cai Zhou, Adv. Mater., 23: 3723-3725...

  9. High-Rate, High-Capacity Binder-Free Electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC High-Rate, High-Capacity Binder-Free Electrode Patent: PCT-09-41 Chunmei Ban ...

  10. The high-pressure-high-temperature behavior of bassanite (Journal...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: The high-pressure-high-temperature behavior of bassanite The pressure evolution of bassanite (CaSOsub 4 centerdot 12 Hsub 2O) was ...

  11. High density, high-aspect-ratio precision polyimide nanofilters | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory High density, high-aspect-ratio precision polyimide nanofilters December 1, 2009 Tweet EmailPrint Collaborative users from Creatv MicroTech, Inc. and Los Alamos National Laboratory, working with CNM's Nanofabrication & Devices Group, have demonstrated a novel fabrication process that produces high-porosity polymer nanofilters with smooth, uniform. and straight pores and high aspect ratios. Nanofilters have a wide range of applications for various size-exclusion-based

  12. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal

    Broader source: Energy.gov (indexed) [DOE]

    Wells | Department of Energy High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells PDF icon fabian_ctd_ zonal_isolation_peer2013.pdf More Documents & Publications High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

  13. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

  14. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  15. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  16. APPARATUS FOR REGULATING HIGH VOLTAGE

    DOE Patents [OSTI]

    Morrison, K.G.

    1951-03-20

    This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.

  17. Introduction to High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction to High Performance Computing Introduction to High Performance Computing June 10, 2013 Photo on 7 30 12 at 7.10 AM Downloads Download File Gerber-HPC-2.pdf...

  18. High-Pressure Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  19. High voltage variable diameter insulator

    DOE Patents [OSTI]

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  20. Media Advisory: News Media invited to cover Feb. 10 Virginia Regional High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School Science Bowl at Jefferson Lab; 19 teams competing | Jefferson Lab invited to cover Feb. 10 Virginia Regional High School Science Bowl at Jefferson Lab; 19 teams competing Media Advisory: News Media invited to cover Feb. 10 Virginia Regional High School Science Bowl at Jefferson Lab; 19 teams competing January 30, 2007 The Department of Energy's Jefferson Lab in Newport News, Va., is hosting this year's Virginia Regional High School Science Bowl on Saturday, Feb. 10. Nineteen teams,

  1. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect (OSTI)

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  2. High-Temperature-High-Volume Lifting For Enhanced Geothermal...

    Open Energy Info (EERE)

    include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall...

  3. High Level Waste Management Division High. Level Waste System Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HLW -OVP-98-0037 High Level Waste Management Division High. Level Waste System Plan Revision 9 (U) April 1998 Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U. S. Department of Energy under contract no. DE-AC09-96SR18500 HLW -OVP-98-0037 High Level Waste Management Division High Level Waste System Plan Revision 9 (U) Contributors: A. S. Choi P. Paul F. E. Wise Prepared by: ?1M.J II£) ~ N. R. Davis Approved by: HLW System Integration Manager ll\1-'-ft

  4. High resolution time interval meter

    DOE Patents [OSTI]

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  5. High voltage variable diameter insulator

    DOE Patents [OSTI]

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  6. Software and High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software and High Performance Computing Software and High Performance Computing Providing world-class high performance computing capability that enables unsurpassed solutions to complex problems of strategic national interest Contact thumbnail of Kathleen McDonald Head of Intellectual Property, Business Development Executive Kathleen McDonald Richard P. Feynman Center for Innovation (505) 667-5844 Email Software Computational physics, computer science, applied mathematics, statistics and the

  7. Connecting HPC and High Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC and High Performance Networks for Scientists and Researchers SC15 Austin, Texas November 18, 2015 1 Agenda 2 * Welcome and introductions * BoF Goals * Overview of National Research & Education Networks at work Globally * Discuss needs, challenges for leveraging HPC and high-performance networks * HPC/HTC pre-SC15 ESnet/GEANT/Internet2 survey results overview * Next steps discussion * Closing and Thank You BoF: Connecting HPC and High Performance Networks for Scientists and Researchers

  8. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  9. High Impact Technology Hub- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact Technologies. Technology Highlights preview early results from current technology demonstrations. Case Studies overview...

