Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Blade-Vortex Interactions in High Pressure Steam Turbines  

E-Print Network (OSTI)

A detailed experimental and numerical investigation of the transport of streamwise (passage) vortices in high-pressure axial turbines and their interaction with the downstream blade rows was performed. The results indicate large variations in the downstream flow field, notably the development of the secondary flows. The mechanism of passage vortex transport was studied in two differently configured high-pressure turbine stages. In the first configuration, the blades are radially stacked while the second configuration features three-dimensionally stacked high-pressure steam turbine blading. The stator hub passage vortex is chopped by the downstream blade row in a similar way to the wake. The bowed vortex tube near the inlet to the rotor appeared to develop two counter-rotating legs extending back to the leading edges of the adjacent blades. These were termed the suction side leg and the pressure side leg. The two legs of the incoming passage vortex then convect with the respective velocities on the blade surfaces. The results are discussed for the radially stacked turbine and the 3-D turbine separately.

Venkata Siva Prasad Chaluvadi

2000-01-01T23:59:59.000Z

2

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents (OSTI)

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

3

Flash High-Pressure Condensate to Regenerate Low-Pressure Steam  

SciTech Connect

This revised ITP tip sheet on regenerating low-pressure steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

4

BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...  

NLE Websites -- All DOE Office Websites (Extended Search)

at high pressures yields more methane, less hydrogen at thermodynamic equilibrium Coke formation tendency increases with increasing pressures Coking tendency can be...

5

A demonstration experiment of steam-driven, high-pressure melt ejection  

DOE Green Energy (OSTI)

A steam blowdown test was performed at the Surtsey Direct Heating Test Facility to test the steam supply system and burst diaphragm arrangement that will be used in subsequent Surtsey Direct Containment Heating (DCH) experiments. Following successful completion of the steam blowdown test, the HIPS-10S (High-Pressure Melt Streaming) experiment was conducted to demonstrate that the technology to perform steam-driven, high-pressure melt ejection (HPME) experiments has been successfully developed. In addition, the HIPS-10S experiment was used to assess techniques and instrumentation design to create the proper timing of events in HPME experiments. This document discusses the results of this test.

Allen, M.D.; Pitch, M. (Sandia National Labs., Albuquerque, NM (USA)); Nichols, R.T. (Ktech Corp., Albuquerque, NM (USA))

1990-08-01T23:59:59.000Z

6

BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

High Pressure Steam Reforming of High Pressure Steam Reforming of Bio-Derived Liquids S. Ahmed, S. Lee, D. Papadias, and R. Kumar November 6, 2007 Laurel, MD Research sponsored by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Rationale and objective Rationale „ Steam reforming of liquid fuels at high pressures can reduce hydrogen compression costs - Much less energy is needed to pressurize liquids (fuel and water) than compressing gases (reformate or H 2 ) „ High pressure reforming is advantageous for subsequent separations and hydrogen purification Objective „ Develop a reformer design that takes advantage of the savings in compression cost in the steam reforming bio-derived liquid fuels - Metric:

7

Split stream boilers for high-temperature/high-pressure topping steam turbine combined cycles  

SciTech Connect

Research and development work on high-temperature and high-pressure (up to 1,500 F TIT and 4,500 psia) topping steam turbines and associated steam generators for steam power plants as well as combined cycle plants is being carried forward by DOE, EPRI, and independent companies. Aeroderivative gas turbines and heavy-duty gas turbines both will require exhaust gas supplementary firing to achieve high throttle temperatures. This paper presents an analysis and examples of a split stream boiler arrangement for high-temperature and high-pressure topping steam turbine combined cycles. A portion of the gas turbine exhaust flow is run in parallel with a conventional heat recovery steam generator (HRSG). This side stream is supplementary fired opposed to the current practice of full exhaust flow firing. Chemical fuel gas recuperation can be incorporated in the side stream as an option. A significant combined cycle efficiency gain of 2 to 4 percentage points can be realized using this split stream approach. Calculations and graphs show how the DOE goal of 60 percent combined cycle efficiency burning natural gas fuel can be exceeded. The boiler concept is equally applicable to the integrated coal gas fuel combined cycle (IGCC).

Rice, I.G. [Rice (I.G.), Spring, TX (United States)

1997-04-01T23:59:59.000Z

8

REED BESLER BOILER HIGH PRESSURE STEAM SYSTEM AND THERMAL CYCLING FACILITY. Summary Report  

SciTech Connect

A high pressure boiler has been installed at ORNL. This Besler boiler is capabie of producing from 150 to 2000 psi saturated steam at steaming rates up to 5000 lbs/hr. The boiler is part of a water-steam circuit whteh also includes two spray water pumps, a steam pressure control valve, a high pressure trapping station, and a low pressure deaerated feedwater system. The new boiler system is piped and instrumented to serve as a thermal cycling facility. Shakedown test thermal cycles to requirements set forth in HRT Specification 1113a have been conducted using the existing Dump Test Autoclave as a test piece. Fourty-four cycles have been run through mid February, 1958. The boiler has been operated a total of 142 hours. Cycles are run completely automatically. Better than three- fourths of the cycles as run fall within the specification prescribed limits. (auth)

Holz, P.P.

1958-02-12T23:59:59.000Z

9

Oxidation of Fuel Cladding Candidate Materials in Steam Environments at High Temperature and Pressure  

SciTech Connect

Under certain severe accident conditions, the fuel rods of nuclear power plants are exposed to high temperature/pressure steam environments in which the Zr alloy cladding is rapidly oxidized. As alternative claddings, the oxidation resistances of SiC-based materials and stainless steels with high Cr and/or Al additions have been examined from 800-1200 C in high-pressure steam environments. Very low reaction kinetics were observed with alumina-forming FeCrAl alloys at 1200 C while Fe-Cr alloys with only 15-20% Cr were rapidly attacked.

Cheng, Ting [ORNL; Keiser, James R [ORNL; Brady, Michael P [ORNL; Terrani, Kurt A [ORNL; Pint, Bruce A [ORNL

2012-01-01T23:59:59.000Z

10

High performance steam development  

SciTech Connect

DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

Duffy, T.; Schneider, P.

1995-12-31T23:59:59.000Z

11

Economics of Steam Pressure Reduction  

E-Print Network (OSTI)

Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper will address the following. 1. Factors that determine the feasibility of reducing the plant steam operating pressure. 2. The operating advantages and disadvantages associated with the decreased steam pressure. 3. The economics of steam pressure reduction. Appropriate visual aids will be utilized as part of the discussion.

Sylva, D. M.

1985-05-01T23:59:59.000Z

12

Steam Pressure Reduction, Opportunities, and Issues  

Science Conference Proceedings (OSTI)

Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

2006-01-01T23:59:59.000Z

13

High Temperature and Pressure Steam-H2 Interaction with Candidate Advanced LWR Fuel Claddings  

SciTech Connect

This report summarizes the work completed to evaluate cladding materials that could serve as improvements to Zircaloy in terms of accident tolerance. This testing involved oxidation resistance to steam or H{sub 2}-50% steam environments at 800-1350 C at 1-20 bar for short times. A selection of conventional alloys, SiC-based ceramics and model alloys were used to explore a wide range of materials options and provide guidance for future materials development work. Typically, the SiC-based ceramic materials, alumina-forming alloys and Fe-Cr alloys with {ge}25% Cr showed the best potential for oxidation resistance at {ge}1200 C. At 1350 C, FeCrAl alloys and SiC remained oxidation resistant in steam. Conventional austenitic steels do not have sufficient oxidation resistance with only {approx}18Cr-10Ni. Higher alloyed type 310 stainless steel is protective but Ni is not a desirable alloy addition for this application and high Cr contents raise concern about {alpha}{prime} formation. Higher pressures (up to 20.7 bar) and H{sub 2} additions appeared to have a limited effect on the oxidation behavior of the most oxidation resistant alloys but higher pressures accelerated the maximum metal loss for less oxidation resistant steels and less metal loss was observed in a H{sub 2}-50%H{sub 2}O environment at 10.3 bar. As some of the results regarding low-alloyed FeCrAl and Fe-Cr alloys were unexpected, further work is needed to fundamentally understand the minimum Cr and Al alloy contents needed for protective behavior in these environments in order to assist in alloy selection and guide alloy development.

Pint, Bruce A [ORNL

2012-08-01T23:59:59.000Z

14

Constant-Pressure Measurement of Steam-  

E-Print Network (OSTI)

SGP-TR-169 Constant-Pressure Measurement of Steam- Water Relative Permeability Peter A. O by measuring in-situ steam saturation more directly. Mobile steam mass fraction was established by separate steam and water inlets or by correlating with previous results. The measured steam-water relative

Stanford University

15

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network (OSTI)

Steam is the most common and economical way of transferring heat from one location to another. But most steam systems use the header pressure steam to do the job. The savings are substantially more than just the latent heat differences between the high and low steam pressures. The discussion below shows how the savings in using low pressure steam can be above 25%! The key to the savings is not in the heat exchanger equipment or the steam trap, but is back at the powerhouse - the sensible heat requirement of the boiler feed water. Chart III shows potential steam energy savings and will be useful in estimating the steam energy savings of high pressure processes.

Vallery, S. J.

