National Library of Energy BETA

Sample records for high resolution image

  1. High-resolution ophthalmic imaging system

    SciTech Connect (OSTI)

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  2. High Resolution Imaging Science Experiment | Open Energy Information

    Open Energy Info (EERE)

    Resolution Imaging Science Experiment Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: High Resolution Imaging Science Experiment Author University of...

  3. Ultra-high resolution computed tomography imaging

    DOE Patents [OSTI]

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  4. High vertical resolution crosswell seismic imaging

    DOE Patents [OSTI]

    Lazaratos, Spyridon K.

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  5. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    SciTech Connect (OSTI)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  6. A high-resolution imaging x-ray crystal spectrometer for high...

    Office of Scientific and Technical Information (OSTI)

    A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas Citation Details In-Document Search Title: A high-resolution imaging x-ray crystal spectrometer ...

  7. A high-resolution imaging X-ray crystal spectrometer for high...

    Office of Scientific and Technical Information (OSTI)

    A high-resolution imaging X-ray crystal spectrometer for high energy density (HED) plasmas Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal ...

  8. Compact and mobile high resolution PET brain imager

    DOE Patents [OSTI]

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  9. Development of a High Resolution X-Ray Imaging Crystal Spectrometer

    Office of Scientific and Technical Information (OSTI)

    Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ... Development of a High Resolution X-Ray Imaging Crystal Spectrometer for ...

  10. Development of a High Resolution X-Ray Imaging Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ... Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ...

  11. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect (OSTI)

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  12. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    SciTech Connect (OSTI)

    Deng, Z.; Richmond, M. C.; Mueller, R. P.; Gruensch, G. R.

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  13. High resolution x-ray and gamma ray imaging using diffraction...

    Office of Scientific and Technical Information (OSTI)

    High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals Title: High resolution x-ray and gamma ray imaging using diffraction lenses ...

  14. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect (OSTI)

    Jacobsen, Chris

    2014-12-07

    Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

  15. Structure recognition from high resolution images of ceramic composites

    SciTech Connect (OSTI)

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  16. A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma Experiments on OMEGA Citation Details In-Document Search Title: A Versatile High-Resolution X-Ray ...

  17. High resolution PET breast imager with improved detection efficiency

    DOE Patents [OSTI]

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  18. High-resolution photoelectron imaging of cold C{sub 60}{sup ...

    Office of Scientific and Technical Information (OSTI)

    High-resolution photoelectron imaging of cold Csub 60sup - anions and accurate determination of the electron affinity of Csub 60 Citation Details In-Document Search Title: ...

  19. A high-resolution imaging X-ray crystal spectrometer for intense...

    Office of Scientific and Technical Information (OSTI)

    for intense laser plasma interaction experiments Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma ...

  20. Virtually distortion-free imaging system for large field, high resolution lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-05

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

  1. Objectives and layout of a high-resolution x-ray imaging crystal...

    Office of Scientific and Technical Information (OSTI)

    x-ray imaging crystal spectrometer for the large helical device Citation Details In-Document Search Title: Objectives and layout of a high-resolution x-ray imaging ...

  2. Objectives and Layout of a High-Resolution X-ray Imaging Crystal...

    Office of Scientific and Technical Information (OSTI)

    Imaging Crystal Spectrometer for the Large Helical Device (LHD) Citation Details In-Document Search Title: Objectives and Layout of a High-Resolution X-ray Imaging Crystal ...

  3. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe

    DOE Patents [OSTI]

    Majewski, Stanislaw; Proffitt, James

    2010-12-28

    A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.

  4. A versatile high-resolution x-ray imager (HRXI) for laser-plasma...

    Office of Scientific and Technical Information (OSTI)

    x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a high-speed...

  5. Objectives and Layout of a High-Resolution X-ray Imaging Crystal...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD) Citation Details In-Document Search Title: ...

  6. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOE Patents [OSTI]

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  7. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect (OSTI)

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  8. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; et al

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  9. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect (OSTI)

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-15

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  10. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    SciTech Connect (OSTI)

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  11. High-Resolution Aeromagnetic Survey to Image Shallow Faults,...

    Open Energy Info (EERE)

    to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Abstract NA Author V. J. S. Grauch Published U.S. Geological Survey, 2002 Report Number 02-384 DOI Not Provided...

  12. High resolution resonance ionization imaging detector and method

    DOE Patents [OSTI]

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  13. Real-Time High Resolution Quantitative Imaging by Three Wavelength Digital

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holography - Energy Innovation Portal Real-Time High Resolution Quantitative Imaging by Three Wavelength Digital Holography Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary An optical system capable of reproducing three-dimensional images was invented at ORNL. This system can detect height changes of a few nanometers or less and render clear, single shot images. These types of precise, high speed measurements are important for a variety of

  14. Beam collimation with polycapillary x-ray optics for high contrast high resolution monochromatic imaging

    SciTech Connect (OSTI)

    Sugiro, Francisca R.; Li Danhong; MacDonald, C.A.

    2004-12-01

    Monochromatic imaging can provide better contrast and resolution than conventional broadband radiography. In broadband systems, low energy photons do not contribute to the image, but are merely absorbed, while high energy photons produce scattering that degrades the image. By tuning to the optimal energy, one can eliminate undesirable lower and higher energies. Monochromatization is achieved by diffraction from a single crystal. A crystal oriented to diffract at a particular energy, in this case the characteristic line energy, diffracts only those photons within a narrow range of angles. The resultant beam from a divergent source is nearly parallel, but not very intense. To increase the intensity, collimation was performed with polycapillary x-ray optics, which can collect radiation from a divergent source and redirect it into a quasi parallel beam. Contrast and resolution measurements were performed with diffracting crystals with both high and low angular acceptance. Testing was first done at 8 keV with an intense copper rotating anode x-ray source, then 17.5 keV measurements were made with a low power molybdenum source. At 8 keV, subject contrast was a factor of five higher than for the polychromatic case. At 17.5 keV, monochromatic contrast was two times greater than the conventional polychromatic contrast. The subject contrasts measured at both energies were in good agreement with theory. An additional factor of two increase in contrast, for a total gain of four, is expected at 17.5 keV from the removal of scatter. Scatter might be simply removed using an air gap, which does not degrade resolution with a parallel beam.

  15. allows researchers to capture high-resolution images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost The high-brightness, rapidly pulsed, multicolor light-emitting diode (LED) driver delivers lighting performance that exceeds that of conventional (laserarc-light) sources ...

  16. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    SciTech Connect (OSTI)

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to

  17. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOE Patents [OSTI]

    Smither, Robert K.

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  18. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOE Patents [OSTI]

    Smither, Robert K.

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  19. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  20. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    SciTech Connect (OSTI)

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for the analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.

  1. FIRST HIGH-RESOLUTION IMAGES OF THE SUN IN THE 2796 Mg II k LINE

    SciTech Connect (OSTI)

    Riethmller, T. L.; Solanki, S. K.; Hirzberger, J.; Danilovic, S.; Barthol, P.; Gandorfer, A.; Gizon, L.; Berkefeld, T.; Schmidt, W.; Knlker, M.; Del Toro Iniesta, J. C.

    2013-10-10

    We present the first high-resolution solar images in the Mg II k 2796 line. The images, taken through a 4.8 broad interference filter, were obtained during the second science flight of Sunrise in 2013 June by the Sunrise Filter Imager (SuFI) instrument. The Mg II k images display structures that look qualitatively very similar to images taken in the core of Ca II H. The Mg II images exhibit reversed granulation (or shock waves) in the internetwork regions of the quiet Sun, at intensity contrasts that are similar to those found in Ca II H. Very prominent in Mg II are bright points, both in the quiet Sun and in plage regions, particularly near the disk center. These are much brighter than at other wavelengths sampled at similar resolution. Furthermore, Mg II k images also show fibril structures associated with plage regions. Again, the fibrils are similar to those seen in Ca II H images, but tend to be more pronounced, particularly in weak plage.

  2. A high spatial resolution Stokes polarimeter for motional Stark effect imaging

    SciTech Connect (OSTI)

    Thorman, Alex; Michael, Clive; Howard, John [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2013-06-15

    We describe an enhanced temporally switched interfero-polarimeter that has been successfully deployed for high spatial resolution motional Stark effect imaging on the KSTAR superconducting tokamak. The system utilizes dual switching ferroelectric liquid crystal waveplates to image the full Stokes vector of elliptically polarized and Doppler-shifted Stark-Zeeman Balmer-alpha emission from high energy neutral beams injected into the magnetized plasma. We describe the optical system and compare its performance against a Mueller matrix model that takes account of non-ideal performance of the switching ferro-electric liquid crystal waveplates and other polarizing components.

  3. Ultra high resolution tomography

    SciTech Connect (OSTI)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  4. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    SciTech Connect (OSTI)

    Ramos, Jorge R.

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  5. Laser Doppler field sensor for high resolution flow velocity imaging without camera

    SciTech Connect (OSTI)

    Voigt, Andreas; Bayer, Christian; Shirai, Katsuaki; Buettner, Lars; Czarske, Juergen

    2008-09-20

    In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 {mu}m in the x direction and 16 {mu}m in the y direction and a relative velocity resolution of 1x10{sup -3} have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

  6. High-resolution imaging and target designation through clouds or smoke

    DOE Patents [OSTI]

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  7. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOE Patents [OSTI]

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-12

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  8. A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas

    SciTech Connect (OSTI)

    Chen, Hui E-mail: bitter@pppl.gov; Magee, E.; Nagel, S. R.; Park, J.; Schneider, M. B.; Stone, G.; Williams, G. J.; Beiersdorfer, P.; Bitter, M. E-mail: bitter@pppl.gov; Hill, K. W.; Kerr, S.

    2014-11-15

    Adapting a concept developed for magnetic confinement fusion experiments, an imaging crystal spectrometer has been designed and tested for HED plasmas. The instrument uses a spherically bent quartz [211] crystal with radius of curvature of 490.8 mm. The instrument was tested at the Titan laser at Lawrence Livermore National Laboratory by irradiating titanium slabs with laser intensities of 10{sup 19}–10{sup 20} W/cm{sup 2}. He-like and Li-like Ti lines were recorded, from which the spectrometer performance was evaluated. This spectrometer provides very high spectral resolving power (E/dE > 7000) while acquiring a one-dimensional image of the source.

  9. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    SciTech Connect (OSTI)

    Gravel, D.

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  10. High-resolution multi-band imaging for validation and characterization of small Kepler planets

    SciTech Connect (OSTI)

    Everett, Mark E.; Silva, David R.; Barclay, Thomas; Howell, Steve B.; Ciardi, David R.; Horch, Elliott P.; Crepp, Justin R.

    2015-02-01

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting a total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.

  11. Compact, high-resolution, gamma ray imaging for scintimammography and other medical diagostic applications

    DOE Patents [OSTI]

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.; Steinbach, Daniela

    1999-01-01

    A high resolution gamma ray imaging device includes an aluminum housing, a lead screen collimator at an opened end of the housing, a crystal scintillator array mounted behind the lead screen collimator, a foam layer between the lead screen collimator and the crystal scintillator array, a photomultiplier window coupled to the crystal with optical coupling grease, a photomultiplier having a dynode chain body and a base voltage divider with anodes, anode wire amplifiers each connected to four anodes and a multi pin connector having pin connections to each anode wire amplifier. In one embodiment the crystal scintillator array includes a yttrium aluminum perovskite (YAP) crystal array. In an alternate embodiment, the crystal scintillator array includes a gadolinium oxyorthosilicate (GSO) crystal array.

  12. High resolution monochromatic X-ray imaging system based on spherically bent crystals

    SciTech Connect (OSTI)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C. M.; Seely, J.; Feldman, U.; Holland, G.

    1997-05-05

    We have developed a new X-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. The imaging system is used for plasma diagnostics of the main target and for characterization of potential backlighters. A spherically curved quartz crystal (2d=6.687 A, R=200 mm) is used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the X-ray optical system is 3-4 {mu}m. Time resolved backlit monochromatic images of CH planar targets driven by the Nike facility have been obtained with 6-7 {mu}m spatial resolution.

  13. High resolution monochromatic X-ray imaging system based on spherically bent crystals

    SciTech Connect (OSTI)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C.M.; Seely, J.; Feldman, U.; Holland, G.

