Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High removal rate laser-based coating removal system  

DOE Patents [OSTI]

A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

Matthews, Dennis L. (Moss Beach, CA); Celliers, Peter M. (Berkeley, CA); Hackel, Lloyd (Livermore, CA); Da Silva, Luiz B. (Danville, CA); Dane, C. Brent (Livermore, CA); Mrowka, Stanley (Richmond, CA)

1999-11-16T23:59:59.000Z

2

Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows  

SciTech Connect (OSTI)

Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

Kwak, B.; Joshi, Ajey

2013-03-31T23:59:59.000Z

3

High rate buffer layer for IBAD MgO coated conductors  

DOE Patents [OSTI]

Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.

Foltyn, Stephen R. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM)

2007-08-21T23:59:59.000Z

4

High Critical Current Coated Conductors  

SciTech Connect (OSTI)

One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

Paranthaman, M. P.; Selvamanickam, V. (SuperPower, Inc.)

2011-12-27T23:59:59.000Z

5

High-Performance Nanostructured Coating  

Broader source: Energy.gov (indexed) [DOE]

design utilizing a nanoparticle in dielectric matrix approach is used to achieve high optical performance. New refractory materials are used to either make or coat the...

6

High-Performance Nanostructured Coating  

Broader source: Energy.gov [DOE]

The High-Performance Nanostructured Coating fact sheet details a SunShot project led by a University of California, San Diego research team working to develop a new high-temperature spectrally selective coating for receiver surfaces. These receiver surfaces, used in concentrating solar power systems, rely on high-temperature SSCs to effectively absorb solar energy without emitting much blackbody radiation.The optical properties of the SSC directly determine the efficiency and maximum attainable temperature of solar receivers, which in turn influence the power-conversion efficiency and overall system cost.

7

High efficiency turbine blade coatings.  

SciTech Connect (OSTI)

The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered periodic microstructures in the coating, the Direct Simulation Monte Carlo (DSMC) modeling of particle transport in the PVD plume, functional graded layer development, the deposition of all layers to form a complete coating, and materials characterization including thermal testing. Ion beam-assisted deposition, beam sharing through advanced digital rastering, substrate pivoting, hearth calorimetry, infrared imaging, fiber optic-enabled optical emission spectroscopy and careful thermal management were used to achieve all the milestones outlined in the FY02 LDRD proposal.

Youchison, Dennis L.; Gallis, Michail A.

2014-06-01T23:59:59.000Z

8

HIGH-PERFORMANCE COATING MATERIALS  

SciTech Connect (OSTI)

Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

SUGAMA,T.

2007-01-01T23:59:59.000Z

9

High Temperature Oxidation Performance of Aluminide Coatings  

SciTech Connect (OSTI)

Aluminide coatings are of interest for many high temperature applications because of the possibility of improving the oxidation resistance of structural alloys by forming a protective external alumina scale. Steam and exhaust gas environments are of particular interest because alumina is less susceptible to the accelerated attack due to hydroxide formation observed for chromia- and silica-forming alloys and ceramics. For water vapor testing, one ferritic (Fe-9Cr-1Mo) and one austenitic alloy (304L) have been selected as substrate materials and CVD coatings have been used in order to have a well-controlled, high purity coating. It is anticipated that similar aluminide coatings could be made by a higher-volume, commercial process such as pack cementation. Previous work on this program has examined as-deposited coatings made by high and low Al activity CVD processes and the short-term performance of these coatings. The current work is focusing on the long term behavior in both diffusion tests16 and oxidation tests of the thicker, high Al activity coatings. For long-term coating durability, one area of concern has been the coefficient of thermal expansion (CTE) mismatch between coating and substrate. This difference could cause cracking or deformation that could reduce coating life. Corrosion testing using thermal cycling is of particular interest because of this potential problem and results are presented where a short exposure cycle (1h) severely degraded aluminide coatings on both types of substrates. To further study the potential role of aluminide coatings in fossil energy applications, several high creep strength Ni-base alloys were coated by CVD for testing in a high pressure (20atm) steam-CO{sub 2} environment for the ZEST (zero-emission steam turbine) program. Such alloys would be needed as structural and turbine materials in this concept. For Ni-base alloys, CVD produces a {approx}50{mu}m {beta}-NiAl outer layer with an underlying interdiffusion zone. Specimens of HR160, alloy 601 and alloy 230 were tested with and without coatings at 900 C and preliminary post-test characterization is reported.

Pint, Bruce A [ORNL; Zhang, Ying [Tennessee Technological University; Haynes, James A [ORNL; Wright, Ian G [ORNL

2004-01-01T23:59:59.000Z

10

High-Temperatuer Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was...

11

High temperature solar selective coatings  

DOE Patents [OSTI]

Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

Kennedy, Cheryl E

2014-11-25T23:59:59.000Z

12

Project Profile: High-Temperature Solar Selective Coating Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Selective Coating Development for Power Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers Sandia National...

13

Multilayer ultra-high-temperature ceramic coatings  

DOE Patents [OSTI]

A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

2012-03-20T23:59:59.000Z

14

High-Temperature Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

15

High-Temperature Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1...

16

Corrosion Resistant Coatings for High Temperature Applications  

SciTech Connect (OSTI)

Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

1998-12-01T23:59:59.000Z

17

High Temperature Corrosion Behavior of Iron Aluminide Alloys and Coatings  

SciTech Connect (OSTI)

A multi-year effort has been focused on optimizing the long-term oxidation performance of ingot-processed (IP) and oxide-dispersion strengthened (ODS) Fe{sub 3}Al and iron aluminide-based coatings. Based on results from several composition iterations, a Hf-doped alloy (Fe-28Al-2Cr-0.05at.%Hf) has been developed with significantly better high temperature oxidation resistance than other iron aluminides. The scale adhesion is not significantly better; however, the {alpha}-Al{sub 2}O{sub 3} scale grows at a slower rate, approximately a factor of 10 less than undoped iron aluminide. The benefit of Hf is greatest at 1100-1200 C. Long-term oxidation resistance of commercially fabricated ODS Fe{sub 3}Al has been determined and compared to commercially available ODS FeCrAl. Scale spallation rates for ODS Fe{sub 3}Al are higher than for ODS FeCrAl. To complement studies of iron-aluminide weld-overlay coatings, carbon steel was coated with Fe-Al-Cr by thermal spraying. These specimens were then exposed in air at 900 and 1000 C and in air-1%SO{sub 2} at 800 C. Most likely due to an inadequate aluminum concentration in the coatings, continuous protective Al{sub 2}O{sub 3} could not be maintained and, consequently, the corrosion performance was significantly worse than what is normally observed for Fe{sub 3}Al.

Pint, B.A.

2001-10-22T23:59:59.000Z

18

High temperature low friction surface coating  

DOE Patents [OSTI]

A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

Bhushan, Bharat (Watervliet, NY)

1980-01-01T23:59:59.000Z

19

Conformal coating of highly structured surfaces  

DOE Patents [OSTI]

Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.

Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas

2012-12-11T23:59:59.000Z

20

High Temperature coatings based on {beta}-NiAI  

SciTech Connect (OSTI)

High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB{sub 2} composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

Severs, Kevin

2012-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High Performance Nanostructured Spectrally Selective Coating  

Broader source: Energy.gov (indexed) [DOE]

powders for SSC layer paste 'Multi-scale' particles clearly show much better light absorption Multi-scale vs. Mono-scale Structures Coating Process Development Coating of SSC...

22

High-Temperature Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

are low risk Goal: Develop solar selective coatings for next- generation concentrated solar power towers that exhibit high absorptance with low thermal emittance, that can...

23

High repetition rate fiber lasers  

E-Print Network [OSTI]

This thesis reports work in high repetition rate femtosecond fiber lasers. Driven by the applications including optical arbitrary waveform generation, high speed optical sampling, frequency metrology, and timing and frequency ...

Chen, Jian, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

24

High temperature coatings for gas turbines  

DOE Patents [OSTI]

Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

Zheng, Xiaoci Maggie

2003-10-21T23:59:59.000Z

25

Sealed glass coating of high temperature ceramic superconductors  

DOE Patents [OSTI]

A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

Wu, Weite (Tainan, TW); Chu, Cha Y. (Garnerville, NY); Goretta, Kenneth C. (Downers Grove, IL); Routbort, Jules L. (Darien, IL)

1995-01-01T23:59:59.000Z

26

The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers  

SciTech Connect (OSTI)

The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)

2014-03-01T23:59:59.000Z

27

Sealed glass coating of high temperature ceramic superconductors  

DOE Patents [OSTI]

A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor is disclosed. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor. 8 figs.

Wu, W.; Chu, C.Y.; Goretta, K.C.; Routbort, J.L.

1995-05-02T23:59:59.000Z

28

Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components  

SciTech Connect (OSTI)

The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings were determined using composite specimens of ceramic coated onto stainless steel substrates, tested with the coating in compression and the steel in tension. The strength of the coating was determined from an elastic bi-material analysis of the resulting failure of the coating in compression.(3) Altough initial comparisons of the materials would appear to be straight forward from these results, the results of the aging tests of the materials are necessary to insure that trends in properties remain after long term exposure to a diesel environment. Some comparisons can be made, such as the comparison between for lot-to-lot variation. An axial fatigue test to determine the high cycle fatigue behavior of TTBCs was developed at the University of Illinois under funding from this program.(4) A fatigue test apparatus has been designed and initial work performed which demonstrates the ability to provide a routine method of axial testing of coating. The test fixture replaces the normal load frame and fixtures used to transmit the hydraulic oil loading to the sample with the TTBC specimen itself. The TTBC specimen is a composite metal/coating with stainless steel ends. The coating is sprayed onto a mild steel center tube section onto which the stainless steel ends are press fit. The specimen is then machined. After machining, the specimen is placed in an acid bath which etches the mild steel away leaving the TTBC attached to the the stainless steel ends. Plugs are then installed in the ends and the composite specimen loaded in the test fixture where the hydraulic oil pressurizes each end to apply the load. Since oil transmits the load, bending loads are minimized. This test fixture has been modified to allow piston ends to be attached to the specimen which allows tensile loading as well as compressive loading of the specimen. In addition to the room temperature data, specimens have been tested at 800 Degrees C with the surprising result that at high temperature, the TTBC exhibits much higher fatigue strength. Testing of the TTBC using tension/compression cycling has been con

M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

2006-03-02T23:59:59.000Z

29

Thermal barrier coating having high phase stability  

DOE Patents [OSTI]

A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating characterized by a microstructure having gaps (28) where the thermal barrier coating comprises a first thermal barrier layer (40), and a second thermal barrier layer (30) with a pyrochlore crystal structure having a chemical formula of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof, where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof, where n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.

Subramanian, Ramesh (Oviedo, FL)

2002-01-01T23:59:59.000Z

30

Thermal barrier coating having high phase stability  

DOE Patents [OSTI]

A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating layer (20) characterized by a microstructure having gaps (28) where the thermal barrier coating (20) consists essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements selected from Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.

Subramanian, Ramesh (Oviedo, FL)

2001-01-01T23:59:59.000Z

31

High Temperature Thermal Stability and Oxidation Resistance of Magnetron-sputtered Homogeneous CrAlON Coatings on 430 Steel  

SciTech Connect (OSTI)

The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 deg. C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

Kayani, A.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; Garratt, E.; AlFaify, S.; Gao, X. [Western Michigan University-Kalamazoo, MI 49008 (United States); Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E. [Montana State University-Bozeman, MT 59717 (United States); Gorokhovsky, V. I. [Arcomac Surface Engineering, LLC-Bozeman, MT 59715 (United States)

2009-03-10T23:59:59.000Z

32

Evolution of sputtered tungsten coatings at high temperature  

SciTech Connect (OSTI)

Sputtered tungsten (W) coatings were investigated as potential high temperature nanophotonic material to replace bulk refractory metal substrates. Of particular interest are materials and coatings for thermophotovoltaic high-temperature energy conversion applications. For such applications, high reflectance of the substrate in the infrared wavelength range is critical in order to reduce losses due to waste heat. Therefore, the reflectance of the sputtered W coatings was characterized and compared at different temperatures. In addition, the microstructural evolution of sputtered W coatings (1 and 5 ?m thick) was investigated as a function of anneal temperature from room temperature to 1000 °C. Using in situ x-ray diffraction analysis, the microstrain in the two samples was quantified, ranging from 0.33% to 0.18% for the 1 ?m sample and 0.26% to 0.20% for the 5 ?m sample, decreasing as the temperature increased. The grain growth could not be as clearly quantified due to the dominating presence of microstrain in both samples but was in the order of 20 to 80 nm for the 1 ?m sample and 50 to 100 nm for the 5 ?m sample, as deposited. Finally, the 5 ?m thick layer was found to be rougher than the 1 ?m thick layer, with a lower reflectance at all wavelengths. However, after annealing the 5 ?m sample at 900 °C for 1 h, its reflectance exceeded that of the 1 ?m sample and approached that of bulk W found in literature. Overall, the results of this study suggest that thick coatings are a promising alternative to bulk substrates as a low cost, easily integrated platform for nanostructured devices for high-temperature applications, if the problem of delamination at high temperature can be overcome.

Stelmakh, Veronika; Rinnerbauer, Veronika; Joannopoulos, John D.; Solja?i?, Marin; Celanovic, Ivan; Senkevich, Jay J. [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tucker, Charles; Ives, Thomas; Shrader, Ronney [Materion Corporation, Buellton, California 93427 (United States)] [Materion Corporation, Buellton, California 93427 (United States)

2013-11-15T23:59:59.000Z

33

Preparation of high temperature superconducting coated wires by dipping and post annealing  

SciTech Connect (OSTI)

This patent describes a process for coating a film on a wire substrate, it comprises: melting a superconducting metal oxide mixture in a crucible to form a melt; coating the substrate with a diffusion barrier; dipping the coated wire substrate into the melt; cooling the coated wire substrate at a rate sufficiently slow to avoid thermal shock and hot cracking; and post-annealing the cooled, coated wire substrate to relieve thermal stresses in the coating, whereupon the superconducting metal-oxide mixture forms a perovskite coating upon the wire substrate.

Provenzano, V.; Singh, A.K.; Imam, M.A.; Tritt, T.M.

1992-04-14T23:59:59.000Z

34

Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications  

E-Print Network [OSTI]

We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

Burri, F; Feusi, P; Henneck, R; Kirch, K; Lauss, B; Ruettimann, P; Schmidt-Wellenburg, P; Schnabel, A; Voigt, J; Zenner, J; Zsigmond, G

2013-01-01T23:59:59.000Z

35

Laser assisted high entropy alloy coating on aluminum: Microstructural evolution  

SciTech Connect (OSTI)

High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B., E-mail: Narendra.Dahotre@unt.edu [Department of Materials Science and Engineering, University of North Texas, 1150 Union Circle, 305310 Denton, Texas 76203-5017 (United States)

2014-09-14T23:59:59.000Z

36

Preparation of high-strength nanometer scale twinned coating and foil  

DOE Patents [OSTI]

Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.

Zhang, Xinghang (Los Alamos, NM); Misra, Amit (Los Alamos, NM); Nastasi, Michael A. (Santa Fe, NM); Hoagland, Richard G. (Santa Fe, NM)

2006-07-18T23:59:59.000Z

37

Pulse electrodeposition of gold-nickel alloys from a citrate bath. 1. Deposition rate and coating appearance  

SciTech Connect (OSTI)

The effect of various parameters of pulse polarizing current on the deposition rate and appearance of gold-nickel coatings used in the watch industry was studied. It was shown that the pulse conditions allow deposition-rate enhancement and production of variously colored coatings.

Kostin, N.A.; Kaptanovskii, V.I. [State Technical Univ. of Railway Transport, Dnepropetrovsk (Ukraine)

1994-11-01T23:59:59.000Z

38

Tribological behavior of near-frictionless carbon coatings in high- and low-sulfur diesel fuels.  

SciTech Connect (OSTI)

The sulfur content in diesel fuel has a significant effect on diesel engine emissions, which are currently subject to environmental regulations. It has been observed that engine particulate and gaseous emissions are directly proportional to fuel sulfur content. With the introduction of low-sulfur fuels, significant reductions in emissions are expected. The process of sulfur reduction in petroleum-based diesel fuels also reduces the lubricity of the fuel, resulting in premature failure of fuel injectors. Thus, another means of preventing injector failures is needed for engines operating with low-sulfur diesel fuels. In this study, the authors evaluated a near-frictionless carbon (NFC) coating (developed at Argonne National Laboratory) as a possible solution to the problems associated with fuel injector failures in low-lubricity fuels. Tribological tests were conducted with NFC-coated and uncoated H13 and 52100 steels lubricated with high- and low- sulfur diesel fuels in a high-frequency reciprocating test machine. The test results showed that the NFC coatings reduced wear rates by a factor of 10 over those of uncoated steel surfaces. In low-sulfur diesel fuel, the reduction in wear rate was even greater (i.e., by a factor of 12 compared to that of uncoated test pairs), indicating that the NFC coating holds promise as a potential solution to wear problems associated with the use of low-lubricity diesel fuels.

Alzoubi, M. F.; Ajayi, O. O.; Eryilmaz, O. L.; Ozturk, O.; Erdemir, A.; Fenske, G.

2000-01-19T23:59:59.000Z

39

Foolproof completions for high rate production wells  

E-Print Network [OSTI]

gravel pack (GP) and high rate water pack (HRWP) completions over high-permeability fracturing (HPF), known in the vernacular as a frac&pack (FP) for very high rate wells. While a properly designed GP completion may prevent sand production, it does...

Tosic, Slavko

2008-10-10T23:59:59.000Z

40

Foolproof completions for high rate production wells  

E-Print Network [OSTI]

gravel pack (GP) and high rate water pack (HRWP) completions over high-permeability fracturing (HPF), known in the vernacular as a frac&pack (FP) for very high rate wells. While a properly designed GP completion may prevent sand production, it does...

Tosic, Slavko

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermo-optic noise in coated mirrors for high-precision optical measurements  

E-Print Network [OSTI]

Thermal fluctuations in the coatings used to make high-reflectors are becoming significant noise sources in precision optical measurements and are particularly relevant to advanced gravitational wave detectors. There are two recognized sources of coating thermal noise, mechanical loss and thermal dissipation. Thermal dissipation causes thermal fluctuations in the coating which produce noise via the thermo-elastic and thermo-refractive mechanisms. We treat these mechanisms coherently, give a correction for finite coating thickness, and evaluate the implications for Advanced LIGO.

M. Evans; S. Ballmer; M. Fejer; P. Fritschel; G. Harry; G. Ogin

2008-07-30T23:59:59.000Z

42

Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer  

DOE Patents [OSTI]

Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.

Chow, Robert (Livermore, CA); Loomis, Gary E. (Livermore, CA); Thomas, Ian M. (Livermore, CA)

1999-01-01T23:59:59.000Z

43

Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer  

DOE Patents [OSTI]

Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.

Chow, R.; Loomis, G.E.; Thomas, I.M.

1999-03-16T23:59:59.000Z

44

High temperature ceramic articles having corrosion resistant coating  

DOE Patents [OSTI]

A ceramic article which includes a porous body of SiC fibers, Si.sub.3 N.sub.4 fibers, SiC coated fibers or Si.sub.3 N.sub.4 coated fibers, having at least one surface, the article having a coating of AlN adherently disposed throughout at least a portion of the porous body.

Stinton, David P. (Knoxville, TN); Lee, Woo Y. (Knoxville, TN)

1997-01-01T23:59:59.000Z

45

Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules  

SciTech Connect (OSTI)

The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in a coating system meeting the requirements for photovoltaic module encapsulation.

Stuart Hellring; Jiping Shao; James Poole

2011-12-05T23:59:59.000Z

46

High temperature erosion and fatigue resistance of a detonation gun chromium carbide coating for steam turbines  

SciTech Connect (OSTI)

Chromium carbide based detonation gun coatings have been shown to be capable of protecting steam turbine components from particle erosion. To be usable, however, erosion resistant coatings must not degrade the fatigue characteristics of the coated components. Recent studies of the fatigue properties of a detonation gun coated martensitic substrate at 538 C (1,000 F) will be presented with an emphasis on its long term performance. This study will show the retention of acceptable fatigue performance of coated substrates into the high cycle regime, and will include a discussion on the mechanism of fatigue.

Quets, J.M.; Walsh, P.N. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States); Srinivasan, V. [Westinghouse Electric Corp., Orlando, FL (United States); Tucker, R.C. Jr. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States)

1994-12-31T23:59:59.000Z

47

High temperature ceramic articles having corrosion resistant coating  

DOE Patents [OSTI]

A ceramic article is disclosed which includes a porous body of SiC fibers, Si{sub 3}N{sub 4} fibers, SiC coated fibers or Si{sub 3}N{sub 4} coated fibers, having at least one surface, the article having a coating of AlN adherently disposed throughout at least a portion of the porous body. 1 fig.

Stinton, D.P.; Lee, W.Y.

1997-09-30T23:59:59.000Z

48

Simulation of the high temperature impression of thermal barrier coatings with columnar microstructure  

E-Print Network [OSTI]

the deformation resistance of actual EB-PVD layers and its application to a range of thermal barrier materials [9Simulation of the high temperature impression of thermal barrier coatings with columnar of thermal barrier coatings (TBCs) are affected by their high temperature mechanical properties: especially

Hutchinson, John W.

49

Corrosion behavior of zirconia-coated Hastelloy X in a high-temperature helium environment  

SciTech Connect (OSTI)

The corrosion behavior of Hastelloy X coated with (NiCrAl)/(ZrO/sub 2/-CaC/sub 2/) was examined, after serving as the liner tube of helium engineering demonstration loop (HENDEL) hot gas duct. The Hastelloy X with the ceramic coating system was exposed to high-temperature helium gas for --6000 h. The compositions of oxide films formed on Hastelloy X were entirely different between the noncoated and ceramic-coated tubes.

Kondo, Y.; Fukaya, K.

1989-01-01T23:59:59.000Z

50

High temperature electrochemical corrosion rate probes  

SciTech Connect (OSTI)

Corrosion occurs in the high temperature sections of energy production plants due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Electrochemical corrosion rate (ECR) probes have been shown to operate in high temperature gaseous environments that are similar to those found in fossil fuel combustors. ECR probes are rarely used in energy production plants at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the nature of these probes. Factors being considered are values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits. The nature of ECR probes will be explored in a number of different atmospheres and with different electrolytes (ash and corrosion product). Corrosion rates measured using an electrochemical multi-technique capabilities instrument will be compared to those measured using the linear polarization resistance (LPR) technique. In future experiments, electrochemical corrosion rates will be compared to penetration corrosion rates determined using optical profilometry measurements.

Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, M.

2005-09-01T23:59:59.000Z

51

High rate pulse processing algorithms for microcalorimeters  

SciTech Connect (OSTI)

It has been demonstrated that microcalorimeter spectrometers based on superconducting transition-edge-sensor can readily achieve sub-100 eV energy resolution near 100 keV. However, the active volume of a single microcalorimeter has to be small to maintain good energy resolution, and pulse decay times are normally in the order of milliseconds due to slow thermal relaxation. Consequently, spectrometers are typically built with an array of microcalorimeters to increase detection efficiency and count rate. Large arrays, however, require as much pulse processing as possible to be performed at the front end of the readout electronics to avoid transferring large amounts of waveform data to a host computer for processing. In this paper, they present digital filtering algorithms for processing microcalorimeter pulses in real time at high count rates. The goal for these algorithms, which are being implemented in the readout electronics that they are also currently developing, is to achieve sufficiently good energy resolution for most applications while being (a) simple enough to be implemented in the readout electronics and (b) capable of processing overlapping pulses and thus achieving much higher output count rates than the rates that existing algorithms are currently achieving. Details of these algorithms are presented, and their performance was compared to that of the 'optimal filter' that is the dominant pulse processing algorithm in the cryogenic-detector community.

Rabin, Michael [Los Alamos National Laboratory; Hoover, Andrew S [Los Alamos National Laboratory; Bacrania, Mnesh K [Los Alamos National Laboratory; Tan, Hui [XIA-LLC; Breus, Dimitry [XIA-LLC; Henning, Wolfgang [XIA-LLC; Sabourov, Konstantin [XIA-LLC; Collins, Jeff [XAI-LLC; Warburton, William K [XIA-LLC; Dorise, Bertrand [NIST; Ullom, Joel N [NIST; [NON LANL

2009-01-01T23:59:59.000Z

52

High Catalytic Rates for Hydrogen Production Using Nickel Electrocatal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Diphosphine Ligands Containing High Catalytic Rates for Hydrogen Production Using...

53

High current density electropolishing in the preparation of highly smooth substrate tapes for coated conductors  

DOE Patents [OSTI]

A continuous process of forming a highly smooth surface on a metallic tape by passing a metallic tape having an initial roughness through an acid bath contained within a polishing section of an electropolishing unit over a pre-selected period of time, and, passing a mean surface current density of at least 0.18 amperes per square centimeter through the metallic tape during the period of time the metallic tape is in the acid bath whereby the roughness of the metallic tape is reduced. Such a highly smooth metallic tape can serve as a base substrate in subsequent formation of a superconductive coated conductor.

Kreiskott, Sascha (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM); Arendt, Paul N. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM)

2009-03-31T23:59:59.000Z

54

An integrated performance model for high temperature gas cooled reactor coated particle fuel  

E-Print Network [OSTI]

The performance of coated fuel particles is essential for the development and deployment of High Temperature Gas Reactor (HTGR) systems for future power generation. Fuel performance modeling is indispensable for understanding ...

Wang, Jing, 1976-

2004-01-01T23:59:59.000Z

55

High-Rate, High-Capacity Binder-Free Electrode  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC High-Rate, High-Capacity Binder-Free Electrode

56

High resolution, high rate x-ray spectrometer  

DOE Patents [OSTI]

It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

Goulding, F.S.; Landis, D.A.

1983-07-14T23:59:59.000Z

57

High Density Infrared (HDI) Transient Liquid Coatings for Improved Wear and Corrosion Resistance  

SciTech Connect (OSTI)

This report documents a collaborative effort between Oak Ridge National Laboratory (ORNL), Materials Resources International and an industry team of participants to develop, evaluate and understand how high density infrared heating technology could be used to improve infiltrated carbide wear coatings and/or to densify sprayed coatings. The research included HDI fusion evaluations of infiltrated carbide suspensions such (BrazeCoat® S), composite suspensions with tool steel powders, thermally sprayed Ni-Cr- B-Si (self fluxing alloy) and nickel powder layers. The applied work developed practical HDI / transient liquid coating (TLC) procedures on test plates that demonstrated the ability to fuse carbide coatings for industrial applications such as agricultural blades, construction and mining vehicles. Fundamental studies helped create process models that led to improved process understanding and control. The coating of agricultural blades was demonstrated and showed the HDI process to have the ability to fuse industrial scale components. Sliding and brasive wear tests showed that high degree of wear resistance could be achieved with the addition of tool steel powders to carbide particulate composites.

Ronald W. Smith

2007-07-05T23:59:59.000Z

58

2006 Texas High Plains Cotton Variety Ratings  

E-Print Network [OSTI]

Average Incidence of Wilt Date of Wilt Rating Earth 0.0 0.0 Sept. 8 Brownfield 5.5 1.8 Aug. 28 Petersburg

Mukhtar, Saqib

59

High surface area silicon carbide-coated carbon aerogel  

SciTech Connect (OSTI)

A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

2014-01-14T23:59:59.000Z

60

Low-Cost, Highly Transparent, Flexible, Low-Emission Coating...  

Broader source: Energy.gov (indexed) [DOE]

estimates that 5 quads of energy are lost annually through windows -- depending on market adoption rates, this project could result in approximately 2 quads of energy...

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Active wear and failure mechanisms of TiN-coated high speed steel and TiN-coated cemented carbide tools when machining powder metallurgically made stainless steels  

SciTech Connect (OSTI)

In this study, active wear and failure mechanisms of both TiN-coated high speed steel and TiN-coated cemented carbide tools when machining stainless steels made by powder metallurgy in low and high cutting speed ranges, respectively, have been investigated. Abrasive wear mechanisms, fatigue-induced failure, and adhesive and diffusion wear mechanisms mainly affected the tool life of TiN-coated high speed steel tools at cutting speeds below 35 m/min, between 35 and 45 m/min, and over 45 m/min, respectively. Additionally, fatigue-induced failure was active at cutting speeds over 45 m/min in the low cutting speed range when machining powder metallurgically made duplex stainless steel 2205 and austenitic stainless steel 316L. In the high cutting speed range, from 100 to 250 m/min, fatigue-induced failure together with diffusion wear mechanism, affected the tool life of TiN-coated cemented carbide tools when machining both 316L and 2205 stainless steels. It was noticed that the tool life of TiN-coated high speed steel tools used in the low cutting speed range when machining 2205 steel was longer than that when machining 316L steel, whereas the tool life of TiN-coated cemented carbide tools used in the high cutting speed range when machining 316L steel was longer than that when machining 2205 steel.

Jiang, L.; Haenninen, H.; Paro, J.; Kauppinen, V. [Helsinki Univ. of Technology, Espoo (Finland)

1996-09-01T23:59:59.000Z

62

HIgh Rate X-ray Fluorescence Detector  

SciTech Connect (OSTI)

The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many â?? you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with associated preamplifiers; these detectors surpassed the performance we expected to get from the Ketek detectors, however they are housed in a sealed module, which does not offer the ease of repair and expandability weâ??d hoped to achieve with the Ketek SDDâ??s. Our packaging efforts were quite successful, as we came up with a very compact way to mount the detector and to house the associated electronics, as well as a very effective way to reliably take out the heat (from the electronics as well as the detectorâ??s Peltier coolers) without risk of condensation and without external airflow or vibration, which could create problems for the target applications. While we were able to design compact processing electronics that fit into the detector assembly, they are still at the prototype stage, and would require a significant redesign to achieve product status. We have not yet tested this detector at a synchrotron facility; we do still plan on working with some close contacts at the nearby Stanford Synchrotron Radiation Laboratory (SSRL) to get some testing with the beam (using existing commercial electronics for readout, as the integrated processor is not ready for use).

Grudberg, Peter Matthew [XIA LLC

2013-04-30T23:59:59.000Z

63

The commercial development of water repellent coatings for high voltage transmission lines  

SciTech Connect (OSTI)

The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

Hunter, Scott Robert [ORNL

2013-10-01T23:59:59.000Z

64

The commercial development of water repellent coatings for high voltage transmission lines  

SciTech Connect (OSTI)

The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy?s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

Hunter, S. R. [ORNL] [ORNL; Daniel, A. [Southwire Company] [Southwire Company

2013-10-31T23:59:59.000Z

65

C/CrC nanocomposite coating deposited by magnetron sputtering at high ion irradiation conditions  

SciTech Connect (OSTI)

CrC with the fcc NaCl (B1) structure is a metastable phase that can be obtained under the non-equilibrium conditions of high ion irradiation. A nano-composite coating consisting of amorphous carbon embedded in a CrC matrix was prepared via the unbalanced magnetron sputtering of graphite and Cr metal targets in Ar gas with a high ionized flux (ion-to-neutral ratio Ji/Jn = 6). The nanoscale amorphous carbon clusters self-assembled into layers alternated by CrC, giving the composite a multilayer structure. The phase, microstructure, and composition of the coating were characterized using x-ray diffraction, transmission electron microscopy, and aberration corrected scanning transmission electron microscopy coupled with electron energy loss spectroscopy. The interpretation of the true coating structure, in particular the carbide type, is discussed.

Zhou, Z.; Rainforth, W. M. [Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom); Gass, M. H.; Bleloch, A. [SuperSTEM at Daresbury Laboratory, Daresbury, Cheshire, WA4 4AD (United Kingdom); Ehiassarian, A. P.; Hovsepian, P. Eh. [Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB (United Kingdom)

2011-10-01T23:59:59.000Z

66

Electrochemical corrosion rate probes for high temperature energy applications  

SciTech Connect (OSTI)

Electrochemical corrosion rate (ECR) probes were constructed and exposed along with mass loss coupons in a N2/O2/CO2/H2O environment to determine ECR probe operating characteristics. Temperatures ranged from 450 to 800 C and both ECR probes and mass loss coupons were coated with ash. Results are presented in terms of the probe response to temperature, the measured zero baseline, and the quantitative nature of the probes. The effect of Stern-Geary constant and the choice of electrochemical technique used to measure the corrosion rate are also discussed. ECR probe corrosion rates were a function of time, temperature, and process environment and were found to be quantitative for some test conditions. Measured Stern-Geary constants averaged 0.0141 V/decade and the linear polarization technique was found to be more quantitative than the electrochemical noise technique.

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, M.S. (InterCorr International Inc.); Eden, D.A. (InterCorr International Inc.)

2004-01-01T23:59:59.000Z

67

Uranium Oxide as a Highly Reflective Coating from 150-350 eV  

E-Print Network [OSTI]

of depleted uranium metal (less than 0.2% U-235). After sputtering, the uranium was allowed to oxidize1 Uranium Oxide as a Highly Reflective Coating from 150-350 eV Richard L. Sandberg, David D. Allred.byu.edu ABSTRACT We present the measured reflectances (beamline 6.3.2, ALS at LBNL) of naturally oxidized uranium

Hart, Gus

68

A View of Compatible Heat-Resistant Alloy and Coating Systems at High-Temperatures  

SciTech Connect (OSTI)

Conventional and advanced coatings were reviewed, and it was pointed out that the coated Ni-base superalloys decreased their creep rupture life significantly at higher temperatures, and the advanced high strength superalloy became more remarkably. Concept of diffusion barrier coating system (DBC system) and their formation process was introduced, and the results obtained for several heat-resistant alloys, stainless steel (SUS310S), Ni-Mo base alloy (Hastelloy-X), and 4{sup th} generation single crystal superalloy (TMS-138) were given. It was noted that creep-rupture life of the SUS310S and Hastelloy-X with the DBC system became longer than those of the bare alloys with or without conventional {beta}-NiAl coatings. This is due to slow creep-deformation of the Re-base alloy layer as the diffusion barrier. A novel concept based on combination of superalloys and coatings was proposed, by taking both the materials science and corrosion science into consideration.

