Sample records for high resolution 3d

  1. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect (OSTI)

    Jacobsen, Chris

    2014-12-07T23:59:59.000Z

    Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

  2. 3 July 2003 HIRES3D -ITC Research Seminar -Robert Hack 1 HIGH RESOLUTION REMOTE SENSING

    E-Print Network [OSTI]

    Hack, Robert

    3 July 2003 HIRES3D - ITC Research Seminar - Robert Hack 1 HIRES3D HIGH RESOLUTION REMOTE SENSING FOR 3D GROUND MODELING AND CLASSIFICATION ITC Research Seminar, 3 July 2003 Robert Hack International Institute for Geoinformation Sciences and Earth Observation (ITC) #12;3 July 2003 HIRES3D - ITC Research

  3. Design of electronics for a high-resolution, multi-material, and modular 3D printer

    E-Print Network [OSTI]

    Kwan, Joyce G

    2013-01-01T23:59:59.000Z

    Electronics for a high-resolution, multi-material, and modular 3D printer were designed and implemented. The driver for a piezoelectric inkjet print head can fire its nozzles with one of three droplet sizes ranging from 6 ...

  4. High resolution 3D insider detection and tracking.

    SciTech Connect (OSTI)

    Nelson, Cynthia Lee

    2003-09-01T23:59:59.000Z

    Vulnerability analysis studies show that one of the worst threats against a facility is that of an active insider during an emergency evacuation. When a criticality or other emergency alarm occurs, employees immediately proceed along evacuation routes to designated areas. Procedures are then implemented to account for all material, classified parts, etc. The 3-Dimensional Video Motion Detection (3DVMD) technology could be used to detect and track possible insider activities during alarm situations, as just described, as well as during normal operating conditions. The 3DVMD technology uses multiple cameras to create 3-dimensional detection volumes or zones. Movement throughout detection zones is tracked and high-level information, such as the number of people and their direction of motion, is extracted. In the described alarm scenario, deviances of evacuation procedures taken by an individual could be immediately detected and relayed to a central alarm station. The insider could be tracked and any protected items removed from the area could be flagged. The 3DVMD technology could also be used to monitor such items as machines that are used to build classified parts. During an alarm, detections could be made if items were removed from the machine. Overall, the use of 3DVMD technology during emergency evacuations would help to prevent the loss of classified items and would speed recovery from emergency situations. Further security could also be added by analyzing tracked behavior (motion) as it corresponds to predicted behavior, e.g., behavior corresponding with the execution of required procedures. This information would be valuable for detecting a possible insider not only during emergency situations, but also during times of normal operation.

  5. 2D and 3D high-resolution imaging to reconstruct the microstructure of clay media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2D and 3D high-resolution imaging to reconstruct the microstructure of clay media J.C. Robinet1 & S compacted clay (illite) system, considered to be an analogy for the clay matrix constituting clay-rocks, and three different clayrocks (Callovo-Oxfordian argilites (FR), Opalinus Clay (CH), Boom Clay (BE)). Part

  6. The roughness of stylolites: Implications of 3D high resolution topography measurements

    E-Print Network [OSTI]

    Boyer, Edmond

    diagenesis and metamorphism that develop after their initiation. In this Letter we show the first 3D high

  7. Phys. Med. Biol. 43 (1998) 10011013. Printed in the UK PII: S0031-9155(98)90627-3 High-resolution 3D Bayesian image reconstruction using

    E-Print Network [OSTI]

    Leahy, Richard M.

    1998-01-01T23:59:59.000Z

    -resolution 3D Bayesian image reconstruction using the microPET small-animal scanner Jinyi Qi, Richard M Leahy of high-resolution 3D images from the microPET small-animal scanner. Resolution recovery is achieved 2 mm when using an analytic 3D reprojection (3DRP) method with a ramp filter. These results also

  8. A high-throughput, high-resolution spectrometer for mapping the heliopause and 3-D Solar Wind using He+ 30.4nm

    E-Print Network [OSTI]

    California at Berkeley, University of

    A high-throughput, high-resolution spectrometer for mapping the heliopause and 3-D Solar Wind using Entrance slit farm with ~ 1000 slits Photon counting imager Concave grating used near normal incidence >> Need a higher throughput diffuse EUV spectrometer solar wind respond to coronal

  9. atomic resolution 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed 3D video database of spontaneous facial Cohn, Jeffrey F. 16 Improvement of 3D Printing Resolution by the Development of Shrinkable Materials University of California...

  10. angular resolution 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed 3D video database of spontaneous facial Cohn, Jeffrey F. 18 Improvement of 3D Printing Resolution by the Development of Shrinkable Materials University of California...

  11. The Need For High Resolution In Studies Of The 3-D Magnetic Field Structure Of AGN Jets

    E-Print Network [OSTI]

    Shane P. O'Sullivan; Denise C. Gabuzda

    2008-01-31T23:59:59.000Z

    We are using "broadband" (4.6 to 43 GHz) multi-frequency VLBA polarization observations of compact AGN to investigate the 3-D structure of their jet magnetic (B) fields. Observing at several frequencies, separated by short and long intervals, enables reliable determination of the distribution of Faraday Rotation, and thereby the intrinsic B field structure. Transverse Rotation Measure (RM) gradients were detected in the jets of 0954+658 and 1418+546, providing evidence for the presence of a helical B field surrounding the jet. The RM in the core regions of 2200+420 (BL Lac), 0954+658 and 1418+546 display different signs in different frequency-intervals (on different spatial scales); we suggest an explanation for this in terms of modest bends in a helical B field surrounding their jets. In future, polarization observations with a combination of VSOP-2 at 8, 22 and 43 GHz and ground arrays at frequencies with corresponding resolution will help map out the distributions of Faraday rotation, spectral index and the 3-D B field structure both across the jet and closer to the central engine, providing strong constraints for any jet B field models.

  12. Breaking the Crowther Limit: Combining Depth-Sectioning and Tilt Tomography for High-Resolution, Wide-Field 3D Reconstructions

    E-Print Network [OSTI]

    Hovden, Robert; Jiang, Yi; Wang, Deli; Yu, Yingchao; Abruna, Hector D; Elser, Veit; Muller, David A

    2014-01-01T23:59:59.000Z

    To date, high-resolution ( 6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over one hundred dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability.

  13. A new 3D parallel high resolution electromagnetic nonlinear inversion based on new global magnetic integral and local differential decomposition (GILD)

    SciTech Connect (OSTI)

    Xie, G.; Li, J. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1997-05-01T23:59:59.000Z

    A new 3D electromagnetic modeling and nonlinear inversion algorithm is presented based on global integral and local differential equations decomposition (GILD). The GILD parallel nonlinear inversion algorithm consists of five parts: (1) the domain is decomposed into subdomain SI and subdomain SII; (2) a new global magnetic integral equation in SI and the local magnetic differential equations IN SII will be used together to obtain the magnetic field in the modeling step; (3) the new global magnetic integral Jacobian equation in SI and the local magnetic differential Jacobian equations in SII will be used together to update the electric conductivity and permittivity from the magnetic field data in the inversion step; (4) the subdomain SII can naturally and uniformly be decomposed into 2{sup n} smaller sub-cubic-domains; the sparse matrix in each sub-cubic-domain can be eliminated separately, in parallel; (5) a new parallel multiple hierarchy substructure algorithm will be used to solve the smaller full matrices in SI, in parallel. The applications of the new 3D parallel GILD EM modeling and nonlinear inversion algorithm and software are: (1) to create high resolution controlled-source electric conductivity and permittivity imaging for interpreting electromagnetic field data acquired from cross hole, surface to borehole, surface to surface, single hole, and multiple holes; (2) to create the magnetotelluric high resolution imaging from the surface impedance and field data. The new GILD parallel nonlinear inversion will be a 3D/2.5D powerful imaging tool for the oil geophysical exploration and environmental remediation and monitoring.

  14. Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit

    SciTech Connect (OSTI)

    Scott R. Reeves

    2007-09-30T23:59:59.000Z

    The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a relational model to predict porosity and permeability profiles from well logs at each well location, and a 3D geostatistical variogram to generate the reservoir characterization over the reservoir volume of interest. A reservoir simulation model was built based upon this characterization and history-matched without making significant changes to it, thus validating the procedure. While not the same procedure as originally planned, the procedure ultimately employed proved successful and demonstrated that the general concepts proposed (i.e., data mining and advanced pattern recognition methods) have the flexibility to achieve the reservoir characterization objectives sought even with imperfect or incomplete data.

  15. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    SciTech Connect (OSTI)

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11T23:59:59.000Z

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  16. High throughput 3-D tissue cytometry

    E-Print Network [OSTI]

    Kwon, Hyuk-Sang, 1971-

    2007-01-01T23:59:59.000Z

    This thesis presents the ongoing technological development of high throughput 3-D tissue cytometry.and its applications in biomedicine. 3-D tissue cytometry has been developed in our laboratory based on two-photon microscopy ...

  17. A detailed pore characterization in 2D and 3D by means of optical and fluorescence microscopy combined with high-resolution X-ray CT.

    E-Print Network [OSTI]

    Gent, Universiteit

    combined with high-resolution X-ray CT. Research Unit: Sedimentary Geology and Engineering Geology Topic about oil reservoirs, aquifers, building stone weathering). In the past, the pore network was mainly/or laboratory work: Precise sampling of the geological material. Petrographical research with optical

  18. The application of high-resolution 3D seismic data to model the distribution of mechanical and hydrogeological properties of a potential host rock for the deep storage of radioactive waste in France

    E-Print Network [OSTI]

    Mari, Jean-Luc

    2014-01-01T23:59:59.000Z

    In the context of a deep geological repository of high-level radioactive wastes, the French National Radioactive Waste Management Agency (Andra) has conducted an extensive characterization of the Callovo-Oxfordian argillaceous rock and surrounding formations in the Eastern Paris Basin. As part of this project, an accurate 3D seismic derived geological model is needed. The paper shows the procedure used for building the 3D seismic constrained geological model in depth by combining time-to-depth conversion of seismic horizons, consistent seismic velocity model and elastic impedance in time. It also shows how the 3D model is used for mechanical and hydrogeological studies. The 3D seismic field data example illustrates the potential of the proposed depth conversion procedure for estimating density and velocity distributions, which are consistent with the depth conversion of seismic horizons using the Bayesian Kriging method. The geological model shows good agreement with well log data obtained from a reference we...

  19. Note: Design and construction of a multi-scale, high-resolution, tube-generated X-Ray computed-tomography system for three-dimensional (3D) imaging

    SciTech Connect (OSTI)

    Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh [Materials Science and Engineering, Security and Defense Systems Initiative, Arizona State University, 781 E. Terrace Road, ISTB4, Tempe, Arizona 85287-5604 (United States)] [Materials Science and Engineering, Security and Defense Systems Initiative, Arizona State University, 781 E. Terrace Road, ISTB4, Tempe, Arizona 85287-5604 (United States)

    2014-01-15T23:59:59.000Z

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  20. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect (OSTI)

    Marzolf, A.; Folsom, M.

    2010-08-31T23:59:59.000Z

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

  1. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    SciTech Connect (OSTI)

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03T23:59:59.000Z

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of permeability will result from images between 2 and 4 lm resolution. To reduce permeability underestimation from analyses of high-resolu- tion images, a resolution threshold between 3 and 15 lm was found to be effective, but it is not known whether this range is applicable beyond the samples studied here.

  2. TOWARDS ROBUST 3D FACE RECOGNITION FROM NOISY RANGE IMAGES WITH LOW RESOLUTION

    E-Print Network [OSTI]

    Nabben, Reinhard

    application or access control for high-security areas like an airport control tower. Face recognition systems. Our work resulted in the development of a real-time system for the process- ing of three data and process it efficiently and in real-time. Furthermore, our 3D face recognition system

  3. High Resolution EELS | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EELS EMSL's ultrahigh vacuum (UHV) surface chemistry-high-resolution electron energy loss spectroscopy (HREELS) system is designed to study the molecular-level chemistry...

  4. Volume 0 (1981), Number 0 pp. 110 COMPUTER GRAPHICS forum Resolution Independent NPR-Style 3D Line Textures

    E-Print Network [OSTI]

    Gooch, Amy

    1981-01-01T23:59:59.000Z

    and faint, sketchy feature lines. sketchiness of the feature edges and material property lines is modifiedVolume 0 (1981), Number 0 pp. 1­10 COMPUTER GRAPHICS forum Resolution Independent NPR-Style 3D Line-photorealistically rendered (NPR) scenes using 3D line primitives to define architectural features of the model, as well

  5. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect (OSTI)

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01T23:59:59.000Z

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  6. Improvement of 3D Printing Resolution by the Development of Shrinkable Materials

    E-Print Network [OSTI]

    Chia, Helena

    2014-01-01T23:59:59.000Z

    learned a lot about 3D printing and myself in this processderived microstructures by 3D printing: bio-and structuralScaffold development using 3D printing with a starch-based

  7. Improvement of 3D Printing Resolution by the Development of Shrinkable Materials

    E-Print Network [OSTI]

    Chia, Helena

    2014-01-01T23:59:59.000Z

    derived microstructures by 3D printing: bio-and structuralScaffold development using 3D printing with a starch-basedderived microstructures by 3D printing: bio-and structural

  8. RELAP5-3D Resolution of Known Restart/Backup Issues

    SciTech Connect (OSTI)

    Mesina, George L.; Anderson, Nolan A.

    2014-12-01T23:59:59.000Z

    The state-of-the-art nuclear reactor system safety analysis computer program developed at the Idaho National Laboratory (INL), RELAP5-3D, continues to adapt to changes in computer hardware and software and to develop to meet the ever-expanding needs of the nuclear industry. To continue at the forefront, code testing must evolve with both code and industry developments, and it must work correctly. To best ensure this, the processes of Software Verification and Validation (V&V) are applied. Verification compares coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions. A form of this, sequential verification, checks code specifications against coding only when originally written then applies regression testing which compares code calculations between consecutive updates or versions on a set of test cases to check that the performance does not change. A sequential verification testing system was specially constructed for RELAP5-3D to both detect errors with extreme accuracy and cover all nuclear-plant-relevant code features. Detection is provided through a “verification file” that records double precision sums of key variables. Coverage is provided by a test suite of input decks that exercise code features and capabilities necessary to model a nuclear power plant. A matrix of test features and short-running cases that exercise them is presented. This testing system is used to test base cases (called null testing) as well as restart and backup cases. It can test RELAP5-3D performance in both standalone and coupled (through PVM to other codes) runs. Application of verification testing revealed numerous restart and backup issues in both standalone and couple modes. This document reports the resolution of these issues.

  9. Atomic-resolution 3D structure of amyloid ? fibrils: The Osaka mutation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schutz, Anne K. [ETH Zurich, Wolfgang-Pauli-Strasse. Zurich (Switzerland); Wall, Joseph [Brookhaven National Lab. (BNL), Upton, NY (United States); Vagt, Toni [ETH Zurich, Zurich (Switzerland); Huber, Matthias [ETH Zurich, Wolfgang-Pauli-Strasse. Zurich (Switzerland); Ovchinnikova, Oxana Y. [ETH Zurich, Zurich (Switzerland); Cadalbert, Riccardo [ETH Zurich, Wolfgang-Pauli-Strasse. Zurich (Switzerland); Guntert, Peter [Goethe Univ., Frankfurt (Germany); Bockmann, Anja [Univ. de Lyon, Lyon (France); Glockshuber, Rudi [ETH Zurich, Zurich (Switzerland); Meier, Beat H. [ETH Zurich, Wolfgang-Pauli-Strasse. Zurich (Switzerland)

    2015-01-02T23:59:59.000Z

    Despite its central importance for understanding the molecular basis of Alzheimer's disease (AD), high-resolution structural information on amyloid ?-peptide (A?) fibrils, which are intimately linked with AD, is scarce. We report an atomic-resolution fibril structure of the A? 1-40 peptide with the Osaka mutation (E22?), associated with early-onset AD. The structure, which differs substantially from all previously proposed models, is based on a large number of unambiguous intra- and intermolecular solid-state NMR distance restraints

  10. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, G.W.; Fuller, K.R.

    1993-04-06T23:59:59.000Z

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  11. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, Glenn W. (Los Alamos, NM); Fuller, Kenneth R. (Los Alamos, NM)

    1993-01-01T23:59:59.000Z

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  12. 2013 American Geophysical Union. All Rights Reserved. High resolution imaging of the melt distribution in 1

    E-Print Network [OSTI]

    © 2013 American Geophysical Union. All Rights Reserved. High resolution imaging of the melt;© 2013 American Geophysical Union. All Rights Reserved. Abstract We determine the 3-D melt geometry

  13. High resolution time interval meter

    DOE Patents [OSTI]

    Martin, A.D.

    1986-05-09T23:59:59.000Z

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  14. High Resolution Nanoimprint for Nanophotonics 

    E-Print Network [OSTI]

    Jiang, Youwei

    2014-04-28T23:59:59.000Z

    of SERS-active device depends on two main factors: good reproducibility and high enhancement factor. Ordered metallic nanostructures with high resolution are usually preferred for SERS application. Nanoimprint lithography can provide a low-cost and high...

  15. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    SciTech Connect (OSTI)

    Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Université de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Liège (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium)

    2014-01-15T23:59:59.000Z

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution on ?CT-based morphological analysis. • Surface properties influence accuracy of ?CT-based morphology of porous structures. • Total porosity was the least sensitive to surface complexity and scan voxel size. • The beam thickness analysis was overestimated by the surface roughness. • Voxel size customization can significantly reduce a cost of the ?CT-based analysis.

  16. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model Zaher Abstract We have analysed low and high temperature series expansions for the three­dimensional Ising model on the simple cubic lattice. Our analysis of Butera and Comi's new 32 term high temperature series yields K c

  17. High resolution telescope

    DOE Patents [OSTI]

    Massie, Norbert A. (San Ramon, CA); Oster, Yale (Danville, CA)

    1992-01-01T23:59:59.000Z

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  18. Adaptive Multi-resolution 3D Hartree-Fock-Bogoliubov Solver for Nuclear Structure

    E-Print Network [OSTI]

    Junchen Pei; George Fann; Robert Harrison; Witold Nazarewicz; Yue Shi; Scott Thornton

    2014-07-14T23:59:59.000Z

    Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly-bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, they are all characterized by large sizes and complex topologies, in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. To describe complex superfluid many-fermion systems, we introduce an adaptive pseudo-spectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver {\\madnesshfb} is benchmarked against a two-dimensional coordinate-space solver {\\hfbax} based on B-spline technique and three-dimensional solver {\\hfodd} based on the harmonic oscillator basis expansion. Several examples are considered, including self-consistent HFB problem for spin-polarized trapped cold fermions and Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei. The new {\\madnesshfb} framework has many attractive features when applied to nuclear and atomic problems involving many-particle superfluid systems. Of particular interest are weakly-bound nuclear configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present in fission and heavy ion fusion, and exotic pasta phases that appear in the neutron star crust.

  19. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29T23:59:59.000Z

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  20. Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution

    E-Print Network [OSTI]

    Mohseni, Hooman

    and Evolution, Stony Brook University, Stony Brook, NY, 11794; d Bigelow Laboratory for Ocean Sciences, 180 Mc to sink from surface waters--determines in part the amount of carbon that can be fixed by the ocean and fluorescence methods (8), the high penetration of X-rays suits them ideally to the investigation of trace

  1. UV-LED LITHOGRAPHY FOR 3-D HIGH ASPECT RATIO MICROSTRUCTURE PATTERNING

    E-Print Network [OSTI]

    in microfabrication. Table 1 compares the performance of UV-LEDs with a mercury lamp for several key parametersUV-LED LITHOGRAPHY FOR 3-D HIGH ASPECT RATIO MICROSTRUCTURE PATTERNING Jungkwun `JK' Kim*, Seung of Technology, Atlanta, GA, USA ABSTRACT This paper presents a UV lithography method that utilizes a UV-LED

  2. SINGLE-MASK, HIGH ASPECT RATIO, 3-D MICROMACHINING OF BULK TITANIUM , M. F. Aimi2

    E-Print Network [OSTI]

    MacDonald, Noel C.

    SINGLE-MASK, HIGH ASPECT RATIO, 3-D MICROMACHINING OF BULK TITANIUM M. P. Rao1 , M. F. Aimi2 , E. R profiles in bulk titanium. The method relies on the exploitation of Reactive Ion Etching Lag (RIE Lag for application in bulk micromachined titanium micromirror devices. 1. INTRODUCTION The recent development

  3. Enhanced High Resolution RBS System

    SciTech Connect (OSTI)

    Pollock, Thomas J.; Hass, James A.; Klody, George M. [National Electrostatics Corp., Middleton, Wisconsin, U. S. A. 53562-0310 (United States)

    2011-06-01T23:59:59.000Z

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  4. Coupling: Impact and Implications for High-Resolution Time-Lapse Seismic Surveying

    E-Print Network [OSTI]

    Walters, Shelby Lynn

    2008-07-28T23:59:59.000Z

    conditions with repeat shots has a different effect on surface waves and compressional waves. This observation has potential application to wavefield separation. Acquisition approaches typically used to optimize 2D or 3D high-resolution seismic surveys may...

  5. Evaporation-Driven Fast Crystallization of 3D Micro- and Nano-particle Assemblies via Micro Mechanical Systems

    E-Print Network [OSTI]

    Choi, Sun

    2012-01-01T23:59:59.000Z

    3D ZnO Nanoparticle Assemblies on Gold Electrodes A novel manufacturing method, “High resolution screen printing

  6. Fuzzy Control for Enforcing Energy Efficiency in High-Performance 3D Systems

    E-Print Network [OSTI]

    Coskun, Ayse

    to remove the heat from 3D ICs. 3D systems are also prone to large thermal variations; e.g., cores located and DVFS-based thermal management in 3D multicore systems [28], [8], [27]. However, as power densities micro- channels (or pin-fin structures) between the tiers of a 3D stack using a pump to remove the heat

  7. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    E-Print Network [OSTI]

    Suerfu, Burkhant

    2015-01-01T23:59:59.000Z

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pio...

  8. High Resolution Timing with Low Resolution Clocks A Microsecond Resolution Timer for Sun Workstations

    E-Print Network [OSTI]

    Melvin, Stephen

    High Resolution Timing with Low Resolution Clocks and A Microsecond Resolution Timer for Sun for Sun 3 and Sun 4 workstations1. One can measure average service times without a high resolution clock?" 1. Introduction - Who Needs a Microsecond Clock Beginning with its Sun 3 workstations, Sun

  9. Global well-posedness for the 3D rotating Navier-Stokes equations with highly oscillating initial data

    E-Print Network [OSTI]

    Qionglei Chen; Changxing Miao; Zhifei Zhang

    2010-03-31T23:59:59.000Z

    In this paper, we prove the global well-posedness for the 3D rotating Navier-Stokes equations in the critical functional framework. Especially, this result allows to construct global solutions for a class of highly oscillating initial data.

  10. advanced high resolution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer Geosciences Websites Summary: Using Moderate Resolution Imaging Spectrometer (MODIS)...

  11. 3D CFD Model of High Temperature H2O/CO2 Co-electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

    2007-06-01T23:59:59.000Z

    3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James O’Brien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis, using high-temperature nuclear process heat and electricity. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to 55%.

  12. Analysis of the High-Resolution Infrared Spectrum of Cyclopropane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the High-Resolution Infrared Spectrum of Cyclopropane. Analysis of the High-Resolution Infrared Spectrum of Cyclopropane. Abstract: The high resolution infrared spectrum of...

  13. Development of a high throughput 3D perfused liver tissue bioreactor

    E-Print Network [OSTI]

    Inman, Samuel Walker

    2006-01-01T23:59:59.000Z

    This thesis describes the development of a device designed for culturing liver tissue in a 3D perfused environment. Cells form tissue inside miniature channels of a scaffold, and the tissue is perfused with culture medium ...

  14. HIGH RESOLUTION SCANNING AUGER MICROANALYSIS OF HIGH-STRENGTH SILICON CARBIDES

    E-Print Network [OSTI]

    Krivanek, O.L.

    2012-01-01T23:59:59.000Z

    Society HIGH RESOLUTION SCANNING AUGER MICROANALYSIS OFCalifornia. HIGH RESOLUTION SCANNING AUGER MICROANALYSIS OFhelium, by high resolution scanning Auger microanalysis and

  15. Efficient 3D numerical prediction of the pressure wave generated by high-speed trains entering tunnels

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Efficient 3D numerical prediction of the pressure wave generated by high-speed trains entering in a tunnel. The movement of the train is made thanks to a technique of sliding meshes and a conservative-dimensional simulation, Cartesian mesh, Sliding grid, Non-reflecting boundary conditions, High-speed trains. 1

  16. High resolution reservoir geological modelling using outcrop information

    SciTech Connect (OSTI)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01T23:59:59.000Z

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  17. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization...

  18. High resolution scintillation detector with semiconductor readout

    DOE Patents [OSTI]

    Levin, Craig S. (Santa Monica, CA); Hoffman, Edward J. (Los Angeles, CA)

    2000-01-01T23:59:59.000Z

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  19. Identifying chromatin interactions at high spatial resolution

    E-Print Network [OSTI]

    Reeder, Christopher Campbell

    2014-01-01T23:59:59.000Z

    This thesis presents two computational approaches for identifying chromatin interactions at high spatial resolution from ChIA-PET data. We introduce SPROUT which is a hierarchical probabilistic model that discovers high ...

  20. Dynamic Wind Effects on Buildings with 3D Coupled Modes: Application of High Frequency Force Balance Measurements

    E-Print Network [OSTI]

    Chen, Xinzhong

    Dynamic Wind Effects on Buildings with 3D Coupled Modes: Application of High Frequency Force frequency force balance HFFB technique customarily used in wind tunnel testing for uncoupled buildings have been widely recognized for conveniently quantifying generalized wind forces on tall build- ings

  1. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    E-Print Network [OSTI]

    Burkhant Suerfu; Christopher G. Tully

    2015-01-28T23:59:59.000Z

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials.

  2. Advanced Detector Research - Fabrication and Testing of 3D Active-Edge Silicon Sensors: High Speed, High Yield

    SciTech Connect (OSTI)

    Parker, Sherwood I

    2008-09-01T23:59:59.000Z

    Development of 3D silicon radiation sensors employing electrodes fabricated perpendicular to the sensor surfaces to improve fabrication yields and increasing pulse speeds.

  3. High resolution studies of massive primordial haloes

    E-Print Network [OSTI]

    Latif, M A; Schmidt, W; Niemeyer, J

    2012-01-01T23:59:59.000Z

    Atomic cooling haloes with T_vir > 10^4 K are the most plausible sites for the formation of the first galaxies. In this article, we aim to study the implications of gravity driven turbulence in protogalactic haloes. By varying the resolution per Jeans length, we explore whether the turbulent cascade is resolved well enough to obtain converged results. We have performed high resolution cosmological simulations using the adaptive mesh refinement code Enzo including a subgrid-scale turbulence model to study the role of unresolved turbulence. We compared the results of three different Jeans resolutions from 16 to 64 cells. While radially averaged profiles roughly agree at different resolutions, differences in the morphology reveal that even the highest resolution employed provides no convergence. Moreover, taking into account unresolved turbulence significantly influences the morphology of a halo. We have quantified the properties of the high-density clumps in the halo. These clumps are gravitationally unbound wi...

  4. Scene Reconstruction from High Spatio-Angular Resolution Light Fields Changil Kim1,2

    E-Print Network [OSTI]

    Zimmer, Henning

    Scene Reconstruction from High Spatio-Angular Resolution Light Fields Changil Kim1,2 Henning Zimmer Figure 1: Our method reconstructs accurate depth from light fields of complex scenes. The images on the left show a 2D slice of a 3D input light field, a so called epipolar-plane image (EPI), and two out

  5. arecibo high resolution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    84 Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer Geosciences Websites Summary: Using Moderate Resolution Imaging...

  6. High throughput 3D optical microscopy : from image cytometry to endomicroscopy

    E-Print Network [OSTI]

    Choi, Heejin

    2014-01-01T23:59:59.000Z

    Optical microscopy is an imaging technique that allows morphological mapping of intracellular structures with submicron resolution. More importantly, optical microscopy is a technique that can readily provide images with ...

  7. Radiometry High Spectral Resolution Fourier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations:Radiological Threat Reduction2High

  8. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOE Patents [OSTI]

    Kwiatkowski, Kris (Los Alamos, NM); Lyke, James (Albuquerque, NM)

    2007-12-18T23:59:59.000Z

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  9. High-resolution three-dimensional simulations of core-collapse supernovae in multiple progenitors

    SciTech Connect (OSTI)

    Couch, Sean M. [Flash Center for Computational Science, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); O'Connor, Evan P., E-mail: smc@flash.uchicago.edu [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8 (Canada)

    2014-04-20T23:59:59.000Z

    Three-dimensional (3D) simulations of core-collapse supernovae (CCSNe) are granting new insight into the as-yet-uncertain mechanism that drives successful explosions. While there is still debate about whether explosions are obtained more easily in 3D than in 2D, it is undeniable that there exist qualitative and quantitative differences between the results of 3D and 2D simulations. We present an extensive set of high-resolution 1D, 2D, and 3D CCSN simulations with multispecies neutrino leakage carried out in two different progenitors. Our simulations confirm the results of Couch indicating that 2D explodes more readily than 3D. We argue that this is due to the inadequacies of 2D to accurately capture important aspects of the 3D dynamics. We find that without artificially enhancing the neutrino heating rate, we do not obtain explosions in 3D. We examine the development of neutrino-driven convection and the standing accretion shock instability (SASI) and find that, in separate regimes, either instability can dominate. We find evidence for growth of the SASI for both 15 M {sub ?} and 27 M {sub ?} progenitors; however, it is weaker in 3D exploding models. The growth rate of both instabilities is artificially enhanced along the symmetry axis in 2D as compared with our axis-free 3D Cartesian simulations. Our work highlights the growing consensus that CCSNe must be studied in 3D if we hope to solve the mystery of how the explosions are powered.

  10. Visualization methods for high-resolution, transient, 3-D, finite element situations

    SciTech Connect (OSTI)

    Christon, M.A.

    1995-01-10T23:59:59.000Z

    Scientific visualization is the process whereby numerical data is transformed into a visual form to augment the process of discovery and understanding. Visualizing the data generated by large-scale, transient, three-dimensional finite element simulations poses many challenges due to geometric complexity, the presence of multiple materials and multiple element types, and the inherent unstructured nature of the meshes. In this paper, the direct use of finite element data structures, nodal assembly procedures, and element interpolants for volumetric adaptive surface extraction, surface rendering, vector grids and particle tracing is discussed. A brief description of a {open_quotes}direct-to-disk{close_quotes} animation system is presented, and case studies which demonstrate the use of isosurfaces, vector plots, cutting planes, reference surfaces and particle tracing are then discussed in the context of several case studies for transient incompressible viscous flow, and acoustic fluid-structure interaction simulations. An overview of the implications of massively parallel computers on visualization is presented to highlight the issues in parallel visualization methodology, algorithms. data locality and the ultimate requirements for temporary and archival data storage and network bandwidth.

  11. High-Resolution PET Detector. Final report

    SciTech Connect (OSTI)

    Karp, Joel

    2014-03-26T23:59:59.000Z

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  12. Analysis of Rotational Structure in the High-Resolution Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotational Structure in the High-Resolution Infrared Spectrum and Assignment of Vibrational Fundamentals of Analysis of Rotational Structure in the High-Resolution Infrared...

  13. Merging high resolution geophysical and geochemical surveys to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon Merging high resolution geophysical and geochemical surveys to reduce...

  14. New generation NMR bioreactor coupled with high-resolution NMR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella New generation NMR bioreactor coupled with high-resolution NMR...

  15. Coherent Vibrational Dynamics and High-Resolution Nonlinear Spectrosco...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vibrational Dynamics and High-Resolution Nonlinear Spectroscopy: A Comparison with the AirDMSO Liquid Interface. Coherent Vibrational Dynamics and High-Resolution Nonlinear...

  16. Applications of High-Resolution Electrospray Ionization Mass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Applications of High-Resolution Electrospray Ionization Mass...

  17. Sandia Energy - High-Resolution Computational Algorithms for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Resolution Computational Algorithms for Simulating Offshore Wind Farms Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind High-Resolution...

  18. Supercomputers Fuel Global High-Resolution Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Fuel Global High-Resolution Climate Models Supercomputers Fuel Global High-Resolution Climate Models Berkeley Lab Researcher Says Climate Science is Entering New...

  19. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle...

  20. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization Catalyst...