1985-05-01T23:59:59.000Z

16

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (9) System Outline and Endurance Test of Low-Pressure Steam Injectors  

Science Conference Proceedings (OSTI)

A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. We are developing technology for 'Innovative Simplified Nuclear Power Plants' in order to further improve the economy and safety of nuclear power plants. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying 'High-Efficiency SI', which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feedwater heaters and Emergency Core Cooling Systems (ECCS) of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). The innovative-simplified nuclear power plant consists of a simplified feedwater heating system, a passive core injection system and a passive containment cooling system. This report describes the results of the endurance and performance tests of low-pressure SIs for feedwater heaters with Jet-deaerator and core injection system. A part of this report are fruits of research which is carried out by Tokyo Electric Power Company (TEPCO), Toshiba, and 7 Universities in Japan, funded from the Ministry of Economy, Trade and Industry (METI) of Japan as the national public research-funded program. (authors)

Shuichi Ohmori; Michitsugu Mori; Shoji Goto [Tokyo Electric Power Company (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Chikako Iwaki; Yutaka Asanuma [Toshiba Corporation (Japan)

2006-07-01T23:59:59.000Z

17

High Efficiency Steam Electrolyzer  

SciTech Connect

A novel steam electrolyzer has been developed. In conventional electrolyzers, oxygen produced from electrolysis is usually released in the air stream. In their novel design, natural gas is used to replace air in order to reduce the chemical potential difference across the electrolyzer, thus minimizing the electrical consumption. The oxygen from the electrolysis is consumed in either a total oxidation or a partial oxidation reaction with natural gas. Experiments performed on single cells shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. Using thin film materials and high performance cathode and anode, electrolysis could be done at temperatures as low as 700 C with electrolytic current as high as 1 A/cm{sup 2} at a voltage of 0.5 V only. The 700 C operating temperature is favorable to the total oxidation of natural gas while minimizing the need for steam that is otherwise necessary to avoid carbon deposition. A novel tubular electrolyzer stack has been developed. The system was designed to produce hydrogen at high pressures, taking advantage of the simplicity and high efficiency of the electrochemical compressors. A complete fabrication process was developed for making electrolyzer tubes with thin film coatings. A 100 W stack is being built.

Pham, A.Q.

2000-06-19T23:59:59.000Z

18

Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system  

SciTech Connect

A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

Moreno, J.B.

1983-07-01T23:59:59.000Z

19

Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system  

SciTech Connect

As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

Marshall, B.W.

1983-05-01T23:59:59.000Z

20

Experimental investigation of high-pressure steam-induced surge in a transonic compressor stage .  

E-Print Network (OSTI)

??Operational experience indicates that steam escaping from carrier catapults has the potential to induce stall or surge in the compressors of jet aircraft during takeoff. (more)

Hurley, Andrew M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Long-duration thermal storage for solar-thermal high-pressure steam IPH  

DOE Green Energy (OSTI)

Solar-thermal central-receiver systems are cost effective for electric-power and industrial process-heat applications. Systems employing molten nitrate salt as both receiver working fluid and storage have previously been evaluated for diurnal thermal storage. This study evaluates the potential of employing a molten salt receiver for a baseload industrial process plant requiring saturated steam at 68 atm (1000 psi). Two types of thermal storage are evaluated: molten salt, and air and rock. When thermal storage of six hours or less is used, molten nitrate salt alone is the optimum storage. For more than six hours, the optimum storage is a combination of molten salt and air and rock. The air and rock system uses a molten-salt-to-air heat exchanger and a thermocline rock bed heated and cooled by the air. The economic potential of the system is determined. The results depend on the relative cost of fossil fuel and the solar thermal energy costs. The optimum quantity of storage is highly variable, and the range is from no storage to a long duration capacity - 48 hours.

Copeland, R.J.; Stern, C.; Leach, J.W.

1982-12-01T23:59:59.000Z

22

Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief  

SciTech Connect

A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

Not Available

2005-11-01T23:59:59.000Z

23

Single pressure steam bottoming cycle for gas turbines combined cycle  

SciTech Connect

This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

Zervos, N.

1990-01-30T23:59:59.000Z

24

Corrosion of Low Pressure Steam Turbine Components  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). The development of an effective localized corrosion damage prediction technology is essential for the successful avoidance of unscheduled outages of steam

2000-11-28T23:59:59.000Z

25

Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine  

SciTech Connect

The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

Eldrid, Sacheverel Q. (Saratoga Springs, NY); Salamah, Samir A. (Niskayuna, NY); DeStefano, Thomas Daniel (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

26

IMPROVEMENTS IN STEAM GENERATING AND SUPERHEATING PLANT AND AN IMPROVED METHOD OF PRODUCING LOW PRESSURE SUPERHEATED STEAM  

SciTech Connect

A steam supply arrangement is described which generates high-pressure steam and superheats steam from a low-pressure source. Inus, in operations cteam at 350 to 600 psi from a nuciear reactor is superheated in a heat exehanger anu later in gas-heated equipment to 1100 F and passed to a stage of a pluralstage steam turbine. When the reactor ls shut downs steam generated in the steam generator section may be passed directly to the gas-fired superheater. (T.R.H.)

1959-02-18T23:59:59.000Z

27

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

2005-09-01T23:59:59.000Z

28

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

29

Downhole steam generator using low pressure fuel and air supply  

DOE Patents (OSTI)

An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

30

Aerothermodynamics of low pressure steam turbines and condensers  

SciTech Connect

This book presents papers on steam turbines and steam condensers. Topics considered include the design of modern low pressure steam turbines, throughflow design methods, three-dimensional flow calculations, the calculation of wet steam stages, aerodynamic development of turbine blades, turbine performance measurement, turbine exhaust system design, and condensers for large turbines.

Moore, M.J.; Sieverding, C.H.

1987-01-01T23:59:59.000Z

31

Steam Generator Management Program: Steam Generator In Situ Pressure Test Guidelines, Revision 4  

Science Conference Proceedings (OSTI)

Information in this document provides guidance for the performance of in situ pressure testing of steam generator tubes. In situ pressure testing refers to hydrostatic pressure tests performed on installed tubing in the field. Such testing is considered a direct means of evaluating tube structural and leakage integrity. In situ pressure testing can be used to support condition monitoring of steam generator tube integrity.This is a required document for a steam generator program developed ...

2012-10-02T23:59:59.000Z

32

Steam catalysis in CaO carbonation under low steam partial pressure  

Science Conference Proceedings (OSTI)

CaO was widely used to capture CO{sub 2} in direct hydrogen production process, where steam always existed simultaneously. The effect of steam on CaO carbonation performance under low steam partial pressure was investigated using a pressurized thermogravimetric apparatus. The experimental results revealed that steam improved CaO carbonation performance significantly no matter whether Ca(OH){sub 2} was produced or not. At 823 K and 0.5 MPa of steam partial pressure, effect of steam on CaO carbonation performance could not be attributed mainly to production of Ca(OH){sub 2} because the hydration rate of CaO was very slow. The main reason was steam catalysis in CaO carbonation. Enhancement of steam on CaO carbonation performance without Ca(OH){sub 2} production could not be attributed to improvement of steam on the physical property, but to catalytic effect of steam. Effects of CaO precursors, CO{sub 2} partial pressure, steam partial pressure, and temperature with steam addition on CaO carbonation performance were also investigated.

Yang, S.J.; Xiao, Y.H. [Chinese Academy of Science, Beijing (China)

2008-06-15T23:59:59.000Z

33

High-Efficiency Steam Electrolyzer  

SciTech Connect

We are developing a novel high-efficiency, high-temperature steam electrolyzer. Although water or steam electrolysis is well known to be one of the cleanest ways to produce hydrogen, widespread utilization is hindered by high operational costs because of high electricity consumption. To decrease the electrical power input requirements in electrolysis, our approach uses natural gas as an anode depolarizer. This approach essentially replaces one unit of electricity with one equivalent-energy unit of natural gas at much lower cost. The direct use of natural gas on the electrolyzer enables very high system efficiency with respect to primary energy. Experiments performed on single cells have shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. System efficiency has been estimated to be 50 to 80%, depending on the electrolytic current. A 200-W prototype unit is being developed.

Pham, A Q

2001-06-20T23:59:59.000Z

34

Advanced high performance steam systems for industrial cogeneration: Final report  

SciTech Connect

Advanced steam conditions of 1500/sup 0/F and 1500 psig have been shown to offer a major positive economic impact and a dramatic improvement in cogeneration system performance. In a back pressure steam turbine system, electricity production increases by 80%, and the return on investment improves by 60%. For a 35% extraction turbine, the electricity production increases 28% and the return increases by 34%. Designs of a 1500/sup 0/F modular steam generator and two sizes of matching steam turbines have been completed. The steam generator module uses all Alloy 800 tubes except for two superheater rows of Inconel 617. Its design is based on current production Alloy 800 once-through steam generators currently being introduced into cogeneration combined cycles. A test loop is currently evaluating candidate steam generator tube materials and steam turbine materials at 1500/sup 0/F and 1500 psig. To date, 4000 hours of operation of this loop have been accumulated. The candidate metals after operation in 1500/sup 0/F and 1500 psig steam showed no surface distress. Trade-off studies have been completed on the high temperature steam turbine. Tangential, radial, and axial turbine configurations have been designed and evaluated. The stress analyses of the 1500/sup 0/F steam turbines show that the machine can be operated at 1500/sup 0/F and 1500 psig for over ten years without component replacement when using rotor hub cooling to maintain disk bore temperatures in the 900/sup 0/F range. When applied in back pressure steam, extraction steam, and combined cycle systems the ''1500/sup 0/F steam technology building blocks'' provide full coverage of industrial cogeneration from 4 MW to 25 MW in a single gas turbine and steam turbine installation. A twelve-inch diameter tangential flow turbine has also been designed which is optimum in the 1 to 3 MW power range.

Duffy, T.E.; Schneider, P.H.; Campbell, A.H.; Evensen, O.E.