Narita, Toshio [Specially Promoted Research Laboratory of Advanced Coatings, Hokkaido University, Kite-13 Nishi-8, Kita-Ku, Sapporo 060-8628 (Japan)

2009-09-14T23:59:59.000Z

69

Exploring the effect of Al2O3 ALD coating on a high gradient ILC single-cell cavity  

SciTech Connect (OSTI)

Encouraged by work at Argonne National Lab, we investigated atomic layer deposition technique (ALD) for high gradient superconducting RF cavities at JLab with an ALD coating system of Old Dominion University located on the JLab site. The goal of this study was to look into the possibility of coating a dielectric layer on top of RF niobium surface at a lower temperature of 120 C as compared to ANL coatings at 200 C to preserve niobium pentoxide on niobium surface. The initial coatings showed complete, but non-uniform coatings of the surface with several areas exhibiting discoloration, which was probably due to the temperature variation across the cavity surface. The initial coating showed a high RF losses, which were improved after discolored areas on the beam tubes were removed with HF rinse of the beam tubes only. The best result was 2 109 low field Q0 and Eacc = 18 MV/m limited by available power.

Grigory Eremeev, Anne-Marie Valente, Andy Wu, Diefeng Gu

2012-07-01T23:59:59.000Z

70

LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings.  

SciTech Connect (OSTI)

Friction and wear are major concerns in the performance and reliability of micromechanical (MEMS) devices. While a variety of lubricant and wear resistant coatings are known which we might consider for application to MEMS devices, the severe geometric constraints of many micromechanical systems (high aspect ratios, shadowed surfaces) make most deposition methods for friction and wear-resistance coatings impossible. In this program we have produced and evaluate highly conformal, tribological coatings, deposited by atomic layer deposition (ALD), for use on surface micromachined (SMM) and LIGA structures. ALD is a chemical vapor deposition process using sequential exposure of reagents and self-limiting surface chemistry, saturating at a maximum of one monolayer per exposure cycle. The self-limiting chemistry results in conformal coating of high aspect ratio structures, with monolayer precision. ALD of a wide variety of materials is possible, but there have been no studies of structural, mechanical, and tribological properties of these films. We have developed processes for depositing thin (<100 nm) conformal coatings of selected hard and lubricious films (Al2O3, ZnO, WS2, W, and W/Al{sub 2}O{sub 3} nanolaminates), and measured their chemical, physical, mechanical and tribological properties. A significant challenge in this program was to develop instrumentation and quantitative test procedures, which did not exist, for friction, wear, film/substrate adhesion, elastic properties, stress, etc., of extremely thin films and nanolaminates. New scanning probe and nanoindentation techniques have been employed along with detailed mechanics-based models to evaluate these properties at small loads characteristic of microsystem operation. We emphasize deposition processes and fundamental properties of ALD materials, however we have also evaluated applications and film performance for model SMM and LIGA devices.

Jungk, John Michael (University of Minnesota); Dugger, Michael Thomas; George, Steve M. (University of Colorado); Prasad, Somuri V.; Grubbs, Robert K.; Moody, Neville Reid; Mayer, Thomas Michael; Scharf, Thomas W.; Goeke, Ronald S.; Gerberich, William W. (University of Minnesota)

2005-10-01T23:59:59.000Z

71

Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines  

SciTech Connect (OSTI)

The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive/thermo-chemical attack mechanisms; (iv) developing a mechanics-based analysis of the driving forces for crack growth and delamination, based on molten phase infiltration, misfit upon cooling, and loss of compliance; (v) understanding changes in TGO growth mechanisms associated with these emerging combustion product streams; and (vi) identifying degradation resistant alternative materials (including new compositions or bi-layer concepts) for use in mitigating the observed degradation modes. To address the materials stability concerns, this program integrated research thrusts aimed at: (1) Conducting tests in simulated syngas and HHC environments to evaluate materials evolution and degradation mechanisms; assessing thermally grown oxide development unique to HHC environmental exposures; carrying out high-resolution imaging and microanalysis to elucidate the evolution of surface deposits (molten phase formation and infiltration); exploring thermo-chemical instabilities; assessing thermo-mechanical drivers and thermal gradient effects on degradation; and quantitatively measuring stress evolution due to enhanced sintering and thermo-chemical instabilities induced in the coating. (2) Executing experiments to study the melting and infiltration of simulated ash deposits, and identifying reaction products and evolving phases associated with molten phase corrosion mechanisms; utilizing thermal spray techniques to fabricate test coupons with controlled microstructures to study mechanisms of instability and degradation; facilitating thermal gradient testing; and developing new materials systems for laboratory testing; (3) Correlating information on the resulting combustion environments to properly assess materials exposure conditions and guide the development of lab-scale simulations of material exposures; specification of representative syngas and high-hydrogen fuels with realistic levels of impurities and contaminants, to explore differences in heat transfer, surface degradation, and deposit formation; and facilitating combustion rig testing of materials test coupons.

Mumm, Daniel

2013-08-31T23:59:59.000Z

72

In situ measurement of low-Z material coating thickness on high Z substrate for tokamaks  

SciTech Connect (OSTI)

Rutherford backscattering of energetic particles can be used to determine the thickness of a coating of a low-Z material over a heavier substrate. Simulations indicate that 5 MeV alpha particles from an {sup 241}Am source can be used to measure the thickness of a Li coating on Mo tiles between 0.5 and 15??m thick. Using a 0.1?mCi source, a thickness measurement can be accomplished in 2 h of counting. This technique could be used to measure any thin, low-Z material coating (up to 1?mg/cm{sup 2} thick) on a high-Z substrate, such as Be on W, B on Mo, or Li on Mo. By inserting a source and detector on a moveable probe, this technique could be used to provide an in situ measurement of the thickness of Li coating on NSTX-U Mo tiles. A test stand with an alpha source and an annular solid-state detector was used to investigate the measurable range of low-Z material thicknesses on Mo tiles.

Mueller, D., E-mail: dmueller@pppl.gov; Roquemore, A. L.; Jaworski, M.; Skinner, C. H.; Miller, J.; Creely, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Raman, P.; Ruzic, D. [Department of Nuclear, Plasma, and Radiological Engineering, Center for Plasma Material Interaction, University of Illinois, Urbana, Illinois 61801 (United States)

2014-11-15T23:59:59.000Z

73

FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings  

SciTech Connect (OSTI)

New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 & SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L have no neutron absorber, and cannot be used for such functions. Borated stainless steel and G

Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

2007-09-20T23:59:59.000Z

74

Thermal Barrier Coatings Chemically and Mechanically Resistant to High Temperature Attack by Molten Ashes.  

E-Print Network [OSTI]

?? Thermal barrier coatings (TBCs) are ceramic coatings used on component in the hottest sections of gas turbine engines, used for power generation and aviation.… (more)

Gledhill, Andrew Dean

2011-01-01T23:59:59.000Z

75

Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating  

E-Print Network [OSTI]

We characterize the mechanical quality factor of micro-oscillators covered by a highly reflective coating. We test an approach to the reduction of mechanical losses, that consists in limiting the size of the coated area to reduce the strain and the consequent energy loss in this highly dissipative component. Moreover, a mechanical isolation stage is incorporated in the device. The results are discussed on the basis of an analysis of homogeneous and non-homogeneous losses in the device and validated by a set of Finite-Element models. The contributions of thermoelastic dissipation and coating losses are separated and the measured quality factors are found in agreement with the calculated values, while the absence of unmodeled losses confirms that the isolation element integrated in the device efficiently uncouples the dynamics of the mirror from the support system. Also the resonant frequencies evaluated by Finite-Element models are in good agreement with the experimental data, and allow the estimation of the Y...

Serra, E; Marin, F; Marino, F; Pontin, A; Prodi, G A; Bonaldi, M

2012-01-01T23:59:59.000Z

76

Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof  

DOE Patents [OSTI]

An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

Sarin, V.K.

1990-08-21T23:59:59.000Z

77

Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof  

DOE Patents [OSTI]

An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

Sarin, Vinod K. (Lexington, MA)

1990-01-01T23:59:59.000Z

78

An Evaluation of the Impact of Surface Coatings on the Heat Transfer in High Temperature Ceramic Recuperators  

E-Print Network [OSTI]

COATINGS Engineering ceramics, particular ly SiC, are being investigated for use as high temperature heat exchanger materials. ORNL has conducted exposure test in real and simulated high tempera ture corrosive flue gases and these have... indicated that SiC ceramics are sucepti ble to flue gases containing sodium and potassium, compounds such as sulfates, carbonates and halides. ORNL is current ly investigating whether commercially available ceramic coatings could be from 1500 0...

Guerrero, P. S.; Rebello, W. J.; Federer, J. I.

79

Evolution of Massive Protostars with High Accretion Rates  

E-Print Network [OSTI]

Formation of massive stars by accretion requires a high accretion rate of > 10^-4 M_sun/yr to overcome the radiation pressure barrier of the forming stars. Here, we study evolution of protostars accreting at such high rates, by solving the structure of the central star and the inner accreting envelope simultaneously. The protostellar evolution is followed starting from small initial cores until their arrival at the stage of the Zero-Age Main Sequence (ZAMS) stars. An emphasis is put on evolutionary features different from those with a low accretion rate of 10^-5 M_sun/yr, which is presumed in the standard scenario for low-mass star formation. With the high accretion rate of 10^-3 M_sun/yr, the protostellar radius becomes very large and exceeds 100 R_sun. It is not until the stellar mass reaches 40 M_sun that hydrogen burning begins and the protostar reaches the ZAMS phase, and this ZAMS arrival mass increases with the accretion rate. At a very high accretion rate of > 3 x 10^-3 M_sun/yr, the total luminosity of the protostar becomes so high that the resultant radiation pressure inhibits the growth of the protostars under steady accretion before reaching the ZAMS stage. Therefore, the evolution under the critical accretion rate 3 x 10^-3 M_sun/yr gives the upper mass limit of possible pre-main-sequence stars at 60 M_sun. The upper mass limit of MS stars is also set by the radiation pressure onto the dusty envelope under the same accretion rate at 250 M_sun. We also propose that the central source enshrouded in the Orion KL/BN nebula has effective temperature and luminosity consistent with our model, and is a possible candidate for such protostars growing under the high accretion rate. (abridged)

Takashi Hosokawa; Kazuyuki Omukai

2008-06-25T23:59:59.000Z

80

Colloidal spray method for low cost thin coating deposition  

DOE Patents [OSTI]

A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

Pham, Ai-Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA); Lee, Tae H. (Naperville, IL)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Colloidal spray method for low cost thin coating deposition  

DOE Patents [OSTI]

A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

2005-01-25T23:59:59.000Z

82

Solidification at the High and Low Rate Extreme  

SciTech Connect (OSTI)

The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt-pool oscillation may be the dominant factor governing the onset of unsteady thermal conditions accompanied by varying amounts of crystalline nucleation observed near the lower limit. At high quench-wheel velocities, the influence of these oscillations is minimal due to very short melt-pool residence times. However, microstructural evidence suggests that the entrapment of gas pockets at the wheel-metal interface plays a critical role in establishing the upper rate limit. An observed transition in wheel-side surface character with increasing melt-spinning rate supports this conclusion.

Halim Meco

2004-12-19T23:59:59.000Z

83

MECHANICAL PROPERTIES AND MICROSTRUCTURAL EVOLUTIONS AT HIGH STRAIN RATES OF  

E-Print Network [OSTI]

characteristics of high purity nickel processed by electrodeposition tested in compression up to a dynamic strainMECHANICAL PROPERTIES AND MICROSTRUCTURAL EVOLUTIONS AT HIGH STRAIN RATES OF ELECTRODEPOSITED NICKEL H. Couque1 , A. Ouarem2 , G. Dirras2 and J. Gubicza3 Summary ­ The mechanical and microstructural

Gubicza, Jenõ

84

High frame rate CCD camera with fast optical shutter  

SciTech Connect (OSTI)

A high frame rate CCD camera coupled with a fast optical shutter has been designed for high repetition rate imaging applications. The design uses state-of-the-art microchannel plate image intensifier (MCPII) technology fostered/developed by Los Alamos National Laboratory to support nuclear, military, and medical research requiring high-speed imagery. Key design features include asynchronous resetting of the camera to acquire random transient images, patented real-time analog signal processing with 10-bit digitization at 40--75 MHz pixel rates, synchronized shutter exposures as short as 200pS, sustained continuous readout of 512 x 512 pixels per frame at 1--5Hz rates via parallel multiport (16-port CCD) data transfer. Salient characterization/performance test data for the prototype camera are presented, temporally and spatially resolved images obtained from range-gated LADAR field testing are included, an alternative system configuration using several cameras sequenced to deliver discrete numbers of consecutive frames at effective burst rates up to 5GHz (accomplished by time-phasing of consecutive MCPII shutter gates without overlap) is discussed. Potential applications including dynamic radiography and optical correlation will be presented.

Yates, G.J.; McDonald, T.E. Jr. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley National Lab., CA (United States)

1998-09-01T23:59:59.000Z

85

A study of solvent-rich environments for evaporation rate control in the extrusion spin coating process  

E-Print Network [OSTI]

Microlithography is a process used in microchip fabrication to transfer a circuitry pattern onto a silicon wafer. An important step in the process is the deposition of a thin coating of photoresist from which the lithographic ...

Fan, Winston Chi Hang, 1975-

1998-01-01T23:59:59.000Z

86

Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings  

SciTech Connect (OSTI)

Growing laser damage sites on multilayer high-reflector coatings can limit mirror performance. One of the strategies to improve laser damage resistance is to replace the growing damage sites with predesigned benign mitigation structures. By mitigating the weakest site on the optic, the large-aperture mirror will have a laser resistance comparable to the intrinsic value of the multilayer coating. To determine the optimal mitigation geometry, the finite-difference time-domain method was used to quantify the electric-field intensification within the multilayer, at the presence of different conical pits. We find that the field intensification induced by the mitigation pit is strongly dependent on the polarization and the angle of incidence (AOI) of the incoming wave. Therefore, the optimal mitigation conical pit geometry is application specific. Furthermore, our simulation also illustrates an alternative means to achieve an optimal mitigation structure by matching the cone angle of the structure with the AOI of the incoming wave, except for the p-polarized wave at a range of incident angles between 30 deg. and 45 deg.

Qiu, S. Roger; Wolfe, Justin E.; Monterrosa, Anthony M.; Feit, Michael D.; Pistor, Thomas V.; Stolz, Christopher J.

2011-03-20T23:59:59.000Z

87

High repetition rate plasma mirror device for attosecond science  

SciTech Connect (OSTI)

This report describes an active solid target positioning device for driving plasma mirrors with high repetition rate ultra-high intensity lasers. The position of the solid target surface with respect to the laser focus is optically monitored and mechanically controlled on the nm scale to ensure reproducible interaction conditions for each shot at arbitrary repetition rate. We demonstrate the target capabilities by driving high-order harmonic generation from plasma mirrors produced on glass targets with a near-relativistic intensity few-cycle pulse laser system operating at 1 kHz. During experiments, residual target surface motion can be actively stabilized down to 47?nm (root mean square), which ensures sub-300-as relative temporal stability of the plasma mirror as a secondary source of coherent attosecond extreme ultraviolet radiation in pump-probe experiments.

Borot, A.; Douillet, D.; Iaquaniello, G.; Lefrou, T.; Lopez-Martens, R. [Laboratoire d'Optique Appliquée, ENSTA-ParisTech, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)] [Laboratoire d'Optique Appliquée, ENSTA-ParisTech, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France); Audebert, P.; Geindre, J.-P. [Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)] [Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)

2014-01-15T23:59:59.000Z

88

Temporal variations of solar rotation rate at high latitudes  

E-Print Network [OSTI]

Frequency splitting coefficients from Global Oscillation Network Group (GONG) and Michelson Doppler Imager (MDI) observations covering the period 1995--2001 are used to study temporal variations in the solar rotation rate at high latitudes. The torsional oscillation pattern in the Sun is known to penetrate to a depth of about $0.1R_\\odot$ with alternate bands of faster and slower rotating plasma. At lower latitudes the bands move towards equator with time. At higher latitudes, however, the bands appear to move towards the poles. This is similar to the observed pole-ward movement of large scale magnetic fields at high latitudes. This also supports theoretical results of pole-ward moving bands at high latitudes in some mean field dynamo models. The polar rotation rate is found to decrease between 1995 and 1999 after which it has started increasing.

H. M. Antia; Sarbani Basu

2001-08-14T23:59:59.000Z

89

Aspects of coal pyrogenation with high heating rates  

SciTech Connect (OSTI)

The present paper describes the conversion of different rank coals into coke of required quality, influenced by heating rate variation. The study has been made for romanian coals and the imported coals too. Theoretical aspects of the coking process kinetics with special practical applications are shown. In Romania, classical coke making technology involves some theoretical and practical problems because of the local coal supply, weak in coking coals. Petrographical methods, as a complementary source of information for coking mechanisms understanding were used, for blends with high content of weakly coking coals. The results reveal the importance of rank and petrographical composition determinations for complex blends making. The paper continues previous studies of coke making kinetics, influenced by heating rate variation. On the basis of the relationship between coal charge composition and coke structure, including its use in the blast furnace, the influence of an increase in heating rate on the structure of the coke produced from different rank and petrographical composition coals, was studied. The heating rates ranged between 3 and 40 C/min. The structural changes produced during pyrogenation were more evident for the heating rates: 3, 6, 10 and 40 C/min. Table 2 reveals the optical aspects of coke matrix and inertinitic inclusions evolution, that is, the differences in structure arrangement by changing the plastic phase characteristics due to the increase in the heating rate.

Panaitescu, C.; Barca, F. [Politehnica Univ., Bucharest (Romania); Predeanu, G.; Albastroiu, P. [Metallurgical Research Inst., Bucharest (Romania)

1994-12-31T23:59:59.000Z

90

Method for generating high-energy and high repetition rate laser pulses from CW amplifiers  

DOE Patents [OSTI]

A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

Zhang, Shukui

2013-06-18T23:59:59.000Z

91

High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant  

SciTech Connect (OSTI)

High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and P is the pressure in units of MPa. Details of the experimental method, results and data analysis are discussed herein and briefly compared to other AP based materials that have been measured in this apparatus.

Glascoe, E A; Tan, N

2010-04-21T23:59:59.000Z

92

STANFORD IN-SITU HIGH RATE YBCO PROCESS: TRANSFER TO METAL TAPES AND PROCESS SCALE UP  

SciTech Connect (OSTI)

Executive Summary The materials science understanding of high rate low cost processes for Coated Conductor will benefit the application to power utilities for low loss energy transportation and power generation as well for DOD applications. The research in this program investigated several materials processing approaches that are new and original, and are not being investigated elsewhere. This work added to the understanding of the material science of high rate PVD growth of HTSC YBCO assisted by a liquid phase. A new process discovered uses amorphous glassy precursors which can be made at high rate under flexible conditions of temperature and oxygen, and later brought to conditions of oxygen partial pressure and temperature for rapid conversion to YBCO superconductor. Good critical current densities were found, but further effort is needed to optimize the vortex pinning using known artificial inclusions. A new discovery of the physics and materials science of vortex pinning in the HTSC system using Sm in place of Y came at growth at unusually low oxygen pressure resulting in clusters of a low or non superconducting phase within the nominal high temperature phase. The driving force for this during growth is new physics, perhaps due to the low oxygen. This has the potential for high current in large magnetic fields at low cost, applicable to motors, generators and transformers. The technical demands of this project were the motivation for the development of instrumentation that could be essential to eventual process scale up. These include atomic absorption based on tunable diode lasers for remote monitoring and control of evaporation sources (developed under DARPA support), and the utility of Fourier Transform Infrared Reflectivity (FTIR) for aid in the synthesis of complex thin film materials (purchased by a DURIP-AFOSR grant).

Malcolm R. Beasley; Robert H.Hammond

2009-04-14T23:59:59.000Z

93

Failure Rate Data Analysis for High Technology Components  

SciTech Connect (OSTI)

Understanding component reliability helps designers create more robust future designs and supports efficient and cost-effective operations of existing machines. The accelerator community can leverage the commonality of its high-vacuum and high-power systems with those of the magnetic fusion community to gain access to a larger database of reliability data. Reliability studies performed under the auspices of the International Energy Agency are the result of an international working group, which has generated a component failure rate database for fusion experiment components. The initial database work harvested published data and now analyzes operating experience data. This paper discusses the usefulness of reliability data, describes the failure rate data collection and analysis effort, discusses reliability for components with scarce data, and points out some of the intersections between magnetic fusion experiments and accelerators.

L. C. Cadwallader

2007-07-01T23:59:59.000Z

94

Strain Rate Characterization of Advanced High Strength Steels | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization of Advanced High Strength Steels

95

The Gamma Ray Burst Rate at High Photon Energies  

E-Print Network [OSTI]

Some gamma-ray burst (GRB) spectra exhibit high energy tails with the highest photon energy detected at 18 GeV. The spectral slope of the high-energy tails is sufficiently flat in nu F_nu to consider the possibility of their detection at still higher energies. We calculate how many bursts can reasonably be expected above a given energy threshold for a cosmological distribution of bursts satisfying the observed apparent brightness distribution. The crucial point is that the gamma-ray absorption by pair production in the intergalactic diffuse radiation field eliminates bursts from beyond the gamma-ray horizon tau ~ 1, thus drastically reducing the number of bursts at high energies. Our results are consistent with the non-detection of bursts by current experiments in the 100 GeV to 100 TeV energy range. For the earth-bound detector array MILAGRO, we predict a maximal GRB rate of ~ 10 events per year. The Whipple Observatory can detect, under favorable conditions, ~1 event per year. The event rate for the HEGRA array is ~ 0.01 per year. Detection of significantly higher rates of bursts would severely challenge cosmological burst scenarios.

Karl Mannheim; Dieter Hartmann; Burkhardt Funk

1996-05-17T23:59:59.000Z

96

Z .Surface and Coatings Technology 130 2000 164 172 Production of high-density Ni-bonded tungsten carbide  

E-Print Network [OSTI]

carbide coatings using an axially fed DC-plasmatron S. Sharafata,U , A. Kobayashib , S. Chena , N spraying; Nickel; Tungsten carbide 1. Introduction 1.1. General Since the mid-1990s, the market share of cemented Z .carbides has surpassed that of high-speed steels HSS , Z .with tungsten carbide WC having 50

Ghoniem, Nasr M.

97

Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy  

E-Print Network [OSTI]

Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high Since Sony rst commercialized lithium ion batteries in the early 1990s, the market for lithium ion of the great success of lithium ion battery technology developed for portable electronic devices, higher

Zhou, Chongwu

98

High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration  

SciTech Connect (OSTI)

We demonstrate InGaN/GaN multiple quantum well solar cells grown by metalorganic chemical vapor deposition on a bulk (0001) substrate with high-performance broadband optical coatings to improve light absorption. A front-side anti-reflective coating and a back-side dichroic mirror were designed to minimize front surface reflections across a broad spectral range and maximize rear surface reflections only in the spectral range absorbed by the InGaN, making the cells suitable for multijunction solar cell integration. Application of optical coatings increased the peak external quantum efficiency by 56% (relative) and conversion efficiency by 37.5% (relative) under 1 sun AM0 equivalent illumination.

Young, N. G., E-mail: ngyoung@engineering.ucsb.edu; Farrell, R. M.; Iza, M.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Perl, E. E.; Keller, S. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Bowers, J. E.; Nakamura, S.; DenBaars, S. P. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

2014-04-21T23:59:59.000Z

99

High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells  

E-Print Network [OSTI]

. Figure 3-1 IV curve of a UT fabricated triple cell, showing 12.7% initial, active-area efficiency. Figure1 High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells PHASE I Annual-junction a-Si Solar Cells with Heavily Doped Thin Interface Layers at the Tunnel Junctions Section 4 High

Deng, Xunming

100

Diamond detector for high rate monitors of fast neutrons beams  

SciTech Connect (OSTI)

A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G. [Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, and Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Energy Department, Politecnico di Milano, Milano (Italy); Dipartimento di Fisica, Centro NAST, Universita degli Studi di Roma Tor Vergata, Roma (Italy); STFC, ISIS facility, Rutherford Appleton Laboratory, Chilton Didcot Oxfordshire (United Kingdom); Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, and Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy)

2012-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High Rate Laser Pitting Technique for Solar Cell Texturing  

SciTech Connect (OSTI)

High rate laser pitting technique for solar cell texturing Efficiency of crystalline silicon solar cells can be improved by creating a texture on the surface to increase optical absorption. Different techniques have been developed for texturing, with the current state-of-the-art (SOA) being wet chemical etching. The process has poor optical performance, produces surfaces that are difficult to passivate or contact and is relatively expensive due to the use of hazardous chemicals. This project shall develop an alternative process for texturing mc-Si using laser micromachining. It will have the following features compared to the current SOA texturing process: -Superior optical surfaces for reduced front-surface reflection and enhanced optical absorption in thin mc-Si substrates -Improved surface passivation -More easily integrated into advanced back-contact cell concepts -Reduced use of hazardous chemicals and waste treatment -Similar or lower cost The process is based on laser pitting. The objective is to develop and demonstrate a high rate laser pitting process which will exceed the rate of former laser texturing processes by a factor of ten. The laser and scanning technologies will be demonstrated on a laboratory scale, but will use inherently technologies that can easily be scaled to production rates. The drastic increase in process velocity is required for the process to be implemented as an in-line process in PV manufacturing. The project includes laser process development, development of advanced optical systems for beam manipulation and cell reflectivity and efficiency testing. An improvement of over 0.5% absolute in efficiency is anticipated after laser-based texturing. The surface textures will be characterized optically, and solar cells will be fabricated with the new laser texturing to ensure that the new process is compatible with high-efficiency cell processing. The result will be demonstration of a prototype process that is suitable for scale-up to a production tool and process. The developed technique will have an reducing impact on product pricing. As efficiency has a substantial impact on the economics of solar cell production due to the high material cost content; in essence, improved efficiency through cost-effective texturing reduces the material cost component since the product is priced in terms of $/W. The project is a collaboration between Fraunhofer USA, Inc. and a c-Si PV manufacturer.

Hans J. Herfurth; Henrikki Pantsar

2013-01-10T23:59:59.000Z

102

Final Report, Photocathodes for High Repetition Rate Light Sources  

SciTech Connect (OSTI)

This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

Ben-Zvi, Ilan [Stony Brook University

2014-04-20T23:59:59.000Z

103

High dose rate intraluminal irradiation in recurrent endobronchial carcinoma  

SciTech Connect (OSTI)

Palliative therapy for previously irradiated patients with symptomatic recurrent endobronchial malignancy is a difficult problem. We have had the opportunity to treat 20 such patients with high dose rate (50-100 rad/min) endobronchial brachytherapy. Eligible patients had received previous high dose thoracic irradiation (TDF greater than or equal to 90), a performance status of greater than or equal to 50, and symptoms caused by a bronchoscopically defined and implantable lesion. The radiation is produced by a small cobalt-60 source (0.7 Ci) remotely afterloaded by cable control. The source is fed into a 4 mm diameter catheter which is placed with bronchoscopic guidance; it may oscillate if necessary to cover the lesion. A dose of 1,000 rad at 1 cm from the source is delivered. We have performed 22 procedures in 20 patients, four following YAG laser debulking. Most had cough, some with hemoptysis. Eight had dyspnea secondary to obstruction and three had obstructive pneumonitis. In 12, symptoms recurred with a mean time to recurrence of 4.3 months (range 1-9 months). Eighteen patients were followed-up and reexamined via bronchoscope 1-2.5 months following the procedure; two were lost to follow-up. All had at least 50 percent clearance of tumor, and six had complete clearance; most regressions were documented on film or videotape. In six, the palliation was durable. The procedure has been well tolerated with no toxicity. We conclude that palliative endobronchial high dose rate brachytherapy is a useful palliative modality in patients with recurrent endobronchial symptomatic carcinoma.

Seagren, S.L.; Harrell, J.H.; Horn, R.A.

1985-12-01T23:59:59.000Z

104

Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis  

SciTech Connect (OSTI)

The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

Lu, Jinlian; Xiao, Hong [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)

2012-12-15T23:59:59.000Z

105

Structure and high-temperature stability of compositionally graded CVD mullite coatings  

E-Print Network [OSTI]

C (Carborundum, Niagara Falls, NY). The coatings were deposited using the AlCl3± SiCl4±CO2±H2 system in a hot

Basu, Soumendra N.

106

Combustion chemical vapor deposited coatings for thermal barrier coating systems  

SciTech Connect (OSTI)

The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-12-31T23:59:59.000Z

107

High pressure argon ionization chamber systems for the measurement of environmental radiation exposure rates  

E-Print Network [OSTI]

High pressure argon ionization chamber systems for the measurement of environmental radiation exposure rates

DeCampo, J A; Raft, P D

1972-01-01T23:59:59.000Z

108

The strain-rate sensitivity of high-strength high-toughness steels.  

SciTech Connect (OSTI)

The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

Dilmore, M.F. (AFRL/MNMW, Eglin AFB, FL); Crenshaw, Thomas B.; Boyce, Brad Lee

2006-01-01T23:59:59.000Z

109

Resistive Wall Heating of the Undulator in High Repetition Rate  

SciTech Connect (OSTI)

In next generation high repetition rate FELs, beam energy loss due to resistive wall wakefields will produce significant amount of heat. The heat load for a superconducting undulator (operating at low temperature), must be removed and will be expensive to remove. In this paper, we study this effect in an undulator proposed for a Next Generation Light Source (NGLS) at LBNL. We benchmark our calculations with measurements at the LCLS and carry out detailed parameter studies using beam from a start-to-end simulation. Our preliminarym results suggest that the heat load in the undulator is about 2 W/m or lower with an aperture size of 6 mm for nominal NGLS preliminary design parameters.

Qiang, J; Corlett, J; Emma, P; Wu, J

2012-05-20T23:59:59.000Z

110

In-situ Measurement of Low-Z Material Coating Thickness on High Z Substrate for Tokamaks  

SciTech Connect (OSTI)

Rutherford backscattering (RBS) of energetic particles can be used to determine the thickness of a coating of a low-Z material over a heavier substrate. Simulations indicate that 5 MeV alpha particles from an Am source can be used to measure the thickness of a Li coating on Mo tiles between 0.5 and 15 ?m thick. Using a 0.1 mCi source, a thickness measurement can be accomplished in 2 hours of counting. This technique could be used to measure any thin, low-Z material coating (up to 1 mg/cm^2 thick) on a high-Z substrate, such as Be on W, B on Mo, or Li on Mo. By inserting a source and detector on a moveable probe, this technique could be used to provide an in situ measurement of the thickness of Li coating on NSTX-U Mo tiles. A test stand with an alpha source and an annular solid-state detector was used to investigate the measurable range of low-Z material thicknesses on Mo tiles.

Mueller, D [PPPL; Roquemore, A L [PPPL; Jaworski, M [PPPL; Skinner, C H [PPPL; Miller, J [PPPL; Creely, A [PPPL; Raman, P [2University of Illinois, Champaign, IL, USA; Ruzic, D [2University of Illinois, Champaign, IL, USA

2014-07-01T23:59:59.000Z

111

Corrosion behavior of an HVOF-sprayed Fe3Al coating in a high-temperature oxidizing/sulfidizing environment  

SciTech Connect (OSTI)

An iron aluminide (Fe3Al) intermetallic coating was deposited onto a F22 (2.25Cr-1Mo) steel substrate using a JP-5000 high velocity oxy-fuel (HVOF) thermal spray system. The as-sprayed coating was examined by electron microscopy and X-ray diffraction and was characterized in terms of oxidation and adhesion. Fe3Al-coated steel specimens were exposed to a mixed oxidizing/sulfidizing environment at 500, 600, 700, and 800DGC for approximately seven days. The gaseous environment consisted of N2-10%CO-5%CO2-2%H2O-0.12%H2S (by volume). All specimens gained mass after exposure to the environment and the mass gains were found to be inversely proportional to temperature increases. Representative specimens exposed at each temperature were cross-sectioned and subjected to examination under a scanning electron microscope (SEM) and X-ray mapping. Results are presented in terms of corrosion weight gain and corrosion product formation. The purpose of the research presented here was to evaluate the effectiveness of an HVOF-sprayed Fe3Al coating in protecting a steel substrate exposed to a fossil energy environment.

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Shrestha, S. (TWI Ltd.); Harvey, D. (TWI Ltd.)

2005-01-01T23:59:59.000Z

112

Tribological performance of hybrid filtered arc-magnetron coatings - Part I: Coating deposition process and basic coating properties characterization  

SciTech Connect (OSTI)

Aircraft propulsion applications require low-friction and wear resistant surfaces that operate under high contact loads in severe environments. Recent research on supertough and low friction nanocomposite coatings produced with hybrid plasma deposition processes was demonstrated to have a high potential for such demanding applications. However, industrially scalable hybrid plasma technologies are needed for their commercial realization. The Large area Filtered Arc Deposition (LAFAD) process provides atomically smooth coatings at high deposition rates over large surface areas. The LAFAD technology allows functionally graded, multilayer, super-lattice and nanocomposite architectures of multi-elemental coatings via electro-magnetic mixing of two plasma flows composed of different metal ion vapors. Further advancement can be realized through a combinatorial process using a hybrid filtered arc-magnetron deposition system. In the present study, multilayer and nanostructured TiCrCN/TiCr +TiBC composite cermet coatings were deposited by the hybrid filtered arc-magnetron process. Filtered plasma streams from arc evaporated Ti and Cr targets, and two unbalanced magnetron sputtered B4C targets, were directed to the substrates in the presence of reactive gases. A multiphase nanocomposite coating architecture was designed to provide the optimal combination of corrosion and wear resistance of advanced steels (Pyrowear 675) used in aerospace bearing and gear applications. Coatings were characterized using SEM/EDS, XPS and RBS for morphology and chemistry, XRD and TEM for structural analyses, wafer curvature and nanoindentation for stress and mechanical properties, and Rockwell and scratch indentions for adhesion. Coating properties were evaluated for a variety of coating architectures. Thermodynamic modeling was used for estimation of phase composition of the top TiBC coating segment. Correlations between coating chemistry, structure and mechanical properties are discussed.

Gorokhovsky, Vladimir; Bowman, C.; Gannon, Paul E.; VanVorous, D.; Voevodin, A. A.; Rutkowski, A.; Muratore, C.; Smith, Richard J.; Kayani, Asghar N.; Gelles, David S.; Shutthanandan, V.; Trusov, B. G.