    1997-05-01

    We have developed a new X-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser [1,2]. The imaging system is used for plasma diagnostics of the main target and for characterization of potential backlighters. A spherically curved quartz crystal (2d=6.687{Angstrom}, R=200mm) is used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the X-ray optical system is 3{endash}4 {mu}m. Time resolved backlit monochromatic images of CH planar targets driven by the Nike facility have been obtained with 6{endash}7 {mu}m spatial resolution. {copyright} {ital 1997 American Institute of Physics.}

  14. Hubble space telescope high-resolution imaging of Kepler small and cool exoplanet host stars

    SciTech Connect (OSTI)

    Gilliland, Ronald L.; Cartier, Kimberly M. S.; Wright, Jason T.; Adams, Elisabeth R.; Ciardi, David R.

    2015-01-01

    High-resolution imaging is an important tool for follow-up study of exoplanet candidates found via transit detection with the Kepler mission. We discuss here Hubble Space Telescope imaging with the WFC3 of 23 stars that host particularly interesting Kepler planet candidates based on their small size and cool equilibrium temperature estimates. Results include detections, exclusion of background stars that could be a source of false positives for the transits, and detection of physically associated companions in a number of cases providing dilution measures necessary for planet parameter refinement. For six Kepler objects of interest, we find that there is ambiguity regarding which star hosts the transiting planet(s), with potentially strong implications for planetary characteristics. Our sample is evenly distributed in G, K, and M spectral types. Albeit with a small sample size, we find that physically associated binaries are more common than expected at each spectral type, reaching a factor of 10 frequency excess in M. We document the program detection sensitivities, detections, and deliverables to the Kepler follow-up program archive.

  15. High-resolution monochromatic x-ray imaging system based on spherically bent crystals

    SciTech Connect (OSTI)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C.M.; Seely, J.; Feldman, U.; Holland, G.

    1998-08-01

    We have developed an improved x-ray imaging system based on spherically curve crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. A spherically curved quartz crystal (2d=6.687 {Angstrom}, R=200 mm) has been used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the x-ray optical system is 1.7 {mu}m in selected places and 2{endash}3 {mu}m over a larger area. Time-resolved backlit monochromatic images of polystyrene planar targets driven by the Nike facility have been obtained with a spatial resolution of 2.5 {mu}m in selected places and 5 {mu}m over the focal spot of the Nike laser. {copyright} 1998 Optical Society of America

  16. Simulation of High-Resolution Magnetic Resonance Images on the IBM Blue Gene/L Supercomputer Using SIMRI

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baum, K. G.; Menezes, G.; Helguera, M.

    2011-01-01

    Medical imaging system simulators are tools that provide a means to evaluate system architecture and create artificial image sets that are appropriate for specific applications. We have modified SIMRI, a Bloch equation-based magnetic resonance image simulator, in order to successfully generate high-resolution 3D MR images of the Montreal brain phantom using Blue Gene/L systems. Results show that redistribution of the workload allows an anatomically accurate 256 3 voxel spin-echo simulation in less than 5 hours when executed on an 8192-node partition of a Blue Gene/L system.

  17. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.

    2012-10-15

    Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  18. New Strategies for 0.5 mm Resolution, High Sensitivity, Multi- Radionuclide Imaging

    SciTech Connect (OSTI)

    Levin, Craig S; Levin, Craig

    2015-02-28

    This project constitutes a 0.5-millimeter resolution radionuclide detector system built from CZT. (1) A novel dual-crystal photon detector module design with cross-strip electrode patterns was developed; (2) The module mechanical assembly was built; (3) A data acquisition (DAQ) chain for the module was produced; (4) A software tool was developed to incorporate novel time and energy measurement calibration techniques. (5) A small multi-detector prototype of the radionuclide imaging system was built from this module for system-level characterizations.

  19. Matrix recrystallization for MALDI-MS imaging of maize lipids at high-spatial resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duenas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-06-27

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Furthermore, using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution.

  20. Atomic resolution images of graphite in air

    SciTech Connect (OSTI)

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  1. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    SciTech Connect (OSTI)

    Malinouski, M.; Kehr, S.; Finney, L.; Vogt, S.; Carlson, B.A.; Seravalli, J.; Jin, R.; Handy, D.E.; Park, T.J.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N.

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.

  2. SUBARU AND GEMINI HIGH SPATIAL RESOLUTION INFRARED 18 {mu}m IMAGING OBSERVATIONS OF NEARBY LUMINOUS INFRARED GALAXIES

    SciTech Connect (OSTI)

    Imanishi, Masatoshi; Imase, Keisuke; Oi, Nagisa; Ichikawa, Kohei

    2011-05-15

    We present the results of a ground-based, high spatial resolution infrared 18 {mu}m imaging study of nearby luminous infrared galaxies (LIRGs), using the Subaru 8.2 m and Gemini-South 8.1 m telescopes. The diffraction-limited images routinely achieved with these telescopes in the Q band (17-23 {mu}m) allow us to investigate the detailed spatial distribution of infrared emission in these LIRGs. We then investigate whether the emission surface brightnesses are modest, as observed in starbursts, or are so high that luminous active galactic nuclei (AGNs; high emission surface brightness energy sources) are indicated. The sample consists of 18 luminous buried AGN candidates and starburst-classified LIRGs identified in earlier infrared spectroscopy. We find that the infrared 18 {mu}m emission from the buried AGN candidates is generally compact, and the estimated emission surface brightnesses are high, sometimes exceeding the maximum value observed in and theoretically predicted for a starburst phenomenon. The starburst-classified LIRGs usually display spatially extended 18 {mu}m emission and the estimated emission surface brightnesses are modest, within the range sustained by a starburst phenomenon. The general agreement between infrared spectroscopic and imaging energy diagnostic methods suggests that both are useful tools for understanding the hidden energy sources of the dusty LIRG population.

  3. Development of high-spatial and high-mass resolution mass spectrometric imaging (MSI) and its application to the study of small metabolites and endogenous molecules of plants

    SciTech Connect (OSTI)

    Jun, Ji Hyun

    2011-11-30

    High-spatial and high-mass resolution laser desorption ionization (LDI) mass spectrometric (MS) imaging technology was developed for the attainment of MS images of higher quality containing more information on the relevant cellular and molecular biology in unprecedented depth. The distribution of plant metabolites is asymmetric throughout the cells and tissues, and therefore the increase in the spatial resolution was pursued to reveal the localization of plant metabolites at the cellular level by MS imaging. For achieving high-spatial resolution, the laser beam size was reduced by utilizing an optical fiber with small core diameter (25 μm) in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer. Matrix application was greatly improved using oscillating capillary nebulizer. As a result, single cell level spatial resolution of ~ 12 μm was achieved. MS imaging at this high spatial resolution was directly applied to a whole Arabidopsis flower and the substructures of an anther and single pollen grains at the stigma and anther were successfully visualized. MS imaging of high spatial resolution was also demonstrated to the secondary roots of Arabidopsis thaliana and a high degree of localization of detected metabolites was successfully unveiled. This was the first MS imaging on the root for molecular species. MS imaging with high mass resolution was also achieved by utilizing the LTQ-Orbitrap mass spectrometer for the direct identification of the surface metabolites on the Arabidopsis stem and root and differentiation of isobaric ions having the same nominal mass with no need of tandem mass spectrometry (MS/MS). MS imaging at high-spatial and high-mass resolution was also applied to cer1 mutant of the model system Arabidopsis thaliana to demonstrate its usefulness in biological studies and reveal associated metabolite changes in terms of spatial distribution and/or abundances compared to those of wild-type. The spatial

  4. Development of a High Resolution X-Ray Imaging Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    The affects of x-ray and nuclear-radiation background on the measurement uncertainties are ... Resource Relation: Related Information: Invention Disclosure. Title X-ray Imaging Crystal ...

  5. High resolution telescope

    DOE Patents [OSTI]

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  6. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    SciTech Connect (OSTI)

    Cassiède, M.; Shaw, J. M.

    2015-04-15

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  7. Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging

    SciTech Connect (OSTI)

    Schulz, T.; Remmele, T.; Korytov, M.; Markurt, T.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.; Chèze, C.

    2014-01-21

    Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets. Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.

  8. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    SciTech Connect (OSTI)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G.; Beckwith, Martha A.; Collins, Gilbert W.; Higginbotham, Andrew; Wark, Justin S.; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C.; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B.; Schroer, Christian G.

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  9. High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue

    SciTech Connect (OSTI)

    Schittny, J. C.; Barre, S. F.; Haberthuer, D.; Mokso, R.; Tsuda, A.; Stampanoni, M.

    2011-09-09

    To access the risks and chances of deposition of submicron particles in the gas-exchange area of the lung, a precise three-dimensional (3D)-localization of the sites of deposition is essential--especially because local peaks of deposition are expected in the acinar tree and in individual alveoli. In this study we developed the workflow for such an investigation. We administered 200-nm gold particles to young adult rats by intratracheal instillation. After fixation and paraffin embedding, their lungs were imaged unstained using synchrotron radiation x-ray tomographic microscopy (SRXTM) at the beamline TOMCAT (Swiss Light Source, Villigen, Switzerland) at sample detector distances of 2.5 mm (absorption contrast) and of 52.5 mm (phase contrast). A segmentation based on a global threshold of grey levels was successfully done on absorption-contrast images for the gold and on the phase-contrast images for the tissue. The smallest spots containing gold possessed a size of 1-2 voxels of 370-nm side length. We conclude that a combination of phase and absorption contrast SRXTM imaging is necessary to obtain the correct segmentation of both tissue and gold particles. This method will be used for the 3D localization of deposited particles in the gas-exchange area of the lung.

  10. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G.; Beckwith, Martha A.; Collins, Gilbert W.; Higginbotham, Andrew; et al

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnifiedmore » x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.« less

  11. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  12. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  13. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOE Patents [OSTI]

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  14. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOE Patents [OSTI]

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  15. Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis

    SciTech Connect (OSTI)

    Cheriyadat, Anil M

    2011-01-01

    Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected by high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.

  16. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    DOE Patents [OSTI]

    Majewski, Stanislaw; Proffitt, James

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  17. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet

    SciTech Connect (OSTI)

    Mariappan, Leo; Hu, Gang; He, Bin

    2014-02-15

    Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

  18. High resolution scintillation detector with semiconductor readout

    DOE Patents [OSTI]

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  19. Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution x-ray imaging

    SciTech Connect (OSTI)

    Kobayashi, Masakazu Komori, Jun; Shimidzu, Kaiji; Izaki, Masanobu; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio

    2015-02-23

    Newly designed scintillator of (0001)-oriented ZnO vertical nanowires (vnws) for X-ray imaging was prepared on a Ga-doped ZnO/soda-lime glass by electrodeposition, and the light emission feature was estimated in a synchrotron radiation facility. The ZnO-vnws scintillator revealed a strong light emission and improved resolution on CMOS image compared with that for the ZnO-layer scintillator, although the light emission performance was deteriorated in comparison to the Lu{sub 3}Al{sub 5}O{sub 12:}Ce{sup 3+}. The light emission property closely related to the nanostructure and the resultant photoluminescence characteristic.

  20. HIGH-RESOLUTION EXPANDED VERY LARGE ARRAY IMAGE OF DIMETHYL ETHER (CH{sub 3}){sub 2}O IN ORION-KL

    SciTech Connect (OSTI)

    Favre, C.; Wootten, H. A.; Remijan, A. J.; Brouillet, N.; Despois, D.; Baudry, A.; Wilson, T. L. E-mail: brouillet@obs.u-bordeaux1.fr E-mail: baudry@obs.u-bordeaux1.fr E-mail: aremijan@nrao.edu

    2011-09-20

    We report the first subarcsecond (0.''65 x 0.''51) image of the dimethyl ether molecule, (CH{sub 3}){sub 2}O, toward the Orion Kleinmann-Low nebula. The observations were carried at 43.4 GHz with the Expanded Very Large Array (EVLA). The distribution of the lower energy transition 6{sub 1,5}-6{sub 0,6}, EE (E {sub u} = 21 K) mapped in this study is in excellent agreement with the published dimethyl ether emission maps imaged with a lower resolution. The main emission peaks are observed toward the Compact Ridge and Hot Core southwest components, at the northern parts of the Compact Ridge and in an intermediate position between the Compact Ridge and the Hot Core. A notable result is that the distribution of dimethyl ether is very similar to that of another important larger O-bearing species, the methyl formate (HCOOCH{sub 3}), imaged at a lower resolution. Our study shows that higher spectral resolution (WIDAR correlator) and increased spectral coverage provided by the EVLA offer new possibilities for imaging complex molecular species. The sensitivity improvement and the other EVLA improvements make this instrument well suited for high sensitivity, high angular resolution, and molecular line imaging.