  1. High Resolution and Low-Temperature Photoelectron Spectroscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Resolution and Low-Temperature Photoelectron Spectroscopy of an Oxygen-Linked Fullerene Dimer Dianion: C120O2-. High Resolution and Low-Temperature Photoelectron Spectroscopy...

  2. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    E-Print Network [OSTI]

    Kim, Kyoohyun

    We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed ...

  3. Exact and variational solutions of 3D Eigenmodes in high gain Free Electron Lasers

    E-Print Network [OSTI]

    Xie, M.

    2011-01-01T23:59:59.000Z

    Motz, Undulators and Free-Electron Lasers, (Clarendon Press,in High . Gain Free Electron Lasers MingXie Accelerator andin High Gain Free Electron Lasers Ming Xie Accelerator and

  4. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature Abstract We have analysed low and high temperature series expansions for the three high temperature series yields Kc = 0.221659 +0.000002-0.000005and from the 32 term low

  5. A compact single-camera system for high-speed, simultaneous 3-D velocity and temperature measurements.

    SciTech Connect (OSTI)

    Lu, Louise [University of Michigan, Ann Arbor, MI; Sick, Volker [University of Michigan, Ann Arbor, MI; Frank, Jonathan H.

    2013-09-01T23:59:59.000Z

    The University of Michigan and Sandia National Laboratories collaborated on the initial development of a compact single-camera approach for simultaneously measuring 3-D gasphase velocity and temperature fields at high frame rates. A compact diagnostic tool is desired to enable investigations of flows with limited optical access, such as near-wall flows in an internal combustion engine. These in-cylinder flows play a crucial role in improving engine performance. Thermographic phosphors were proposed as flow and temperature tracers to extend the capabilities of a novel, compact 3D velocimetry diagnostic to include high-speed thermometry. Ratiometric measurements were performed using two spectral bands of laser-induced phosphorescence emission from BaMg2Al10O17:Eu (BAM) phosphors in a heated air flow to determine the optimal optical configuration for accurate temperature measurements. The originally planned multi-year research project ended prematurely after the first year due to the Sandia-sponsored student leaving the research group at the University of Michigan.

  6. High-resolution ab initio Three-dimensional X-ray Diffraction Microscopy

    SciTech Connect (OSTI)

    Chapman, H N; Barty, A; Marchesini, S; Noy, A; Cui, C; Howells, M R; Rosen, R; He, H; Spence, J H; Weierstall, U; Beetz, T; Jacobsen, C; Shapiro, D

    2005-08-19T23:59:59.000Z

    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.

  7. Structural optimization of 3D-printed synthetic spider webs for high strength

    E-Print Network [OSTI]

    Qin, Zhao

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological ...

  8. High resolution patterning of silica aerogels

    SciTech Connect (OSTI)

    Bertino, M.F.; Hund, J.F.; Sosa, J.; Zhang, G.; Sotiriou-Leventis, C.; Leventis, N.; Tokuhiro, A.T.; Terry, J. (UMR-MUST); (IIT)

    2008-10-30T23:59:59.000Z

    Three-dimensional metallic structures are fabricated with high spatial resolution in silica aerogels. In our method, silica hydrogels are prepared with a standard base-catalyzed route, and exchanged with an aqueous solution typically containing Ag{sup +} ions (1 M) and 2-propanol (0.2 M). The metal ions are reduced photolytically with a table-top ultraviolet lamp, or radiolytically, with a focused X-ray beam. We fabricated dots and lines as small as 30 x 70 {micro}m, protruding for several mm into the bulk of the materials. The hydrogels are eventually supercritically dried to yield aerogels, without any measurable change in the shape and spatial resolution of the lithographed structures. Transmission electron microscopy shows that illuminated regions are composed by Ag clusters with a size of several {micro}m, separated by thin layers of silica.

  9. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe

    DOE Patents [OSTI]

    Majewski, Stanislaw (Yorktown, VA); Proffitt, James (Newport News, VA)

    2010-12-28T23:59:59.000Z

    A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.

  10. High-resolution geostatistical inversion of a seismic data set acquired in a Gulf of Mexico gas reservoir.

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    High-resolution geostatistical inversion of a seismic data set acquired in a Gulf of Mexico gas, UNOCAL Corporation Summary Geostatistical inversion is applied on a Gulf-of-Mexico, 3D post-stack seismic in this paper is located in the Gulf of Mexico, off the coast of Louisiana. Existing development wells reach two

  11. Earthquake Damage Identification using High-Resolution Satellite

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Earthquake Damage Identification using High-Resolution Satellite Images from the 2003 Northern & evaluation · High-resolution satellite imagery · Images from Boumerdes, Algeria · Semi-automated damage are most damaged? ­ Effects in less populated areas · Earthquake reconnaissance time wasted "looking

  12. Ultra-high resolution computed tomography imaging

    DOE Patents [OSTI]

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  13. Communication: Spectroscopic phase and lineshapes in high-resolution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communication: Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: Resolving Communication: Spectroscopic phase and lineshapes...

  14. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    SciTech Connect (OSTI)

    Bai Xianchen; Yang Jianhua; Zhang Jiande [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2012-08-15T23:59:59.000Z

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  15. RESEARCH ARTICLE High-resolution climate change mapping with gridded

    E-Print Network [OSTI]

    Vermont, University of

    RESEARCH ARTICLE High-resolution climate change mapping with gridded historical climate products of climate research and adaptation efforts around the world. High-resolution gridded historical climate (GHC products to produce high-resolution temperature trend maps for the US Northeast from 1980 to 2009

  16. CLINICAL SCIENCES High-Speed UltraHigh-Resolution Optical

    E-Print Network [OSTI]

    Srinivasan, Vivek J.

    of the perifoveal pho- toreceptor inner segment/outer segment junction and thin- ning of the outer nuclear layer- velopedbyourgroupforuseintheophthal- mologyclinicattheNewEnglandEyeCen- ter,Boston,Mass.Thissystemusesspectral or­high-resolutionOCTenablessuperior visualizationofretinalmorphologyinanum- Author Affiliations: New England Eye Center, Tufts­New England Medical Center, Tufts University

  17. MultiFab : a multi-material 3D printing platform

    E-Print Network [OSTI]

    Ramos-Maltés, Javier Eduardo

    2014-01-01T23:59:59.000Z

    This thesis presents the development of MultiFab, a multi-material 3D printing architecture that is high-resolution, scalable, and low-cost. MultiFab enables the 3D printing of parts with materials that interact optically ...

  18. Minimally invasive diagnostic imaging using high resolution Optical Coherence Tomography

    E-Print Network [OSTI]

    Herz, Paul Richard, 1972-

    2004-01-01T23:59:59.000Z

    Advances in medical imaging have given researchers unprecedented capabilities to visualize, characterize and understand biological systems. Optical Coherence Tomography (OCT) is a high speed, high resolution imaging technique ...

  19. High resolution EUV monochromator/spectrometer

    DOE Patents [OSTI]

    Koike, Masako (Moraga, CA)

    1996-01-01T23:59:59.000Z

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.

  20. High resolution EUV monochromator/spectrometer

    DOE Patents [OSTI]

    Koike, Masako

    1996-06-18T23:59:59.000Z

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.

  1. High resolution spectroscopy of ultracool M dwarfs

    E-Print Network [OSTI]

    I. Neill Reid; J. Davy Kirkpatrick; J. Liebert; J. E. Gizis; C. C. Dahn; D. G. Monet

    2002-04-17T23:59:59.000Z

    (abridged) We present high-resolution echelle spectroscopy of a photometricaly-selected sample if thirty-nine dwarfs with spectral types between M6.5 and L0.5. Two stars, 2MASSI 0253202+271333 and 2MASSW 0952219-192431, are double-lined spectroscopic binaries. We have used our observations to search for Li I 6708 A absorption, characteristic of sub-stellar mass; estimate the level of chromospheric activity through measurement of H-alpha emission fluxes; measure rotational velocities via line broadening; and determine radial velocities and Galactic space motions. Two dwarfs have strong lithium absorption, the previously-known brown dwarf, LP 944-20, and 2MASSI J0335020+234235, which we identify as a probable 0.06 M_sun brown dwarf, age ~1 Gyr. We have investigated the prospect of using the observed frequency of lithium absorption amongst ultracool M dwarfs (M7 to M9.5) as a probe of the initial mass function. The available observations are difficult to reconcile with Salpeter-like power-law mass functions (alpha > 2) for masses below 0.1M_Sun. A comparison between the rotational velocities and -alpha fluxes shows no evidence for significant correlation. Velocity dispersions are significantly lower than those measured for nearby M dwarfs, but show remarkable similarity to results for earlier-type emission-line (dMe) dwarfs. The latter are generally assigned ages of less than ~3 Gyrs.

  2. High vertical resolution crosswell seismic imaging

    DOE Patents [OSTI]

    Lazaratos, Spyridon K. (Houston, TX)

    1999-12-07T23:59:59.000Z

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  3. A High-Resolution Global Climate Simulation

    SciTech Connect (OSTI)

    Duffy, P B

    2001-01-23T23:59:59.000Z

    A major factor limiting the quality and usefulness of global climate models is the coarse spatial resolution of these models. Global climate models today are typically run at resolutions of {approx}300 km (or even coarser) meaning that the smallest features represented are 300 km across. As Figure 1 shows, this resolution does not allow adequate representation of small or even large topographic features (e.g. the Sierra Nevada mountains). As a result of this and other problems, coarse-resolution global models do not come close to accurately simulating climate on regional spatial scales (e.g. within California). Results on continental and larger sales are much more realistic. An important consequence of this inability to simulate regional climate is that global climate model results cannot be used as the basis of assessments of potential societal impacts of climate change (e.g. effects on agriculture in the Central Valley, on management of water resources, etc.).

  4. Mexico City Aerosol Analysis during MILAGRO using High Resolution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 2: Abstract: Submicron aerosol was analyzed during...

  5. Mexico City Aerosol Analysis during MILAGRO using High Resolution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Abstract: Submicron aerosol was analyzed during...

  6. An Automated Platform for High-Resolution Tissue Imaging Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. High resolution mass analysis combined with MSMS experiments enabled...

  7. High-Resolution Electrospray Ionization Mass Spectrometry Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic...

  8. Merging High Resolution Geophysical and Geochemical Surveys to...

    Open Energy Info (EERE)

    Buttes, Oregon Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Merging High Resolution Geophysical and Geochemical Surveys to Reduce...

  9. High-Resolution Desorption Electrospray Ionization Mass Spectrometry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between different mechanisms of chemical aging. Citation: Laskin J, A Laskin, PJ Roach, GW Slysz, GA Anderson, S Nizkorodov, DL Bones, and L Nguyen.2010."High-Resolution...

  10. High-Resolution Differential Ion Mobility Separations Using Helium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helium-Rich Gases. High-Resolution Differential Ion Mobility Separations Using Helium-Rich Gases. Abstract: Analyses of complex mixtures and characterization of ions increasingly...

  11. Merging high resolution geophysical and geochemical surveys to...

    Broader source: Energy.gov (indexed) [DOE]

    Merging high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon Patrick Walsh Ormat Nevada Inc. Innovative technologies May 19, 2010...

  12. 3D Printing Electronics

    E-Print Network [OSTI]

    Stryk, Oskar von

    Login Register Home Videos Jobs Games 3D Printing Electronics Design Software Designer Edge for 3D Printing · -- B6 Sigma Labs (ticker SGLB) is not the same company as Sigma Technologies

  13. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems  https://vision.lbl.gov/Software/3DMorphometry/ 

  14. High resolution, high rate x-ray spectrometer

    DOE Patents [OSTI]

    Goulding, F.S.; Landis, D.A.

    1983-07-14T23:59:59.000Z

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  15. Scanning and Printing Persons in 3D Jurgen Sturm1

    E-Print Network [OSTI]

    Cremers, Daniel

    miniatures of persons using a Kinect sensor and a 3D color printer. To achieve this, we acquire color- through in rapid prototyping in recent years. Modern 3D printers are able to print colored 3D models at resolutions comparable to 2D paper printers. On the one hand, the creation of a detailed, printable 3D model

  16. Construction and Evaluation of a High Spatial Resolution Wavefront Sensor

    E-Print Network [OSTI]

    Construction and Evaluation of a High Spatial Resolution Wavefront Sensor MARTIN BUSCHBECK Bachelor.3. Analysis program 3 Evaluation of the Hartmann-Shack sensor 3.1 Calibration of the sensor 3.1.1 Reference eyes. In this thesis a high spatial resolution Hartmann-Shack wavefront sensor, which allows the study

  17. Accepting the T3D

    SciTech Connect (OSTI)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01T23:59:59.000Z

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  18. assays high resolution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Malbet 1995-09-14 31 High-resolution x-ray telescopes CERN Preprints Summary: High-energy astrophysics is a relatively young scientific field, made possible by space-borne...

  19. analysing high resolution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Malbet 1995-09-14 34 High-resolution x-ray telescopes CERN Preprints Summary: High-energy astrophysics is a relatively young scientific field, made possible by space-borne...

  20. Exploring electronic structure through high-resolution hard x...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Modern high brilliance beamlines coupled with recent advances in hard-x-ray optics are establishing high-resolution hard x-ray spectroscopies as a powerful analytical...

  1. Simplified models of stellar wind anatomy to interpret high-resolution data: Analytical approach to embedded spiral geometries

    E-Print Network [OSTI]

    Homan, Ward; de Koter, Alex; van Marle, Allard Jan; Lombaert, Robin; Vlemmings, Wouter

    2015-01-01T23:59:59.000Z

    Recent high-resolution observations have shown stellar winds to harbour complexities which strongly deviate from spherical symmetry, generally assumed as standard wind model. One such morphology is the archimedean spiral, generally believed to be formed by binary interactions, which has been directly observed in multiple sources. We seek to investigate the manifestation in the observables of spiral structures embedded in the spherical outflows of cool stars. We aim to provide an intuitive bedrock with which upcoming ALMA data can be compared and interpreted. By means of an extended parameter study, we model rotational CO emission from the stellar outflow of asymptotic giant branch stars. To this end, we develop a simplified analytical parametrised description of a 3D spiral structure. This model is embedded into a spherical wind, and fed into the 3D radiative transfer code LIME, which produces 3D intensity maps throughout velocity space. Subsequently, we investigate the spectral signature of rotational transi...

  2. F3D

    Energy Science and Technology Software Center (OSTI)

    003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms  http://camera.lbl.gov/software 

  3. Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    E-Print Network [OSTI]

    M. Bubna; E. Alagoz; A. Krzywda; O. Koybasi; K. Arndt; D. Bortoletto; I. Shipsey; G. Bolla; A. Kok; T. -E. Hansen; T. A. Hansen; G. U. Jensen; J. M. Brom; M. Boscardin; J. Chramowicz; J. Cumalat; G. F. Dalla Betta; M. Dinardo; A. Godshalk; M. Jones; M. D. Krohn; A. Kumar; C. M. Lei; L. Moroni; L. Perera; M. Povoli; A. Prosser; R. Rivera; A. Solano; M. M. Obertino; S. Kwan; L. Uplegger; C. D. Via; L. Vigani; S. Wagner

    2014-04-30T23:59:59.000Z

    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.

  4. High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    E-Print Network [OSTI]

    Boley, A C; Desch, S J

    2013-01-01T23:59:59.000Z

    A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H$_2$ is also used. Solids are followed directly in the simulati...

  5. High resolution linkage and association study of quantitative trait loci

    E-Print Network [OSTI]

    Jung, Jeesun

    2005-11-01T23:59:59.000Z

    ) of complex human disease. For many complex diseases, quantitative phenotype values contain more information than dichotomous traits do. Much research has been done on conducting high resolution mapping using information of linkage and linkage disequilibrium...

  6. High resolution linkage and association study of quantitative trait loci 

    E-Print Network [OSTI]

    Jung, Jeesun

    2005-11-01T23:59:59.000Z

    As a large number of single nucleotide polymorphisms (SNPs) and microsatellite markers are available, high resolution mapping employing multiple markers or multiple allele markers is an important step to identify quantitative ...

  7. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

  8. A fast algorithm for gamma evaluation in 3D

    SciTech Connect (OSTI)

    Wendling, Markus; Zijp, Lambert J.; McDermott, Leah N.; Smit, Ewoud J.; Sonke, Jan-Jakob; Mijnheer, Ben J.; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2007-05-15T23:59:59.000Z

    The {gamma}-evaluation method is a tool by which dose distributions can be compared in a quantitative manner combining dose-difference and distance-to-agreement criteria. Since its introduction, the {gamma} evaluation has been used in many studies and is on the verge of becoming the preferred dose distribution comparison method, particularly for intensity-modulated radiation therapy (IMRT) verification. One major disadvantage, however, is its long computation time, which especially applies to the comparison of three-dimensional (3D) dose distributions. We present a fast algorithm for a full 3D {gamma} evaluation at high resolution. Both the reference and evaluated dose distributions are first resampled on the same grid. For each point of the reference dose distribution, the algorithm searches for the best point of agreement according to the {gamma} method in the evaluated dose distribution, which can be done at a subvoxel resolution. Speed, computer memory efficiency, and high spatial resolution are achieved by searching around each reference point with increasing distance in a sphere, which has a radius of a chosen maximum search distance and is interpolated 'on-the-fly' at a chosen sample step size. The smaller the sample step size and the larger the differences between the dose distributions, the longer the {gamma} evaluation takes. With decreasing sample step size, statistical measures of the 3D {gamma} distribution converge. Two clinical examples were investigated using 3% of the prescribed dose as dose-difference and 0.3 cm as distance-to-agreement criteria. For 0.2 cm grid spacing, the change in {gamma} indices was negligible below a sample step size of 0.02 cm. Comparing the full 3D {gamma} evaluation and slice-by-slice 2D {gamma} evaluations ('2.5D') for these clinical examples, the {gamma} indices improved by searching in full 3D space, with the average {gamma} index decreasing by at least 8%.

  9. Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis

    SciTech Connect (OSTI)

    Wirtz, Tom; Fleming, Yves; Gerard, Mathieu [Department 'Science and Analysis of Materials' (SAM), Centre de Recherche Public, Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Gysin, Urs; Glatzel, Thilo; Meyer, Ernst [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Wegmann, Urs [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Maier, Urs [Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Odriozola, Aitziber Herrero; Uehli, Daniel [SPECS Zurich GmbH, Technoparkstr. 1, CH-8005 Zuerich (Switzerland)

    2012-06-15T23:59:59.000Z

    State-of-the-art secondary ion mass spectrometry (SIMS) instruments allow producing 3D chemical mappings with excellent sensitivity and spatial resolution. Several important artifacts however arise from the fact that SIMS 3D mapping does not take into account the surface topography of the sample. In order to correct these artifacts, we have integrated a specially developed scanning probe microscopy (SPM) system into a commercial Cameca NanoSIMS 50 instrument. This new SPM module, which was designed as a DN200CF flange-mounted bolt-on accessory, includes a new high-precision sample stage, a scanner with a range of 100 {mu}m in x and y direction, and a dedicated SPM head which can be operated in the atomic force microscopy (AFM) and Kelvin probe force microscopy modes. Topographical information gained from AFM measurements taken before, during, and after SIMS analysis as well as the SIMS data are automatically compiled into an accurate 3D reconstruction using the software program 'SARINA,' which was developed for this first combined SIMS-SPM instrument. The achievable lateral resolutions are 6 nm in the SPM mode and 45 nm in the SIMS mode. Elemental 3D images obtained with our integrated SIMS-SPM instrument on Al/Cu and polystyrene/poly(methyl methacrylate) samples demonstrate the advantages of the combined SIMS-SPM approach.

  10. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18T23:59:59.000Z

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  11. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC,

    2007-06-08T23:59:59.000Z

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  12. Virtual reality 3D headset based on DMD light modulators

    SciTech Connect (OSTI)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-13T23:59:59.000Z

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  13. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26T23:59:59.000Z

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  14. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Kaplan, Selig N. (El Cerrito, CA); Perez-Mendez, Victor (Berkeley, CA)

    1992-01-01T23:59:59.000Z

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  15. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    SciTech Connect (OSTI)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom)] [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia)] [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom)] [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom)] [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland) [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15T23:59:59.000Z

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The benefits are expected to be more substantial for more energetic positron emitting isotopes such as Oxygen-15 and Rubidium-82.

  16. Edinburgh Research Explorer High-resolution gene expression profiling for simultaneous

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer High-resolution gene expression profiling for simultaneous kinetic, UH 2008, 'High-resolution gene expression profiling for simultaneous kinetic parameter analysis date: 16. Jun. 2014 #12;METHOD High-resolution gene expression profiling for simultaneous kinetic

  17. Coupling RELAP5-3D and Fluent to analyze a Very High Temperature Reactor (VHTR) outlet plenum 

    E-Print Network [OSTI]

    Anderson, Nolan Alan

    2006-10-30T23:59:59.000Z

    The Very High Temperature Reactor (VHTR) system behavior should be predicted during normal operating conditions and during transient conditions. To predict the VHTR system behavior there is an urgent need for development, ...

  18. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays

    E-Print Network [OSTI]

    Wetzstein, Gordon

    We develop tomographic techniques for image synthesis on displays composed of compact volumes of light-attenuating material. Such volumetric attenuators recreate a 4D light field or high-contrast 2D image when illuminated ...

  19. An Investigation of the Rotamers of Butadiene by High-Resolution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of the Rotamers of Butadiene by High-Resolution Infrared Spectroscopy. An Investigation of the Rotamers of Butadiene by High-Resolution Infrared Spectroscopy....

  20. HIGH RESOLUTION SCANNING AUGER MICROSCOPIC INVESTIGATION OF INTERGRANULAR FRACTURE IN AS-QUENCHED Fe-12Mn

    E-Print Network [OSTI]

    Lee, H.J.

    2013-01-01T23:59:59.000Z

    contents in Fe-Mn alloys. Scanning electron fractographsTransactions HIGH RESOLUTION SCANNING AUGER MICROSCOPICof Califomia. HIGH RESOLUTION SCANNING AUGER MICROSCOPIC

  1. High Resolution Additive Patterning of Nanoparticles and Polymers Enabled by Vapor Permeable Polymer Templates

    E-Print Network [OSTI]

    Demko, Michael Thomas

    2012-01-01T23:59:59.000Z

    High Resolution Additive Patterning of Nanoparticles andHigh Resolution Additive Patterning of Nanoparticles andareas, and in a completely additive manner. In this work, a

  2. Development of Superconducting High-Resolution Gamma-Ray Spectrometers for Nuclear Safeguards

    E-Print Network [OSTI]

    Dreyer, Jonathan

    2012-01-01T23:59:59.000Z

    Counting 2.4.3 High-Resolution Gamma Spectrometry 2.5coincidence counting and gamma spectrometry system (CANEGA)High-Resolution Gamma Spectrometry Isotopic correlation

  3. High Resolution Backside Imaging and Thermography using a Numerical Aperture Increasing Lens

    E-Print Network [OSTI]

    High Resolution Backside Imaging and Thermography using a Numerical Aperture Increasing Lens M. S, representing the highest resolution subsurface thermography to date. Keywords: thermal imaging, high

  4. High resolution detection and excitation of resonant magnetic perturbations in a wall-stabilized tokamak

    SciTech Connect (OSTI)

    Maurer, David A. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Shiraki, Daisuke; Levesque, Jeffrey P.; Bialek, James; Angelini, Sarah; Byrne, Patrick; DeBono, Bryan; Hughes, Paul; Mauel, Michael E.; Navratil, Gerald A.; Peng Qian; Rhodes, Dov; Rath, Nickolaus; Stoafer, Christopher [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2012-05-15T23:59:59.000Z

    We report high-resolution detection of the 3D plasma magnetic response of wall-stabilized tokamak discharges in the High Beta Tokamak-Extended Pulse [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)] device. A new adjustable conducting wall has been installed on HBT-EP made up of 20 independent, movable, wall segments instrumented with three distinct sets of 40 modular coils that can be independently driven to generate a wide variety of magnetic perturbations. High-resolution detection of the plasma response is made with 216 poloidal and radial magnetic sensors that have been located and calibrated with high-accuracy. Static and dynamic plasma responses to resonant and non-resonant magnetic perturbations are observed through measurement of the step-response following a rapid change in the toroidal phase of the applied perturbations. Biorthogonal decomposition of the full set of magnetic sensors clearly defines the structures of naturally occurring external kinks as being composed of independent m/n = 3/1 and 6/2 modes. Resonant magnetic perturbations were applied to discharges with pre-existing, saturated m/n = 3/1 external kink mode activity. This m/n = 3/1 kink mode was observed to lock to the applied perturbation field. During this kink mode locked period, the plasma resonant response is characterized by a linear, a saturated, and a disruptive plasma regime dependent on the magnitude of the applied field and value of the edge safety factor and plasma rotation.

  5. A low-cost, high-resolution, video-rate imaging optical radar

    SciTech Connect (OSTI)

    Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

    1998-04-01T23:59:59.000Z

    Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

  6. A high resolution finite volume method for efficient parallel simulation of casting processes on unstructured meshes

    SciTech Connect (OSTI)

    Kothe, D.B.; Turner, J.A.; Mosso, S.J. [Los Alamos National Lab., NM (United States); Ferrell, R.C. [Cambridge Power Computer Assoc. (United States)

    1997-03-01T23:59:59.000Z

    We discuss selected aspects of a new parallel three-dimensional (3-D) computational tool for the unstructured mesh simulation of Los Alamos National Laboratory (LANL) casting processes. This tool, known as {bold Telluride}, draws upon on robust, high resolution finite volume solutions of metal alloy mass, momentum, and enthalpy conservation equations to model the filling, cooling, and solidification of LANL castings. We briefly describe the current {bold Telluride} physical models and solution methods, then detail our parallelization strategy as implemented with Fortran 90 (F90). This strategy has yielded straightforward and efficient parallelization on distributed and shared memory architectures, aided in large part by new parallel libraries {bold JTpack9O} for Krylov-subspace iterative solution methods and {bold PGSLib} for efficient gather/scatter operations. We illustrate our methodology and current capabilities with source code examples and parallel efficiency results for a LANL casting simulation.

  7. High-Resolution Simulations of Coal Injection in A Gasifier

    SciTech Connect (OSTI)

    Li, Tingwen [National Energy Technology Laboratory (NETL); Gel, Aytekin [Aeolus Research Inc.; Syamlal, M [National Energy Technology Laboratory (NETL); Guenther, Chris [National Energy Technology Laboratory (NETL); Pannala, Sreekanth [ORNL

    2010-01-01T23:59:59.000Z

    This study demonstrates an approach to effectively combine high- and low-resolution simulations for design studies of industrial coal gasifier. The flow-field data from a 10 million cell full-scale simulation of a commercial-scale gasifier were used to construct a reduced configuration to economically study the coal injection in detail. High-resolution numerical simulations of the coal injection were performed using the open-source code MFIX running on a high performance computing system. Effects of grid resolution and numerical discretization scheme on the predicted behavior of coal injection and gasification kinetics were analyzed. Pronounced differences were predicted in the devolatilization and steam gasification rates because of different discretization schemes, implying that a high-order numerical scheme is required to predict well the unsteady gasification process on an adequately resolved grid. Computational costs for simulations of varying resolutions are presented to illustrate the trade-off between the accuracy of solution and the time-to-solution, an important consideration when engineering simulations are used for the design of commercial-scale units.

  8. High-resolution speech signal reconstruction in Wireless Sensor Networks

    E-Print Network [OSTI]

    Gutierrez-Osuna, Ricardo

    High-resolution speech signal reconstruction in Wireless Sensor Networks Andria Pazarloglou, Radu With the recent growth of Wireless Sensor Networks (WSNs), many advanced application areas have received sig, rgutier}@cs.tamu.edu Abstract--Data streaming is an emerging class of applica- tions for sensor networks

  9. Greenland Observed at High Resolution by the Seasat Scatterometer

    E-Print Network [OSTI]

    Long, David G.

    Greenland Observed at High Resolution by the Seasat Scatterometer D.G. Long', P.J. Hardin2, and RA to SASS data for the study of Greenland's ice sheet. We present a time series of the radar backscatter images over Greenland covering the time period July-September 1978. The images provide an island

  10. High-Resolution Computed Tomography Study of the Cranium of

    E-Print Network [OSTI]

    Allman, John M.

    High-Resolution Computed Tomography Study of the Cranium of a Fossil Anthropoid Primate of these characteristics may have important implications for brain evolution. Here computed tomography is used to examine in the evolutionary development of anthropoids did these characteristics evolve? We recently used X-ray computed

  11. A High-Resolution Single Nucleotide Polymorphism Genetic Map

    E-Print Network [OSTI]

    Nachman, Michael

    A High-Resolution Single Nucleotide Polymorphism Genetic Map of the Mouse Genome Sagiv Shifman1 humans. Using more than 10,000 single nucleotide polymorphisms evenly spaced across the mouse genome, we nucleotide polymorphism genetic map of the mouse genome. PLoS Biol 4(12): e395. DOI: 10.1371/journal

  12. Broadband high resolution X-ray spectral analyzer

    DOE Patents [OSTI]

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07T23:59:59.000Z

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  13. Broadband high resolution X-ray spectral analyzer

    DOE Patents [OSTI]

    Silver, Eric H. (Berkeley, CA); Legros, Mark (Berkeley, CA); Madden, Norm W. (Livermore, CA); Goulding, Fred (Lafayette, CA); Landis, Don (Pinole, CA)

    1998-01-01T23:59:59.000Z

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  14. A novel 3D structure composed of strings of hierarchical TiO{sub 2} spheres formed on TiO{sub 2} nanobelts with high photocatalytic properties

    SciTech Connect (OSTI)

    Jiang, Yongjian [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Suzhou Institute, North China Electric Power University, Suzhou 215123 (China); Song, Dandan; Li, Xiaodan; Yu, Yue [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China)

    2014-03-15T23:59:59.000Z

    A novel hierarchical titanium dioxide (TiO{sub 2}) composite nanostructure with strings of anatase TiO{sub 2} hierarchical micro-spheres and rutile nanobelts framework (TiO{sub 2} HSN) is successfully synthesized via a one-step hydrothermal method. Particularly, the strings of hierarchical spheres are assembled by very thin TiO{sub 2} nanosheets, which are composed of highly crystallized anatase nanocrystals. Meanwhile, the HSN has a large surface area of 191 m{sup 2}/g, which is about 3 times larger than Degussa P25. More importantly, the photocatalytic activity of HSN and P25 were evaluated by the photocatalytic oxidation decomposition of methyl orange (MO) under UV light illumination, and the TiO{sub 2} HSN shows enhanced photocatalytic activity compared with Degussa P25, as result of its continuous hierarchical structures, special conductive channel and large specific surface area. With these features, the hierarchical TiO{sub 2} may have more potential applications in the fields of dye-sensitized solar cells and lithium ion batteries. -- Graphical abstract: Novel TiO{sub 2} with anatase micro-spheres and rutile nanobelts is synthesized. Enhanced photocatalysis is attributed to hierarchical structures (3D spheres), conductive channel (1D nanobelts) and large specific surface area (2D nanosheet). Highlights: • The novel TiO{sub 2} nanostructure (HSN) is fabricated for the first time. • HSN is composed of strings of anatase hierarchical spheres and rutile nanobelt. • HSN presents a larger S{sub BET} of 191 m{sup 2}/g, 3 times larger than the Degussa P25 (59 m{sup 2}/g). • HSN owns three kinds of dimensional TiO{sub 2} (1D, 2D and 3D) simultaneously. • HSN exhibits better photocatalytic performance compared with Degussa P25.

  15. High-resolution ionization detector and array of such detectors

    DOE Patents [OSTI]

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)

    2001-01-16T23:59:59.000Z

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  16. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01T23:59:59.000Z

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  17. Turbine component casting core with high resolution region

    DOE Patents [OSTI]

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26T23:59:59.000Z

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  18. BEAMS3D Neutral Beam Injection Model

    SciTech Connect (OSTI)

    Lazerson, Samuel

    2014-04-14T23:59:59.000Z

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  19. A high resolution cavity BPM for the CLIC Test Facility

    E-Print Network [OSTI]

    Chritin, N; Soby, L; Lunin, A; Solyak, N; Wendt, M; Yakovlev, V

    2012-01-01T23:59:59.000Z

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  20. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    SciTech Connect (OSTI)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.; Duncan, E.A. [BP and Statoil Alliance, Stavanger (Norway)

    1996-12-31T23:59:59.000Z

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, pattern recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.

  1. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    SciTech Connect (OSTI)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.; Duncan, E.A. (BP and Statoil Alliance, Stavanger (Norway))

    1996-01-01T23:59:59.000Z

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, pattern recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.

  2. 3-D Model for Deactivation & Decommissioning

    Broader source: Energy.gov [DOE]

    The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work...