2006-12-04T23:59:59.000Z

113

High-temperature phase stability and tribological properties of laser clad Mo{sub 2}Ni{sub 3}Si/NiSi metal silicide coatings  

SciTech Connect (OSTI)

Mo{sub 2}Ni{sub 3}Si/NiSi wear-resistant metal silicide composite coatings consisting of Mo{sub 2}Ni{sub 3}Si primary dendrite and interdendritic Mo{sub 2}Ni{sub 3}Si/NiSi eutectic were fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental powder blends. The high-temperature structural stability of the coating was evaluated by aging at 800 deg. C for 1-50 h. High-temperature sliding wear resistance of the as-laser clad and aged coatings was evaluated at 600 deg. C. Results indicate that the Mo{sub 2}Ni{sub 3}Si/NiSi metal silicides coating has excellent high temperature phase stability. No phase transformation except the dissolution of the eutectic Mo{sub 2}Ni{sub 3}Si and the corresponding growth of the Mo{sub 2}Ni{sub 3}Si primary dendrite and no elemental diffusion from the coating into the substrate were detected after aging the coating at 800 deg. C for 50 h. Aging of the coating at 800 deg. C leads to gradual dissolution of the interdendritic eutectic Mo{sub 2}Ni{sub 3}Si and subsequent formation of a dual-phase structure with equiaxed Mo{sub 2}Ni{sub 3}Si primary grains distributed in the NiSi single-phase matrix. Because of the strong covalent-dominated atomic bonds and high volume fraction of the ternary metal silicide Mo{sub 2}Ni{sub 3}Si, both the original and the aged Mo{sub 2}Ni{sub 3}Si/NiSi coating has excellent wear resistance under pin-on-disc high-temperature sliding wear test conditions, although hardness of the aged coating is slightly lower than that of the as-clad coating.

Lu, X.D. [Laboratory of Laser Materials Processing and Surface Engineering, School of Materials Science and Engineering, Beihang University (China); Wang, H.M. [Laboratory of Laser Materials Processing and Surface Engineering, School of Materials Science and Engineering, Beihang University (China)]. E-mail: wanghuaming@263.net

2004-10-18T23:59:59.000Z

114

Cryogenic, high-resolution x-ray detector with high count rate capability  

DOE Patents [OSTI]

A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

Frank, Matthias (Oakland, CA); Mears, Carl A. (Windsor, CA); Labov, Simon E. (Berkeley, CA); Hiller, Larry J. (Livermore, CA); Barfknecht, Andrew T. (Menlo Park, CA)

2003-03-04T23:59:59.000Z

115

New developments in plasma-activated high-rate EB evaporation for metal strip  

SciTech Connect (OSTI)

The coating of metal strips by EB evaporation is well known since many years. But up to now the application on an industrial scale is very limited. One of the reasons are the costs and the progress of ECD technologies in the last ten years. But there are opportunities for the evaporation technology if layers with new properties can be produced. One way to meet this target is the application of a plasma-activated and ion-assisted process. However, the plasma density and the ion current density on the substrate must fit the high deposition rates. Many efforts in our institute are dedicated to the development of appropriate plasma sources. The systems are explained and main parameters are given. Using a plasma the layer properties can be improved remarkably. Therefore new applications come into play. First results are shown. Layers consisting of compounds will play a growing role for corrosion and abrasion protection. The technologies are explained and important film properties are presented.

Schiller, S.; Goedicke, K.; Hoetzsch, G. [Fraunhofer Institute, Dresden (Germany)

1994-12-31T23:59:59.000Z

116

High-k (k=30) amorphous hafnium oxide films from high rate room temperature deposition  

SciTech Connect (OSTI)

Amorphous hafnium oxide (HfO{sub x}) is deposited by sputtering while achieving a very high k{approx}30. Structural characterization suggests that the high k is a consequence of a previously unreported cubiclike short range order in the amorphous HfO{sub x} (cubic k{approx}30). The films also possess a high electrical resistivity of 10{sup 14} {Omega} cm, a breakdown strength of 3 MV cm{sup -1}, and an optical gap of 6.0 eV. Deposition at room temperature and a high deposition rate ({approx}25 nm min{sup -1}) makes these high-k amorphous HfO{sub x} films highly advantageous for plastic electronics and high throughput manufacturing.

Li, Flora M.; Bayer, Bernhard C.; Hofmann, Stephan; Milne, William I.; Flewitt, Andrew J. [Department of Engineering, Electrical Engineering Division, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Dutson, James D.; Wakeham, Steve J.; Thwaites, Mike J. [Plasma Quest Ltd., Unit 1B, Rose Estate, Osborn Way, Hook, Hampshire RG27 9UT (United Kingdom)

2011-06-20T23:59:59.000Z

117

Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources  

SciTech Connect (OSTI)

Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

Chao, Alex; Ratner, Daniel; /SLAC; Jiao, Yi; /Beijing, Inst. High Energy Phys.

2012-09-06T23:59:59.000Z

118

Method for synthesis of high T[sub c] superconducting materials by oxidation and press coating of metallic precursor alloys  

DOE Patents [OSTI]

A superconductor oxide composite is prepared using a press coating technique. The coated layers on various substrates exhibit good adhesion, textured microstructure, and improved J[sub c].

Gao, W.; Vander Sande, J.B.

1993-01-19T23:59:59.000Z

119

Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300  

SciTech Connect (OSTI)

The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

Gray, M. H.

2014-01-01T23:59:59.000Z

120

Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings  

SciTech Connect (OSTI)

The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

Rajendra Bordia

2009-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High temperature electrochemical corrosion rate probes for combustion environments  

SciTech Connect (OSTI)

Electrochemical corrosion rate probes have been constructed and tested along with mass loss coupons in an air plus water vapor and a N2/O2/CO2 plus water vapor environment. Temperatures ranged from 200? to 700?C. Results show that electrochemical corrosion rates for ash-covered mild steel are a function of time, temperature and process environment. Correlation between the electrochemical and mass loss corrosion rates was poor.

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Eden, David A. (Intercorr International Inc.); Kane, Russell D. (Intercorr International Inc.); Eden, Dawn C. (Intercorr International Inc.)

2004-01-01T23:59:59.000Z

122

Synthesis of carbon coated Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/reduced graphene oxide composite for high-performance lithium ion batteries  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: ? Carbon coated LVP nanoparticles strongly anchored on rGO surface are prepared. ? LVP@C/rGO exhibits high electrical conductivity. ? LVP@C/rGO shows excellent cycleability and rate capability between 3.0 and 4.8 V. -- Abstract: The carbon coated Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/reduced graphene oxide (LVP@C/rGO) composite is successfully synthesized by a conventional solid-state reaction, which is easily scaled up. LVP grains coated with a thin layer (?8 nm) of carbon are adhered to the surface of the rGO layer and/or enwrapped into the rGO sheets, which can facilitate the fast charge transfer within the whole electrode and to the current collector. As a cathode material, the LVP@C/rGO electrode delivers an initial discharge capacity of 177 mAh g{sup ?1} at 0.5 C with capacity retention of 96% during the 50th cycle in a wide voltage range of 3.0–4.8 V. A superior rate capability is also achieved, e.g., exhibiting a discharge capacity of 96 mAh g{sup ?1} at a high C rate of 10 C.

Wu, Keliang, E-mail: linxin66@126.com [Department of Petroleum and Chemical, Bayingolin Vocational and Technical College, Xinjiang Uygur Autonomous Region 841000 (China)] [Department of Petroleum and Chemical, Bayingolin Vocational and Technical College, Xinjiang Uygur Autonomous Region 841000 (China); Yang, Jinpeng [Department of Petroleum and Chemical, Bayingolin Vocational and Technical College, Xinjiang Uygur Autonomous Region 841000 (China)] [Department of Petroleum and Chemical, Bayingolin Vocational and Technical College, Xinjiang Uygur Autonomous Region 841000 (China)

2013-02-15T23:59:59.000Z

123

High Strain-Rate Response of High Purity Aluminum at Temperatures Approaching Melt  

SciTech Connect (OSTI)

High-temperature, pressure-shear plate impact experiments were conducted to investigate the rate-controlling mechanisms of the plastic response of high-purity aluminum at high strain rates (10{sup 6} s{sup -1}) and at temperatures approaching melt. Since the melting temperature of aluminum is pressure dependent, and a typical pressure-shear plate impact experiment subjects the sample to large pressures (2 GPa-7 GPa), a pressure-release type experiment was used to reduce the pressure in order to measure the shearing resistance at temperatures up to 95% of the current melting temperature. The measured shearing resistance was remarkably large (50 MPa at a shear strain of 2.5) for temperatures this near melt. Numerical simulations conducted using a version of the Nemat-Nasser/Isaacs constitutive equation, modified to model the mechanism of geometric softening, appear to capture adequately the hardening/softening behavior observed experimentally.

Grunschel, S E; Clifton, R J; Jiao, T

2010-01-28T23:59:59.000Z

124

Substrate having high absorptance and emitance black electroless nicel coating and a process for producing the same  

SciTech Connect (OSTI)

A substrate having high absorptance and emittance is produced by roughening the surface of the substrate, immersing the substrate in a first electroless plating bath having a low phosphorus to nickel concentration, then immersing the substrate in a second electroless plating bath having a phosphorus to nickel concentration higher than that of said first electroless plating bath. Thereafter, the resulting electroless nickel-phosphorus alloy coated substrate is immersed in an aqueous acidic etchant bath containing sulfuric acid, nitric acid and divalent nickel to develop a highly blackened surface on said substrate.

Greeson, R.; Geikas, G. I.

1985-04-16T23:59:59.000Z

125

Multilayer thermal barrier coating systems  

DOE Patents [OSTI]

The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

2000-01-01T23:59:59.000Z

126

Figure 7. Projected Production for the High Development Rate...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig7.jpg (43335 bytes) Source...

127

High Temperature Oxidation Resistance and Surface Electrical Conductivity of Stainless Steels with Filtered Arc Cr-Al-N Multilayer and/or Superlattice Coatings  

SciTech Connect (OSTI)

The requirements for low cost and high-tempurater corrosion resistance for bipolar interconnect plates in solid oxide fuel cell (SOFC) stacks has directed attention to the use of metal plates with oxidation resistant coatings. Candidate coatings must exhibit chemical and thermal-mechanical stability and high electrical conductivity during long-term (>400,000 hrs) exposure to SOFC operatong conditions. The high temperature oxidation resistance and surface electrical donductivity of 304, 440A,a dn Crofer-22 APU steel coupons, with and without multilayer and/or superlattice coatings from a Cr-Al-N system were investigated as a function of exposure in an oxidization atmosphere at high temperatures. The coatins were deposited using large area filtered arc depsition (LAFAD) technology [1], and subsequently annealed in air at 800 degrees C for varying times. Area specific resistance and activation energy for electrical conductivity of oxidized coupons were measured using a 4-point technique with Pt paste for electrical contact between facing oxidized coupon surfaces. The surface compositon, structure and morphology of the coupons were characterized using RBS, nuclear reaction analysis, XPS, SEM, and AFM techniques. The structure of the CRN/CrAlN multilayered superlattice coatings was characterized by TEM. By altering the architecture of the coating layers, both surface electrical conductivity and oxidation resistance [2] improved signigicantly for some of the coated samples tested up to ~100hrs.

Gannon, Paul E.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Deibert, Max; Smith, Richard J.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

2004-11-01T23:59:59.000Z

128

High Strain Rate Tensile Testing of DOP-26 Iridium  

SciTech Connect (OSTI)

The iridium alloy DOP-26 was developed through the Radioisotope Power Systems Program in the Office of Nuclear Energy of the Department of Energy. It is used for clad vent set cups containing radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for spacecraft. This report describes mechanical testing results for DOP-26. Specimens were given a vacuum recrystallization anneal of 1 hour at 1375 C and tested in tension in orientations parallel and perpendicular to the rolling direction of the sheet from which they were fabricated. The tests were performed at temperatures ranging from room temperature to 1090 C and strain rates ranging from 1 x 10{sup -3} to 50 s{sup -1}. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1 x 10{sup -4} Torr. The yield stress (YS) and the ultimate tensile stress (UTS) decreased with increasing temperature and increased with increasing strain rate. Between 600 and 1090 C, the ductility showed a slight increase with increasing temperature. Within the scatter of the data, the ductility did not depend on the strain rate. The reduction in area (RA), on the other hand, decreased with increasing strain rate. The YS and UTS values did not differ significantly for the longitudinal and transverse specimens. The ductility and RA values of the transverse specimens were marginally lower than those of the longitudinal specimens.

Schneibel, Joachim H [ORNL; Carmichael Jr, Cecil Albert [ORNL; George, Easo P [ORNL

2007-11-01T23:59:59.000Z

129

Insert Coil Test for HEP High Field Magnets Using YBCO Coated Conductor Tapes  

SciTech Connect (OSTI)

The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields of 30-50 T. In this paper we present progress in insert coil development using commercially available YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} Coated Conductor. Technological aspects covered in the development, including coil geometry, insulation, manufacturing process and testing are summarized and discussed. Test results of double pancake coils operated in liquid nitrogen and liquid helium are presented and compared with the performance of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} tape short samples.

Lombardo, V.; Barzi, E.; Turrioni, D.; Zlobin, A.V.; /Fermilab

2011-06-15T23:59:59.000Z

130

Aluminide coatings  

DOE Patents [OSTI]

Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA

2009-08-18T23:59:59.000Z

131

applying high rate: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Applied High Energy QCD Nuclear Theory (arXiv) Summary: These lectures stress the theoretical elements...

132

FRP-to-concrete bond behaviour under high strain rates   

E-Print Network [OSTI]

Fibre reinforced polymer (FRP) composites have been used for strengthening concrete structures since early 1990s. More recently, FRP has been used for retrofitting concrete structures for high energy events such as impact ...

Li, Xiaoqin

2012-06-25T23:59:59.000Z

133

Enhanced rate capability of LiMn0.9Mg0.1PO4 nanoplates by reduced graphene oxide/carbon double coating for Li-ion batteries  

E-Print Network [OSTI]

coating for Li-ion batteries Sungun Wi a , Jaewon Kim a , Seunghoon Nam a , Joonhyeon Kang a , Sangheon March 2014 Available online 12 March 2014 Keywords: Li-ion battery LiMnPO4 Reduced graphene oxide Charge) nanoplates are intro- duced as a cathode material for Li-ion batteries with excellent rate capability

Park, Byungwoo

134

High-repetition-rate CF/sub 4/ laser  

SciTech Connect (OSTI)

A 16 ..mu..m CF/sub 4/ laser oscillator has operated at 1 kHz in a cooled static cell. Threshold pump energies required from the low pressure, Q-switched, cw discharge CO/sub 2/ laser were as low as 60 ..mu..J. The laser cavity employed the multiple-pass off-axis path resonator in a ring configuration. CF/sub 4/ laser power at 615 cm/sup -1/ and a 1 kHz repetition rate exceeded 300 ..mu..W.

Telle, J.

1981-01-01T23:59:59.000Z

135

Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries  

SciTech Connect (OSTI)

The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

2009-08-04T23:59:59.000Z

136

High Strain-Rate Characterization of Magnesium Alloys | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGH PERFORMANCE andHigh Risk Plan

137

Pathway to a lower cost high repetition rate ignition facility  

SciTech Connect (OSTI)

An approach to a high-repetition ignition facility based on direct drive with the krypton-fluoride laser is presented. The objective is development of a 'Fusion Test Facility' that has sufficient fusion power to be useful as a development test bed for power plant materials and components. Calculations with modern pellet designs indicate that laser energies well below a megajoule may be sufficient. A smaller driver would result in an overall smaller, less complex and lower cost facility. While this facility might appear to have most direct utility to inertial fusion energy, the high flux of neutrons would also be able to address important issues concerning materials and components for other approaches to fusion energy. The physics and technological basis for the Fusion Test Facility are presented along with a discussion of its applications.

Obenschain, S.P.; Colombant, D.G.; Schmitt, A.J.; Sethian, J.D.; McGeoch, M. W. [Plasma Physics Division, U.S. Naval Research Laboratory, Washington, D.C. 20375 (United States); Plex LLC, Brookline, Massachusetts 02446-5478 (United States)

2006-05-15T23:59:59.000Z

138

Raw material preparation for ultra high production rate sintering  

SciTech Connect (OSTI)

An R and D program in pot grate sintering showed, that an intensive preparation of ores, additives and coke breeze improves the sintering capacity. The tests were conducted using an ore mixture composed of typical ores imported to Europe. The highest capacities were attained up to 63.8 t/m{sup 2} {times} 24 h maximum for a sinter which well fulfills the high requirements on chemical, physical and metallurgical properties.

Kortmann, H.A.; Ritz, V.J. [Studiengesellschaft fuer Eisenerzaufbereitung, Liebenburg-Othfresen (Germany); Cappel, F.; Weisel, H.; Richter, G. [LURGI AG, Frankfurt (Germany)

1995-12-01T23:59:59.000Z

139

High Metal Removal Rate Process for Machining Difficult Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHighMetal Removal

140

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network [OSTI]

Protection for 4 V Lithium Batteries at High Rates and LowIntroduction Rechargeable lithium batteries are known forfor rechargeable lithium batteries. When impregnated into a

Chen, Guoying

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Reconfigurable fuzzy logic system for high-frame rate stereovision object tracking.  

E-Print Network [OSTI]

??his study investigates the applicability of fuzzy logic control to high-frame rate stereovision object tracking. The technology developed in this work is based on utilizing… (more)

Samarin, Oleg

2008-01-01T23:59:59.000Z

142

High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in the Madison SymmetricHigh Carbon Fly Ash

143

HIGH-REP RATE PHOTOCATHODE INJECTOR FOR LCLS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meeting was called toEnergyForpecu-OctoberHIGH-REP

144

High Metal Removal Rate Process for Machining Difficult Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHighMetal Removal ADVANCED

145

High Metal Removal Rate Process for Machining Difficult Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHighMetal Removal ADVANCEDHybrid

146

High Metal Removal Rate Process for Machining Difficult Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHighMetal Removalcost Titanium

147

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network [OSTI]

Protection for 4 V Lithium Batteries at High Rates and LowRechargeable lithium batteries are known for their highBecause lithium ion batteries are especially susceptible to

Chen, Guoying

2010-01-01T23:59:59.000Z

148

High pressure low heat rate phosphoric acid fuel cell stack  

SciTech Connect (OSTI)

A high pressure phosphoric acid fuel cell stack assembly is described comprising: (a) a stack of fuel cells for producing electricity, the stack including cathode means, anode means, and heat exchange means; (b) means for delivering pressurized air to the cathode means; (c) means for delivering a hydrogen rich fuel gas to the anode means for electrochemically reacting with oxygen in the pressurized air to produce electricity and water; (d) first conduit means connected to the cathode means for exhausting a mixture of oxygen-depleted air and reaction water from the cathode means; (e) second conduit means connected to the first conduit means for delivering a water fog to the first conduit means for entrainment in the mixture of oxygen-depleted air and reaction water to form a two phase coolant having a gaseous air phase and an entrained water droplet phase; (f) means for circulating the coolant to the heat exchange means to cool the stack solely through vaporization of the water droplet phase in the heat exchange means whereby a mixed gas exhaust of air and water vapor is exhausted from the heat exchange means; and (g) means for heating the mixed gas exhaust and delivering the heated mixed gas exhaust at reformer reaction temperatures to an autothermal reformer in the stack assembly for autothermal reaction with a raw fuel to form the hydrogen rich fuel.

Wertheim, R.J.

1987-07-07T23:59:59.000Z

149

Synthesis of high T.sub.C superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys  

DOE Patents [OSTI]

A method is provided for fabrication of superconducting oxides and superconducting oxide composites and for joining superconductors to other materials. A coating of a molten alloy containing the metallic elements of the oxide is applied to a substrate surface and oxidized to form the superconducting oxide. A material can be contacted to the molten alloy which is subsequently oxidized joining the material to the resulting superconducting oxide coating. Substrates of varied composition and shape can be coated or joined by this method.

Gao, Wei (Somerville, MA); Vander Sande, John B. (Newbury, MA)

1998-01-01T23:59:59.000Z

150

Analog Readout and Analysis Software for the Ultra-High Rate Germanium (UHRGe) Project  

SciTech Connect (OSTI)

High-resolution high-purity germanium (HPGe) spectrometers are needed for Safeguards applications such as spent fuel assay and uranium hexafluoride cylinder verification. In addition, these spectrometers would be applicable to other high-rate applications such as non-destructive assay of nuclear materials using nuclear resonance fluorescence. Count-rate limitations of today's HPGe technologies, however, lead to concessions in their use and reduction in their efficacy. Large-volume, very high-rate HPGe spectrometers are needed to enable a new generation of nondestructive assay systems. The Ultra-High Rate Germanium (UHRGe) project is developing HPGe spectrometer systems capable of operating at unprecedented rates, 10 to 100 times those available today. This report documents current status of developments in the analog electronics and analysis software.

Fast, James E.; Aguayo Navarrete, Estanislao; Evans, Allan T.; VanDevender, Brent A.; Rodriguez, Douglas C.; Wood, Lynn S.

2011-09-01T23:59:59.000Z

151

High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements  

SciTech Connect (OSTI)

Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain {beta}-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al{sub 2}O{sub 3} scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified {gamma}-Ni + {gamma}-Ni{sub 3}Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase {gamma}-Ni and {gamma}{prime}-Ni{sub 3}Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al{sub 2}O{sub 3} formation by suppressing the NiO growth on both {gamma}-Ni and {gamma}{prime}Ni{sub 3}Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures ({approx}970 C) in the very early stage of oxidation. It was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free {gamma}{prime}-Ni{sub 3}Al increased the extent of external NiO formation due to non-protective HfO{sub 2} formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5 at.%.

Nan Mu

2007-12-01T23:59:59.000Z

152

Development of a High Temperature Gas-Cooled Reactor TRISO-coated particle fuel chemistry model  

E-Print Network [OSTI]

The first portion of this work is a comprehensive analysis of the chemical environment in a High Temperature Gas-Cooled Reactor TRISO fuel particle. Fission product inventory versus burnup is calculated. Based on those ...

Diecker, Jane T

2005-01-01T23:59:59.000Z

153

Much simplified ion-beam assisted deposition-TiN template for high-performance coated conductors  

SciTech Connect (OSTI)

A much simplified template, i.e., two nonsuperconducting layers between the superconducting YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) and the polycrystalline metal substrate, has been developed for high-performance coated conductors by using biaxially aligned TiN as a seed layer. A combination of a thin TiN ({approx}10 nm by ion-beam assisted deposition) layer and an epitaxial buffer LaMnO{sub 3} layer ({approx}120 nm) allows us to grow epitaxial YBCO films with values of full width at half-maximum around 3.5 deg. and 1.7 deg. for the {phi}-scan of (103) and rocking curve of (005) YBCO, respectively. The YBCO films grown on electropolished polycrystalline Hastelloy using this two-layer template exhibited a superconducting transition temperature of 89.5 K, a critical current density of 1.2 MA/cm{sup 2} at 75.5 K, and an {alpha} value (proportional factor of critical current density J{sub c}{approx}H{sup -}{alpha}) of around 0.33, indicating a high density of pinning centers and an absence of weak links.

Xiong, J. [Division of Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); State Key Lab of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Matias, V.; Zhai, J. Y.; Maiorov, B.; Trugman, D.; Jia, Q. X. [Division of Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Wang, H. [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843-3128 (United States); Tao, B. W.; Li, Y. R. [State Key Lab of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

2010-10-15T23:59:59.000Z

154

Properties of heterogeneous energetic materials under high strain, high strain rate deformation  

E-Print Network [OSTI]

reactions in self-propagating high-temperature synthesis (as self-propagating high-temperature synthesis (SHS). Tablein self-propagating high-temperature synthesis (SHS)[32] In

Cai, Jing

2007-01-01T23:59:59.000Z

155

Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions  

E-Print Network [OSTI]

Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions Romain Available online 8 March 2012 Keywords: A1. Mineral replacement rate A1. Serpentinization A1. TG analyses B1. Alkaline medium B2. Chrysotile nanotubes a b s t r a c t Olivine mineral replacement by serpentine is one

Montes-Hernandez, German

156

High repetition rate mode-locked erbium-doped fiber lasers with complete electric field control  

E-Print Network [OSTI]

Recent advances in fully-stabilized mode-locked laser systems are enabling many applications, including optical arbitrary waveform generation (OAWG). In this thesis work, we describe the development of high repetition-rate ...

Sickler, Jason William, 1978-

2008-01-01T23:59:59.000Z

157

High-strain-rate nanoindentation behavior of fine-grained magnesium alloys  

E-Print Network [OSTI]

The effects of temperature and alloying elements on deformation in the high-strain-rate regime were investigated by testing fine-grained magnesium alloys with an average grain size of 2 ? 3 ?m by a nanoindentation technique. ...

Somekawa, Hidetoshi

158

E-Print Network 3.0 - all-optical high-bit-rate digital Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OCTOBER 2005 3321 All-Optical Variable Buffering Strategies Summary: - parison of hot-potato and single-buffer deflection routing in very high bit rate optical mesh networks......

159

Femtosecond fiber lasers at 1550 nm for high repetition rates and low timing jitter  

E-Print Network [OSTI]

Femtosecond fiber lasers have become an important enabling technology for advances in many areas including: frequency combs, precise timing distribution, optical arbitrary waveform generation, and high bit rate sampling ...

Morse, Jonathan Lee

2013-01-01T23:59:59.000Z

160

Low friction and galling resistant coatings and processes for coating  

DOE Patents [OSTI]

The present invention describes coating processes and the resultant coated articles for use in high temperature sodium environments, such as those found in liquid metal fast breeder reactors and their associated systems. The substrate to which the coating is applied may be either an iron base or nickel base alloy. The coating itself is applied to the substrate by electro-spark deposition techniques which result in metallurgical bonding between the coating and the substrate. One coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and an aluminum electrode. Another coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and a nickel-base hardfacing alloy electrode.

Johnson, Roger N. (Richland, WA)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Synthesis of high {Tc} superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys  

DOE Patents [OSTI]

A method is provided for fabrication of superconducting oxides and superconducting oxide composites and for joining superconductors to other materials. A coating of a molten alloy containing the metallic elements of the oxide is applied to a substrate surface and oxidized to form the superconducting oxide. A material can be contacted to the molten alloy which is subsequently oxidized joining the material to the resulting superconducting oxide coating. Substrates of varied composition and shape can be coated or joined by this method. 5 figs.

Gao, W.; Vander Sande, J.B.

1998-07-28T23:59:59.000Z

162

An investigation into the inflow performance characteristics of high-rate gravel-packed gas wells  

E-Print Network [OSTI]

AN INVESTIGATION INTO THE INFLOW PERFORMANCE CHARACTERISTICS OF HIGH-RATE GRAVEL-PACKED GAS WELLS A Thesis by DOUGLAS LEE JORDAN Submitted to the Graduate College of Texas ARM University in par'tial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December, 1984 Major Subject: Petroleum Engineering AN INVESTIGATION INTO THE INFLOW PERFORMANCE CHARACTERISTICS OF HIGH-RATE GRAVEL-PACKED GAS WELLS A Thesis by DOUGLAS LEE JORDAN Approved as to style and content by...

Jordan, Douglas Lee

1984-01-01T23:59:59.000Z

163

Low Conductivity Thermal Barrier Coatings  

E-Print Network [OSTI]

Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School conductivity of the coatings. The minimum thermal conductivity occurs at a low rotation rate and is 0.8 W intrinsic thermal conductivity, good phase stability and greater resistance to sintering and CMAS attack

Wadley, Haydn

164

On the oxidation of high-temperature alloys, and its role in failure of thermal barrier coatings  

E-Print Network [OSTI]

Thermal barrier coating (TBC) systems are applied to superalloy turbine blades to provide thermal insulation and oxidation protection. A TBC system consists of (a) an outer oxide layer that imparts thermal insulation, and ...

Loeffel, Kaspar Andreas

2013-01-01T23:59:59.000Z

165

2 Highly efficient inverted rapid-drying blade-coated organic solar cells 3 Jung-Hao Chang a  

E-Print Network [OSTI]

-coated were demonstrated. Optimized self-organization interpenetration networks 26and donor/acceptor domain organic solar cells (OSCs) based 39 on mixture of conjugated polymers and fullerene deriva- 40 tives have

166

Dynamic tensile fracture of mortar at ultra-high strain-rates  

SciTech Connect (OSTI)

During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4}?s{sup ?1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y. [CEA, DAM, GRAMAT, F-46500 Gramat (France)

2013-12-28T23:59:59.000Z

167

Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates  

DOE Patents [OSTI]

A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

Carlisle, John A. (Plainfield, IL); Gruen, Dieter M. (Downers Grove, IL); Auciello, Orlando (Bolingbrook, IL); Xiao, Xingcheng (Woodridge, IL)

2009-07-07T23:59:59.000Z

168

Mechanical and microstructural response of Ni sub 3 Al at high strain rate and elevated temperatures  

SciTech Connect (OSTI)

In this paper, the effect of strain rate and temperature on the substructure evolution and mechanical response of Ni{sub 3}Al will be presented. The strain rate response of Ni{sub 3}Al was studied at strain rates from 10{sup {minus}3} s{sup {minus}1} (quasi-static) to 10{sup 4} s{sup {minus}1} using a Split Hopkinson Pressure Bar. The Hopkinson Bar tests were conducted at temperatures ranging from 77K to 1273K. At high strain rates the flow strength increased significantly with increasing temperature, similar to the behavior observed at quasi-static rates. The work hardening rates increased with strain rate and varied with temperatures. The work hardening rates, appeared to be significantly higher than those found for Ni270. The substructure evolution was characterized utilizing TEM. The defect generation and rate sensitivity of Ni{sub 3}Al are also discussed as a function of strain rate and temperature. 15 refs., 4 figs.

Sizek, H.W.; Gray, G.T. III.

1990-01-01T23:59:59.000Z

169

Mineral replacement rate of olivine by chrysotile and brucite under high1 alkaline conditions2  

E-Print Network [OSTI]

1 Mineral replacement rate of olivine by chrysotile and brucite under high1 alkaline conditions2 3.1016/j.jcrysgro.2012.02.040 #12;2 Abstract16 Olivine mineral replacement by serpentine is one major replaced by18 chrysotile and brucite under high alkaline conditions. In our study, olivine replacement19

Paris-Sud XI, Université de

170

Laser damage of dichroic coatings in a high average power laser vacuum resonator  

SciTech Connect (OSTI)

In our application, dichroics in a high average power, near-infrared, laser system have short operating lifetimes. These dichroics were used as the resonator fold mirrors and permitted the transmission of the pumping argon (Ar) ion laser light. Representative samples of two different dichroic optics were taken off-line and the transmission performance monitored in various scenarios. Irradiating these optics under resonator vacuum conditions, ({le}1 mT, 11.7 kW/cm{sup 2}, Ar laser running all wavelengths) resulted in a degradation of transmission with time. Irradiating these optics in a rarefied oxygen atmosphere (1 to 10 T of oxygen, 11.7 kW/cm{sup 2}, Ar laser running all wavelengths) the transmission remained steady over a period of days. The transmission loss observed in the optic tested in vacuum was somewhat reversible if the optic was subsequently irradiated in a rarefied oxygen atmosphere. This reversibility was only possible if the transmission degradation was not too severe. Further tests demonstrated that an atmosphere of 10 T of air also prevented the transmission degradation. In addition, tests were performed to demonstrate that the optic damage was not caused by the ultra-violet component in the Ar ion laser. Mechanisms that may account for this behavior are proposed.

Arnold, P A; Berzins, L V; Chow, R; Erbert, G V

1999-07-28T23:59:59.000Z

171

Generation of high power, high repetition-rate pulses using erbium-doped fiber ring laser  

E-Print Network [OSTI]

. The second setup used a ring cavity. A polarization controller and a temperature-controlled chamber were also employed to stabilize the output. The signal laser was modulated to produce pulses with the highest possible repetition rate and the highest possible...

Hinson, Brett Darren

1998-01-01T23:59:59.000Z

172

Sacrificial Protective Coating Materials That Can Be Regenerated...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sacrificial Protective Coating Materials That Can Be Regenerated In-Situ to Enable High-Performance Membranes Sacrificial Protective Coating Materials That Can Be Regenerated...

173

Hard, infrared black coating with very low outgassing  

SciTech Connect (OSTI)

Infrared astronomical instruments require absorptive coatings on internal surfaces to trap scattered and stray photons. This is typically accomplished with any one of a number of black paints. Although inexpensive and simple to apply, paint has several disadvantages. Painted surfaces can be fragile, prone to shedding particles, and difficult to clean. Most importantly, the vacuum performance is poor. Recently a plasma enhanced chemical vapor deposition (PECVD) process was developed to apply thick (30 {micro}m) diamond-like carbon (DLC) based protective coatings to the interior of oil pipelines. These DLC coatings show much promise as an infrared black for an ultra high vacuum environment. The coatings are very robust with excellent cryogenic adhesion. Their total infrared reflectivity of < 10% at normal incidence approaches that of black paints. We measured outgas rates of <10{sup -12} Torr liter/sec cm{sup 2}, comparable to bare stainless steel.

Kuzmenko, P J; Behne, D M; Casserly, T; Boardman, W; Upadhyaya, D; Boinapally, K; Gupta, M; Cao, Y

2008-06-02T23:59:59.000Z

174

Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace  

SciTech Connect (OSTI)

In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

1995-12-01T23:59:59.000Z

175

FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Reistance FY05 HPCRM Annual Report # Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program  

SciTech Connect (OSTI)

New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 & SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L have no neutron absorber, and cannot be used for such functions. Borated stainless steel and G

Farmer, J C; Haslam, J J; Day, S D

2007-09-19T23:59:59.000Z

176

Dislocation mechanics of high rate deformations Ron Armstrong* (and Qizhen Li**)  

E-Print Network [OSTI]

Dislocation mechanics of high rate deformations Ron Armstrong* (and Qizhen Li**) *University/dt) = (1/m)b (1/m)(d/dt)bxd 8 charts 1.a. TASRA, Zerilli-Armstrong (Z-A) and Johnson-Cook relations 1.b) (Hall-Petch) Twinning: T = 0T + kT-1/2 ; kT > k R.W. Armstrong, "Thermal Activation ­ Strain Rate

Maryland at College Park, University of

177

Nano-Structured Li3V2(PO4)3 /Carbon Composite for High Rate Lithium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nano-Structured Li3V2(PO4)3 Carbon Composite for High Rate Lithium Ion Batteries. Nano-Structured Li3V2(PO4)3 Carbon Composite for High Rate Lithium Ion Batteries. Abstract:...

178

Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation  

SciTech Connect (OSTI)

The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% for the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.

Speiser, B.L. (St. Joseph's Hospital and Medical Center, Phoenix, AZ (United States)); Spratling, L.

1993-03-15T23:59:59.000Z

179

Cocurrent gas - liquid flow at high rates in small particle beds  

SciTech Connect (OSTI)

Gas liquid cocurrent flow at high pressure drop often occurs near the well bore and in grabel filled perforations during production of oil and geothermal energy. Available studies have, however, emphasized large particles and low pressure drops. Here, results for air-water flows to high fluxes in beds of small glass spheres and in 0.44 mm sand, show the influence of particle size, and flow composition and rate, on pressure drop enhancement and flow regime extent.