  1. High resolution time interval meter

    DOE Patents [OSTI]

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  2. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    SciTech Connect (OSTI)

    Ruoß, S. Stahl, C.; Weigand, M.; Schütz, G.; Albrecht, J.

    2015-01-12

    The penetration of magnetic flux into high-temperature superconductors has been observed using a high-resolution technique based on x-ray magnetic circular dichroism. Superconductors coated with thin soft-magnetic layers are observed in a scanning x-ray microscope under the influence of external magnetic fields. Resulting electric currents in the superconductor create an inhomogeneous magnetic field distribution above the superconductor and lead to a local reorientation of the ferromagnetic layer. Measuring the local magnetization of the ferromagnet by x-ray absorption microscopy with circular-polarized radiation allows the analysis of the magnetic flux distribution in the superconductor with a spatial resolution on the nanoscale.

  3. Visual Comfort Analysis of Innovative Interior and Exterior Shading Systems for Commercial Buildings using High Resolution Luminance Images

    SciTech Connect (OSTI)

    Konis, Kyle; Lee, Eleanor; Clear, Robert

    2011-01-11

    The objective of this study was to explore how calibrated high dynamic range (HDR) images (luminance maps) acquired in real world daylit environments can be used to characterize, evaluate, and compare visual comfort conditions of innovative facade shading and light-redirecting systems. Detailed (1536 x 1536 pixel) luminance maps were time-lapse acquired from two view positions in an unoccupied full scale testbed facility. These maps were analyzed using existing visual comfort metrics to quantify how innovative interior and exterior shading systems compare to conventional systems under real sun and sky conditions over a solstice-to-solstice test interval. The results provide a case study in the challenges and potential of methods of visualizing, evaluating and summarizing daily and seasonal variation of visual comfort conditions computed from large sets of image data.

  4. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    SciTech Connect (OSTI)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  5. TESTING THE HYPOTHESIS THAT METHANOL MASER RINGS TRACE CIRCUMSTELLAR DISKS: HIGH-RESOLUTION NEAR-INFRARED AND MID-INFRARED IMAGING

    SciTech Connect (OSTI)

    De Buizer, James M.; Bartkiewicz, Anna; Szymczak, Marian

    2012-08-01

    Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combination of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of {approx}150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.

  6. HIGH-RESOLUTION MID-INFRARED IMAGING OF THE CIRCUMSTELLAR DISKS OF HERBIG Ae/Be STARS

    SciTech Connect (OSTI)

    Marinas, N.; Telesco, C. M.; Packham, C.; Fisher, R. S.

    2011-08-20

    We have imaged the circumstellar environments of 17 Herbig Ae/Be stars at 12 and 18 {mu}m using MICHELLE on Gemini North and T-ReCS on Gemini South. Our sample contained eight Group I sources, those having large rising near- to far-infrared (IR) fluxes, and nine Group II sources, those having more modest mid-IR fluxes relative to their near-IR flux (in the classification of Meeus et al.). We have resolved extended emission from all Group I sources in our target list. The majority of these sources have radially symmetric mid-IR emission extending from a radius of 10 AU to hundreds of AU. Only one of the nine Group II sources is resolved at the FWHM level, with another two Group II sources resolved at fainter levels. Models by Dullemond et al. explain the observed spectral energy distribution of Group II sources using self-shadowed cold disks. If this is the case for all the Group II sources, we do not expect to detect extended emission with this study, since the IR emission measured should arise from a region only a few AU in size, which is smaller than our resolution. The fact that we do resolve some of the Group II sources implies that their disks are not completely flat, and might represent an intermediate stage. We also find that none of the more massive (>3 M{sub sun}) Herbig Ae/Be stars in our sample belongs to Group I, which may point to a relationship between stellar mass and circumstellar dust evolution. Disks around more massive stars might evolve faster so that stars are surrounded by a more evolved flat disk by the time they become optically visible, or they might follow a different evolutionary path altogether.

  7. High resolution digital delay timer

    DOE Patents [OSTI]

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  8. A method to determine fault vectors in 4H-SiC from stacking sequences observed on high resolution transmission electron microscopy images

    SciTech Connect (OSTI)

    Wu, Fangzhen; Wang, Huanhuan; Raghothamachar, Balaji; Dudley, Michael; Mueller, Stephan G.; Chung, Gil; Sanchez, Edward K.; Hansen, Darren; Loboda, Mark J.; Zhang, Lihua; Su, Dong; Kisslinger, Kim; Stach, Eric

    2014-09-14

    A new method has been developed to determine the fault vectors associated with stacking faults in 4H-SiC from their stacking sequences observed on high resolution TEM images. This method, analogous to the Burgers circuit technique for determination of dislocation Burgers vector, involves determination of the vectors required in the projection of the perfect lattice to correct the deviated path constructed in the faulted material. Results for several different stacking faults were compared with fault vectors determined from X-ray topographic contrast analysis and were found to be consistent. This technique is expected to applicable to all structures comprising corner shared tetrahedra.

  9. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOE Patents [OSTI]

    Atac, Muzaffer; McKay, Timothy A.

    1998-01-01

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

  10. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOE Patents [OSTI]

    Atac, M.; McKay, T.A.

    1998-04-21

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

  11. Taheri-Saramad x-ray detector (TSXD): A novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane

    SciTech Connect (OSTI)

    Taheri, A. Saramad, S.; Ghalenoei, S.; Setayeshi, S.

    2014-01-15

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 μm, respectively.

  12. Resolution enhancement in nonlinear photoacoustic imaging

    SciTech Connect (OSTI)

    Goy, Alexandre S.; Fleischer, Jason W.

    2015-11-23

    Nonlinear processes can be exploited to gain access to more information than is possible in the linear regime. Nonlinearity modifies the spectra of the excitation signals through harmonic generation, frequency mixing, and spectral shifting, so that features originally outside the detector range can be detected. Here, we present an experimental study of resolution enhancement for photoacoustic imaging of thin metal layers immersed in water. In this case, there is a threshold in the excitation below which no acoustic signal is detected. Above threshold, the nonlinearity reduces the width of the active area of the excitation beam, resulting in a narrower absorption region and thus improved spatial resolution. This gain is limited only by noise, as the active area of the excitation can be arbitrarily reduced when the fluence becomes closer to the threshold. Here, we demonstrate a two-fold improvement in resolution and quantify the image quality as the excitation fluence goes through threshold.

  13. Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images

    SciTech Connect (OSTI)

    Gonnissen, J.; De Backer, A.; Martinez, G. T.; Van Aert, S.; Dekker, A. J. den; Rosenauer, A.; Sijbers, J.

    2014-08-11

    We report an innovative method to explore the optimal experimental settings to detect light atoms from scanning transmission electron microscopy (STEM) images. Since light elements play a key role in many technologically important materials, such as lithium-battery devices or hydrogen storage applications, much effort has been made to optimize the STEM technique in order to detect light elements. Therefore, classical performance criteria, such as contrast or signal-to-noise ratio, are often discussed hereby aiming at improvements of the direct visual interpretability. However, when images are interpreted quantitatively, one needs an alternative criterion, which we derive based on statistical detection theory. Using realistic simulations of technologically important materials, we demonstrate the benefits of the proposed method and compare the results with existing approaches.

  14. Application of PILATUS II Detector Modules for High Resolution X-Ray Imaging Crystal Spectrometers on the Alcator C-Mod Tokamak

    SciTech Connect (OSTI)

    M.L. Bitter, Ch. Borennimann, E.F. Eikenberry, K.W. Hill, A. Ince-Chushman, S.G. Lee, J.E. Rice, and S. Scott.

    2007-07-23

    A new type of X-ray imaging crystal spectrometer for Doppler measurements of the radial profiles of the ion temperature and plasma rotation velocity in tokamak plasmas is presently being developed in a collaboration between various laboratories. The spectrometer will consist of a spherically bent crystal and a two-dimensional position sensitive detector; and it will record temporally and spatially resolved X-ray line spectra from highly-charged ions. The detector must satisfy challenging requirements with respect to count rate and spatial resolution. The paper presents the results from a recent test of a PILATUS II detector module on Alcator C-Mod, which demonstrate that the PILATUS II detector modules will satisfy these requirements.

  15. HRTEM Imaging of Atoms at Sub-Angstrom Resolution

    SciTech Connect (OSTI)

    O'Keefe, Michael A.; Allard, Lawrence F.; Blom, Douglas A.

    2005-04-06

    John Cowley and his group at Arizona State University pioneered the use of transmission electron microscopy (TEM) for high-resolution imaging. Images were achieved three decades ago showing the crystal unit cell content at better than 4 Angstrom resolution. This achievement enabled researchers to pinpoint the positions of heavy atom columns within the unit cell. Lighter atoms appear as resolution is improved to sub-Angstrom levels. Currently, advanced microscopes can image the columns of the light atoms (carbon, oxygen, nitrogen) that are present in many complex structures, and even the lithium atoms present in some battery materials. Sub-Angstrom imaging, initially achieved by focal-series reconstruction of the specimen exit surface wave, will become common place for next-generation electron microscopes with CS-corrected lenses and monochromated electron beams. Resolution can be quantified in terms of peak separation and inter-peak minimum, but the limits imposed on the attainable resolution by the properties of the micro-scope specimen need to be considered. At extreme resolution the ''size'' of atoms can mean that they will not be resolved even when spaced farther apart than the resolution of the microscope.

  16. High-resolution observations of the shock wave behavior for sunspot oscillations with the interface region imaging spectrograph

    SciTech Connect (OSTI)

    Tian, H.; DeLuca, E.; Reeves, K. K.; McKillop, S.; Golub, L.; Saar, S.; Testa, P.; Weber, M.; De Pontieu, B.; Martínez-Sykora, J.; Kleint, L.; Cheung, M.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Tarbell, T. D.; Wuelser, J. P.; Carlsson, M.; Hansteen, V.; and others

    2014-05-10

    We present the first results of sunspot oscillations from observations by the Interface Region Imaging Spectrograph. The strongly nonlinear oscillation is identified in both the slit-jaw images and the spectra of several emission lines formed in the transition region and chromosphere. We first apply a single Gaussian fit to the profiles of the Mg II 2796.35 Å, C II 1335.71 Å, and Si IV 1393.76 Å lines in the sunspot. The intensity change is ∼30%. The Doppler shift oscillation reveals a sawtooth pattern with an amplitude of ∼10 km s{sup –1} in Si IV. The Si IV oscillation lags those of C II and Mg II by ∼6 and ∼25 s, respectively. The line width suddenly increases as the Doppler shift changes from redshift to blueshift. However, we demonstrate that this increase is caused by the superposition of two emission components. We then perform detailed analysis of the line profiles at a few selected locations on the slit. The temporal evolution of the line core is dominated by the following behavior: a rapid excursion to the blue side, accompanied by an intensity increase, followed by a linear decrease of the velocity to the red side. The maximum intensity slightly lags the maximum blueshift in Si IV, whereas the intensity enhancement slightly precedes the maximum blueshift in Mg II. We find a positive correlation between the maximum velocity and deceleration, a result that is consistent with numerical simulations of upward propagating magnetoacoustic shock waves.

  17. High resolution time interval counter

    DOE Patents [OSTI]

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  18. High resolution time interval counter

    DOE Patents [OSTI]

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  19. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    DOE Patents [OSTI]

    Huang, Lianjie

    2013-10-29

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.

  20. HIGH-RESOLUTION LABORATORY SPECTRA OF THE λ193 CHANNEL OF THE ATMOSPHERIC IMAGING ASSEMBLY INSTRUMENT ON BOARD SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Träbert, Elmar; Beiersdorfer, Peter; Brickhouse, Nancy S.; Golub, Leon

    2014-11-01

    Extreme ultraviolet spectra of C, O, F, Ne, S, Ar, Fe, and Ni have been excited in an electron beam ion trap and studied with much higher resolution than available on the Solar Dynamics Observatory (SDO) in order to ascertain the spectral composition of the SDO/Atmospheric Imaging Assembly (AIA) observations. We present our findings in the wavelength range 182-200 Å, which, overall, corroborate the working models of how to interpret the SDO/AIA data. We find, however, that the inclusion of a number of additional lines might improve the data interpretation.