  3. 3-D seismology in the Arabian Gulf

    SciTech Connect (OSTI)

    Al-Husseini, M. [Gulf PetroLink, Manama (Bahrain); Chimblo, R. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  4. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC) GettingGitGraduateGrantsGraphene's 3D

  5. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report, 1993SemiconductorGraphene's 3D

  6. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D Counterpart Print

  7. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D Counterpart

  8. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D

  9. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, Ercan E. (Bolingbrook, IL); Mooney, Timothy M. (Westmont, IL); Toellner, Thomas (Green Bay, WI)

    1996-06-04T23:59:59.000Z

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  10. Compact High-Velocity Clouds at High Resolution

    E-Print Network [OSTI]

    W. B. Burton; Robert Braun

    1999-12-22T23:59:59.000Z

    Six examples of the compact, isolated high-velocity clouds catalogued by Braun & Burton (1999) and identified with a dynamically cold ensemble of primitive objects falling towards the barycenter of the Local Group have been imaged with the Westerbork Synthesis Radio Telescope; an additional ten have been imaged with the Arecibo telescope. The imaging reveals a characteristic core/halo morphology: one or several cores of cool, relatively high-column-density material, are embedded in an extended halo of warmer, lower-density material. Several of the cores show kinematic gradients consistent with rotation; these CHVCs are evidently rotationally supported and dark-matter dominated. The imaging data allows several independent estimates of the distances to these objects, which lie in the range 0.3 to 1.0 Mpc. The CHVC properties resemble what might be expected from very dark dwarf irregular galaxies.

  11. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04T23:59:59.000Z

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  12. High-resolution imaging of compact high-velocity clouds

    E-Print Network [OSTI]

    Robert Braun; Butler Burton

    1999-12-20T23:59:59.000Z

    Six examples of the compact, isolated high-velocity HI clouds (CHVCs) identified by Braun and Burton (1999) have been imaged with the WSRT. The 65 confirmed objects in this class define a dynamically cold system, with a global minimum for the velocity dispersion of only 70 km/s, found in the Local Group Standard of Rest, while in-falling at 100 km/s toward the LG barycenter. These objects have a characteristic morphology, in which several compact cores are embedded in a diffuse halo. The compact cores typically account for 40% of the HI line flux while covering some 15% of the source area. The cores are the cool condensed phase of HI, the CNM, with temp. near 100 K, while the halos appear to be a shielding column of warm diffuse HI, the WNM, with temp. near 8000 K. We detect a core with one of the narrowest HI emission lines ever observed, with intrinsic FWHM of 2 km/s and 75 K brightness. From a comparison of column and volume densities we derive a distance in the range 0.5 to 1 Mpc. We determine a metallicity for this same object of 0.04 to 0.07 solar. Comparably high distances are implied by demanding the stability of objects with multiple cores, which show relative velocities as large as 70 km/s on 30 arcmin scales. Many compact cores show systematic velocity gradients along the major axis of their elliptical extent which are consistent with circular rotation. Several of the derived rotation curves are well-fit by Navarro, Frenk, and White (1997) cold dark matter profiles. These kinematic signatures imply a high dark-to-visible mass ratio of 10-50, for D=0.7Mpc, which scales as 1/D. The implied dark matter halos dominate the mass volume density within the central 2 kpc (10 arcmin) of each source, providing a sufficent hydrostatic pressure to allow local CNM condensation. (abridged)

  13. Sample measurement Choose 3D, for 3D scan

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Sample measurement M Choose 3D, for 3D scan -> load method ("3D_EEM.xml") -> Run Signal: save S1/R1 column names etc once saved, close all plots before taking next sample Processing via Matlab script "EEM

  14. 3D Lya radiation transfer. II. Fitting the Lyman break galaxy MS 1512-cB58 and implications for Lya emission in high-z starbursts

    E-Print Network [OSTI]

    Schaerer, Daniel

    2008-01-01T23:59:59.000Z

    Using our 3D Lya radiation transfer code, we compute the radiation transfer of Lya and UV continuum photons including dust. Observational constraints on the neutral gas (column density, kinematics, etc.) are taken from other analysis of this object. RESULTS: The observed Lya profile of MS 1512--cB58 is reproduced for the first time taking radiation transfer and all observational constraints into account. The observed absorption profile is found to result naturally from the observed amount of dust and the relatively high HI column density. Radiation transfer effects and suppresion by dust transform a strong intrinsic Lya emission with EW(Lya)>~ 60 Ang into the observed faint superposed Lya emission peak. We propose that the vast majority of LBGs have intrinsically EW(Lya)~60-80 Ang or larger, and that the main physical parameter responsible for the observed variety of Lya strengths and profiles in LBGs is N_H and the accompanying variation of the dust content. Observed EW(Lya) distributions, Lya luminosity fun...

  15. High-? Al{sub 2}O{sub 3} material in low temperature wafer-level bonding for 3D integration application

    SciTech Connect (OSTI)

    Fan, J., E-mail: fanji@hust.edu.cn; Tu, L. C. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)] [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Tan, C. S. [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)] [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-03-15T23:59:59.000Z

    This work systematically investigated a high-? Al{sub 2}O{sub 3} material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al{sub 2}O{sub 3} layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300?°C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO{sub 2}), a higher interfacial adhesion energy (?11.93 J/m{sup 2}) and a lower helium leak rate (?6.84 × 10{sup ?10} atm.cm{sup 3}/sec) were detected for samples bonded using Al{sub 2}O{sub 3}. More importantly, due to the excellent thermal conductivity performance of Al{sub 2}O{sub 3}, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

  16. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect (OSTI)

    Chiswell, S

    2009-01-11T23:59:59.000Z

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  17. Idea Generation 3D printing

    E-Print Network [OSTI]

    Papadopouli, Maria

    2012 Idea Generation 3D printing at nanoscale Cruising on electrical roads Pushing back against Centre micro and nanoscale 15 Taking 3D printing to the nanoscale 18 Fighting cancer with a "lab

  18. High-resolution NMR process analyzer for oxygenates in gasoline

    SciTech Connect (OSTI)

    Skloss, T.W.; Kim, A.J.; Haw, J.F. (Texas A M Univ., College Station, TX (United States))

    1994-02-15T23:59:59.000Z

    We report a high-resolution 42-MHz[sup 1]HFT-NMR instrument that is suitable for use as a process analyzer and demonstrate its use in the determination of methyl tert-butyl ether (MTBE) in a flowing stream of gasoline. This spectrometer is based on a 55-kg permanent magnet with essentially no fringe field. A spectral resolution of 3 Hz was typically obtained for spinning samples, and this performance was only slightly degraded with flowing samples. We report a procedure for magnet drift compensation using a software procedure rather than a field-frequency lock channel. This procedure allowed signal averaging without loss of resolution. Regulatory changes to be implemented in the near future have created a need for the development of methods for the determination of MTBE and other oxygenates in reformulated gasolines. Existing methods employing gas chromatography are not fast enough for process control of a gasoline blender and suffer from other limitations. This study demonstrates that process analysis NMR is well-suited to the determination of MTBE in a simulated gasoline blender. The detection limit of 0.5 vol % MTBE was obtained with a measurement time of 1 min. The absolute standard deviation of independent determinations was 0.17% when the MTBE concentration was 10%, a nominal value. Preliminary results also suggest that the method may be applicable to gasolines containing mixtures of oxygenate additives as well as the measurement of aromatic and olefinic hydrogens. 33 refs., 9 figs.

  19. Resolution of a High Performance Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, S; Chung, C; Fitsos, P; Gronberg, J; Ross, M; Khainovski, O; Kolomensky, Y; Loscutoff, P; Slater, M; Thomson, M; Ward, D; Boogert, S; Vogel, V; Meller, R; Lyapin, A; Malton, S; Miller, D; Frisch, J; Hinton, S; May, J; McCormick, D; Smith, S; Smith, T; White, G; Orimoto, T; Hayano, H; Honda, Y; Terunuma, N; Urakawa, J

    2005-09-12T23:59:59.000Z

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved - ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  20. Fast 3D Surface Extraction 2 pages (including abstract)

    SciTech Connect (OSTI)

    Sewell, Christopher Meyer [Los Alamos National Laboratory; Patchett, John M. [Los Alamos National Laboratory; Ahrens, James P. [Los Alamos National Laboratory

    2012-06-05T23:59:59.000Z

    Ocean scientists searching for isosurfaces and/or thresholds of interest in high resolution 3D datasets required a tedious and time-consuming interactive exploration experience. PISTON research and development activities are enabling ocean scientists to rapidly and interactively explore isosurfaces and thresholds in their large data sets using a simple slider with real time calculation and visualization of these features. Ocean Scientists can now visualize more features in less time, helping them gain a better understanding of the high resolution data sets they work with on a daily basis. Isosurface timings (512{sup 3} grid): VTK 7.7 s, Parallel VTK (48-core) 1.3 s, PISTON OpenMP (48-core) 0.2 s, PISTON CUDA (Quadro 6000) 0.1 s.

  1. High-resolution SIMS depth profiling of nanolayers.

    SciTech Connect (OSTI)

    Baryshev, S. V.; Zinovev, A. V.; Tripa, C. E.; Pellin, M. J.; Peng, Q.; Elam, J. W.; Veryovkin, I. V. (Energy Systems); ( MSD)

    2012-10-15T23:59:59.000Z

    Although the fundamental physical limits for depth resolution of secondary ion mass spectrometry are well understood in theory, the experimental work to achieve and demonstrate them is still ongoing. We report results of high-resolution TOF SIMS (time-of-flight secondary ion mass spectrometry) depth profiling experiments on a nanolayered structure, a stack of 16 alternating MgO and ZnO {approx}5.5 nm layers grown on a Si substrate by atomic layer deposition. The measurements were performed using a newly developed approach implementing a low-energy direct current normally incident Ar{sup +} ion beam for ion milling (250 eV and 500 eV energy), in combination with a pulsed 5 keV Ar{sup +} ion beam at 60{sup o} incidence for TOF SIMS analysis. By this optimized arrangement, a noticeably improved version of the dual-beam (DB) approach to TOF SIMS depth profiling is introduced, which can be dubbed gentleDB. The mixing-roughness-information model was applied to detailed analysis of experimental results. It revealed that the gentleDB approach allows ultimate depth resolution by confining the ion beam mixing length to about two monolayers. This corresponds to the escape depth of secondary ions, the fundamental depth resolution limitation in SIMS. Other parameters deduced from the measured depth profiles indicated that a single layer thickness is equal to 6 nm so that the 'flat' layer thickness d is 3 nm and the interfacial roughness {sigma} is 1.5 nm, thus yielding d + 2{sigma} = 6 nm. We have demonstrated that gentleDB TOF SIMS depth profiling with noble gas ion beams is capable of revealing the structural features of a stack of nanolayers, resolving its original surface and estimating the roughness of interlayer interfaces, information which is difficult to obtain by traditional approaches.

  2. POWERWALL: International Workshop on Interactive, Ultra-High-Resolution Displays

    SciTech Connect (OSTI)

    Rooney, Chris; Endert, Alexander; Fekete, Jean-Daniel; Hornbaek, Kasper; North, Chris

    2013-04-27T23:59:59.000Z

    Ultra-high-resolution (Powerwall) displays are becoming increasingly popular due to the ever decreasing cost of hardware. As a result they are appearing more frequently in research institutes, and making the jump out of the lab and into industry. Due to the amount of work in this research area that has been published in CHI over the last few years, we felt that this confernece would be the ideal host for the first opportunity for both academics and practitioners in this field to get together.

  3. High-resolution radio observations of X-ray binaries

    E-Print Network [OSTI]

    James Miller-Jones

    2008-09-15T23:59:59.000Z

    I present an overview of important results obtained using high-resolution very long baseline interferometry (VLBI) observations of X-ray binary systems. These results derive from both astrometric observations and resolved imaging of sources, from black holes to neutron star and even white dwarf systems. I outline a number of upcoming developments in instrumentation, both new facilities and ongoing upgrades to existing VLBI instruments, and I conclude by identifying a number of important areas of investigation where VLBI will be crucial in advancing our understanding of X-ray binaries.

  4. Compact high resolution isobar separator for study of exotic decays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingth Lomonosov1Compact high resolution isobar

  5. Analysis of the rotational structure in the high-resolution infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rotational structure in the high-resolution infrared spectra of cis,cis- and trans,trans-1,4-difluorobutadiene-1 Analysis of the rotational structure in the high-resolution...

  6. Analysis of the Rotational Structure in the High-Resolution Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotational Structure in the High-Resolution Infrared Spectrum of trans-Hexatriene-1-13C1; a Semiexperimental Analysis of the Rotational Structure in the High-Resolution Infrared...

  7. Experimental Investigation and High Resolution Simulation of In-Situ Combustion Processes

    SciTech Connect (OSTI)

    Margot Gerritsen; Tony Kovscek

    2008-04-30T23:59:59.000Z

    This final technical report describes work performed for the project 'Experimental Investigation and High Resolution Numerical Simulator of In-Situ Combustion Processes', DE-FC26-03NT15405. In summary, this work improved our understanding of in-situ combustion (ISC) process physics and oil recovery. This understanding was translated into improved conceptual models and a suite of software algorithms that extended predictive capabilities. We pursued experimental, theoretical, and numerical tasks during the performance period. The specific project objectives were (i) identification, experimentally, of chemical additives/injectants that improve combustion performance and delineation of the physics of improved performance, (ii) establishment of a benchmark one-dimensional, experimental data set for verification of in-situ combustion dynamics computed by simulators, (iii) develop improved numerical methods that can be used to describe in-situ combustion more accurately, and (iv) to lay the underpinnings of a highly efficient, 3D, in-situ combustion simulator using adaptive mesh refinement techniques and parallelization. We believe that project goals were met and exceeded as discussed.

  8. Microtomography with 3-D visualization

    SciTech Connect (OSTI)

    Peskin, A.; Andrews, B.; Dowd, B.; Jones, K.; Siddons, P.

    1996-11-01T23:59:59.000Z

    The facility has been developed for producing high quality tomographs of order one micrometer resolution. Three dimensional volumes derived from groups of adjacent tomographic slices are then viewed and navigated in a stereographic viewing facility. This facility is being applied to problems in geological evaluation of oil reservoir rock, medical imaging, protein chemistry, and CADCAM.

  9. 3D tomodosimetry using long scintillating fibers: A feasibility study

    SciTech Connect (OSTI)

    Goulet, Mathieu; Archambault, Louis; Beaulieu, Luc; Gingras, Luc [Département de Physique, de Génie Physique et d’Optique et Centre de Recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada, and Département de Radio-Oncologie and CRCHU de Quebec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada)] [Département de Physique, de Génie Physique et d’Optique et Centre de Recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada, and Département de Radio-Oncologie and CRCHU de Quebec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada)

    2013-10-15T23:59:59.000Z

    Purpose: 3D dosimetry is recognized as an ideal for patient-specific quality assurance (QA) of highly conformal radiotherapy treatments. However, existing 3D dosimeters are not straightforward to implement in the clinic, as their read-out procedure is often tedious and their accuracy, precision, and/or sample size exhibit limitations. The purpose of this work is to develop a 3D dosimeter based on the concept of tomodosimetry inside concentric cylindrical planes using long scintillating fibers for the QA of modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) or intensity-modulated arc therapy (IMAT).Methods: Using a model-based simulation, scintillating fibers were modeled on three concentric cylindrical planes of radii 2.5, 5.0, and 7.5 cm, inside a 10 cm radius water-equivalent cylinder phantom. The phantom was set to rotate around its central axis, made parallel to the linac gantry axis of rotation. Light acquisitions were simulated using the calculated dose from the treatment planning software and reconstructed in each cylindrical plane at a resolution of 1 mm{sup 2} using a total-variation minimization iterative reconstruction algorithm. The 3D dose was then interpolated from the reconstructed cylindrical plane doses at a resolution of 1 mm{sup 3}. Different scintillating fiber patterns were compared by varying the angle of each fiber in its cylindrical plane and introducing a light-tight cut in each fiber. The precision of the reconstructed cylindrical dose distribution was evaluated using a Poisson modeling of the acquired light signals and the accuracy of the interpolated 3D dose was evaluated using an IMRT clinical plan for a prostate case.Results: Straight scintillating fiber patterns with light-tight cuts were the most accurate in cylindrical dose reconstruction, showing less than 0.5 mm distance-to-agreement in dose gradients and a mean local dose difference of less than 0.2% in the high dose region for a 10 × 10 cm{sup 2} field. The precision attained with this fiber configuration was less than 0.9% in the high dose, low gradient region of an IMRT segment for light acquisitions of 0.1 MU over a 360 degree rotation of the cylinder phantom. 3D dose interpolation for the IMRT clinical plan yielded an overall dose difference with the reference input of less than 1%, except in high dose gradients.Conclusions: Using long scintillating fibers inside rotating, concentric cylindrical planes, the authors demonstrate that their tomodosimetry method has the potential for high resolution, precise, and accurate 3D dosimetry. Moreover, because of its water-equivalence and rotational symmetry, this design should find interesting application for both treatment QA and machine commissioning.

  10. High-level waste issues and resolutions document

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The High-Level Waste (HLW) Issues and Resolutions Document recognizes US Department of Energy (DOE) complex-wide HLW issues and offers potential corrective actions for resolving these issues. Westinghouse Management and Operations (M&O) Contractors are effectively managing HLW for the Department of Energy at four sites: Idaho National Engineering Laboratory (INEL), Savannah River Site (SRS), West Valley Demonstration Project (WVDP), and Hanford Reservation. Each site is at varying stages of processing HLW into a more manageable form. This HLW Issues and Resolutions Document identifies five primary issues that must be resolved in order to reach the long-term objective of HLW repository disposal. As the current M&O contractor at DOE`s most difficult waste problem sites, Westinghouse recognizes that they have the responsibility to help solve some of the complexes` HLW problems in a cost effective manner by encouraging the M&Os to work together by sharing expertise, eliminating duplicate efforts, and sharing best practices. Pending an action plan, Westinghouse M&Os will take the initiative on those corrective actions identified as the responsibility of an M&O. This document captures issues important to the management of HLW. The proposed resolutions contained within this document set the framework for the M&Os and DOE work cooperatively to develop an action plan to solve some of the major complex-wide problems. Dialogue will continue between the M&Os, DOE, and other regulatory agencies to work jointly toward the goal of storing, treating, and immobilizing HLW for disposal in an environmentally sound, safe, and cost effective manner.

  11. High-resolution X-ray spectroscopy of Theta Car

    E-Print Network [OSTI]

    Yael Naze; Gregor Rauw

    2008-08-25T23:59:59.000Z

    Context : The peculiar hot star Theta Car in the open cluster IC2602 is a blue straggler as well as a single-line binary of short period (2.2d). Aims : Its high-energy properties are not well known, though X-rays can provide useful constraints on the energetic processes at work in binaries as well as in peculiar, single objects. Methods : We present the analysis of a 50ks exposure taken with the XMM-Newton observatory. It provides medium as well as high-resolution spectroscopy. Results : Our high-resolution spectroscopy analysis reveals a very soft spectrum with multiple temperature components (1--6MK) and an X-ray flux slightly below the `canonical' value (log[L_X(0.1-10.)/L_{BOL}] ~ -7). The X-ray lines appear surprisingly narrow and unshifted, reminiscent of those of beta Cru and tau Sco. Their relative intensities confirm the anomalous abundances detected in the optical domain (C strongly depleted, N strongly enriched, O slightly depleted). In addition, the X-ray data favor a slight depletion in neon and iron, but they are less conclusive for the magnesium abundance (solar-like?). While no significant changes occur during the XMM-Newton observation, variability in the X-ray domain is detected on the long-term range. The formation radius of the X-ray emission is loosely constrained to <5 R_sol, which allows for a range of models (wind-shock, corona, magnetic confinement,...) though not all of them can be reconciled with the softness of the spectrum and the narrowness of the lines.

  12. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Qussai Marashdeh

    2012-09-30T23:59:59.000Z

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

  13. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect (OSTI)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30T23:59:59.000Z

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  14. Towards wide-field high-resolution retinal imaging

    E-Print Network [OSTI]

    Kellerer, Aglae

    2015-01-01T23:59:59.000Z

    Adaptive optical correction is an efficient technique to obtain high-resolution images of the retinal surface. A main limitation of adaptive optical correction, however, is the small size of the corrected image. For medical purposes it is important to increase the size of the corrected images. This can be done through composite imaging, but a major difficulty is then the introduction of reconstruction artifacts. Another approach is multi-conjugate adaptive optics. MCAO comes in two flavors. The star- oriented approach has been demonstrated on the eye and allows to increase the diameter of the corrected image by a factor of approximately 2-3. Difficulties in the tomographic reconstruction precludes the correction of larger fields. Here we have investigate the possibility to apply a layer-oriented MCAO approach to retinal imaging.

  15. Compact and mobile high resolution PET brain imager

    DOE Patents [OSTI]

    Majewski, Stanislaw (Yorktown, VA); Proffitt, James (Newport News, VA)

    2011-02-08T23:59:59.000Z

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  16. High resolution A/D conversion based on piecewise conversion at lower resolution

    SciTech Connect (OSTI)

    Terwilliger, Steve (Albuquerque, NM)

    2012-06-05T23:59:59.000Z

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  17. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOE Patents [OSTI]

    Frank, Matthias (Oakland, CA); Mears, Carl A. (Windsor, CA); Labov, Simon E. (Berkeley, CA); Hiller, Larry J. (Livermore, CA); Barfknecht, Andrew T. (Menlo Park, CA)

    2003-03-04T23:59:59.000Z

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  18. Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering

    E-Print Network [OSTI]

    Voronov, Dmitry L.

    2010-01-01T23:59:59.000Z

    16. Yu. Shvyd’ko, X-Ray Optics, Berlin: Springer-Verlag,Ultra-high Resolution Optics for EUV and Soft X-rayspectral resolution soft x-ray optics. Conventionally in the

  19. Nanoscale organic transistors that use sourcedrain electrodes supported by high resolution rubber stamps

    E-Print Network [OSTI]

    Rogers, John A.

    Nanoscale organic transistors that use sourceÕdrain electrodes supported by high resolution rubber resolution rubber stamps bilayers of two different types of the elastomer polydimethylsiloxane 3,4 by casting

  20. 3D World Building System

    SciTech Connect (OSTI)

    None

    2013-10-30T23:59:59.000Z

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  1. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26T23:59:59.000Z

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  2. 3-D multichannel seismic reflection study of variable-flux hydrocarbon seeps, continental slope, northern Gulf of Mexico

    E-Print Network [OSTI]

    Thomas, Ryan Douglas

    2004-11-15T23:59:59.000Z

    3D multi-channel seismic (MCS) data augmented with side-scan sonar (Garden Banks site) to characterize hydrocarbon seep activity and develop an understanding of the processes that led to their formation. Side-scan sonar data provided high resolution...

  3. High-Resolution Residential Feeder Load Characterization and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been a number of investigations into the effects of PV variability on distribution circuit voltage 1. Due to load data resolution limitations and the difficulty in estimating...

  4. 3-D Microprobe Metrology

    SciTech Connect (OSTI)

    Swallow, Kevin

    2008-10-14T23:59:59.000Z

    This report documents the results of a project undertaken to develop an ultra-high-accuracy measurement capability, which is necessary to address a rising trend toward miniaturized mechanical products exhibiting dramatically reduced product tolerances. A significant improvement in measurement capability is therefore required to insure that a 4:1 ratio can be maintained between product tolerances and measurement uncertainty.

  5. High resolution neutron imaging of water in PEM fuel cells

    SciTech Connect (OSTI)

    Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Optimal water management in Polymer Electrolyte Membrane (PEM) fuel cells is critical to improving the performance and durability of fuel cell systems especially during transient, start-up and shut-down operations. For example, while a high water content is desirable for improved membrane and catalyst ionomer conductivity, high water content can also block gas access to the triple-phase boundary resulting in lowered performance due to catalyst and gas diffusion layer (GDL) flooding. Visualizing liquid water by neutron imaging has been used over the past decade to study the water distribution inside operating fuel cells. In this paper, the results from our imaging at NIST using their recently installed higher resolution ({approx} 25 mm) Microchannel Plate (MCP) detector with a pixel pitch of 14.7 mm are presented. This detector is capable of quantitatively imaging the water inside the MEA (Membrane Electrode Assembly)/GDL (Gas Diffusion Layer) of working fuel cells and can provide the water profiles within these various components in addition to the channel water. Specially designed fuel cells (active area = 2.25 cm{sup 2}) have been used in order to take advantage of the full detector resolution. The cell design is illustrated in a figure where one of the current collector/end plates is shown. The serpentine pattern was machined into a block of aluminum and plated with nickel and then gold to form the flow field. The measurements were performed using beam no. 1 and aperture no. 2 with a fluence rate of 1.9 x 10{sup 6} neutrons cm{sup -2} sec{sup -1}. The cells were assembled with Gore{sup TM} Primea{sup R} MEAs and SGL Sigracet {sup R} 24 series GDLs (PRIMEA, GORE-SELECT and GORE are trademarks of W. L. Gore & Associates, Inc). All the cells were tested at 80 {sup o}C with 1.2 stoichiometry H{sub 2} and 2.0 stoichiometry air flows.

  6. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect (OSTI)

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04T23:59:59.000Z

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  7. Chandra High Resolution X-ray Spectroscopy of AM Her

    E-Print Network [OSTI]

    V. Girish; V. R. Rana; K. P. Singh

    2007-02-14T23:59:59.000Z

    We present the results of high resolution spectroscopy of the prototype polar AM Herculis observed with Chandra High Energy Transmission Grating. The X-ray spectrum contains hydrogen-like and helium-like lines of Fe, S, Si, Mg, Ne and O with several Fe L-shell emission lines. The forbidden lines in the spectrum are generally weak whereas the hydrogen-like lines are stronger suggesting that emission from a multi-temperature, collisionally ionized plasma dominates. The helium-like line flux ratios yield a plasma temperature of 2 MK and a plasma density 1 - 9 x10^12 cm^-3, whereas the line flux ratio of Fe XXVI to Fe XXV gives an ionization temperature of 12.4 +1.1 -1.4 keV. We present the differential emission measure distribution of AM Her whose shape is consistent with the volume emission measure obtained by multi-temperature APEC model. The multi-temperature plasma model fit to the average X-ray spectrum indicates the mass of the white dwarf to be ~1.15 M_sun. From phase resolved spectroscopy, we find the line centers of Mg XII, S XVI, resonance line of Fe XXV, and Fe XXVI emission modulated by a few hundred to 1000 km/s from the theoretically expected values indicating bulk motion of ionized matter in the accretion column of AM Her. The observed velocities of Fe XXVI ions are close to the expected shock velocity for a 0.6 M_sun white dwarf. The observed velocity modulation is consistent with that expected from a single pole accreting binary system.

  8. INNER SHELL EXCITATION OF ATOMS AND MOLECULES BY ELECTRON IMPACT WITH HIGH ENERGY RESOLUTION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    INNER SHELL EXCITATION OF ATOMS AND MOLECULES BY ELECTRON IMPACT WITH HIGH ENERGY RESOLUTION F. H resolution energy loss spectra for inner shell excited states, (2) the observa- tion of inner shell excited are the subject of the present review. The inner shell states that can usefully be studied with energy resolutions

  9. High intrinsic energy resolution photon number resolving detectors

    E-Print Network [OSTI]

    Lolli, L; Portesi, C; Monticone, E; Rajteri, M

    2013-01-01T23:59:59.000Z

    Transition Edge Sensors (TESs) are characterized by the intrinsic figure of merit to resolve both the energy and the statistical distribution of the incident photons. These properties lead TES devices to become the best single photon detector for quantum technology experiments. For a TES based on titanium and gold has been reached, at telecommunication wavelength, an unprecedented intrinsic energy resolution (0.113 eV). The uncertainties analysis of both energy resolution and photon state assignment has been discussed. The thermal properties of the superconductive device have been studied by fitting the bias curve to evaluate theoretical limit of the energy resolution.

  10. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  11. Imaging atoms in 3-D

    SciTech Connect (OSTI)

    Ercius, Peter

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  12. Magnetic nanowire based high resolution magnetic force microscope probes

    E-Print Network [OSTI]

    Qin, Lu-Chang

    -resolution magnetic force microscope probes using preformed magnetic nanowires. Nickel and cobalt nanowires produced by electrodeposition were directly assembled onto the tip of a commercial atomic force microscope cantilever

  13. applying high-resolution detectors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    since Spring 1999. Stereo 3 Using High-Resolution Detector and Signal Data to Support Energy Storage, Conversion and Utilization Websites Summary: data collection and storage...

  14. area high-resolution ccd-based: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCD-Based Thermoreflectance Techniques for High-Resolution Transient Thermal Imaging Energy Storage, Conversion and Utilization Websites Summary: on the small but detectable...

  15. (SO2)-S-34-O-16: High-resolution analysis of the (030),(101)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (111), (002) and (201) vibrational states; determination of Abstract: High resolution Fourier transform spectra of a sample of sulfur dioxide, enriched in 34S (95.3%). were...

  16. High resolution polarimeter-interferometer system for fast equilibrium dynamics and MHD instability studies on Joint-TEXT tokamak (invited)

    SciTech Connect (OSTI)

    Chen, J.; Zhuang, G., E-mail: ge-zhuang@hust.edu.cn; Li, Q.; Liu, Y.; Gao, L.; Zhou, Y. N.; Jian, X.; Xiong, C. Y.; Wang, Z. J. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15T23:59:59.000Z

    A high-performance Faraday-effect polarimeter-interferometer system has been developed for the J-TEXT tokamak. This system has time response up to 1 ?s, phase resolution < 0.1° and minimum spatial resolution ?15 mm. High resolution permits investigation of fast equilibrium dynamics as well as magnetic and density perturbations associated with intrinsic Magneto-Hydro-Dynamic (MHD) instabilities and external coil-induced Resonant Magnetic Perturbations (RMP). The 3-wave technique, in which the line-integrated Faraday angle and electron density are measured simultaneously by three laser beams with specific polarizations and frequency offsets, is used. In order to achieve optimum resolution, three frequency-stabilized HCOOH lasers (694 GHz, >35 mW per cavity) and sensitive Planar Schottky Diode mixers are used, providing stable intermediate-frequency signals (0.5–3 MHz) with S/N > 50. The collinear R- and L-wave probe beams, which propagate through the plasma poloidal cross section (a = 0.25–0.27 m) vertically, are expanded using parabolic mirrors to cover the entire plasma column. Sources of systematic errors, e.g., stemming from mechanical vibration, beam non-collinearity, and beam polarization distortion are individually examined and minimized to ensure measurement accuracy. Simultaneous density and Faraday measurements have been successfully achieved for 14 chords. Based on measurements, temporal evolution of safety factor profile, current density profile, and electron density profile are resolved. Core magnetic and density perturbations associated with MHD tearing instabilities are clearly detected. Effects of non-axisymmetric 3D RMP in ohmically heated plasmas are directly observed by polarimetry for the first time.

  17. TOPAZ3D. 3-D Finite Element Heat Transfer

    SciTech Connect (OSTI)

    Shapiro, A.B. [Lawrence Livermore National Lab., CA (United States)

    1992-02-24T23:59:59.000Z

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  18. High resolution non-contact thermal characterization of semiconductor devices

    E-Print Network [OSTI]

    imaging can have spatial resolution better than the diffraction limit of an infrared camera and can work infrared microscopes. Also, since the thermoreflectance technique does not rely upon the emitted black body measured the heating on a 35x35 micron MOS transistor, and Mansanares5 who measured temperature

  19. Probe for high resolution NMR with sample reorientation

    DOE Patents [OSTI]

    Pines, Alexander (Berkeley, CA); Samoson, Ago (Tallinn, SU)

    1990-01-01T23:59:59.000Z

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.

  20. Probe for high resolution NMR with sample reorientation

    DOE Patents [OSTI]

    Pines, A.; Samoson, A.