Wilemon, M.; Torrest, R.S. (Dept. of Chemical Engineering, Arizona State Univ., Tempe, AZ (US))

1988-01-01T23:59:59.000Z

180

Component/OEM XC-HR50 High Frame Rate Monochrome Camera  

E-Print Network [OSTI]

Monochrome Camera B/W Progressive Scan Cameras #12;These new cameras expand the range of products in Sony's progressive scan and high-frame rate, compact camera line up! Introducing the newest additions to Sony's B/sec. for compatibility with slower vision systems using Sony XC-55 cameras. The XC-HR50 and XC-HR70 cameras incorporate

Demoulin, Pascal

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications  

E-Print Network [OSTI]

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications Donghwa Shin, Younghyun layer capacitors, or simply supercapacitors, have extremely low internal resistance, and a battery-supercapacitor architecture comprising a simple parallel connection does not perform well when the supercapacitor capacity

Pedram, Massoud

182

PROCESS WATER RECOVERY: DISSOLVED AIR FLOTATION COMPARED TO HIGH SHEAR RATE SEPARATION  

E-Print Network [OSTI]

PROCESS WATER RECOVERY: DISSOLVED AIR FLOTATION COMPARED TO HIGH SHEAR RATE SEPARATION John H to the feed without dissolved air or with the addition of dual polymer flocculating polymers. Although fiber intend to investigate the effect of pacifying stickies by precipitating calcium carbonate with carbon

Abubakr, Said

183

High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl  

E-Print Network [OSTI]

High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl K I R * *Environmental Sciences and Energy Research, The Weizmann Institute of Science, Rehovot. The results were consistent with those of nononline gas chromatography­mass spectrometry for COS and IR gas

Yakir, Dan

184

High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency thermal plasma  

E-Print Network [OSTI]

High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency Semiconductor, Eden Prairie, MN, USA Received 10 July 2002; accepted 14 July 2002 Abstract Silicon carbide films; Nanomaterials; Silicon carbide; Thermal plasmas; Thin films; Si tetrachlorine precursor Silicon carbide has

Zachariah, Michael R.

185

System Design Considerations for High data Rate Communications Over Multi-wire Overhead Power-  

E-Print Network [OSTI]

System Design Considerations for High data Rate Communications Over Multi-wire Overhead Power communications, multi-wire overhead lines, capacity, OFDM, coding. I. INTRODUCTION The increasing interest, and severe narrowband interference [1]. The channel characteristics of medium voltage overhead power-line

Kavehrad, Mohsen

186

A testing technique for concrete under confinement at high rates of strain P. Forquin1,  

E-Print Network [OSTI]

1 A testing technique for concrete under confinement at high rates of strain P. Forquin1, , F://lmsX.polytechnique.fr/LMSX/ Abstract: A testing device is presented for the experimental study of dynamic compaction of concrete under numerical simulations of tests involving a set of 4 different concrete-like behaviours and different

187

PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates  

E-Print Network [OSTI]

solution. Upon annealing at 600 °C in air, an amorphous ZrO2 nanoscale coating layer was obtained [5­10]. Although Li-ion batteries are attractive power-storage devices that have high energy density metal oxide coatings have been reported, studies to improve both the rate capabilities of spinel LiMn2O4

Cho, Jaephil

188

High-Purity Germanium Spectroscopy at Rates in Excess of 10^{6} Events/s  

SciTech Connect (OSTI)

Abstract—In gamma spectroscopy, a compromise must be made between energy resolution and event-rate capability. Some foreseen nuclear material safeguards applications require a spectrometer with energy resolution typical of high purity germanium (HPGe) detectors, operated at rates up to and exceeding 106 events per second. We report the performance of an HPGe spectrometer adapted to run at such rates. Our system consists of a commercial semi-coaxial HPGe detector, a modified high-voltagerail, resistive-feedback, charge-sensitive preamplifier and a continuous waveform digitizer. Digitized waveforms are analyzed offline with a novel time-variant trapezoidal filter algorithm. Several time-invariant trapezoidal filters are run in parallel and the slowest one not rejected by instantaneous pileup conditions is used to measure each pulse height. We have attained full-widthat- half-maximum energy resolution of less than 8 keV measured at 662 keV with 1:08*106 per second incoming event rate and 38% throughput. An additional constraint on the width of the fast trigger filter removes a significant amount of edge pileup that passes the first pileup cut, reducing throughput to 26%. While better resolution has been reported by other authors, our throughput is over an order of magnitude higher than any other reported HPGe system operated at such an event rate.

VanDevender, Brent A.; Dion, Michael P.; Fast, James E.; Rodriguez, Douglas C.; Taubman, Matthew S.; Wilen, Christopher D.; Wood, Lynn S.; Wright, Michael E.

2014-10-05T23:59:59.000Z

189

Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering  

SciTech Connect (OSTI)

Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.

Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Primetzhofer, D. [Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, S-75120 Uppsala (Sweden); Kurapov, D.; Arndt, M.; Rudigier, H. [Oerlikon Balzers Coating AG, Iramali 18, LI-9496 Balzers, Principality of Liechtenstein (Liechtenstein)

2014-09-07T23:59:59.000Z

190

Ultrashort pulse high repetition rate laser system for biological tissue processing  

DOE Patents [OSTI]

A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

1998-02-24T23:59:59.000Z

191

Ultrashort pulse high repetition rate laser system for biological tissue processing  

DOE Patents [OSTI]

A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

Neev, Joseph (Laguna Beach, CA); Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Glinsky, Michael E. (Livermore, CA); Stuart, Brent C. (Fremont, CA); Perry, Michael D. (Livermore, CA); Feit, Michael D. (Livermore, CA); Rubenchik, Alexander M. (Livermore, CA)

1998-01-01T23:59:59.000Z

192

ADONIS, high count-rate HP-Ge {gamma} spectrometry algorithm: Irradiated fuel assembly measurement  

SciTech Connect (OSTI)

ADONIS is a digital system for gamma-ray spectrometry, developed by CEA. This system achieves high count-rate gamma-ray spectrometry with correct dynamic dead-time correction, up to, at least, more than an incoming count rate of 3.10{sup 6} events per second. An application of such a system at AREVA NC's La Hague plant is the irradiated fuel scanning facility before reprocessing. The ADONIS system is presented, then the measurement set-up and, last, the measurement results with reference measurements. (authors)

Pin, P. [AREVA NC La Hague - Nuclear Measurement Team, 50444 Beaumont-Hague Cedex (France); Barat, E.; Dautremer, T.; Montagu, T. [CEA - Saclay, LIST, Electronics and Signal Processing Laboratory, 91191 Gif sur Yvette (France); Normand, S. [CEA - Saclay, LIST, Sensors and Electronic Architectures Laboratory, 91191 Gif sur Yvette (France)

2011-07-01T23:59:59.000Z

193

Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings  

SciTech Connect (OSTI)

The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M{sub w} = 1500 g mol{sup -1}) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M{sub w} = 300, 475, 1100 g mol{sup -1}), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

Wang, Yapei; Pitet, Louis M.; Finlay, John A.; Brewer, Lenora H.; Cone, Gemma; Betts, Douglas E.; Callow, Maureen E.; Callow, James A.; Wendt, Dean E.; Hillmyer, Marc A.; DeSimone, Joseph M. (Birmingham UK); (NCSU); (UNC); (Cal. Polytech.); (UMM)

2013-03-07T23:59:59.000Z

194

High-Dose-Rate Brachytherapy Alone for Localized Prostate Cancer in Patients at Moderate or High Risk of Biochemical Recurrence  

SciTech Connect (OSTI)

Purpose: To evaluate genitourinary (GU) and gastrointestinal (GI) morbidity and biochemical control of disease in patients with localized prostate adenocarcinoma treated with escalating doses per fraction of high-dose rate brachytherapy alone. Methods and Materials: A total of 197 patients were treated with 34 Gy in four fractions, 36 Gy in four fractions, 31.5 Gy in three fractions, or 26 Gy in two fractions. Median follow-up times were 60, 54, 36, and 6 months, respectively. Results: Incidence of early Grade {>=} 3 GU morbidity was 3% to 7%, and Grade 4 was 0% to 4%. During the first 12 weeks, the highest mean International Prostate Symptom Score (IPSS) value was 14, and between 6 months and 5 years it was 8. Grade 3 or 4 early GI morbidity was not observed. The 3-year actuarial rate of Grade 3 GU was 3% to 16%, and was 3% to 7% for strictures requiring surgery (4-year rate). An incidence of 1% Grade 3 GI events was seen at 3 years. Late Grade 4 GU or GI events were not observed. At 3 years, 99% of patients with intermediate-risk and 91% with high-risk disease were free of biochemical relapse (log-rank p = 0.02). Conclusions: There was no significant difference in urinary and rectal morbidity between schedules. Biochemical control of disease in patients with intermediate and high risk of relapse was good.

Hoskin, Peter [Cancer Centre, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Rojas, Ana, E-mail: arc03@btconnect.com [Cancer Centre, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Lowe, Gerry; Bryant, Linda; Ostler, Peter; Hughes, Rob; Milner, Jessica; Cladd, Helen [Cancer Centre, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom)

2012-03-15T23:59:59.000Z

195

Super-water-repellent Al{sub 2}O{sub 3} coating films with high transparency  

SciTech Connect (OSTI)

The authors have prepared transparent, super-water-repellent coating films of alumina on glass plates by a combination of geometric and chemical approaches. The contact angle for water in the films was 165{degree} and the transmittance for visible light was higher than 92%. A roughness of 20 to 50 nm was obtained, which is too small to scatter visible light, while the degree of roughness was great enough to enhance the water-repellent properties together with the chemical effect of a fluorine-containing agent and gave a super-water-repellent surface. The coatings have great potential for practical applications such as eyeglasses, cover glasses for solar cells, windshields of automobiles, and so on.

Tadanaga, Kiyoharu; Katata, Noriko; Minami, Tsutomu [Osaka Prefecture Univ., Sakai, Osaka (Japan). Dept. of Applied Materials Science

1997-04-01T23:59:59.000Z

196

Compact X-ray Source using a High Repetition Rate Laser and Copper Linac  

E-Print Network [OSTI]

A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and RF photoinjector powered by a single ultrastable RF transmitter at x-band RF frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The 100 kHz repetition rate is orders of magnitude beyond existing high brightness copper linacs. The entire accelerator is approximately 1 meter long and produces hard x-rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for m...

Graves, W S; Brown, P; Carbajo, S; Dolgashev, V; Hong, K -H; Ihloff, E; Khaykovich, B; Lin, H; Murari, K; Nanni, E A; Resta, G; Tantawi, S; Zapata, L E; Kärtner, F X; Moncton, D E

2014-01-01T23:59:59.000Z

197

High-energy irradiation and mass loss rates of hot Jupiters in the solar neighborhood  

E-Print Network [OSTI]

Giant gas planets in close proximity to their host stars experience strong irradiation. In extreme cases photoevaporation causes a transonic, planetary wind and the persistent mass loss can possibly affect the planetary evolution. We have identified nine hot Jupiter systems in the vicinity of the Sun, in which expanded planetary atmospheres should be detectable through Lyman alpha transit spectroscopy according to predictions. We use X-ray observations with Chandra and XMM-Newton of seven of these targets to derive the high-energy irradiation level of the planetary atmospheres and the resulting mass loss rates. We further derive improved Lyman alpha luminosity estimates for the host stars including interstellar absorption. According to our estimates WASP-80 b, WASP-77 b, and WASP-43 b experience the strongest mass loss rates, exceeding the mass loss rate of HD 209458 b, where an expanded atmosphere has been confirmed. Furthermore, seven out of nine targets might be amenable to Lyman alpha transit spectroscopy...

Salz, M; Czesla, S; Schmitt, J H M M

2015-01-01T23:59:59.000Z

198

Tribology and coatings  

SciTech Connect (OSTI)

The future use of fuel-efficient, low-emission, advanced transportation systems (for example, those using low-heat-rejection diesel engines or advanced gas turbines) presents new challenges to tribologists and materials scientists. High service temperatures, corrosive environments, and extreme contact pressures are among the concerns that make necessary new tribological designs, novel materials, and effective lubrication concepts. Argonne is working on methods to reduce friction, wear and corrosion, such as soft metal coatings on ceramics, layered compounds, diamond coatings, and hard surfaces.

NONE

1995-06-01T23:59:59.000Z

199

Grain growth behavior and high-temperature high-strain-rate tensile ductility of iridium alloy DOP-26  

SciTech Connect (OSTI)

This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the new-process iridium-based DOP-26 alloy used for the Cassini space mission. This alloy was developed at Oak Ridge National Laboratory (ORNL) in the early 1980`s and is currently used by NASA for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. Included within this report are data generated on grain growth in vacuum or low-pressure oxygen environments; a comparison of grain growth in vacuum of the clad vent set cup material with sheet material; effect of grain size, test temperature, and oxygen exposure on high-temperature high-strain-rate tensile ductility; and grain growth in vacuum and high-temperature high-strain-rate tensile ductility of welded DOP-26. The data for the new-process material is compared to available old-process data.

McKamey, C.G.; Gubbi, A.N.; Lin, Y.; Cohron, J.W.; Lee, E.H.; George, E.P.

1998-04-01T23:59:59.000Z

200

Effect of high strain rates on peak stress in a Zr-based bulk metallic glass  

SciTech Connect (OSTI)

The mechanical behavior of Zr{sub 41.25}Ti{sub 13.75}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} (LM-1) has been extensively characterized under quasistatic loading conditions; however, its mechanical behavior under dynamic loading conditions is currently not well understood. A Split-Hopkinson pressure bar (SHPB) and a single-stage gas gun are employed to characterize the mechanical behavior of LM-1 in the strain-rate regime of 10{sup 2}-10{sup 5}/s. The SHPB experiments are conducted with a tapered insert design to mitigate the effects of stress concentrations and preferential failure at the specimen-insert interface. The higher strain-rate plate-impact compression-and-shear experiments are conducted by impacting a thick tungsten carbide (WC) flyer plate with a sandwich sample comprising a thin bulk metallic glass specimen between two thicker WC target plates. Specimens employed in the SHPB experiments failed in the gage-section at a peak stress of approximately 1.8 GPa. Specimens in the high strain-rate plate-impact experiments exhibited a flow stress in shear of approximately 0.9 GPa, regardless of the shear strain-rate. The flow stress under the plate-impact conditions was converted to an equivalent flow stress under uniaxial compression by assuming a von Mises-like material behavior and accounting for the plane strain conditions. The results of these experiments, when compared to the previous work conducted at quasistatic loading rates, indicate that the peak stress of LM-1 is essentially strain rate independent over the strain-rate range up to 10{sup 5}/s.

Sunny, George; Yuan Fuping; Prakash, Vikas [Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7222 (United States); Lewandowski, John [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7222 (United States)

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes  

SciTech Connect (OSTI)

High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length {proportional_to}4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, can be expressed in Arrhenius form as k{sub OH+Cyclopentane}=(1.90{+-}0.30) x 10{sup -10}exp(-1705{+-}56 K/T) (813-1341 K), k{sub OH+Cyclohexane}=(1.86{+-}0.24) x 10{sup -10}exp(-1513{+-}123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane}=(2.02{+-}0.19) x 10{sup -10}exp(-1799{+-}96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane}=(2.55{+-}0.30) x 10{sup -10}exp(-1824{+-}114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane}=1.390 x 10{sup -16}T{sup 1.779}exp(97 K/T)cm{sup 3} molecule{sup -1}s{sup -1} (209-1341 K), k{sub OH+Cyclohexane}=3.169 x 10{sup -16}T{sup 1.679}exp(119 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane}=6.903 x 10{sup -18}T{sup 2.148}exp(536 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane}=2.341 x 10{sup -18}T{sup 2.325}exp(602 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the first three reactions in order to provide reliable extrapolations of the rate constants from 250-2000 K. The results of the theoretical predictions for OH + cyclohexane and OH + methylcyclopentane were sufficient to make a theoretical prediction for OH + methylcyclohexane. The present recommended rate expressions for OH with cyclohexane, and methylcyclohexane, give rate constants that are 15-25% higher (over the T-range 800-1300 K) than the rate constants utilized in recent modeling efforts aimed at addressing the oxidation of cyclohexane and methylcyclohexane. The current measurements reduce the uncertainties in rate constants for the primary cycloalkane consumption channel in a high temperature oxidation environment. (author)

Sivaramakrishnan, R.; Michael, J.V. [Chemical Sciences and Engineering Division, D-193, Bldg. 200, Argonne National Laboratory, Argonne, IL 60439 (United States)

2009-05-15T23:59:59.000Z

202

Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes.  

SciTech Connect (OSTI)

High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length 4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm3 molecule-1 s-1, can be expressed in Arrhenius form as k{sub OH+Cyclopentane} = (1.90 {+-} 0.30) x 10{sup -10} exp(-1705 {+-} 156 K/T) (813-1341 K), k{sub OH+Cyclohexane} = (1.86 {+-} 0.24) x 10{sup -10} exp(-1513 {+-} 123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane} = (2.02 {+-} 0.19) x 10{sup -10} exp(-1799 {+-} 96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane} = (2.55 {+-} 0.30) x 10{sup -10} exp(-1824 {+-} 114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane} = 1.390 x 10{sup -16}T{sup 1.779} exp(97 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (209-1341 K), k{sub OH+Cyclohexane} = 3.169 x 10{sup -16} T{sup 1.679} exp(119 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane} = 6.903 x 10{sup -18}T{sup 2.148} exp(536 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane} = 2.341 x 10{sup -18}T{sup 2.325} exp(602 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the first three reactions in order to provide reliable extrapolations of the rate constants from 250-2000 K. The results of the theoretical predictions for OH + cyclohexane and OH + methylcyclopentane were sufficient to make a theoretical prediction for OH + methylcyclohexane. The present recommended rate expressions for OH with cyclohexane, and methylcyclohexane, give rate constants that are 15-25% higher (over the T-range 800-1300 K) than the rate constants utilized in recent modeling efforts aimed at addressing the oxidation of cyclohexane and methylcyclohexane. The current measurements reduce the uncertainties in rate constants for the primary cycloalkane consumption channel in a high temperature oxidation environment.

Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

2009-05-01T23:59:59.000Z

203

Ceramic-metallic coatings by electron beam physical vapor deposition (EB-PVD) process  

SciTech Connect (OSTI)

Electron Beam Physical Vapor Deposition (EB-PVD) process is considered to be a technology that has overcome some of the difficulties or problems associated with the chemical vapor deposition (CVD), physical vapor deposition (PVD) and metal spray processes. The EB-PVD process offers many desirable characteristics such as relatively high deposition rates (up to 100-150 {mu}m/minute with an evaporation rate {approx}10-15 Kg/hour,) dense coatings, precise compositional control, columnar and poly-crystalline microstructure, low contamination, and high thermal efficiency. Various metallic and ceramic coatings (oxides, carbides, nitrides) can be deposited at relatively low temperatures. Even elements with low vapor pressure such as molybdenum, tungsten, and carbon are readily evaporated by this process. In addition, EB-PVD is capable of producing multi-layered laminated metallic/ceramic coatings on large components by changing the EB-PVD processing conditions such as ingot composition, part manipulation, and electron beam energy. Attachment of an ion assisted beam source to the EB-PVD offers additional benefits such as dense coatings with improved adhesion. In addition, textured coatings can be obtained that are desirable in many applications such as cutting tools. This laboratory has started a new thrust in the coating area by the EB-PVD process. The microstructure of thermal barrier ceramic coatings (i.e., yttria stabilized zirconia) developed by the EB-PVD process will be presented.

Wolfe, D.E.; Singh, J. [Pennsylvania State Univ., State College, PA (United States)

1995-12-31T23:59:59.000Z

204

Nuclear reaction rates and energy in stellar plasmas : The effect of highly damped modes  

E-Print Network [OSTI]

The effects of the highly damped modes in the energy and reaction rates in a plasma are discussed. These modes, with wavenumbers $k \\gg k_{D}$, even being only weakly excited, with less than $k_{B}T$ per mode, make a significant contribution to the energy and screening in a plasma. When the de Broglie wavelength is much less than the distance of closest approach of thermal electrons, a classical analysis of the plasma can

Merav Opher; Luis O. Silva; Dean E. Dauger; Viktor K. Decyk; John M. Dawson

2001-05-09T23:59:59.000Z

205

MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1  

SciTech Connect (OSTI)

This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in wasteloading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

2010-01-04T23:59:59.000Z

206

Development of high rate MSGCS overview of results from RD28  

E-Print Network [OSTI]

Many laboratories world-wide have contributed to the R&D project RD-28 at CERN (development of high rate micro-strip gas chambers). Various aspects of the design and use of the detector have been studied, in particular those connected with long-term operation in a high radiation flux. This paper summarizes some major outcomes of the research: the development of controlled resistivity substrates, the studies of pollution-induced ageing processes, the effects of substrate and metallization on performance, the operating characteristics in beam conditions.

Sauli, Fabio

1998-01-01T23:59:59.000Z

207

Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries  

E-Print Network [OSTI]

12 for High Rate Li-ion Batteries A. Jaiswal 1 , C. R. Hornenext generation of Li-ion batteries for consumer electronics

Jaiswal, A.

2010-01-01T23:59:59.000Z

208

Coatings on reflective mask substrates  

DOE Patents [OSTI]

A process for creating a mask substrate involving depositing: 1) a coating on one or both sides of a low thermal expansion material EUVL mask substrate to improve defect inspection, surface finishing, and defect levels; and 2) a high dielectric coating, on the backside to facilitate electrostatic chucking and to correct for any bowing caused by the stress imbalance imparted by either other deposited coatings or the multilayer coating of the mask substrate. An film, such as TaSi, may be deposited on the front side and/or back of the low thermal expansion material before the material coating to balance the stress. The low thermal expansion material with a silicon overlayer and a silicon and/or other conductive underlayer enables improved defect inspection and stress balancing.

Tong, William Man-Wai (Oakland, CA); Taylor, John S. (Livermore, CA); Hector, Scott D. (Oakland, CA); Mangat, Pawitter J. S. (Gilbert, AZ); Stivers, Alan R. (San Jose, CA); Kofron, Patrick G. (San Jose, CA); Thompson, Matthew A. (Austin, TX)

2002-01-01T23:59:59.000Z

209

Ionization rate coefficients and induction times in nitrogen at high values of E/N  

SciTech Connect (OSTI)

Electron-impact ionization rate coefficients in nitrogen at values of E/N, the ratio of the electric field to the neutral density, up to 12 000 Td (1 Td = 10/sup -17/ V cmS), are reported. In addition, we report experimental measurements of the ionization induction time, the time during the early portion of an applied electric field when the electron energy distribution function is transient and the plasma is characterized by nonexponential growth of the electron density. For nitrogen, we show that the induction period is approximately equal to the inverse of the ionization frequency for a large E/N range. Time-dependent Boltzmann calculations of the electron energy distribution function yield instantaneous ionization rates that are in good agreement with both the measured ionization rates and the induction period. The measurements were made in an electrodeless cell contained in an S-band waveguide immersed in a dc magnetic field and subjected to a pulsed rf electric field at cyclotron resonance. We show that our measurements are equivalent to experiments in dc electric fields; the equivalent dc electric field strength being uniquely related to the rf electric field strength. The use of an rf field for these high-E/N measurements circumvents complications that would be introduced by electrode effects. This is the first direct measurement of ionization rates at these extreme values of E/N.

Hays, G.N.; Pitchford, L.C.; Gerardo, J.B.; Verdeyen, J.T.; Li, Y.M.

1987-09-01T23:59:59.000Z

210

Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals  

SciTech Connect (OSTI)

Pseudocapacitors aim to maintain the high power density of supercapacitors while increasing the energy density towards those of energy dense storage systems such as lithium ion batteries. Recently discovered intercalation pseudocapacitors (e.g. Nb2O5) are particularly interesting because their performance is seemingly not limited by surface reactions or structures, but instead determined by the bulk crystalline structure of the material. We study ordered polymorphs of Nb2O5 and detail the mechanism for the intrinsic high rates and energy density observed for this class of materials. We find that the intercalating atom (lithium) forms a solid solution adsorbing at specific sites in a network of quasi-2D NbOx faces with x {1.3, 1.67, or 2}, donating electrons locally to its neighboring atoms, reducing niobium. Open channels in the structure have low diffusion barriers for ions to migrate between these sites (Eb 0.28 0.44 eV) comparable to high-performance solid electrolytes. Using a combination of complementary theoretical methods we rationalize this effect in LixNb2O5 for a wide range of compositions (x) and at finite temperatures. Multiple adsorption sites per unit-cell with similar adsorption energies and local charge transfer result in high capacity and energy density, while the interconnected open channels lead to low cost diffusion pathways between these sites, resulting in high power density. The nano-porous structure exhibiting local chemistry in a crystalline framework is the origin of high-rate pseudocapacitance in this new class of intercalation pseudocapacitor materials. This new insight provides guidance for improving the performance of this family of materials.

Ganesh, Panchapakesan [ORNL] [ORNL; Kent, P. R. C. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Sumpter, Bobby G [ORNL] [ORNL; Lubimtsev, Andrew A [ORNL] [ORNL

2013-01-01T23:59:59.000Z

211

High swelling rates observed in neutron-irradiated V-Cr and V-Si binary alloys  

SciTech Connect (OSTI)

Additions of 5 to 14 wt% chromium to vanadium lead to very large swelling rates during neutron irradiation of the binary alloys, with swelling increasing strongly at higher irradiation temperatures. Addition of 2 wt% silicon to vanadium also leads to very large swelling rates but swelling decreases with increasing irradiation temperature. Addition of 1 wt% zirconium does not yield high swelling rates, however.

Garner, F.A.; Gelles, D.S. (Pacific Northwest Lab., Richland, WA (United States)); Takahashi, H.; Ohnuki, S.; Kinoshita, H. (Hokkaido Univ., Sapporo (Japan)); Loomis, B.A. (Argonne National Lab., IL (United States))

1991-11-01T23:59:59.000Z

212

Effect of SOFC Interconnect-Coating Interactions on Coating Properties and Performance  

SciTech Connect (OSTI)

The high operating temperature of solid oxide fuel cells (SOFCs) provides good fuel flexibility which expands potential applications, but also creates materials challenges. One such challenge is the interconnect material, which was the focus of this project. In particular, the objective of the project was to understand the interaction between the interconnect alloy and ceramic coatings which are needed to minimize chromium volatilization and the associated chromium poisoning of the SOFC cathode. This project focused on coatings based on manganese cobalt oxide spinel phases (Mn,Co)3O4, which have been shown to be effective as coatings for ferritic stainless steel alloys. Analysis of diffusion couples was used to develop a model to describe the interaction between (Mn,Co)3O4 and Cr2O3 in which a two-layer reaction zone is formed. Both layers form the spinel structure, but the concentration gradients at the interface appear like a two-phase boundary suggesting that a miscibility gap is present in the spinel solid solution. A high-chromium spinel layer forms in contact with Cr2O3 and grows by diffusion of manganese and cobalt from the coating material to the Cr2O3. The effect of coating composition, including the addition of dopants, was evaluated and indicated that the reaction rate could be decreased with additions of iron, titanium, nickel and copper. Diffusion couples using stainless steel alloys (which form a chromia scale) had some similarities and some differences as compared to those with Cr2O3. The most notable difference was that the high-chromium spinel layer did not form in the diffusion couples with stainless steel alloys. This difference can be explained using the reaction model developed in this project. In particular, the chromia scale grows at the expense of the alloy, the high-chromia layer grows at the expense of chromia scale and the high-chromia layer is consumed by diffusion of chromium into the coating material. If the last process (dissolution of high-chromium spinel phase) is faster than the second process (formation of high-chromium spinel phase), the high-chromium layer may be consumed. The other important result of this mechanism is that it could result in a constant scale thickness if the scale forms at the same rate as it is consumed. This helps to explain the unexpected observation that the area specific resistance (ASR) of a SOFC with a (Mn,Co)3O4-coated ferritic stainless steel cathode becomes constant after long exposures. The project also evaluated the possibility of reducing the chromium content in a stainless steel alloy using experimental alloys. The conclusion of this evaluation is that at least 17-18% chromium is needed for good oxidation resistance is needed even if the alloy is coated with a spinel coating. Additional details on these findings are provided in a later section of this report and in the publications listed below.

Jeffrey W. Fergus

2012-09-05T23:59:59.000Z

213

High-Dose-Rate Brachytherapy Boost for Prostate Cancer: Comparison of Two Different Fractionation Schemes  

SciTech Connect (OSTI)

Purpose: This is a retrospective study comparing our experience with high-dose-rate (HDR) brachytherapy boost for prostate cancer, using two different fractionation schemes, 600 cGy Multiplication-Sign 3 fractions (patient group 1) and 950 cGy Multiplication-Sign 2 fractions (patient group 2). Methods and Materials: A total of 165 patients were treated for prostate cancer using external beam radiation therapy up to a dose of 45 Gy, followed by an HDR brachytherapy prostate radiation boost. Between July 1997 and Nov 1999, 64 patients were treated with an HDR boost of 600 cGy Multiplication-Sign 3 fractions; and between June 2000 and Nov 2005, 101 patients were treated with an HDR boost of 950 cGy Multiplication-Sign 2 fractions. All but 9 patients had at least one of the following risk features: pretreatment prostate-specific antigen (PSA) level >10, a Gleason score {>=}7, and/or clinical stage T3 disease. Results: Median follow-up was 105 months for group 1 and 43 months for group 2. Patients in group 2 had a greater number of high-risk features than group 1 (p = 0.02). Adjusted for comparable follow-up, there was no difference in biochemical no-evidence-of-disease (bNED) rate between the two fractionation scheme approaches, with 5-year Kaplan-Meier estimates of 93.5% in group 1 and 87.3% in group 2 (p = 0.19). The 5-year estimates of progression-free survival were 86% for group 1 and 83% for group 2 (p = 0.53). Among high-risk patients, there were no differences in bNED or PFS rate due to fractionation. Conclusions: Results were excellent for both groups. Adjusted for comparable follow-up, no differences were found between groups.

Kaprealian, Tania [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Weinberg, Vivian [Biostatistics and Computational Biology Core, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Speight, Joycelyn L. [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Gottschalk, Alexander R. [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Roach, Mack [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Shinohara, Katsuto [Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Hsu, I.-Chow, E-mail: IHsu@radonc.ucsf.edu [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States)

2012-01-01T23:59:59.000Z

214

A numerical investigation of high-rate gas flow for gravel-packed completions  

E-Print Network [OSTI]

OF SCIENCE December 1983 Major Subject: Petroleum Engineering A NUMERICAL INVESTIGATION OF HIGH-RATE GAS FLOW FOR GRAVEL-PACKED COMPLETIONS A Thesis by JAMES KENYON FORREST Approved as to style and content by: C. . WU ( Chairman of Coamittee) R... used a radius of 30rw. In order to investigate this, several runs were made with various model radii. Three runs were made to determine the effect of radial discretization and model radius on the simulation results. One run used a radius of 30r...

Forrest, James Kenyon

1983-01-01T23:59:59.000Z

215

The study of the neurophysiology of high strain rate nerve injury  

E-Print Network [OSTI]

on NeuronsCa2+ Ca2+ Glutamate Ca2+ Ca2+ DAGi/Go PLC Ca2+Ca2+ Ca++/Calmodulin Ca2+ storesL-Arg Ca2+ Ca2+ Ca2+NOS Ca2+ CaM Kinase NO + Free radicals CDKs peroxynitrite Phosphorylated protein Phosphorylated protein Protein Synthesis Protein... THE STUDY OF THE NEUROPHYSIOLOGY OF HIGH STRAIN RATE NERVE INJURY A Dissertation by IN HONG YANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Yang, In Hong

2004-09-30T23:59:59.000Z

216

The compressive response of porcine adipose tissue from low to high strain rate Kerstyn Comley, Norman Fleck*  

E-Print Network [OSTI]

engi- neering models for tissue damage due to dynamic loading, such as air blast and sand blast, sports pressure bar Constitutive testing Ogden model a b s t r a c t Subcutaneous adipose tissue has been tested injury and high rate needle-free drug delivery, there is a need to measure the high strain rate response

Fleck, Norman A.

217

Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran, Branko N. Popov*  

E-Print Network [OSTI]

Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran at high discharge rates. # 2003 Elsevier Science B.V. All rights reserved. Keywords: Lithium-ion batteries collectors can affect up to different degrees the capacity fade of lithium-ion batteries [1­5]. Quantifying

Popov, Branko N.

218

Enhancing DNA binding rate using optical trapping of high-density gold nanodisks  

SciTech Connect (OSTI)

We present the dynamic study of optical trapping of fluorescent molecules using high-density gold nanodisk arrays. The gold nanodisks were fabricated by electron beam lithography with a diameter of 500 nm and a period of 1 ?m. Dark-field illumination showed ?15 times enhancement of fluorescence near edges of nanodisks. Such enhanced near-field generated an optical trapping force of ?10 fN under 3.58 × 10{sup 3} W/m{sup 2} illumination intensity as calculated from the Brownian motions of 590 nm polystyrene beads. Kinetic observation of thiolated DNA modified with Cy5 dye showed different binding rates of DNA under different illumination intensity. The binding rate increased from 2.14 × 10{sup 3} s{sup ?1} (I = 0.7 × 10{sup 3} W/m{sup 2}) to 1.15 × 10{sup 5} s{sup ?1} (I = 3.58 × 10{sup 3} W/m{sup 2}). Both enhanced fluorescence and binding rate indicate that gold nanodisks efficiently improve both detection limit and interaction time for microarrays.

Lin, En-Hung; Pan, Ming-Yang [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China) [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China); Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529 (China); Lee, Ming-Chang [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China)] [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China); Wei, Pei-Kuen, E-mail: pkwei@sinica.edu.tw [Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529 (China) [Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529 (China); Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan (China)

2014-03-15T23:59:59.000Z

219

Cavity-enhanced field-free molecular alignment at high repetition rate  

E-Print Network [OSTI]

Extreme ultraviolet frequency combs are a versatile tool with applications including precision measurement, strong-field physics, and solid-state physics. Here we report on an application of extreme ultraviolet frequency combs and their driving lasers to studying strong-field effects in molecular systems. We perform field-free molecular alignment and high-order hamonic generation with aligned molecules in a gas jet at 154 MHz repetition rate using a high-powered optical frequency comb inside a femtosecond enhancement cavity. The cavity-enhanced system provides means to reach suitable intensities to study field-free molecular alignment and enhance the observable effects of the molecule-field interaction. We observe modulations of the driving field, arising from the nature of impulsive stimulated Raman scattering responsible for coherent molecular rotations. We foresee impact of this work on the study of molecule-based strong-field physics, with improved precision and a more fundamental understanding of the int...