  10. Thermoelectrics Partnership: High Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles 2011 DOE ...

  11. High Mesa | Open Energy Information

    Open Energy Info (EERE)

    High Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Idaho Power Location...

  12. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  13. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  14. High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    confinement plasmas in the Madison Symmetric Torus reversed-field pinch a... B. E. Chapman, b) A. F. Almagri, J. K. Anderson, T. M. Biewer, P. K. Chattopadhyay, C.-S. Chiang, D. Craig, D. J. Den Hartog, G. Fiksel, C. B. Forest, A. K. Hansen, D. Holly, N. E. Lanier, R. O'Connell, S. C. Prager, J. C. Reardon, J. S. Sarff, and M. D. Wyman Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 D. L. Brower, W. X. Ding, Y. Jiang, and S. D. Terry Department of Electrical

  15. High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    throughput spectrometer for fast localized Doppler measurements D. Craig, a͒ D. J. Den Hartog, D. A. Ennis, S. Gangadhara, and D. Holly The Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, 1150 University Avenue, University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Received 26 June 2006; accepted 27 November 2006; published online 4 January 2007͒ A new custom-built duo spectrometer has been commissioned for fast localized Doppler measurements of plasma ions

  16. High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resolution soft x-ray tomography in the Madison Symmetric Torus P. Franz a) Consorzio RFX-Associazione EURATOM ENEA sulla fusione, Padova, Italy and Istituto Nazionale di Fisica della Materia, Unità di Ricerca di Padova, Italy F. Bonomo, G. Gadani, and L. Marrelli Consorzio RFX-Associazione EURATOM ENEA sulla fusione, Padova, Italy P. Martin and P. Piovesan Consorzio RFX-Associazione EURATOM ENEA sulla fusione, Padova, Italy and Istituto Nazionale di Fisica della Materia, Unità di Ricerca di

  17. high

    Gasoline and Diesel Fuel Update (EIA)

    ... Greece, Iceland, Ireland, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. ...

  18. HIGH

    Gasoline and Diesel Fuel Update (EIA)

    00 Highlights International Oil Markets Prices. We have found little need to adjust our oil price forecast from last month's report, since no evidence of significantly more bullish (or bearish) sentiment on the world oil market has arisen since last month. Our estimate from the December Outlook for the November imported oil cost still looks good at $23.50 and our current estimate for December's price at $24.75 is only slightly above last month's expected December level ($24.50). Thus, annual

  19. high

    Gasoline and Diesel Fuel Update (EIA)

    ... wood, waste, nuclear, hydrogen, sulfur, batteries, chemicals and spent sulfite liquor. e Data for 1998 are estimates. f Balancing item, mainly transmission and distribution losses. ...

  20. high

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... wood, waste, nuclear, hydrogen, sulfur, batteries, chemicals and spent sulfite liquor. e Data for 1999 are estimates. f Balancing item, mainly transmission and distribution losses. ...

  1. Electrokinetically pumped high pressure sprays

    DOE Patents [OSTI]

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2002-01-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  2. Electrokinetically pumped high pressure sprays

    DOE Patents [OSTI]

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2005-11-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  3. High temperature electronic gain device

    DOE Patents [OSTI]

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  4. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  5. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  6. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  7. Programming Abstractions for High Performance and High Productivity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Programming Abstractions for High Performance and High Productivity Start Date: May 11 2016 - 10:30am to 11:30am Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Naoya Maruyama Speaker(s) Title: RIKEN Advanced Institute for Computational Science Host: Pavan Balaji Abstract: Exploiting accelerators such as GPUs is one of the most important challenges in the petascale computing and beyond. In particular, developing

  8. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    SciTech Connect (OSTI)

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  9. High-Performance Nanostructured Coating

    Broader source: Energy.gov [DOE]

    The High-Performance Nanostructured Coating fact sheet details a SunShot project led by a University of California, San Diego research team working to develop a new high-temperature spectrally selective coating for receiver surfaces. These receiver surfaces, used in concentrating solar power systems, rely on high-temperature SSCs to effectively absorb solar energy without emitting much blackbody radiation.The optical properties of the SSC directly determine the efficiency and maximum attainable temperature of solar receivers, which in turn influence the power-conversion efficiency and overall system cost.