1987-01-01T23:59:59.000Z

35

Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems  

DOE Patents (OSTI)

The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

McDermott, Daniel J. (Export, PA); Schrader, Kenneth J. (Penn Hills, PA); Schulz, Terry L. (Murrysville Boro, PA)

1994-01-01T23:59:59.000Z

36

Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems  

DOE Patents (OSTI)

The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

1994-05-03T23:59:59.000Z

37

High-Efficiency Steam Electrolyzer  

SciTech Connect

We are developing a novel high-efficiency, high-temperature steam electrolyzer. Although water or steam electrolysis is well known to be one of the cleanest ways to produce hydrogen, widespread utilization is hindered by high operational costs because of high electricity consumption. To decrease the electrical power input requirements in electrolysis, our approach uses natural gas as an anode depolarizer. This approach essentially replaces one unit of electricity with one equivalent-energy unit of natural gas at much lower cost. The direct use of natural gas on the electrolyzer enables very high system efficiency with respect to primary energy. Experiments performed on single cells have shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. System efficiency has been estimated to be 50 to 80%, depending on the electrolytic current density. During FY02, we have accomplished several major milestones, including the development of a metal-to-ceramic seal that withstands 150 psi differential, the fabrication of the electrolyzer tubes of up to 16 inches in length, the improvement of single tube performance and the demonstration of the first electrolyzer stack.

Pham, A Q; See, E; Lenz, D; Martin, P; Glass, R

2002-07-03T23:59:59.000Z

38

The Economics of Back-Pressure Steam Turbines  

E-Print Network (OSTI)

Recently, back-pressure steam turbines have become the focal point in many cogeneration applications. This is a result of the savings in operating costs associated with the generation of electrical or mechanical power coincident with the economical use of available thermal energy. The benefits and constraints of back-pressure systems, however, are not always readily apparent and may result in the misapplication of this technology. This paper, therefore, will examine new turbine installations and backpressure retrofits and will determine the most economical back-pressure turbine applications. A generalized methodology is highlighted, allowing the reader to readily evaluate and determine the economic justification of back-pressure turbines in many cogeneration applications. The impact on plant energy use and cost is calculated, and the effects of load variation and the value of high-efficiency turbines are discussed. The specific process plant case studies reviewed involve back-pressure turbines of 100 to 5000 hp for mechanical drives, for generator drives, and as pressure reducing station replacements.

Wagner, J. R.; Choroszylow, E.

1982-01-01T23:59:59.000Z

39

A Computer Program for Simulating Transient Behavior in Steam Turbine Stage Pressure of AHWR  

SciTech Connect

It is proposed to couple the Advanced Heavy water reactor (AHWR), which is being developed by Bhabha Atomic Research Centre, India, with a desalination plant. The objective of this coupling is to produce system make-up and domestic water. The proposed desalination plant needs about 1.9 kg/sec of steam and the minimum pressure requirement is 3 bars. The desalination plant can be fed with bled steam extracted from a suitable stage in low pressure turbine. As the turbine stage pressure changes with the load, it is essential to know the availability of bled steam at aforesaid pressure for various load condition. The objective of the present study is to identify a suitable extraction point so as to ensure availability of steam at desired condition for desalination plant, even at part load conditions. In order to fulfill the above objective a steam and feed system analysis code was developed which incorporates the mathematical formulation of different components of the steam and feed system such as, high pressure (HP) and low pressure (LP) turbines, re-heater, feed heaters etc. The dynamic equations are solved simultaneously to obtain the stage pressure at various load conditions. Based on the results obtained, the suitable extraction stage in LP turbine was selected. This enables to determine the lowest possible part load operation up to which availability of desalination plant could be ensured. (authors)

Dutta, Anu; Thangamani, I.; Chakraborty, G.; Ghosh, A.K.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)

2006-07-01T23:59:59.000Z

40

Replace Pressure-Reducing Valves with Backpressure Turbogenerators (International Fact Sheet), Energy Tips-Steam, Steam Tip Sheet #20c  

SciTech Connect

This English/Chinese ITP steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas turbine bottoming cycles: Triple-pressure steam versus Kalina  

SciTech Connect

The performance of a triple-pressure steam cycle has been compared with a single-stage Kalina cycle and an optimized three-stage Kalina cycle as the bottoming sections of a gas turbine combined cycle power plant. A Monte Carlo direct search was used to find the optimum separator temperature and ammonia mass fraction for the three-stage Kalina cycle for a specific plant configuration. Both Kalina cycles were more efficient than the triple pressure steam cycle. Optimization of the three-stage Kalina cycle resulted in almost a two percentage point improvement.

Marston, C.H. [Villanova Univ., PA (United States); Hyre, M. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

1995-01-01T23:59:59.000Z

42

Constant-pressure measurement of steam-water relative permeability  

DOE Green Energy (OSTI)

A series of steady-state experiments have established relative permeability curves for two-phase flow of water in a porous medium. These experiments have minimized uncertainty in pressure, heat loss, and saturation. By attempting to maintain a constant pressure gradient, the experiments have provided a baseline from which to determine the effect of temperature on relative permeability. The use of a flexible heater with an automatic control system made it possible to assume negligible phase change for the mobile fluid. X-ray computer tomography (CT) aided by measuring in-situ steam saturation more directly. Mobile steam mass fraction was established by separate steam and water inlets or by correlating with previous results. The measured steam-water relative permeability curves assume a shape similar to those obtained by Corey (1954) for the simultaneous flow of nitrogen and water. Close agreement between the curves by Satik (1998), Mahiya (1999), and this study establishes the reliability of the experimental method and instrumentation adopted in these experiments, though some differences may bear further investigation. In particular, the steam phase relative permeability appears to vary much more linearly with saturation than does the water phase relative permeability.

O'Connor, Peter A.

2001-06-01T23:59:59.000Z

43

High pressure heterogeneous catalysis in a low pressure UHV environment  

SciTech Connect

The major thrust of our research is to carry out for the first time a heterogeneous catalytic reaction that normally is observed only at high pressures (>1 atm) of reactant gas at low pressures (<10{sup {minus}4} Torr) in an ultrahigh vacuum environment. The reaction we have chosen is the steam reforming of methane on a Ni(111) crystal.

Ceyer, S.T.

1990-01-01T23:59:59.000Z

44

STEAM GENERATORS FOR HIGH-TEMPERATURE GAS-COOLED REACTORS  

SciTech Connect

An analytical approach and an IBM machine code were prepared for the design of gas-cooled reactor once-through steam generators for both axial-flow and cross-flow tube matrices. The codes were applied to investigate the effects of steam generator configuration, tube diameter, extended surface, type of cooling gas, steam and gas temperature and pressure conditions, and the pumping power-to-heat removal ratio on the size, weight, and cost of steam generators. The results indicate that the least expensive and most promising unit for high- temperature high-pressure gascooled reactor plants employs axial-gas flow over 0.5-in.dia bare U-tubes arranged with their axes parallel to that of the shell. The proposed design is readily adaptable to the installation of a reheater and is suited to conventional fabrication techniques. Charts are presented to facilitate tlie design of both axial-flow and cross-flow steam generators for gas- cooled reactor applications. (auth)

Fraas, A.P.; Ozisik, M.N.

1963-04-23T23:59:59.000Z

45

HRSG Startup and Shutdown Guidelines for Avoiding Heat Recovery Steam Generator Pressure Part Failures  

Science Conference Proceedings (OSTI)

Most of the damage to heat recovery steam generator (HRSG) pressure parts is caused by transiently high thermal-mechanical stresses that occur during shutdown and startup, along with cycle chemistry changes imposed by cyclic operation. Unit shutdown and startup impose considerably more potential for cumulative pressure part damage than stable on-load operation does. Essentially every HRSG damage mechanism is exacerbated by cyclic operationeither directly, through transiently high localized stresses appli...

2009-07-28T23:59:59.000Z

46

Topping PCFB combustion plant with supercritical steam pressure  

SciTech Connect

Research is being conducted to develop a new type of coal fired plant for electric power generation. This new type of plant, called a second generation or topping pressurized circulating fluidized bed combustion (topping PCFB) plant, offers the promise of efficiencies greater than 46 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized coal fired plants with scrubbers. The topping PCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed combustor (PCFB), and the combustion of carbonizer fuel gas in a topping combustor to achieve gas turbine inlet temperatures of 2,300 F and higher. After completing pilot plant tests of a carbonizer, a PCFB, and a gas turbine topping combustor, all being developed for this new plant, the authors calculated a higher heating value efficiency of 46.2 percent for the plant. In that analysis, the plant operated with a conventional 2,400 psig steam cycle with 1,000 F superheat and reheat steam and a 2.5 inch mercury condenser back pressure. This paper identifies the efficiency gains that this plant will achieve by using supercritical pressure steam conditions.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); White, J. [Parsons Power Group Inc., Reading, PA (United States)

1997-11-01T23:59:59.000Z

47

Location of Leaks in Pressure Testable Direct Burial Steam Distribution Conduits  

E-Print Network (OSTI)

Central steam is commonly distributed through direct burial lines protected by an outer conduit. These underground conduit systems are subject to electrolytic corrosion. Failure of the outer casing permits water intrusion and damage to insulation, resulting in increased thermal energy losses and eventual damage to the steam line. Breaches in the outer conduit are difficult to locate, and damage to the steam line may progress until the entire line requires replacement. Thermal energy losses are high if groundwater infiltrates the conduit and excavation to replace the steam line is extremely expensive. Locating leaks in steam line conduit is a two step procedure. The first step is to regularly pressure test sections of conduit to determine whether a breach has occurred. Pressure testing should be performed on a regular basis to minimize thermal losses and damage from groundwater intrusion. If pressure testing reveals that the conduit is leaking, the Navy has developed a procedure and equipment to determine where the breach occurred. The breach can be detected using sulfur hexafluoride (SF6) tracer gas injected into the conduit. After injection, maintenance personnel walk the path of the steam line with an SF6 detector that precisely locates the leak. Then, only the necessary conduit sections are excavated for repair. We have successfully used this system at several locations, and in a variety of soil conditions. Tracer gas leak testing provides an effective and inexpensive method to evaluate underground conduit systems. Performed on a regular basis, it is a useful preventive maintenance tool to minimize energy loss and utility system damage. Test results also provide valuable input to the decision to repair or replace underground steam lines. This equipment and procedure may be used on other utility system distribution components, such as compressed air and direct burial steam lines.