Benko, Craig; Allison, Thomas K; Labaye, François; Ye, Jun

2015-01-01T23:59:59.000Z

220

Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser  

SciTech Connect (OSTI)

The surface damage threshold of undoped bulk <110> GaP induced by a high repetition rate femtosecond pulse at 1040 nm with a duration of 61 fs was studied. The threshold value was obtained by a linear fit of the incident single pulse fluence and was confirmed with a breakdown test around the threshold level. The result will be useful in high intensity, high repetition rate laser applications and ultrafast processes.

Li Yi; Liu Feng; Li Yanfeng; Chai Lu; Xing Qirong; Hu Minglie; Wang Chingyue

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Progress to Develop an Advanced Solar-Selective Coating  

SciTech Connect (OSTI)

The progress to develop a durable advanced solar-selective coating will be described. Experimental work has focused on modeling high-temperature, solar-selective coatings; depositing the individual layers and modeled coatings; measuring the optical, thermal, morphology, and compositional properties and using the data to validate the modeled and deposited properties; re-optimizing the coating; and testing the coating performance and durability.

Kennedy, C. E.

2008-03-01T23:59:59.000Z

222

Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries  

DOE Patents [OSTI]

Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

Deng, Haixia; Belharouak, Ilias; Amine, Khalil

2012-10-02T23:59:59.000Z

223

Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks  

SciTech Connect (OSTI)

The requirements of low cost and high-tempurature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigatedt he performance of steel plates with multilayer coatings consisting of CrN for electrical conductivity and CrAIN for oxidation resistance. The coatings were deposited usin large area filterd arc deposition technolgy, and subsequently annealed in air for up to 25 hours at 800 degrees celsius. The composition, structer and morphology of the coated plates were characterized using RBS, nuclear reaction analysis, AFM and TEM techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitute. Electrical resistance was measured at room temperature.

Smith, Richard J.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

2004-06-01T23:59:59.000Z

224

Fuel-disruption experiments under high-ramp-rate heating conditions. [LMFBR  

SciTech Connect (OSTI)

This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident.

Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

1983-10-01T23:59:59.000Z

225

Microcalorimeter Spectroscopy at High Pulse Rates: a Multi-Pulse Fitting Technique  

E-Print Network [OSTI]

Transition edge sensor microcalorimeters can measure x-ray and gamma-ray energies with very high energy resolution and high photon-collection efficiency. For this technology to reach its full potential in future x-ray observatories, each sensor must be able to measure hundreds or even thousands of photon energies per second. Current "optimal filtering" approaches to achieve the best possible energy resolution work only for photons well isolated in time, a requirement in direct conflict with the need for high-rate measurements. We describe a new analysis procedure to allow fitting for the pulse height of all photons even in the presence of heavy pulse pile-up. In the limit of isolated pulses, the technique reduces to the standard optimal filtering with long records. We employ reasonable approximations to the noise covariance function in order to render multi-pulse fitting computationally viable even for very long data records. The technique is employed to analyze x-ray emission spectra at 600 eV and 6 keV at r...

Fowler, J W; Doriese, W B; Fischer, D A; Jaye, C; Joe, Y I; O'Neil, G C; Swetz, D S; Ullom, J N

2015-01-01T23:59:59.000Z

226

Corrosion resistant coating  

DOE Patents [OSTI]

A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

Wrobleski, Debra A. (Los Alamos, NM); Benicewicz, Brian C. (Los Alamos, NM); Thompson, Karen G. (Orlando, FL); Bryan, Coleman J. (Merritt Island, FL)

1997-01-01T23:59:59.000Z

227

Corrosion resistant coating  

DOE Patents [OSTI]

A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

1997-08-19T23:59:59.000Z

228

Massive star formation via high accretion rates and early disk-driven outflows  

E-Print Network [OSTI]

We present an investigation of massive star formation that results from the gravitational collapse of massive, magnetized molecular cloud cores. We investigate this by means of highly resolved, numerical simulations of initial magnetized Bonnor-Ebert-Spheres that undergo collapse and cooling. By comparing three different cases - an isothermal collapse, a collapse with radiative cooling, and a magnetized collapse - we show that massive stars assemble quickly with mass accretion rates exceeding 10^-3 Msol/yr. We confirm that the mass accretion during the collapsing phase is much more efficient than predicted by selfsimilar collapse solutions, i.e. dM/dt ~ c^3/G. We find that during protostellar assembly the mass accretion reaches 20 - 100 c^3/G. Furthermore, we determined the self-consistent structure of bipolar outflows that are produced in our three dimensional magnetized collapse simulations. These outflows produce cavities out of which radiation pressure can be released, thereby reducing the limitations on the final mass of massive stars formed by gravitational collapse. Moreover, we argue that the extraction of angular momentum by disk-threaded magnetic fields and/or by the appearance of bars with spiral arms significantly enhance the mass accretion rate, thereby helping the massive protostar to assemble more quickly.

Robi Banerjee; Ralph E. Pudritz

2006-12-22T23:59:59.000Z

229

Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material  

E-Print Network [OSTI]

Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

Abbasi, Akbar

2015-01-01T23:59:59.000Z

230

A low-cost, high-resolution, video-rate imaging optical radar  

SciTech Connect (OSTI)

Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

1998-04-01T23:59:59.000Z

231

Long-range Cooper pair splitter with high entanglement production rate  

E-Print Network [OSTI]

Cooper pairs in the superconductor are a natural source of spin entanglement. The existing proposals of the Cooper pair splitter can only realize a low efficiency of entanglement production, and its size is constrained by the superconducting coherence length. Here we show that a long-range Cooper pair splitter can be implemented in a normal metal-superconductor-normal metal (NSN) junction by driving a supercurrent in the S. The supercurrent results in a band gap modification of the S, which significantly enhances the crossed Andreev reflection (CAR) of the NSN junction and simultaneously quenches its elastic cotunneling. Therefore, a high entanglement production rate close to its saturation value can be achieved by the inverse CAR. Interestingly, in addition to the conventional entangled electron states between opposite energy levels, novel entangled states with equal energy can also be induced in our proposal.

Wei Chen; D. N. Shi; D. Y. Xing

2015-01-05T23:59:59.000Z

232

EXPECTED TRIGGER RATES OF HIGH PT JETS AND DIRECT PHOTONS IN THE STAR EMC.  

SciTech Connect (OSTI)

The STAR experiment at RHIC is a large acceptance detector. The electromagnetic calorimeter (EMC) will provide a sensitive trigger to study high p{sub t} jets and hard photons in AuAu, pp, and pAu collisions. The capability for the EMC to trigger on jets and direct photons was studied for trigger level 0. Trigger efficiencies and expected process rates were obtained for pp reactions. Results from pp interactions will be essential to the interpretation of AuAu results as well as for the spin physics program. These studies were performed with the standard STAR software chain which includes GEANT and EMC simulations. The HIJING event generator was used to provide input for the simulations.

BELT-TONJES,M. FOR THE STAR COLLABORATION

1999-03-21T23:59:59.000Z

233

Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material  

E-Print Network [OSTI]

Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

Akbar Abbasi; Mustfa Hassanzadeh

2014-10-27T23:59:59.000Z

234

Nuclear photonics at ultra-high counting rates and higher multipole excitations  

SciTech Connect (OSTI)

Next-generation {gamma} beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 10{sup 13}{gamma}/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses ({approx}120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a {gamma} pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 10{sup 18}{gamma}/s, thus introducing major challenges in view of pile-up. Novel {gamma} optics will be applied to monochromatize the {gamma} beam to ultimately {Delta}E/E{approx}10{sup -6}. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding {gamma} detectors, e.g. based on advanced scintillator technology (e.g. LaBr{sub 3}(Ce)) allow for measurements with count rates as high as 10{sup 6}-10{sup 7}{gamma}/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr{sub 3} detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.

Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhaeuser, R.; Guenther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N. [Fakultaet f. Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Fakultaet f. Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching, Germany and Max-Planck-Institute f. Quantum Optics, Garching (Germany); IFIN-HH, Bucharest-Magurele (Romania); Physik Department E12,Technische Universitaet Muenchen, Garching (Germany); Max-Planck-Institute f. Quantum Optics, Garching (Germany); Institut Laue-Langevin, Grenoble (France); Physik Department E12,Technische Universitaet Muenchen, Garching (Germany); Institut f. Kernphysik, Technische Universitaet Darmstadt (Germany)

2012-07-09T23:59:59.000Z

235

A theoretical study on gas-phase coating of aerosol particles  

SciTech Connect (OSTI)

In situ coating of aerosol particles by gas-phase and surface reaction in a flow reactor is modeled accounting for scavenging (capture of small particles by large particles) and simultaneous surface reaction along with the finite sintering rate of the scavenged particles. A log-normal size distribution is assumed for the host and coating particles to describe coagulation and a monodisperse size distribution is used for the coating particles to describe sintering. As an example, coating of titania particles with silica in a continuous flow hot-wall reactor was modeled. High temperatures, low reactant concentrations, and large host particle surface areas favored smoother coatings in the parameter range: temperature 1,700--1,800 K, host particle number concentration 1 {times} 10{sup 5}--1 {times} 10{sup 7} No./cm{sup 3}, average host particle size 1 {micro}m, inlet coating reactant concentration (SiCl{sub 4}) 2 {times} 10{sup {minus}7}--2 {times} 10{sup {minus}10} mol/cm{sup 3}, and various surface reaction rates. The fraction of silica deposited on the TiO{sub 2} particles decreased by more than seven times with a hundredfold increase in SiCl{sub 4} inlet concentration because of the resulted increase in the average SiO{sub 2} particle size under the assumed coating conditions. Increasing the TiO{sub 2} particle number concentration resulted in higher scavenging efficiency of SiO{sub 2}. In the TiO{sub 2}/SiO{sub 2} system it is likely that surface reaction as well as scavenging play important roles in the coating process. The results agree qualitatively with experimental observations of TiO{sub 2} particles coated in situ with silica.

Jain, S.; Fotou, G.P.; Kodas, T.T. [Univ. of New Mexico, Albuquerque, MN (United States)] [Univ. of New Mexico, Albuquerque, MN (United States)

1997-01-01T23:59:59.000Z

236

The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC  

SciTech Connect (OSTI)

Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

1998-05-01T23:59:59.000Z

237

Spatially resolved measurements of kinematics and flow-induced birefringence in worm-like micellar solutions undergoing high rate deformations  

E-Print Network [OSTI]

Worm-like micellar solutions are model non-Newtonian systems on account of their well understood linear viscoelastic behavior. Their high deformation rate, non-linear rheological response, however, remains inadequately ...

Ober, Thomas J. (Thomas Joseph)

2010-01-01T23:59:59.000Z

238

Morphological and electrochemical characterization of electrodeposited Zn–Ag nanoparticle composite coatings  

SciTech Connect (OSTI)

Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn–Ag composite coatings. The Zn–Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, 1 and 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanoparticles, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn–Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn–Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. - Highlights: • Synthesis of Ag nanoparticles with an average size of 23 nm • Fabrication of Zn/nano Ag composite coating on mild steel • Composite coatings showed better corrosion resistance. • Optimization of particle concentration is necessary.

Punith Kumar, M.K.; Srivastava, Chandan, E-mail: csrivastava@materials.iisc.ernet.in

2013-11-15T23:59:59.000Z

239

Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations  

SciTech Connect (OSTI)

Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about ?3%. When the source was positioned at the skin surface, dose differences were smaller than ?1% for {sup 60}Co and {sup 192}Ir, yet ?3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were ?7% for {sup 60}Co, ?0.6% for {sup 192}Ir, and ?2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For lower energy radionuclides like {sup 169}Yb, bolus may be needed; and (iii) for the interstitial case, at least a 0.1 cm bolus is advised for {sup 60}Co to avoid underdosing superficial target layers. For {sup 192}Ir and {sup 169}Yb, no bolus is needed. For those cases where no bolus is needed, its use might be detrimental as the lack of radiation scatter may be beneficial to the patient, although the 2% tolerance for dose calculation accuracy recommended in the AAPM TG-56 report is not fulfilled.

Granero, Domingo, E-mail: dgranero@eresa.com [Department of Radiation Physics, ERESA, Hospital General Universitario, 46014 Valencia (Spain)] [Department of Radiation Physics, ERESA, Hospital General Universitario, 46014 Valencia (Spain); Perez-Calatayud, Jose [Radiotherapy Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain)] [Radiotherapy Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Vijande, Javier [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and IFIC (UV-CSIC), Paterna 46980 (Spain)] [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and IFIC (UV-CSIC), Paterna 46980 (Spain); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain)] [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)] [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

2014-02-15T23:59:59.000Z

240

Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates  

DOE Patents [OSTI]

A method of fabricating device quality, thin-film a-Si:H for use as semiconductor material in photovoltaic and other devices, comprising in any order; positioning a substrate in a vacuum chamber adjacent a plurality of heatable filaments with a spacing distance L between the substrate and the filaments; heating the filaments to a temperature that is high enough to obtain complete decomposition of silicohydride molecules that impinge said filaments into Si and H atomic species; providing a flow of silicohydride gas, or a mixture of silicohydride gas containing Si and H, in said vacuum chamber while maintaining a pressure P of said gas in said chamber, which, in combination with said spacing distance L, provides a P.times.L product in a range of 10-300 mT-cm to ensure that most of the Si atomic species react with silicohydride molecules in the gas before reaching the substrate, to thereby grow a a-Si:H film at a rate of at least 50 .ANG./sec.; and maintaining the substrate at a temperature that balances out-diffusion of H from the growing a-Si:H film with time needed for radical species containing Si and H to migrate to preferred bonding sites.

Mahan, Archie Harvin (Golden, CO); Molenbroek, Edith C. (Rotterdam, NL); Gallagher, Alan C. (Louisville, CO); Nelson, Brent P. (Golden, CO); Iwaniczko, Eugene (Lafayette, CO); Xu, Yueqin (Golden, CO)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cryogenic Treatment of Production Components in High-Wear Rate Wells  

SciTech Connect (OSTI)

Deep Cryogenic Tempering (DCT) is a specialized process whereby the molecular structure of a material is ''re-trained'' through cooling to -300 F and then heating to +175-1100 F. Cryocon, Inc. (hereafter referred to as Cryocon) and RMOTC entered an agreement to test the process on oilfield production components, including rod pumps, rods, couplings, and tubing. Three Shannon Formation wells were selected (TD about 500 ft) based on their proclivity for high component wear rates. Phase 1 of the test involved operation for a nominal 120 calendar day period with standard, non-treated components. In Phase 2, treated components were installed and operated for another nominal 120 calendar day period. Different cryogenic treatment profiles were used for components in each well. Rod pumps (two treated and one untreated) were not changed between test phases. One well was operated in pumped-off condition, resulting in abnormal wear and disqualification from the test. Testing shows that cryogenic treatment reduced wear of rods, couplers, and pump barrels. Testing of production tubing produced mixed results.

Milliken, M.

2002-04-29T23:59:59.000Z

242

The Effect of Oxygen Contamination on the Amorphous Structure of Thermally Sprayed Coatings of Cu47Ti33Zr11Ni8Si1  

SciTech Connect (OSTI)

this research has shown that it is possible to deposit coatings of gas atomized Cu{sub 47}Ti{sub 33}Zr{sub 11}Ni{sub 8}Si{sub 1} powders containing various levels of oxygen contamination using plasma arc spray methods. The structure of the coating was found to depend primarily on the spray environment, with an argon atmosphere producing the most amorphous samples for a given starting powder. The oxygen content of the coatings reflected the relative levels of the oxygen contamination in the starting powders. The analysis of the starting powders displayed oxygen contents ranging from 0.125-0.79 wt.%. It was shown that higher oxygen levels lead to more crystalline structure in the starting powders as determined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). This trend was found to be true for both the starting powders and for the plasma sprayed coatings. Chemical composition for all starting powders was very close to the nominal alloy composition. Chemical changes in the coatings involved the loss of Cu in coatings where high levels of oxidation were found. Cavitation erosion testing of selected coatings showed a weak trend that coatings prepared by vacuum plasma spray (VPS) had lower damage rates, but there was no clear data to indicate which coating parameters were superior. The range of data produced from testing duplicate coating was too wide to provide a good statistical measure of cavitation erosion resistance. of interest was the fact that when coatings began to show damage from cracking, all samples of a group showed similar damage and usually the damage pattern was somewhat unique to that group of samples. Failure of the coatings was due to features inherent to plasma arc spray (PAS) coating (i.e., pores, splat boundaries, oxide inclusions) rather than the mechanical characteristics of the amorphous alloy.

Matthew Frank Besser

2002-05-27T23:59:59.000Z

243

Mass-Transport-Limited Electrodeposition of High-Surface-Area Coatings for Surface Acoustic Wave Sensor Technology  

SciTech Connect (OSTI)

The sensitivity of surface acoustic wave (SAW) sensors has been enhanced by increasing the active surface area of these devices. Electrodepositions of Ni, Pd, and Pt in a mass-transport-limited mode with trace foreign metals yield highly dendritic crystal structures of uniform macroscopic thickness. The concentration of metal ions, supporting electrolyte, agitation, and additives greatly impact the crystal morphology of the deposit. This methodology can be used simply and economically to provide high-area films in selective regions.

Ricco, Antonio J.; Staton, Alan W.; Yelton, W. Graham

1999-06-10T23:59:59.000Z

244

Mass-Transport-Limited Electrodeposition of High-Surface-Area Coatings for Surface Acoustic Wave Sensor Technology  

SciTech Connect (OSTI)

The sensitivity of surface acoustic wave (SAW) sensors has been enhanced by increasing the active surface area of these devices, Electrodepositions of Ni, Pd, and Pt in a mass-transport-limited mode with trace foreign metals yield highly dendritic crystal structures of uniform macroscopic thickness. The concentration of metal ions, supporting electrolyte, agitation, and additives greatly impact the crystal morphology of the deposit. This methodology can be used simply and economically to provide high-area films in selective regions.

Ricco, A.J.; Staton, A.W.; Yelton, W.G.

1999-06-07T23:59:59.000Z

245

Design and implementation of a high data rate wireless system using Low-Density Parity-Check codes  

E-Print Network [OSTI]

The aim of this research is to design a high performance, high data rate, low cost wireless communications system for use in a typical outdoor environment. The use of Low-Density Parity-check (LDPC) codes as the forward error correction scheme...

Bhatt, Tejas Maheshbhai

2000-01-01T23:59:59.000Z

246

Coated carbon nanotube array electrodes  

DOE Patents [OSTI]

The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

2006-12-12T23:59:59.000Z

247

Coated carbon nanotube array electrodes  

DOE Patents [OSTI]

The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

Ren, Zhifeng (Newton, MA); Wen, Jian (Newton, MA); Chen, Jinghua (Chestnut Hill, MA); Huang, Zhongping (Belmont, MA); Wang, Dezhi (Wellesley, MA)

2008-10-28T23:59:59.000Z

248

Low-coke rate operation under high PCI at Kobe No. 3 BF  

SciTech Connect (OSTI)

Kobe No. 3 blast furnace (BF) suffered tremendous damage when the Great Hanshin-Awaji Earthquake rocked the area on January 17, 1995. However, working as quickly as possible to dig out of the burden and rehabilitate various facilities, the company managed to restart the No. 3 BF on April 2. After the restart, which went smoothly, production was shifted into the low coke rate operation which was being promoted before the disaster. In October, 1995, only seven months after the restart, the nation record of 296 kg/t low coke rate could be achieved. Subsequently, in January, 1996, coke rate reached 290 kg/t and the low coke rate operation was renewed. Since that time the same level of coke rate has been maintained. The paper discusses how low coke rate operation was achieved.

Matsuo, Tadasu; Kanazuka, Yasuo; Hoshino, Koichi; Yoshida, Yasuo; Kitayama, Syuji; Ishiwaki, Shiro [Kobe Steel Ltd. (Japan). Kobe Works

1997-12-31T23:59:59.000Z

249

Understanding the operation and use of high temperature electrochemical corrosion rate probes  

SciTech Connect (OSTI)

Electrochemical corrosion rate probes were constructed and tested along with mass loss coupons in a N2/O2/CO2 plus water vapor environment. Temperatures ranged from 450 to 600 C. Corrosion rates for ash-covered mild steel, 304L SS, and 316L SS probes using electrochemical techniques were a function of time, temperature, and process environment. Correlation between electrochemical and mass loss corrosion rates was good.

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (InterCorr International Inc.); Eden, David A. (InterCorr International Inc.)

2004-01-01T23:59:59.000Z

250

An investigation of evaluation methods for internal FBE pipe coatings  

SciTech Connect (OSTI)

The corrosivity of CO{sub 2}-containing water used for injection into formations is very high. One of the means for mitigating this corrosion is through the use of internal Fusion Bonded Epoxy (FBE) pipe coatings. However, these are very demanding services for coatings. Pressures and temperatures are high enough in some cases to severely stress the coating. Most FBE coatings are permeated by CO{sub 2}, and when pressures are released, blistering of the coating may occur. This compromises the integrity of the coating which may result in premature failure of the coating followed by corrosion of the pipe metal. The identification of coatings with good performance is absolutely essential. The failure of the coating alone can result in great losses due to the initial cost of the coating application, plus potential operating problems. When corrosive penetrations of the pipe occur, the costs escalate even higher as a result of required maintenance and down time. This paper describes the test work conducted to determine how to evaluate coatings for such services, and to determine which coatings will give successful, long-term performance. Test methods contained in an industry standard have been validated, and suitable coatings identified. Future test work needed to add to these findings has also been recommended. Although this work was designed for CO{sub 2} services, it does give valuable insight into tests that are required to properly qualify FBE coatings for non-CO{sub 2} services.

Thompson, S.P. [Thompson (Stanley P.), Paris, TX (United States); Varughese, K. [Al-Qahtani Pipe Coating Terminal, Dammam (Saudi Arabia)

1994-12-31T23:59:59.000Z

251

On the interest of carbon-coated plasma reactor for advanced gate stack etching processes  

SciTech Connect (OSTI)

In integrated circuit fabrication the most wide spread strategy to achieve acceptable wafer-to-wafer reproducibility of the gate stack etching process is to dry-clean the plasma reactor walls between each wafer processed. However, inherent exposure of the reactor walls to fluorine-based plasma leads to formation and accumulation of nonvolatile fluoride residues (such as AlF{sub x}) on reactor wall surfaces, which in turn leads to process drifts and metallic contamination of wafers. To prevent this while keeping an Al{sub 2}O{sub 3} reactor wall material, a coating strategy must be used, in which the reactor is coated by a protective layer between wafers. It was shown recently that deposition of carbon-rich coating on the reactor walls allows improvements of process reproducibility and reactor wall protection. The authors show that this strategy results in a higher ion-to-neutral flux ratio to the wafer when compared to other strategies (clean or SiOCl{sub x}-coated reactors) because the carbon walls load reactive radical densities while keeping the same ion current. As a result, the etching rates are generally smaller in a carbon-coated reactor, but a highly anisotropic etching profile can be achieved in silicon and metal gates, whose etching is strongly ion assisted. Furthermore, thanks to the low density of Cl atoms in the carbon-coated reactor, silicon etching can be achieved almost without sidewall passivation layers, allowing fine critical dimension control to be achieved. In addition, it is shown that although the O atom density is also smaller in the carbon-coated reactor, the selectivity toward ultrathin gate oxides is not reduced dramatically. Furthermore, during metal gate etching over high-k dielectric, the low level of parasitic oxygen in the carbon-coated reactor also allows one to minimize bulk silicon reoxidation through HfO{sub 2} high-k gate dielectric. It is then shown that the BCl{sub 3} etching process of the HfO{sub 2} high-k material is highly selective toward the substrate in the carbon-coated reactor, and the carbon-coating strategy thus allows minimizing the silicon recess of the active area of transistors. The authors eventually demonstrate that the carbon-coating strategy drastically reduces on-wafer metallic contamination. Finally, the consumption of carbon from the reactor during the etching process is discussed (and thus the amount of initial deposit that is required to protect the reactor walls) together with the best way of cleaning the reactor after a silicon etching process.

Ramos, R.; Cunge, G.; Joubert, O. [Freescale Semiconductor Inc., 850 Rue Jean Monnet, 38921 Crolles Cedex (France) and Laboratoire des Technologies de la Microelectronique, CNRS, 17 Rue des Martyrs (c/o CEA-LETI), 38054 Grenoble Cedex 9 (France); Laboratoire des Technologies de la Microelectronique, CNRS, 17 Rue des Martyrs (c/o CEA-LETI), 38054 Grenoble Cedex 9 (France)

2007-03-15T23:59:59.000Z

252

Cavitation erosion of silver plated coating at different temperatures and pressures  

SciTech Connect (OSTI)

Cavitation often occurs in inducer pumps used for space rockets. Silver plated coating on the inducer liner faces the damage of cavitation. Therefore, it is important to study about the cavitation erosion resistance for silver plated coating at several operating conditions in the inducer pumps. In this study, the cavitation erosion tests were carried for silver plated coating in deionized water and ethanol at several liquid temperatures (273K–400K) and pressures (0.10MPa–0.48MPa). The mass loss rate is evaluated in terms of thermodynamic parameter ? proposed by Brennen [9], suppression pressure p–p{sub v} (p{sub v}: saturated vapor pressure) and acoustic impedance ?c (?: density and c: sound speed). Cavitation bubble behaviors depending on the thermodynamic effect and the liquid type were observed by high speed video camera. The mass loss rate is formulated by thermodynamic parameter ?, suppression pressure p–p{sub v} and acoustic impedance ?c.

Hattori, Shuji; Motoi, Yoshihiro [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fuku-shi, Fukui 910-8507 (Japan); Kikuta, Kengo; Tomaru, Hiroshi [IHI Corperation, TOYOSU IHI BUILDING, 1-1, Toyosu 3-chome, Koto-ku, Tokyo 1358710 (Japan)

2014-04-11T23:59:59.000Z

253

Flow coating apparatus and method of coating  

DOE Patents [OSTI]

Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

2014-03-11T23:59:59.000Z

254

Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications  

SciTech Connect (OSTI)

Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

Shwetha, Bondel [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Ravikumar, Manickam, E-mail: drravikumarm@gmail.com [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Supe, Sanjay S.; Sathiyan, Saminathan [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Lokesh, Vishwanath [Department of Radiotherapy, Kidwai, Memorial Institute of Oncology, Bangalore (India); Keshava, Subbarao L. [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India)

2012-04-01T23:59:59.000Z

255

WATER ICE IN HIGH MASS-LOSS RATE OH/IR STARS  

SciTech Connect (OSTI)

We investigate water-ice features in spectral energy distributions (SEDs) of high mass-loss rate OH/IR stars. We use a radiative transfer code which can consider multiple components of dust shells to make model calculations for various dust species including water ice in the OH/IR stars. We find that the model SEDs are sensitively dependent on the location of the water-ice dust shell. For two sample stars (OH 127.8+0.0 and OH 26.5+0.6), we compare the detailed model results with the infrared observational data including the spectral data from the Infrared Space Observatory (ISO). For the two sample stars, we reproduce the crystalline water-ice features (absorption at 3.1 {mu}m and 11.5 {mu}m; emission at 44 and 62 {mu}m) observed by ISO using a separate component of the water-ice dust shell that condensed at about 84-87 K (r {approx} 1500-1800 AU) as well as the silicate dust shell that condensed at about 1000 K (r {approx} 19-25 AU). For a sample of 1533 OH/IR stars, we present infrared two-color diagrams (2CDs) using the Infrared Astronomical Satellite and AKARI data compared with theoretical model results. We find that the theoretical models clearly show the effects of the crystalline water-ice features (absorption at 11.5 {mu}m and emission at 62 {mu}m) on the 2CDs.

Suh, Kyung-Won; Kwon, Young-Joo, E-mail: kwsuh@chungbuk.ac.kr [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City 361-763 (Korea, Republic of)] [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City 361-763 (Korea, Republic of)

2013-01-10T23:59:59.000Z

256

Coal plasticity at high heating rates and temperatures. Final technical progress report  

SciTech Connect (OSTI)

Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

Gerjarusak, S.; Peters, W.A.; Howard, J.B.

1995-05-01T23:59:59.000Z

257

Carbonaceous film coating  

DOE Patents [OSTI]

A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris(1,3,2)diazaborine(1,2-a:1'2'-c:1''2''-e)borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

Maya, L.

1988-04-27T23:59:59.000Z

258

In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters  

SciTech Connect (OSTI)

Purpose: To show the feasibility of clinical implementation of OSLDs for high dose-rate (HDR) in vivo dosimetry for gynecological and breast patients. To discuss how the OSLDs were characterized for an Ir-192 source, taking into account low gamma energy and high dose gradients. To describe differences caused by the dose calculation formalism of treatment planning systems.Methods: OSLD irradiations were made using the GammaMedplus iX Ir-192 HDR, Varian Medical Systems, Milpitas, CA. BrachyVision versions 8.9 and 10.0, Varian Medical Systems, Milpitas, CA, were used for calculations. Version 8.9 used the TG-43 algorithm and version 10.0 used the Acuros algorithm. The OSLDs (InLight Nanodots) were characterized for Ir-192. Various phantoms were created to assess calculated and measured doses and the angular dependence and self-absorption of the Nanodots. Following successful phantom measurements, patient measurements for gynecological patients and breast cancer patients were made and compared to calculated doses.Results: The OSLD sensitivity to Ir-192 compared to 6 MV is between 1.10 and 1.25, is unique to each detector, and changes with accumulated dose. The measured doses were compared to those predicted by the treatment planning system and found to be in agreement for the gynecological patients to within measurement uncertainty. The range of differences between the measured and Acuros calculated doses was -10%-14%. For the breast patients, there was a discrepancy of -4.4% to +6.5% between the measured and calculated doses at the skin surface when the Acuros algorithm was used. These differences were within experimental uncertainty due to (random) error in the location of the detector with respect to the treatment catheter.Conclusions: OSLDs can be successfully used for HDR in vivo dosimetry. However, for the measurements to be meaningful one must account for the angular dependence, volume-averaging, and the greater sensitivity to Ir-192 gamma rays than to 6 MV x-rays if 6 MV x-rays were used for OSLD calibration. The limitations of the treatment planning algorithm must be understood, especially for surface dose measurements. Use of in vivo dosimetry for HDR brachytherapy treatments is feasible and has the potential to detect and prevent gross errors. In vivo HDR brachytherapy should be included as part of the QA for a HDR brachytherapy program.

Sharma, Renu; Jursinic, Paul A. [Department of Radiation Oncology, West Michigan Cancer Center, 200 North Park Street, Kalamazoo, Michigan 49007 (United States)

2013-07-15T23:59:59.000Z

259

EERE Desal using Superhydrophobic Coatings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coating's surface; preventing salt creep, and thus virtually eliminates salt induced corrosion on any surface coated. 2. These coatings consist primarily of diatomaceous earth as...

260

Fabrication of highly transparent diamond-like carbon anti-reflecting coating for Si solar cell application  

SciTech Connect (OSTI)

ARC grade highly transparent unhydrogenated diamond-like carbon (DLC) films were produced, directly from a-C target, using RF magnetron sputtering deposition technique, for optoelectronic applications. Optical band gap, transmittance, reflectance, sp{sup 3} fraction, I{sub D}/I{sub G}, density, and refractive index of the films have been estimated with the help of optical tools like Uv-vis spectrophotometer, ellipsometer and micro-Raman. Optimum ARC-qualities have been identified in low-temperature grown DLC films at an Ar pressure of 4 mTorr in the reactor, accomplishing its key requirements for use in silicon solar cells.

Banerjee, Amit, E-mail: erdd@iacs.res.in; Das, Debajyoti, E-mail: erdd@iacs.res.in [Nano-Science Group, Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

2014-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Single-step CVD growth of high-density carbon nanotube forests on metallic Ti coatings through catalyst engineering  

E-Print Network [OSTI]

was carried out by heating the substrates under 500 sccm pure H2, 15 mbar from room 8 temperature to 650?C in 3min, then switching off the heater power and letting the samples to cool down with the H2 flow on. As shown in Fig. 3a, for the conventional... , Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 2004;306:1362-4. [4] Hart AJ, Slocum AH. Rapid growth and flow-mediated nucleation of millimeter...

Zhong, Guofang; Xie, Rongsi; Yang, Junwei; Robertson, John

2013-10-29T23:59:59.000Z

262

A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration  

SciTech Connect (OSTI)

A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio [Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome (Italy)

2013-02-15T23:59:59.000Z

263

Stent Thrombogenicity Early in High Risk Interventional Settings is Driven by Stent Design and Deployment, and Protected by Polymer-Drug Coatings  

E-Print Network [OSTI]

Background—Stent thrombosis is a lethal complication of endovascular intervention. Concern has been raised about the inherent risk associated with specific stent designs and drug-eluting coatings, yet clinical and animal ...

Kolandaivelu, Kumaran

264

Composite ceria-coated aerogels and methods of making the same  

DOE Patents [OSTI]

Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.

Eyring, Edward M; Ernst, Richard D; Turpin, Gregory C; Dunn, Brian C

2013-05-07T23:59:59.000Z

265

Design Studies for a High-Repetition-Rate FEL Facility at LBNL.  

E-Print Network [OSTI]

Repetition-Rate FEL Facility at LBNL* A. B ELKACEM , J. M. BBerkeley National Laboratory (LBNL) is working to addressof several divisions at LBNL is working to define the

CORLETT, J.

2009-01-01T23:59:59.000Z

266

Direct first-principles simulation of a high-performance electron emitter: Lithium-oxide-coated diamond surface  

SciTech Connect (OSTI)

We examined the field emission properties of lithium(Li)/oxygen(O)-co-terminated diamond (001) surface [C(001)-LiO] through real-time electron dynamics simulation under an applied field. The current emitted from this surface was found to be more than four-fold that emitted by an H-terminated (001) surface, the latter being a typical negative electron affinity system. This high performance is attributed to the Li layer, which bends the potential wall of O-induced electron pockets down in the direction of vacuum, thus facilitating electron emission. Detailed analysis of the emitted electrons and the profile of the self-consistent potential elucidated that the role of O atoms changes from an electron barrier on OH-terminated diamond surfaces to an outlet for electron emission on C(001)-LiO.