  10. JC3 High Impact Assessment Bulletins | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Impact Assessment Bulletins JC3 High

  11. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  12. High-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  13. UESC and High Tech Facilities

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—about the Federal Energy Management Program's (FEMP's) High-Tech Building Utility Energy Service Contract (UESC) Partnership led by the Lawrence Berkeley National Laboratory (LBNL).

  14. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  15. Highly Oriented Crystals in Polythiophenes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading 1 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 3 of 3 Residential

  16. High average power pockels cell

    DOE Patents [OSTI]

    Daly, Thomas P.

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  17. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  18. High resolution, high rate x-ray spectrometer

    DOE Patents [OSTI]

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  19. High-Rate, High-Capacity Binder-Free Electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC High-Rate, High-Capacity Binder-Free Electrode Patent: PCT-09-41 Chunmei Ban Zhuangchun Wu Anne Dillon National Renewable Energy Laboratory PCT: 09-41 Binderfree electrode 2 Outline  What is the technology  Why it is better than other technologies  How far away from market  Technical details  Market analysis National Renewable Energy Laboratory PCT: 09-41 Binderfree electrode 3

  20. Extended length microchannels for high density high throughput electrophoresis systems

    DOE Patents [OSTI]

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  1. Natural Gas Study Guide - Middle School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School Natural Gas Study Guide - Middle School PDF icon Natural Gas Study Guide - Middle School More Documents & Publications Natural Gas Study Guide - High School What is ...

  2. Minnesota Regional Science Bowl for Middle School Students |...

    Office of Science (SC) Website

    Minnesota Regions Minnesota Regional Science Bowl for Middle School Students National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle ...

  3. High-Throughput, High-Precision Hot Testing Tool for High-Brightness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The objective of this project is to develop, characterize, and verify a high-throughput, precision hot test tool towards the target measurement of one MacAdam ellipse, the color ...

  4. 2010 DOE National Science Bowl® Photos - George Walton High...

    Office of Science (SC) Website

    George Walton High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  5. 2010 DOE National Science Bowl® Photos - Montgomery Blair High...

    Office of Science (SC) Website

    Montgomery Blair High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  6. 2010 DOE National Science Bowl® Photos - Vigil I. Grissom High...

    Office of Science (SC) Website

    Vigil I. Grissom High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  7. 2010 DOE National Science Bowl® Photos - Hunter College High...

    Office of Science (SC) Website

    Hunter College High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  8. 2010 DOE National Science Bowl® Photos - North Hollywood High...

    Office of Science (SC) Website

    North Hollywood High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  9. New Membranes for High Temperature Proton Exchange Membrane Fuel Cells Based on Heteropoly Acids

    Broader source: Energy.gov [DOE]

    "Summary of Colorado School of Mines heteropolyacid research presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003 "

  10. Ultra High Temperature | Open Energy Information

    Open Energy Info (EERE)

    Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High...

  11. High Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the High Temperature Materials Laboratory (HTML) User Program High Temperature ... the High Temperature Materials Laboratory (HTML) User Program 2009 DOE Hydrogen Program ...

  12. High resolution digital delay timer

    DOE Patents [OSTI]

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  13. High Burnup Fuel Behavior Modeling

    SciTech Connect (OSTI)

    Jahingir, M.; Rand, R.; Stachowski, R.; Miles, B.; Kusagaya, K.

    2007-07-01

    This paper discusses the development and qualification of the PRIME03 code to address high burnup mechanisms and to improve uranium utilization in current and new reactor designs. Materials properties and behavioral models have been updated from previous thermal-mechanical codes to reflect the effects of burnup on fuel pellet thermal conductivity, Zircaloy creep, fuel pellet relocation, and fission gas release. These new models are based on results of in-pool and post irradiation examination (PIE) of commercial boiling water reactor (BWR) fuel rods at high burnup and results from international experimental programs. The new models incorporated into PRIME03 also address specific high burnup effects associated with formation of pellet rim porosity at high exposure. The PRIME03 code is qualified by comparison of predicted and measured fuel performance parameters for a large number of high, low, and moderate burnup test and commercial reactor rod. The extensive experimental qualification of the PRIME03 prediction capabilities confirms that it is a reliable best-estimate predictor of fuel rod thermal-mechanical performance over a wide range of design and operating conditions. (authors)