  1. Afghanistan Pakistan High Resolution Wind Resource - Datasets...

    Open Energy Info (EERE)

    Pakistan High Resolution Wind Resource This shapefile containing 50 meter height data has been validated by NREL and wind energy meteorological consultants. However, the data is...

  2. Final Technical Report for DE-FG02-06ER15835: Chemical Imaging with 100nm Spatial Resolution: Combining High Resolution Flurosecence Microscopy and Ion Mobility Mass Spectrometry

    SciTech Connect (OSTI)

    Buratto, Steven K.

    2013-09-03

    We have combined, in a single instrument, high spatial resolution optical microscopy with the chemical specificity and conformational selectivity of ion mobility mass spectrometry. We discuss the design and construction of this apparatus as well as our efforts in applying this technique to thin films of molecular semiconductor materials.

  3. Application of Spatially Resolved High Resolution Crystal Spectrometry to

    Office of Scientific and Technical Information (OSTI)

    ICF Plasmas (Conference) | SciTech Connect Application of Spatially Resolved High Resolution Crystal Spectrometry to ICF Plasmas Citation Details In-Document Search Title: Application of Spatially Resolved High Resolution Crystal Spectrometry to ICF Plasmas High resolution (λ/Δ λ ~ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in

  4. Prospects for Electron Imaging with Ultrafast Time Resolution...

    Office of Scientific and Technical Information (OSTI)

    Service, Springfield, VA at www.ntis.gov. Many pivotal aspects of material science, biomechanics, and chemistry would benefit from nanometer imaging with ultrafast time resolution....

  5. High Spectral Resolution Lidar Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  6. Note: Design and construction of a multi-scale, high-resolution, tube-generated X-Ray computed-tomography system for three-dimensional (3D) imaging

    SciTech Connect (OSTI)

    Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh

    2014-01-15

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  7. Camera system resolution and its influence on digital image correlation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reu, Phillip L.; Sweatt, William; Miller, Timothy; Fleming, Darryn

    2014-09-21

    Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss ofmore » spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The study will demonstrate the tradeoffs associated with limited lens resolution.« less

  8. High spatial resolution particle detectors

    DOE Patents [OSTI]

    Boatner, Lynn A.; Mihalczo, John T.

    2012-09-04

    Disclosed below are representative embodiments of methods, apparatus, and systems for detecting particles, such as radiation or charged particles. One exemplary embodiment disclosed herein is particle detector comprising an optical fiber with a first end and second end opposite the first end. The optical fiber of this embodiment further comprises a doped region at the first end and a non-doped region adjacent to the doped region. The doped region of the optical fiber is configured to scintillate upon interaction with a target particle, thereby generating one or more photons that propagate through the optical fiber and to the second end. Embodiments of the disclosed technology can be used in a variety of applications, including associated particle imaging and cold neutron scattering.

  9. High spatial resolution particle detectors

    SciTech Connect (OSTI)

    Boatner, Lynn A.; Mihalczo, John T.

    2015-10-13

    Disclosed below are representative embodiments of methods, apparatus, and systems for detecting particles, such as radiation or charged particles. One exemplary embodiment disclosed herein is particle detector comprising an optical fiber with a first end and second end opposite the first end. The optical fiber of this embodiment further comprises a doped region at the first end and a non-doped region adjacent to the doped region. The doped region of the optical fiber is configured to scintillate upon interaction with a target particle, thereby generating one or more photons that propagate through the optical fiber and to the second end. Embodiments of the disclosed technology can be used in a variety of applications, including associated particle imaging and cold neutron scattering.

  10. High-resolution radiography by means of a hodoscope

    DOE Patents [OSTI]

    De Volpi, Alexander

    1978-01-01

    The fast neutron hodoscope, a device that produces neutron radiographs with coarse space resolution in a short time, is modified to produce neutron or gamma radiographs of relatively thick samples and with high space resolution. The modification comprises motorizing a neutron and gamma collimator to permit a controlled scanning pattern, simultaneous collection of data in a number of hodoscope channels over a period of time, and computerized image reconstruction of the data thus gathered.

  11. Lynx: A High-Resolution Synthetic Aperture Radar

    SciTech Connect (OSTI)

    Doerry, A.W.; Hensley, W.H.; Pace, F.; Stence, J.; Tsunoda, S.I.; Walker, B.C.; Woodring, M.

    1999-03-08

    Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.

  12. High resolution EUV monochromator/spectrometer

    DOE Patents [OSTI]

    Koike, Masako

    1996-06-18

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.

  13. High resolution EUV monochromator/spectrometer

    DOE Patents [OSTI]

    Koike, Masako

    1996-01-01

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.

  14. 3-dimensional imaging at nanometer resolutions

    DOE Patents [OSTI]

    Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.

    2010-03-09

    An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.

  15. Imaging Lithium Atoms at Sub-Angstrom Resolution (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Imaging Lithium Atoms at Sub-Angstrom Resolution Citation Details In-Document Search Title: ... Publication Date: 2005-01-03 OSTI Identifier: 875740 Report Number(s): ...

  16. High resolution collimator system for X-ray detector

    DOE Patents [OSTI]

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  17. High-Resolution PET Detector. Final report

    SciTech Connect (OSTI)

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  18. A High Resolution Scale-of-four

    DOE R&D Accomplishments [OSTI]

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  19. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    SciTech Connect (OSTI)

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  20. Synthetic aperture radar images with composite azimuth resolution

    DOE Patents [OSTI]

    Bielek, Timothy P; Bickel, Douglas L

    2015-03-31

    A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.

  1. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  2. High-resolution electron microscopy of advanced materials

    SciTech Connect (OSTI)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  3. High resolution absorption spectroscopy of exploding wire plasmas...

    Office of Scientific and Technical Information (OSTI)

    Published Article: High resolution absorption spectroscopy of exploding wire plasmas using an x-pinch x-ray source and spherically bent crystal Title: High resolution absorption ...

  4. Supercomputers Fuel Global High-Resolution Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Fuel Global High-Resolution Climate Models Supercomputers Fuel Global High-Resolution Climate Models Berkeley Lab Researcher Says Climate Science is Entering New ...

  5. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Resolution Electron Microscopy for Catalyst Characterization Ultra-High Resolution Electron Microscopy for Catalyst Characterization 2011 DOE Hydrogen and Fuel Cells Program, ...

  6. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle ...

  7. High-Resolution Photocurrent Microscopy Using Near-FieldCathodolumine...

    Office of Scientific and Technical Information (OSTI)

    High-Resolution Photocurrent Microscopy Using Near-Field Cathodoluminescence of Quantum Dots. Citation Details In-Document Search Title: High-Resolution Photocurrent Microscopy ...

  8. Formation of Compact Clusters from High Resolution Hybrid Cosmological...

    Office of Scientific and Technical Information (OSTI)

    Formation of Compact Clusters from High Resolution Hybrid Cosmological Simulations Citation Details In-Document Search Title: Formation of Compact Clusters from High Resolution ...

  9. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pm029allard2010p.pdf More Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst...

  10. High resolution climate simulation over Europe

    SciTech Connect (OSTI)

    Deque, M.; Piedelievre, J.Ph.

    1995-08-01

    Three AMIP-type 10 year simulations have been performed with climate versions of the AR-PEGE-IFS model in order to simulate the European climate. The first one uses the standard T42 truncation. The second one uses a high resolution T106 truncation. The horizontal resolution of the third one varies between about T200 over Europe and T21 over the southern Pacific. The winter time general circulation improves in the Atlantic sector as the resolution increases. This is true for the time-mean pattern and for the transient and low-frequency variability. In summer time and in the southern hemisphere, the 3 versions of the model produce reasonable climatologies. When restricted to the European continent, the model verification against the observed climatology shows a reduction of the biases in temperature and, to a lesser extent, in precipitation with the increase in resolution. The use of a variable resolution GCM is a valid alternative to model nesting. The model is too warm in winter and too cold in summer, too wet in northern Europe and too dry in southern Europe. 33 refs., 16 figs., 6 tabs.

  11. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  12. High speed imaging television system

    DOE Patents [OSTI]

    Wilkinson, William O.; Rabenhorst, David W.

    1984-01-01

    A television system for observing an event which provides a composite video output comprising the serially interlaced images the system is greater than the time resolution of any of the individual cameras.

  13. High-Resolution Transmission Electron Microscopy Observation of Colloidal Nanocrystal Growth Mechanisms using Graphene Liquid Cells

    SciTech Connect (OSTI)

    Yuk, Jong Min; Park, Jungwon; Ercius, Peter; Kim, Kwanpyo; Hellebusch, Danny J.; Crommie, Michael F.; Lee, Jeong Yong; Zettl, A.; Alivisatos, A. Paul

    2011-12-12

    We introduce a new type of liquid cell for in-situ electron microscopy based upon entrapment of a liquid film between layers of graphene. We employ this cell to achieve high-resolution imaging of colloidal platinum nanocrystal growth. The ability to directly image and resolve critical steps at atomic resolution provides new insights into nanocrystal coalescence and reshaping during growth.

  14. High resolution patterning of silica aerogels

    SciTech Connect (OSTI)

    Bertino, M.F.; Hund, J.F.; Sosa, J.; Zhang, G.; Sotiriou-Leventis, C.; Leventis, N.; Tokuhiro, A.T.; Terry, J. (UMR-MUST); (IIT)

    2008-10-30

    Three-dimensional metallic structures are fabricated with high spatial resolution in silica aerogels. In our method, silica hydrogels are prepared with a standard base-catalyzed route, and exchanged with an aqueous solution typically containing Ag{sup +} ions (1 M) and 2-propanol (0.2 M). The metal ions are reduced photolytically with a table-top ultraviolet lamp, or radiolytically, with a focused X-ray beam. We fabricated dots and lines as small as 30 x 70 {micro}m, protruding for several mm into the bulk of the materials. The hydrogels are eventually supercritically dried to yield aerogels, without any measurable change in the shape and spatial resolution of the lithographed structures. Transmission electron microscopy shows that illuminated regions are composed by Ag clusters with a size of several {micro}m, separated by thin layers of silica.

  15. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian K.; Kalbfleisch, Sebastian; Li, Li; et al

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  16. Optic for an endoscope/borescope having high resolution and narrow field of view

    DOE Patents [OSTI]

    Stone, Gary F.; Trebes, James E.

    2003-10-28

    An optic having optimized high spatial resolution, minimal nonlinear magnification distortion while at the same time having a limited chromatic focal shift or chromatic aberrations. The optic located at the distal end of an endoscopic inspection tool permits a high resolution, narrow field of view image for medical diagnostic applications, compared to conventional optics for endoscopic instruments which provide a wide field of view, low resolution image. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion. The optic is also optimized for best color correction as well as to aid medical diagnostics.

  17. City of Irving utilizes high resolution multispectral imagery for NPDES compliance

    SciTech Connect (OSTI)

    Monday, H.M.; Urban, J.S.; Mulawa, D.; Benkelman, C.A.

    1994-04-01

    A case history of using high resolution multispectral imagery is described. A statistical clustering method was applied to identify the primary spectral signatures present within the image data. This was for the National Pollution Discharge Elimination System (NPDES).

  18. Design Parameters and Objectives of a High--Resolution X--ray...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Design Parameters and Objectives of a High--Resolution X--ray Imaging Crystal Spectrometer for the Large Helical Device (LHD) Citation Details In-Document Search ...

  19. Design Parameters and Objectives of a High--Resolution X--ray...

    Office of Scientific and Technical Information (OSTI)

    Crystal Spectrometer for the Large Helical Device (LHD) Citation Details In-Document Search Title: Design Parameters and Objectives of a High--Resolution X--ray Imaging Crystal ...

  20. Application of Spatially Resolved High Resolution Crystal Spectrometry...

    Office of Scientific and Technical Information (OSTI)

    Crystal Spectrometry to ICF Plasmas Kenneth W. Hill, et. al. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY High Temperature High Temperature High resolution (3; 10 000) 1D...