    1990-02-06T23:59:59.000Z

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  1. INTEGRATING DATA FROM 3D CAD AND 3D CAMERAS

    E-Print Network [OSTI]

    Bosché, Frédéric

    camera, 3D CAD, data fusion, construction automation 1 PhD Candidate, Department of Civil Engineering in Civil and Building Engineering Page 37 #12;INTRODUCTION Over the last fifty years, the construction2 , Carl T. Haas3 and Carlos H. Caldas4 ABSTRACT In a reversal of historic trends, the capital

  2. A Steerable Laser System for Atmospheric Monitoring at the High Resolution Flys Eye

    E-Print Network [OSTI]

    and radiometer . The energy 2 released into the sky is determined by multiplying this measurementOG 4.5.10 A Steerable Laser System for Atmospheric Monitoring at the High Resolution Flys Eye J. R. Mumford , R. C. Gray , L. R. Wiencke for the 1 1 1 High Resolution Flys Eye Collaboration 1. Physics

  3. High Resolution Wave Propagation Schemes for Two-Fluid Plasma Simulations

    E-Print Network [OSTI]

    Shumlak, Uri

    High Resolution Wave Propagation Schemes for Two-Fluid Plasma Simulations Ammar H. Hakim Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author Abstract High Resolution Wave Propagation Schemes for Two-Fluid Plasma Simulations Ammar H. Hakim Chair

  4. ATTEMPT OF ALPINE GLACIER FLOW MODELING BASED ON CORRELATION MEASUREMENTS OF HIGH RESOLUTION SAR IMAGES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ATTEMPT OF ALPINE GLACIER FLOW MODELING BASED ON CORRELATION MEASUREMENTS OF HIGH RESOLUTION SAR In this paper, an attempt of Alpine glacier flow modeling is performed based on a series of high resolution TerraSAR-X SAR images and a Digital Elevation Model. First, a glacier flow model is established

  5. Evaluation of a CCD-based high resolution autocollimator for use as a slope sensor

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    Evaluation of a CCD-based high resolution autocollimator for use as a slope sensor Rohan Isaac the focused beam profile to broaden and decrease its peak intensity Project: Evaluation of a compact CCD-based high resolution autocollimator with a small probe beam for potential use as a slope sensor Optics Group

  6. A NEW HIGH ENERGY RESOLUTION NEUTRON TRANSMISSION DETECTOR SYSTEM AT THE GAERTTNER LINAC LABORATORY

    E-Print Network [OSTI]

    Danon, Yaron

    Laboratory P.O. Box 1072, Schenectady, New York 12301-1072 A new high energy resolution modular neutronA NEW HIGH ENERGY RESOLUTION NEUTRON TRANSMISSION DETECTOR SYSTEM AT THE GAERTTNER LINAC LABORATORY capabilities at the Laboratory in and above the resolved resonance energy region from 1 keV to 600 ke

  7. Range imaging: a new method for high-resolution topographic measurements in small-and medium-

    E-Print Network [OSTI]

    Kirchner, James W.

    Range imaging: a new method for high-resolution topographic measurements in small- and medium is a useful complement or alternative to existing methods for high-resolution measurements in small- to medium has led to a dramatic increase in terrain information and opened up new opportunities for hydro- logic

  8. Experimental measurement of human head motion for high-resolution computed tomography

    E-Print Network [OSTI]

    Wang, Ge

    Experimental measurement of human head motion for high-resolution computed tomography system design experimentally measured for high-resolution computed tomography CT design using a Canon digital camera. Our goal-Optical Instrumentation Engineers. DOI: 10.1117/1.3454379 Subject terms: head motion; computed tomography CT ; image

  9. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe

    E-Print Network [OSTI]

    Watson, Andrew

    on biomass potential in western Europe; Rotmans A comprehensive set of high-resolution grids of monthly climate for Europe and the globe;1 A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record

  10. A high-resolution mapped grid algorithm for compressible multiphase flow problems

    E-Print Network [OSTI]

    Shyue, Keh-Ming

    A high-resolution mapped grid algorithm for compressible multiphase flow problems K.-M. Shyue mapped grid approach for the efficient numerical simula- tion of compressible multiphase flow in general problems, J. Comput. Phys. 142 (1998) 208-242). A standard high-resolution mapped grid method in wave

  11. alto high-resolution search: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-10-22 7 The Search for Anisotropy in the Arrival Directions of Ultra-High Energy Cosmic Rays Observed by the High Resolution Fly's Eye Detector in Monocular Mode...

  12. alveolitis high-resolution computed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geiger, Cathleen 45 High-resolution x-ray telescopes CERN Preprints Summary: High-energy astrophysics is a relatively young scientific field, made possible by space-borne...

  13. Automated analysis for microcalcifications in high resolution digital mammograms

    DOE Patents [OSTI]

    Mascio, Laura N. (Dublin, CA)

    1996-01-01T23:59:59.000Z

    A method for automatically locating microcalcifications indicating breast cancer. The invention assists mammographers in finding very subtle microcalcifications and in recognizing the pattern formed by all the microcalcifications. It also draws attention to microcalcifications that might be overlooked because a more prominent feature draws attention away from an important object. A new filter has been designed to weed out false positives in one of the steps of the method. Previously, iterative selection threshold was used to separate microcalcifications from the spurious signals resulting from texture or other background. A Selective Erosion or Enhancement (SEE) Filter has been invented to improve this step. Since the algorithm detects areas containing potential calcifications on the mammogram, it can be used to determine which areas need be stored at the highest resolution available, while, in addition, the full mammogram can be reduced to an appropriate resolution for the remaining cancer signs.

  14. Automated analysis for microcalcifications in high resolution digital mammograms

    DOE Patents [OSTI]

    Mascio, L.N.

    1996-12-17T23:59:59.000Z

    A method is disclosed for automatically locating microcalcifications indicating breast cancer. The invention assists mammographers in finding very subtle microcalcifications and in recognizing the pattern formed by all the microcalcifications. It also draws attention to microcalcifications that might be overlooked because a more prominent feature draws attention away from an important object. A new filter has been designed to weed out false positives in one of the steps of the method. Previously, iterative selection threshold was used to separate microcalcifications from the spurious signals resulting from texture or other background. A Selective Erosion or Enhancement (SEE) Filter has been invented to improve this step. Since the algorithm detects areas containing potential calcifications on the mammogram, it can be used to determine which areas need be stored at the highest resolution available, while, in addition, the full mammogram can be reduced to an appropriate resolution for the remaining cancer signs. 8 figs.

  15. Characterization of 3D Photovoltaics

    E-Print Network [OSTI]

    Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

  16. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOE Patents [OSTI]

    Olivier, Scot S. (Livermore, CA); Werner, John S. (Davis, CA); Zawadzki, Robert J. (Sacramento, CA); Laut, Sophie P. (Pasedena, CA); Jones, Steven M. (Livermore, CA)

    2010-09-07T23:59:59.000Z

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  17. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Lacy, Jeffrey L

    2009-05-22T23:59:59.000Z

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

  18. Scalable Visual Queries for Data Exploration on Large, High-Resolution 3D Displays Khairi Reda, Andrew Johnson, Victor Mateevitsi, Catherine Offord and Jason Leigh

    E-Print Network [OSTI]

    Johnson, Andrew

    , University of Illinois at Chicago, Chicago, Illinois, USA Dept. of Ecology and Evolutionary Biology within the context of a behavioral ecology case study. We also share our observations from a pilot user however is naturally biased towards narratives that conform to the analyst's intuition [2]. Our perception

  19. [27] Lorensen WE, Cline HE (1987) Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21:163--169

    E-Print Network [OSTI]

    Tal, Ayellet

    algorithm. Computer Graphics 21:163--169 [28] Meyers D, Skinner S, Sloan K (1992) Surfaces from contours. ACM Trans. on Graphics 11:228-- 258 [29] Nielson GM, Hamann B (1991) The asymptotic decider: Resolving for branching contour­defined objects. Computer Graphics 15:242--270 [33] Sloan KR, Painter J (1988) Pessimal

  20. Imaging Permafrost Velocity Structure Using High Resolution 3D Seismic Tomography K.Ramachandran, The University of Tulsa, Tom Brent, Gilles Bellefleur and Scott Dallimore, Geological Survey of

    E-Print Network [OSTI]

    Ramachandran, Kumar

    .Ramachandran, The University of Tulsa, Tom Brent, Gilles Bellefleur and Scott Dallimore, Geological Survey of Canada, Michael

  1. Elongated fascicle-inspired 3D tissues consisting of high-density, aligned, optogenetically excitable muscle tissue using sacrificial outer molding

    E-Print Network [OSTI]

    Neal, Devin Michael

    2014-01-01T23:59:59.000Z

    The majority of muscles, nerves, and tendons are composed of fiber-like fascicle morphology. Each fascicle has a) elongated cells highly aligned with the length of the construct, b) a high volumetric cell density, and c) ...

  2. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, P.

    1992-01-07T23:59:59.000Z

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  3. Interactive 3D Animation System for Web3D Masayuki Furukawa, Shinya Fukumoto, Hiroshi Kawasaki

    E-Print Network [OSTI]

    Tokyo, University of

    of state model using a printer as a 3D object. In the example, three states of 3D object are defined can try 3D manual of printer by using tablet PC to learn the effectiveness of our 3D animation systemInteractive 3D Animation System for Web3D Masayuki Furukawa, Shinya Fukumoto, Hiroshi Kawasaki

  4. Highly ecient kinetic resolution of 2-cyclohexenyl acetate in Pd-catalyzed allylic alkylation

    E-Print Network [OSTI]

    Zhang, Xumu

    Highly ecient kinetic resolution of 2-cyclohexenyl acetate in Pd-catalyzed allylic alkylation James resolution of 2-cyclohexenyl acetate was observed during alkylation. In addition, the reactivity and enantioselectivity showed a strong dependence on the acetate salt with the BSA/MOAc (M=alkali metal) base system

  5. GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Source geometry from exceptionally high resolution

    E-Print Network [OSTI]

    Boyer, Edmond

    resolution Long Period event observations at Mt Etna during the 2008 eruption. Louis De Barros 1 to the summit, allowing us to observe seismic activity with exceptionally high resolution. 129 Long Period. These events form two families of similar wave- forms with different temporal distributions. Event locations

  6. High Resolution Backside Imaging and Thermography using a Numerical Aperture Increasing Lens

    E-Print Network [OSTI]

    High Resolution Backside Imaging and Thermography using a Numerical Aperture Increasing Lens Shawn inspection alone, it is necessary to develop techniques, such as thermography, with the capability ­solid immersion lens microscopy and thermography. Standard non-contact optical resolution is limited

  7. Collimator selection for SPECT brain imaging: the advantage of high resolution

    SciTech Connect (OSTI)

    Mueller, S.P.; Polak, J.F.; Kijewski, M.F.; Holman, B.L.

    1986-11-01T23:59:59.000Z

    We compared a prototype long-bore (LB) high-resolution collimator with a low-energy, general-purpose collimator (LEGP) using 99mTc and /sup 123/I. The LB collimator provided a 56% improvement in tomographic resolution (autocorrelation width) over the LEGP for 99mTc; for /sup 123/I, the gain was 79%, providing substantially improved contrast for small structures. The sensitivity of the LB collimator, however, is only 32% of that of the LEGP. The imaging tasks to be performed on (/sup 123/I)IMP brain scans involve localization and discrimination of small, high-contrast brain structures and detection of abnormalities in shape, size, or uptake, rather than simple detection of lesions. Observer performance in such higher-order imaging tasks is known to depend on high spatial resolution, even at the cost of sensitivity. Patient studies confirmed that, for resolution-limited tasks, the increase in resolution outweighs the increased noise due to a loss in sensitivity. When the tomographic resolution of the LB collimator was degraded by smoothing to that of the LEGP, the noise in the LB images was lower than that of the LEGP by a factor of 2.9 for the same imaging time, demonstrating the advantage of high-resolution detectors and a smooth reconstruction filter over low-resolution detectors without smoothing. Therefore, collimators designed for high resolution, even at substantial cost in sensitivity, are expected to yield significant improvements for brain SPECT. Geometric calculations show that commercially available low-energy, high-resolution cast collimators promise to meet these requirements.

  8. A Warm Near-Infrared High-Resolution Spectrograph with Very High Throughput (WINERED)

    E-Print Network [OSTI]

    Kondo, Sohei; Kobayashi, Naoto; Yasui, Chikako; Mito, Hiroyuki; Fukue, Kei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Otsubo, Shogo; Kinoshita, Masaomi; Kitano, Ayaka; Hamano, Satoshi; Mizumoto, Misaki; Yamamoto, Ryo; Izumi, Natsuko; Matsunaga, Noriyuki; Kawakita, Hideyo

    2015-01-01T23:59:59.000Z

    WINERED is a newly built high-efficiency (throughput$ > 25-30\\%$) and high-resolution spectrograph customized for short NIR bands at 0.9-1.35 ${\\rm \\mu}$m. WINERED is equipped with ambient temperature optics and a cryogenic camera using a 1.7 ${\\rm \\mu}$m cut-off HgCdTe HAWAII-2RG array detector. WINERED has two grating modes: one with a conventional reflective echelle grating (R$\\sim$28,300), which covers 0.9-1.35 $\\mu$m simultaneously, the other with ZnSe or ZnS immersion grating (R$\\sim$100,000). We have completed the development of WINERED except for the immersion grating, and started engineering and science observations at the Nasmyth platform of the 1.3 m Araki Telescope at Koyama Astronomical Observatory of Kyoto-Sangyo University in Japan. We confirmed that the spectral resolution ($R\\sim$ 28,300) and the throughput ($>$ 40\\% w/o telescope/atmosphere/array QE) meet our specifications. We measured ambient thermal backgrounds (e.g., 0.06 ${\\rm [e^{-}/sec/pixel]}$ at 287 K), which are roughly consistent ...

  9. 3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.

    SciTech Connect (OSTI)

    Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

    2007-02-01T23:59:59.000Z

    A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

  10. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W., E-mail: khill@pppl.gov; Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lu, J. [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Beiersdorfer, P.; Chen, H.; Magee, E. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15T23:59:59.000Z

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/?E of order 10?000 and spatial resolution better than 10 ?m. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  11. High resolution ion Doppler spectroscopy at Prairie View Rotamak

    SciTech Connect (OSTI)

    Houshmandyar, Saeid; Yang Xiaokang [Solar Observatory Department, Prairie View A and M University, Prairie View, Texas 77446 (United States); Magee, Richard [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)

    2012-10-15T23:59:59.000Z

    A fast ion Doppler spectroscopy (IDS) diagnostic system is installed on the Prairie View Rotamak to measure ion temperature and plasma flow. The diagnostic employs a single channel photomultiplier tube and a Jarrell-Ash 50 monochromator with a diffraction grating line density of 1180 lines/mm, which allows for first order spectra of 200-600 nm. The motorized gear of the monochromator allows spectral resolution of 0.01 nm. Equal IDS measurements are observed for various impurity emission lines of which carbon lines exhibit stronger intensities. Furthermore, the diagnostics is examined in an experiment where plasma experiences sudden disruption and quick recovery. In this case, the IDS measurements show {approx}130% increase in ion temperature. Flow measurements are shown to be consistent with plasma rotation.

  12. Morphological Characteristics of Compact High-Velocity Clouds Revealed by High-Resolution WSRT Imaging

    E-Print Network [OSTI]

    W. B. Burton; Robert Braun

    1999-12-22T23:59:59.000Z

    A class of compact, isolated high-velocity clouds which plausibly represents a homogeneous subsample of the HVC phenomenon in a single physical state was objectively identified by Braun and Burton (1999). Six examples of the CHVCs, unresolved in single-dish data, have been imaged with the Westerbork Synthesis Radio Telescope. The high-resolution imaging reveals the morphology of these objects, including a core/halo distribution of fluxes, signatures of rotation indicating dark matter, and narrow linewidths constraining the kinetic temperature of several opaque cores. In these regards, as well as in their kinematic and spatial deployment on the sky, the CHVC objects are evidently a dynamically cold ensemble of dark-matter-dominated HI clouds accreting onto the Local Group in a continuing process of galactic evolution.

  13. HIGH ANGULAR RESOLUTION OBSERVATIONS OF FOUR CANDIDATE BLAST HIGH-MASS STARLESS CORES

    SciTech Connect (OSTI)

    Olmi, Luca; Poventud, Carlos M. [Physics Department, Rio Piedras Campus, University of Puerto Rico, Box 23343, UPR Station, San Juan, Puerto Rico (United States); Araya, Esteban D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Chapin, Edward L.; Gibb, Andrew [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Hofner, Peter [Physics Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Martin, Peter G., E-mail: olmi.luca@gmail.co, E-mail: olmi@arcetri.astro.i [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2010-06-01T23:59:59.000Z

    We discuss high angular resolution observations of ammonia toward four candidate high-mass starless cores (HMSCs). The cores were identified by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) during its 2005 survey of the Vulpecula region where 60 compact sources were detected simultaneously at 250, 350, and 500 {mu}m. Four of these cores, with no IRAS-PSC or MSX counterparts, were mapped with the NRAO Very Large Array and observed with the Effelsberg 100 m telescope in the NH{sub 3}(1,1) and (2,2) spectral lines. Our observations indicate that the four cores are cold (T {sub k} < 16 K) and show a filamentary and/or clumpy structure. They also show a significant velocity substructure within {approx}1 km s{sup -1}. The four BLAST cores appear to be colder and more quiescent than other previously observed HMSC candidates, suggesting an earlier stage of evolution.

  14. Abstract --An experimental small animal PET using two 3-D position sensitive CdZnTe detectors was developed and tested.

    E-Print Network [OSTI]

    He, Zhong

    Abstract -- An experimental small animal PET using two 3-D position sensitive CdZnTe detectors scattering angle reconstruction are reported and discussed. I. INTRODUCTION onventional PET systems use, for molecular imaging and drug development using high resolution PET is gaining more and more interests. One

  15. automatic high resolution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with its Sun 3 workstations, Sun Melvin, Stephen 24 Automatic keywording of High Energy Physics CERN Preprints Summary: Bibliographic databases were developed from the...

  16. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; et al

    2006-01-01T23:59:59.000Z

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore »resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  17. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-01-01T23:59:59.000Z

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  18. High-resolution imaging of compact high-velocity clouds (II)

    E-Print Network [OSTI]

    V. de Heij; R. Braun; W. B. Burton

    2002-06-19T23:59:59.000Z

    We have imaged five compact high-velocity clouds in HI with arcmin angular- and km/s spectral-resolution using the WSRT. Supplementary total-power data, which is fully sensitive to both the cool and warm components of HI, is available for comparison for all the sources, albeit with angular resolutions that vary from 3' to 36'. The fractional HI flux in compact CNM components varies from 4% to 16% in our sample. All objects have at least one local peak in the CNM column which exceeds about 10^19 cm^-2 when observed with arcmin resolution. It is plausible that a peak column density of 1-2x10^19 cm^-2 is a prerequisite for the long-term survival of these sources. One object in our sample, CHVC120-20-443 (Davies' cloud), lies in close projected proximity to the disk of M31. This object is characterized by exceptionally broad linewidths in its CNM concentrations (more than 5 times greater than the median value). These CNM concentrations lie in an arc on the edge of the source facing the M31 disk, while the diffuse HI component of this source has a position offset in the direction of the disk. All of these attributes suggest that CHVC120-20-443 is in a different evolutionary state than most of the other CHVCs which have been studied. Similarly broad CNM linewidths have only been detected in one other object, CHVC111-07-466, which also lies in the Local Group barycenter direction and has the most extreme radial velocity known. A distinct possibility for Davies' cloud seems to be physical interaction of some type with M31. The most likely form of this interaction might be the ram-pressure or tidal- stripping by either one of M31's visible dwarf companions, M32 or NGC205, or else by a dark companion with an associated HI condensation.

  19. SEX DIFFERENCES IN THE HUMAN CONNECTOME: 4-TESLA HIGH ANGULAR RESOLUTION DIFFUSION IMAGING (HARDI)

    E-Print Network [OSTI]

    Thompson, Paul

    SEX DIFFERENCES IN THE HUMAN CONNECTOME: 4-TESLA HIGH ANGULAR RESOLUTION DIFFUSION IMAGING (HARDI diffusion imaging at 4 Tesla, we scanned 234 young adult twins and siblings (mean age: 23.4 ± 2.0 SD years

  20. A machine learning model of Manhattan air pollution at high spatial resolution

    E-Print Network [OSTI]

    Keeler, Rachel H. (Rachel Heiden)

    2014-01-01T23:59:59.000Z

    A machine-learning model was created to predict air pollution at high spatial resolution in Manhattan, New York using taxi trip data. Urban air pollution increases morbidity and mortality through respiratory and cardiovascular ...

  1. High resolution laser spectroscopy of cesium and rubidium molecules with optically induced coherence 

    E-Print Network [OSTI]

    Chen, Hui

    2006-10-30T23:59:59.000Z

    This work is devoted to the study of the quantum coherent effects in diatomic molecular systems by using high resolution laser spectroscopy. In particular, we have studied the rubidium diatomic molecular gaseous medium's absorption spectrum...

  2. High-resolution three-dimensional optical coherence tomography imaging of kidney microanatomy ex vivo

    E-Print Network [OSTI]

    Chen, Yu

    Optical coherence tomography (OCT) is an emerging medical imaging technology that enables high-resolution, noninvasive, cross-sectional imaging of microstructure in biological tissues in situ and in real time. When combined ...

  3. High-resolution 7-Tesla fMRI of Human Hippocampal Subfields during Associative Learning.

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    fMRI in the Human Brain at 7 Tesla: Combining Reduced Field-High-resolution 7-Tesla fMRI of Human Hippocampal Subfieldsrobustly using FMRI at 7 tesla. Journal of Neuroimaging, 23(

  4. High resolution CMRO2 in visual cortex of macaca mulatta Y. Bohraus1

    E-Print Network [OSTI]

    the contribution of the vascular system and neural energy consumption. Measuring CMRO2 allows one to determine with previous MR and PET results such as reviewed in [7]. In conclusion, we showed that high resolution CMRO2

  5. HIGH-RESOLUTION X-RAY SPECTROSCOPY OF THE MULTIPHASE INTERSTELLAR MEDIUM TOWARD Cyg X-2

    E-Print Network [OSTI]

    Schulz, Norbert S.

    High-resolution X-ray absorption spectroscopy is a powerful diagnostic tool for probing chemical and physical properties of the interstellar medium (ISM) at various phases. We present detections of K transition absorption ...

  6. New optics technology opens door to high-resolution atomic-level...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optics technology opens door to high-resolution atomic-level hard X-ray studies June 8, 2015 Tweet EmailPrint An international collaboration involving two U.S. Department of Energy...

  7. Identification of honeycomb sandwich properties by high-resolution modal analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    implementations. The high-resolution modal analysis (HRMA) technique [5] is an alternative to the FT of the modal analysis of a large panel (lx,y/h 80). The HRMA technique is used to estimate modal frequencies

  8. High resolution melt analysis (HRMA) for detection of CRISPR indels Andrew Bassett 19th

    E-Print Network [OSTI]

    High resolution melt analysis (HRMA) for detection of CRISPR indels Andrew Bassett 19th June 2013 approximately 1 ul per 10 ul PCR reaction HRMA analysis 1. Design primers to amplify 100-200 bp product across

  9. High-Resolution Characterization of Reservoir Heterogeneity and Connectivity in Clastic Environments

    E-Print Network [OSTI]

    Hull, Thomas Frederick

    2011-10-21T23:59:59.000Z

    This study developed new concepts and interpretative methods for mapping reservoir heterogeneity and connectivity of a fault controlled Wilcox clastic reservoir in Texas, USA. The application of high-resolution seismic enhancement in this study...

  10. Ion implantation for figure correction of high-resolution x-ray telescope mirrors

    E-Print Network [OSTI]

    Chalifoux, Brandon D

    2014-01-01T23:59:59.000Z

    Fabricating mirrors for future high-resolution, large-aperture x-ray telescopes continues to challenge the x-ray astronomy instrumentation community. Building a large-aperture telescope requires thin, lightweight mirrors; ...

  11. Simultaneous computational discovery of DNA regulatory motifs and transcription factor binding constraints at high spatial resolution

    E-Print Network [OSTI]

    Guo, Yuchun

    2012-01-01T23:59:59.000Z

    I present three novel computational methods to address the challenge of identifying protein-DNA interactions at high spatial resolution from noisy ChIP-Seq data. I first present the genome positioning system (GPS) algorithm ...

  12. High-resolution quantification of groundwater flux using a heat tracer: laboratory sandbox tests

    E-Print Network [OSTI]

    Konetchy, Brant Evan

    2014-12-31T23:59:59.000Z

    Groundwater flux is the most critical factor controlling contaminant transport in aquifers. High-resolution information about groundwater flux and its variability is essential to properly assessing and remediating contamination sites. Recently, we...

  13. Results from the High-Resolution Fly's Eye (HiRes) Experiment

    E-Print Network [OSTI]

    Aspen 4/06/05 1 Results from the High-Resolution Fly's Eye (HiRes) Experiment Charles Jui (HiRes) University of Utah Physics at the End of the Galactic Cosmic Ray Spectrum Aspen Apr 26-30, 2005 #12;Aspen 4 · Anisotropy · Composition · Proton-air cross-section measurement #12;Aspen 4/06/05 3 The High Resolution Fly

  14. High Resolution Rydberg Spectroscopy of ultracold Rubidium Atoms

    E-Print Network [OSTI]

    Axel Grabowski; Rolf Heidemann; Robert Löw; Jürgen Stuhler; Tilman Pfau

    2005-08-10T23:59:59.000Z

    We present experiments on two-photon excitation of ${\\rm ^{87}}$Rb atoms to Rydberg states. For this purpose, two continuous-wave (cw)-laser systems for both 780 nm and 480 nm have been set up. These systems are optimized to a small linewidth (well below 1 MHz) to get both an efficient excitation process and good spectroscopic resolution. To test the performance of our laser system, we investigated the Stark splitting of Rydberg states. For n=40 we were able to see the hyperfine levels splitting in the electrical field for different finestructure states. To show the ability of spatially selective excitation to Rydberg states, we excited rubidium atoms in an electrical field gradient and investigated both linewidths and lineshifts. Furthermore we were able to excite the atoms selectively from the two hyperfine ground states to Rydberg states. Finally, we investigated the Autler-Townes splitting of the 5S$_{1/2}$$\\to$5P$_{3/2}$ transition via a Rydberg state to determine the Rabi frequency of this excitation step.

  15. Optic for an endoscope/borescope having high resolution and narrow field of view

    DOE Patents [OSTI]

    Stone, Gary F.; Trebes, James E.

    2003-10-28T23:59:59.000Z

    An optic having optimized high spatial resolution, minimal nonlinear magnification distortion while at the same time having a limited chromatic focal shift or chromatic aberrations. The optic located at the distal end of an endoscopic inspection tool permits a high resolution, narrow field of view image for medical diagnostic applications, compared to conventional optics for endoscopic instruments which provide a wide field of view, low resolution image. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion. The optic is also optimized for best color correction as well as to aid medical diagnostics.

  16. High-Resolution Residential Feeder Load Characterization and Variability Modelling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High School footballHigh-Pressure MOF Research

  17. Overshooting Convection from High-resolution NEXRAD Observations

    E-Print Network [OSTI]

    Solomon, David

    2014-01-09T23:59:59.000Z

    of the Rocky Mountains. Overshooting convection is most common over the high plains, and there is a pronounced seasonal and diurnal cycle present. The majority of overshooting systems occur during the warm season, and a diurnal maximum of overshooting occurs...

  18. 21T High Resolution Mass Accuracy Capability | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mass analyzer with co-located capabilities in high - throughput omics, imaging, and microfluidics. The 21T FTICR MS will be the best, if not the only, capability in the world to...

  19. Building a database of 3D scenes from user annotations

    E-Print Network [OSTI]

    Russell, Bryan C.

    In this paper, we wish to build a high quality database of images depicting scenes, along with their real-world three-dimensional (3D) coordinates. Such a database is useful for a variety of applications, including training ...

  20. Multi-Sensor Fusion of Electro-Optic and Infrared Signals for High Resolution Visible Images: Part II

    E-Print Network [OSTI]

    of high resolution and low noise level, but they cannot reflect information about the temperature the properties of low resolution and high noise level, but IR images can reflect information about temperature variation of objects in the daytime via high-resolution EO images. The proposed novel framework

  1. HIGH RESOLUTION SEDIMENT DYNAMICS IN SALT-WEDGE ESTUARIES

    E-Print Network [OSTI]

    Jay, David

    and Columbia River estuaries switch between two extremes of mixing on very small horizontal scales; over compared well with in situ settling tube observations, typically within a factor of 2. ACCOMPLISHMENTS arm of the Fraser River estuary (Figure 1). River flow during the study was very high, approximately

  2. HIGH RESOLUTION FORWARD AND INVERSE EARTHQUAKE MODELING ON TERASCALE COMPUTERS

    E-Print Network [OSTI]

    Shewchuk, Jonathan

    highly populated seismic region in the U.S., it has well- characterized geological structures (including in characterizing earthquake source and basin material properties, a critical remaining challenge is to invert basin geology and earthquake sources, and to use this capability to model and forecast strong ground

  3. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect (OSTI)

    Norris, B. L.; Dise, J. H.

    2013-09-01T23:59:59.000Z

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  4. A Cosmic Ray Test Platform Based on the High Time Resolution MRPC Technology

    E-Print Network [OSTI]

    Tianxiang Chen; Cheng Li; Yongjie Sun; Hongfang Chen; Ming Shao; Zebo Tang; Rongxing Yang; Yi Zhou; Yifei Zhang

    2015-03-13T23:59:59.000Z

    In order to test the performance of detector/prototype in environment of laboratory, we design and build a larger area ($90\\times52$ $cm^2$) test platform of cosmic ray based on well-designed Multi-gap Resistive Plate Chamber (MRPC) with an excellent time resolution and a high detection efficiency for the minimum ionizing particles (MIPs). The time resolution of the MRPC module used is tested to be ~80 ps, and the position resolution along the strip is ~5 mm, while the position resolution perpendicular to the strip is ~12.7 mm. The platform constructed by four MRPC modules can be functional for tracking the cosmic rays with a spatial resolution ~6.3 mm, and provide a reference time ~40 ps.

  5. PRISACARIU, REID: PWP3D 1 PWP3D: Real-time segmentation and

    E-Print Network [OSTI]

    Oxford, University of

    method allows for fast 2D­3D pose tracking and 2D segmentation using a single, unified, energy function in print or electronic forms. #12;2 PRISACARIU, REID: PWP3D The most closely related work to our ownPRISACARIU, REID: PWP3D 1 PWP3D: Real-time segmentation and tracking of 3D objects Victor A

  6. High resolution PET breast imager with improved detection efficiency

    DOE Patents [OSTI]

    Majewski, Stanislaw

    2010-06-08T23:59:59.000Z

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  7. LES Modeling of High Resolution Satellite Cloud Spatial and Thermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 1 2 3 4 5 6 7 8 9LDRD,LEDs:

  8. Sandia Energy - High-Resolution Computational Algorithms for Simulating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePower Company's (ORPC's) TidGen®

  9. High-Angular-Resolution Microbeam X-Ray Diffraction with CCD Detector

    SciTech Connect (OSTI)

    Imai, Yasuhiko; Kimura, Shigeru; Sakaia, Akira [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Sakata, Osami [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 670-8531 (Japan)

    2010-04-06T23:59:59.000Z

    We have introduced a CCD-type two-dimensional X-ray detector for a microbeam X-ray diffraction system using synchrotron radiation, so that we can measure local reciprocal space maps (RSM) of samples rapidly. A local RSM of a strain-relaxed SiGe 004 grown on a Si (001) substrate was measured in higher-angular-resolution and faster than a conventional way. The measurement was achieved in 1 h 40 min. with the 2theta resolution of 80 murad and the spatial resolution of 1.4(h)x0.5(v) {mu}m{sup 2}. The introduction of the CCD enabled us to measure RSMs at many points in a sample, that is, the distribution of strain fields and lattice tilts can be revealed in high-angular- and high-spatial-resolution.

  10. Predicting the stellar and non-equilibrium dust emission spectra of high-resolution simulated galaxies with DART-Ray

    E-Print Network [OSTI]

    Natale, Giovanni; Tuffs, Richard J; Debattista, Victor P; Fischera, Jörg; Grootes, Meiert W

    2015-01-01T23:59:59.000Z

    We describe the calculation of the stochastically heated dust emission using the 3D ray-tracing dust radiative transfer code DART-Ray, which is designed to solve the dust radiative transfer problem for galaxies with arbitrary geometries. In order to reduce the time required to derive the non-equilibrium dust emission spectra from each volume element within a model, we implemented an adaptive SED library approach, which we tested for the case of axisymmetric galaxy geometries. To show the capabilities of the code, we applied DART-Ray to a high-resolution N-body+SPH galaxy simulation to predict the appearance of the simulated galaxy at a set of wavelengths from the UV to the sub-mm. We analyse the results to determine the effect of dust on the observed radial and vertical profiles of the stellar emission as well as on the attenuation and scattering of light from the constituent stellar populations. We also quantify the proportion of dust re-radiated stellar light powered by young and old stellar populations, bo...