Sittel, M. G.; Messock, R. K.

1993-03-01T23:59:59.000Z

48

High-temperature oxidation of Zircaloy in hydrogen-steam mixtures. [PWR; BWR  

DOE Green Energy (OSTI)

Oxidation rates of Zircaloy-4 cladding tubes have been measured in hydrogen-steam mixtures at 1200 to 1700/sup 0/C. For a given isothermal oxidation temperature, the oxide layer thicknesses have been measured as a function of time, steam supply rate, and hydrogen overpressure. The oxidation rates in the mixtures were compared with similar data obtained in pure steam and helium-steam environments under otherwise identical conditions. The rates in pure steam and helium-steam mixtures were equivalent and comparable to the parabolic rates obtained under steam-saturated conditions and reported in the literature. However, when the helium was replaced with hydrogen of equivalent partial pressure, a significantly smaller oxidation rate was observed. For high steam-supply rates, the oxidation kinetics in a hydrogen-steam mixture were parabolic, but the rate was smaller than for pure steam or helium-steam mixtures. Under otherwise identical conditions, the ratio of the parabolic rate for hydrogen-steam to that for pure steam decreased with increasing temperature and decreasing steam-supply rate.

Chung, H.M.; Thomas, G.R.

1982-09-01T23:59:59.000Z

49

Use Vapor Recompression to Recover Low-Pressure Waste Steam (Revised0  

SciTech Connect

This revised ITP tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2008-03-01T23:59:59.000Z

50

High-Efficiency Steam Electrolyzer  

DOE Green Energy (OSTI)

A hydrogen economy will require readily available and affordable hydrogen fuel. Current methods of hydrogen production do not fulfill these requirements. We are working on an electrolyzer system that can provide distributed hydrogen production while taking advantage of the nation's existing natural gas infrastructure. Electrolysis is a promising hydrogen production technology both because of its ability to produce pure hydrogen from water and because it does not require large, centralized plants. Unlike other technologies, the cost of hydrogen production scales well from larger to smaller systems. Electrolysis units could be widely distributed and scaled to meet the hydrogen requirements of different users such as individual households, local fueling stations and industrial facilities. A significant drawback to traditional electrolysis is the large electricity consumption required to convert water to hydrogen and oxygen. The electricity requirements mean such systems are expensive to operate. In addition, if the electricity is provided from coal or gas-fired power plants, electrolytic hydrogen production does not mitigate greenhouse gas emissions. The concept described in this report is intended to resolve some of the problems associated with electrolytic hydrogen production. By utilizing natural gas in place of air in the anode compartment in a solid oxide electrolyzer, the electricity requirements of the system are greatly reduced. The system has the capability to produce pure hydrogen, or hydrogen humidified to levels appropriate for direct use in a PEM fuel cell. With inherent electrochemical compression, the requirement for external compression for pressurization could be reduced. This technology offers numerous advantages for distributed hydrogen production of stationary and transportation hydrogen fuel cells. Our preliminary calculations indicate that using this concept, hydrogen could be produced at a cost competitive with gasoline (on a per gallon equivalent basis) while also lowering carbon dioxide emissions.

Vance, A L; Trent, J W; See, E F; Glass, R S

2003-06-30T23:59:59.000Z

51

High-Efficiency Steam Electrolyzer  

SciTech Connect

A hydrogen economy will require readily available and affordable hydrogen fuel. Current methods of hydrogen production do not fulfill these requirements. We are working on an electrolyzer system that can provide distributed hydrogen production while taking advantage of the nation's existing natural gas infrastructure. Electrolysis is a promising hydrogen production technology both because of its ability to produce pure hydrogen from water and because it does not require large, centralized plants. Unlike other technologies, the cost of hydrogen production scales well from larger to smaller systems. Electrolysis units could be widely distributed and scaled to meet the hydrogen requirements of different users such as individual households, local fueling stations and industrial facilities. A significant drawback to traditional electrolysis is the large electricity consumption required to convert water to hydrogen and oxygen. The electricity requirements mean such systems are expensive to operate. In addition, if the electricity is provided from coal or gas-fired power plants, electrolytic hydrogen production does not mitigate greenhouse gas emissions. The concept described in this report is intended to resolve some of the problems associated with electrolytic hydrogen production. By utilizing natural gas in place of air in the anode compartment in a solid oxide electrolyzer, the electricity requirements of the system are greatly reduced. The system has the capability to produce pure hydrogen, or hydrogen humidified to levels appropriate for direct use in a PEM fuel cell. With inherent electrochemical compression, the requirement for external compression for pressurization could be reduced. This technology offers numerous advantages for distributed hydrogen production of stationary and transportation hydrogen fuel cells. Our preliminary calculations indicate that using this concept, hydrogen could be produced at a cost competitive with gasoline (on a per gallon equivalent basis) while also lowering carbon dioxide emissions.

Vance, A L; Trent, J W; See, E F; Glass, R S

2003-06-30T23:59:59.000Z

52

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

53

Steam-channel-expanding steam form drive  

SciTech Connect

In a viscous oil reservoir in which the stratification of the rock permeability is insufficient to confine steam within the most permeable strata, oil can be produced by forming and expanding a steam channel through which steam is flowed and oil is produced. Steam is injected and fluid is produced at rates causing a steam channel to be extended between locations that are horizontally separated. A foam-forming mixture of steam, noncondensable gas and surfactant is then injected into the steam channel to provide foam and a relatively high pressure gradient within the channel, without plugging the channel. A flow of steam-containing fluid through the steam channel is continued in a manner such that the magnitudes of the pressure gradient, the rate of oil production, and the rate of steam channel expansion exceed those which could be provided by steam alone. 10 claims, 6 figures.

Dilgren, R.E.; Hirasaki, G.J.; Hill, H.J.; Whitten, D.G.

1978-05-02T23:59:59.000Z

54

Theoretical analysis of the steam pressure exchange ejector for an automotive air conditioning application.  

E-Print Network (OSTI)

?? The project conducted at The George Washington University is a computer simulation and theoretical analysis of the steam pressure exchange ejector air conditioning system (more)

Gould, David

2009-01-01T23:59:59.000Z

55

Replace Pressure-Reducing Valves with Backpressure Turbogenerators: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No. 20  

SciTech Connect

Many industrial facilities produce steam at a higher pressure than is demanded by process requirements. Steam passes through pressure-reducing valves (PRVs, also known as letdown valves) at various locations in the steam distribution system to let down or reduce its pressure. A non-condensing or backpressure steam turbine can perform the same pressure-reducing function as a PRV, while converting steam energy into electrical energy.

2002-01-01T23:59:59.000Z

56

Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal  

Science Conference Proceedings (OSTI)

HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

2009-09-15T23:59:59.000Z

57

Downhole pressure, temperature and flowrate measurements in steam wells at the Geysers field  

SciTech Connect

Recently developed pressure-temperature-spinner (PTS) tools are used to collect reliable downhole measurements in geothermal systems, such as at The Geysers. PTS surveys in several flowing Geysers steam wells were used to quantify steam entry location and magnitude, wellbore heat loss, pressure drop due to friction, thermodynamic properties of the steam, and maximum rock temperature. Interwell cross flow/interference was identified in one well. Finally, a single-phase saturated steam wellbore model used to compare calculated to measured downhole values, was found to adequately predict the flowing pressure versus depth curves in vapor filled holes.

Enedy, Kathleen L.

1988-01-01T23:59:59.000Z

58

High performance steam cogeneration (proof-of-concept phases). Phase 2, HRSG 500-hour test report: Final report  

SciTech Connect

Recent advances in small once-through Alloy 800 steam generators, improved materials technology, and application of small industrial gas turbine technology to steam turbine cogeneration offers the potential to make a step increase in steam temperature from around 1000{degree}F, where industry has been for almost fifty years, to 1500{degree}F. In small cogeneration systems, it is economically practical to introduce new technology and make a step change in temperature where it may not be possible (given the regulatory environment and economic risk) for a major change in steam temperature to be introduced in the hundreds of megawatt size of an electric utility. Increasing the peak steam temperature in a steam turbine cycle allows more work to be extracted or electrical power to be generated from a given quantity of heat input. Figure 1 plots steam efficiency as a function of superheat steam temperature and pressure for a turbine-back pressure of 166 psia. This figure clearly shows that increasing the steam conditions from the typical current practice of 900{degree}F and 900 psia to 1500{degree}F and 1500 psia will increase the steam cycle efficiency by 53%. The combination of higher cycle efficiency with an advanced high efficiency steam turbine design provides a substantial increase in turbine output power for a given steam flowrate. The output of this advanced high temperature steam turbine is approximately twice that of a current industrial practive turbine for the same turbine flowrate as seen in Figure 2.

Campbell, A.H.

1992-12-01T23:59:59.000Z

59

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

This revised ITP tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

60

Combined cycle electric power plant with a steam turbine having a sliding pressure main bypass and control valve system  

SciTech Connect

A combined cycle electric power plant includes two gas turbines, a steam turbine, and a digital control system with an operator analog or manual backup. Each of the gas turbines has an exhaust heat recovery steam generator connected to a common header from which the steam is supplied by one or both of the steam generators for operating the steam turbine. The control system is of the sliding pressure type and maintains a predetermined steam pressure as a function of steam flow according to a predetermined characterization depending on the number of steam generators in service to limit the maximum steam velocity through the steam generators, and reduce the probability of water carryover into the steam turbine. Such control is always maintained by the bypass valve. The turbine control valve responds to the speed/load demand only, except when the bypass valve is closed and the rate of steam generation is insufficient to maintain a predetermined pressure flow relationship.