  14. Gasification of high ash, high ash fusion temperature bituminous coals

    DOE Patents [OSTI]

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  15. High thermal conductivity connector having high electrical isolation

    DOE Patents [OSTI]

    Nieman, Ralph C. (Downers Grove, IL); Gonczy, John D. (Oak Lawn, IL); Nicol, Thomas H. (St. Charles, IL)

    1995-01-01

    A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

  16. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  17. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  18. High elastic modulus polymer electrolytes

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  19. High Exposure Facility Technical Description

    SciTech Connect (OSTI)

    Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K.; Smith, Alex K.

    2008-02-12

    The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."

  20. High pressure liquid level monitor

    DOE Patents [OSTI]

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  1. INL High Performance Building Strategy

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design (LEED®) Green Building Rating System (LEED 2009). The document employs a two-level approach for high performance building at INL. The first level identifies the requirements of the Guiding Principles for Sustainable New Construction and Major Renovations, and the second level recommends which credits should be met when LEED Gold certification is required.

  2. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  3. High ratio recirculating gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  4. SEAL FOR HIGH SPEED CENTRIFUGE

    DOE Patents [OSTI]

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  5. High specific heat superconducting composite

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  6. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  7. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  8. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  9. High-Average Power Facilities

    SciTech Connect (OSTI)

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  10. High ratio recirculating gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F.

    1989-01-01

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor.

  11. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  12. High energy overcurrent protective device

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  13. High Performance Photovoltaic Project Overview

    SciTech Connect (OSTI)

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  14. High School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Iowa's top science and math students to face-off in an intense question and answer format where contestants are quizzed on their knowledge of math and a range of science ...

  15. PV Solar Site Assessment (Milwaukee High School)

    Broader source: Energy.gov [DOE]

    The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

  16. High School Schedule | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedule January 23, 2016 SCHEDULE Location: Engineering Building, Iowa State University campus, Ames, Iowa 7:30 a.m. Registration and Continental Breakfast, Hoover Hall atrium 8:00 a.m. Opening Ceremonies, 2055 Hoover Hall 8:30-11:00 Round-Robin competition (Hoover, Howe & Pearson Halls) 11:00 Announcements, 2055 Hoover Hall 11:15 Tie-breaker round if needed 11:30 - 12:30 Lunch (Union Drive Community Center - tickets provided) 12:30-4:30 p.m. Double-elimination competition (Howe and Hoover

  17. High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy (DOE)’s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

  18. High Performance Bulk Thermoelectric Materials

    SciTech Connect (OSTI)

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  19. Removing High Explosives from Groundwater

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – In an initiative supported by EM, Los Alamos National Laboratory’s Corrective Actions Program is addressing high explosive contamination in surface water and groundwater at a location this summer in the forests surrounding the laboratory.

  20. High pressure neon arc lamp

    DOE Patents [OSTI]

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  1. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  2. High-efficiency photovoltaic cells

    DOE Patents [OSTI]

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  3. High precision redundant robotic manipulator

    DOE Patents [OSTI]

    Young, K.K.D.

    1998-09-22

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

  4. High precision redundant robotic manipulator

    DOE Patents [OSTI]

    Young, Kar-Keung David

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

  5. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  6. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  7. Sandia National Laboratories: Research: High Consequence, Automation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Consequence Automation Robotics Homepage About Robotics Research & Development Advanced Controls Advanced Manipulation Cybernetics High-Consequence Automation Demilitarization...

  8. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  9. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, Ercan E.; Mooney, Timothy M.; Toellner, Thomas

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  10. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  11. High-sensitivity, high-speed continuous imaging system

    DOE Patents [OSTI]

    Watson, Scott A; Bender, III, Howard A

    2014-11-18

    A continuous imaging system for recording low levels of light typically extending over small distances with high-frame rates and with a large number of frames is described. Photodiode pixels disposed in an array having a chosen geometry, each pixel having a dedicated amplifier, analog-to-digital convertor, and memory, provide parallel operation of the system. When combined with a plurality of scintillators responsive to a selected source of radiation, in a scintillator array, the light from each scintillator being directed to a single corresponding photodiode in close proximity or lens-coupled thereto, embodiments of the present imaging system may provide images of x-ray, gamma ray, proton, and neutron sources with high efficiency.