  11. High-resolution spectroscopic probes of collisions and half-collisions

    SciTech Connect (OSTI)

    Hall, G.E. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01T23:59:59.000Z

    Research in this program explores the dynamics of gas phase collisions and photodissociation by high-resolution laser spectroscopy. Simultaneous state and velocity detection frequently permits a determination of scalar or vector correlations among products. The correlated product distributions are always more informative, and often easier to interpret than the uncorrelated product state distributions. The authors have recently built an apparatus to record transient absorption spectra with 50 nS time resolution and 20 MHz frequency resolution using a single frequency Ti:sapphire laser. The photodissociation of NCCN and C{sub 2}H{sub 5}SCN at 193 nm is discussed.

  12. A High-resolution Spectrum of the R CrB Star V2552 Ophiuchi

    E-Print Network [OSTI]

    N. Kameswara Rao; David L. Lambert

    2003-08-25T23:59:59.000Z

    Photometry and low-resolution spectroscopy have added V2552 Oph to the rare class of R Coronae Borealis variables. We confirm this classification of V2552 Oph through a comparison of our high-resolution optical spectrum of this star and that of R CrB and other F-type members of the class. We show that V2552 Oph most closely resembles Y Mus and FH Sct, stars in which Sr, Y, and Zr are enhanced.

  13. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect (OSTI)

    Bjorn N.P. Paulsson

    2005-03-31T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  14. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2005-09-30T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  15. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N.P Paulsson

    2006-05-05T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  16. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N.P. Paulsson

    2005-08-21T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  17. Part removal of 3D printed parts

    E-Print Network [OSTI]

    Peña Doll, Mateo

    2014-01-01T23:59:59.000Z

    An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

  18. A view-sequential 3D display

    E-Print Network [OSTI]

    Cossairt, Oliver S. (Oliver Strider), 1978-

    2003-01-01T23:59:59.000Z

    This thesis outlines the various techniques for creating electronic 3D displays and analyzes their commercial potential. The thesis argues for the use of view-sequential techniques in the design of 3D displays based on ...

  19. The Makerbot: Desktop 3D printing

    E-Print Network [OSTI]

    Roughan, Matthew

    The Makerbot: Desktop 3D printing Matthew Roughan School of Mathematical Sciences matthew is Lots of maths hidden in something like 3D printing Geometry and Linear algebra ++ Same math used

  20. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    2008-12-23T23:59:59.000Z

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  1. Hurricane Wind Field Estimation from SeaWinds at Ultra High Resolution

    E-Print Network [OSTI]

    Long, David G.

    Hurricane Wind Field Estimation from SeaWinds at Ultra High Resolution Brent A. Williams and David) are inherently noisier than the standard 25km products and the high rain rates often associated with hurricanes. This paper develops a new procedure for hurricane wind field estimation from the SeaWinds instrument at ultra

  2. Atmospheric inverse modeling to constrain regionalscale CO2 budgets at high spatial and temporal resolution

    E-Print Network [OSTI]

    Michalak, Anna M.

    a simple diagnostic flux model that splits the net ecosystem exchange into its major components of gross stateoftheart data sets for advected background CO2 and anthropogenic fossil fuel emissions as well as highly grid cell, thus permitting description of the surface in a very high resolution. The model is tested

  3. 3D Printing Prof. Hank Dietz

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    3D Printing Prof. Hank Dietz TCMS, March 14, 2014 University of Kentucky Electrical & Computer #12;3D With Glue Layers of paper: printed with glue & cut Layers of powder: printed with glue Can also be printed in full color #12;3D Extrusion (RepRaps) FDM: Fused Deposition Modeling FFF: Fused

  4. High-resolution 18F-FDG PET with MRI for monitoring response to treatment in rheumatoid arthritis

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    of a dedicated breast PET/CT scanner during human imaging. Jhigh-resolution 18 F-FDG PET images (pseudocolor) overlaidMONTH High-resolution 18 F-FDG PET with MRI for monitoring

  5. Stress-induced Effects Caused by 3D IC TSV Packaging in Advanced Semiconductor Device Performance

    SciTech Connect (OSTI)

    Sukharev, V.; Kteyan, A.; Choy, J.-H.; Hovsepyan, H.; Markosian, A. [Mentor Graphics Corporation, 46871 Bayside Parkway, Fremont, CA 94538 (United States); Zschech, E.; Huebner, R. [Fraunhofer Institute for Non-Destructive Testing, Maria-Reiche-Strasse 2, 01109 Dresden (Germany)

    2011-11-10T23:59:59.000Z

    Potential challenges with managing mechanical stress and the consequent effects on device performance for advanced 3D through-silicon-via (TSV) based technologies are outlined. The paper addresses the growing need in a simulation-based design verification flow capable to analyze a design of 3D IC stacks and to determine across-die out-of-spec variations in device electrical characteristics caused by the layout and through-silicon-via (TSV)/package-induced mechanical stress. The limited characterization/measurement capabilities for 3D IC stacks and a strict ''good die'' requirement make this type of analysis critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation to assess the mechanical stress across the device layers in silicon chips stacked and packaged with the 3D TSV technology is proposed. A calibration technique based on fitting to measured stress components and electrical characteristics of the test-chip devices is presented. A strategy for generation of a simulation feeding data and respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. For model validation, high-resolution strain measurements in Si channels of the test-chip devices are needed. At the nanoscale, the transmission electron microscopy (TEM) is the only technique available for sub-10 nm strain measurements so far.

  6. Min-wuk Lee 1 A fixedA fixed--point 3D graphics library withpoint 3D graphics library with

    E-Print Network [OSTI]

    Yoo, Hoi-Jun

    Outline Introduction Motivation MobileGL: Mobile 3D graphics library Energy-efficient CPU cache Energy-optimization for mobile 3D graphics Software system : High speed graphics library (MobileGL) Hardware system : Energy-cost target High speed graphics library Energy-efficient CPU cache system High quality target High speed

  7. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber

    E-Print Network [OSTI]

    Westergaard, Philip G; Petersen, Jan C

    2015-01-01T23:59:59.000Z

    We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (<50 kHz) 1064 nm continuous-wave (CW) fiber laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ~ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10^-4 cm^(-1). The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths.

  8. Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an individual catalytic nanoparticle while reactions are occurring. Catalysts are used in manufacturing everything from stain remover to rocket fuel; they make production more...

  9. Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques

    E-Print Network [OSTI]

    CALICE Collaboration; C. Adloff; J. Blaha; J. -J. Blaising; C. Drancourt; A. Espargilière; R. Gaglione; N. Geffroy; Y. Karyotakis; J. Prast; G. Vouters; K. Francis; J. Repond; J. Smith; L. Xia; E. Baldolemar; J. Li; S. T. Park; M. Sosebee; A. P. White; J. Yu; T. Buanes; G. Eigen; Y. Mikami; N. K. Watson; T. Goto; G. Mavromanolakis; M. A. Thomson; D. R. Ward; W. Yan; D. Benchekroun; A. Hoummada; Y. Khoulaki; M. Benyamna; C. Cârloganu; F. Fehr; P. Gay; S. Manen; L. Royer; G. C. Blazey; A. Dyshkant; J. G. R. Lima; V. Zutshi; J. -Y. Hostachy; L. Morin; U. Cornett; D. David; G. Falley; K. Gadow; P. Göttlicher; C. Günter; B. Hermberg; S. Karstensen; F. Krivan; A. -I. Lucaci-Timoce; S. Lu; B. Lutz; S. Morozov; V. Morgunov; M. Reinecke; F. Sefkow; P. Smirnov; M. Terwort; A. Vargas-Trevino; N. Feege; E. Garutti; I. Marchesini; M. Ramilli; P. Eckert; T. Harion; A. Kaplan; H. -Ch. Schultz-Coulon; W. Shen; R. Stamen; A. Tadday; B. Bilki; E. Norbeck; Y. Onel; G. W. Wilson; K. Kawagoe; P. D. Dauncey; A. -M. Magnan; M. Wing; F. Salvatore; E. Calvo Alamillo; M. -C. Fouz; J. Puerta-Pelayo; V. Balagura; B. Bobchenko; M. Chadeeva; M. Danilov; A. Epifantsev; O. Markin; R. Mizuk; E. Novikov; V. Rusinov; E. Tarkovsky; N. Kirikova; V. Kozlov; P. Smirnov; Y. Soloviev; P. Buzhan; B. Dolgoshein; A. Ilyin; V. Kantserov; V. Kaplin; A. Karakash; E. Popova; S. Smirnov; C. Kiesling; S. Pfau; K. Seidel; F. Simon; C. Soldner; M. Szalay; M. Tesar; L. Weuste; J. Bonis; B. Bouquet; S. Callier; P. Cornebise; Ph. Doublet; F. Dulucq; M. Faucci Giannelli; J. Fleury; H. Li; G. Martin-Chassard; F. Richard; Ch. de la Taille; R. Pöschl; L. Raux; N. Seguin-Moreau; F. Wicek; M. Anduze; V. Boudry; J-C. Brient; D. Jeans; P. Mora de Freitas; G. Musat; M. Reinhard; M. Ruan; H. Videau; B. Bulanek; J. Zacek; J. Cvach; P. Gallus; M. Havranek; M. Janata; J. Kvasnicka; D. Lednicky; M. Marcisovsky; I. Polak; J. Popule; L. Tomasek; M. Tomasek; P. Ruzicka; P. Sicho; J. Smolik; V. Vrba; J. Zalesak; B. Belhorma; H. Ghazlane; T. Takeshita; S. Uozumi; J. Sauer; S. Weber; C. Zeitnitz

    2012-09-27T23:59:59.000Z

    The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approximately 58%/sqrt(E/GeV}. This resolution is improved to approximately 45%/sqrt(E/GeV) with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to Geant4 simulations yield resolution improvements comparable to those observed for real data.

  10. Correlative Nanoscale 3D Imaging of Structure and Composition in Extended Objects

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    'Environnement Industriel et des Risques, Verneuil en Halatte, France, 4 Centre Hospitalier Universitaire Amiens, Universite, the improvement of three-dimensional (3D) resolution is accomplished by tightening constraints: reduced manageable

  11. X-ray Observations of Galaxies: The Importance of Deep High-Resolution Observations

    E-Print Network [OSTI]

    G. Fabbiano

    2007-11-30T23:59:59.000Z

    X-ray observations of galaxies have grown from a curiosity into a full-fledged field of astronomy. These observations provide unique information on black holes, binary stars, and the hot phase of the ISM, which can be used to constrain the chemical evolution of the Universe, and the joint evolution of galaxies and massive black holes. These exciting results are due in large part to the high-resolution capability of {\\it Chandra}. To follow on {\\it Chandra} and push forward this science past the present capabilities, our community must build a high-resolution (sub-arcsecond) large-area (several square meters) X-ray telescope.

  12. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    SciTech Connect (OSTI)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01T23:59:59.000Z

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors conclude that Cerenkov light imaging of proton-induced positron is promising for proton therapy.

  13. Presented by High-Performance Visualization of

    E-Print Network [OSTI]

    Bhaduri_HPC_GIS_Viz_SC10 Data courtesy of Center for Space Research, UT­Austin High-resolution 3D view example: Beyond desktop capabilities Shuttle Radar Topography Mission (SRTM) dataset · 90 m cell size

  14. Planning Curvature and Torsion Constrained Ribbons in 3D with Application to Intracavitary Brachytherapy

    E-Print Network [OSTI]

    Abbeel, Pieter

    multiple smooth channels through a 3D printed structure for a healthcare applica- tion and is relevant 3D printed implants to temporarily insert high-dose radioactive sources to reach and cover tumors] demonstrated that 3D printing can be used to design customized implants that conform to the patient anatomy

  15. Reconstructing Plants in 3D from a Single Image using Analysis-by-Synthesis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Reconstructing Plants in 3D from a Single Image using Analysis-by-Synthesis J´er^ome Gu´enard1 G from images. However, due to high complexity of plant topology, dedicated methods for generating 3D plant models must be devised. We propose to generate a 3D model of a plant, using an analysis

  16. Voxel-Based Assessment of Printability of 3D Alexandru Telea1

    E-Print Network [OSTI]

    Telea, Alexandru C.

    from a real-life application. 1 Introduction Recent advances in 3D printing technology have made of materials, higher printing speeds, and lower costs. High-quality, low-cost 3D printing is now available on a given printer. As 3D printing technology works in a raster fashion, we implement our proposed metrics

  17. Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos VMIL Consultant 28 February 2003's Genisys Xs 3D printer. This document assumes that you have created a stereo lithography file (*.stl Abstract This document outlines the process for manufacturing three dimensional (3D) models on the ITG

  18. 3D Velocity from 3D Doppler Radial Velocity J. L. Barron,1

    E-Print Network [OSTI]

    Barron, John

    to compute local 3D velocity (local 3D optical flow). Radial velocity (measured by the Doppler effect3D Velocity from 3D Doppler Radial Velocity J. L. Barron,1 R. E. Mercer,1 X. Chen,1 P. Joe2 1 velocity data and qualitatively on real radial velocity data, obtained from the Doppler radar at Kurnell

  19. Metrology of 3D nanostructures.

    SciTech Connect (OSTI)

    Barsic, Anthony [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Piestun, Rafael [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Boye, Robert R.

    2012-10-01T23:59:59.000Z

    We propose a superresolution technique to resolve dense clusters of blinking emitters. The method relies on two basic assumptions: the emitters are statistically independent, and a model of the imaging system is known. We numerically analyze the performance limits of the method as a function of the emitter density and the noise level. Numerical simulations show that five closely packed emitters can be resolved and localized to a precision of 17nm. The experimental resolution of five quantum dots located within a diffraction limited spot confirms the applicability of this approach.

  20. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28T23:59:59.000Z

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  1. A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application

    SciTech Connect (OSTI)

    Doerry, A.W.; Hensley, W.H.; Stence, J.; Tsunoda, S.I. Pace, F.; Walker, B,C.; Woodring, M.

    1999-05-27T23:59:59.000Z

    (U) Sandia National Laboratories in collaboration with General Atomics (GA) has designed and built a high resolution, light-weight, Ku-band Synthetic Aperture Radar (SAR) known as "Lynx". Although Lynx can be operated on a wide variety of manned and unmanned platforms, its design is optimized for use on medium altitude Unmanned Aerial Vehicles (UAVS). In particular, it can be operated on the Predator, I-GNAT, and Prowler II platforms manufactured by GA. (U) The radar production weight is less than 120 lb and operates within a 3 GHz band from 15.2 GHz to 18.2 GHz with a peak output power of 320 W. Operating range is resolution and mode dependent but can exceed 45 km in adverse weather (4 mm/hr rain). Lynx has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode, over substantial depression angles (5 to 60 deg) and squint angles (broadside ±45 deg). Real-time Motion Compensation is implemented to allow high-quality image formation even during vehicle turns and other maneuvers.

  2. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  3. High-Resolution 3 T MR Microscopy Imaging of Arterial Walls

    SciTech Connect (OSTI)

    Sailer, Johannes, E-mail: johannes.sailer@univie.ac.at; Rand, Thomas [University of Vienna, Department of Angiography and Interventional Radiology (Austria); Berg, Andreas [University of Vienna, Institute for Medical Physics (Austria); Sulzbacher, Irene [University of Vienna, Clinical Institute of Pathology (Austria); Peloschek, P. [University of Vienna, Department of Angiography and Interventional Radiology (Austria); Hoelzenbein, Thomas [University of Vienna, Department of Surgery (Austria); Lammer, Johannes [University of Vienna, Department of Angiography and Interventional Radiology (Austria)

    2006-10-15T23:59:59.000Z

    Purpose. To achieve a high spatial resolution in MR imaging that allows for clear visualization of anatomy and even histology and documentation of plaque morphology in in vitro samples from patients with advanced atherosclerosis. A further objective of our study was to evaluate whether T2-weighted high-resolution MR imaging can provide accurate classification of atherosclerotic plaque according to a modified American Heart Association classification. Methods. T2-weighted images of arteries were obtained in 13 in vitro specimens using a 3 T MR unit (Medspec 300 Avance/Bruker, Ettlingen, Germany) combined with a dedicated MR microscopy system. Measurement parameters were: T2-weighted sequences with TR 3.5 sec, TE 15-120 msec; field of view (FOV) 1.4 x 1.4; NEX 8; matrix 192; and slice thickness 600 {mu}m. MR measurements were compared with corresponding histologic sections. Results. We achieved excellent spatial and contrast resolution in all specimens. We found high agreement between MR images and histology with regard to the morphology and extent of intimal proliferations in all but 2 specimens. We could differentiate fibrous caps and calcifications from lipid plaque components based on differences in signal intensity in order to differentiate hard and soft atheromatous plaques. Hard plaques with predominantly intimal calcifications were found in 7 specimens, and soft plaques with a cholesterol/lipid content in 5 cases. In all specimens, hemorrhage or thrombus formation, and fibrotic and hyalinized tissue could be detected on both MR imaging and histopathology. Conclusion. High-resolution, high-field MR imaging of arterial walls demonstrates the morphologic features, volume, and extent of intimal proliferations with high spatial and contrast resolution in in vitro specimens and can differentiate hard and soft plaques.

  4. Energy Resolved High Resolution Dynamic E-Cell Materials Research. Final Report

    SciTech Connect (OSTI)

    Carpenter, Ray; Sharma, Renu; Mayer, James

    2000-05-16T23:59:59.000Z

    The purpose of this project was to develop in situ materials reaction observation capability in an intermediate voltage high resolution transmission electron microscope. To accomplish this we purchased a GATAN imaging energy filter system, a hot stage, and designed and constructed an environmental cell and real time television image recording system, and installed this equipment on our EM 430 intermediate voltage electron microscope.

  5. HIGH-RESOLUTION MID-INFRARED SPECTROSCOPY OF ULTRALUMINOUS INFRARED GALAXIES D. Farrah,1

    E-Print Network [OSTI]

    Galis, Frietson

    infrared emission. This initially provoked heated debate between a ``starburst'' camp and an ``activeHIGH-RESOLUTION MID-INFRARED SPECTROSCOPY OF ULTRALUMINOUS INFRARED GALAXIES D. Farrah,1 J. Bernard, 10Y37 m spectra of 53 ultraluminous infrared galaxies (ULIRGs), taken using the Infrared Spectrograph

  6. High Resolution Sharp Computational Methods for Elliptic and Parabolic Problems in Complex Geometries

    E-Print Network [OSTI]

    Fedkiw, Ron

    High Resolution Sharp Computational Methods for Elliptic and Parabolic Problems in Complex Geometries Frédéric Gibou Chohong Min Ron Fedkiw November 2, 2012 In honor of Stan Osher's 70th birthday of chemical species (see [48] and the references therein); they are also core building blocks in fields

  7. A Comparison of Hurricane Eye Determination Using Standard and Ultra-High Resolution

    E-Print Network [OSTI]

    Long, David G.

    A Comparison of Hurricane Eye Determination Using Standard and Ultra-High Resolution QuikSCAT Winds of hurricanes. I. INTRODUCTION Space-borne scatterometers such as SeaWinds on QuikSCAT are instruments designed these is the observation and tracking of tropical cyclones including hurricanes. Several fea- tures of interest

  8. Noninvasive high-resolution detection of the arterial and venous input function through a PET Wrist

    E-Print Network [OSTI]

    Noninvasive high-resolution detection of the arterial and venous input function through a PET Wrist using planar coincidence images. I. INTRODUCTION Quantitative Positron Emission Tomography (PET) often determine the input function. These techniques include external monitors and PET scanners that measure

  9. Compact, High-Resolution, Multi-Layer Semiconductor PET Detector Module

    E-Print Network [OSTI]

    Ohta, Shigemi

    Compact, High-Resolution, Multi-Layer Semiconductor PET Detector Module Summary Multi tomography (PET) systems, but the conventional electrodes used require a prohibitive number of readout channels. Now, a breakthrough compact PET detector offers a specialized configuration of cross strip

  10. CLASSIFICATION OF BIOMEDICAL HIGH-RESOLUTION MICRO-CT IMAGES FOR DIRECT VOLUME RENDERING

    E-Print Network [OSTI]

    López-Sánchez, Maite

    CLASSIFICATION OF BIOMEDICAL HIGH-RESOLUTION MICRO-CT IMAGES FOR DIRECT VOLUME RENDERING Maite L,cerquide,davidm,anna}@maia.ub.es ABSTRACT This paper introduces a machine learning approach into the process of direct volume rendering that generates the classification func- tion within the optical property function used for rendering. Briefly

  11. Calibration of sclerosponge oxygen isotope records to temperature using high-resolution d18

    E-Print Network [OSTI]

    Miami, University of

    Calibration of sclerosponge oxygen isotope records to temperature using high-resolution d18 O data; available online 21 May 2009 Abstract A revised calibration is presented relating the oxygen isotope an existing calibration which was determined using measurements of salinity rather than directly measured d18

  12. Role of pseudospin in quasiparticle interferences in epitaxial probed by high resolution scanning tunneling microscopy

    E-Print Network [OSTI]

    Boyer, Edmond

    Role of pseudospin in quasiparticle interferences in epitaxial graphene, probed by high resolution of freedom emerging in graphene as a direct consequence of its honeycomb atomic structure, is responsible to provide a clear understanding of how such graphene's pseudospin impacts the quasiparticle interferences

  13. Increasing the Scalability of PISM for High Resolution Ice Sheet Models Phillip Dickens

    E-Print Network [OSTI]

    Dickens, Phillip M.

    Increasing the Scalability of PISM for High Resolution Ice Sheet Models Phillip Dickens School at large. One important piece of the climate puzzle is how the dynamics of large-scale ice sheets developed several simulation models to predict and understand the behavior of large-scale ice sheets

  14. High resolution spectroscopic characterization of the FGK stars in the Solar neighbourhood

    E-Print Network [OSTI]

    Complutense de Madrid, Universidad

    the EW #12;FIGURE 1. Left panel: EW Li I vs. (B-V). Different colors and symbols are used for stars). The obtained values are plotted in the EW(Li I) vs. spectral type diagram in Fig. 1 (left panel). ComparingHigh resolution spectroscopic characterization of the FGK stars in the Solar neighbourhood R. M

  15. Induction Machine Fault Detection Enhancement Using a Stator Current High Resolution Spectrum

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    into stator winding short circuit, broken rotor bar, broken end-ring, rotor eccentricity, bearing faultsInduction Machine Fault Detection Enhancement Using a Stator Current High Resolution Spectrum El-Fault detection in squirrel cage induction machines based on stator current spectrum has been widely investi gated

  16. ElectroMagnetic Radiations of FPGAs: High Spatial Resolution Cartography and Attack of a

    E-Print Network [OSTI]

    Boyer, Edmond

    ElectroMagnetic Radiations of FPGAs: High Spatial Resolution Cartography and Attack, a "root of trust" must be defined, insulated and then carefully protected. Until very recently, this role agencies) have tackled the issue of protecting ASICs from side-channel attacks (SCAs). In the meantime

  17. A ber-optic based calibration system for the High Resolution Fly's Eye

    E-Print Network [OSTI]

    A ber-optic based calibration system for the High Resolution Fly's Eye cosmic ray observatory J, 800 Yale Blvd NE, Albuquerque, NM 87131-1156 Abstract This article describes the ber-optic based: Highest energy cosmic rays Fly's Eye Experiment HiRes YAG Laser Fiber-optics PMT PACS: 95.45.+i 95.85.Ls

  18. Virtually distortion-free imaging system for large field, high resolution lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-05T23:59:59.000Z

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

  19. Isolation of transport mechanisms in PEFCs using high resolution neutron imaging

    E-Print Network [OSTI]

    Mench, Matthew M.

    imaging has developed into an important tool for fuel cell diagnostics over the past six years. The advent November 2013 Accepted 2 December 2013 Available online xxx Keywords: Proton exchange membrane fuel cell profiles were determined using high resolution neutron radiog- raphy for commercially available fuel cell

  20. PROGRESS TOWARDS A HIGH-RESOLUTION RETINAL PROSTHESIS James D. Weiland1

    E-Print Network [OSTI]

    Arizona, University of

    PROGRESS TOWARDS A HIGH-RESOLUTION RETINAL PROSTHESIS James D. Weiland1 , Wolfgang Fink2,1 , Mark, and stimulating electrodes. Keywords ­ retinal prosthesis, microsystems, electrical stimulation, neural prostheses year.[1] One proposed treatment for these conditions is a retinal prosthesis that will stimulate

  1. North Brazil Current rings and transport of southern waters in a high resolution numerical

    E-Print Network [OSTI]

    North Brazil Current rings and transport of southern waters in a high resolution numerical of the North Brazil Current (NBC) retroflection and North Brazil Current rings. The model mean and seasonal circulation feature near the western boundary is the North Brazil Current (NBC), which has sources

  2. High-resolution velocity field imaging around a borehole: Excavation Damaged Zone characterization

    E-Print Network [OSTI]

    Boyer, Edmond

    .balland@ineris.fr, vincent.renaud@ineris.fr ABSTRACT The excavation of a deep underground structure induces a stress field of a material. In the case of underground storage, rock damage will affect the rock capacity to confine1 High-resolution velocity field imaging around a borehole: Excavation Damaged Zone

  3. TOWARDS AN IMPROVED HIGH RESOLUTION GLOBAL LONG-TERM SOLAR RESOURCE DATABASE

    E-Print Network [OSTI]

    Perez, Richard R.

    TOWARDS AN IMPROVED HIGH RESOLUTION GLOBAL LONG- TERM SOLAR RESOURCE DATABASE Paul W. Stackhouse 80401 251 Fuller Road david.renne@nrel.gov Albany, NY 12203 perez@asrc.cestm.albany.edu John Bates.knapp@noaa.gov ABSTRACT This paper presents an overview of an ongoing project to develop and deliver a solar mapping

  4. High Resolution SAR Interferometry: influence of local topography in the context of glacier monitoring

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    High Resolution SAR Interferometry: influence of local topography in the context of glacier the opportu- nity to measure temperate glacier surface topography and displacement between the two for glacier activity monitoring, by providing regular measure- ments such as surface topography, velocity

  5. Net accumulation of the Greenland ice sheet: High resolution modeling of climate changes

    E-Print Network [OSTI]

    Born, Andreas

    : Kiilsholm, S., J. H. Christensen, K. Dethloff, and A. Rinke, Net accumulation of the Greenland ice sheetNet accumulation of the Greenland ice sheet: High resolution modeling of climate changes Sissi, Denmark Klaus Dethloff and Annette Rinke Alfred Wegener Institute for Polar and Marine Research

  6. High spatial resolution subsurface thermal emission microscopy S. B. Ippolito,a)

    E-Print Network [OSTI]

    a total optical power proportional to its absolute temperature to the fourth power. An object that hasHigh spatial resolution subsurface thermal emission microscopy S. B. Ippolito,a) S. A. Thorne, M. G increasing lens technique to subsurface thermal emission microscopy of Si integrated circuits. We achieve

  7. A High Resolution Intergalactic Explorer for the Soft X-ray/FUV

    E-Print Network [OSTI]

    Martin Elvis; Fabrizio Fiore; the CWE Team

    2003-03-19T23:59:59.000Z

    We present a mission concept for high resolution X-ray spectroscopy with a resolving power, R~6000, (c.f. R=Web'. The Cosmic Web is predicted to contain most of the normal matter (baryons) in the nearby Universe.

  8. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    2011-05-17T23:59:59.000Z

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  9. Exploration of Weather Impacts on Freeway Traffic Operations and Safety Using High-Resolution Weather Data

    E-Print Network [OSTI]

    Bertini, Robert L.

    Exploration of Weather Impacts on Freeway Traffic Operations and Safety Using High-Resolution Weather Data by Chengyu Dai A thesis submitted in partial fulfillment of the requirements for the degree Moradkhani Kristin Tufte Portland State University ©2011 #12;i ABSTRACT Adverse weather is considered as one

  10. HighResolution Numerical Methods for MicellarPolymer Flooding and Surfactant Enhanced Aquifer Remediation

    E-Print Network [OSTI]

    Trangenstein, John A.

    been used to study the micellar­ polymer flooding process in enhanced oil recovery [12], [18], [19 in practical im­ plementation of enhanced oil recovery techniques at this time, there is increasing interestHigh­Resolution Numerical Methods for Micellar­Polymer Flooding and Surfactant Enhanced Aquifer

  11. High resolution RCM simulation of eastern Mediterranean climate and its expected changes to 2050

    E-Print Network [OSTI]

    Adler, Joan

    High resolution RCM simulation of eastern Mediterranean climate and its expected changes to 2050. Modern global climate change evaluations usually based on application of coupled atmosphere-ocean global by the Intergovernmental Panel on Climate Change (IPCC). A number of different anthropogenic emission scenarios have been

  12. High-resolution population grids and future scenarios for Tanzania Philip J. Platts & Ruth D. Swetnam

    E-Print Network [OSTI]

    Marchant, Rob

    this grid and the LandScan grid to remove all persons from these protected areas (Single Map Algebra Tool1 High-resolution population grids and future scenarios for Tanzania Philip J. Platts & Ruth D, were obtained by hindcasting the LandScan grid on a ward-by-ward basis, such that ward totals matched

  13. A high-resolution mapped grid algorithm for compressible multiphase flow problems

    E-Print Network [OSTI]

    Shyue, Keh-Ming

    A high-resolution mapped grid algorithm for compressible multiphase flow problems K.-M. Shyue 18 August 2010 Keywords: Compressible multiphase flow Fluid-mixture model Mapped grids Wave-propagation method Stiffened gas equation of state a b s t r a c t We describe a simple mapped-grid approach

  14. Estimating quality factor and mean grain size of sediments from high-resolution marine seismic data

    E-Print Network [OSTI]

    National Oceanography Centre Southampton

    model of quality factor against mean grain size from published sediment studies, the mean grain sizes with frequency. The Biot-Stoll model shows a marked velocity dispersion and nonlinear transition in compressionalEstimating quality factor and mean grain size of sediments from high-resolution marine seismic data

  15. High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography

    SciTech Connect (OSTI)

    Hoppe, R.; Patommel, J.; Schroer, C. G. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany)] [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Reinhardt, J. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany) [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Germany; Hofmann, G.; Grunwaldt, J.-D. [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany)] [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, C. D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)] [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Wellenreuther, G.; Falkenberg, G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)

    2013-05-20T23:59:59.000Z

    We combine resonant scattering with (ptychographic) scanning coherent diffraction microscopy to determine the chemical state of gold nanoparticles with high spatial resolution. Ptychographic images of the sample are recorded for a series of energies around the gold L{sub 3} absorption edge. From these data, chemical information in the form of absorption and resonant scattering spectra is reconstructed at each location in the sample. For gold nanoparticles of about 100 nm diameter, a spatial resolution of about 20-30 nm is obtained. In the future, this microscopy approach will open the way to operando studies of heterogeneous catalysts on the nanometer scale.

  16. Gas Dynamics in the Barred Seyfert Galaxy NGC4151 - II. High Resolution HI Study

    E-Print Network [OSTI]

    C. G. Mundell; A. Pedlar; D. L. Shone; A. Robinson

    1998-12-09T23:59:59.000Z

    We present sensitive, high angular resolution (6" x 5") 21-cm observations of the neutral hydrogen in the nearby barred Seyfert galaxy, NGC4151. These HI observations, obtained using the VLA in B-configuration, are the highest resolution to date of this galaxy, and reveal hitherto unprecedented detail in the distribution and kinematics of the HI on sub-kiloparsec scales. A complete analysis and discussion of the HI data are presented and the global properties of the galaxy are related to the bar dynamics presented in Paper I.

  17. High Resolution BPM Upgrade for the ATF Damping Ring at KEK

    E-Print Network [OSTI]

    Eddy, N; Fellenz, B; Gianfelice-Wendt, E; Prieto, P; Rechenmacher, R; Semenov, A; Voy, D; Wendt, M; Zhang, D; Terunuma, N; Urakawa, J

    2012-01-01T23:59:59.000Z

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented.