Uram, R.

1980-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Robust controller design for main steam pressure based on SPEA2  

Science Conference Proceedings (OSTI)

Main steam pressure is an important physical quantity that reflects the energy supply-demand relationship between the boiler and turbine. It has a significant role in the unit operation. Because boiler burning behavior varies greatly and the model of ... Keywords: H? robust control, SPEA2, main steam pressure, weighing function matrix

Shuan Wang; Dapeng Hua; Zhiguo Zhang; Ming Li; Ke Yao; Zhanyou Wen

2011-08-01T23:59:59.000Z

62

The Experimental Study on the Optimization Control of Main Steam Pressure System in the Biomass Boiler  

Science Conference Proceedings (OSTI)

Combustion adjusting system in biomass fuel boiler is the research objective and its dynamic characteristics are also analyzed. The optimal control algorithm is provided, according to the main subsystem in main steam pressure control system of combustion ... Keywords: biomass fuel boiler, combustion control system, steam pressure control, fuzzy-SMITH

Junman Sun; Chun Huang; Junran Jin; Huijun Sun; Liping Li

2012-04-01T23:59:59.000Z

63

Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors  

DOE Green Energy (OSTI)

A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

2011-08-01T23:59:59.000Z

64

Deaerator pressure control system for a combined cycle steam generator power plant  

Science Conference Proceedings (OSTI)

In a combined cycle steam generation power plant, until steam extraction can be used to reheat the deaerator, the economizer and/or the pegging recirculation are controlled so as to track the pressure upwards of the autocirculation reheater from the low pressure evaporator with a certain lag in pressure, and to establish pressure in the deaerator on the decreasing trend of the autocirculation reheater at a slower rate and without lowering below a minimum pressure so as to prevent the occurrence of bubbling and cavitation effect.

Martens, A.; Myers, G. A.

1985-12-03T23:59:59.000Z

65

Laboratory investigations of steam pressure-transient behavior in porous materials  

SciTech Connect

Transient flow of noncondensable gas in porous materials has been thoroughly investigated, and good agreement between the gas-flow equation and experiments has been reported in the petroleum-engineering literature. This theory has been widely used in computer simulations of pressure-transient behavior in vapor-dominated geothermal steam reservoirs. However, few laboratory experiments involving steam flow in porous materials have been reported. In order to test the applicability of the gas-flow theory to steam flow, they developed a laboratory system to investigate the transient flow of steam through unconsolidated porous materials. Pressure-transient experiments were carried out by imposing a step change in gas pressure at one end of a cylinder of porous material, and measuring the pressure as a function of time at the other end.

Herkelrath, W.N.; Moench, A.F.

1978-01-01T23:59:59.000Z

66

Steam Generator Management Program: Pressurized Water Reactor Steam Generator Examination Guidelines: Revision 7  

Science Conference Proceedings (OSTI)

This report provides requirements for examination plans and processes that are necessary to meet the performance criteria set forth in the Nuclear Energy Institute (NEI) 97-06, Steam Generator Program.

2007-10-10T23:59:59.000Z

67

Downhole steam generator using low-pressure fuel and air supply  

DOE Patents (OSTI)

For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

68

Pressurized Water Reactor Steam Generator Layup: Corrosion Evaluation  

Science Conference Proceedings (OSTI)

This final report summarizes work completed on a project to evaluate the current PWR steam generator layup guidance based on corrosion mitigation of steam generator components. It was performed in three phases. Phase 1 of this project included an extensive literature review of the corrosion test data, and development of a gap analysis to determine additional data needed to update the current guideline recommendations. Phase 2 was a corrosion test measurement program to evaluate the general corrosion rate...

2007-12-14T23:59:59.000Z

69

High Temperature Corrosion Test Facilities and High Pressure Test  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Test Facilities for Metal Dusting Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Six corrosion test facilities and two thermogravimetric systems for conducting corrosion tests in complex mixed gas environments, in steam and in the presence of deposits, and five facilities for metal dusting degradation Bookmark and Share The High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting include: High Pressure Test Facility for Metal Dusting Resistance:

70

Pressurized Water Reactor Steam Generator Lay-up: Corrosion Evaluation  

Science Conference Proceedings (OSTI)

This interim report summarizes work completed to date for a project to develop improved lay-up guidance for PWR Steam Generators (SG). Phase 1 of this project included a detailed literature review and a gap analysis of additional work needed to quantify the corrosion behavior of SG materials under wet lay-up conditions. As a result of the gap analysis, EPRI designed a corrosion test program (Phase 2) to measure general corrosion rates of steam generator materials under lay-up conditions. This report summ...

2005-12-16T23:59:59.000Z

71

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1993-01-01T23:59:59.000Z

72

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

73

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

74

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

Morris, D.E.

1993-09-14T23:59:59.000Z

75

Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants  

Science Conference Proceedings (OSTI)

Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

Woo, H.H.; Lu, S.C.

1981-09-15T23:59:59.000Z

76

Steam generator materials performance in high temperature gas-cooled reactors  

SciTech Connect

This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760/sup 0/C and produce superheated steam at 538/sup 0/C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10/sup 6/ MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc.

Chafey, J.E.; Roberts, D.I.

1980-11-01T23:59:59.000Z

77

Calvert Cliffs 1 Reactor Vessel: Pressurized Thermal Shock Analysis for a Small Steam Line Break  

Science Conference Proceedings (OSTI)

Analysis of this Maryland reactor revealed a wide safety margin in its two-loop Combustion Engineering PWR pressure vessel for transients caused by small steam line breaks. The study employed a new method for analyzing pressurized thermal shock effects that combines several EPRI computer codes.

1984-11-01T23:59:59.000Z

78

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector  

SciTech Connect

Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m{sup 2} without non-condensable gas condition in steam. (authors)

Yutaka Abe; Yujiro Kawamoto [University of Tsukuba, Tsukuba, Ibaraki (Japan); Chikako Iwaki [Toshiba Corporation (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

79

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

Science Conference Proceedings (OSTI)

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

80

Demonstration Development Project: Assessment of Pressurized Oxy-Coal Technology for Steam-Electric Power Plants  

Science Conference Proceedings (OSTI)

The use of pressurized oxy-combustion technology to support steamelectric power production has been proposed by several organizations as a potential low-cost way to enable a dramatic reduction in CO2 emissions from coal-fired power plants. The pressurized oxy-coal technology realizes most of the benefits of atmospheric pressure oxy-coal technology and offers the prospect of additional efficiency and cost benefits. The technology is, however, in the early stages of development.

2010-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Dynamic simulation model for non-supplementary firing triple-pressure heat recovery steam generator  

Science Conference Proceedings (OSTI)

By using the modular modeling method, a real-time dynamic simulation model for the non-supplementary tri-pressure reheat Heat Recovery Steam Generator (HRSG) is developed. On the basis of mass and energy conservation law, the paper discusses the model ... Keywords: HRSG, dynamic model, modular modelling, simulation

Ning Cui; Bing-Shu Wang; Xiang-Yang Gong; Jian-Qiang Gao

2007-10-01T23:59:59.000Z

82

AN INVESTIGATION OF URANIUM CORROSION IN 100 C WATER AND 200 C STEAM AT ATMOSPHERIC PRESSURE  

DOE Green Energy (OSTI)

Material balance in atmospheric-pressure water and steam corrosion of uranium have been studied by examination of the phase composition and valence state of the corrosion product and by hydrogen-evolution measurements. The corrosion rates in atmospheric-pressure steam above 100 deg C are lower than those obtained in tests carried out in water with a hydrogen overpressure. The atmospheric-pressure-water corrosion product was found to be two phase: an oxygen- rich oxide, UO/sub 2.2/, and uncorroded metal particles. No hydride phase was detected, in contrast to previously reported evidence for hydride in uranium corrosion. The differences are explained on the basis of hydrogen pressure in the reaction vessel. (auth)

Stewart, O.M.; Berry, W.E.; Miller, P.D.; Vaughan, D.A.; Schroeder, J.B.; Fink, F.W.; Schwartz, C.M.

1958-06-19T23:59:59.000Z

83

Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project  

SciTech Connect

The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.

Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

2011-06-01T23:59:59.000Z

84

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

85

Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells  

DOE Green Energy (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

James E. O'Brien

2012-03-01T23:59:59.000Z

86

Steam Generator Management Program: Pressurized Water Reactor Generic Tube Degradation Predictions: Recirculating Steam Generators with Alloy 600TT, Alloy 690TT, and Alloy 800NG Tubing  

Science Conference Proceedings (OSTI)

Mill-annealed Alloy 600 heat transfer tubing in pressurized water reactor (PWR) steam generators (SGs) has experienced numerous modes of degradation. This report describes predictive models for determining expected tube degradation in recirculating steam generators with Alloy 600TT, Alloy 690TT, and Alloy 800NG tubing. Predictions are based on operating experience with similar designs and use improvement factors to characterize benefits resulting from SG design and material ...

2013-12-17T23:59:59.000Z

87

High Pressure Studies of Superconductivity.  