  1. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH{sub 2}O in a piloted premixed jet flame

    SciTech Connect (OSTI)

    Li, Z.S.; Li, B.; Sun, Z.W.; Alden, M. [Division of Combustion Physics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Bai, X.S. [Division of Fluid Mechanics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden)

    2010-06-15

    High resolution planar laser-induced fluorescence (PLIF) was applied to investigate the local flame front structures of turbulent premixed methane/air jet flames in order to reveal details about turbulence and flame interaction. The targeted turbulent flames were generated on a specially designed coaxial jet burner, in which low speed stoichiometric gas mixture was fed through the outer large tube to provide a laminar pilot flame for stabilization of the high speed jet flame issued through the small inner tube. By varying the inner tube flow speed and keeping the mixture composition as that of the outer tube, different flames were obtained covering both the laminar and turbulent flame regimes with different turbulent intensities. Simultaneous CH/CH{sub 2}O, and also OH PLIF images were recorded to characterize the influence of turbulence eddies on the reaction zone structure, with a spatial resolution of about 40 {mu}m and temporal resolution of around 10 ns. Under all experimental conditions, the CH radicals were found to exist only in a thin layer; the CH{sub 2}O were found in the inner flame whereas the OH radicals were seen in the outer flame with the thin CH layer separating the OH and CH{sub 2}O layers. The outer OH layer is thick and it corresponds to the oxidation zone and post-flame zone; the CH{sub 2}O layer is thin in laminar flows; it becomes broad at high speed turbulent flow conditions. This phenomenon was analyzed using chemical kinetic calculations and eddy/flame interaction theory. It appears that under high turbulence intensity conditions, the small eddies in the preheat zone can transport species such as CH{sub 2}O from the reaction zones to the preheat zone. The CH{sub 2}O species are not consumed in the preheat zone due to the absence of H, O, and OH radicals by which CH{sub 2}O is to be oxidized. The CH radicals cannot exist in the preheat zone due to the rapid reactions of this species with O{sub 2} and CO{sub 2} in the inner-layer of the

  2. Layout And Results From The Initial Opeeration Of The High-resolution X-ray

    Office of Scientific and Technical Information (OSTI)

    Imaging Crystal Spectrometer On The Large Helical Device (Technical Report) | SciTech Connect Layout And Results From The Initial Opeeration Of The High-resolution X-ray Imaging Crystal Spectrometer On The Large Helical Device Citation Details In-Document Search Title: Layout And Results From The Initial Opeeration Of The High-resolution X-ray Imaging Crystal Spectrometer On The Large Helical Device First results of ion and electron temperature pro le measurements from the x-ray imaging

  3. Goodbye, Watts. Hello, Lumens. (High-Resolution EPS Billboard) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy EPS Billboard) Goodbye, Watts. Hello, Lumens. (High-Resolution EPS Billboard) High-resolution EPS of billboard reading, 'Goodbye Watts. Hello Lumens. The new way to shop for light. Energysaver.gov DoE_Billboard_Goodbye_Watts.EPS (17.27 MB) More Documents & Publications Goodbye, Watts. Hello, Lumens. (High-Resolution JPG

  4. Goodbye, Watts. Hello, Lumens. (High-Resolution JPG Billboard) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy JPG Billboard) Goodbye, Watts. Hello, Lumens. (High-Resolution JPG Billboard) High-resolution JPG of billboard reading, 'Goodbye Watts. Hello Lumens. The new way to shop for light. Energysaver.gov DoE_Billboard_Goodbye_Watts.jpg (2.4 MB) More Documents & Publications Goodbye, Watts. Hello, Lumens. (High-Resolution EPS

  5. Modeling Spatial Dependencies in High-Resolution Overhead Imagery

    SciTech Connect (OSTI)

    Cheriyadat, Anil M; Bright, Eddie A; Vatsavai, Raju

    2011-01-01

    Human settlement regions with different physical and socio-economic attributes exhibit unique spatial characteristics that are often illustrated in high-resolution overhead imageries. For example- size, shape and spatial arrangements of man-made structures are key attributes that vary with respect to the socioeconomic profile of the neighborhood. Successfully modeling these attributes is crucial in developing advanced image understanding systems for interpreting complex aerial scenes. In this paper we present three different approaches to model the spatial context in the overhead imagery. First, we show that the frequency domain of the image can be used to model the spatial context [1]. The shape of the spectral energy contours characterize the scene context and can be exploited as global features. Secondly, we explore a discriminative framework based on the Conditional Random Fields (CRF) [2] to model the spatial context in the overhead imagery. The features derived from the edge orientation distribution calculated for a neighborhood and the associated class labels are used as input features to model the spatial context. Our third approach is based on grouping spatially connected pixels based on the low-level edge primitives to form support-regions [3]. The statistical parameters generated from the support-region feature distributions characterize different geospatial neighborhoods. We apply our approaches on high-resolution overhead imageries. We show that proposed approaches characterize the spatial context in overhead imageries.

  6. Collimator application for microchannel plate image intensifier resolution improvement

    DOE Patents [OSTI]

    Thomas, S.W.

    1996-02-27

    A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution. 2 figs.

  7. Collimator application for microchannel plate image intensifier resolution improvement

    DOE Patents [OSTI]

    Thomas, Stanley W.

    1996-02-27

    A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution.

  8. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  9. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  10. High resolution, high rate x-ray spectrometer

    DOE Patents [OSTI]

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  11. High-resolution measurements of the spatial and temporal evolution...

    Office of Scientific and Technical Information (OSTI)

    temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions Citation Details In-Document Search Title: High-resolution measurements...

  12. PROJECT PROFILE: High-resolution Investigations of Transport...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Thin-Film Photovoltaic Devices PROJECT PROFILE: High-resolution Investigations of Transport Limiting Defects and Interfaces in Thin-Film Photovoltaic Devices Funding ...

  13. NREL GIS Data: Bhutan High Resolution Wind Resource - Datasets...

    Open Energy Info (EERE)

    NREL GIS Data: Bhutan High Resolution Wind Resource This shapefile containing 50 meter height data has been validated by NREL and wind energy meteorological consultants. However,...

  14. Computational Performance of Ultra-High-Resolution Capability...

    Office of Scientific and Technical Information (OSTI)

    Computational Performance of Ultra-High-Resolution Capability in the Community Earth System Model Citation Details In-Document Search Title: Computational Performance of ...

  15. Merging high resolution geophysical and geochemical surveys to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    combine a suite of high resolution geophysical and geochemical techniques to reduce exploration risk by characterizing hydrothermal alteration, fault geometries and relationships. ...

  16. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    SciTech Connect (OSTI)

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  17. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  18. Occult Breast Cancer: Scintimammography with High-Resolution...

    Office of Scientific and Technical Information (OSTI)

    Occult Breast Cancer: Scintimammography with High-Resolution Breast-specific Gamma Camera in Women at High Risk for Breast Cancer Citation Details In-Document Search Title: Occult ...

  19. Feasibility study of a high-spatial resolution x-ray computed tomography using sub-pixel shift method

    SciTech Connect (OSTI)

    Yoneyama, Akio Baba, Rika; Sumitani, Kazushi; Hirai, Yasuharu

    2015-02-23

    A high-spatial resolution X-ray computed tomography (CT) adopting a sub-pixel shift method has been developed. By calculating sectional images, using plural CT datasets obtained by scanning the X-ray imager, the spatial resolution can be reduced relative to the sub-pixel size of an X-ray imager. Feasibility observations of a biomedical sample were performed using 12-keV monochromatic synchrotron radiation and a photon-counting X-ray imager 174-μm pixels in size. Four CT measurements were performed to obtain datasets at different positions of the X-ray imager. Fine sectional images were obtained successfully, and the spatial resolution was estimated as 80-μm, which corresponds to just under half the pixel size of the imager. In addition, a fine 3D image was also obtained by scanning the imager two-dimensionally.

  20. High speed imager test station

    DOE Patents [OSTI]

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1995-01-01

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

  1. High speed imager test station

    DOE Patents [OSTI]

    Yates, G.J.; Albright, K.L.; Turko, B.T.

    1995-11-14

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

  2. High resolution data base for use with MAP

    SciTech Connect (OSTI)

    Tapley, W.C.; Harris, D.B.

    1987-05-05

    A high resolution cartographic data base of thw World is available from the CIA. We obtained this data, extracted portions of the data, and produced cartographic files of varying resolutions. The resulting data files are of the proper format for use with MAP (2), our in-house cartographic plotting program.

  3. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    SciTech Connect (OSTI)

    Schwarz, Udo

    2014-12-10

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3D-AFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  4. Sector 3 : High Resolution X-ray Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & workshops IXN Group Useful Links Current APS status ESAF System GUP System X-Ray Science Division My APS Portal Sector 3 : High Resolution X-ray Scattering Sector 3 is...

  5. Exploring electronic structure through high-resolution hard x...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solid angle spectroscopy end-station at beamline 6-2 (SSRL). Three multicrystal high energy-resolution x-ray spectrometers (a 40-crystal low-q x-ray Raman spectrometer, a ...

  6. Application of Spatially Resolved High Resolution Crystal Spectrometry...

    Office of Scientific and Technical Information (OSTI)

    11 PPPL- 4811 Application of Spatially Resolved High Resolution Crystal Spectrometry to ICF Plasmas September, 2012 Kenneth W. Hill, M. Bitter, L. Delgado-Aprico, N.A. Pablant, P. ...

  7. Ultrahigh-spatial-resolution chemical and magnetic imaging by laser-based photoemission electron microscopy

    SciTech Connect (OSTI)

    Taniuchi, Toshiyuki Kotani, Yoshinori; Shin, Shik

    2015-02-15

    We report the first experiments carried out on a new chemical and magnetic imaging system, which combines the high spatial resolution of a photoemission electron microscope (PEEM) with a continuous-wave deep-ultraviolet laser. Threshold photoemission is sensitive to the chemical and magnetic structures of the surface of materials. The spatial resolution of PEEM is limited by space charging when using pulsed photon sources as well as aberrations in the electron optics. We show that the use of a continuous-wave laser enabled us to overcome such a limit by suppressing the space-charge effect, allowing us to obtain a resolution of approximately 2.6 nm. With this system, we demonstrated the imaging of surface reconstruction domains on Si(001) by linear dichroism with normal incidence of the laser beam. We also succeeded in magnetic imaging of thin films with the use of magnetic circular dichroism near the Fermi level. The unique features of the ultraviolet laser will give us fast switching of the incident angles and polarizations of the photon source, which will be useful for the characterization of antiferromagnetic materials as well as ferromagnetic materials.

  8. PROJECT PROFILE: High-resolution Investigations of Transport Limiting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defects and Interfaces in Thin-Film Photovoltaic Devices | Department of Energy High-resolution Investigations of Transport Limiting Defects and Interfaces in Thin-Film Photovoltaic Devices PROJECT PROFILE: High-resolution Investigations of Transport Limiting Defects and Interfaces in Thin-Film Photovoltaic Devices Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $1,000,000 This project will develop the

  9. Supercomputers Fuel Global High-Resolution Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Fuel Global High-Resolution Climate Models Supercomputers Fuel Global High-Resolution Climate Models Berkeley Lab Researcher Says Climate Science is Entering New Golden Age November 12, 2014 Contact: Julie Chao, jchao@lbl.gov, 510.486.6491 wehnerclimate2 Simulated and observed annual maximum 5 day accumulated precipitation over land points, averaged. Observations are calculated from the period 1979 to 1999. Model results are calculated from the period 1979 to 2005. Not long ago,

  10. Ultra-High Resolution Electron Microscopy for Catalyst Characterization |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy lm034_rohatgi_2011_o.pdf (1.05 MB) More Documents & Publications Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual Progress Report Nanostructured Materials by Machining 2011 Annual Progress Report for Lightweighting Materials Department of Energy

    pm029_allard_2011_p.pdf (2.39 MB) More Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst

  11. PROJECT PROFILE: Rapid QSTS Simulations for High-Resolution Comprehensive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Distributed PV Impacts (SuNLaMP) | Department of Energy PROJECT PROFILE: Rapid QSTS Simulations for High-Resolution Comprehensive Assessment of Distributed PV Impacts (SuNLaMP) PROJECT PROFILE: Rapid QSTS Simulations for High-Resolution Comprehensive Assessment of Distributed PV Impacts (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Project: Location: Sandia National Laboratory, Albuquerque, NM SunShot Award Amount: $4,000,000 Awardee Cost Share:

  12. Cloud properties derived from the High Spectral Resolution Lidar during

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPACE Cloud properties derived from the High Spectral Resolution Lidar during MPACE Eloranta, Edwin University of Wisconsin Category: Field Campaigns Cloud properties were derived from data acquired with University of Wisconsin High Spectral Resolution Lidar during its 6-week MPACE deployment. This poster presents statistics on: 1) the altitude and temperature distribution of optical depth and cloud phase. 2) the dependence of lidar depolarization and backscatter phase function on

  13. Phase contrast in high resolution electron microscopy

    DOE Patents [OSTI]

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  14. Small UAV-Acquired, High-resolution, Georeferenced Still Imagery

    SciTech Connect (OSTI)

    Ryan Hruska

    2005-09-01

    Currently, small Unmanned Aerial Vehicles (UAVs) are primarily used for capturing and down-linking real-time video. To date, their role as a low-cost airborne platform for capturing high-resolution, georeferenced still imagery has not been fully utilized. On-going work within the Unmanned Vehicle Systems Program at the Idaho National Laboratory (INL) is attempting to exploit this small UAV-acquired, still imagery potential. Initially, a UAV-based still imagery work flow model was developed that includes initial UAV mission planning, sensor selection, UAV/sensor integration, and imagery collection, processing, and analysis. Components to support each stage of the work flow are also being developed. Critical to use of acquired still imagery is the ability to detect changes between images of the same area over time. To enhance the analysts’ change detection ability, a UAV-specific, GIS-based change detection system called SADI or System for Analyzing Differences in Imagery is under development. This paper will discuss the associated challenges and approaches to collecting still imagery with small UAVs. Additionally, specific components of the developed work flow system will be described and graphically illustrated using varied examples of small UAV-acquired still imagery.