  18. Visual Comfort Analysis of Innovative Interior and Exterior Shading Systems for Commercial Buildings using High Resolution Luminance Images

    E-Print Network [OSTI]

    Konis, Kyle

    2011-01-01T23:59:59.000Z

    Society of North America. Luminance ratio limits; ch. 11,range photography as a luminance mapping Technique. Lawrenceusing High Resolution Luminance Images Kyle Konis Lawrence

  19. High resolution neutron crystallographic studies of the hydration of coenzyme cob(II)alamin

    SciTech Connect (OSTI)

    Jogl, Gerwald [Brown University; Wang, Xiaoping [ORNL; Mason, Sax [Institut Laue-Langevin (ILL); Kovalevsky, Andrey [Los Alamos National Laboratory (LANL); Mustyakimov, Marat [Los Alamos National Laboratory (LANL); Fisher, Zoe [Los Alamos National Laboratory (LANL); Hoffmann, Christina [ORNL; Kratky, Christoph [Institute of Biosciences, University of Graz; Langan, Paul [ORNL

    2011-01-01T23:59:59.000Z

    The hydration of coenzyme cob(II)alamin has been studied using high resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of surrounded by flexible side chains with terminal functional groups may be significant for 0.92 on the original diffractometer D19 with a prototype 4o x 64o detector at the high-flux reactor neutron source run by the Institute Laue Langevin. The resulting structure provides H bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force-fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultra high resolution was investigated by collecting time-of-flight neutron crystallographic data on diffractometer TOPAZ with a prototype array of 14 modular 21o x 21o detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  20. A High-resolution TOF Detector _ A Possible Way to Compete with a RICH Detector

    SciTech Connect (OSTI)

    Va'vra, J; /SLAC; Ertley, C.; /Argonne; Leith, D.W.G.S.; Ratcliff, B.; Schwiening, J.; /SLAC

    2008-07-25T23:59:59.000Z

    Using two identical 64-pixel Burle/Photonis MCP-PMTs to provide start and stop signals, they have achieved a timing resolution of {sigma}{sub Single{_}detector} {approx} 7.2 ps for N{sub pe} {approx} 50 photoelectrons (N{sub pe}) with a laser diode providing a 1 mm spot on the MCP window. The limiting resolution achieved was {sigma}{sub Single{_}detector} {approx} 5.0 ps for N{sub pe} {approx} 180, for which they estimate the MCP-PMT contribution of {sigma}{sub MCP-PMT} {approx} 4.5 ps. The electronics contribution is estimated as {sigma}{sub Electrons} = 3.42 ps. These results suggest that an ultra-high resolution TOF detector may become a reality at future experiments one day.

  1. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20T23:59:59.000Z

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore »freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  2. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Johanna [Stony Brook Univ., Stony Brook, NY (United States); Huang, Xiaojing [Stony Brook Univ., Stony Brook, NY (United States); Steinbrener, Jan [Stony Brook Univ., Stony Brook, NY (United States); Shapiro, David [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Kirz, Janos [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Marchesini, Stephano [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Neiman, Aaron M. [Northwestern Univ., Evanston, IL (United States); Turner, Joshua J. [Stony Brook Univ., Stony Brook, NY (United States); Jacobsen, Chris [Stony Brook Univ., Stony Brook, NY (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source

    2010-04-20T23:59:59.000Z

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  3. PROBING NEAR-SURFACE ATMOSPHERIC TURBULENCE WITH LIDAR MEASUREMENTS AND HIGH-RESOLUTION HYDRODYNAMIC MODELS

    SciTech Connect (OSTI)

    J. KAO; D. COOPER; ET AL

    2000-11-01T23:59:59.000Z

    As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.

  4. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    SciTech Connect (OSTI)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15T23:59:59.000Z

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ?1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ?2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  5. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D...

  6. Optimization of future high-resolution X-ray instrumentation in astrophysics

    E-Print Network [OSTI]

    Zajczyk, Anna; Dowkontt, Paul; Guo, Qingzhen; Kislat, Fabian; Krawczynski, Henric; De Geronimo, Gianluigi; Li, Shaorui; Beilicke, Matthias

    2015-01-01T23:59:59.000Z

    Cadmium Zinc Telluride and Cadmium Telluride are the detector materials of choice for the detection of X-rays in the X-ray energy band E >= 5keV with excellent spatial and spectral resolution and without cryogenic cooling. Owing to recent breakthroughs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolution between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of X-ray telescopes will require pixelated X-ray detectors with pixels on a grid with a lattice constant of <= 250um. Additional detector requirements include a low energy threshold of less than 5keV and an energy resolution of less than one keV. The science drivers for a high angular-resolution X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, active galactic nuclei feedback, and the behaviour of matter at very high densities. In this...

  7. Structure of W3(OH) from Very High Spectral Resolution Observations of 5 Centimeter OH Masers

    E-Print Network [OSTI]

    Vincent L. Fish; Loránt O. Sjouwerman

    2007-06-22T23:59:59.000Z

    Recent studies of methanol and ground-state OH masers at very high spectral resolution have shed new light on small-scale maser processes. The nearby source W3(OH), which contains numerous bright masers in several different transitions, provides an excellent laboratory for high spectral resolution techniques. We present a model of W3(OH) based on EVN observations of the rotationally-excited 6030 and 6035 MHz OH masers taken at 0.024 km/s spectral resolution. The 6.0 GHz masers are becoming brighter with time and show evidence for tangential proper motions. We confirm the existence of a region of magnetic field oriented toward the observer to the southeast and find another such region to the northeast in W3(OH), near the champagne flow. The 6.0 GHz masers trace the inner edge of a counterclockwise rotating torus feature. Masers at 6030 MHz are usually a factor of a few weaker than at 6035 MHz but trace the same material. Velocity gradients of nearby Zeeman components are much more closely correlated than in the ground state, likely due to the smaller spatial separation between Zeeman components. Hydroxyl maser peaks at very long baseline interferometric resolution appear to have structure on scales both smaller than that resolvable as well as on larger scales.

  8. Laser Doppler field sensor for high resolution flow velocity imaging without camera

    SciTech Connect (OSTI)

    Voigt, Andreas; Bayer, Christian; Shirai, Katsuaki; Buettner, Lars; Czarske, Juergen

    2008-09-20T23:59:59.000Z

    In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 {mu}m in the x direction and 16 {mu}m in the y direction and a relative velocity resolution of 1x10{sup -3} have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

  9. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    SciTech Connect (OSTI)

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01T23:59:59.000Z

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  10. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    SciTech Connect (OSTI)

    Andersen, T.; Jensen, R.; Christensen, M. K.; Chorkendorff, I. [Department of Physics, Danish National Research Foundation's Center for Individual Nanoparticle Functionality (CINF), Technical University of Denmark, Building 312, DK-2800 Kgs. Lyngby (Denmark); Pedersen, T.; Hansen, O. [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark)

    2012-07-15T23:59:59.000Z

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.

  11. IN THIS ISSUE 2 3D Printing

    E-Print Network [OSTI]

    Hill, Wendell T.

    IN THIS ISSUE 2 3D Printing in McKeldin 3 Saving WMUC Radio 4 You Did What?!? 7 Dance at UMD, in this issue. Our Terrapin Learning Commons is embracing all things digital, and the acquisition of a 3D printer allows any student the op- portunity to make their visions a reality. This little addition

  12. 3, 35433588, 2003 3-D air pollution

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 3, 3543­3588, 2003 3-D air pollution modelling L. M. Frohn et al. Title Page Abstract hemispheric nested air pollution model L. M. Frohn, J. H. Christensen, J. Brandt, C. Geels, and K. M. Hansen 2003 Correspondence to: L. M. Frohn (lmf@dmu.dk) 3543 #12;ACPD 3, 3543­3588, 2003 3-D air pollution

  13. 3D Object Modelling via Registration

    E-Print Network [OSTI]

    matching on the GPU. So with the increasing demand for cheap 3D scanners and the advances of computer power, Iterative Closest Point, real time preview. #12;#12;Resumé Stereo vision har mange fordele frem for andre 3D

  14. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06T23:59:59.000Z

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  15. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    SciTech Connect (OSTI)

    Wu, Pei-Hsin; Chung, Hsiao-Wen [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)] [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, Ping-Huei [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China)] [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Ming-Long, E-mail: minglong.wu@csie.ncku.edu.tw [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)] [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Chuang, Tzu-Chao [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)] [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Shih, Yi-Yu [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China)] [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China); Huang, Teng-Yi [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)] [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2013-12-15T23:59:59.000Z

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  16. Development of High Resolution Land Surface Parameters for the Community Land Model

    SciTech Connect (OSTI)

    Ke, Yinghai; Leung, Lai-Yung R.; Huang, Maoyi; Coleman, Andre M.; Li, Hongyi; Wigmosta, Mark S.

    2012-11-06T23:59:59.000Z

    There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5° or coarser resolutions, released with the Community Earth System Model (CESM). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely sensed datasets retrieved in late 1990’s and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05° resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. Advantages and disadvantages of each dataset were discussed in order to provide guidance on the use of the data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western U.S. to demonstrate their use in high-resolution modeling. A remapping method from the latitude/longitude grid of the CLM data to the WRF grids with map projection was also demonstrated. Future work will include global offline CLM simulations to examine the impacts of source data resolution and subsequent land parameter changes on simulated land surface processes.

  17. Designing Large High-Resolution Display Workspaces Alex Endert, Lauren Bradel, Jessica Zeitz, Christopher Andrews, Chris North

    E-Print Network [OSTI]

    Designing Large High-Resolution Display Workspaces Alex Endert, Lauren Bradel, Jessica Zeitz Large, high-resolution displays have enormous potential to aid in scenarios beyond their current usage seemingly small large-display design decisions can have significant impacts on users' perceptions

  18. Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment

    E-Print Network [OSTI]

    and is in the process of changing from film to digital aerial image acquisition. Cur- rently, only broad land useHierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC, MSC3JER, NMSU, Las Cruces, NM 88003-8003, USA Ultra-high-resolution digital aerial imagery has great

  19. Impact of recent lake eutrophication on microbial community changes as revealed by high resolution lipid biomarkers in Rotsee (Switzerland)

    E-Print Network [OSTI]

    Gilli, Adrian

    Impact of recent lake eutrophication on microbial community changes as revealed by high resolution t The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Swit- zerland

  20. Satellite data for high resolution offshore wind resource mapping: A data fusion approach M.B. Ben Ticha a,*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Satellite data for high resolution offshore wind resource mapping: A data fusion approach M.B. Ben accurate high spatial and temporal resolutions wind measurements. Offshore, satellite data are an accurate radar, scatterometer, data fusion, offshore wind energy resource assessment. 1. INTRODUCTION Since

  1. Indoor and Outdoor in Situ High-Resolution Gamma Radiation Measurements in Urban Areas of Cyprus

    E-Print Network [OSTI]

    E. Svoukis; H. Tsertos

    2006-10-02T23:59:59.000Z

    In situ, high-resolution, gamma-ray spectrometry of a total number of 70 outdoor and 20 indoor representative measurements were performed in preselected, common locations of the main urban areas of Cyprus. Specific activities and gamma absorbed dose rates in air due to the naturally occurring radionuclides of Th-232 and U-238 series, and K-40 are determined and discussed. Effective dose rate to the Cyprus population due to terrestrial gamma radiation is derived directly from this work. The results obtained outdoors match very well with those derived previously by high-resolution gamma spectrometry of soil samples, which were collected from the main island bedrock surface. This implies that the construction and building materials in urban areas do not affect the external gamma dose rate; thus they are mostly of local origin. Finally, the indoor/outdoor gamma dose ratio was found to be 1.4 +- 0.5.

  2. Indoor and Outdoor in Situ High-Resolution Gamma Radiation Measurements in Urban Areas of Cyprus

    E-Print Network [OSTI]

    Svoukis, E

    2006-01-01T23:59:59.000Z

    In situ, high-resolution, gamma-ray spectrometry of a total number of 70 outdoor and 20 indoor representative measurements were performed in preselected, common locations of the main urban areas of Cyprus. Specific activities and gamma absorbed dose rates in air due to the naturally occurring radionuclides of Th-232 and U-238 series, and K-40 are determined and discussed. Effective dose rate to the Cyprus population due to terrestrial gamma radiation is derived directly from this work. The results obtained outdoors match very well with those derived previously by high-resolution gamma spectrometry of soil samples, which were collected from the main island bedrock surface. This implies that the construction and building materials in urban areas do not affect the external gamma dose rate; thus they are mostly of local origin. Finally, the indoor/outdoor gamma dose ratio was found to be 1.4 +- 0.5.

  3. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    SciTech Connect (OSTI)

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01T23:59:59.000Z

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  4. Technologies and R&D for a High Resolution Cavity BPM for the CLIC Main Beam

    E-Print Network [OSTI]

    Towler, J R; Soby, L; Wendt, M; Boogert, S T; Cullinan, F J; Lyapin, A

    2013-01-01T23:59:59.000Z

    The Main Beam (MB) linac of the Compact Linear Collider (CLIC) requires a beam orbit measurement system with high spatial (50 nm) and high temporal resolution (50 ns) to resolve the beam position within the 156 ns long bunch train, traveling on an energy-chirped, minimum dispersive trajectory. A 15 GHz prototype cavity BPM has been commissioned in the probe beam-line of the CTF3 CLIC Test Facility. We discuss performance and technical details of this prototype installation, including the 15 GHz analogue downconverter, the data acquisition and the control electronics and software. An R&D outlook is given for the next steps, which requires a system of 3 cavity BPMs to investigate the full resolution potential.

  5. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOE Patents [OSTI]

    Friedrich, Stephan (San Jose, CA); , Niedermayr, Thomas R. (Oakland, CA); Labov, Simon E. (Berkeley, CA)

    2008-11-04T23:59:59.000Z

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  6. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect (OSTI)

    Hall, G.E.

    2011-05-31T23:59:59.000Z

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  7. High time resolution observations of the solar wind and backstreaming ions in the earth's foreshock region

    SciTech Connect (OSTI)

    Formisano, V.; Orsini, S.; Bonifazi, C.; Egidi, A.; Moreno, G.

    1980-05-01T23:59:59.000Z

    The interaction of the solar wind with ions backstreaming from the earth's bow shock is studied at high time resolution. It turns out that the bulk velocity of the solar wind oscillates, both in magnitude and direction, with typical periods of approx.1 minute in presence of the 'diffuse' ion population. Oscillations of comparable periods are also observed in the angular distribution and energy spectrum of the diffuse ions.

  8. High-Resolution Genomic Profiles of Breast Cancer Cell Lines Assessed by Tiling BAC Array

    E-Print Network [OSTI]

    Lunds Universitet,

    number changes in 10 breast cancer cell lines (BT474, MCF7, HCC1937, SK-BR-3, L56Br-C1, ZR-75-1, JIMT1High-Resolution Genomic Profiles of Breast Cancer Cell Lines Assessed by Tiling BAC Array, MDA-MB-231, MDA-MB-361, and HCC2218) and one cell line derived from fibrocystic disease of the breast

  9. A high-resolution, four-band SAR testbed with real-time image formation

    SciTech Connect (OSTI)

    Walker, B.; Sander, G.; Thompson, M.; Burns, B.; Fellerhoff, R.; Dubbert, D.

    1996-03-01T23:59:59.000Z

    This paper describes the Twin-Otter SAR Testbed developed at Sandia National Laboratories. This SAR is a flexible, adaptable testbed capable of operation on four frequency bands: Ka, Ku, X, and VHF/UHF bands. The SAR features real-time image formation at fine resolution in spotlight and stripmap modes. High-quality images are formed in real time using the overlapped subaperture (OSA) image-formation and phase gradient autofocus (PGA) algorithms.

  10. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect (OSTI)

    Jill Wisnewski Ferguson

    2006-08-09T23:59:59.000Z

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO{sup +}), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  11. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    SciTech Connect (OSTI)

    Nicolosi, Marco; Mills, Andrew D; Wiser, Ryan H

    2010-10-08T23:59:59.000Z

    Traditionally, modeling investment and dispatch problems in electricity economics has been limited by computation power. Due to this limitation, simplifications are applied. One common practice, for example, is to reduce the temporal resolution of the dispatch by clustering similar load levels. The increase of intermittent electricity from renewable energy sources (RES-E) changes the validity of this assumption. RES-E already cover a certain amount of the total demand. This leaves an increasingly volatile residual demand to be matched by the conventional power market. This paper quantifies differences in investment decisions by applying three different time-resolution residual load patterns in an investment and dispatch power system model. The model optimizes investment decisions in five year steps between today and 2030 with residual load levels for 8760, 288 and 16 time slices per year. The market under consideration is the four zone ERCOT market in Texas. The results show that investment decisions significantly differ across the three scenarios. In particular, investments into base-load technologies are substantially reduced in the high resolution scenario (8760 residual load levels) relative to the scenarios with lower temporal resolution. Additionally, the amount of RES-E curtailment and the market value of RES-E exhibit noteworthy differences.

  12. Application of Spatially Resolved High Resolution Crystal Spectrometry to ICF Plasmas

    SciTech Connect (OSTI)

    Kenneth W. Hill, et. al.

    2012-09-15T23:59:59.000Z

    High resolution (?/?#3;? ~ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-?m 55 Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10-8 -10-6 times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  13. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Hill, K. W.; Bitter, M.; Delgado-Aparacio, L.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Beiersdorfer, P.; Schneider, M.; Widmann, K. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Sanchez del Rio, M. [European Synchrotron Radiation Facility, BP 220, 38043-Grenoble Cedex (France); Zhang, L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2012-10-15T23:59:59.000Z

    High resolution ({lambda}/{Delta}{lambda}{approx} 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-{mu}m {sup 55}Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10{sup -8}-10{sup -6} times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  14. Computer Modelling of 3D Geological Surface

    E-Print Network [OSTI]

    Kodge, B G

    2011-01-01T23:59:59.000Z

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  15. INTERACTION WITH 3D IMAGE DATA THROUGH VOLUME RENDERED VIEWS.

    E-Print Network [OSTI]

    Pelizzari, Charles A.

    , since the 3D image dataset is operated on directly and not transformed into a simple 3 #12; binary weighted compositing with gradient and depth shading. The algorithm is highly optimized for rapid rendering large aggregate computimg power present in many hospitals and laboratories. Mapping from the rendered

  16. 3D Measurements in Images using CAD Models George Vosselman

    E-Print Network [OSTI]

    Vosselman, George

    is therefore subject of research at many institutes. Whereas efforts to fully automate the process of building the alignment. 1 Introduction Future geographical information systems will contain 3D and highly structured extraction show good progress [2, 5], it is clear that under many circumstances automation is extremely

  17. A design for a high resolution very-low-Q time-of flight diffractometer.

    SciTech Connect (OSTI)

    Hjelm, R. P.

    1998-09-29T23:59:59.000Z

    The design of a high resolution view low-Q time of flight diffractometer was motivated by the anticipated need to perform small-angle neutron scattering measurements at far lower momentum transfer and higher precision than currently available at either pulsed or steady state sources. In addition, it was recognized that flexibility in the configuration of the instrument and ease in which data is acquired are important. The design offers two configurations, a high intensity/very low Q geometry employing a focusing mirror and a medium to high Q-precision/low Q configuration using standard pinhole collimation geometry. The quality of the mirror optics is very important to the performance of the high intensity/very low Q configuration. We believe that the necessary technology exists to fabricate the high quality mirror optics required for the instrument.

  18. A high spatial resolution Stokes polarimeter for motional Stark effect imaging

    SciTech Connect (OSTI)

    Thorman, Alex; Michael, Clive; Howard, John [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2013-06-15T23:59:59.000Z

    We describe an enhanced temporally switched interfero-polarimeter that has been successfully deployed for high spatial resolution motional Stark effect imaging on the KSTAR superconducting tokamak. The system utilizes dual switching ferroelectric liquid crystal waveplates to image the full Stokes vector of elliptically polarized and Doppler-shifted Stark-Zeeman Balmer-alpha emission from high energy neutral beams injected into the magnetized plasma. We describe the optical system and compare its performance against a Mueller matrix model that takes account of non-ideal performance of the switching ferro-electric liquid crystal waveplates and other polarizing components.

  19. RELAP5-3D Developer Guidelines and Programming Practices

    SciTech Connect (OSTI)

    Dr. George L Mesina

    2014-03-01T23:59:59.000Z

    Our ultimate goal is to create and maintain RELAP5-3D as the best software tool available to analyze nuclear power plants. This begins with writing excellent programming and requires thorough testing. This document covers development of RELAP5-3D software, the behavior of the RELAP5-3D program that must be maintained, and code testing. RELAP5-3D must perform in a manner consistent with previous code versions with backward compatibility for the sake of the users. Thus file operations, code termination, input and output must remain consistent in form and content while adding appropriate new files, input and output as new features are developed. As computer hardware, operating systems, and other software change, RELAP5-3D must adapt and maintain performance. The code must be thoroughly tested to ensure that it continues to perform robustly on the supported platforms. The coding must be written in a consistent manner that makes the program easy to read to reduce the time and cost of development, maintenance and error resolution. The programming guidelines presented her are intended to institutionalize a consistent way of writing FORTRAN code for the RELAP5-3D computer program that will minimize errors and rework. A common format and organization of program units creates a unifying look and feel to the code. This in turn increases readability and reduces time required for maintenance, development and debugging. It also aids new programmers in reading and understanding the program. Therefore, when undertaking development of the RELAP5-3D computer program, the programmer must write computer code that follows these guidelines. This set of programming guidelines creates a framework of good programming practices, such as initialization, structured programming, and vector-friendly coding. It sets out formatting rules for lines of code, such as indentation, capitalization, spacing, etc. It creates limits on program units, such as subprograms, functions, and modules. It establishes documentation guidance on internal comments. The guidelines apply to both existing and new subprograms. They are written for both FORTRAN 77 and FORTRAN 95. The guidelines are not so rigorous as to inhibit a programmer’s unique style, but do restrict the variations in acceptable coding to create sufficient commonality that new readers will find the coding in each new subroutine familiar. It is recognized that this is a “living” document and must be updated as languages, compilers, and computer hardware and software evolve.

  20. Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry

    SciTech Connect (OSTI)

    Vacri, M. L. di; Nisi, S.; Balata, M. [Gran Sasso National Laboratory, Chemistry Service, SS 17bis km 18.910, 67100 Assergi (Aq) (Italy)] [Gran Sasso National Laboratory, Chemistry Service, SS 17bis km 18.910, 67100 Assergi (Aq) (Italy)

    2013-08-08T23:59:59.000Z

    The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Level Assay) of the LNGS underground lab using HPGe detectors.

  1. Ultra-high-resolution alpha spectrometry for nuclear forensics and safeguards applications

    SciTech Connect (OSTI)

    Bacrania, Minesh K [Los Alamos National Laboratory; Croce, Mark [Los Alamos National Laboratory; Bond, Evelyn [Los Alamos National Laboratory; Dry, Donald [Los Alamos National Laboratory; Moody, W. Allen [Los Alamos National Laboratory; Lamont, Stephen [Los Alamos National Laboratory; Rabin, Michael [Los Alamos National Laboratory; Rim, Jung [Los Alamos National Laboratory; Smith, Audrey [Los Alamos National Laboratory; Beall, James [NIST-BOULDER; Bennett, Douglas [NIST-BOULDER; Kotsubo, Vincent [NIST-BOULDER; Horansky, Robert [NIST-BOULDER; Hilton, Gene [NIST-BOULDER; Schmidt, Daniel [NIST-BOULDER; Ullom, Joel [NIST-BOULDER; Cantor, Robin [STAR CRYOELECTRONICS

    2010-01-01T23:59:59.000Z

    We will present our work on the development of ultra-high-resolution detectors for alpha particle spectrometry. These detectors, based on superconducting transition-edge sensors, offer energy resolution that is five to ten times better than conventional silicon detectors. Using these microcalorimeter detectors, the isotopic composition of mixed-actinide samples can be determined rapidly without the need for actinide separation chemistry to isolate each element, or mass spectrometry to separate isotopic signatures that can not be resolved using traditional alpha spectrometry (e.g. Pu-239/Pu-240, or Pu-238/Am-241). This paper will cover the detector and measurement system, actinide source preparation, and the quantitative isotopic analysis of a number of forensics- and safeguards-relevant radioactive sources.

  2. New developments in high resolution borehole seismology and their applications to reservoir development and management

    SciTech Connect (OSTI)

    Paulsson, B.N.P. [Chevron Petroleum Technology Company, La Habra, CA (United States)

    1997-08-01T23:59:59.000Z

    Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

  3. Keck High-Resolution Spectroscopy of Outflows in Infrared Luminous Galaxies

    E-Print Network [OSTI]

    David S. Rupke; Sylvain Veilleux

    2005-09-05T23:59:59.000Z

    Several recent studies have determined that large quantities of neutral gas are outflowing from the nuclei of almost all infrared-luminous galaxies. These measurements show that winds in infrared-luminous galaxies play a significant role in the evolution of galaxies and the intergalactic medium at redshifts z > 1, when infrared-luminous galaxies dominated the star formation rate of the universe. These conclusions rely on moderate resolution spectra (FWHM > 65 km/s) of the NaI D absorption line and the assumption that there are no unresolved, saturated velocity components. For the first time, we present high resolution spectra (FWHM = 13 km/s) of massive, infrared-luminous galaxies. The five galaxies in our sample are known to host outflows on the basis of previous observations. With the present observations, all NaI D velocity components are resolved with tau(NaI D1 5896 A) luminous galaxies have been measured correctly by previous studies.

  4. The High-Resolution Lightweight Telescope for the EUV (HiLiTE)

    SciTech Connect (OSTI)

    Martinez-Galarce, D S; Boerner, P; Soufli, R; De Pontieu, B; Katz, N; Title, A; Gullikson, E M; Robinson, J C; Baker, S L

    2008-06-02T23:59:59.000Z

    The High-resolution Lightweight Telescope for the EUV (HiLiTE) is a Cassegrain telescope that will be made entirely of Silicon Carbide (SiC), optical substrates and metering structure alike. Using multilayer coatings, this instrument will be tuned to operate at the 465 {angstrom} Ne VII emission line, formed in solar transition region plasma at {approx}500,000 K. HiLiTE will have an aperture of 30 cm, angular resolution of {approx}0.2 arc seconds and operate at a cadence of {approx}5 seconds or less, having a mass that is about 1/4 that of one of the 20 cm aperture telescopes on the Atmospheric Imaging Assembly (AIA) instrument aboard NASA's Solar Dynamics Observatory (SDO). This new instrument technology thus serves as a path finder to a post-AIA, Explorer-class missions.

  5. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-05-26T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.

  6. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-05-26T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.

  7. 3D Hardware Canaries Sebastien Briais4

    E-Print Network [OSTI]

    surround the whole target and protect its content from physical attacks. 3D ICs are rel- atively hard reporting pre- liminary implementation results on silicon), we introduce a "hardware canary". The ca- nary

  8. 3D Spectroscopy and the Virtual Observatory

    E-Print Network [OSTI]

    Bryan W. Miller

    2007-08-15T23:59:59.000Z

    Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.

  9. 3D TORUS V1.0

    Energy Science and Technology Software Center (OSTI)

    002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0  http://www.openfabrics.org/git?p=sashak/management.git;a=sum 

  10. High Resolution X-Ray Scattering at Sector 3, Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about 1 meV resolution; momentum resolved inelastic x-ray scattering with about 1 meV resolution (HERIX); Synchrotron Mossbauer spectroscopy with about 10 neV resolution (SMS)....

  11. c 2013 by Jacob Thomas Stewart. All rights reserved. HIGH-RESOLUTION INFRARED SPECTROSCOPY OF LARGE MOLECULES AND

    E-Print Network [OSTI]

    McCall, Benjamin J.

    OF LARGE MOLECULES AND WATER CLUSTERS USING QUANTUM CASCADE LASERS BY JACOB THOMAS STEWART DISSERTATION-resolution spectroscopic studies of large molecules and water clusters which have been obtained using a quantum cascade cooling of polycyclic aromatic hydrocarbons (PAHs), including high-resolution spectroscopy of pyrene (C16H

  12. Rapid detection and identification of non-tuberculous mycobacterial pathogens in fish1 using high resolution melting analysis (HRMA)2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    resolution melting analysis (HRMA)2 3 4 Thu Nguyet Phung 1,2 , Domenico Caruso 2 , Sylvain Godreuil 3 19 Running title: identification of fish mycobateria by HRMA20 ird-00940286,version1-31Jan2014 Author diagnostic test exists, we tested the potential of27 high resolution melting analysis (HRMA) to rapidly

  13. THE USE OF THE HIGH RESOLUTION VISIBLE IN SAFNWC/MSG Marcel Derrien, Herv Le Glau, Marie-Paule Raoul

    E-Print Network [OSTI]

    Boyer, Edmond

    in this paper is an output of this task. HRV IMAGERY CHARACTERISTICS SEVIRI has one high resolution (HRes) broadband solar channel (0.3-1.1 m) and 11 lower resolution (LRes) channels; 3 narrowband solar channels (0 scheme of HRV data.

  14. Measurement of 3D plasma response to external magnetic perturbations in the presence of a rotating external kink

    SciTech Connect (OSTI)

    Shiraki, Daisuke; Angelini, Sarah M.; Byrne, Patrick J.; DeBono, Bryan A.; Hughes, Paul E.; Levesque, Jeffrey P.; Mauel, Michael E.; Navratil, Gerald A.; Peng, Qian; Rhodes, Dov J.; Stoafer, Christopher C. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Maurer, David A. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)] [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Rath, Nikolaus [Tri Alpha Energy, Rancho Santa Margarita, California 92688 (United States)] [Tri Alpha Energy, Rancho Santa Margarita, California 92688 (United States)

    2013-10-15T23:59:59.000Z

    The detailed measurements of the 3D plasma response to applied external magnetic perturbations in the presence of a rotating external kink are presented, and compared with the predictions of a single-helicity linear model of kink mode dynamics. The modular control coils of the High Beta Tokamak-Extended Pulse (HBT-EP) device are used to apply resonant m/n = 3/1 magnetic perturbations to wall-stabilized tokamak plasmas with a pre-existing rotating 3/1 kink mode. The plasma response is measured in high-resolution with the extensive magnetic diagnostic set of the HBT-EP device. The spatial structures of both the naturally rotating kink mode and the externally driven response are independently measured and observed to be identical, while the temporal dynamics are consistent with the independent evolution and superposition of the two modes. This leads to the observation of a characteristic change in 3D field dynamics as a function of the applied field amplitude. This amplitude dependence is found to be different for poloidal and radial fields. The measured 3D response is compared to and shown to be consistent with the predictions of the linear single-helicity model in the “high-dissipation” regime, as reported previously [M. E. Mauel et al., Nucl. Fusion 45, 285 (2005)].

  15. SMA Observations of Class 0 Protostars: A High-Angular Resolution Survey of Protostellar Binary Systems

    E-Print Network [OSTI]

    Chen, Xuepeng; Zhang, Qizhou; Bourke, Tyler L; Launhardt, Ralf; Jorgensen, Jes K; Lee, Chin-Fee; Foster, Jonathan B; Dunham, Michael M; Pineda, Jaime E; Henning, Thomas

    2013-01-01T23:59:59.000Z

    We present high angular resolution 1.3 mm and 850 um dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.5 arcsec, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64+/-0.08 and 0.91+/-0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I YSOs, and approxima...

  16. High resolution x-ray lensless imaging by differential holographic encoding

    SciTech Connect (OSTI)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02T23:59:59.000Z

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  17. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    SciTech Connect (OSTI)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01T23:59:59.000Z

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  18. WAVELETS WITH RIDGES: A HIGH-RESOLUTION REPRESENTATION OF CATACLYSMIC VARIABLE TIME SERIES

    SciTech Connect (OSTI)

    Blackman, Claire, E-mail: claire.blackman@rhul.ac.u [Department of Economics, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom)

    2010-11-15T23:59:59.000Z

    Quasi-periodic oscillations (QPO) and dwarf nova oscillations (DNOs) occur in dwarf novae and nova-like variables during outburst and occasionally during quiescence, and have analogs in high-mass X-ray binaries and black-hole candidates. The frequent low coherence of quasi-period oscillations and DNOs can make detection with standard time-series tools such as periodograms problematic. This paper develops tools to analyze quasi-periodic brightness oscillations. We review the use of time-frequency representations (TFRs) in the astronomical literature, and show that representations such as the Choi-Williams distribution and Zhao-Atlas-Marks representation, which are best suited to high signal-to-noise data, cannot be assumed a priori to be the best techniques for our data, which have a much higher noise level and lower coherence. This leads us to a detailed analysis of the time-frequency resolution and statistical properties of six TFRs. We conclude that the wavelet scalogram, with the addition of wavelet ridges and maxima points, is the most effective TFR for analyzing quasi-periodicities in low signal-to-noise data, as it has high time-frequency resolution, and is a minimum variance estimator. We use the wavelet ridges method to re-analyze archival data from VW Hyi, and find 62 new QPOs and 7 new long-period DNOs. Relative to previous analyses, our method substantially improves the detection rate for QPOs.