E-Print Network (OSTI)

??Superconductivity has been studied extensively since it was first discovered over 100 years ago. High pressure studies, in particular, have been vital in furthering our (more)

Hillier, Narelle Jayne

2013-01-01T23:59:59.000Z

88

Low-Pressure Steam Turbine Corrosion Mechanisms and Interactions: State of Knowledge 2010  

Science Conference Proceedings (OSTI)

Corrosion, corrosion fatigue (CF), and stress corrosion cracking (SCC) are known issues that affect the service lives of various low-pressure (LP) steam turbine components. Considerable work has been performed to understand the individual mechanisms and the environmental conditions that lead to each of them. However, little progress has been made in understanding the interactions between these damage processes. In particular, little is known about the transition of pits to cracks and the early stages of ...

2010-07-08T23:59:59.000Z

89

High pressure storage vessel  

DOE Patents (OSTI)

Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

Liu, Qiang

2013-08-27T23:59:59.000Z

90

Electrokinetically pumped high pressure sprays  

DOE Patents (OSTI)

An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

Schoeniger, Joseph S. (Oakland, CA); Paul, Phillip H. (Livermore, CA); Schoeniger, Luke (Pittsford, NY)

2005-11-01T23:59:59.000Z

91

Electrokinetically pumped high pressure sprays  

DOE Patents (OSTI)

An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

Schoeniger, Joseph S. (Oakland, CA); Paul, Phillip H. (Livermore, CA); Schoeniger, Luke (Pittsford, NY)

2002-01-01T23:59:59.000Z

92

Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators  

SciTech Connect

This revised ITP tip sheet on installing high-pressure boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

93

Fundamentals of high pressure adsorption  

Science Conference Proceedings (OSTI)

High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

2009-12-15T23:59:59.000Z

94

Flash Steam Recovery Project  

E-Print Network (OSTI)

One of the goals of Vulcan's cost reduction effort is to reduce energy consumption in production facilities through energy optimization. As part of this program, the chloromethanes production unit, which produces a wide variety of chlorinated organic compounds, was targeted for improvement. This unit uses a portion of the high-pressure steam available from the plant's cogeneration facility. Continuous expansions within the unit had exceeded the optimum design capacity of the unit's steam/condensate recovery system, resulting in condensate flash steam losses to the atmosphere. Using computer simulation models and pinch analysis techniques, the Operational Excellence Group (Six Sigma) was able to identify a project to recover the flash steam losses as a supplemental low-pressure steam supply. The project was designed and implemented at no capital cost using existing instrumentation and controls. On an annualized basis steam usage per ton of product fell by about three percent. Absolute savings were about 15,800 million Btu.

Bronhold, C. J.

2000-04-01T23:59:59.000Z

95

High pressure/high temperature thermogravimetric apparatus. Final report  

DOE Green Energy (OSTI)

The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C and 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.

Calo, J.M.; Suuberg, E.M.

1999-12-01T23:59:59.000Z

96

Steam turbine gland seal control system  

SciTech Connect

A high pressure steam turbine having a sealing gland where the turbine rotor penetrates the casing of the turbine. Under certain conditions the gland is sealed by an auxiliary steam supply, and under other conditions the gland is self sealed by turbine inlet steam. A control system is provided to modify the temperature of the auxiliary steam to be more compatible with the self sealing steam, so as to eliminate thermal shock to the turbine rotor.

Martin, H. F.

1985-09-17T23:59:59.000Z

97

High-Pressure Hydrogen Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

February 8 February 8 th , 2005 Mark J. Warner, P.E. Principal Engineer Quantum Technologies, Inc. Irvine, CA Low Cost, High Efficiency, Low Cost, High Efficiency, High Pressure Hydrogen Storage High Pressure Hydrogen Storage This presentation does not contain any proprietary or confidential information. 70 MPa Composite Tanks Vent Line Ports Defueling Port (optional) Fill Port Filter Check Valve Vehicle Interface Bracket with Stone Shield In Tank Regulator with Solenoid Lock-off Pressure Relief Device Manual Valve Compressed Hydrogen Storage System In-Tank Regulator Pressure Sensor (not visible here) Pressure Relief Device (thermal) In Tank Gas Temperature Sensor Carbon Composite Shell (structural) Impact Resistant Outer Shell (damage resistant) Gas Outlet Solenoid Foam Dome (impact protection)

98

Apparatus and method for controlling steam turbine operating conditions during starting and loading  

SciTech Connect

A steam turbine-generator system is described which consists of: a high-pressure steam turbine; a reheat turbine; a boiler including means for heating stem for delivery to the high-pressure steam turbine and a boiler reheat portion for reheating an exhaust steam from the high-pressure steam turbine for delivery to the reheat turbine; main valve means for admitting steam from the boiler to the high-pressure steam turbine; an intercept control valve for admitting steam from the boiler reheat portion to the reheat turbine; means for maintaining at least a selectable predetermined pressure in the boiler reheat portion; a reheater bypass assembly connected between a high-pressure turbine exhaust line of the high-pressure steam turbine and a reheat turbine inlet line of the reheat turbine, the reheater bypass assembly bypassing the reheat portion and the intercept control valve; a check valve in the high-pressure turbine exhaust line downstream of the reheater bypass assembly; and the check valve including means for preventing a flow of steam from the high-pressure turbine exhaust line to the reheat portion while an exhaust pressure of steam from the high-pressure steam turbine is less than the selectable predetermined pressure, whereby exhaust steam from the high pressure steam turbine passes through the reheater bypass assembly directly to the reheat turbine without passing through and reheat portion during at least a portion of a startup cycle.

Dimitroff, V.T. Jr.; Wagner, J.B.

1986-07-08T23:59:59.000Z

99

The Main Steam Temperature Cascade Control of High Order Differential of Feedback Controller  

Science Conference Proceedings (OSTI)

The main steam temperature of boiler is a big time-lag signal, and the great change of its dynamic characteristics occurs with the load change. In addition, the main steam temperature control is particularly significant for the safety and economic operation ... Keywords: main steam temperature, high order differentiator, high order differential feedback controller, cascade control

Xue Wei; Mu Jingjing; Jia Hongyan; Ye Fei

2010-10-01T23:59:59.000Z

100

High pressure synthesis gas fermentation  

DOE Green Energy (OSTI)

The construction of the high pressure gas phase fermentation system has been completed. Photographs of the various components of the system are presented, along with an operating procedure for the equipment.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High pressure ceramic joint  

DOE Patents (OSTI)

Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

Ward, M.E.; Harkins, B.D.

1993-11-30T23:59:59.000Z

102

High pressure ceramic joint  

DOE Patents (OSTI)

Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

Ward, Michael E. (Poway, CA); Harkins, Bruce D. (San Diego, CA)

1993-01-01T23:59:59.000Z

103

Electrokinetic high pressure hydraulic system  

DOE Patents (OSTI)

A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

2000-01-01T23:59:59.000Z

104

Electrokinetic high pressure hydraulic system  

DOE Patents (OSTI)

An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA); Arnold, Don W. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Schoeniger, Joseph S. (Oakland, CA); Neyer, David W. (Castro Valley, CA)

2001-01-01T23:59:59.000Z

105

High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental  

SciTech Connect

Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a -SiC CMC overbraid, and sintered a-SiC were tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.

McHugh, Kevin M; Garnier, John E; Sergey Rashkeev; Michael V. Glazoff; George W. Griffith; Shannong M. Bragg-Sitton

2013-01-01T23:59:59.000Z

106

Program on Technology Innovation: Wireless Vibration Measurement of Low Pressure Steam Turbine Blades  

Science Conference Proceedings (OSTI)

Large turbine blades in the low pressure section of a steam turbine occasionally fatigue over time and break free of the turbine shaft. The damage is often substantial and the cost of an event, including the cost of the downtime, ranges from $3 million to $30 million--and in rare cases can reach hundreds of millions of dollars. Incipient failure can often be detected by monitoring changes in the vibration spectrum of the blades. This report describes the preliminary design and analysis of a wireless ele...

2010-03-18T23:59:59.000Z

107

Lateral steam flow revealed by a pressure build-up test at the Matsukawa vapor-dominated geothermal field, Japan  

Science Conference Proceedings (OSTI)

Results and discussion of a pressure build-up test at the Matsukawa vapor-dominated geothermal field in north-east Japan are reported. Pressure build-up behavior of three dry steam wells was monitored at the wellhead in October 1986. The observed pressure gradient clearly shows the existence of a lateral steam flow from south-west to north-east in the reservoir. This result suggests that the vapor-dominated reservoir extends further south-west than it is currently being developed. These conclusions are supported by production records and chemical data.

Hanano, M. Sakagawa, Y. (Japan Metals and Chemicals Co. Ltd., 24-Ukai, Takizawa-mura, Iwate 020-01 (JP))

1990-01-01T23:59:59.000Z

108

Apparatus and methods for supplying auxiliary steam in a combined cycle system  

SciTech Connect

To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

Gorman, William G. (Ballston Spa, NY); Carberg, William George (Ballston Spa, NY); Jones, Charles Michael (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

109

Optimized Control Of Steam Heating Coils  

E-Print Network (OSTI)

Steam has been widely used as the source of heating in commercial buildings and industries throughout the twentieth century. Even though contemporary designers have moved to hot water as the primary choice for heating, a large number of facilities still use steam for heating. Medical campuses with on-site steam generation and extensive distribution systems often serve a number of buildings designed prior to the mid-1980s. The steam is typically used for preheat as its high thermal content helps in heating the air faster and prevents coils from freezing in locations with extreme weather conditions during winter. The present work provides a comprehensive description of the various types of steam heating systems, steam coils, and valves to facilitate the engineer's understanding of these steam systems. A large percentage of the steam coils used in buildings are provided with medium pressure steam. Veterans Integrated Service Network and Army Medical Command Medical Facilities are examples which use medium pressure steam for heating. The current design manual for these medical facilities recommends steam at 30psig be provided to these coils. In certain cases although the steam heating coil is designed for a 5psig steam pressure, it is observed that higher pressure steam is supplied at the coil. A higher steam pressure may lead to excessive heating, system inefficiency due to increased heat loss, simultaneous heating and cooling, and increased maintenance cost. Field experiments were conducted to evaluate the effect of lowering steam pressure on the system performance. A 16% reduction in temperature rise across the coil was found when the steam pressure in the coil was reduced from 15psig to 5psig. The rise in temperature with lower pressure steam was sufficient to prevent coil freeze-up even in the most severe weather conditions. Additional benefits of reduced steam pressure are reduced flash steam losses (flash steam is vapor or secondary steam formed when hot condensate from the coil is discharged into a lower pressure area, i.e., the condensate return line) and radiation losses, increased flow of air through the coil thereby reducing air stratification and reduced energy losses in the event of actuator failure. The work also involved evaluating the existing control strategies for the steam heating system. New control strategies were developed and tested to address the short comings of existing sequences. Improved temperature control and occupant comfort; elimination of valve hunting and reduced energy consumption were benefits realized by implementing these measures.