Miyamoto, Yoshiyuki, E-mail: yoshi-miyamoto@aist.go.jp; Miyazaki, Takehide [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Takeuchi, Daisuke; Yamasaki, Satoshi [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); JST, ALCA, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

2014-09-28T23:59:59.000Z

267

Vapor deposited samarium zirconate thermal barrier coatings Hengbei Zhao a,  

E-Print Network [OSTI]

Thermal barrier coatings The rare earth zirconates (M2Zr2O7, M=LaGd) have a low intrinsic thermal conductivity and high temperature phase stability making them attractive candidates for thermal barrier coating conditions and the coating composition, structure, texture, pore morphology, and thermal conductivity

Wadley, Haydn

268

Reaction, transformation and delamination of samarium zirconate thermal barrier coatings  

E-Print Network [OSTI]

cycling between 100 and 1100 °C. This cycling eventually led to delamination of the coatings, with failure thick (50­100 m) metallic "bond coat" applied to the turbine airfoil alloy to slow the kinetics of oxidation and promote TGO adherence. The bond coat has a high aluminum concentration to promote slow

Wadley, Haydn

269

INTERNATIONAL STUDIES OF ENHANCED WASTE LOADING AND IMPROVED MELT RATE FOR HIGH ALUMINA CONCENTRATION NUCLEAR WASTE GLASSES  

SciTech Connect (OSTI)

The goal of this study was to determine the impacts of glass compositions with high aluminum concentrations on melter performance, crystallization and chemical durability for Savannah River Site (SRS) and Hanford waste streams. Glass compositions for Hanford targeted both high aluminum concentrations in waste sludge and a high waste loading in the glass. Compositions for SRS targeted Sludge Batch 5, the next sludge batch to be processed in the Defense Waste Processing Facility (DWPF), which also has a relatively high aluminum concentration. Three frits were selected for combination with the SRS waste to evaluate their impact on melt rate. The glasses were melted in two small-scale test melters at the V. G. Khlopin Radium Institute. The results showed varying degrees of spinel formation in each of the glasses. Some improvements in melt rate were made by tailoring the frit composition for the SRS feeds. All of the Hanford and SRS compositions had acceptable chemical durability.

Fox, K; David Peeler, D; James Marra, J

2008-09-11T23:59:59.000Z

270

FinalReport for completed IPP-0110 and 0110A Projects:"High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications"  

SciTech Connect (OSTI)

The DOE-supported IPP (Initiatives for Proliferation Prevention) Project, IPP-0110, and its accompanying 'add-on project' IPP-0110A, entitled 'High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications' was a collaborative project involving the Lawrence Berkeley National Laboratory (LBNL) as the U.S. DOE lab; the US surface modification company, Phygen, Inc., as the US private company involved; and the High Current Electronics Institute (HCEI) of the Russian Academy of Sciences, Tomsk, Siberia, Russia, as the NIS Institute involved. Regular scientific research progress meetings were held to which personnel came from all participating partners. The meetings were held mostly at the Phygen facilities in Minneapolis, Minnesota (with Phygen as host) with meetings also held at Tomsk, Russia (HCEI as host), and at Berkeley, California (LBNL as host) In this way, good exposure of all researchers to the various different laboratories involved was attained. This report contains the Final Reports (final deliverables) from the Russian Institute, HCEI. The first part is that for IPP-0110A (the 'main part' of the overall project) and the second part is that for the add-on project IPP-0110A. These reports are detailed, and contain all aspects of all the research carried out. The project was successful in that all deliverables as specified in the proposals were successfully developed, tested, and delivered to Phygen. All of the plasma hardware was designed, made and tested at HCEI, and the performance was excellent. Some of the machine and performance parameters were certainly of 'world class'. The goals and requirements of the IPP Project were well satisfied. I would like to express my gratitude to the DOE IPP program for support of this project throughout its entire duration, and for the unparalleled opportunity thereby provided for all of the diverse participants in the project to join in this collaborative research. The benefits are superb, as measured in quite a number of different ways.

Brown, Ian

2009-09-01T23:59:59.000Z

271

In-situ formation of multiphase deposited thermal barrier coatings  

DOE Patents [OSTI]

A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.

Subramanian, Ramesh

2004-01-13T23:59:59.000Z

272

Optical channel waveguides written by high repetition rate femtosecond laser irradiation in Li-Zn fluoroborate glass  

E-Print Network [OSTI]

Low loss, optical channel waveguides have been successfully produced by high repetition rate, femtosecond laser inscription in a Li-Zn fluoroborate glass (64.9B2O3 + 25Li2O + 10ZnF2 + 0.1Er2O3). High quality waveguides were produced at 500 kHz, 1 MHz and 2 MHz laser repetition rates, showing a refractive index contrast in the range of 3-6 x 10-3 depending on various fluences. Dependence of experimental parameters such as average laser power, pulse repetition rate and writing speed on the properties of fabricated waveguides has been discussed. The comparison of optical and compositional characterization techniques evidences an enrichment of B and Zn in the guiding region, while F migrates to the heat diffused region of the written structure.

Thomas, Sunil; Solis, Javier; Biju, P R; Unnikrishnan, N V

2015-01-01T23:59:59.000Z

273

Findings in seal coat design  

E-Print Network [OSTI]

Africa (NITRR) and its members Dr. Claude P. Marais, Dr. Alex T. Visser and Dr. C. J. Semmelink for furnishing the relevant data and figures presented in this report. Finally this thesis and accomplishments are dedicated to my project Principal... Volume. 1. Embedment 2. Wear and Degradation. 3. Skid Resistance. 35 40 41 43 44 V SOUTH AFRICANS' RATIONAL APPROACH TO THE DESIGN OF SEAL COATS AND SURFACE TREATMENT. . 50 A. Background. B. Marais' Rational Approach. 1. Aggregate Spread Rate...

Gonzalez Palmer, Miguel Angel

1988-01-01T23:59:59.000Z

274

Spin coating of electrolytes  

DOE Patents [OSTI]

Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

Stetter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-01-01T23:59:59.000Z

275

Estimation of Nucleotide Diversity, Disequilibrium Coefficients, and Mutation Rates from High-Coverage Genome-Sequencing Projects  

E-Print Network [OSTI]

Estimation of Nucleotide Diversity, Disequilibrium Coefficients, and Mutation Rates from High for the binomial sampling of parental alleles at individual nucleotide sites and to eliminate bias from various the average nucleotide heterozygosity and its variance among sites, the pattern of decomposition of linkage

Lynch, Michael

276

Path Prediction for High Issue-Rate Processors Kishore N. Menezes Sumedh W. Sathaye Thomas M. Conte  

E-Print Network [OSTI]

Path Prediction for High Issue-Rate Processors Kishore N. Menezes Sumedh W. Sathaye Thomas M. Conte predict a single branch at a time. Performance improvement is possible by predicting multiple branches in a single cycle. This paper presents a technique to predict paths in a single access. The correlation

Conte, Thomas M.

277

High slip rate for a low seismicity along the Palu-Koro active fault in central Sulawesi (Indonesia)  

E-Print Network [OSTI]

High slip rate for a low seismicity along the Palu-Koro active fault in central Sulawesi (Indonesia, Indonesia Introduction Sulawesi Island, eastern Indonesia, is at the triple junction of the Paci®c (through- ABSTRACT In eastern Indonesia, the Central Sulawesi fault system consists of complex left-lateral strike

Vigny, Christophe

278

JOM, 2010, 62(3): p. 25-26. Symposium Preview: High Strain Rate Behaviors of Composites and Heterogeneous  

E-Print Network [OSTI]

25 JOM, 2010, 62(3): p. 25-26. Symposium Preview: High Strain Rate Behaviors of Composites and Heterogeneous Materials Nikhil Gupta and Kyu Cho The use of composite materials has been rapidly increasing and the usage is now over 8 million tons/year. In a significant advancement, composite materials comprise over

Gupta, Nikhil

279

Multi-piconet Formation to Increase Channel Utilization in IEEE 802.15.3 High-Rate WPAN  

E-Print Network [OSTI]

.15.3 WPAN. 1 Introduction Recently, we have witnessed a noticeable increase of personal devices. The devices physical cables. Wireless Personal Area Networks (WPANs) can con- nect various personal devices within}@ece.skku.ac.kr {jsd, hslee75, tgkwon, chojw}@keti.re.kr Abstract. IEEE 802.15.3 high-rate Wireless Personal Area

Lee, Tae-Jin

280

This work addresses the high-rate session scheduling problem in Fractional Lambda Switching (FS)  

E-Print Network [OSTI]

Multiplexing (such as SONET/SDH) and Wavelength Division Multiplexing (WDM). Yet, Non-Immediate Forwarding (NIF-rate NIF session. An efficient scheduling algorithm, eSSM, is proposed to explore all possibilities in two modes: (1) immediate forwarding (IF) or (2) non-immediate forwarding (NIF). NIF is more

Baldi, Mario

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Metallic coating of microspheres  

SciTech Connect (OSTI)

Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

Meyer, S.F.

1980-08-15T23:59:59.000Z

282

Degradation Mechanisms and Development of Protective Coatings...  

Broader source: Energy.gov (indexed) [DOE]

and Development of Protective Coatings for TES and HTF Containment Materials - F13 Q1 Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems Direct s-CO2...

283

Thermal coatings for titanium-aluminum alloys  

SciTech Connect (OSTI)

Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

Cunnington, G.R.; Clark, R.K.; Robinson, J.C.

1993-04-01T23:59:59.000Z

284

Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper  

SciTech Connect (OSTI)

The spatial distribution of copper ions and atoms in high power impulse magnetron sputtering (HIPIMS) discharges was determined by (i) measuring the ion current to electrostatic probes and (ii) measuring the film thickness by profilometry. A set of electrostatic and collection probes were placed at different angular positions and distances from the target surface. The angular distribution of the deposition rate and the average charge state of the copper species (including ions and neutrals) were deduced.The discharge showed a distinct transition to a high current mode dominated by copper self-sputtering when the applied voltage exceeded the threshold of 535 V. For a lower voltage, the deposition rate was very low and the average charge state was found to be less than 0.4. For higher voltage (and average power), the absolute deposition rates were much higher, but they were smaller than the corresponding direct current (DC) rates if normalized to the same average power. At the high voltage level, the spatial distribution of the average charge state showed some similarities with the distribution of the magnetic field, suggesting that the generation and motion of copper ions is affected by magnetized electrons. At higher voltage, the average charge state increases with the distance from the target and locally may exceed unity, indicating the presence of significant amounts of doubly charged copper ions.

Anders, Andre; Horwat, David; Anders, Andre

2008-05-10T23:59:59.000Z

285

Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption  

SciTech Connect (OSTI)

The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

Hessler, J.P. [Argonne National Laboratory, IL (United States)

1993-12-01T23:59:59.000Z

286

High etching rates of bulk Nb in Ar/Cl{sub 2} microwave discharge  

SciTech Connect (OSTI)

Plasma-based Nb surface treatment provides an excellent opportunity to eliminate surface imperfections and increase the cavity quality factor in important applications such as particle accelerators and cavity quantum electrodynamics, as well as Josephson junctions. In this study, plasma etching of bulk Nb is performed on the surface of disk-shaped samples with the goal of eliminating nonsuperconductive pollutants in the penetration depth region and the mechanically damaged surface layer. The authors have demonstrated that in the microwave glow discharge, an etching rate of 1.5 {mu}m/min can be achieved using Cl{sub 2} as a reactive gas. The influence of plasma parameters such as input power, pressure, and concentration of the reactive gas on the etching rate is determined. Simultaneously, plasma emission spectroscopy was used to estimate the densities of Cl, Cl{sup +}, and Cl{sub 2} under various plasma conditions.

Raskovic, M.; Popovic, S.; Upadhyay, J.; Vuskovic, L.; Phillips, L.; Valente-Feliciano, A.-M. [Department of Physics, Old Dominion University, Norfolk, Virginia 23529 (United States); Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

2009-03-15T23:59:59.000Z

287

Effect of coating time on corrosion behavior of electroless nickel-phosphorus coated powder metallurgy iron specimens  

SciTech Connect (OSTI)

Powder metallurgy iron specimens with porosities in the range 0% to 2% were electroless coated with nickel-phosphorus alloy from baths containing sodium hypophosphite (NaH{sub 2}PO{sub 2}{center_dot}H{sub 2}O). The effect of coating time on thickness and phosphorus content of the deposit was analyzed. The free corrosion potentials and corrosion rates of the coated specimens were obtained by the Tafel extrapolation method in 1.0 M hydrochloric acid (HCl) solution. Corrosion rates of the coated specimens after heat treatment also were studied. The observed corrosion characteristics were explained by the mixed-potential theory.

Singh, D.; Balasubramaniam, R.; Dube, R.K. [Indian Inst. of Tech., Kanpur (India). Dept. of Materials and Metallurgical Engineering

1995-08-01T23:59:59.000Z

288

High-Performance Nanostructured Coating  

Broader source: Energy.gov (indexed) [DOE]

of > 90% and operation temperatures of heat-transfer fluids above 650C. Concentrating Solar Power UNIVERSITY OF CALIFORNIA SAN DIEGO PROGRAM: SunShot CSP R&D 2012 TOPIC:...

289

A High-Rate, Heterogeneous Data Set from the Darpa Urban Challenge  

E-Print Network [OSTI]

This paper describes a data set collected by MIT’s autonomous vehicle Talos during the 2007 DARPA Urban Challenge. Data from a high-precision navigation system, five cameras, 12 SICK planar laser range scanners, and a ...

Huang, Albert S.

290

The impact of school facilities on student achievement, attendance, behavior, completion rate and teacher turnover rate in selected Texas high schools  

E-Print Network [OSTI]

The purpose of this study was to explore the possible relationship between school facility conditions and school outcomes such as student academic achievement, attendance, discipline, completion rate and teacher turnover rate. School facility...

McGowen, Robert Scott

2009-05-15T23:59:59.000Z

291

Coated conductors  

DOE Patents [OSTI]

Articles are provided including a base substrate having a layer of an IBAD oriented material thereon, and, a layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the layer of an IBAD oriented material. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates.

Arendt, Paul N.; Foltyn, Stephen R.; Stan, Liliana; Usov, Igor O.; Wang, Haiyan

2010-06-15T23:59:59.000Z

292

High-Rate Oxygen Reduction in Mixed Nonaqueous Electrolyte Containing Acetonitrile  

SciTech Connect (OSTI)

A mixed nonaqueous electrolyte that contains acetonitrile and propylene carbonate (PC) was found to be suitable for a LiO2 battery with a metallic Li anode. Both the concentration and diffusion coefficient for the dissolved O2 are significantly higher in the mixed electrolyte than those in the pure PC electrolyte. A powder microelectrode was used to investigate the O2 solubility and diffusion coefficient. A 10 mA?cm-2 discharge rate on a gas-diffusion electrode is demonstrated by using the mixed electrolyte in a LiO2 cell.

Zheng D.; Yang X.; Qu D.

2011-12-02T23:59:59.000Z

293

The Stress Corrosion Crack Growth Rate of Alloy 600 Heat Affected Zones Exposed to High Purity Water  

SciTech Connect (OSTI)

Grain boundary chromium carbides improve the resistance of nickel based alloys to primary water stress corrosion cracking (PWSCC). However, in weld heat affected zones (HAZ's), thermal cycles from fusion welding can solutionize beneficial grain boundary carbides, produce locally high residual stresses and strains, and promote PWSCC. The present research investigates the crack growth rate of an A600 HAZ as a function of test temperature. The A600 HAZ was fabricated by building up a gas-tungsten-arc-weld deposit of EN82H filler metal onto a mill-annealed A600 plate. Fracture mechanics based, stress corrosion crack growth rate testing was performed in high purity water between 600 F and 680 F at an initial stress intensity factor of 40 ksi {radical}in and at a constant electrochemical potential. The HAZ samples exhibited significant SCC, entirely within the HAZ at all temperatures tested. While the HAZ samples showed the same temperature dependence for SCC as the base material (HAZ: 29.8 {+-} 11.2{sub 95%} kcal/mol vs A600 Base: 35.3 {+-} 2.58{sub 95%} kcal/mol), the crack growth rates were {approx} 30X faster than the A600 base material tested at the same conditions. The increased crack growth rates of the HAZ is attributed to fewer intergranular chromium rich carbides and to increased plastic strain in the HAZ as compared to the unaffected base material.

George A. Young; Nathan Lewis

2003-04-05T23:59:59.000Z

294

Sacrificial Protective Coating Materials That Can Be Regenerated...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sacrificial Protective Coating Materials That Can Be Regenerated In-Situ to Enable High-Performance Membranes Membrane Technology Provides Energy-Efficient Method to Concentrate...

295

High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program  

SciTech Connect (OSTI)

The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

2007-09-19T23:59:59.000Z

296

Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4  

SciTech Connect (OSTI)

An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

2007-03-28T23:59:59.000Z

297

Remotely-interrogated high data rate free space laser communications link  

DOE Patents [OSTI]

A system and method of remotely extracting information from a communications station by interrogation with a low power beam. Nonlinear phase conjugation of the low power beam results in a high power encoded return beam that automatically tracks the input beam and is corrected for atmospheric distortion. Intracavity nondegenerate four wave mixing is used in a broad area semiconductor laser in the communications station to produce the return beam.

Ruggiero, Anthony J. (Livermore, CA)

2007-05-29T23:59:59.000Z

298

Carbon nanotube coatings as chemical absorbers  

DOE Patents [OSTI]

Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

2004-06-15T23:59:59.000Z

299

Solar selective absorption coatings  

DOE Patents [OSTI]

A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

2003-10-14T23:59:59.000Z

300

Solar selective absorption coatings  

DOE Patents [OSTI]

A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

2004-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

High flow rate nozzle system with production of uniform size droplets  

DOE Patents [OSTI]

Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

Stockel, Ivar H. (Bangor, ME)

1990-01-01T23:59:59.000Z

302

High flow rate nozzle system with production of uniform size droplets  

DOE Patents [OSTI]

Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

Stockel, I.H.

1990-10-16T23:59:59.000Z

303

Development of nondestructive evaluation methods for ceramic coatings.  

SciTech Connect (OSTI)

Various nondestructive evaluation (NDE) technologies are being developed to study the use of ceramic coatings on components in the hot-gas path of advanced low-emission gas-fired turbines. The types of ceramic coatings include thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). TBCs are under development for vanes, blades, and combustor liners to allow hotter gas-path temperatures, and EBCs are under development to reduce environmental damage to high-temperature components made of ceramic matrix composites. The NDE methods will be used to (a) provide data to assess the reliability of new coating application processes, (b) identify defective components that could cause unscheduled outages, (c) track growth rates of defects during component use in engines, and (d) allow rational judgment for replace/repair/re-use decisions regarding components. Advances in TBC application, both electron beam-physical vapor deposition (EB-PVD) and air plasma spraying (APS), are allowing higher temperatures in the hot-gas path. However, as TBCs become ''prime reliant,'' their condition at scheduled or unscheduled outages must be known. NDE methods are under development to assess the condition of the TBC for pre-spall conditions. EB-PVD test samples with up to 70 thermal cycles have been studied by a newly developed method involving polarized laser back-scatter NDE. Results suggest a correlation between the NDE laser data and the TBC/bond-coat topography. This finding is important because several theories directed toward understanding the pre-spall condition suggest that the topography in the thermally grown oxide layer changes significantly as a function of the number of thermal cycles. Tests have also been conducted with this NDE method on APS TBCs. Results suggest that the pre-spall condition is detected for these coatings. One-sided, high-speed thermal imaging also has shown promise for NDE of APS coatings. Testing of SiC/SiC composites for combustor liners has demonstrated that environmental EBCs are required to reduce oxidation-induced recession rates. NDE technologies, primarily one-sided and through-thickness thermal imaging, are under development to detect delaminations and degradation of EBCs. Recent results have demonstrated that NDE thermal image data correctly detected pre-spall regions of a barium-strontium-alumino-silicate coating on melt-infiltrated SiC/SiC. The NDE data were verified with field test data from a combustor liner in a 4.5 MW(e) natural-gas-fired turbine. The shape of the spalled EBC region and the growth of the spalled EBC region after various engine run times were correlated with boroscope image data from field tests. An effort has recently been started to address NDE development for oxide/oxide ceramic composites with an EBC. We will discuss the NDE methods under development for TBCs, recent NDE test results from thermally cycled TBCs, NDE results from EBCs on SiC/SiC, and the new effort directed toward oxide/oxide materials.

Ellingson, W. A.; Deemer, C.; Sun, J. G.; Erdman, S.; Muliere, D.; Wheeler, B.

2002-04-29T23:59:59.000Z

304

The Dependence of the Proton-Triton Nuclear Reaction Rate on the Temperature and Energy Content of the High-Energy Proton Distribution Function  

E-Print Network [OSTI]

The Dependence of the Proton-Triton Nuclear Reaction Rate on the Temperature and Energy Content of the High-Energy Proton Distribution Function

305

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

306

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

Sugama, T.

1997-02-18T23:59:59.000Z

307

Film Coating Process Research and Characterization of TiN Coated Racetrack-type Ceramic Pipe  

E-Print Network [OSTI]

TiN film was coated on the internal face of racetrack-type ceramic pipe by three different methods: radio-frequency sputtering, DC sputtering and DC magnetron sputtering. The deposition rates of TiN film under different coating methods were compared. According to the AFM, SEM, XPS test results,these properties were analyzed, such as TiN film roughness and surface morphology. At the same time, the deposition rates were studied under two types' cathode, Ti wires and Ti plate. According to the SEM test results, Ti plate cathode can improve the TiN/Ti film deposition rate obviously.

Wang, Jie; Zhang, Bo; Wei, Wei; Fan, Le; Pei, Xiangtao; Hong, Yuanzhi; Wang, Yong

2015-01-01T23:59:59.000Z

308

Binder-free Ge-three dimensional graphene electrodes for high-rate capacity Li-ion batteries  

SciTech Connect (OSTI)

A binder-free, high-rate Ge-three dimensional (3D) graphene composite was synthesized by directly depositing Ge film atop 3D graphene grown by microwave plasma chemical vapor deposition on Ni substrate. The Ge-3D graphene structure demonstrates excellent electrochemical performance as a lithium ion battery (LIB) anode with a reversible capacity of 1140 mAh g{sup ?1} at 1/3C over 100 cycles and 835 mAh g{sup ?1} at 8C after 60 cycles, and significantly a discharge capacity of 186 mAh g{sup ?1} was still achieved at 32C. The high capacity and outstanding stability of the Ge-3D graphene composite propose it as a promising electrode in high-performance thin film LIBs.

Wang, C. D.; Chui, Y. S.; Chen, X. F., E-mail: xianfeng.chen@cityu.edu.hk, E-mail: apwjzh@cityu.edu.hk; Zhang, W. J., E-mail: xianfeng.chen@cityu.edu.hk, E-mail: apwjzh@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Li, Y. [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China) [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Department of Polymer Science and Engineering, Soochow University, Suzhou 215123 (China)

2013-12-16T23:59:59.000Z

309

High Strain-Rate Mechanical Behaviour of a Copper Matrix Composite for Nuclear Applications  

E-Print Network [OSTI]

Aim of this work is the investigation of mechanical behaviour of an alumina dispersion strengthened copper, known by the trade name GLIDCOP®, subjected to dynamic loads: it is a composite material with a copper matrix strengthened with aluminium oxide ceramic particles. Since the particle content is quite small the material keeps the OFE copper physical properties, such as thermal and electrical conductivity, but with a higher yield strength, like a mild-carbon steel. Besides, with the addition of aluminium oxide, the good mechanical properties are retained also at high temperatures and the resistance to thermal softening is increased: the second phase blocks the dislocation movement preventing the grain growth. Thanks to these properties GLIDCOP® finds several applications in particle accelerator technologies, where problems of thermal management, combined with structural requirements, play a key role. Currently, it is used for the construction of structural and functional parts of the particle beam collim...

Peroni, L

2012-01-01T23:59:59.000Z

310

Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings  

SciTech Connect (OSTI)

Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Iron-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

Blink, J; Choi, J; Farmer, J

2007-07-09T23:59:59.000Z

311

Corrosion protection of SiC-based ceramics with CVDMullite coatings  

SciTech Connect (OSTI)

Silicon carbide ceramics are the leading candidate materials for use as heat exchangers in advanced combined cycle power plants because of their unique combination of high temperature strength, high thermal conductivity, excellent thermal shock resistance, and good high temperature stability and oxidation resistance. Ceramic coatings are being considered for diesel engine cylinder liners, piston caps, valve faces and seats, piston rings, and for turbine components such as combustors, blades, stators, seals, and bearings. Under such conditions ceramics are better suited to high temperature environments than metals. For the first time, adherent crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance its corrosion/oxidation resistance. Thermodynamic and kinetic considerations have been utilized to produce mullite coatings with a variety of growth rates, compositions, and morphologies. The flexibility of processing can be exploited to produce coated ceramics with properties tailored to specific applications and varied corrosive environments. These corrosive environments include thermal, Na{sub 2}SO{sub 4}, O{sub 2} and coal slag.

Sarin, V.; Auger, M. [Boston Univ., MA (United States)

1997-05-01T23:59:59.000Z

312

Biocatalytic material comprising multilayer enzyme coated fiber  

DOE Patents [OSTI]

The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

2009-11-03T23:59:59.000Z

313

Coated ceramic breeder materials  

DOE Patents [OSTI]

A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

1987-01-01T23:59:59.000Z

314

Thermal barrier coating  

DOE Patents [OSTI]

A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

2001-01-01T23:59:59.000Z

315

Thermal barrier coatings  

DOE Patents [OSTI]

This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

Alvin, Mary Anne (Pittsburg, PA)

2010-06-22T23:59:59.000Z

316

Experimental Study of the Effect of Beam Loading on RF Breakdown Rate in CLIC High-Gradient Accelerating Structures  

E-Print Network [OSTI]

RF breakdown is a key issue for the multi-TeV highluminosity e+e- Compact Linear Collider (CLIC). Breakdowns in the high-gradient accelerator structures can deflect the beam and decrease the desired luminosity. The limitations of the accelerating structures due to breakdowns have been studied so far without a beam present in the structure. The presence of the beam modifies the distribution of the electrical and magnetic field distributions, which determine the breakdown rate. Therefore an experiment has been designed for high power testing a CLIC prototype accelerating structure with a beam present in the CLIC Test Facility (CTF3). A special beam line allows extracting a beam with nominal CLIC beam current and duration from the CTF3 linac. The paper describes the beam optics design for this experimental beam line and the commissioning of the experiment with beam.

Tecker, F; Kelisani, M; Doebert, S; Grudiev, A; Quirante, J; Riddone, G; Syratchev, I; Wuensch, W; Kononenko, O; Solodko, A; Lebet, S

2013-01-01T23:59:59.000Z

317

Using Selective Withdrawal to Coat Microparticles  

E-Print Network [OSTI]

Using Selective Withdrawal to Coat Microparticles Itai Cohen,1 Hui Li,2 James L. Hougland,2 Milan Mrksich,2 Sidney R. Nagel1 We report a method that uses the process of selective withdrawal of one fluid a tube with its orifice slightly above a water-oil interface. Upon increasing the flow rate

Mrksich, Milan

318

Self-assembled nanolaminate coatings (SV)  

SciTech Connect (OSTI)

Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV, UCAV, etc.). The SANC technologies will establish LMA and related US manufacturing capability for commercial and military applications therefore reducing reliance on off-shore development and production of related critical technologies. If these technologies are successfully licensed, production of these coatings in manufactory will create significant technical employment opportunities.

Fan, H.

2012-03-01T23:59:59.000Z

319

Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part II. High dose rate {sup 192}Ir sources  

SciTech Connect (OSTI)

Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR){sup 192}Ir sources, as well as electronic brachytherapy sources. Part I of this paper discussed the applicators used with electronic brachytherapy sources. Part II will discuss those used with HDR {sup 192}Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and{sup 192}Ir sources (Part II). Air-kerma rate measurements for the {sup 192}Ir sources were completed with several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care.

Fulkerson, Regina K., E-mail: rmkenned@gmail.com; Micka, John A.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705 (United States)] [Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705 (United States)

2014-02-15T23:59:59.000Z

320

A novel hohlraum with ultrathin depleted-uranium-nitride coating layer for low hard x-ray emission and high radiation temperature  

E-Print Network [OSTI]

An ultra-thin layer of uranium nitrides (UN) has been coated on the inner surface of the depleted uranium hohlraum (DUH), which has been proved by our experiment can prevent the oxidization of Uranium (U) effectively. Comparative experiments between the novel depleted uranium hohlraum and pure golden (Au) hohlraum are implemented on Shenguang III prototype laser facility. Under the laser intensity of 6*10^14 W/cm2, we observe that, the hard x-ray (> 1.8 keV) fraction of this uranium hohlraum decreases by 61% and the peak intensity of total x-ray flux (0.1 keV ~ 5 keV) increases by 5%. Two dimensional radiation hydrodynamic code LARED are exploited to interpret the above observations. Our result for the first time indicates the advantage of the UN-coated DUH in generating the uniform x-ray field with a quasi Planckian spectrum and thus has important implications in optimizing the ignition hohlraum design.

Guo, Liang; Xing, Peifeng; Li, Sanwei; Yi, Taimin; Kuang, Longyu; Li, Zhichao; Li, Renguo; Wu, Zheqing; Jing, Longfei; Zhang, Wenhai; Zhan, Xiayu; Yang, Dong; Jiang, Bobi; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Li, Yongsheng; Liu, Jie; Huo, Wenyi; Lan, Ke

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Superhard Coating Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4Superhard Coating Systems Superhard Coating Systems

322

Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties  

SciTech Connect (OSTI)

The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

Beardsley, M B

2008-03-26T23:59:59.000Z

323

Pedestal substrate for coated optics  

DOE Patents [OSTI]

A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

Hale, Layton C. (Livermore, CA); Malsbury, Terry N. (Tracy, CA); Patterson, Steven R. (Concord, NC)

2001-01-01T23:59:59.000Z

324

Advances in Concentrating Solar Power Collectors: Mirrors and Solar Selective Coatings  

SciTech Connect (OSTI)

The intention is to explore the feasibility of depositing the coating by lower-cost methods and to perform a rigorous cost analysis after a viable high-temperature solar-selective coating is demonstrated by e-beam.

Kenendy, C. E.

2007-10-10T23:59:59.000Z

325

Protective Coatings for Turbomachinery  

E-Print Network [OSTI]

for power plant efficiency and reliability, the need to prevent corrosion and erosion is growing. Operators, overhaulers, and manufacturers have been using protective coatings for over twenty-five years to prevent erosion and corrosion. The evolution...

McCune, B.; Hilty, L.

326

Friction surfaced Stellite6 coatings  

SciTech Connect (OSTI)

Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

2012-08-15T23:59:59.000Z

327

Barrier Coatings for Refractory Metals and Superalloys  

SciTech Connect (OSTI)

In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

2006-02-23T23:59:59.000Z

328

Aging Studies of Large Area Proportional Chambers under High-Rate Irradiation with $CF_4$-based Mixtures (PART 1)  

E-Print Network [OSTI]

Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance $R$ from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradiation. The possible application of these results to the construction of a large area gaseous detectors for operation in high rate environments is presented.

M. Danilov; Yu. Gilitsky; T. Kvaratschellia; L. Laptin; I. Tichomirov; M. Titov; Yu. Zaitsev

2001-11-23T23:59:59.000Z

329

Aging Studies of Large Area Proportional Chambers under High-Rate Irradiation with $CF_4$-based Mixtures (Part 2)  

E-Print Network [OSTI]

Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance R from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradiation. The possible application of these results to the construction of a large area gaseous detectors for operation in high rate environments is presented.

M. Danilov; Yu. Gilitsky; T. Kvaratschellia; L. Laptin; I. Tichomirov; M. Titov; Yu. Zaitsev

2001-11-23T23:59:59.000Z

330

SiPMs coated with TPB : coating protocol and characterization for NEXT  

E-Print Network [OSTI]

Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless {\\beta}{\\beta} decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifter tetraphenyl butadienne (TPB). In this paper we describe the protocol developed for coating the SiPMs with TPB and the measurements performed for characterizing the coatings as well as the performance of the coated sensors in the UV-VUV range.

Álvarez, V; Ball, M; Batallé, M; Bayarri, J; Borges, F I G; Bolink, H; Brine, H; Cárcel, S; Carmona, J M; Castel, J; Catalá, J M; Cebrián, S; Cervera, A; Chan, D; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Esteve, R; Evtoukhovitch, P; Ferrando, J; Fernandes, L M P; Ferrario, P; Ferreira, A L; Ferrer-Ribas, E; Freitas, E D C; García, S A; Gil, A; Giomataris, I; Goldschmidt, A; Gómez, E; Gómez, H; Gómez-Cadenas, J J; González, K; Gutiérrez, R M; Hauptman, J; Hernando-Morata, J A; Herrera, D C; Herrero, V; Iguaz, F J; Irastorza, I G; Kalinnikov, V; Labarga, L; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martin-Albo, J; Méndez, A M; Miller, T; Moisenko, A; Monrabal, F; Monteiro, C M B; Monzó, J M; Mora, F J; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Aparicio, J L Pérez; Pérez, J; Radicioni, E; Quinto, M; Renner, J; Ripoll, L; Rodriguez, A; Rodriguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Shuman, D; Sofka, C; Sorel, M; Soriano, A; Spieler, H; Toledo, J F; Collell, J Torrent; Tomás, A; Tsamalaidze, Z; Vázquez, D; Velicheva, E; Veloso, J F C A; Villar, J A; Webb, R; Weber, T; White, J T; Yahlali, N

2012-01-01T23:59:59.000Z

331

Boron nitride nanosheets as oxygen-atom corrosion protective coatings  

SciTech Connect (OSTI)

The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion.

Yi, Min [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Shen, Zhigang, E-mail: shenzhg@buaa.edu.cn [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); School of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Zhao, Xiaohu [Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Liang, Shuaishuai [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Liu, Lei [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); School of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)

2014-04-07T23:59:59.000Z

332

Method of fabricating silicon carbide coatings on graphite surfaces  

DOE Patents [OSTI]

The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

Varacalle, Jr., Dominic J. (Idaho Falls, ID); Herman, Herbert (Port Jefferson, NY); Burchell, Timothy D. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

333

Method of fabricating silicon carbide coatings on graphite surfaces  

DOE Patents [OSTI]

The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.

Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.