  19. Time series of high resolution spectra of SN 2014J observed with the TIGRE telescope

    E-Print Network [OSTI]

    Jack, D; Schroder, K -P; Schmitt, J H M M; Hempelmann, A; Gonzalez-Perez, J N; Trinidad, M A; Rauw, G; Sixto, J M Cabrera

    2015-01-01T23:59:59.000Z

    We present a time series of high resolution spectra of the Type Ia supernova 2014J, which exploded in the nearby galaxy M82. The spectra were obtained with the HEROS echelle spectrograph installed at the 1.2 m TIGRE telescope. We present a series of 33 spectra with a resolution of R = 20, 000, which covers the important bright phases in the evolution of SN 2014J during the period from January 24 to April 1 of 2014. The spectral evolution of SN 2014J is derived empirically. The expansion velocities of the Si II P-Cygni features were measured and show the expected decreasing behaviour, beginning with a high velocity of 14,000 km/s on January 24. The Ca II infrared triplet feature shows a high velocity component with expansion velocities of > 20, 000 km/s during the early evolution apart from the normal component showing similar velocities as Si II. Further broad P-Cygni profiles are exhibited by the principal lines of Ca II, Mg II and Fe II. The TIGRE SN 2014J spectra also resolve several very sharp Na I D doub...

  20. High-Resolution Infrared and Electron-Diffraction Studies of Trimethylenecyclopropane ([3]-Radialene)

    SciTech Connect (OSTI)

    Wright, Corey R.; Holmes, Joshua; Nibler, Joseph W.; Hedberg, Kenneth; White, James D.; Hedberg, Lise; Weber, Alfons; Blake, Thomas A.

    2013-05-16T23:59:59.000Z

    Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis of electron-diffraction data to obtain the rz bond lengths (in Å): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5? is believed to be reliable to within 2?. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Å compared to that in cyclopropane.

  1. Scientific system for high-resolution measurement of the circumsolar radiation

    SciTech Connect (OSTI)

    Schrott, Simeon, E-mail: thomas.schmidt@ise.fraunhofer.de; Schmidt, Thomas, E-mail: thomas.schmidt@ise.fraunhofer.de; Hornung, Thorsten, E-mail: thomas.schmidt@ise.fraunhofer.de; Nitz, Peter, E-mail: thomas.schmidt@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    2014-09-26T23:59:59.000Z

    We developed a camera based system for measurements of the circumsolar radiation with a high angular resolution of 0.1 mrad. Subsequent measurements may be taken at intervals as short as 15 s. In this publication we describe the optical system in detail and discuss some aspects of the measurement method. First results from two days of measurement at Freiburg i. Br., Germany, are presented and compared to data from literature. The good results encourage us to perform longer measurement campaigns in future to better understand the influence of circumsolar radiation on the power yield of concentrating photovoltaic systems.

  2. Techniques for measuring atmospheric aerosols at the High Resolution Fly's Eye experiment

    E-Print Network [OSTI]

    The HiRes Collaboration

    2005-12-15T23:59:59.000Z

    We describe several techniques developed by the High Resolution Fly's Eye experiment for measuring aerosol vertical optical depth, aerosol horizontal attenuation length, and aerosol phase function. The techniques are based on measurements of side-scattered light generated by a steerable ultraviolet laser and collected by an optical detector designed to measure fluorescence light from cosmic-ray air showers. We also present a technique to cross-check the aerosol optical depth measurement using air showers observed in stereo. These methods can be used by future air fluorescence experiments.

  3. High-resolution imaging and target designation through clouds or smoke

    DOE Patents [OSTI]

    Perry, Michael D. (Downy, CA)

    2003-01-01T23:59:59.000Z

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  4. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    DOE Patents [OSTI]

    Crewe, Albert V. (Palos Park, IL)

    1996-01-01T23:59:59.000Z

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  5. High-resolution methods for preserving the sum of mass fractions: improved ?-scheme and an alternative

    SciTech Connect (OSTI)

    Syamlal, Madhava; Benyahia, Sofiane

    2013-11-20T23:59:59.000Z

    When high resolution convection schemes are used for discretizing chemical species mass balance equations, the mass fractions are not guaranteed to add to one. We show that a proposed remedy called ?-scheme (Darwish and Moukalled, Comput.Methods Appl.Mech. Engrg. 192 (2003): 1711) will degrade to a diffusive first-order scheme when a chemical species vanishes from the mixture, for example, because of chemical reactions. We propose an improvement to the ?-scheme to overcome this problem. Furthermore, a computationally efficient alternative scheme is proposed and evaluated with several examples, to quantify the improvements in the accuracy and the computational time.

  6. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect (OSTI)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  7. PHYSICAL SECTIONING IN 3D BIOLOGICAL MICROSCOPY JYOTHI SWAROOP GUNTUPALLI

    E-Print Network [OSTI]

    Choe, Yoonsuck

    -out method to obtain high-resolution volumetric tissue structure data. To meet this demand with increased conclude that to achieve ultrathin sectioning and high-resolution imaging, embedded plastic should be soft. To overcome the machining defects of soft plastics, we suggested free-form nanomachining and sectioning

  8. Large area, high spatial resolution tracker for new generation of high luminosity experiments in Hall A at Jefferson Lab

    SciTech Connect (OSTI)

    Bellini, V; Castelluccio, D; Colilli, S; Cisbani, E; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Guiliani, F; Guisa, A; Gricia, M; Lucentini, M; Meddi, F; Minutoli, S; Musico, P; Noto, F; De Oliveira, R; Santavenere, F; Sutera, M C

    2011-06-01T23:59:59.000Z

    In 2014 the CEBAF electron accelerator at Jefferson Lab (JLab) will deliver a longitudinally polarized (up to 85%), high intensity (up to 100 ?A) beam with maximum energy of 12 GeV, twice the present value. To exploit the new opportunities that the energy upgrade will offer, a new spectrometer (Super BigBite - SBS) is under development, featuring very forward angle, large acceptance and ability to operate in high luminosity environment. The tracking system of SBS will consist of large area (40×150 cm2 and 50×200 cm2), high spatial resolution (better than 100 ?m) chambers based on the GEM technology and 2 small (10×20 cm) Silicon Strip Detector planes. The design of the GEM chambers and its sub-components such as the readout electronics is resented here.

  9. T-HEMP3D user manual

    SciTech Connect (OSTI)

    Turner, D.

    1983-08-01T23:59:59.000Z

    The T-HEMP3D (Transportable HEMP3D) computer program is a derivative of the STEALTH three-dimensional thermodynamics code developed by Science Applications, Inc., under the direction of Ron Hofmann. STEALTH, in turn, is based entirely on the original HEMP3D code written at Lawrence Livermore National Laboratory. The primary advantage STEALTH has over its predecessors is that it was designed using modern structured design techniques, with rigorous programming standards enforced. This yields two benefits. First, the code is easily changeable; this is a necessity for a physics code used for research. The second benefit is that the code is easily transportable between different types of computers. The STEALTH program was transferred to LLNL under a cooperative development agreement. Changes were made primarily in three areas: material specification, coordinate generation, and the addition of sliding surface boundary conditions. The code was renamed T-HEMP3D to avoid confusion with other versions of STEALTH. This document summarizes the input to T-HEMP3D, as used at LLNL. It does not describe the physics simulated by the program, nor the numerical techniques employed. Furthermore, it does not describe the separate job steps of coordinate generation and post-processing, including graphical display of results. (WHK)

  10. A new variable-resolution associative memory for high energy physics

    SciTech Connect (OSTI)

    Annovi, A. [INFN Frascati (Italy); Amerio, S. [INFN Padova (Italy); Beretta, M. [INFN Frascati (Italy); Bossini, E.; Crescioli, F.; Dell'Orso, M.; Giannetti, P. [INFN Pisa (Italy); Hoff, J.; Liu, T. [Fermilab (United States); Magalotti, D. [INFN Perugia (Italy); Piendibene, M.; Sacco, I. [INFN Pisa (Italy); Schoening, A.; Soltveit, H. K. [Univ. of Heidelberg (Germany); Stabile, A. [INFN Milano (Italy); Tripiccione, R. [INFN Ferrara (Italy); Liberali, V. [INFN Milano (Italy); Vitillo, R. [INFN Pisa (Italy); Volpi, G. [INFN Frascati (Italy)

    2011-07-01T23:59:59.000Z

    We describe an important advancement for the Associative Memory device (AM). The AM is a VLSI processor for pattern recognition based on Content Addressable Memory (CAM) architecture. The AM is optimized for on-line track finding in high-energy physics experiments. Pattern matching is carried out by finding track candidates in coarse resolution 'roads'. A large AM bank stores all trajectories of interest, called 'patterns', for a given detector resolution. The AM extracts roads compatible with a given event during detector read-out. Two important variables characterize the quality of the AM bank: its 'coverage' and the level of fake roads. The coverage, which describes the geometric efficiency of a bank, is defined as the fraction of tracks that match at least one pattern in the bank. Given a certain road size, the coverage of the bank can be increased just adding patterns to the bank, while the number of fakes unfortunately is roughly proportional to the number of patterns in the bank. Moreover, as the luminosity increases, the fake rate increases rapidly because of the increased silicon occupancy. To counter that, we must reduce the width of our roads. If we decrease the road width using the current technology, the system will become very large and extremely expensive. We propose an elegant solution to this problem: the 'variable resolution patterns'. Each pattern and each detector layer within a pattern will be able to use the optimal width, but we will use a 'don't care' feature (inspired from ternary CAMs) to increase the width when that is more appropriate. In other words we can use patterns of variable shape. As a result we reduce the number of fake roads, while keeping the efficiency high and avoiding excessive bank size due to the reduced width. We describe the idea, the implementation in the new AM design and the implementation of the algorithm in the simulation. Finally we show the effectiveness of the 'variable resolution patterns' idea using simulated high occupancy events in the ATLAS detector. (authors)

  11. Fabrication and characterization of a 0.5-mm lutetium oxyorthosilicate detector array for high-resolution PET applications

    E-Print Network [OSTI]

    Stickel, Jennifer R; Qi, Jinyi; Cherry, Simon R

    2007-01-01T23:59:59.000Z

    for a high resolution PET detector using position sensitive51:2131–2142. 0.5- MM LSO A RRAY FOR PET • Stickel et al.Instrumentation aspects of animal PET. Annu Rev Biomed Eng.

  12. High-resolution calorimetric study of the nematic to smectic- A transition in aligned liquid crystal–aerosil gels

    E-Print Network [OSTI]

    Garland, Carl W.

    High-resolution ac calorimetry has been used to study the nematic to smectic-A (N-SmA) phase transition in the liquid crystal octylcyanobiphenyl (8CB) confined in aligned colloidal aerosil gels. A stable and robust nematic ...

  13. Data report: High-resolution stable isotope stratigraphy of the late Middle Eocene at Site 1051, Blake Nose 

    E-Print Network [OSTI]

    Wade, Bridget S.; Norris, Richard D.; Kroom, Dick

    2000-01-01T23:59:59.000Z

    The primary aim of the this investigation was to examine the stability of subtropical sea-surface temperatures and reconstruct the surfaceto- benthos thermal gradient. High-resolution stable isotopic analyses (?18O and ?13C) were conducted on late...

  14. Monitoring temperate glaciers by high resolution Pol-InSAR data: First analysis of Argentire E-SAR

    E-Print Network [OSTI]

    Boyer, Edmond

    Monitoring temperate glaciers by high resolution Pol-InSAR data: First analysis of Argentière E to measure temperate glacier velocities and surface characteristics by airborne interferometric Alpine glaciers. Simultaneously to the acquisition of repeat pass interferometric, polarimetric and multi

  15. High-resolution shear-wave reflection profiling to image offset in unconsolidated near-surface sediments

    E-Print Network [OSTI]

    Bailey, Bevin

    2014-05-31T23:59:59.000Z

    S-wave reflection profiling has many theoretical advantages, when compared to P-wave profiling, such as high-resolution potential, greater sensitivities to lithologic changes and insensitivity to the water table and pore ...

  16. High-resolution 18F-FDG PET with MRI for monitoring response to treatment in rheumatoid arthritis

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    of a dedicated breast PET/CT scanner during human imaging. J2]. A high-resolution PET/CT scanner for imaging extremitiesOA). An extremity 18 F-FDG PET/CT scan immediately following

  17. 3D Self-Portraits Etienne Vouga2

    E-Print Network [OSTI]

    O'Brien, James F.

    scanning pose change output reconstruction textured reconstruction large variety of examples3D print Figure for applications such as online avatars or 3D printing (the miniature shown here was printed using a ZPrinter 650 and accurate cap- ture system for 3D self-portraits using a single 3D sensor. Figure 2: 3D printed miniatures

  18. Massive quiescent cores in Orion. IV. Their supercritical state revealed by high resolution ammonia maps

    E-Print Network [OSTI]

    Li, D; Zhang, Q; Chen, W

    2012-01-01T23:59:59.000Z

    We present combined VLA and GBT images of \\ammonia\\ inversion transitions (1,1) and (2,2) toward OMC2 and OMC3. We focus on the relatively quiescent Orion cores, which are away from the Trapezium cluster and have no sign of massive protostars nor evolved star formation, such as IRAS source, water maser, and methanol maser. The 5\\arcsec\\ angular resolution and $0.6 \\rm{}km s^{-1}$ velocity resolution of these data enable us to study the thermal and dynamic state of these cores at $\\sim{}0.02 \\rm{}pc$ scales, comparable to or smaller than those of the current dust continuum surveys. We measure temperatures for a total of 30 cores, with average masses and radii of $11 \\Ms$ and $0.039 \\rm{}pc$, respectively. Compared to other Gould Belt dense cores, the Orion cores have an unusually high gravitational-to-inetic energy ratio (virial mass ratio $R_{vir} > >1$), resembling results for other clouds forming high--mass stars. This results from Orion cores having velocity dispersions similar to those in, e.g., Perseus a...

  19. Diamond-machined ZnSe immersion grating for NIR high-resolution spectroscopy

    SciTech Connect (OSTI)

    Ikeda, Y; Kobayashi, N; Kuzmenko, P J; Little, S L; Yasui, C; Kondo, S; Minami, A; Motohara, K

    2008-07-25T23:59:59.000Z

    ZnSe immersion gratings (n {approx} 2.45) provide the possibility of high-resolution spectroscopy for the near-infrared (NIR) region. Since ZnSe has a lower internal attenuation than other NIR materials, it is most suitable for immersion grating, particularly in short NIR region (0.8-1.4 {micro}m). We are developing an extremely high-resolution spectrograph with {lambda}/{Delta}{lambda} = 100,000, WINERED, customized for the short NIR region, using ZnSe (or ZnS) immersion grating. However, it had been very difficult to make fine grooves on ZnSe substrate with a small pitch of less than 50 {micro}m because ZnSe is a soft/brittle material. We have overcome this problem and successfully machined sharp grooves with fine pitch on ZnSe substrates by nano precision fly-cutting technique at LLNL. The optical testing of the sample grating with HeNe laser shows an excellent performance: the relative efficiency more than 87.4 % at 0.633 {micro}m for a classical grating configuration. The diffraction efficiency when used as an immersion grating is estimated to be more than 65 % at 1 {micro}m. Following this progress, we are about to start machining a grating on a large ZnSe prism with an entrance aperture of 23mm x 50mm and the blaze angle of 70{sup o}.

  20. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    SciTech Connect (OSTI)

    Wei, Y. L.; Yu, D. L., E-mail: yudl@swip.ac.cn; Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong [Southwestern Institute of Physics, Chengdu 610041 (China); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Hellermann, M. von [ITER Diagnostic Team, IO, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); FOM-Institute for Plasma physics “Rijnhuizen,” Association EURATOM, Trilateral Euregio Cluster, 3430 BE Nieuwegein (Netherlands)

    2014-10-01T23:59:59.000Z

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  1. Simnple, portable, 3-D projection routine

    SciTech Connect (OSTI)

    Wagner, J.S.

    1987-04-01T23:59:59.000Z

    A 3-D projection routine is presented for use in computer graphics applications. The routine is simple enough to be considered portable, and easily modified for special problems. There is often the need to draw three-dimensional objects on a two-dimensional plotting surface. For the object to appear realistic, perspective effects must be included that allow near objects to appear larger than distant objects. Several 3-D projection routines are commercially available, but they are proprietary, not portable, and not easily changed by the user. Most are restricted to surfaces that are functions of two variables. This makes them unsuitable for viewing physical objects such as accelerator prototypes or propagating beams. This report develops a very simple algorithm for 3-D projections; the core routine is only 39 FORTRAN lines long. It can be easily modified for special problems. Software dependent calls are confined to simple drivers that can be exchanged when different plotting software packages are used.

  2. Ames Lab 101: 3D Metals Printer

    SciTech Connect (OSTI)

    Ott, Ryan

    2014-02-13T23:59:59.000Z

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  3. Extra Dimensions: 3D and Time in PDF Documentation

    SciTech Connect (OSTI)

    Graf, Norman A.; /SLAC

    2011-11-10T23:59:59.000Z

    High energy physics is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide audience. In this talk, we present examples of HEP applications which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input. Using this technique, higher dimensional data, such as LEGO plots or time-dependent information can be included in PDF files. In principle, a complete event display, with full interactivity, can be incorporated into a PDF file. This would allow the end user not only to customize the view and representation of the data, but to access the underlying data itself.

  4. High resolution interface nanochemistry and structure: Final project report, December 1, 1993--February 28, 1997

    SciTech Connect (OSTI)

    Carpenter, R.W.; Lin, S.H.

    1997-02-27T23:59:59.000Z

    Work includes studies of interface and grain boundary chemistry and structure in silicon nitride matrix/silicon carbide whisker composites, and in monolithic silicon nitride and silicon carbide synthesized by several different methods. Off-stoichiometric, impurity, and sintering aid elemental distributions in these materials (and other ceramics) have been of great interest because of expected effects on properties but these distributions have proven very difficult to measure because the spatial resolution required is high. The authors made a number of these measurements for the first time, using techniques and instrumentation developed here. Interfaces between metals and SiC are the basis for important metal matrix composites and contacts for high temperature SiC-based solid state electronic devices. The authors have investigated ultrapure interfaces between Ti, Hf, Ti-Hf alloys, Pt, and Co and Si-terminated (0001) 6H SiC single crystals for the first time.

  5. High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers

    SciTech Connect (OSTI)

    Wang, Yin; Wang, Wen; Wysocki, Gerard, E-mail: gwysocki@princeton.edu [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540 (United States); Soskind, Michael G. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540 (United States); Department of Electrical Engineering, Rutgers University, New Brunswick, New Jersy 08901 (United States)

    2014-01-20T23:59:59.000Z

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (?15?MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.

  6. High Spatial Resolution Fast-Neutron Imaging Detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    E-Print Network [OSTI]

    Mor, I; Bar, D; Feldman, G; Goldberg, M B; Katz, D; Sayag, E; Shmueli, I; Cohen, Y; Tal, A; Vagish, Z; Bromberger, B; Dangendorf, V; Mugai, D; Tittelmeier, K; Weierganz, M

    2009-01-01T23:59:59.000Z

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  7. High resolution laser induced fluorescence Doppler velocimetry utilizing saturated absorption spectroscopy

    SciTech Connect (OSTI)

    Aramaki, Mitsutoshi [Department of Electrical Engineering and Computer Science, Nagoya University, Nagoya 464-8603 (Japan); Ogiwara, Kohei; Etoh, Shuzo [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580 (Japan); Yoshimura, Shinji [National Institute for Fusion Science, Toki 509-5292 (Japan); Tanaka, Masayoshi Y. [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga 816-8580 (Japan)

    2009-05-15T23:59:59.000Z

    A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is {+-}2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

  8. High resolution coherent diffractive imaging with a table-top extreme ultraviolet source

    SciTech Connect (OSTI)

    Vu Le, Hoang, E-mail: vuhoangle@swin.edu.au; Ba Dinh, Khuong; Hannaford, Peter; Van Dao, Lap [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122 (Australia)

    2014-11-07T23:59:59.000Z

    We demonstrate a resolution of 45?nm with a sample size down to 3??m × 3??m is achieved in a short exposure time of 2?s, from the diffraction pattern generated by a table-top high harmonic source at around 30?nm. By using a narrow-bandwidth focusing mirror, the diffraction pattern's quality is improved and the required exposure time is significantly reduced. In order to obtain a high quality of the reconstructed image, the ratio of the beam size to the sample size and the curvature of the focused beam need to be considered in the reconstruction process. This new experimental scheme is very promising for imaging sub-10?nm scale objects with a table-top source based on a small inexpensive femtosecond laser system.

  9. High-resolution metagenomics targets major functional types in complex microbial communities

    SciTech Connect (OSTI)

    Kalyuzhnaya, Marina G.; Lapidus, Alla; Ivanova, Natalia; Copeland, Alex C.; McHardy, Alice C.; Szeto, Ernest; Salamov, Asaf; Grigoriev, Igor V.; Suciu, Dominic; Levine, Samuel R.; Markowitz, Victor M.; Rigoutsos, Isidore; Tringe, Susannah G.; Bruce, David C.; Richardson, Paul M.; Lidstrom, Mary E.; Chistoserdova, Ludmila

    2009-08-01T23:59:59.000Z

    Most microbes in the biosphere remain uncultured and unknown. Whole genome shotgun (WGS) sequencing of environmental DNA (metagenomics) allows glimpses into genetic and metabolic potentials of natural microbial communities. However, in communities of high complexity metagenomics fail to link specific microbes to specific ecological functions. To overcome this limitation, we selectively targeted populations involved in oxidizing single-carbon (C{sub 1}) compounds in Lake Washington (Seattle, USA) by labeling their DNA via stable isotope probing (SIP), followed by WGS sequencing. Metagenome analysis demonstrated specific sequence enrichments in response to different C{sub 1} substrates, highlighting ecological roles of individual phylotypes. We further demonstrated the utility of our approach by extracting a nearly complete genome of a novel methylotroph Methylotenera mobilis, reconstructing its metabolism and conducting genome-wide analyses. This approach allowing high-resolution genomic analysis of ecologically relevant species has the potential to be applied to a wide variety of ecosystems.

  10. 3D Modeling Engine Representation Summary Report

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01T23:59:59.000Z

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  11. A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas

    SciTech Connect (OSTI)

    Chen, Hui, E-mail: chen33@llnl.gov, E-mail: bitter@pppl.gov; Magee, E.; Nagel, S. R.; Park, J.; Schneider, M. B.; Stone, G.; Williams, G. J.; Beiersdorfer, P. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550-9234 (United States); Bitter, M., E-mail: chen33@llnl.gov, E-mail: bitter@pppl.gov; Hill, K. W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Kerr, S. [Department of Applied Science, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-11-15T23:59:59.000Z

    Adapting a concept developed for magnetic confinement fusion experiments, an imaging crystal spectrometer has been designed and tested for HED plasmas. The instrument uses a spherically bent quartz [211] crystal with radius of curvature of 490.8 mm. The instrument was tested at the Titan laser at Lawrence Livermore National Laboratory by irradiating titanium slabs with laser intensities of 10{sup 19}–10{sup 20} W/cm{sup 2}. He-like and Li-like Ti lines were recorded, from which the spectrometer performance was evaluated. This spectrometer provides very high spectral resolving power (E/dE > 7000) while acquiring a one-dimensional image of the source.

  12. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    SciTech Connect (OSTI)

    Spencer, W; Laura Tovo, L

    2008-07-08T23:59:59.000Z

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms. Analysis of low concentration ions, at the ppm level, required a separate analysis using ion ejection techniques. Chemical ionization due to the formation of the MH{sup +} ion or MD{sup +} increased the complexity of the spectra compared to magnetic sector mass spectra and formation of the protonated or deuterated complex was a dynamic function of the trap ion concentration. This made quantitative measurement more of a challenge. However, the resolution of the instrument was far superior to any other mass spectrometry technique that has been applied to the analysis of the hydrogen isotopes. The piezo-electric picoliter injection device offers a new way of submitting small quantities of atmospheric pressure sample gas for analysis. The new software had many improvements over the previous version but significant flaws in the beta codes remain that make the prototype units less than ideal. The instrument is a promising new technology that experience will likely improve. Unfortunately, Siemens has concluded that the technology will not be a commercial success and has decided to stop producing this product.

  13. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    SciTech Connect (OSTI)

    Donnelley, Martin [Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, South Australia (Australia); Parsons, David [Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, South Australia (Australia); Women's and Children's Health Research Institute, Adelaide, South Australia (Australia); Department of Paediatrics and Reproductive Health, University of Adelaide, South Australia (Australia); Department of Paediatircs Centre for Stem Cell Research, University of Adelaide, South Australia (Australia); Morgan, Kaye [School of Physics, Monash University, Melbourne, Victoria (Australia); Siu, Karen [School of Physics, Monash University, Melbourne, Victoria (Australia); Monash Centre for Synchrotron Science, Monash University, Melbourne, Victoria (Australia)

    2010-07-23T23:59:59.000Z

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mmx1.2 mm at a pixel resolution of 0.45 {mu}m and are performed with live, intact, anaesthetized mice.There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging.Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the Imaging and Medical Beamline at the Australian Synchrotron.Overcoming these challenges has permitted increasingly sophisticated imaging of animals with synchrotron X-rays, and we expect a bright future for these techniques.

  14. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    SciTech Connect (OSTI)

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23T23:59:59.000Z

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to Department of Energy's Hydropower Program, we identified three major research areas of interest: free swimming, the boundary layer over fish, and kinematic response of fish. We propose that the highest priority is to characterize the kinematic response of fish to different turbulent environments such as high shear/turbulence and hydrodynamic disturbances created by solid structures such as deflector and turbine runner blade; the next priority is to map the boundary layer over swimming fish; the last is to document the behavior of freely swimming fish, focusing on fish of our interest. Grid turbulence and Karman vortex street will be employed to map the boundary layers over fish and investigate the effects of environmental disturbances on the swimming performance of fish, because they are well established and documented in engineering literature and are representative of fish's swimming environments. Extreme conditions characteristic of turbine environments, such as strong shear environment and collision, will be investigated. Through controlled laboratory studies, the fish injury mechanism from different sources will be evaluated in isolation. The major goals are to: gain first-hand knowledge of the biological effects under such extreme hydraulic environments in which fish could lack the capability to overcome the perturbations and be vulnerable to injury; Better understand field results by integrating the laboratory studies with the responses of sensor fish device; More importantly, provide well-defined validation cases and boundary conditions for geometry-based computational fluid-structure interaction modeling in order to simulate the complex hydraulic environments in advanced hydropower systems and their effects on fish, greatly enhancing the potential to use CFD as a bio-hydraulic design alternative.

  15. High resolution fossil fuel combustion CO2 emission fluxes for the United States

    SciTech Connect (OSTI)

    Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-03-19T23:59:59.000Z

    Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  16. Fourier transform of the 3d NS equations The 3d NS equations are

    E-Print Network [OSTI]

    Salmon, Rick

    1 Fourier transform of the 3d NS equations The 3d NS equations are (1) vi t + vj vi xj = - p xi easily add it in at the end. Our interest is in the advection and pressure terms. Introducing the Fourier transforms (2) vi x( ) = ui k( )eikx k p x( ) = p k( )eikx k we obtain the Fourier transform of (1

  17. METRIC FOR AUTOMATED DETECTION AND IDENTIFICATION OF 3D CAD ELEMENTS IN 3D SCANNED

    E-Print Network [OSTI]

    Bosché, Frédéric

    of 3D Computer-Aided Design (CAD) engines and more generally of Building Information Models on one side states is critical for performing efficient building and infrastructure construction, maintenance, and management. Three- dimensional (3D) laser scanners have the potential to be successfully applied

  18. Energy Savings in 3-D | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy savings in 3-D ORNL researchers show production, energy advantages of additive manufacturing ORNL 3-D printer in use. ORNL 3-D printer in use. Researchers at the Department...

  19. 3D engine for immersive virtual environments 

    E-Print Network [OSTI]

    Anderson, Christopher Dean

    2005-02-17T23:59:59.000Z

    The purpose of this project is to develop a software framework, a 3D engine, which will generate images to be projected onto facets of a spatially immersive display (SID). The goal is to develop a software library to support the creation of images...

  20. 3-D hydro + cascade model at RHIC

    E-Print Network [OSTI]

    Chiho Nonaka; Steffen A. Bass

    2005-11-07T23:59:59.000Z

    We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

  1. Speed-line for 3D animation 

    E-Print Network [OSTI]

    Song, Won Chan

    2007-04-25T23:59:59.000Z

    My thesis describes a tool which creates speed-lines automatically in 3D computer animations. Speed-lines are usually used in comic books to express fast motions in a still image. They are also used in 2D animations. ...

  2. High-resolution observations of active region moss and its dynamics

    E-Print Network [OSTI]

    Morton, R J

    2014-01-01T23:59:59.000Z

    The \\textit{High resolution Coronal Imager (Hi-C)} has provided the sharpest view of the EUV corona to date. In this paper we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads, that have widths with a mean and standard deviation of $440\\pm190$~km (Full Width Half Maximum). {The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere.} The emission decreases along the features implying the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation {of physical displacements of the moss fine-structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic b...

  3. High resolution transmission electron microscopy of melamine-formaldehyde aerogels and silica aerogels

    SciTech Connect (OSTI)

    Ruben, G.C. (Dartmouth Coll., Hanover, NH (United States). Dept. of Biological Sciences)

    1991-09-01T23:59:59.000Z

    The goal of the high resolution transmission electron microscopy (HRTEM) was to image the structure of two tetramethyl orthosilicate (TMOS) and two melamine-formaldehyde (MF) aerogels at the single polymer chain level{sup 1,2}. With this level of structural resolution we hoped to interrelate each aerogel's structure with its physical properties and its method of synthesis. Conventional single-step base catalysed TMOS aerogels show strings of spheroidal particles linked together with minimal necking. The spheroidal particles range from 86--132 {Angstrom} and average 113{plus minus}10 {Angstrom} in diameter{sup 2}. In contrast the TMOS aerogels reported on here were made by a two step method. After extended silica chains are grown in solution under acidic conditions with a substoichiometric amount of water, the reaction is stopped and the methanol hydrolysed from TMOS is removed. Then base catalysis and additional water are added to cause gel formation is a nonalcoholic solvent. The MF aerogels were prepared for HRTEM by fracturing them on a stereo microscope stage with razor knife so that fractured pieces with smooth flat surfaces could be selected for platinum-carbon replication. The two silica (TMOS) aerogels were both transparent and difficult to see. These aerogels were fractured on a stereo microscope stage with tweezers. 6 refs., 4 figs.

  4. Submillimeter Array High-angular Resolution Observations of the Monoceros R2 Star Forming Cluster

    E-Print Network [OSTI]

    Dierickx, Marion; Rivilla, Victor; Zhang, Qizhou

    2015-01-01T23:59:59.000Z

    We present the first high-angular resolution study of the MonR2 star-forming complex carried out with the Submillimeter Array at (sub-)millimeter wavelengths. We image the continuum and molecular line emission toward the young stellar objects in MonR2 at 0.85mm and 1.3mm, with resolutions ranging from 0.5" to ~3". While free-free emission dominates the IRS1 and IRS2 continuum, dust thermal emission prevails for IRS3 and IRS5, giving envelope masses of ~0.1-0.3 M_Sun. IRS5 splits into at least two sub-arcsecond scale sources, IRS5B and the more massive IRS5A. Our 12CO(2-1) images reveal 11 previously unknown molecular outflows in the MonR2 clump. Comparing these outflows with known IR sources in the IRS5 and IRS3 subclusters allows for tentative identification of driving stars. Line images of molecular species such as CH3CN or CH3OH show that, besides IRS3 (a well-known hot molecular core), IRS5 is also a chemically active source in the region. The gas excitation temperature derived from CH3CN lines toward IRS...

  5. High-resolution spectra of solar magnetic features. I. Analysis of penumbral fine structure

    SciTech Connect (OSTI)

    Lites, B.W.; Skumanich, A.; Scharmer, G.B. (High Altitude Observatory, Boulder, CO (USA) Kungliga Svenska Vetenskapsakademien, Stockholm (Sweden))

    1990-05-01T23:59:59.000Z

    The Swedish Vacuum Telescope on La Palma was used to obtain spectra of the magnetic-sensitive Fe I 630.25 nm line under conditions of exceptional angular resolution (0.32 arcsec) and high spectral resolution (FWHM 2.5 pm). Simultaneous 0.02 s CCD exposures of both the spectrum and the slit-jaw image effectively 'freeze' the atmospheric seeing motions and permit unambiguous identification of the spectra of the various penumbral structures. These spectra reveal the magnetic field strength in penumbral filaments through an intensity fit of the Zeeman splitting of this line. The observations show that: (1) the field strength varies from about 2100 G near the umbra-penumbra boundary to about 900 G at the outer edge of the penumbra, (2) the observed fluctuation of penumbral magnetic field is much less dramatic than the fluctuation in intensity, (3) there is a suggestion of a rapid change in field inclination between some light and dark filaments near the edge of the penumbra, and (4) there is no obvious correlation between Doppler shift (in part due to the Evershed flow) and filament intensity. 43 refs.