Ali, Mir Muddassir

2011-12-01T23:59:59.000Z

110

POWER PLANT USING A STEAM-COOLED NUCLEAR REACTOR  

SciTech Connect

A method of providing efficient and economic means for obtaining reheat from nuclear heat is described. A steamcooled steam-moderated reactor produces high-pressure, high-temperature steam. A multi-stage steam turbine partially expands the high-pressure steam, which is then withdrawn and reheated, and then further expanded for producing useful power. The saturated steam is superheated by leading it through tubular passages provided in the fuel assemblies of a nuclear reactor, leading the useful part of the superheated steam into a steam turbine in which it expands to a predetermined intermediate pressure, leading the steam at that reduced pressure from the turbine back into the reactor where it is reheated by flowing through other tubular passages in the fuel assemblies, and returning the reheated steam to the turbine for further expansion. (M.C.G.)

Nettel, F.; Nakanishi, T.

1963-10-29T23:59:59.000Z

111

Program on Technology Innovation: Wireless Vibration Measurement of Low-Pressure Steam Turbine Blades  

Science Conference Proceedings (OSTI)

This report describes Phase 2 of a research and development effort to define a turbine blade vibration sensor (TBVS) system for measuring the mechanical vibrational spectrum of large steam turbine blades as they rotate. In Phase 1, the design concept and a number of alternative system components were considered for a wireless electronic device called a mote. In the Phase 2 research covered in this report, the final design of a custom accelerometer capable of operating under very high sustained centrifuga...

2010-12-22T23:59:59.000Z

112

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

113

Downward two-phase flow effects in heat-loss and pressure-drop modeling of steam injection wells  

SciTech Connect

Modelling of the pressure drop and heat loss in steam injection wells has undergone a gradual evolution since the heavy interest in enhanced oil recovery by steam injection in the mid-60's. After briefly reviewing the evolution of steam models this paper presents a model which advances the state-of-the-art of steam modelling. The main advance presented in this paper is modelling the effects of the various flow regimens that occur during steam injection. The paper describes the formulation of a two-phase downward vertical flow pressure drop model which is not limited by the ''no-slip'' homogeneous flow assumptions in most previously published models. By using different correlations for mist, bubble, and slug flow, improved pressure drop calculations result, which in turn improve temperature predictions. The paper describes how the model handles temperature predictions differently in the single and two-phase steam flow situations. The paper also describes special features in the model to account for layered soil properties, soil dry out, cyclic injection, coupling heat losses, and reflux boiling in wet annuli. Two examples problems are presented which illustrate some of these features.

Galate, J.W.; Mitchell, R.F.

1985-03-01T23:59:59.000Z

114

High pressure liquid level monitor  

DOE Patents (OSTI)

A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

Bean, Vern E. (Frederick, MD); Long, Frederick G. (Ijamsville, MD)

1984-01-01T23:59:59.000Z

115

Hot Steam Corrosion Behavior of Ni-based Superalloys at High ...  

Science Conference Proceedings (OSTI)

During the operation of the HTSE-VHTR system, structural material such as intermediate heat exchanger (IHX) are exposed to high temperature steam condition.

116

Change steam tapping to save energy  

SciTech Connect

Induction turbines are common in large plants. They use both high pressure (HP) and low pressure (LP) steam and exhaust into a surface condenser operating under vacuum. Induction turbines are especially useful since they use maximum available LP steam with a balanced amount of HP steam and thus, achieve the best overall thermodynamic efficiency. LP steam is generally available as flash steam for boiler blow down, exhausts from back pressure turbines, process waste-heat recovery, etc. Typically, an LP steam header is routed around the plant with several connections to receive and supply steam. Therefore, it is common to connect each steam user/supplier to the nearest point on the main header. The portion of the header where steam turbine exhausts are connected has superheated LP steam and the header portion which receives steam from waste heat recovery, boiler blow down, etc., has saturated LP steam. Some portion of the header has mixed steam. Thus, the temperature of LP steam in the header varies over its length.

Antony, S.M.; Joshi, G.C.

1987-07-01T23:59:59.000Z

117

Bio-Fuel Production Assisted with High Temperature Steam Electrolysis  

SciTech Connect

Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

Grant Hawkes; James O'Brien; Michael McKellar

2012-06-01T23:59:59.000Z

118

Steam Pricing  

E-Print Network (OSTI)

Steam is used in many plants to furnish both heat and mechanical energy. It is typically produced in several fired boilers which may operate at different pressures and with different efficiencies. It is then distributed throughout the plant to the various users in steam distribution systems, each one operating at a different pressure and temperature. This paper examines various ways to cost steam and discusses the importance of proper costing. Specifically it addresses three types of steam costs; Marginal Costs, Project Evaluation Costs and Financial Costs.

Jones, K. C.

1986-06-01T23:59:59.000Z

119

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

120

High pressure xenon ionization detector  

DOE Patents (OSTI)

A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

Markey, John K. (New Haven, CT)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High pressure xenon ionization detector  

DOE Patents (OSTI)

A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

Markey, J.K.

1989-11-14T23:59:59.000Z

122

Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility  

DOE Green Energy (OSTI)

The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K {+-} 14K. A unique feature of the HTCF is the {open_quotes}diaphragmless{close_quotes} acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel`dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs.

Ciccarelli, G.; Ginsberg, T.; Boccio, J.L. [and others

1997-11-01T23:59:59.000Z

123

High Pressure Hydrogen Tank Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

124

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This patent describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine including a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, a plurality of solid couplings serving to solidly couple the rotating members together as a single rotor, the rotor having a single thrust bearing, and control means for sensing a potential overspeed condition operatively connected to the control valves to prevent overspeed, whereby the steam in the steam reheater and in the valveless steam conduit may freely expand through the lower pressure steam turbine and potential overspeed of the rotor is resisted by the combined inertia of the coupled rotating members and by the braking torque of the air compressor, wherein the heat recovery steam generator includes a low pressure steam generating section connected to supply low pressure steam to the steam reheater section along with the steam exhausted from the high pressure steam turbine section.

Moore, J.H.

1992-03-31T23:59:59.000Z

125

Electokinetic high pressure hydraulic system  

DOE Patents (OSTI)

A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

2000-01-01T23:59:59.000Z

126

High Temperature Steam Permeation via Ambipolar Diffusion in ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Selective steam transport in dense proton-conducting perovskite ... Local Structure and Cation Distribution in Mullite-Type Bi2(FexAl1-x)4O9.

127

High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus  

DOE Green Energy (OSTI)

The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States); Sato, K.; Kinoshita, M. [Nuclear Power Engineering Corp., Tokyo (Japan)

1994-08-01T23:59:59.000Z

128

CFD Predictions of Severe Accident Steam Generator Flows in a 1/7. Scale Pressurized Water Reactor  

SciTech Connect

Computational Fluid Dynamics (CFD) is applied to steam generator inlet plenum mixing as part of a larger plan covering steam generator tube integrity. The technique is verified by comparing predicted results with severe accident natural circulation data from a 1/7. scale Westinghouse facility. This exercise demonstrates that the technique can predict the natural circulation and mixing phenomena relevant to steam generator tube integrity issues. The model includes primary side flow paths for a single hot leg and steam generator. Qualitatively, the experimentally observed flow phenomena are predicted. The paths of the natural circulation flows and the relative flow proportions are correctly predicted. Quantitatively, comparisons are made with temperatures, mass flows, and other parameters. All predictions are generally within 10% of the experimental values. Overall, there is a high degree of confidence in the CFD technique for prediction of the relevant flow phenomena associated with this type of severe accident sequence. (authors)

Boyd, Christopher; Hardesty, Kelly [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

2002-07-01T23:59:59.000Z

129

Electrical Transport Experiments at High Pressure  

Science Conference Proceedings (OSTI)

High-pressure electrical measurements have a long history of use in the study of materials under ultra-high pressures. In recent years, electrical transport experiments have played a key role in the study of many interesting high pressure phenomena including pressure-induced superconductivity, insulator-to-metal transitions, and quantum critical behavior. High-pressure electrical transport experiments also play an important function in geophysics and the study of the Earth's interior. Besides electrical conductivity measurements, electrical transport experiments also encompass techniques for the study of the optoelectronic and thermoelectric properties of materials under high pressures. In addition, electrical transport techniques, i.e., the ability to extend electrically conductive wires from outside instrumentation into the high pressure sample chamber have been utilized to perform other types of experiments as well, such as high-pressure magnetic susceptibility and de Haas-van Alphen Fermi surface experiments. Finally, electrical transport techniques have also been utilized for delivering significant amounts of electrical power to high pressure samples, for the purpose of performing high-pressure and -temperature experiments. Thus, not only do high-pressure electrical transport experiments provide much interesting and valuable data on the physical properties of materials extreme compression, but the underlying high-pressure electrical transport techniques can be used in a number of ways to develop additional diagnostic techniques and to advance high pressure capabilities.