  15. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  16. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC, Berkeley /LBL, Berkeley /Cambridge U. /Royal Holloway, U. of London /Cornell U., LNS /LLNL, Livermore /University Coll. London /SLAC /Caltech /KEK, Tsukuba

    2007-06-08

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  17. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    SciTech Connect (OSTI)

    Oh, Tong In; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kim, Hyung Joong Woo, Eung Je; Kim, Hyun Bum; Kyung, Eun Jung; Kwon, Oh In

    2015-07-13

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  18. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments [OSTI]

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  19. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  20. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    SciTech Connect (OSTI)

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  1. Decreasing range resolution of a SAR image to permit correction of motion measurement errors beyond the SAR range resolution

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM); Heard, Freddie E. (Albuquerque, NM); Cordaro, J. Thomas (Albuquerque, NM)

    2010-07-20

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  2. A High Resolution Monolithic Crystal, DOI, MR Compatible, PET Detector

    SciTech Connect (OSTI)

    Robert S Miyaoka

    2012-03-06

    The principle objective of this proposal is to develop a positron emission tomography (PET) detector with depth-of-interaction (DOI) positioning capability that will achieve state of the art spatial resolution and sensitivity performance for small animal PET imaging. When arranged in a ring or box detector geometry, the proposed detector module will support <1 mm3 image resolution and >15% absolute detection efficiency. The detector will also be compatible with operation in a MR scanner to support simultaneous multi-modality imaging. The detector design will utilize a thick, monolithic crystal scintillator readout by a two-dimensional array of silicon photomultiplier (SiPM) devices using a novel sensor on the entrance surface (SES) design. Our hypothesis is that our single-ended readout SES design will provide an effective DOI positioning performance equivalent to more expensive dual-ended readout techniques and at a significantly lower cost. Our monolithic crystal design will also lead to a significantly lower cost system. It is our goal to design a detector with state of the art performance but at a price point that is affordable so the technology can be disseminated to many laboratories. A second hypothesis is that using SiPM arrays, the detector will be able to operate in a MR scanner without any degradation in performance to support simultaneous PET/MR imaging. Having a co-registered MR image will assist in radiotracer localization and may also be used for partial volume corrections to improve radiotracer uptake quantitation. The far reaching goal of this research is to develop technology for medical research that will lead to improvements in human health care.

  3. Feasibility of High Resolution P- and S-Wave Seismic Reflection to Detect Methane Hydrate

    SciTech Connect (OSTI)

    Hunter, J.A.

    2000-08-02

    In March, 1999, a combined geophysical field team from the Kansas Geological Survey, Oak Ridge National Laboratory, and the Geological Survey of Canada, performed some experimental high resolution seismic testing at the Mallik drill site in the Mackenzie Delta, Northwest Territories, where drilling and sampling had previously identified gas hydrates at depth beneath a thick permafrost zone. In this information document, we show data from this seismic test, along with comparisons and observations significant to the effective use of high resolution imaging and important considerations about high resolution operations in this environment. Included are discussions and examples based on previous studies at this site, data acquisition, processing, correlation of results with other data sets and some recommendations for future surveying.

  4. TH-A-BRF-09: Integration of High-Resolution MRSI Into Glioblastoma Treatment Planning

    SciTech Connect (OSTI)

    Schreibmann, E; Cordova, J; Shu, H; Crocker, I; Curran, W; Holder, C; Shim, H

    2014-06-15

    Purpose: Identification of a metabolite signature that shows significant tumor cell infiltration into normal brain in regions that do not appear abnormal on standard MRI scans would be extremely useful for radiation oncologists to choose optimal regions of brain to treat, and to quantify response beyond the MacDonald criteria. We report on integration of high-resolution magnetic resonance spectroscopic imaging (HR-MRSI) with radiation dose escalation treatment planning to define and target regions at high risk for recurrence. Methods: We propose to supplement standard MRI with a special technique performed on an MRI scanner to measure the metabolite levels within defined volumes. Metabolite imaging was acquired using an advanced MRSI technique combining 3D echo-planar spectroscopic imaging (EPSI) with parallel acquisition (GRAPPA) using a multichannel head coil that allows acquisition of whole brain metabolite maps with 108 μl resolution in 12 minutes implemented on a 3T MR scanner. Elevation in the ratio of two metabolites, choline (Cho, elevated in proliferating high-grade gliomas) and N-acetyl aspartate (NAA, a normal neuronal metabolite), was used to image infiltrating high-grade glioma cells in vivo. Results: The metabolite images were co-registered with standard contrast-enhanced T1-weighted MR images using in-house registration software and imported into the treatment-planning system. Regions with tumor infiltration are identified on the metabolic images and used to create adaptive IMRT plans that deliver a standard dose of 60 Gy to the standard target volume and an escalated dose of 75 Gy (or higher) to the most suspicious regions, identified as areas with elevated Cho/NAA ratio. Conclusion: We have implemented a state-of-the-art HR-MRSI technology that can generate metabolite maps of the entire brain in a clinically acceptable scan time, coupled with introduction of an imaging co-registration/ analysis program that combines MRSI data with standard imaging

  5. High-Resolution Simulations of Coal Injection in A Gasifier

    SciTech Connect (OSTI)

    Li, Tingwen; Gel, Aytekin; Syamlal, M; Guenther, Chris; Pannala, Sreekanth

    2010-01-01

    This study demonstrates an approach to effectively combine high- and low-resolution simulations for design studies of industrial coal gasifier. The flow-field data from a 10 million cell full-scale simulation of a commercial-scale gasifier were used to construct a reduced configuration to economically study the coal injection in detail. High-resolution numerical simulations of the coal injection were performed using the open-source code MFIX running on a high performance computing system. Effects of grid resolution and numerical discretization scheme on the predicted behavior of coal injection and gasification kinetics were analyzed. Pronounced differences were predicted in the devolatilization and steam gasification rates because of different discretization schemes, implying that a high-order numerical scheme is required to predict well the unsteady gasification process on an adequately resolved grid. Computational costs for simulations of varying resolutions are presented to illustrate the trade-off between the accuracy of solution and the time-to-solution, an important consideration when engineering simulations are used for the design of commercial-scale units.

  6. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    SciTech Connect (OSTI)

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  7. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  8. LES Modeling of High Resolution Satellite Cloud Spatial and Thermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure at ARM-SGP site: How well can we Simulate Clouds from Space? LES Modeling of High Resolution Satellite Cloud Spatial and Thermal Structure at ARM-SGP site: How well can we Simulate Clouds from Space? Dubey, Manvendra DOE/Los Alamos National Laboratory Chylek, Petr DOE/Los Alamos National Laboratory Reisner, Jon Los Alamos National Laboratory Porch, William Los Alamos National Laboratory Category: Cloud Properties We report high fidelity observations of the spatial and thermal

  9. Broadband high resolution X-ray spectral analyzer

    DOE Patents [OSTI]

    Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  10. Broadband high resolution X-ray spectral analyzer

    DOE Patents [OSTI]

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  11. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  12. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  13. High-resolution ionization detector and array of such detectors

    DOE Patents [OSTI]

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  14. 100 muas RESOLUTION VLBI IMAGING OF ANISOTROPIC INTERSTELLAR SCATTERING TOWARD PULSAR B0834+06

    SciTech Connect (OSTI)

    Brisken, W. F.; Deller, A. T.; Macquart, J.-P.; Tingay, S. J.; Gao, J. J.; Rickett, B. J.; Coles, W. A.; West, C. J.

    2010-01-01

    We have invented a novel technique to measure the radio image of a pulsar scattered by the interstellar plasma with 0.1 mas resolution. We extend the 'secondary spectrum' analysis of parabolic arcs by Stinebring et al. to very long baseline interferometry and, when the scattering is anisotropic, we are able to map the scattered brightness astrometrically with much higher resolution than the diffractive limit of the interferometer. We employ this technique to measure an extremely anisotropic scattered image of the pulsar B0834+06 at 327 MHz. We find that the scattering occurs in a compact region about 420 pc from the Earth. This image has two components, both essentially linear and nearly parallel. The primary feature, which is about 16 AU long and less than 0.5 AU in width, is highly inhomogeneous on spatial scales as small as 0.05 AU. The second feature is much fainter and is displaced from the axis of the primary feature by about 9 AU. We find that the velocity of the scattering plasma is 16 +- 10 km s{sup -1} approximately parallel to the axis of the linear feature. The origin of the observed anisotropy is unclear and we discuss two very different models. It could be, as has been assumed in earlier work, that the turbulence on spatial scales of (approx1000 km) is homogeneous but anisotropic. However, it may be that the turbulence on these scales is homogeneous and isotropic but the anisotropy is produced by highly elongated (filamentary) inhomogeneities of scale 0.05-16 AU.

  15. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOE Patents [OSTI]

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  16. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    SciTech Connect (OSTI)

    Huang, Lianjie; Simonetti, Francesco; Huthwaite, Peter; Rosenberg, Robert; Williamson, Michael

    2010-01-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  17. Towards Ultra-High Resolution Models of Climate and Weather

    SciTech Connect (OSTI)

    Wehner, Michael; Oliker, Leonid; Shalf, John

    2007-01-01

    We present a speculative extrapolation of the performance aspects of an atmospheric general circulation model to ultra-high resolution and describe alternative technological paths to realize integration of such a model in the relatively near future. Due to a superlinear scaling of the computational burden dictated by stability criterion, the solution of the equations of motion dominate the calculation at ultra-high resolutions. From this extrapolation, it is estimated that a credible kilometer scale atmospheric model would require at least a sustained ten petaflop computer to provide scientifically useful climate simulations. Our design study portends an alternate strategy for practical power-efficient implementations of petaflop scale systems. Embedded processor technology could be exploited to tailor a custom machine designed to ultra-high climate model specifications at relatively affordable cost and power considerations. The major conceptual changes required by a kilometer scale climate model are certain to be difficult to implement. Although the hardware, software, and algorithms are all equally critical in conducting ultra-high climate resolution studies, it is likely that the necessary petaflop computing technology will be available in advance of a credible kilometer scale climate model.