  12. High power densities from high-temperature material interactions

    SciTech Connect (OSTI)

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  13. Texas school district enlightens students with solar

    Broader source: Energy.gov [DOE]

    Sam Rayburn High School in Pasadena, Texas is installing solar panels which will be used incorporated into the school's curriculum.

  14. High voltage photovoltaic power converter

    DOE Patents [OSTI]

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  15. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  16. High-temperature-measuring device

    DOE Patents [OSTI]

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  17. Thrusts in High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in HPC 1 Thrusts in High Performance Computing Science at Scale Petaflops to Exaflops Science through Volume Thousands to Millions of Simulations Science in Data Petabytes to Exabytes of Data 2 Science at Scale: Simulations Aid in Understanding Climate Impacts 3 Antarctic ice speed (left): AMR enables sub-1 km resolution (black, above) (Using NERSC's Hopper) BISICLES Pine Island Glacier simulation - mesh resolution crucial for grounding line behavior. Enhanced POP ocean model solution for

  18. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  19. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  20. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  1. High power gas laser amplifier

    DOE Patents [OSTI]

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  2. Radiometry High Spectral Resolution Fourier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Spectral Resolution Fourier Transform Infrared Instruments for the Atmospheric Radiation Measurement Program H. E. Revercomb, W. L. Smith, R. O. Knuteson, F. A. Best, R. G. Dedecker, T. P. Dirkx, R. A. Herbsleb, and J. F. Short University of Wisconsin Madison, Wisconsin H. B. Howell National Oceanic and Atmospheric Administration Systems Design and Applications Branch Madison, Wisconsin D. Murcray and F. Murcray University of Denver Denver, Colorado Accurate and spectrally detailed

  3. Production of high purity radiothallium

    DOE Patents [OSTI]

    Lebowitz, Elliot; Greene, Margaret W.

    1976-11-23

    The method of producing high purity thallium-201 for use as a myocardial scanning agent comprising the steps of irradiating a thallium target with protons to give the reaction .sup.203 Tl(p,3n) .sup.201.sub.Pb, separating in ion exchange columns the lead from the thallium isotopes, permitting the lead to decay, and then purifying the thallium solution and converting the thallium present to thallous form in which it can be used.

  4. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOE Patents [OSTI]

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  5. ADVANCED HIGH SPEED PROGRAMMABLE PREFORMING

    SciTech Connect (OSTI)

    Norris Jr, Robert E; Lomax, Ronny D; Xiong, Fue; Dahl, Jeffrey S; Blanchard, Patrick J

    2010-01-01

    Polymer-matrix composites offer greater stiffness and strength per unit weight than conventional materials resulting in new opportunities for lightweighting of automotive and heavy vehicles. Other benefits include design flexibility, less corrosion susceptibility, and the ability to tailor properties to specific load requirements. However, widespread implementation of structural composites requires lower-cost manufacturing processes than those that are currently available. Advanced, directed-fiber preforming processes have demonstrated exceptional value for rapid preforming of large, glass-reinforced, automotive composite structures. This is due to process flexibility and inherently low material scrap rate. Hence directed fiber performing processes offer a low cost manufacturing methodology for producing preforms for a variety of structural automotive components. This paper describes work conducted at the Oak Ridge National Laboratory (ORNL), focused on the development and demonstration of a high speed chopper gun to enhance throughput capabilities. ORNL and the Automotive Composites Consortium (ACC) revised the design of a standard chopper gun to expand the operational envelope, enabling delivery of up to 20kg/min. A prototype unit was fabricated and used to demonstrate continuous chopping of multiple roving at high output over extended periods. In addition fiber handling system modifications were completed to sustain the high output the modified chopper affords. These hardware upgrades are documented along with results of process characterization and capabilities assessment.