1994-07-26T23:59:59.000Z

334

PULSAR: A High-Repetition-Rate, High-Power, CE Phase-Locked Laser for the J.R. Macdonald Laboratory at Kansas State University  

SciTech Connect (OSTI)

This instrumentation grant funded the development and installation of a state-of-the-art laser system to be used for the DOE funded research at the J.R. Macdonald Laboratory at Kansas State University. Specifically, we purchased a laser based on the KMLABs Red-Dragon design, which has a high repetition rate of 10-20 kHz crucial for multi-parameter coincidence measurements conducted in our lab. This laser system is carrier-envelope phase (CEP) locked and provides pulses as short as 21 fs directly from the amplifier (see details below). In addition, we have developed a pulse compression setup that provides sub 5 fs pulses and a CEP tagging capability that allows for long measurements of CEP dependent processes.

Ben-Itzhak, Itzik (Itzhak) [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Carnes, Kevin D. [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Cocke, C. Lew [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Fehrenbach, Charles W. [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Kumarappan, Vinod [PULSAR: A High-Repetition-Rate, High-Power, CE Phase-Locked Laser for the J.R. Macdonald Laboratory at Kansas State University; Rudenko, Artem [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Trallero, Carlos [J.R. Macdonald Laboratory, Physics Department, Kansas State University

2014-05-09T23:59:59.000Z

335

High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths  

SciTech Connect (OSTI)

Efficient excitation of dense plasma columns at 100-Hz repetition rate using a tailored pump pulse profile produced a tabletop soft-x-ray laser average power of 0.1 mW at = 13.9 nm and 20 W at = 11.9 nm from transitions of Ni-like Ag and Ni-like Sn, respectively. Lasing on several other transitions with wavelengths between 10.9 and 14.7 nm was also obtained using 0.9-J pump pulses of 5-ps duration from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Hydrodynamic and atomic plasma simulations show that the pump pulse profile, consisting of a nanosecond ramp followed by two peaks of picosecond duration, creates a plasma with an increased density of Ni-like ions at the time of peak temperature that results in a larger gain coefficient over a temporally and spatially enlarged space leading to a threefold increase in the soft-x-ray laser output pulse energy. The high average power of these compact soft-x-ray lasers will enable applications requiring high photon flux. These results open the path to milliwatt-average-power tabletop soft-x-ray lasers.

Reagan, Brendon [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Berrill, Mark A [ORNL] [ORNL; Wernsing, Keith [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Baumgarten, Cory [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Rocca, Jorge [Colorado State University, Fort Collins] [Colorado State University, Fort Collins

2014-01-01T23:59:59.000Z

336

High-Dose-Rate Interstitial Brachytherapy as Monotherapy for Clinically Localized Prostate Cancer: Treatment Evolution and Mature Results  

SciTech Connect (OSTI)

Purpose: To report the clinical outcome of high-dose-rate (HDR) interstitial (IRT) brachytherapy (BRT) as sole treatment (monotherapy) for clinically localized prostate cancer. Methods and Materials: Between January 2002 and December 2009, 718 consecutive patients with clinically localized prostate cancer were treated with transrectal ultrasound (TRUS)-guided HDR monotherapy. Three treatment protocols were applied; 141 patients received 38.0 Gy using one implant in 4 fractions of 9.5 Gy with computed tomography-based treatment planning; 351 patients received 38.0 Gy in 4 fractions of 9.5 Gy, using 2 implants (2 weeks apart) and intraoperative TRUS real-time treatment planning; and 226 patients received 34.5 Gy, using 3 single-fraction implants of 11.5 Gy (3 weeks apart) and intraoperative TRUS real-time treatment planning. Biochemical failure was defined according to the Phoenix consensus, and toxicity was evaluated using Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 52.8 months. The 36-, 60-, and 96-month biochemical control and metastasis-free survival rates for the entire cohort were 97%, 94%, and 90% and 99%, 98%, and 97%, respectively. Toxicity was scored per event, with 5.4% acute grade 3 genitourinary and 0.2% acute grade 3 gastrointestinal toxicity. Late grade 3 genitourinary and gastrointestinal toxicities were 3.5% and 1.6%, respectively. Two patients developed grade 4 incontinence. No other instance of grade 4 or greater acute or late toxicity was reported. Conclusion: Our results confirm IRT-HDR-BRT is safe and effective as monotherapy for clinically localized prostate cancer.

Zamboglou, Nikolaos [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany)] [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany); Tselis, Nikolaos, E-mail: ntselis@hotmail.com [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany)] [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany); Baltas, Dimos [Department of Medical Physics and Engineering, Klinikum Offenbach, Offenbach (Germany)] [Department of Medical Physics and Engineering, Klinikum Offenbach, Offenbach (Germany); Buhleier, Thomas [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany)] [Department of Radiation Oncology, Klinikum Offenbach, Offenbach (Germany); Martin, Thomas [Department of Radiation Oncology, Klinikum Bremen-Mitte, Bremen (Germany)] [Department of Radiation Oncology, Klinikum Bremen-Mitte, Bremen (Germany); Milickovic, Natasa; Papaioannou, Sokratis [Department of Medical Physics and Engineering, Klinikum Offenbach, Offenbach (Germany)] [Department of Medical Physics and Engineering, Klinikum Offenbach, Offenbach (Germany); Ackermann, Hanns [Institute of Biostatistics, J.W. Goethe University of Frankfurt, Frankfurt (Germany)] [Institute of Biostatistics, J.W. Goethe University of Frankfurt, Frankfurt (Germany); Tunn, Ulf W. [Department of Urology, Klinikum Offenbach, Offenbach (Germany)] [Department of Urology, Klinikum Offenbach, Offenbach (Germany)

2013-03-01T23:59:59.000Z

337

Metallic coatings: autocatalytic (electroless) nickel-phosphorus alloy coatings: specification and test methods  

E-Print Network [OSTI]

Metallic coatings: autocatalytic (electroless) nickel-phosphorus alloy coatings: specification and test methods

International Organization for Standardization. Geneva

2003-01-01T23:59:59.000Z

338

Revêtements métalliques : Dépôts électrolytiques de nickel Metallic coatings : Electrodeposited coatings of nickel  

E-Print Network [OSTI]

Revêtements métalliques : Dépôts électrolytiques de nickel Metallic coatings : Electrodeposited coatings of nickel

International Organization for Standardization. Geneva

2002-01-01T23:59:59.000Z

339

Influence of insulating coating on aluminum wire explosions  

SciTech Connect (OSTI)

Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ?1?kA peak current and ?10?ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%?30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

Li, Yang; Wu, Jian, E-mail: jxjawj@gmail.com [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong [State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Li, Xingwen [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China)

2014-10-15T23:59:59.000Z

340

AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking  

SciTech Connect (OSTI)

An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

Wei-Kao Lu

2002-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Multiphase Nano-Composite Coatings for Achieving Energy Optimization  

SciTech Connect (OSTI)

UES Inc. and ANL teamed in this work to develop novel coating systems for the protection of surfaces from thermal degradation mainly in two applications; Machining and Die casting. These coatings were specifically designed for the purpose by incorporating required material phases and the overall architecture, which led to reduce the energy usage and increase efficiency of the operations. Following the UES/ANL'Â?s feasibility work, the coatings were developed utilizing High power impulse magnetron sputtering (HiPMS) and Large area filtered arc deposition (LAFAD) techniques. Toughness, hardness and oxidation resistance: contrasting qualities have been mixed in the right proportion to attain the suitable material characteristic for the cause. Hafnium diboride (HfB2) based materials provided such a system and its properties were tamed to attain the right combination of toughness and hardness by working on the microstructure and architecture of coatings. An effective interfacing material (graded concentrations of topcoat) was also achieved in this work to provide the required adhesion between the substrate and the coating. Combination of an appropriate bond coat and a functional top coat provided the present thermal degradation resistant coating for cutting tools and die-casting applications. Laboratory level performance tests and industrial level application tests by partner companies (Beta Site Testing) were used for the development of these coatings.

Dr. Jose Nainaparampil

2012-03-26T23:59:59.000Z

342

Corrosion protection mechanism of polyaniline blended organic coating on steel  

SciTech Connect (OSTI)

Epoxy-coal tar coatings are widely used to protect steel structures exposed to marine atmosphere due to their good barrier property. However, the presence of micropores and microcracks formed during the coating formation leads to failure of the coating due to permeation of corrosive ions. In recent years, it has been established that the coatings containing polyaniline (PANI) is able to protect pinholes and defects due to its passivating ability. Hence, a study has been made on the effect of polyaniline content (1 and 3%) in epoxy-coal tar coating on the corrosion protection of steel in 3% NaCl solution by electrochemical impedance spectroscopy (EIS) studies. Both phosphate- and chloride-doped polyanilines were prepared by a chemical oxidative polymerization method. From EIS studies, it has been found that the resistance value of the coatings containing 1 and 3% phosphate-doped polyaniline and 3% chloride-doped polyaniline pigmented coatings are similar to 10{sup 9} {Omega} cm{sup 2} even after 90 days exposure to NaCl solution, which are two orders high in comparison to that of conventional coal tar epoxy coatings. Besides, the conducting state of polyaniline has been found to be decreased after exposure to NaCl solution due to redox property of PANI. X-ray photoelectron spectroscopy studies have shown that polyaniline forms a complex layer with iron beneath the coating along with iron oxide.

Sathiyanarayanan, S.; Jeyaram, R.; Muthukrishnan, S.; Venkatachari, G. [Central Electrochemical Research Institute, Karaikkudi (India)

2009-07-01T23:59:59.000Z

343

Fiber coating method  

DOE Patents [OSTI]

A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

Corman, Gregory Scot (Ballston Lake, NY)

2003-04-15T23:59:59.000Z

344

Fiber coating method  

DOE Patents [OSTI]

A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

Corman, Gregory Scot (Ballston Lake, NY)

2001-01-01T23:59:59.000Z

345

Thermal barrier coating for alloy systems  

DOE Patents [OSTI]

An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

Seals, Roland D. (Oak Ridge, TN); White, Rickey L. (Harriman, TN); Dinwiddie, Ralph B. (Knoxville, TN)

2000-01-01T23:59:59.000Z

346

Optics and multilayer coatings for EUVL systems  

SciTech Connect (OSTI)

EUV lithography (EUVL) employs illumination wavelengths around 13.5 nm, and in many aspects it is considered an extension of optical lithography, which is used for the high-volume manufacturing (HVM) of today's microprocessors. The EUV wavelength of illumination dictates the use of reflective optical elements (mirrors) as opposed to the refractive lenses used in conventional lithographic systems. Thus, EUVL tools are based on all-reflective concepts: they use multilayer (ML) coated optics for their illumination and projection systems, and they have a ML-coated reflective mask.

Soufli, R; Bajt, S; Hudyma, R M; Taylor, J S

2008-03-21T23:59:59.000Z

347

A Novel Low-Temperature Fiffusion Aluminide Coating for Ultrasupercritical Coal-Fried Boiler Applications  

SciTech Connect (OSTI)

An ultrasupercritical (USC) boiler with higher steam temperature and pressure is expected to increase the efficiency of the coal-fired power plant and also decrease emissions of air pollutants. Ferritic/martensitic alloys have been developed with good creep strength for the key components in coal-fired USC plants. However, they typically suffer excessive steam-side oxidation, which contributes to one of main degradation mechanisms along with the fire-side corrosion in coal-fired boilers. As the steam temperature further increases in USC boilers, oxidation of the tube internals becomes an increasing concern, and protective coatings such as aluminide-based diffusion coatings need to be considered. However, conventional aluminizing processes via pack cementation or chemical vapor deposition are typically carried out at elevated temperatures (1000-1150 C). Thermochemical treatment of ferritic/martensitic alloys at such high temperatures could severely degrade their mechanical properties, particularly the alloy's creep resistance. The research focus of this project was to develop an aluminide coating with good oxidation resistance at temperatures {le} 700 C so that the coating processing would not detrimentally alter the creep performance of the ferritic/martensitic alloys. Nevertheless, when the aluminizing temperature is lowered, brittle Al-rich intermetallic phases, such as Fe{sub 2}Al{sub 5} and FeAl{sub 3}, tend to form in the coating, which may reduce the resistance to fatigue cracking. Al-containing binary masteralloys were selected based on thermodynamic calculations to reduce the Al activity in the pack cementation process and thus to prevent the formation of brittle Al-rich intermetallic phases. Thermodynamic computations were carried out using commercial software HSC 5.0 for a series of packs containing various Cr-Al binary masteralloys. The calculation results indicate that the equilibrium partial pressures of Al halides at 700 C were a function of Al content in the Cr-Al alloys. Cr-25Al and Cr-15Al were chosen as the masteralloys in the pack cementation process. In contrast to pure Al masteralloy which led to the formation of Fe{sub 2}Al{sub 5} coatings at 650 C, a coating consisting of a thin Fe{sub 2}Al{sub 5} outer layer and an FeAl inner layer was formed at 700 C with the Cr-25Al masteralloy. By switching to the Cr-15Al masteralloy, thin FeAl coatings ({approx}12 {micro}m) containing < 50 at.% Al were achieved at 700 C. The effect of the amount of masteralloys on coating growth was also studied by employing packs containing 2NH{sub 4}Cl-x(Cr-15Al)-(98-x)Al{sub 2}O{sub 3}, where x = 10, 20, 30, 40, 50, 60, and 70 wt.%. It was noticed that when the Cr-15Al masteralloy was increased from 10 to 40 wt.% in the pack, both coating thickness and surface Al content increased, suggesting that gas phase kinetics played an important role in Al deposition. However, with further increase of the masteralloy, solid state diffusion became the rate-limiting factor. The long-term oxidation performance of the aluminide coatings synthesized at 700 C with Cr-25Al and Cr-15Al masteralloys was evaluated in the water vapor environment at 650-700 C. The low-temperature pack coatings demonstrated excellent oxidation resistance at 650 C in humid air after {approx}1.2 yr testing. Longer lifetimes can be expected for these thin coatings due to minimal interdiffusion at this testing temperature. Exposure at 700 C was conducted to accelerate coating failure via increased interdiffusion of Al with the substrate alloy. The coatings also exhibited good oxidation protection up to 6,000-8,000 h at 700 C, with longer testing needed for coating failure to occur. Furthermore, the oxidation results indicate that in addition to the Al reservoir (as determined by the Al content and coating thickness), the initial coating surface quality had a significant impact on the oxidation behavior. In addition, the effect of various pack aluminide coatings on the creep resistance of coated T91 was investigated. Three representative types of coatings with diff

Zhang, Ying

2009-12-31T23:59:59.000Z

348

Graphene Coating Coupled Emission  

E-Print Network [OSTI]

Graphene Coating Coupled Emission A COMSET, A single sheet of sp2-hybridized carbon atoms, called of graphene and its unique properties, I will present amplification of surface graphene-Ag hybrid films which when graphene is used as the spacer layer in a conventional Ag- harnessed the nonlinear properties

Shyamasundar, R.K.

349

The Influence of Prostate Volume on Outcome After High-Dose-Rate Brachytherapy Alone for Localized Prostate Cancer  

SciTech Connect (OSTI)

Objective: To determine whether late genitourinary toxicity, biochemical control of prostate cancer, and dosimetric parameters in patients with large prostate glands is different from those variables in men with smaller glands after treatment with high-dose-rate brachytherapy alone (HDR-BT). Methods: From November 2003 to July 2009, 164 patients with locally advanced prostate carcinoma were sequentially enrolled and treated with 34 or 36 Gy in 4 fractions and 31.5 Gy in 3 fractions of {sup 192}Ir HDR-BT alone. The median follow-up time was 71 months. Gland size was not considered in the selection criteria for this study. Estimates of freedom from biochemical relapse (FFbR) and late morbidity, stratified by median clinical target volume (CTV), were obtained, and differences were compared. Results: The median CTV volume was 60 cc (range, 15-208 cc). Dose–volume parameters D90 and V100 (ie, minimum dose to 90% of the prostate volume and volume receiving 100% of the prescribed isodose) achieved in patients with glands ?60 cc were not significantly different from those with glands <60 cc (P?.2). Nonetheless, biochemical control in patients with larger CTV was significantly higher (91% vs 78% at 6 years; P=.004). In univariate and multivariate analysis, CTV was a significant predictor for risk of biochemical relapse. This was not at the expense of an increase in either moderate (P=.6) or severe (P=.3) late genitourinary toxicity. The use of hormonal therapy was 17% lower in the large gland group (P=.01). Conclusions: Prostate gland size does not affect dosimetric parameters in HDR-BT assessed by D90 and V100. In patients with larger glands, a significantly higher biochemical control of disease was observed, with no difference in late toxicity. This improvement cannot be attributed to differences in dosimetry. Gland size should not be considered in the selection of patients for HDR-BT.

Le, Hien, E-mail: hien.le@health.sa.gov.au; Rojas, Ana; Alonzi, Roberto; Hughes, Robert; Ostler, Peter; Lowe, Gerry; Bryant, Linda; Hoskin, Peter

2013-10-01T23:59:59.000Z

350

UV-Shifted Durable Silver Coating for Astronomical Mirrors  

SciTech Connect (OSTI)

Silver has the highest reflectance of all of the metals, but it tarnishes in the presence of sulfides, chlorides, and oxides in the atmosphere. Also, the silver reflectance is very low at wavelengths below 400 nm making aluminum more desirable mirror coating for the UV region. They have found a way to prevent silver tarnishing by sandwiching the silver layer between two thin layers of NiCrN{sub x}, and to extend the metal's high reflectance down to 200 nm by depositing the (thin) Ag layer on top of Al. Thus, the uv is transmitted through the thin Ag layer below 400 nm wavelength, and is reflected from the Al layer underneath. This UV-shifted durable coating provides a valuable alternative to the aluminum coating for telescope mirror coatings where high throughput and durability are important considerations. The throughput for a telescope with, say, six reflections from silver coatings is (0.97){sup 6} = 83% compared to (0.92){sup 6} = 60% for aluminum coatings, or 28% less. The use of silver coatings allows more photons to be collected by primary mirror. Aluminum also has a reflectance dip at 850 nm caused by inter-band transitions which is eliminated by placing the thin Ag layer on top. This paper describes a non-tarnishing silver coating having high reflectance down into the UV region. The average specular reflectance is 70%-97% in the near-UV, 95%-99% in the visible region, and {ge} 99% in the infrared region covering the total wavelength range 200 nm to 10,000 nm. Figure 1 compares the reflectance of the UVHR-LLNL silver coating to bare silver and aluminum over-coated with magnesium fluoride over the wavelength range 300 nm to 2000 nm.

Thomas, N.L.; Wolfe, J.

2000-06-01T23:59:59.000Z

351

adhesive protein coatings: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

21 22 23 24 25 Next Page Last Page Topic Index 1 Mussel-Inspired Adhesives and Coatings Materials Science Websites Summary: to circumvent the high dielectric and solvation...

352

MOF Coating a Promising Path to White LEDs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(MOF); the structure was determined at Beamline 11.3.1. Coating a blue light-emitting diode (LED) with this compound readily generates white light with high luminous...

353

Shape Memory Assisted Self-Healing Coating Xiaofan Luo  

E-Print Network [OSTI]

as well as high cost. There has been a constant market demand for coating materials that can "self of fusible thermo- plastics in a thermoset host.7,8 At least two of these approaches have also been

Mather, Patrick T.

354

Passivation and anodic oxidation of duplex TiN coating on stainless steel  

SciTech Connect (OSTI)

The passivation and anodic oxidation of duplex TiN coatings deposited by arc ion plating onto prenitrided AISI 304 stainless steel have been studied by potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott-Schottky measurements in 0.1 M H{sub 2}SO{sub 4} + 0.05 M HCl. The chemical composition of the oxidized surface film atop TiN was analyzed by X-ray photoelectron spectroscopy. Up to 1.2 V/SHE the TiN coating exhibits passive behavior, which is attributed to the formation of a TiO{sub 2}-like film of nanometer thickness which grows linearly with anodic potential at a rate of 2.4 nm/V. Above 1.2 V/SHE enhanced anodic oxidation of TiN is observed at a rate of 17.7 nm/V, and the overall corrosion performance is governed both by the oxidized TiN coating and by a metallic Ti interlayer atop the nitrided stainless steel substrate. At all potentials the TiO{sub 2} film is characterized by relatively high donor densities and is, furthermore, terminated by a hydroxylated surface.

Rudenja, S.; Pan, J.; Wallinder, I.O.; Leygraf, C.; Kulu, P.

1999-11-01T23:59:59.000Z

355

New capabilities and applications for electrophoretically deposited coatings  

SciTech Connect (OSTI)

Our primary purpose in this test is to provide a brief general description of a few applications of various electrophoretic systems which have been investigated and have found use in various coating applications at Sandia National Laboratories. Both organic and inorganic suspensions in aqueous and non-aqueous media have been considered in these studies. Applications include high voltage insulating dielectrics, thermally conductive/electrically insulating films, adherent lubricating films, uniform photoresist films, glass coatings, and fissile uranium oxide/carbon composite films for studies of nuclear powered lasers. More recently, we have become interested in the beneficial environmental aspects of being able to provide protective polymer coatings which reduce or minimize the use of organic solvents required by traditional spray coat processes. Important practical factors which relate to film uniformity, adhesion, and composition are related to unique coating or plating capabilities and applications. 6 refs., 2 figs., 1 tab.

Sharp, D.J.

1991-01-01T23:59:59.000Z

356

Durable polymer-aerogel based superhydrophobic coatings, a composite material  

DOE Patents [OSTI]

Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

Kissel, David J; Brinker, Charles Jeffrey

2014-03-04T23:59:59.000Z

357

Process for forming a metal compound coating on a substrate  

DOE Patents [OSTI]

A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

Sharp, Donald J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Wright, Steven A. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

358

Process for forming a metal compound coating on a substrate  

DOE Patents [OSTI]

A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

Sharp, D.J.; Vernon, M.E.; Wright, S.A.

1988-06-29T23:59:59.000Z

359

HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators  

SciTech Connect (OSTI)

Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR brachytherapy planning.

Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)] [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

2014-05-15T23:59:59.000Z

360

Coated semiconductor devices for neutron detection  

DOE Patents [OSTI]

A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

Klann, Raymond T. (Bolingbrook, IL); McGregor, Douglas S. (Whitmore Lake, MI)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers  

DOE Patents [OSTI]

The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

2001-01-01T23:59:59.000Z

362

In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage. In Situ Generation of Few-Layer Graphene Coatings...

363

Antithrombogenic Polymer Coating.  

DOE Patents [OSTI]

An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

Huang, Zhi Heng (San Ramon, CA); McDonald, William F. (Utica, OH); Wright, Stacy C. (Flint, MI); Taylor, Andrew C. (Ann Arbor, MI)

2003-01-21T23:59:59.000Z

364

Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper  

E-Print Network [OSTI]

was ¼ inch (6. 25 mm) thick copper disk. The diameter of thevery high power de nsity. Copper was selected for this studythe high stability of HIPIMS copper discharges ( copper can

Horwat, David

2008-01-01T23:59:59.000Z

365

Oxidation studies of CrAlON nanolayered coatings on steel plates...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coatings on steel plates. Abstract: The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks have...

366

The high strain rate response of PVC foams and end-grain balsa wood V.L. Tagarielli, V.S. Deshpande, N.A. Fleck *  

E-Print Network [OSTI]

The high strain rate response of PVC foams and end-grain balsa wood V.L. Tagarielli, V.S. Deshpande are adequately approximated by power-law fits. The compressive yield strength of the H250 PVC foam and balsa wood sÃ?1 . In contrast, the H100 PVC foam displays only a small elevation in uniaxial compressive

Fleck, Norman A.

367

Materials Science and Engineering A, 2011, 528(1-2): p. 7596 7605 High strain rate compressive response ofsyntactic foams: trends in mechanical properties and failure mechanisms  

E-Print Network [OSTI]

comprising hollow particles dispersed in a matrix material. Available studies on high strain rate compressive with respect to the material composition. Syntactic foams reinforced with micro- and nano-sized fibers are a class of porous materials in which thin-walled hollow particles are dispersed in a matrix material

Gupta, Nikhil

368

IN-LINE HIGH-RATE DEPOSITION OF ALUMINUM ONTO RISE SOLAR CELLS BY ELECTRON BEAM TECHNOLOGY  

E-Print Network [OSTI]

depositions water cooled copper crucible and ceramic crucibles were used. The ceramic crucibles were found at dynamic deposition rates of 3.6 µm�m/min from ceramic crucibles onto RISE EWT solar cells. The cell by a dielectric passivation layer consisting of a thermal silicon oxide and ­ depending on the embodiment

369

High-energy threshold reaction rates on 0.8 GeV proton-irradiated thick Pb-target  

E-Print Network [OSTI]

This works presents results of activation-aided determination of threshold reaction rates in 92 209Bi, natPb, 197Au, 181Ta, 169Tm, natIn, 93Nb, 64Zn, 65Cu, 63Cu, 59Co, 19F, and 12C samples and in 121 27Al samples. All the samples were aligned with the proton beam axis inside and outside the demountable 92-cm thick Pb target of 15-cm diameter assembled of 23 4-cm thick discs. The samples were placed on 12 target disks to reproduce the long axis distribution of protons and neutrons. In June 2006, the target was exposed for 18 hours to a 800-MeV proton beam extracted from the ITEP U-10 accelerator. The proton fluence and the proton beam shape were determined using the 27Al(p,x)7Be monitor reaction. The reaction rates were determined by the direct gamma-spectrometry techniques. In total, 1196 gamma-spectra have been measured, and about 1500 reaction rates determined. The measured reaction rates were simulated by the MCNPX code using the following databases: ENDF/B6 for neutrons below 20 MeV, MENDL2 for 20-100 MeV neutrons, and MENDL2P for proton cross sections up to 200 MeV. An acceptable agreement of simulations with experimental data has been found.

Yu. E. Titarenko; V. F. Batyaev; A. Yu. Titarenko; M. A. Butko; K. V. Pavlov; R. S. Tikhonov; S. N. Florya; S. G. Mashnik; W. Gudowski

2007-05-08T23:59:59.000Z

370

High Average Power, 100 Hz Repetition Rate, Table-top EUV/Soft X-ray Lasers  

SciTech Connect (OSTI)

Compact =13.9 nm and =18.9 nm lasers with >0.1 mW average power at 100 Hz repetition rate driven by a diode-pumped, 1 J, CPA laser were demonstrated. Wavelength scaling to =10.9 nm will be discussed.

Reagan, Brendon [Colorado State University, Fort Collins; Wernsing, Keith [Colorado State University, Fort Collins; Baumgarten, Cory [Colorado State University, Fort Collins; Durivage, Leon [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Furch, Federico [Colorado State University, Fort Collins; Curtis, Alden [Colorado State University, Fort Collins; Salsbury, Chase [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Patel, Dinesh [Colorado State University, Fort Collins; Menoni, Carmen [Colorado State University, Fort Collins; Rocca, Jorge [Colorado State University, Fort Collins

2013-01-01T23:59:59.000Z

371

Initial Assessment of Environmental Barrier Coatings for the Prometheus Project  

SciTech Connect (OSTI)

Depending upon final design and materials selections, a variety of engineering solutions may need to be considered to avoid chemical degradation of components in a notional space nuclear power plant (SNPP). Coatings are one engineered approach that was considered. A comprehensive review of protective coating technology for various space-reactor structural materials is presented, including refractory metal alloys [molybdenum (Mo), tungsten (W), rhenium (Re), tantalum (Ta), and niobium (Nb)], nickel (Ni)-base superalloys, and silicon carbide (Sic). A summary description of some common deposition techniques is included. A literature survey identified coatings based on silicides or iridium/rhenium as the primary methods for environmental protection of refractory metal alloys. Modified aluminide coatings have been identified for superalloys and multilayer ceramic coatings for protection of Sic. All reviewed research focused on protecting structural materials from extreme temperatures in highly oxidizing conditions. Thermodynamic analyses indicate that some of these coatings may not be protective in the high-temperature, impure-He environment expected in a Prometheus reactor system. Further research is proposed to determine extensibility of these coating materials to less-oxidizing or neutral environments.

M. Frederick

2005-12-15T23:59:59.000Z

372

Urethane coatings rehabilitate large crude oil pipeline  

SciTech Connect (OSTI)

Interprovincial Pipe Line Inc. (IPL) provides a vital transportation link for moving liquid petroleum resources from oil-producing areas of western Canada to refining centers and markets in eastern canada and the midwestern US. Together with Lakehead Pipe Line Co., Inc., the pipeline system consists of about 7,600 miles of pipe. Approximately 1.6 million bpd of crude oil and liquid hydrocarbons are transported by the system. Along with high-resolution inspection data, an in-house engineering critical assessment process based on Battelle`s NG-18 surface flaw equation was developed to identify corrosion anomalies needing structural reinforcement sleeve repairs. A majority of ht non-critical anomalies remained unearthed and were exposed to possible future growth which could become critical. Several rehabilitation methods were considered including on-going sleeve repair, selective pipe replacement, and coating reconditioning. Economics and logistics of sleeving programs and selective pipe replacement were well known at IPL. However, aspects of replacing a coating system over a relatively long length of pipe were not completely known. Preliminary cost estimates favored replacement of the coating over a massive sleeving program or pipe replacement. To gain further insight, IPL began a two-year pilot program to research long length coating replacement feasibility. Two sections of Line 3 ultimately were rehabilitated in this manner. This paper reviews the project.

Kresic, W. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

1995-10-01T23:59:59.000Z

373

A New Determination of the High Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys  

E-Print Network [OSTI]

Schmidt, B. P. , 2003, in Supernovae and Gamma Ray Bursts,for identifying Type Ia supernovae (although spectroscopicfor future high-statistics supernovae searches in which

2008-01-01T23:59:59.000Z

374

Ceramic electrolyte coating and methods  

DOE Patents [OSTI]

Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

Seabaugh, Matthew M. (Columbus, OH); Swartz, Scott L. (Columbus, OH); Dawson, William J. (Dublin, OH); McCormick, Buddy E. (Dublin, OH)

2007-08-28T23:59:59.000Z

375

Raman gain from waveguides inscribed in KGd,,WO4...2 by high repetition rate femtosecond laser  

E-Print Network [OSTI]

-order nonlinear susceptibility, high ther- mal conductivity, and strong Raman conversion properties. KGW has potential for enhanced non- linear device performance through longer interaction lengths with high amorphous glasses8 and crystalline materials such as lithium niobate,9 quartz,10 Ti:sapphire,11 and KY WO4 2

376

Sol-gel coatings for optoelectronic devices  

SciTech Connect (OSTI)

Nb{sub 2}O{sub 5} prepared by a sol-gel process in form of coatings and aerogels are new materials which present interesting properties: (a) The coatings present electrochromic properties and exhibit a blue coloration under Li{sup +} insertion with 100% reversible variation of the optical transmission in the visible and near infrared range between 80% and 200% and have a high chemical stability (tested up to 2,000 cycles). (b) They are semiconductor and present a photoelectric effect when illuminating in the UV region ({lambda} < 360 nm). These films are therefore very promising to be used in electrochromic devices, as electrodes for photoelectrochemical purpose and the development of nanocrystalline solar cell. (c) When prepared in aerogel form, the high BET surface area of the powders is a promising asset to use these new materials for catalytic purposes for air pollution control.

Avellaneda, C.O.; Macedo, M.A.; Florentino, A.O.; Aegerter, M.A. [Univ. of Sao Paulo, Sao Carlos (Brazil). Inst. de Fisica e Quimica

1994-12-31T23:59:59.000Z

377

Method of producing thermally sprayed metallic coating  

DOE Patents [OSTI]

The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.

Byrnes, Larry Edward (Rochester Hills, MI); Kramer, Martin Stephen (Clarkston, MI); Neiser, Richard A. (Albuquerque, NM)

2003-08-26T23:59:59.000Z

378

Influence of Specimen Size on the SCC Growth Rate of Ni-Alloys Exposed to High Temperature Water  

SciTech Connect (OSTI)

Tests were conducted on a single heat of Alloy 600 using compact tension specimens ranging from 50.80 mm (2 inches) in gross thickness (2T) to 10.16 mm (0.4 inches, 0.4T) in gross thickness. Results indicated that at stress intensity factor (K) levels above 55 MPa{radical}m, the growth rate is affected by specimen size in deaerated primary water. The growth rate can be significantly faster in 0.4T and 0.6T (15.24 mm = 0.6 inches in gross thickness) specimens at these elevated K levels compared to 2T specimens. Stress corrosion crack (SCC) growth rates > 6 x 10{sup -7} mm/s were observed at 338 C and 40 cc/kg H{sub 2} in 0.6T and 0.4T specimens at these elevated K levels, although the fracture mode was not significantly affected by the specimen size. The SCC growth rate of 2T specimens under comparable test conditions was {approx}6 x 10{sup -8} mm/s. All of the specimens examined that were tested at K > 55 MPa{radical}m exhibited intergranular failure, although ductile dimples and cracked grains were observed in the 0.4T specimens loaded to the elevated K levels. The effect of specimen size on the crack growth behavior indicated by electric potential drop (EPD) monitoring at K > 55 MPa{radical}m was also reviewed. EPD indicated steady state crack growth during the tests conducted on 1T (25.4 mm = 1.0 inches in gross thickness) and 2T specimens. Steady state crack growth was not indicated by EPD for the 0.4T and 0.6T specimens loaded at K > 55 MPa{radical}m. EPD indicated large jumps in the crack length at discrete points. Initially, it was believed that these large, rapid increases in the crack length corresponded to ductile tearing of uncracked ligaments in the crack wake as the SCC crack advanced. However, examination of the fracture surfaces did not reveal any evidence of isolated regions of ductile tearing in the crack wake. The large increases in the EPD signal were due to strain bursts. These results highlight the need to base SCC growth rates on destructive examination of the specimen.

E Richey; D Morton; W Moshier

2005-10-19T23:59:59.000Z

379

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

380

Final Report: Novel ALD-Coated Nanoparticle Anodes for Enhanced Performance Lithium-Ion Batteries  

SciTech Connect (OSTI)

The Phase I effort is described in detail in the Phase I report given below. The key accomplishments of the Phase I project were (1) the demonstration of high stability LiCoO2 cathodes using ALD-coated LiCoO2 particles, as well as on ALD-coated LiCoO2 electrodes and (2) the demonstration of high stability of graphite anodes using ALD-coated graphite electrodes.

Groner, Markus

2009-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling  

SciTech Connect (OSTI)

In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding of the reactor cavity during a severe accident. As part of a joint Korean – United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boiling experiments were performed in the SBLB (Subscale Boundary Layer Boiling) facility at Penn State using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging.