  18. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, Ercan E.; Mooney, Timothy M.; Toellner, Thomas

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  19. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  20. High resolution reservoir geological modelling using outcrop information

    SciTech Connect (OSTI)

    Zhang Changmin; Lin Kexiang; Liu Huaibo

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  1. Turbine component casting core with high resolution region

    DOE Patents [OSTI]

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  2. LandScan 2013 High Resolution Global Population Data Set

    SciTech Connect (OSTI)

    2014-07-01

    The LandScan data set is a worldwide population database compiled on a 30"x30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  3. The Astrophysical Plasmadynamic Explorer (APEX): A High Resolution Spectroscopic Observatory

    SciTech Connect (OSTI)

    Kowalski, M P; Cruddace, R G; Wood, K S; Yentis, D J; Gursky, H; Barbee, T W; Goldstein, W H; Kordas, J F; Fritz, G G; Hunter, W R; Barstow, M A; Bannister, N P; Culhane, J L; Lapington, J S

    2002-07-18

    EUVE and the ROSAT WFC have left a tremendous legacy in astrophysics at EUV wavelengths. More recently, Chandra and XMM-Newton have demonstrated at X-ray wavelengths the power of high-resolution astronomical spectroscopy, which allows the identification of weak emission lines, the measurement of Doppler shifts and line profiles, and the detection of narrow absorption features. This leads to a complete understanding of the density, temperature, abundance, magnetic, and dynamic structure of astrophysical plasmas. However, the termination of the EUVE mission has left a gaping hole in spectral coverage at crucial EUV wavelengths ({approx}100-300 {angstrom}), where hot (10{sup 5}-10{sup 8} K) plasmas radiate most strongly and produce critical spectral diagnostics. CHIPS will fill this hole only partially as it is optimized for diffuse emission and has only moderate resolution (R {approx} 150). For discrete sources, we have successfully flown a follow-on instrument to the EUVE spectrometer (A{sub eff} {approx} 1 cm{sup 2}, R {approx} 400), the high-resolution spectrometer J-PEX(A{sub eff} {approx} 3 cm{sup 2}, R {approx} 3000). Here we build on the J-PEX prototype and present a strawman design for an orbiting spectroscopic observatory, APEX, a SMEX-class instrument containing a suite of 8 spectrometers that together achieve both high effective area (A{sub eff} > 20 cm{sup 2}) and high spectral resolution (R {approx} 10,000) over the range 100-300 {angstrom}. We also discuss alternate configurations for shorter and longer wavelengths.

  4. Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data Dan Getman, Anthony Lopez, Trieu Mai, and Mark Dyson National Renewable Energy Laboratory Technical Report NREL/TP-6A20-63148 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  5. High-resolution, cryogenic, side-entry type specimen stage

    DOE Patents [OSTI]

    King, Wayne E.; Merkle, Karl L.

    1979-01-01

    A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.

  6. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    SciTech Connect (OSTI)

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei; Wu, Ming-Long; Chuang, Tzu-Chao; Shih, Yi-Yu; Huang, Teng-Yi

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  7. A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application

    SciTech Connect (OSTI)

    Doerry, A.W.; Hensley, W.H.; Stence, J.; Tsunoda, S.I. Pace, F.; Walker, B,C.; Woodring, M.

    1999-05-27

    (U) Sandia National Laboratories in collaboration with General Atomics (GA) has designed and built a high resolution, light-weight, Ku-band Synthetic Aperture Radar (SAR) known as "Lynx". Although Lynx can be operated on a wide variety of manned and unmanned platforms, its design is optimized for use on medium altitude Unmanned Aerial Vehicles (UAVS). In particular, it can be operated on the Predator, I-GNAT, and Prowler II platforms manufactured by GA. (U) The radar production weight is less than 120 lb and operates within a 3 GHz band from 15.2 GHz to 18.2 GHz with a peak output power of 320 W. Operating range is resolution and mode dependent but can exceed 45 km in adverse weather (4 mm/hr rain). Lynx has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode, over substantial depression angles (5 to 60 deg) and squint angles (broadside ±45 deg). Real-time Motion Compensation is implemented to allow high-quality image formation even during vehicle turns and other maneuvers.

  8. Designing arrays for modern high-resolution methods

    SciTech Connect (OSTI)

    Dowla, F.U.

    1987-10-01

    A bearing estimation study of seismic wavefields propagating from a strongly heterogeneous media shows that with the high-resolution MUSIC algorithm the bias of the direction estimate can be reduced by adopting a smaller aperture sub-array. Further, on this sub-array, the bias of the MUSIC algorithm is less than those of the MLM and Bartlett methods. On the full array, the performance for the three different methods are comparable. Improvement in bearing estimation in MUSIC with a reduced aperture might be attributed to increased signal coherency in the array. For methods with less resolution, the improved signal coherency in the smaller array is possible being offset by severe loss of resolution and the presence of weak secondary sources. Building upon the characteristics of real seismic wavefields, a design language has been developed to generate, modify, and test other arrays. Eigenstructures of wavefields and arrays have been studied empirically by simulation of a variety of realistic signals. 6 refs., 5 figs.

  9. Resolution of a High Performance Cavity Beam Positron Monitor System

    SciTech Connect (OSTI)

    Walston, S.; Chung, C.; Fitsos, P.; Gronberg, J.; Ross, M.; Khainovski, O.; Kolomensky, Y.; Loscutoff, P.; Slater, M.; Thomson, M.; Ward, D.; Boogert, S.; Vogel, V.; Meller, R.; Lyapin, A.; Malton, S.; Miller, D.; Frisch, J.; Hinton, S.; May, J.; McCormick, D.; /SLAC /Caltech /KEK, Tsukuba

    2007-07-06

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  10. Resolution of a High Performance Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, S; Chung, C; Fitsos, P; Gronberg, J; Ross, M; Khainovski, O; Kolomensky, Y; Loscutoff, P; Slater, M; Thomson, M; Ward, D; Boogert, S; Vogel, V; Meller, R; Lyapin, A; Malton, S; Miller, D; Frisch, J; Hinton, S; May, J; McCormick, D; Smith, S; Smith, T; White, G; Orimoto, T; Hayano, H; Honda, Y; Terunuma, N; Urakawa, J

    2005-09-12

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved - ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  11. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect (OSTI)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  12. Which Bulb Is Right for You? (High-Resolution EPS Billboard) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy EPS Billboard) Which Bulb Is Right for You? (High-Resolution EPS Billboard) High-resolution EPS of billboard reading, 'Which bulb is right for you? Save energy, save money. Energysaver.gov.' DoE_Billboard_Which_Bulb.eps (11.05 MB) More Documents & Publications Which Bulb Is Right for You? (High-Resolution JPG Billboard) Which Bulb Is Right for You? (Low-Resolution JPG Billboard) Goodbye, Watts. Hello, Lumens. (High-Resolution EPS

  13. Which Bulb Is Right for You? (High-Resolution JPG Billboard) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy JPG Billboard) Which Bulb Is Right for You? (High-Resolution JPG Billboard) HIgh-resolution JPG of billboard reading, 'Which bulb is right for you? Save energy, save money. Energysaver.gov.' DoE_Billboard_Which_Bulb.jpg (1.94 MB) More Documents & Publications Which Bulb Is Right for You? (High-Resolution EPS Billboard) Which Bulb Is Right for You? (Low-Resolution JPG Billboard) Goodbye, Watts. Hello, Lumens. (High-Resolution JPG

  14. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    SciTech Connect (OSTI)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.

  15. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps.more » The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.« less

  16. Retrieval Using Texture Features in High Resolution Multi-spectral Satellite Imagery

    SciTech Connect (OSTI)

    Newsam, S D; Kamath, C

    2004-01-22

    Texture features have long been used in remote sensing applications to represent and retrieve image regions similar to a query region. Various representations of texture have been proposed based on the Fourier power spectrum, spatial co-occurrence, wavelets, Gabor filters, etc. These representations vary in their computational complexity and their suitability for representing different region types. Much of the work done thus far has focused on panchromatic imagery at low to moderate spatial resolutions, such as images from Landsat 1-7 which have a resolution of 15-30 m/pixel, and from SPOT 1-5 which have a resolution of 2.5-20 m/pixel. However, it is not clear which texture representation works best for the new classes of high resolution panchromatic (60-100 cm/pixel) and multi-spectral (4 bands for red, green, blue, and near infra-red at 2.4-4 m/pixel) imagery. It is also not clear how the different spectral bands should be combined. In this paper, we investigate the retrieval performance of several different texture representations using multi-spectral satellite images from IKONOS. A query-by-example framework, along with a manually chosen ground truth dataset, allows different combinations of texture representations and spectral bands to be compared. We focus on the specific problem of retrieving inhabited regions from images of urban and rural scenes. Preliminary results show that (1) the use of all spectral bands improves the retrieval performance, and (2) co-occurrence, wavelet and Gabor texture features perform comparably.

  17. Compact high resolution isobar separator for study of exotic decays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compact high resolution isobar separator for study of exotic decays A. Piechaczek 1 , V. Shchepunov 1 , H. K. Carter 1 J. C. Batchelder 1 , E. F. Zganjar 2 1 UNIRIB, Oak Ridge Associated Universities, Oak Ridge, TN 37830 2 Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803 A compact isobar separator, based on the Multi-Pass-Time-of-Flight (MTOF) principle, is developed [1]. A mass resolving power (MRP) as spectrometer of 110,000 (FWHM) is achieved in

  18. Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images

    SciTech Connect (OSTI)

    Tsekenis, S. A.; McCann, H.; Tait, N.

    2015-03-15

    We present a novel framework and experimental method for the quantification of spatial resolution of a tomography system. The framework adopts the “black box” view of an imaging system, considering only its input and output. The tomography system is locally stimulated with a step input, viz., a sharp edge. The output, viz., the reconstructed images, is analysed by Fourier decomposition of their spatial frequency components, and the local limiting spatial resolution is determined using a cut-off threshold. At no point is an observer involved in the process. The framework also includes a means of translating the quantification region in the imaging space, thus creating a spatially resolved map of objectively quantified spatial resolution. As a case-study, the framework is experimentally applied using a gaseous propane phantom measured by a well-established chemical species tomography system. A spatial resolution map consisting of 28 regions is produced. In isolated regions, the indicated performance is 4-times better than that suggested in the literature and varies by 57% across the imaging space. A mechanism based on adjacent but non-interacting beams is hypothesised to explain the observed behaviour. The mechanism suggests that, as also independently concluded by other methods, a geometrically regular beam array maintains maximum objectivity in reconstructions. We believe that the proposed framework, methodology, and findings will be of value in the design and performance evaluation of tomographic imaging arrays and systems.

  19. High Resolution Atmospheric Modeling for Wind Energy Applications

    SciTech Connect (OSTI)

    Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

    2010-03-18

    The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

  20. Optical fiber imaging for high speed plasma motion diagnostics: Applied to low voltage circuit breakers

    SciTech Connect (OSTI)

    McBride, J. W.; Balestrero, A.; Tribulato, G.; Ghezzi, L.; Cross, K. J.

    2010-05-15

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1x10{sup 6} images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.

  1. Application of Spatially Resolved High Resolution Crystal Spectrometry...

    Office of Scientific and Technical Information (OSTI)

    Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement ...

  2. High resolution spectroscopic study of BeΛ10

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; et al

    2016-03-10

    Spectroscopy of amore » $$^{10}_{\\Lambda}$$Be hypernucleus was carried out at JLab Hall C using the $$(e,e^{\\prime}K^{+})$$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $$p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$$^{-}$$ and 2$$^{-}$$ states) was obtained to be B$$_{\\Lambda}$$=8.55$$\\pm$$0.07(stat.)$$\\pm$$0.11(sys.) MeV. Furthermore, the result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on charge symmetry breaking effect in the $$\\Lambda N$$ interaction.« less

  3. High resolution A/D conversion based on piecewise conversion at lower resolution

    DOE Patents [OSTI]

    Terwilliger, Steve

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  4. HIGH-RESOLUTION ATMOSPHERIC ENSEMBLE MODELING AT SRNL

    SciTech Connect (OSTI)

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.

    2011-05-10

    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  5. Machine Learning Approaches for High-resolution Urban Land Cover Classification: A Comparative Study

    SciTech Connect (OSTI)

    Vatsavai, Raju; Chandola, Varun; Cheriyadat, Anil M; Bright, Eddie A; Bhaduri, Budhendra L; Graesser, Jordan B

    2011-01-01

    The proliferation of several machine learning approaches makes it difficult to identify a suitable classification technique for analyzing high-resolution remote sensing images. In this study, ten classification techniques were compared from five broad machine learning categories. Surprisingly, the performance of simple statistical classification schemes like maximum likelihood and Logistic regression over complex and recent techniques is very close. Given that these two classifiers require little input from the user, they should still be considered for most classification tasks. Multiple classifier systems is a good choice if the resources permit.