  6. High-performance, high-volume fly ash concrete

    SciTech Connect (OSTI)

    2008-01-15

    This booklet offers the construction professional an in-depth description of the use of high-volume fly ash in concrete. Emphasis is placed on the need for increased utilization of coal-fired power plant byproducts in lieu of Portland cement materials to eliminate increased CO{sub 2} emissions during the production of cement. Also addressed is the dramatic increase in concrete performance with the use of 50+ percent fly ash volume. The booklet contains numerous color and black and white photos, charts of test results, mixtures and comparisons, and several HVFA case studies.

  7. Lab Hosts 22 teams for Virginia Science Bowl, Feb. 7; Thomas Jefferson High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School wins 3rd year running | Jefferson Lab Hosts 22 teams for Virginia Science Bowl, Feb. 7; Thomas Jefferson High School wins 3rd year running First place at the Virginia Regional Science Bowl on Feb. 7 went to the team from Thomas Jefferson High School for Science and Technology, Alexandria, Virginia. Team members include (left to right) Kay Aull, Michael Zhang, Paul Yang, Samuel Lederer (behind), Team Coach Sharon Baker, and Lisa Marrone. Taking second place at the Virginia Regional

  8. Solar Energy Education. Renewable energy activities for junior high/middle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    school science (Technical Report) | SciTech Connect junior high/middle school science Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for junior high/middle school science × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  9. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  10. High-emission cold cathode

    DOE Patents [OSTI]

    Mancebo, L.

    1974-01-29

    A field-emission cathode having a multitude of field emission points for emitting a copious stream of electrons when subjected to a high field is described. The cathode is constructed by compressing a multitude of tungsten strips alternately arranged with molybdenum strips and copper ribbons or compressing alternately arranged copper plated tungsten and molybdenum strips, heating the arrangement to braze the tungsten and molybdenum strips together with the copper, machining and grinding the exposed strip edges of one side of the brazed arrangement to obtain a precisely planar surface, etching a portion of the molybdenum and copper to leave the edges of the tungsten strips protruding for electron emission, and subjecting the protruding edges of the tungsten strips to a high electric field to degas and roughen the surface to pnovide a large number of emitting points. The resulting structure is particularly useful as a cathode in a transversely excited gaseous laser where the cathode is mounted in a vacuum chamber for emitting electrons under the influence of a high electric field between the cathode and an extractor grid. The electrons pass through the extractor grid, a thin window in the wall of the laser chamber and into the laser chamber which is filled with a gaseous mixture of helium, nitrogen, and carbon dioxide. A second grid is mounted on the gaseous side of the window. The electrons pass into the laser chamber under the influence of a second electric field between the second grid and an anode in the laser chamber to raise selected gas atoms of the gaseous mixture to appropriately excited states so that a subsequent coherent light beam passing through the mixture transversely to the electron stream through windows in opposite ends of the laser chamber stimulates the excited atoms to amplify the beam. (Official Gazette)

  11. Highly selective detection of individual

    Office of Scientific and Technical Information (OSTI)

    Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe V. V. Mkhitaryan1, F. Jelezko2, and V. V. Dobrovitski1'* 1Ames Laboratory US DOE, Ames, Iowa, 50011, USA 2University of Ulm, Institute of Quantum Optics and Center for Integrated Quantum Science and Technology, 89081 Ulm, Germany *slava@ameslab.gov ABSTRACT We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected

  12. Electokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  13. High strength, tough alloy steel

    DOE Patents [OSTI]

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  14. A high rate proportional chamber

    SciTech Connect (OSTI)

    Henderson, R.; Fraszer, W.; Openshaw, R.; Sheffer, G.; Salomon, M.; Dew, S.; Marans, J.; Wilson, P.

    1987-02-01

    Gas mixtures with high specific ionization allow the use of small interelectrode distances while still maintaining full efficiency. With the short electron drift distances the timing resolution is also improved. The authors have built and operated two 25 cm/sup 2/ chambers with small interelectrode distances. Also single wire detector cells have been built to test gas mixture lifetimes. Various admixtures of CF/sub 4/, DME, Isobutane, Ethane and Argon have been tested. Possible applications of such chambers are as beam profile monitors, position tagging of rare events and front end chambers in spectrometers.

  15. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  16. High throughput protein production screening

    DOE Patents [OSTI]

    Beernink, Peter T.; Coleman, Matthew A.; Segelke, Brent W.

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  17. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  18. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  19. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  20. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    DOE Patents [OSTI]

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.