Fan-Bill Cheung; Joy L. Rempe

2004-06-01T23:59:59.000Z

382

Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders  

SciTech Connect (OSTI)

This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

Asit Biswas Andrew J. Sherman

2006-09-25T23:59:59.000Z

383

Ultraviolet antireflection coatings for use in silicon detector design  

SciTech Connect (OSTI)

We report on the development of coatings for a charged-coupled device (CCD) detector optimized for use in a fixed dispersion UV spectrograph. Because of the rapidly changing index of refraction of Si, single layer broadband antireflection (AR) coatings are not suitable to increase quantum efficiency at all wavelengths of interest. Instead, we describe a creative solution that provides excellent performance over UV wavelengths. We describe progress in the development of a coated CCD detector with theoretical quantum efficiencies (QEs) of greater than 60% at wavelengths from 120 to 300 nm. This high efficiency may be reached by coating a backside-illuminated, thinned, delta-doped CCD with a series of thin film AR coatings. The materials tested include MgF{sub 2} (optimized for highest performance from 120-150 nm), SiO{sub 2} (150-180 nm), Al{sub 2}O{sub 3} (180-240 nm), MgO (200-250 nm), and HfO{sub 2} (240-300 nm). A variety of deposition techniques were tested and a selection of coatings that minimized reflectance on a Si test wafer were applied to functional devices. We also discuss future uses and improvements, including graded and multilayer coatings.

Hamden, Erika T.; Greer, Frank; Hoenk, Michael E.; Blacksberg, Jordana; Dickie, Matthew R.; Nikzad, Shouleh; Martin, D. Christopher; Schiminovich, David

2011-07-20T23:59:59.000Z

384

Proceedings of the 1987 coatings for advanced heat engines workshop  

SciTech Connect (OSTI)

This Workshop was conducted to enhance communication among those involved in coating development for improved heat engine performance and durability. We were fortunate to have Bill Goward review the steady progress and problems encountered along the way in the use of thermal barrier coatings (TBC) in aircraft gas turbine engines. Navy contractors discussed their work toward the elusive goal of qualifying TBC for turbine airfoil applications. In the diesel community, Caterpillar and Cummins are developing TBC for combustion chamber components as part of the low heat rejection diesel engine concept. The diesel engine TBC work is based on gas turbine technology with a goal of more than twice the thickness used on gas turbine engine components. Adoption of TBC in production for diesel engines could justify a new generation of plasma spray coating equipment. Increasing interests in tribology were evident in this Workshop. Coatings have a significant role in reducing friction and wear under greater mechanical loadings at higher temperatures. The emergence of a high temperature synthetic lubricant could have an enormous impact on diesel engine design and operating conditions. The proven coating processes such as plasma spray, electron-beam physical vapor deposition, sputtering, and chemical vapor deposition have shown enhanced capabilities, particularly with microprocessor controls. Also, the newer coating schemes such as ion implantation and cathodic arc are demonstrating intriguing potential for engine applications. Coatings will play an expanding role in higher efficiency, more durable heat engines.

Not Available

1987-01-01T23:59:59.000Z

385

Sol-Gel Deposited Electrochromic Coatings  

E-Print Network [OSTI]

R A T O R Y Sol-Gel Deposited Electrochromic Coatings NilgunUC-1600 Sol-Gel Deposited Electrochromic Coatings NilgunPaper Sol-gel Deposited Electrochromic Coatings Nilgun Ozer

Ozer, N.

2010-01-01T23:59:59.000Z

386

Westinghouse thermal barrier coatings development  

SciTech Connect (OSTI)

Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

Goedjen, J.G.; Wagner, G. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

387

Thin film ion conducting coating  

DOE Patents [OSTI]

Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

1989-01-01T23:59:59.000Z

388

The Romanian Speech Synthesis (RSS) corpus: building a high quality HMM-based speech synthesis system using a high sampling rate   

E-Print Network [OSTI]

This paper first introduces a newly-recorded high quality Romanian speech corpus designed for speech synthesis, called “RSS”, along with Romanian front-end text processing modules and HMM-based synthetic voices built from ...

Stan, Adriana; Yamagishi, Junichi; King, Simon; Aylett, Matthew

389

SUMMARY ON TITANIUM NITRIDE COATING OF SNS RING VACUUM CHAMBERS.  

SciTech Connect (OSTI)

The inner surfaces of the 248 m Spallation Neutron Source (SNS) accumulator ring vacuum chambers are coated with {approx}100nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. There are approximately 135 chambers and kicker modules, some up to 5m in length and 36cm in diameter, coated with TiN. The coating is deposited by means of reactive DC magnetron sputtering -using a - cylindrical cathode with internal permanent magnets. This cathode configuration generates a deposition-rate sufficient to meet the required production schedule and produces stoichiometric films with good adhesion, low SEY and acceptable outgassing. Moreover, the cathode magnet configuration allows for simple changes in length and has been adapted to coat the wide variety of chambers and components contained within the arcs, injection, extraction, collimation and RF straight sections. Chamber types and quantities as well as the cathode configurations are presented herein. The unique coating requirements of the injection kicker ceramic chambers and the extraction kicker ferrite surface will be emphasized. A brief summary of the salient coating properties is given including the interdependence of SEY as a function of surface roughness and its effect on outgassing.

TODD, R.; HE, P.; HSEUH, H.C.; WEISS, D.

2005-05-16T23:59:59.000Z

390

Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate  

SciTech Connect (OSTI)

We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO{sub 3} electrode sandwiched between a ferroelectric Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film with negative thermal expansion and a SrTiO{sub 3} substrate. SrRuO{sub 3} is rapidly heated by fs-laser pulses with 208?kHz repetition rate. Diffraction of X-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120?ps to 5??s with a relative accuracy up to ?c/c?=?10{sup ?6}. The in-plane propagation of sound is essential for understanding the delayed out-of-plane compression of Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}.

Navirian, H. A.; Schick, D., E-mail: daniel.schick@uni-potsdam.de; Leitenberger, W.; Bargheer, M. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany); Gaal, P.; Shayduk, R. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

2014-01-13T23:59:59.000Z

391

Sol-Gel Deposited Electrochromic Coatings  

E-Print Network [OSTI]

Handbook of Inorganic Electrochromic Materials, Elsevier, .O R Y Sol-Gel Deposited Electrochromic Coatings Nilgun Ozer1600 Sol-Gel Deposited Electrochromic Coatings Nilgun Ozer

Ozer, N.

2010-01-01T23:59:59.000Z

392

Shirley Coates Brostmeyer: Changing the (Engineering) Game |...  

Broader source: Energy.gov (indexed) [DOE]

Coates Brostmeyer holds FTTs twin-spool turbofan, the most efficient micro-turbine of its size | credit Frank Serio Shirley Coates Brostmeyer holds FTT's twin-spool...

393

High-Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large-Area VHF PECVD Processes  

SciTech Connect (OSTI)

The University of Toledo (UT), working in concert with it’s a-Si-based PV industry partner Xunlight Corporation (Xunlight), has conducted a comprehensive study to develop a large-area (3ft x 3ft) VHF PECVD system for high rate uniform fabrication of silicon absorber layers, and the large-area VHF PECVD processes to achieve high performance a-Si/a-SiGe or a-Si/nc-Si tandem junction solar cells during the period of July 1, 2008 to Dec. 31, 2011, under DOE Award No. DE-FG36-08GO18073. The project had two primary goals: (i) to develop and improve a large area (3 ft × 3 ft) VHF PECVD system for high rate fabrication of > = 8 Å/s a-Si and >= 20 Å/s nc-Si or 4 Å/s a-SiGe absorber layers with high uniformity in film thicknesses and in material structures. (ii) to develop and optimize the large-area VHF PECVD processes to achieve high-performance a-Si/nc-Si or a-Si/a-SiGe tandem-junction solar cells with >= 10% stable efficiency. Our work has met the goals and is summarized in “Accomplishments versus goals and objectives”.

Deng, Xunming [University of Toledo] [University of Toledo; Fan, Qi Hua

2011-12-31T23:59:59.000Z

394

Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08  

SciTech Connect (OSTI)

The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter, conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases in melter operating temperature. Glass composition development was based on one of the HLW waste compositions specified by ORP that has a high concentration of aluminum. Small-scale tests were used to provide an initial screening of various glass formulations with respect to melt rates; more definitive screening was provided by the subsequent DM100 tests. Glass properties evaluated included: viscosity, electrical conductivity, crystallinity, gross glass phase separation and the 7- day Product Consistency Test (ASTM-1285). Glass property limits were based upon the reference properties for the WTP HLW melter. However, the WTP crystallinity limit (< 1 vol% at 950oC) was relaxed slightly as a waste loading constraint for the crucible melts.

Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.; Gong, W.; Gan, H.; Matlack, K. S.; Bardakci, T.; Kot, W.

2013-11-13T23:59:59.000Z

395

Etching of Copper Coated Mylar Tubes With CF-4 Gas  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Using 5 mm diameter copper coated mylar straw tubes at a potential of 2.30 KV relative to a concentric 20 (mu)m diameter gold-plated tungsten anode, it has been observed that with very low flow rates of CF4-based gases the conductive copper cathode material may be removed entirely from the mylar surface.

Ecklund, Karl M.; Hartman, Keith W.; Hebert, Michael J.; Wojcicki, Stanley G.

1996-04-01T23:59:59.000Z

396

Interfacial Coatings for Inorganic Composite Insulation Systems  

SciTech Connect (OSTI)

Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass.

Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S. [Composite Technology Development, Inc., Lafayette, CO, 80026 (United States)

2006-03-31T23:59:59.000Z

397

Protective coating for alumina-silicon carbide whisker composites  

DOE Patents [OSTI]

Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

Tiegs, Terry N. (Lenoir City, TN)

1989-01-01T23:59:59.000Z

398

Oxidation resistant coatings for ceramic matrix composite components  

SciTech Connect (OSTI)

Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

Vaubert, V.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Hirschfeld, D.A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

1998-11-01T23:59:59.000Z

399

NANOSCALE BOEHMITE FILLER FOR CORROSION AND WEAR RESISTANT POLYPHENYLENESULFIDE COATINGS.  

SciTech Connect (OSTI)

The authors evaluated the usefulness of nanoscale boehmite crystals as a filler for anti-wear and anti-corrosion polyphenylenesulfide (PPS) coatings exposed to a very harsh, 300 C corrosive geothermal environment. The boehmite fillers dispersed uniformly into the PPS coating, conferring two advanced properties: First, they reduced markedly the rate of blasting wear; second, they increased the PPS's glass transition temperature and thermal decomposition temperature. The wear rate of PPS surfaces was reduced three times when 5wt% boehmite was incorporated into the PPS. During exposure for 15 days at 300 C, the PPS underwent hydrothermal oxidation, leading to the substitution of sulfide linkages by the sulfite linkages. However, such molecular alteration did not significantly diminish the ability of the coating to protect carbon steel against corrosion. In fact, PPS coating filled with boehmite of {le} 5wt% adequately mitigated its corrosion in brine at 300 C. One concern in using this filler was that it absorbs brine. Thus, adding an excess amount of boehmite was detrimental to achieving the maximum protection afforded by the coatings.

SUGAMA,T.

2003-06-26T23:59:59.000Z

400

High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Diphosphine Ligands Containing One Pendent Amine  

SciTech Connect (OSTI)

A series of Ni-based electrocatalysts, [Ni(7PPh2NC6H4X)2](BF4)2, featuring seven-membered cyclic diphosphine ligands incorporating a single amine base, 1-para-X-phenyl-3,6-triphenyl-1-aza-3,6-diphosphacycloheptane (7PPh2NC6H4X where X = OMe, Me, Br, Cl or CF3), have been synthesized and characterized. X-ray diffraction studies have established that the [Ni(7PPh2NC6H4X)2]2+ complexes have a square planar geometry, with bonds to four phosphorus atoms of the two bidentate diphosphine ligands. Coordination of the bidentate phosphine ligands to Ni result in one six-membered ring containing a pendent amine, and one five membered ring. Each of the complexes is an efficient electrocatalyst for hydrogen production at the potential of the Ni(II/I) couple, with turnover frequencies ranging from 2,400 to 27,000 s-1 with [(DMF)H]+ in acetonitrile. Addition of water (up to 1.0 M) accelerates the catalysis, giving turnover frequencies ranging from 4,100 - 96,000 s-1. Computational studies carried out on the [Ni(7PPh2NC6H4X)2]2+ family indicate the catalytic rates reach a maximum when the electron-donating character of X results in the pKa of the pendent amine matching that of the acid used for proton delivery. Additionally, the fast catalytic rates for hydrogen production by the [Ni(7PPh2NC6H4X)2]2+ family relative to the analogous [Ni(PPh2NC6H4X2)2]2+ family are attributed to preferred formation of endo protonated isomers with respect to the metal center in the former, which is essential for the protons to attain suitable proximity to the reduced metal center to generate H2. The results of this work highlight the importance of the necessity for precise pKa matching with the acid for proton delivery to the metal center, and the mechanistic details described herein will be used to guide future catalyst design. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. A portion of the computing resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory.

Stewart, Michael P.; Ho, Ming-Hsun; Wiese, Stefan; Lindstrom, Mary L.; Thogerson, Colleen E.; Raugei, Simone; Bullock, R. Morris; Helm, Monte L.

2013-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Anti-stiction coating for microelectromechanical devices  

DOE Patents [OSTI]

A method for depositing an anti-stiction coating on a MEMS device comprises reacting the vapor of an amino-functionalized silane precursor with a silicon surface of the MEMS device in a vacuum chamber. The method can further comprise cleaning the silicon surface of the MEMS device to form a clean hydroxylated silicon surface prior to reacting the precursor vapor with the silicon surface. The amino-functionalized silane precursor comprises at least one silicon atom, at least one reactive amino (or imine) pendant, and at least one hydrophobic pendant. The amino-functionalized silane precursor is highly reactive with the silicon surface, thereby eliminating the need for a post-process anneal step and enabling the reaction to occur at low pressure. Such vapor-phase deposition of the amino-functionalized silane coating provides a uniform surface morphology and strong adhesion to the silicon surface.

Hankins, Matthew G. (Albuquerque, NM); Mayer, Thomas M. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM)

2006-05-16T23:59:59.000Z

402

Coating considerations for mirrors of CPV devices  

SciTech Connect (OSTI)

One of the different optical concepts for concentrator devices is to place a focussing primary mirror behind a transparent front plate. In addition (also in case of Fresnel-diffractive main optics), further 'secondary' reflectors may be used further along the beam path. Such mirrors are usually implemented as coating stacks of a highly reflective metal - usually silver - and protective layers. The protective layers are preferably designed as reflection enhancing interference stack. The design of such protective layer stacks yields two difficulties, which are addressed in this paper: (a) vacuum coating of three-dimensional parts will result in a thickness distribution and the optical design of the stack should thus be tolerant to layer thickness variations, and (b) different places of the mirror will have different angle-of-incidence of the sunlight under operating conditions. As result, the layer stack has a different design at different places of the mirror.

Schmauder, Torsten; Sauer, Peter; Ickes, Gerd [Leybold Optics GmbH, Siemensstr. 88, D-63755 Alzenau (Germany)

2014-09-26T23:59:59.000Z

403

Ceramic composite coating  

DOE Patents [OSTI]

A thin, room-temperature-curing, ceramic composite for coating and patching etal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

Wicks, George G. (Aiken, SC)

1997-01-01T23:59:59.000Z

404

Ceramic composite coating  

DOE Patents [OSTI]

A thin, room-temperature-curing, ceramic composite for coating and patching metal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

Wicks, G.G.

1997-01-21T23:59:59.000Z

405

Coating system to permit direct brazing of ceramics  

DOE Patents [OSTI]

This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al.sub.2 O.sub.3.2SiO.sub.2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite). After all of the coatings have been applied, the ceramic can be fired at a high temperature in a non-oxidizing environment to promote diffusion, and to enhance bonding of the coatings to the substrate. After firing, the metallized ceramic component can be brazed to other components using a conventional non-active braze alloy. Alternatively, the firing and brazing steps can be combined into a single step. This process can replace the need to perform a "moly-manganese" metallization step.

Cadden, Charles H. (Danville, CA); Hosking, F. Michael (Albuquerque, NM)

2003-01-01T23:59:59.000Z

406

Aging Studies of Large Area Proportional Chambers under High-Rate Irradiation with $CF_4$-based Mixtures (PART 1)  

E-Print Network [OSTI]

Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance $R$ from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradi...

Danilov, M; Kvaratskheliia, T; Laptin, L; Tichomirov, I; Titov, M L; Zaitsev, Yu; Gilitsky, Yu.; Zaitsev, Yu.

2001-01-01T23:59:59.000Z

407

Aging Studies of Large Area Proportional Chambers under High-Rate Irradiation with $CF_4$-based Mixtures (Part 2)  

E-Print Network [OSTI]

Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance R from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradiat...

Danilov, M; Kvaratskheliia, T; Laptin, L; Tichomirov, I; Titov, M L; Zaitsev, Yu; Gilitsky, Yu.; Zaitsev, Yu.

2001-01-01T23:59:59.000Z

408

High-Resolution Neutron Capture and Total Cross-Section Measurements, and the Astrophysical 95Mo(n,gamma) Reaction Rate at s-process Temperatures  

E-Print Network [OSTI]

Abundances of Mo isotopes predicted by stellar models of the s process are, except for 95Mo, in good agreement with data from single grains of mainstream presolar SiC. Because the meteorite data seemed sound and no reasonable modification to stellar theory resulted in good agreement for 95Mo, it has been suggested that the recommended neutron capture reaction rate for this nuclide is 30% too low. Therefore, we have made a new determination of the 95Mo(n,gamma) reaction rate via high-resolution measurements of the neutron-capture and total cross sections of 95Mo at the Oak Ridge Electron Linear Accelerator. These data were analyzed with the R-matrix code SAMMY to obtain parameters for resonances up to En = 10 keV. Also, a small change to our capture apparatus allowed us to employ a new technique to vastly improve resonance spin and parity assignments. These new resonance parameters, together with our data in the unresolved range, were used to calculate the 95Mo(n,gamma) reaction rate at s-process temperatures. We compare the currently recommended rate to our new results and discuss their astrophysical impact.

P. E. Koehler; J. A. Harvey; K. H. Guber; D. Wiarda

2008-09-16T23:59:59.000Z

409

Factors affecting the microstructural stability and durability of thermal barrier coatings fabricated by air plasma spraying  

SciTech Connect (OSTI)

The high-temperature behavior of high-purity, low-density (HP-LD) air plasma sprayed (APS) thermal barrier coatings (TBCs) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The high purity yttria-stabilized zirconia resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The thermal conductivity of the as-processed TBC is low but increases during high temperature exposure even before densification occurs. The porous topcoat microstructure also resulted in good spallation resistance during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, topcoat density, and the thermal cycle frequency. The failure mechanisms are described and the durability of the HP-LD coatings is compared with that of state-of-the-art electron beam physical vapor deposition TBCs.

Helminiak, M. A. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Yanar, N. M. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Pettit, F. S. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Taylor, T. A. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States); Meier, G. H. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States)

2012-10-01T23:59:59.000Z

410

Environmental Technology Verification Coatings and Coating Equipment Program (ETV CCEP)  

E-Print Network [OSTI]

.2 Quality Assurance for the ETV CCEP.....................................................................1.................................................................11 2.2.12 Determination of Total Volatile Content of the UV-Curable Coating.......14 2.3 Schedule.0 QUALITY ASSURANCE OBJECTIVES.......................................

411

High Performance Nanostructured Spectrally Selective Coating  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

412

High-Performance Nanostructured Coating (Fact Sheet)  

SciTech Connect (OSTI)

The University of California San Diego is one of the 2012 SunShot CSP R&D awardees for their advanced receivers. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

413

Rate Schedules  

Broader source: Energy.gov [DOE]

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

414

Sexual Functioning Among Endometrial Cancer Patients Treated With Adjuvant High-Dose-Rate Intra-Vaginal Radiation Therapy  

SciTech Connect (OSTI)

Purpose: We used the Female Sexual Function Index (FSFI) to investigate the prevalence of sexual dysfunction (SD) and factors associated with diminished sexual functioning in early stage endometrial cancer (EC) patients treated with simple hysterectomy and adjuvant brachytherapy. Methods and Materials: A cohort of 104 patients followed in a radiation oncology clinic completed questionnaires to quantify current levels of sexual functioning. The time interval between hysterectomy and questionnaire completion ranged from <6 months to >5 years. Multivariate regression was performed using the FSFI as a continuous variable (score range, 1.2-35.4). SD was defined as an FSFI score of <26, based on the published validation study. Results: SD was reported by 81% of respondents. The mean ({+-} standard deviation) domain scores in order of highest-to-lowest functioning were: satisfaction, 2.9 ({+-}2.0); orgasm, 2.5 ({+-}2.4); desire, 2.4 ({+-}1.3); arousal, 2.2 ({+-}2.0); dryness, 2.1 ({+-}2.1); and pain, 1.9 ({+-}2.3). Compared to the index population in which the FSFI cut-score was validated (healthy women ages 18-74), all scores were low. Compared to published scores of a postmenopausal population, scores were not statistically different. Multivariate analysis isolated factors associated with lower FSFI scores, including having laparotomy as opposed to minimally invasive surgery (effect size, -7.1 points; 95% CI, -11.2 to -3.1; P<.001), lack of vaginal lubricant use (effect size, -4.4 points; 95% CI, -8.7 to -0.2, P=.040), and short time interval (<6 months) from hysterectomy to questionnaire completion (effect size, -4.6 points; 95% CI, -9.3-0.2; P=.059). Conclusions: The rate of SD, as defined by an FSFI score <26, was prevalent. The postmenopausal status of EC patients alone is a known risk factor for SD. Additional factors associated with poor sexual functioning following treatment for EC included receipt of laparotomy and lack of vaginal lubricant use.

Damast, Shari, E-mail: shari.damast@yale.edu [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled M. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Goldfarb, Shari [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Eaton, Anne; Patil, Sujata [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Mosenkis, Jeffrey [Department of Comparative Human Development, University of Chicago, Chicago, Illinois (United States)] [Department of Comparative Human Development, University of Chicago, Chicago, Illinois (United States); Bennett, Antonia [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Atkinson, Thomas [Department of Psychiatry, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Psychiatry, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Jewell, Elizabeth; Leitao, Mario; Barakat, Richard; Carter, Jeanne [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Basch, Ethan [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

2012-10-01T23:59:59.000Z

415

Thermophoretically augmented mass-, momentum-, and energy-transfer rates in high particle mass-loaded laminar forced convection systems  

SciTech Connect (OSTI)

In all previous treatments of thermophoretically-modified aerosol particle transport, even those which attempt to allow for variable host-gas properties, it has been explicitly (or implicitly) assumed that the particle mass fraction is small enough to neglect the influence of the suspended particles on the host-gas momentum-density- and energy-density-fields. However, in high-intensity material-processing applications, particle mass loadings often exceed 1/3, and the thermophoretically enhanced particle mass-deposition flux itself modifies the local-mixture velocity and temperature fields in the vicinity of the deposition surface. A self-consistent pseudo- single-phase mixture (diffusion) approximation which exploits the fact that the volume fraction of suspended particles is negligible even when the particle mass fraction is quite near unity is introduced to calculate the fully coupled problem of mass-, energy- and momentum diffusion for laminar boundary (LBL) flow of a combustion-gas mixture containing submicron particles of appreciable thermophoretic diffusivity but negligible Brownian diffusion. It is shown that thigh particles mass loading systematically increase the wall fluxes of momentum (shear stress), heat and particle mass, much like those effects associated with massive suction in single-phase LBL-theory.

Park, H.M.

1987-01-01T23:59:59.000Z

416

New oxygen radical source using selective sputtering of oxygen atoms for high rate deposition of TiO{sub 2} films  

SciTech Connect (OSTI)

We have developed a new oxygen radical source based on the reactive sputtering phenomena of a titanium target for high rate deposition of TiO{sub 2} films. In this oxygen radical source, oxygen radicals are mainly produced by two mechanisms: selective sputter-emission of oxygen atoms from the target surface covered with a titanium oxide layer, and production of high-density oxygen plasma in the space near the magnetron-sputtering cathode. Compared with molecular oxygen ions, the amount of atomic oxygen radicals increased significantly with an increase in discharge current so that atomic oxygen radicals were mainly produced by this radical source. It should be noted that oxygen atoms were selectively sputtered from the target surface, and titanium atoms sputter-emitted from the target cathode were negligibly small. The amount of oxygen radicals supplied from this radical source increased linearly with increasing discharge current, and oxygen radicals of 1 Multiplication-Sign 10{sup 15} atoms/s/cm{sup 2} were supplied to the substrate surface at a discharge current of 1.2 A. We conclude that our newly developed oxygen radical source can be a good tool to achieve high rate deposition and to control the structure of TiO{sub 2} films for many industrial design applications.

Yasuda, Yoji; Lei, Hao; Hoshi, Yoichi [Department of Electronics and Information Technology, Tokyo Polytechnic University, Kanagawa 243-0297 (Japan); State Key Laboratory for Corrosion and Protection, Surface Engineering of Materials Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Electronics and Information Technology, Tokyo Polytechnic University, Kanagawa 243-0297 (Japan)

2012-11-15T23:59:59.000Z

417

Method of measuring metal coating adhesion  

DOE Patents [OSTI]

A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

Roper, John R. (Northglenn, CO)

1985-01-01T23:59:59.000Z

418

Surface figure control for coated optics  

DOE Patents [OSTI]

A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

Ray-Chaudhuri, Avijit K. (Livermore, CA); Spence, Paul A. (Pleasanton, CA); Kanouff, Michael P. (Livermore, CA)

2001-01-01T23:59:59.000Z

419

Prime coats materials and methods  

E-Print Network [OSTI]

A prime coat is the application of a suitable bituminous binder applied to a nonbituminous granular base as a preliminary treatment before the application of a bituminous surfacing. The purpose of this research is to establish practical applications...

Mantilla, Christian Augusto

1994-01-01T23:59:59.000Z

420

DEVELOPMENT AND ASSESSMENT OF COATINGS FOR FUTURE POWER GENERATION TURBINES  

SciTech Connect (OSTI)

The NETL-Regional University Alliance (RUA) continues to advance technology development critical to turbine manufacturer efforts for achieving DOE Fossil Energy (FE's) Advanced Turbine Program Goals. In conjunction with NETL, Coatings for Industry (CFI), the University of Pittsburgh, NASA GRC, and Corrosion Control Inc., efforts have been focused on development of composite thermal barrier coating (TBC) architectures that consist of an extreme temperature coating, a commercially applied 7-8 YSZ TBC, a reduced cost bond coat, and a diffusion barrier coating that are applied to nickel-based superalloys or single crystal airfoil substrate materials for use at temperatures >1450 C (> 2640 F). Additionally, construction of a unique, high temperature ({approx}1100 C; {approx}2010 F), bench-scale, micro-indentation, nondestructive (NDE) test facility at West Virginia University (WVU) was completed to experimentally address in-situ changes in TBC stiffness during extended cyclic oxidation exposure of coated single crystal coupons in air or steam containing environments. The efforts and technical accomplishments in these areas are presented in the following sections of this paper.

Alvin, Maryanne; Klotz, K.; McMordie, B.; Gleeson, B.; Zhu, D.; Warnes, B.; Kang, B.; Tannenbaum, J.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high rate coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries  

E-Print Network [OSTI]

], 00–00 | 1 Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries Kai Xi,a‡ Piran R. Kidambi,b‡ Renjie Chen,c Chenlong Gao,a Xiaoyu Peng,a Caterina... Ducati,a Stephan Hofmannb* and R. Vasant Kumar a* 5 Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x A novel ultra-lightweight three-dimensional (3-D) cathode system for lithium sulphur (Li-S) batteries...

Xi, Kai; Kidambi, Piran R.; Chen, Renjie; Gao, Chenlong; Peng, Xiaoyu; Ducati, Caterina; Hofmann, Stephan; Kumar, R. Vasant

2014-03-04T23:59:59.000Z

422

The effects of two levels of water vapor pressure on localized sweat rate in high fit males running at 50% VO? Max  

E-Print Network [OSTI]

, workload and VO& Max by correlative methods. Procedures Twelve male volunteers were selected as subjects from a Physical Education class at Texas A&M University. The criterion for selection -1 . -1 as a subject was a VO Max greater than 57 ml kg min.... Schvartz et al. (70) found subjects with high VO Max values (mean of 60. 1 ml kg min ) to respond better to heat than those with 1 medium and low Y02 Max values (means of 47. 7 and 35. 6 ml ~ kg ' n", . n respectively) with lower heart rates...

Sockler, James Michael

2012-06-07T23:59:59.000Z

423

Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)  

SciTech Connect (OSTI)

This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

Not Available

2012-07-01T23:59:59.000Z

424

Slepian-Wolf coded nested quantization (SEC-NQ) for Wyner-Ziv coding: high-rate performance analysis, code design, and application to cooperative networks  

E-Print Network [OSTI]

exploits the correlation between two signals (one is the source and the other is the side information) and thus makes it possible to encode the source signal alone and to decode it jointly with the help of the side information at the decoder. Nested lattice... quantization provides a practical scheme for Wyner-Ziv cod- ing. We examine the high-rate performance of nested lattice quantizers and give the theoretical performance for general continuous sources. Based on our analysis, a new practical Wyner-Ziv coding...

Liu, Zhixin

2009-05-15T23:59:59.000Z

425

Corrosion resistant neutron absorbing coatings  

DOE Patents [OSTI]

A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

2013-11-12T23:59:59.000Z

426

Corrosion resistant neutron absorbing coatings  

DOE Patents [OSTI]

A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

2012-05-29T23:59:59.000Z

427

Electrically conductive polymer concrete coatings  

DOE Patents [OSTI]

A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

Fontana, J.J.; Elling, D.; Reams, W.

1988-05-26T23:59:59.000Z

428

Electrically conductive polymer concrete coatings  

DOE Patents [OSTI]

A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

Fontana, Jack J. (Shirley, NY); Elling, David (Centereach, NY); Reams, Walter (Shirley, NY)

1990-01-01T23:59:59.000Z

429

Electrically conductive polymer concrete coatings  

DOE Patents [OSTI]

A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

Fontana, J.J.; Elling, D.; Reams, W.

1990-03-13T23:59:59.000Z

430

Characterization of VPS-W coating layers on molybdenum after heat exposure  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • W powders were successfully coated on molybdenum using VPS coating technique. • W powders were completely changed into recrystallized grains after heat exposure. • VPS-W coating layer shows good adhesion to the Mo substrate after heat exposure due to the interdiffusion between W and Mo. • W-coated Mo material will extend the service life of hot-zone parts for high-temperature furnace applications. - Abstract: Tungsten (W) coating layers were successfully deposited using a vacuum plasma spraying (VPS) technique on a molybdenum (Mo) substrate. Tungsten powder with a median size of 10 ?m was applied to prepare coatings via a plasma spray system. For the VPS process, argon and hydrogen were used as plasma-forming gases, and the coatings were deposited in 35 mbar vacuum pressure. A coating with a thickness of 300 ?m was obtained, and some unmelted W powders were observed in the coating layer. This heat exposure experiment was performed in a sapphire crystal growing furnace at 2100 °C up to 110 h. After heat exposure, the VPS-W coating layers were soundly bonded with the Mo substrate due to the interdiffusion between W and Mo.

Cho, Gue Serb, E-mail: gscho@kitech.re.kr; Choe, Kyeong Hwan; Choi, Soon Yeol

2013-12-15T23:59:59.000Z

431

Developing TiAIN Coatings for Intermediate Temperature-Solid Oxide Fuel Cell Interconnect Applications  

SciTech Connect (OSTI)

TiN-type coatings have potential to be used as SOFC interconnect coatings SOFC because of their low resistance and high temperature stability. In this research, various (Ti,Al)N coatings were deposited on stainless steels by filtered-arc method. ASR and XRD tests were conducted on these coatings, and SEM/EDAX analysis were conducted after ASR and XRD tests. SEM/EDAX analyses show that (Ti,Al)N remains stable at temperature up to 700°C. It is also indicated that Al has beneficial effect on the stability of TiN type coatings. At 900°C, (Ti-30Al)N is fully oxidized and some of (Ti-50Al)N coating still remains as nitride. The analyses on cross-sectional samples show that these coatings are effective barrier to the Cr migration. In summary, (Ti.Al)N coatings are good candidates for the SOFC interconnect applications at 700°C. The future directions of this research are to improve the stability of these coatings by alloy-doping and to develop multi-layer coatings.

Liu, X. (West Virginia University); Johnson, C.D.; Li, C. (West Virginia University); Xu, J. (West Virginia University); Cross, C.

2007-02-01T23:59:59.000Z

432

Dynamic recrystallization in friction surfaced austenitic stainless steel coatings  

SciTech Connect (OSTI)

Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.

2012-12-15T23:59:59.000Z

433

TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH  

SciTech Connect (OSTI)

Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT patterning and alignment, advances in commercial and research materials and field effect schemes. In addition, Eikos continued to develop improved efficiency coating materials and transfer methods suitable for batch and continuous roll-to-roll fabrication requirements. Finally, Eikos collaborated with NREL and the PV-community at large in fabricating and characterizing Invisicon���® enabled solar cells.

Glatkowski, P.J.; Landis, D.A.

2013-04-16T23:59:59.000Z

434

Composition, morphology and mechanical properties of sputtered TiAlN coating  

SciTech Connect (OSTI)

TiAlN coating was deposited on the tungsten carbide cutting tool by using DC magnetron sputtering system to study the influence of substrate bias and nitrogen flow rate on the composition, morphology and mechanical properties. The negatively substrate bias and nitrogen flow rate was varied from about ?79 to ?221 V and 30 sccm to 72 sccm, respectively. The coating composition and roughness were characterized by using SEM/EDX and Atomic Force Microscopy (AFM), respectively. The dynamic ultra micro hardness tester was used to measure the mechanical properties. The coating hardness increases to about 10-12 GPa with an increase of the negatively substrate bias up to ? 200 V and it tend to decrease with an increase in nitrogen flow rate up to 70 sccm. The increase of hardness follows the increase of Ti and N content and rms coating roughness.

Budi, Esmar, E-mail: esmarbudi@unj.ac.id [Department of Physics, Faculty of Science and Mathematics, Universitas Negeri Jakarta, Jl. Pemuda No. 10, Jakarta 13220 (Indonesia); Razali, M. Mohd. [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Karung Berkunci No. 1752 Pejabat Pos Durian Tunggal 76109 Melaka (Malaysia); Nizam, A. R. Md. [Faculty of Manufacturing Engineering, UniversitiTeknikal Malaysia Melaka, Karung Berkunci No. 1752 Pejabat Pos Durian Tunggal 76109 Melaka (Malaysia)

2014-03-24T23:59:59.000Z