  6. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    DOE Patents [OSTI]

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  7. New developments in high resolution borehole seismology and their applications to reservoir development and management

    SciTech Connect (OSTI)

    Paulsson, B.N.P.

    1997-08-01

    Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

  8. The High-Resolution Lightweight Telescope for the EUV (HiLiTE)

    SciTech Connect (OSTI)

    Martinez-Galarce, D S; Boerner, P; Soufli, R; De Pontieu, B; Katz, N; Title, A; Gullikson, E M; Robinson, J C; Baker, S L

    2008-06-02

    The High-resolution Lightweight Telescope for the EUV (HiLiTE) is a Cassegrain telescope that will be made entirely of Silicon Carbide (SiC), optical substrates and metering structure alike. Using multilayer coatings, this instrument will be tuned to operate at the 465 {angstrom} Ne VII emission line, formed in solar transition region plasma at {approx}500,000 K. HiLiTE will have an aperture of 30 cm, angular resolution of {approx}0.2 arc seconds and operate at a cadence of {approx}5 seconds or less, having a mass that is about 1/4 that of one of the 20 cm aperture telescopes on the Atmospheric Imaging Assembly (AIA) instrument aboard NASA's Solar Dynamics Observatory (SDO). This new instrument technology thus serves as a path finder to a post-AIA, Explorer-class missions.

  9. Spatial resolution of imaging plate with flash X-rays and its utilization for radiography

    SciTech Connect (OSTI)

    Shaikh, A. M.; Romesh, C.; Kolage, T. S.; Sharma, Archana

    2015-06-24

    A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm{sup 2} is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode. It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry.

  10. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Hill, K. W.; Bitter, M.; Delgado-Aparacio, L.; Pablant, N. A.; Beiersdorfer, P.; Schneider, M.; Widmann, K.; Sanchez del Rio, M.; Zhang, L.

    2012-10-15

    High resolution ({lambda}/{Delta}{lambda}{approx} 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-{mu}m {sup 55}Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10{sup -8}-10{sup -6} times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  11. Unsupervised individual tree crown detection in high-resolution satellite imagery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skurikhin, Alexei N.; McDowell, Nate G.; Middleton, Richard S.

    2016-01-26

    Rapidly and accurately detecting individual tree crowns in satellite imagery is a critical need for monitoring and characterizing forest resources. We present a two-stage semiautomated approach for detecting individual tree crowns using high spatial resolution (0.6 m) satellite imagery. First, active contours are used to recognize tree canopy areas in a normalized difference vegetation index image. Given the image areas corresponding to tree canopies, we then identify individual tree crowns as local extrema points in the Laplacian of Gaussian scale-space pyramid. The approach simultaneously detects tree crown centers and estimates tree crown sizes, parameters critical to multiple ecosystem models. Asmore » a demonstration, we used a ground validated, 0.6 m resolution QuickBird image of a sparse forest site. The two-stage approach produced a tree count estimate with an accuracy of 78% for a naturally regenerating forest with irregularly spaced trees, a success rate equivalent to or better than existing approaches. In addition, our approach detects tree canopy areas and individual tree crowns in an unsupervised manner and helps identify overlapping crowns. Furthermore, the method also demonstrates significant potential for further improvement.« less

  12. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOE Patents [OSTI]

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  13. LENS MODELS OF HERSCHEL-SELECTED GALAXIES FROM HIGH-RESOLUTION NEAR-IR OBSERVATIONS

    SciTech Connect (OSTI)

    Calanog, J. A.; Cooray, A.; Ma, B.; Casey, C. M.; Fu, Hai; Wardlow, J.; Amber, S.; Baker, A. J.; Baes, M.; Bock, J.; Bourne, N.; Dye, S.; Bussmann, R. S.; Chapman, S. C.; Clements, D. L.; Conley, A.; Dannerbauer, H.; Dunne, L.; Eales, S.; and others

    2014-12-20

    We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 ?m bright candidate lensing systems identified by the Herschel Multi-tiered Extragalactic Survey and Herschel Astrophysical Terahertz Large Area Survey. Out of 87 candidates with near-IR imaging, 15 (?17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and previous lensing models for submillimeter galaxies (SMGs). For four new sources that also have high-resolution submillimeter maps, we test for differential lensing between the stellar and dust components and find that the 880 ?m magnification factor (?{sub 880}) is ?1.5 times higher than the near-IR magnification factor (?{sub NIR}), on average. We also find that the stellar emission is ?2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.

  14. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    SciTech Connect (OSTI)

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-02-18

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  15. High resolution evaluation techniques in thinly laminated shaly sands

    SciTech Connect (OSTI)

    Coll, C.; Chacartegui, F.; Suarez, O.; Alvarez, G. ); Monsegui, G.; Lambertini, R.; Haines, P. )

    1993-02-01

    Significant hydrocarbon production may occur from thin layers which were previously considered non-economic. Improved processing methods for detecting and evaluating thin beds have shown these reservoirs to be attractive prospects. Such thinly bedded laminated shale-sand sequences exist within some of the producing formations in Venezuela. These shale sand packages may contain significant bypassed or undeveloped reserves. A new technique using deconvolution of the deep resistivity through the microresistivity curves (Microlog) identifies potential thinly bedded reservoirs. This methodology appears to be the most reliable permeability indicator of the prospective intervals within the Misoa Formation at Ceuta Field in Maracaibo Lake. The prospective intervals within this field have been calibrated with cores and with sedimentological information. This calibration shows only two lithofacies contained hydrocarbons previously not evaluated as oil saturated by traditional methods. These facies exhibited low values for deep resistivity curves which indicated high levels of water saturation. Deep resistivity deconvolution processing has been successfully applied to solve this problem in the Ceuta field. The resulting resistivity curve exhibits a vertical resolution of better than 1 ft., while retaining the essential advantages of deep resistivity curve. Laminated sand analyses were carried out and prove to be very useful in the integration of petrophysical and sedimentological data for detection of prospective intervals.

  16. Time-resolved quantitative multiphase interferometric imaging of a highly focused ultrasound pulse

    SciTech Connect (OSTI)

    Souris, Fabien; Grucker, Jules; Dupont-Roc, Jacques; Jacquier, Philippe; Arvengas, Arnaud; Caupin, Frederic

    2010-11-01

    Interferometric imaging is a well-established method to image phase objects by mixing the image wavefront with a reference one on a CCD camera. It has also been applied to fast transient phenomena, mostly through the analysis of single interferograms. It is shown that, for repetitive phenomena, multiphase acquisition brings significant advantages. A 1MHz focused sound field emitted by a hemispherical piezotransducer in water is imaged as an example. Quantitative image analysis provides high resolution sound field profiles. Pressure at focus determined by this method agrees with measurements from a fiber-optic probe hydrophone. This confirms that multiphase interferometric imaging can indeed provide quantitative measurements.

  17. Atomic-Resolution Spectroscopic Imaging and In Situ Environmental Study of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bimetallic Nanocatalysts by Fast Electrons | Stanford Synchrotron Radiation Lightsource Atomic-Resolution Spectroscopic Imaging and In Situ Environmental Study of Bimetallic Nanocatalysts by Fast Electrons Thursday, October 24, 2013 - 3:30pm SLAC, Conference Room 137-322 Presented by Huolin Xin Center for Functional Nanomaterials Brookhaven National Laboratory, Upton, New York Scanning transmission electron microscopy (STEM) in combination with electron energy loss spectroscopy (EELS) has

  18. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    SciTech Connect (OSTI)

    Williams, Stuart S [University of North Carolina, Chapel Hill; Samulski, Edward [University of North Carolina, Chapel Hill; Lopez, Renee [University of North Carolina, Chapel Hill; Ruiz, Ricardo [Hitachi; DeSimone, Joseph [University of North Carolina, Chapel Hill; Retterer, Scott T [ORNL

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determine the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.

  19. High time-resolution photodetectors for PET applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronzhin, Anatoly

    2016-02-01

    This paper describes recent developments aiming at the improvement of the time resolution of photodetectors used in positron emission tomography (PET). Promising photodetector candidates for future PET-time-of-flight (TOF) applications are also discussed.

  20. Design of a high-resolution high-stability positioning mechanism for crystal optics

    SciTech Connect (OSTI)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    1999-10-11

    The authors present a novel miniature multi-axis driving structure that will allow positioning of two crystals with better than 50-nrad angular resolution and nanometer linear driving sensitivity.The precision and stability of this structure allow the user to align or adjust an assembly of crystals to achieve the same performance as does a single channel-cut crystal, so they call it an artificial channel-cut crystal. In this paper, the particular designs and specifications, as well as the test results,for a two-axis driving structure for a high-energy-resolution artificial channel-cut crystal monochromator are presented

  1. An optimal merging technique for high-resolution precipitation products

    SciTech Connect (OSTI)

    Houser, Paul

    2011-01-01

    Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutions and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.

  2. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less

  3. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    SciTech Connect (OSTI)

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.

  4. Johann Spectrometer for High Resolution X-ray Spectroscopy

    SciTech Connect (OSTI)

    Machek, Pavel; Froeba, Michael; Welter, Edmund; Caliebe, Wolfgang; Brueggmann, Ulf; Draeger, Guenter

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  5. Probe for high resolution NMR with sample reorientation

    DOE Patents [OSTI]

    Pines, A.; Samoson, A.

    1990-02-06

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  6. Probe for high resolution NMR with sample reorientation

    DOE Patents [OSTI]

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.

  7. High-Resolution Diagrams Now Available | Department of Energy

    Energy Savers [EERE]

    Copyrighted Images and Text on the Website New Energy Saver 101 infographic lays out the different types of water heaters on the market and will help you figure out how to select...

  8. A Large-Scale, High-Resolution Hydrological Model Parameter Data...

    Office of Scientific and Technical Information (OSTI)

    Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US Citation Details In-Document Search Title: A ...

  9. High-Resolution Characterization of Intergranular Attack and Stress Corrosion Cracking of Alloy 600 in High-Temperature Primary Water

    SciTech Connect (OSTI)

    Thomas, Larry E.; Bruemmer, Stephen M.

    2000-06-01

    Intergranular (IG) attack regions and stress-corrosion cracks in alloy 600 U-bend samples tested in 330C, pressurized-water-reactor water have been characterized by analytical transmission electron microscopy (ATEM). Observations of cross-sectional samples revealed short oxidized zones preceding crack tips and narrow (10-nm wide), deeply penetrated, oxidized zones along grain boundaries exposed along open cracks. High-resolution TEM imaging and fine-probe analysis were used to determine the local chemistries and structures in these corrosion-affected zones. Matrix areas surrounding the crack tips appeared highly strained, whereas the IG penetrations generally did not. The predominant oxide structure found along crack walls and just ahead of crack tips was NiO with metal-atom ratios similar to the alloy. The attacked grain boundaries off open cracks contained similar fine-grained NiO-structure oxide together with local areas of Cr-rich oxide and Ni-rich metal. In contrast, Cr-rich oxide identified as Cr2O3 predominated at the leading edges of the IG attack. Stereoscopic imaging of these tip structures revealed nm-scale porosity and tunnels within the oxide and pores along the grain-boundary plane ahead of the oxide. The general interpretation of these results is that IG attack and cracking follows local dissolution or oxidation and the formation of pores at grain boundaries. This degradation occurs at the nanometer scale and therefore requires high-resolution ATEM methods to reveal detailed characteristics. Experimental support for several possible IG degradation mechanisms is considered.

  10. High-resolution laboratory measurements of coronal lines in the 198-218 å region

    SciTech Connect (OSTI)

    Beiersdorfer, Peter; Träbert, Elmar; Lepson, Jaan K.; Brickhouse, Nancy S.; Golub, Leon

    2014-06-10

    We present high-resolution laboratory measurements of the emission from various ions of C, N, O, F, Ne, S, Ar, Fe, and Ni in the extreme ultraviolet wavelength band centered around the λ211 Fe XIV channel of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. While all of the strong iron lines in this region are well known, we note many weaker lines of iron that are not yet identified. The high resolution of our measurements also allows us to resolve several lines in Fe XI, Fe XII, and Fe XIII between 200 and 205 Å, whose identities were in question based on a disagreement between different databases. The spectra of the elements other than iron are much less known, and we find a multitude of lines that are not yet in the databases. For example, the CHIANTI database clearly disagrees with the NIST data listings on several of the argon lines we observe and also it contains only about half of the observed sulfur lines.