  6. A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction

    SciTech Connect (OSTI)

    Kuechler, R.; Bauer, T.; Brando, M.; Steglich, F. [Max Planck Institute for Chemical Physics of Solids, Noethnitzer Str. 40, 01187 Dresden (Germany)

    2012-09-15T23:59:59.000Z

    We describe the design, construction, calibration, and two different applications of a miniature capacitance dilatometer. The device is suitable for thermal expansion and magnetostriction measurements from 300 K down to about 25 mK, with a resolution of 0.02 A at low temperatures. The main body of the dilatometer is fabricated from a single block of a Be-Cu alloy by electrical discharge milling. This creates an extremely compact high-resolution measuring cell. We have successfully tested and operated dilatometers of this new type with the commonly used physical property measurement system by quantum design, as well as with several other cryogenic refrigeration systems down to 25 mK and in magnetic fields up to 20 T. Here, the capacitance is measured with a commercially available capacitance bridge. Using a piezoelectric rotator from Attocube Systems, the cell can be rotated at T= 25 mK inside of an inner vacuum chamber of 40 mm diameter. The miniaturized design for the one-axis rotation setup allows a rotation of 360 Degree-Sign .

  7. Development of Advanced Optics and High Resolution Instrumentation for Mass Spectrometry Based Proteomics

    E-Print Network [OSTI]

    Sherrod, Stacy D.

    2010-01-14T23:59:59.000Z

    ) improving the analytical figures of merit (i.e., spatial resolution, analysis time) by implementing a spatially dynamic optical system, and (3) increasing both mass spectral resolution and ion detection sensitivity by modifying a commercial time...

  8. 3-D Force-balanced Magnetospheric Configurations

    SciTech Connect (OSTI)

    Sorin Zaharia; C.Z. Cheng; K. Maezawa

    2003-02-10T23:59:59.000Z

    The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions.

  9. acquisition facilitates 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Websites Summary: measurements and finally its instantiation through 3D printing, are presented. Laser scanner acquisition, reconstruction and 3D printing lend well...

  10. automatic 3d fe: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Technologies and Information Sciences Websites Summary: by means of the "3D printing" devices used in mechanical rapid prototyping. Another one is that 3D...

  11. 3D Printing in 30 Seconds | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Printing in 30 Seconds 3D Printing in 30 Seconds Addthis An error occurred. Unable to execute Javascript. Duration :38 Topic Science & Technology...

  12. State-of-the-Art 3-D Assessment of Elements Degrading TBR of

    E-Print Network [OSTI]

    accurate modeling of complex devices by integrating CAD geometry directly with 3-D MCNP code. · To point presentation of blanket geometry with high fidelity in 3-D TBR results. #12;6 Stepwise Approach ­ Build CAD of Fusion Energy August 27- 31, 2012 Nashville, TN, USA #12;2 ARIES Designs (1988 ­ 2012) #12;3 ARIES

  13. Thermal Simulation of Laser Annealing for 3D Integration B. Rajendran, S. H. Jain1

    E-Print Network [OSTI]

    Pease, R. Fabian W.

    laser annealing is a very promising technology for dopant activation [4]. Ultra-short, high intensityThermal Simulation of Laser Annealing for 3D Integration B. Rajendran, S. H. Jain1 , T. A. Kramer of various interconnect and device layers of an exemplary 3D IC structure during laser annealing for dopant

  14. LandScan USA: A High Resolution Geospatial and Temporal Modeling Approach for Population Distribution and Dynamics

    SciTech Connect (OSTI)

    Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Coleman, Phil R [ORNL; Urban, Marie L [ORNL

    2007-01-01T23:59:59.000Z

    High resolution population distribution data are critical for successfully addressing important issues ranging from socio-environmental research to public health to homeland security, since scientific analyses, operational activities, and policy decisions are significantly influenced by the number of impacted people. Dasymetric modeling has been a well recognized approach for spatial decomposition of census data to increase the spatial resolution of population distribution. However, enhancing the temporal resolution of population distribution poses a greater challenge. In this paper, we discuss the development of LandScan USA, a multi-dimensional dasymetric modeling approach, which has allowed creation of very high resolution population distribution data both over space and time. At a spatial resolution of 3 arc seconds (~90m), the initial LandScan USA database contains both a nighttime residential as well as a baseline daytime population distribution that incorporates movement of workers and students. Challenging research issues of disparate and misaligned spatial data integration and modeling to develop a database at a national scale, as well as model verification and validation approaches are illustrated and discussed. Initial analyses indicate a high degree of accuracy for LandScan USA distribution model and data. High resolution population data such as LandScan USA, which describes both distribution and dynamics of human population, clearly has the potential to profoundly impact on multiple domain applications of national and global priority.

  15. Technique for continuous high-resolution analysis of trace substances in firn and ice cores

    SciTech Connect (OSTI)

    Roethlisberger, R.; Bigler, M.; Hutterli, M.; Sommer, S.; Stauffer, B.; Junghans, H.G.; Wagenbach, D.

    2000-01-15T23:59:59.000Z

    The very successful application of a CFA (Continuous flow analysis) system in the GRIP project (Greenland Ice Core Project) for high-resolution ammonium, calcium, hydrogen peroxide, and formaldehyde measurements along a deep ice core led to further development of this analysis technique. The authors included methods for continuous analysis technique. The authors included methods for continuous analysis of sodium, nitrate, sulfate, and electrolytical conductivity, while the existing methods have been improved. The melting device has been optimized to allow the simultaneous analysis of eight components. Furthermore, a new melter was developed for analyzing firn cores. The system has been used in the frame of the European Project for Ice Coring in Antarctica (EPICA) for in-situ analysis of several firn cores from Dronning Maud Land, Antarctica, and for the new ice core drilled at Dome C, Antarctica.

  16. Solar wind turbulence from MHD to sub-ion scales: high-resolution hybrid simulations

    E-Print Network [OSTI]

    Franci, Luca; Matteini, Lorenzo; Landi, Simone; Hellinger, Petr

    2015-01-01T23:59:59.000Z

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wave numbers. The simulation results exhibit simultaneously several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magneto-hydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm's law.

  17. Deflection Measurements of a Thermally Simulated Nuclear Core using a High-Resolution CCD-Camera

    SciTech Connect (OSTI)

    Stanojev, B.J. [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Al, 35812 (United States); Houts, M. [Los Alamos National Laboratory, Department of Energy, Los Alamos, NM, 87545 (United States)

    2004-07-01T23:59:59.000Z

    Space fission systems under consideration for near-term missions all use compact, fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage, is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system 'nuclear' equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three-dimensional deformation profile of the core during test. (authors)

  18. OASIS High-Resolution Integral Field Spectroscopy of the SAURON Ellipticals and Lenticulars

    E-Print Network [OSTI]

    McDermid, R; Cappellari, M; Kuntschner, H; Bacon, R; Bureau, M; Copin, Y; Davies, R L; Falcon-Barroso, J; Ferruit, P; Krajnovic, D; Peletier, R F; Shapiro, K; Wernli, F; De Zeeuw, P T

    2003-01-01T23:59:59.000Z

    We present a summary of high-spatial resolution follow-up observations of the elliptical (E) and lenticular (S0) galaxies in the SAURON survey using the OASIS integral field spectrograph. The OASIS observations explore the central 8x10" regions of these galaxies using a spatial sampling four times higher than SAURON, often revealing previously undiscovered features. Around 75% (31/48) of the SAURON E/S0s with central velocity dispersion >= 120 km/s were observed with OASIS, covering well the original SAURON representative sample. We present here an overview of this follow-up survey, and some preliminary results on individual objects, including a previously unreported counter-rotating core in NGC 4382; the decoupled stellar and gas velocity fields of NGC 2768; and the strong age gradient towards the centre of NGC 3489.

  19. OASIS High-Resolution Integral Field Spectroscopy of the SAURON Ellipticals and Lenticulars

    E-Print Network [OSTI]

    R. McDermid; E. Emsellem; M. Cappellari; H. Kuntschner; R. Bacon; M. Bureau; Y. Copin; R. L. Davies; J. Falcon-Barroso; P. Ferruit; D. Krajnovic; R. F. Peletier; K. Shapiro; F. Wernli; P. T. de Zeeuw

    2003-11-10T23:59:59.000Z

    We present a summary of high-spatial resolution follow-up observations of the elliptical (E) and lenticular (S0) galaxies in the SAURON survey using the OASIS integral field spectrograph. The OASIS observations explore the central 8x10" regions of these galaxies using a spatial sampling four times higher than SAURON, often revealing previously undiscovered features. Around 75% (31/48) of the SAURON E/S0s with central velocity dispersion >= 120 km/s were observed with OASIS, covering well the original SAURON representative sample. We present here an overview of this follow-up survey, and some preliminary results on individual objects, including a previously unreported counter-rotating core in NGC 4382; the decoupled stellar and gas velocity fields of NGC 2768; and the strong age gradient towards the centre of NGC 3489.

  20. Compact, high-resolution, gamma ray imaging for scintimammography and other medical diagostic applications

    DOE Patents [OSTI]

    Majewski, Stanislaw (Grafton, VA); Weisenberger, Andrew G. (Grafton, VA); Wojcik, Randolph F. (Yorktown, VA); Steinbach, Daniela (Williamsburg, VA)

    1999-01-01T23:59:59.000Z

    A high resolution gamma ray imaging device includes an aluminum housing, a lead screen collimator at an opened end of the housing, a crystal scintillator array mounted behind the lead screen collimator, a foam layer between the lead screen collimator and the crystal scintillator array, a photomultiplier window coupled to the crystal with optical coupling grease, a photomultiplier having a dynode chain body and a base voltage divider with anodes, anode wire amplifiers each connected to four anodes and a multi pin connector having pin connections to each anode wire amplifier. In one embodiment the crystal scintillator array includes a yttrium aluminum perovskite (YAP) crystal array. In an alternate embodiment, the crystal scintillator array includes a gadolinium oxyorthosilicate (GSO) crystal array.

  1. Optical multichannel analyzer-based high-resolution, multipoint spectroscopic apparatus

    SciTech Connect (OSTI)

    Antoniades, J.A.; Peyser, T.

    1987-02-01T23:59:59.000Z

    A high-wavelength resolution (..delta..lambdaless than or equal to0.02 A) spectroscopic apparatus has been developed and applied to the measurements of spectral line profiles emitted by thermonuclear plasmas yielding important plasma parameters, such as ion temperature and fluid velocity. The experimental apparatus consists of a spectrometer, an optical multichannel analyzer (OMA), and a lens. It allows precise wavelength measurements (..delta..lambda/sub error/less than or equal to0.02 A) when a computer and a ThI electrodeless discharge lamp (EDL) are used to calibrate the instrument. The apparatus yields single-shot space and time-resolved spectra for radiation in the 2000--8000-A range.

  2. Recent results on high resolution hypernuclear spectroscopy by electroproduction at Jefferson Lab, Hall A

    SciTech Connect (OSTI)

    F. Garibaldi; H. Breuer; P. Brindza; P. Bydzovski; G. Chang; E. Cisbani; S. Colilli; F. Cusanno; R. De Leo; G. De Cataldo; K. De Jager; R. Feuerbach; E. Folts; R. Fratoni; S. Frullani; F. Giuliani; M. Gricia; D. Higinbotham; M. Iodice; B. Kross; L. Lagamba; J.J.Le Rose; M. Lucentini; P. Markowitz; S. Marrone; R. Michaels; E. Nappi; Y. Qiang; B. Reitz; F. Santavenere; J. Segal; M. Sotona; G.M.Urciuoli; P. Veneroni; B.Wojtsekhowski; C. Zorn

    2005-12-01T23:59:59.000Z

    The first ''systematic'' study of 1 p shell hypernuclei with electromagnetic probes has started in Hall A at Jefferson Lab [?]. The aim is to perform hypernuclear high resolution spectroscopy by the electroproduction of strangeness on four 1p-shell targets: 12C, 9Be, 16O, 7Li. The first part of the experiment on 12C and 9Be has been performed in 2004, the second part (16O and 7Li) is scheduled for June 2005. To overcome the major experimental difficulties, namely the low counting rate and the challenging Particle IDentification (PID), two septum magnets and a Ring Imaging CHerenkov (RICH) detector had to be added to the existing apparatus. After underlining the particular role the electroproduction reaction plays in hypernuclear physics we describe the challenging modifications of the Hall A apparatus. Preliminary results on 12C and 9Be are presented.

  3. Accurate Gravities of F, G, and K stars from High Resolution Spectra Without External Constraints

    E-Print Network [OSTI]

    Brewer, John M; Basu, Sarbani; Valenti, Jeff A; Piskunov, Nikolai

    2015-01-01T23:59:59.000Z

    We demonstrate a new procedure to derive accurate and precise surface gravities from high resolution spectra without the use of external constraints. Our analysis utilizes Spectroscopy Made Easy (SME) with robust spectral line constraints and uses an iterative process to mitigate degeneracies in the fitting process. We adopt an updated radiative transfer code, a new treatment for neutral perturber broadening, a line list with multiple gravity constraints and separate fitting for global stellar properties and abundance determinations. To investigate the sources of temperature dependent trends in determining log g noted in previous studies, we obtained Keck HIRES spectra of 42 Kepler asteroseismic stars. In comparison to asteroseismically determined log g our spectroscopic analysis has a constant offset of 0.01 dex with a root mean square (RMS) scatter of 0.05 dex. We also analyzed 30 spectra which had published surface gravities determined using the $a/R_*$ technique from planetary transits and found a constan...

  4. High resolution structure of the large ribosomal subunit from a Mesophilic Eubacterium

    SciTech Connect (OSTI)

    Harms, Joerg; Schluenzen, Frank; Zarivach, Raz; Bashan, Anat; Gat, Sharon; Agmon, Ilana; Bartels, Heike; Franceschi, Francois; Yonath, Ada (Weizmann Inst Israel); (Mac Planck Germany); (Max Planck Germany)

    2009-10-07T23:59:59.000Z

    We describe the high resolution structure of the large ribosomal subunit from Deinococcus radiodurans (D50S), a gram-positive mesophile suitable for binding of antibiotics and functionally relevant ligands. The over-all structure of D50S is similar to that from the archae bacterium Haloarcula marismortui (H50S); however, a detailed comparison revealed significant differences, for example, in the orientation of nucleotides in peptidyl transferase center and in the structures of many ribosomal proteins. Analysis of ribosomal features involved in dynamic aspects of protein biosynthesis that are partially or fully disordered in H50S revealed the conformations of intersubunit bridges in unbound subunits, suggesting how they may change upon subunit association and how movements of the L1-stalk may facilitate the exit of tRNA.

  5. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2006-09-30T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

  6. Chemical order in Ge{sub x}As{sub y}Se{sub 1-x-y} glasses probed by high resolution X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Xu, S. W. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); College of Applied Sciences, Beijing University of Technology, Beijing100124 (China); Wang, R. P.; Luther-Davies, B. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Kovalskiy, A. [Department of Physics and Astronomy, Austin Peay State University, Clarksville, Tennessee 37043 (United States); Miller, A. C.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015-3195 (United States)

    2014-02-28T23:59:59.000Z

    We have measured high-resolution x-ray photoelectron spectra of Ge{sub x}As{sub y}Se{sub 1-x-y} glasses with a mean coordination number (MCN) from 2.2 to 2.78. The valence band spectra showed that a number of Se–Se–Se trimers can be found in Se-rich samples, whilst multiband features induced by phase separation can be observed in extremely Se-poor samples. When the Ge, As, and Se 3d spectra were decomposed into several doublets, which correspond, respectively, to different chemical environments, the perfect AsSe{sub 3/2} pyramidal and GeSe{sub 4/2} tetrahedral structures in Se-rich samples gradually evolved into defect structures, including As–As and Ge–Ge homopolar bonds, with increasing Ge and As concentrations. Two transition-like features were found at MCN?=?2.5 and 2.64–2.72 that correspond first to the disappearance of Se-chains in the glass network and, subsequently, destruction of the perfect GeSe{sub 4/2} tetrahedral structures, respectively.

  7. Layer-dependent Debye temperature and thermal expansion of Ru(0001) by means of high-energy resolution core-level photoelectron spectroscopy

    SciTech Connect (OSTI)

    Ferrari, Eugenio; Galli, Lorenzo; Miniussi, Elisa; Morri, Maurizio; Panighel, Mirko; Ricci, Maria [Physics Department, University of Trieste, Via Valerio 2, I-34127 Trieste (Italy); Lacovig, Paolo; Lizzit, Silvano [Sincrotrone Trieste S.C.p.A., Strada Statale 14 Km 163.5, 34149 Trieste (Italy); Baraldi, Alessandro [Physics Department, University of Trieste, Via Valerio 2, I-34127 Trieste (Italy); Laboratorio TASC, IOM-CNR, S.S. 14 Km 163.5, I-34149 Trieste (Italy)

    2010-11-15T23:59:59.000Z

    The layer-dependent Debye temperature of Ru(0001) is determined by means of high-energy resolution core-level photoelectron spectroscopy measurements. The possibility to disentangle three different components in the Ru 3d{sub 5/2} spectrum of Ru(0001), originating from bulk, first-, and second-layer atoms, allowed us to follow the temperature evolution of their photoemission line shapes and binding energies. Temperature effects were detected, namely, a lattice thermal expansion and a layer-dependent phonon broadening, which was interpreted within the framework of the Hedin-Rosengren formalism based on the Debye theory. The resulting Debye temperature of the top-layer atoms is 295{+-}10 K, lower than that of the bulk (T=668{+-}5 K) and second-layer (T=445{+-}10 K) atoms. While these results are in agreement with the expected phonon softening at the surface, we show that a purely harmonic description of the motion of the surface atoms is not valid, since anharmonic effects contribute significantly to the position and line shape of the different core-level components.

  8. High spatial resolution mapping of deposition layers on plasma facing materials by laser ablation microprobe time-of-flight mass spectroscopy

    SciTech Connect (OSTI)

    Xiao, Qingmei; Li, Cong; Hai, Ran; Zhang, Lei; Feng, Chunlei; Ding, Hongbin, E-mail: hding@dlut.edu.cn [School of Physics and Optical Electronic Technology, Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Zhou, Yan; Yan, Longwen; Duan, Xuru [Southwestern Institute of Physics, P.O. Box 432, No. 3 South Section 3, Circle Road 2, Chengdu 610041, Sichuan (China)

    2014-05-15T23:59:59.000Z

    A laser ablation microprobe time-of-flight mass spectroscopy (LAM-TOF-MS) system with high spatial resolution, ?20 nm in depth and ?500 ?m or better on the surface, is developed to analyze the composition distributions of deposition layers on the first wall materials or first mirrors in tokamak. The LAM-TOF-MS system consists of a laser ablation microprobe combined with a TOF-MS and a data acquisition system based on a LabVIEW program software package. Laser induced ablation combined with TOF-MS is an attractive method to analyze the depth profile of deposited layer with successive laser shots, therefore, it can provide information for composition reconstruction of the plasma wall interaction process. In this work, we demonstrate that the LAM-TOF-MS system is capable of characterizing the depth profile as well as mapping 2D composition of deposited film on the molybdenum first mirror retrieved from HL-2A tokamak, with particular emphasis on some of the species produced during the ablation process. The presented LAM-TOF-MS system provides not only the 3D characterization of deposition but also the removal efficiency of species of concern.

  9. High-resolution structure of a retroviral protease folded as a monomer

    SciTech Connect (OSTI)

    Gilski, Miroslaw [A. Mickiewicz University, 60-780 Poznan (Poland); Polish Academy of Sciences, 61-704 Poznan (Poland); Kazmierczyk, Maciej; Krzywda, Szymon [A. Mickiewicz University, 60-780 Poznan (Poland); Zábranská, Helena [Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Cooper, Seth; Popovi?, Zoran [University of Washington, Box 352350, Seattle, WA 98195 (United States); Khatib, Firas; DiMaio, Frank; Thompson, James; Baker, David [University of Washington, Box 357350, Seattle, WA 98195 (United States); Pichová, Iva [Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Jaskolski, Mariusz, E-mail: mariuszj@amu.edu.pl [A. Mickiewicz University, 60-780 Poznan (Poland); Polish Academy of Sciences, 61-704 Poznan (Poland)

    2011-11-01T23:59:59.000Z

    The crystal structure of Mason–Pfizer monkey virus protease folded as a monomer has been solved by molecular replacement using a model generated by players of the online game Foldit. The structure shows at high resolution the details of a retroviral protease folded as a monomer which can guide rational design of protease dimerization inhibitors as retroviral drugs. Mason–Pfizer monkey virus (M-PMV), a D-type retrovirus assembling in the cytoplasm, causes simian acquired immunodeficiency syndrome (SAIDS) in rhesus monkeys. Its pepsin-like aspartic protease (retropepsin) is an integral part of the expressed retroviral polyproteins. As in all retroviral life cycles, release and dimerization of the protease (PR) is strictly required for polyprotein processing and virion maturation. Biophysical and NMR studies have indicated that in the absence of substrates or inhibitors M-PMV PR should fold into a stable monomer, but the crystal structure of this protein could not be solved by molecular replacement despite countless attempts. Ultimately, a solution was obtained in mr-rosetta using a model constructed by players of the online protein-folding game Foldit. The structure indeed shows a monomeric protein, with the N- and C-termini completely disordered. On the other hand, the flap loop, which normally gates access to the active site of homodimeric retropepsins, is clearly traceable in the electron density. The flap has an unusual curled shape and a different orientation from both the open and closed states known from dimeric retropepsins. The overall fold of the protein follows the retropepsin canon, but the C{sup ?} deviations are large and the active-site ‘DTG’ loop (here NTG) deviates up to 2.7 Å from the standard conformation. This structure of a monomeric retropepsin determined at high resolution (1.6 Å) provides important extra information for the design of dimerization inhibitors that might be developed as drugs for the treatment of retroviral infections, including AIDS.

  10. Investigation of the Behavior of Ethylene Molecular Films Using High Resolution Adsorp

    SciTech Connect (OSTI)

    Barbour, Andi M [ORNL; Telling, Mark T. [ISIS Facility, Rutherford Appleton Laboratory; Larese, John Z [ORNL

    2010-01-01T23:59:59.000Z

    The wetting behavior of ethylene adsorbed on MgO(100) was investigated from 83-135 K using high resolution volumetric adsorption isotherms. The results are compared to ethylene adsorption on graphite, a prototype adsorption system, in an effort to gain further insight into the forces that drive the observed film growth. Layering transitions for ethylene on MgO(100) are observed below the bulk triple point of ethylene (T=104.0 K). The formation of three discrete adlayers is observed on the MgO(100) surface; onset of the second and third layers occurs at 79.2 ( 1.3 K and 98.3(0.9 K, respectively. Thermodynamic quantities such as differential enthalpy and entropy, heat of adsorption, and isosteric heat of adsorption are determined and compared to the previously published values for ethylene on graphite. The average area occupied by a ethylene molecule on MgO(100) is 22.6 ( 1.1A 2 molecule-1. The locations of two phase transitions are identified (i.e., layer critical temperatures at Tc2 (n=1) at 108.6 ( 1.7 K and Tc2 (n=2) at 116.5 ( 1.2 K) and a phase diagram is proposed. Preliminary neutron diffraction measurements reveal evidence of a monolayer solid with a lattice constant of 4.2A . High resolution INS measurements show that the onset to dynamical motion and monolayer melting take place at 35 K and 65 K, respectively. The data reported here exhibit a striking similarity to ethylene on graphite which suggests that molecule-molecule interactions play an important role in determining the physical properties and growth of molecularly thin ethylene films.

  11. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect (OSTI)

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01T23:59:59.000Z

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and experiments, using fission-spectrum neutron sources to assess neutron transmission through composite low-Z attenuators.

  12. COMPLEX ORGANIC MOLECULES AT HIGH SPATIAL RESOLUTION TOWARD ORION-KL. I. SPATIAL SCALES

    SciTech Connect (OSTI)

    Widicus Weaver, Susanna L. [Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Friedel, Douglas N., E-mail: susanna.widicus.weaver@emory.edu, E-mail: friedel@astro.illinois.edu [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States)

    2012-08-01T23:59:59.000Z

    Here we present high spatial resolution (<1'') observations of molecular emission in Orion-KL conducted using the Combined Array for Research in Millimeter-wave Astronomy. This work was motivated by recent millimeter continuum imaging studies of this region conducted at a similarly high spatial resolution, which revealed that the bulk of the emission arises from numerous compact sources, rather than the larger-scale extended structures typically associated with the Orion Hot Core and Compact Ridge. Given that the spatial extent of molecular emission greatly affects the determination of molecular abundances, it is important to determine the true spatial scale for complex molecules in this region. Additionally, it has recently been suggested that the relative spatial distributions of complex molecules in a source might give insight into the chemical mechanisms that drive complex chemistry in star-forming regions. In order to begin to address these issues, this study seeks to determine the spatial distributions of ethyl cyanide [C{sub 2}H{sub 5}CN], dimethyl ether [(CH{sub 3}){sub 2}O], methyl formate [HCOOCH{sub 3}], formic acid [HCOOH], acetone [(CH{sub 3}){sub 2}CO], SiO, methanol [CH{sub 3}OH], and methyl cyanide [CH{sub 3}CN] in Orion-KL at {lambda} = 3 mm. We find that for all observed molecules, the molecular emission arises from multiple components of the cloud that include a range of spatial scales and physical conditions. Here, we present the results of these observations and discuss the implications for studies of complex molecules in star-forming regions.

  13. Facilitation of protein 3-D structure determination using enhanced peptide amide deuterium exchange mass spectrometry (DXMS)

    E-Print Network [OSTI]

    Pantazatos, Dennis Peter

    2006-01-01T23:59:59.000Z

    and Energy Change at High Resolution Employing Enhanced Peptide Amide Deuterium Exchange- Mass Spectrometry (

  14. High-resolution estimates of lithospheric thickness from Missouri to Massachusetts, USA

    E-Print Network [OSTI]

    van der Lee, Suzan

    -dimensional (3-D) model, NA00, of the S-velocity of the upper mantle beneath North America. The model differs. The seismic lithosphere is 180 km thick below Missouri and Illinois, 200 km thick below Indiana, Ohio by fitting the waveforms of broadband seismic S and surface waves recorded by the MOMA array and inverting

  15. The solar photospheric abundance of hafnium and thorium. Results from CO5BOLD 3D hydrodynamic model atmospheres

    E-Print Network [OSTI]

    Elisabetta Caffau; L. Sbordone; H. -G. Ludwig; P. Bonifacio; M. Steffen; N. T. Behara

    2008-03-25T23:59:59.000Z

    Context: The stable element hafnium (Hf) and the radioactive element thorium (Th) were recently suggested as a suitable pair for radioactive dating of stars. The applicability of this elemental pair needs to be established for stellar spectroscopy. Aims: We aim at a spectroscopic determination of the abundance of Hf and Th in the solar photosphere based on a \\cobold 3D hydrodynamical model atmosphere. We put this into a wider context by investigating 3D abundance corrections for a set of G- and F-type dwarfs. Method: High-resolution, high signal-to-noise solar spectra were compared to line synthesis calculations performed on a solar CO5BOLD model. For the other atmospheres, we compared synthetic spectra of CO5BOLD 3D and associated 1D models. Results: For Hf we find a photospheric abundance A(Hf)=0.87+-0.04, in good agreement with a previous analysis, based on 1D model atmospheres. The weak Th ii 401.9 nm line constitutes the only Th abundance indicator available in the solar spectrum. It lies in the red wing of an Ni-Fe blend exhibiting a non-negligible convective asymmetry. Accounting for the asymmetry-related additional absorption, we obtain A(Th)=0.09+-0.03, consistent with the meteoritic abundance, and about 0.1 dex lower than obtained in previous photospheric abundance determinations. Conclusions: Only for the second time, to our knowledge, has am non-negligible effect of convective line asymmetries on an abundance derivation been highlighted. Three-dimensional hydrodynamical simulations should be employed to measure Th abundances in dwarfs if similar blending is present, as in the solar case. In contrast, 3D effects on Hf abundances are small in G- to mid F-type dwarfs and sub-giants, and 1D model atmospheres can be conveniently used.

  16. Combined Borehole Seismic and Electromagnetic Inversion For High-Resolution Petrophysical Assessment Of Hydocarbon Reservoirs

    SciTech Connect (OSTI)

    Carlos Torres-Verdin; G. Michael Hoversten; Ki Ha Lee; Gregory Newman; Kurt Nihei

    2008-12-31T23:59:59.000Z

    This report summarizes the work performed between January 2005 and December 2007, under DOE research contract DE-FC26-04NT15507. The project is was performed by the Center for Petroleum and Geosystems Engineering of The University of Texas at Austin and Lawrence Berkeley National Laboratory under the auspices of the National Energy Technology Office (NETL) and the Strategic Center for Natural Gas and Oil (SCNGO). During the three-year project, we developed new methods to combine borehole sonic and electromagnetic (EM) measurements for the improved assessment of elastic and petrophysical properties of rock formations penetrated by a well. Sonic measurements consisted of full waveform acoustic amplitudes acquired with monopole and dipole sources, whereas EM measurements consisted of frequency-domain voltages acquired with multi-coil induction systems. The combination of sonic and EM measurements permitted the joint estimation of elastic and petrophysical properties in the presence of mud-filtrate invasion. It was conclusively shown that the combined interpretation of sonic and EM measurements reduced non-uniqueness in the estimation of elastic and petrophysical properties and improved the spatial resolution of the estimations compared to estimations yielded separately from the two types of measurements. Moreover, this approach enabled the assessment of dynamic petrophysical properties such as permeability, as it incorporated the physics of mud-filtrate invasion in the interpretation of the measurements. The first part of the project considered the development of fast and reliable numerical algorithms to simulate borehole sonic waveforms in 2D, 3D, and radial 1D media. Such algorithms were subsequently used in the quantitative estimation of elastic properties jointly from borehole sonic and EM measurements. In the second part of the project we developed a new algorithm to estimate water saturation, porosity, and dry-rock elastic moduli jointly from borehole sonic and EM measurements. This algorithm assumed radial 1D variations of fluid saturation due to mud-filtrate invasion. Subsequently, we adapted the estimation method to interpret borehole field measurements acquired in both a shaly-sand sedimentary sequence and a tight-gas sandstone formation. In the two cases, we simulated the process of mud-filtrate invasion and concomitantly honored sonic and EM measurements. We produced reliable estimates of permeability and dry-rock moduli that were successfully validated with rock-core measurements. Finally, we introduced a new stochastic inversion procedure to estimate elastic, electrical, and petrophysical properties of layered media jointly from waveform sonic and frequency-domain EM measurements. The procedure was based on Bayesian statistical inversion and delivered estimates of uncertainty under various forms of a-priori information about the unknown properties. Tests on realistic synthetic models confirmed the reliability of this procedure to estimate elastic and petrophysical properties jointly from sonic and EM measurements. Several extended abstracts and conference presentations stemmed from this project, including 2 SEG extended abstracts, 1 SPE extended abstract, and 2 SPWLA extended abstracts. Some of these extended abstracts have been submitted for publication in peer-reviewed journals.

  17. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect (OSTI)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06T23:59:59.000Z

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

  18. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    SciTech Connect (OSTI)

    Delgado-Aparicio, L [PPPL; Bell, R E [PPPL; Faust, I [MIT; Tritz, K [The Johns Hopkins University, Baltimore, MD, 21209, USA; Diallo, A [PPPL; Gerhardt, S P [PPPL; Kozub, T A [PPPL; LeBlanc, B P [PPPL; Stratton, B C [PPPL

    2014-07-01T23:59:59.000Z

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con#12;gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  19. Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation

    SciTech Connect (OSTI)

    Wood, E.; Burton, E.; Duran, A.; Gonder, J.

    2014-06-01T23:59:59.000Z

    Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

  20. Modelling high resolution Echelle spectrographs for calibrations: Hanle Echelle spectrograph, a case study

    E-Print Network [OSTI]

    Chanumolu, Anantha; Thirupathi, Sivarani

    2015-01-01T23:59:59.000Z

    We present a modelling scheme that predicts the centroids of spectral line features for a high resolution Echelle spectrograph to a high accuracy. Towards this, a computing scheme is used, whereby any astronomical spectrograph can be modelled and controlled without recourse to a ray tracing program. The computations are based on paraxial ray trace and exact corrections added for certain surface types and Buchdahl aberration coefficients for complex modules. The resultant chain of paraxial ray traces and corrections for all relevant components is used to calculate the location of any spectral line on the detector under all normal operating conditions with a high degree of certainty. This will allow a semi-autonomous control using simple in-house, programming modules. The scheme is simple enough to be implemented even in a spreadsheet or in any scripting language. Such a model along with an optimization routine can represent the real time behaviour of the instrument. We present here a case study for Hanle Echel...