Weir, S

2009-02-11T23:59:59.000Z

130

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

Lu, Xiaoming

2012-01-01T23:59:59.000Z

131

High-pressure microhydraulic actuator  

DOE Patents (OSTI)

Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

Mosier, Bruce P. (San Francisco, CA); Crocker, Robert W. (Fremont, CA); Patel, Kamlesh D. (Dublin, CA)

2008-06-10T23:59:59.000Z

132

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This paper describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine. It comprises: a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section; a gas turbine including a turbine section, a combustor, a fuel valve supplying the combustor, and an air compressor with a discharge end leading to the combustor; a load riven by the reheat steam turbine and the gas turbine; the reheat steam turbine, the gas turbine and the load all having rotating members; a heat recovery steam generator heated by the gas turbine, including a high pressure steam generating section supplying steam to the high pressure steam turbine section through the control valve, and a steam reheater section receiving steam exhausted from the high pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, and solid couplings serving to solidify couple the rotating members together as a single rotor, the rotor having a single thrust bearing.

Moore, J.H.

1991-12-03T23:59:59.000Z

133

Computer Optimization of Steam Production  

E-Print Network (OSTI)

As fuel costs continued to rise sharply during the 1970' s, the staff at Exxon's Benicia Refinery realized there was a growing economic incentive to optimize the production of high pressure steam. A significant percentage of the Refinery's total energy is consumed in generating high pressure steam. Recently, a computer program was implemented to optimize high pressure steam production. The first challenge in developing the program was to provide reliable analog and digital instrumentation allowing simultaneous analog header control along with effective digital steam flow control. Once appropriate instrumentation became available, the effort focused on identifying the best approach for developing the computer control program. After screening several alternatives, it became apparent that we were dealing with an allocation problem which could be effectively handled with a linear program. The control program has performed well since it was commissioned. It has experienced a service factor of greater than 95% while reducing energy consumption of the boilers by over 500 million Btu's per day.

Todd, C. H.

1982-01-01T23:59:59.000Z

134

Method of optimizing the efficiency of a steam turbine power plant  

SciTech Connect

A method is disclosed for improving the operational efficiency of a steam turbine power plant by governing the adjustment of the throttle steam pressure of a steam turbine at a desired power plant output demand value. In the preferred embodiment, the impulse chamber pressure of a high pressure section of the steam turbine is measured as a representation of the steam flow through the steam turbine. At times during the operation of the plant at the desired output demand value, the throttle pressure is perturbed. The impulse chamber pressure is measured before and after the perturbations of the throttle pressure. Because changing thermodynamic conditions may occur possibly as a result of the perturbations and provide an erroneous representation of the steam flow through the turbine, the impulse chamber pressure measurements are compensated for determined measurable thermodynamic conditions in the steam turbine. A compensated change in impulse chamber pressure measurement in a decreasing direction as a result of the direction of perturbation of the steam throttle pressure may indicate that further adjustment in the same direction is beneficial in minimizing the steam flow through the steam turbine at the desired plant output demand value. The throttle steam pressure adjustment may be continually perturbed in the same direction until the compensated change in impulse chamber pressure before and after measurements falls below a predetermined value, whereby the steam flow is considered substantially at a minimum for the desired plant output demand value.

Silvestri, G.J.

1981-11-03T23:59:59.000Z

135

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

136

IMPROVEMENTS IN OR RELATING TO STEAM RAISING PLANT  

SciTech Connect

A scheme is given for a dual pressure steam raising plant for reactor power plants, especially those of the Calder Hall type in which heat transfer fluid (CO/sub 2/) can be circulated by steam. In the scheme, the gaseous coolant is passed through the steam raising unit and then is passed back into the reactor via a gas blower. The unit employs a dual pressure cycle in which water is passed into two steel drums connected to evaporators and superheaters in the unit; steam from one drum is high-pressure steam (HP). while steam from the other is low-pressure steam (LP). HP drives the gas blower by means of a back pressure turbine and then is discharged into the LP cycle in the unit. HP and LP from the superheaters are fed into a distant turbo-alternator which comprises two turbines, a small one for HP and a large one for LP. (D.L.C.)

Mitchell, J.M.

1960-08-10T23:59:59.000Z

137

Steam in Distribution and Use: Steam Quality Redefined  

E-Print Network (OSTI)

Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning- steam which maximizes energy transfer. To do this, the steam must be clean, dry, of desired pressure and free of air and non-condensible gases. Objectives in these areas should be set and an action plan implemented. Typical objectives could be to specify steam pressure delivery of maximum pressure and to use steam at the lowest pressure possible. Steam velocity ranges and maximum system pressure drops should be set. Cleaning steam and protecting control devices is an important means of maintaining quality. Draining condensate and venting air and other gases preserves the steam quality at the point of use. Poor pressure control yields poor operation and efficiency. Dirty steam causes valve leaks and maintenance problems. Improper drainage and venting can cause premature corrosion and poor heat transfer.

Deacon, W. T.

1989-09-01T23:59:59.000Z

138

Steam in Distribution and Use: Steam Quality Redefined  

E-Print Network (OSTI)

"Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning - steam which maximizes energy transfer. To do this, the steam must be clean, dry, of desired pressure and free of air and non-condensable gases. Objectives in these areas should be set and an action plan implemented. Typical objectives could be to specify steam pressure delivery of maximum pressure and to use steam at the lowest pressure possible. Steam velocity ranges and maximum system pressure drops should be set. Cleaning steam and protecting control devices is an important means of maintaining quality. Draining condensate and venting air and other gases preserves the steam quality at the point of use. Poor pressure control yields poor operation and efficiency. Dirty steam causes valve leaks and maintenance problems. Improper drainage and venting can cause premature corrosion and poor heat transfer."

Deacon, W.

1989-09-01T23:59:59.000Z

139

Combined gas turbine and steam turbine power station  

SciTech Connect

In order to operate a gas turbine and steam turbine plant with a high temperature at the inlet to the gas turbine plant, the parts located in the hot-gas stream of the gas turbine being steam-cooled, and the cooling steam, thereby raised to a higher temperature, being fed to the steam turbine for further expansion, it is proposed that the waste heat from the gas turbine be led through a two-pressure waste heat boiler, and that the steam, generated in this boiler, be slightly superheated in a cooling-steam superheater, and fed to the hollow inlet vanes and to the rotor blades, which are likewise hollow, the steam, strongly superheated during this cooling process, then being admixed to the steam coming from the intermediate superheater, and being fed to the low-pressure section of the steam turbine.

Mukherjee, D.

1984-01-10T23:59:59.000Z

140

High-temperature hydrogen-air-steam detonation experiments in the BNL Small-Scale Development Apparatus  

DOE Green Energy (OSTI)

The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger-scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a lo-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed pressure of 0.1 MPa. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K to 650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments. Experiments were conducted to measure the rate of hydrogen oxidation in the absence of ignition sources at temperatures of 500K and 650K, for hydrogen-air mixtures of 15 percent and 50 percent, and for a mixture of equimolar hydrogen-air and 30 percent steam at 650K. The rate of hydrogen oxidation was found to be significant at 650K. Reduction of hydrogen concentration by chemical reaction from 50 to 44 percent hydrogen, and from 15 to 11 percent hydrogen, were observed on a time frame of minutes.

Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of Technologies on Innovative Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (10) Application to a Small District-Heating Reactor  

SciTech Connect

A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to use as a passive ECCS pump and also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. In order to develop a high reliability passive ECCS pump and a compact feedwater heater, it is necessary to quantify the characteristics between physical properties of the flow field. We carried out experiments to observe the internal behavior of the water jet as well as measure the velocity of steam jet using a laser Doppler velocimetry. Its performance depends on the phenomena of steam condensation onto the water jet surface and heat transfer in the water jet due to turbulence on to the phase-interface. The analysis was also conducted by using a CFD code with the separate two-phase flow models. With regard to the simplified feed-water system, size of four-stage SI system is almost the same as the model SI that had done the steam and water test that pressures were same as that of current ABWR. The authors also conducted the hot water supply system test in the snow for a district heating. With regard to the SI core cooling system, the performance tests results showed that the low-pressure SI core cooling system will decrease the PCT to almost the same as the saturation temperature of the steam pressure in a pressure vessel. As it is compact equipment, SI is expected to bring about great simplification and materials-saving effects, while its simple structure ensures high reliability of its operation, thereby greatly contributing to the simplification of the power plant for not only an ABWR power plant but also a small PWR/ BWR for district heating system. (authors)

Tadashi Narabayashi; Yoichiro Shimadu; Toshiiro Murase; Masatoshi Nagai [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

142

Delivering High Reliability in Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Despite being relatively new, the worldwide fleet of combined-cycle units with heat recovery steam generators (HRSGs) has exhibited a disappointing record with respect to reliability and availability in terms of HRSG tube failures (HTFs). This report identifies actions thatif implemented prior to commercial operationshould greatly improve the operational HRSG reliability.BackgroundWhen contemplating new combined-cycle units, the choices that can ...

2012-12-12T23:59:59.000Z

143

LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS  

DOE Green Energy (OSTI)

Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

G. L. Hawkes; J. E. O'Brien; M. G. McKellar

2011-11-01T23:59:59.000Z

144

Feasibility study of underground energy storage using high-pressure, high-temperature water. Final report  

DOE Green Energy (OSTI)

A technical, operational and economic feasibility study on the storage of energy as heated high pressure water in underground cavities that utilize the rock overburden for containment is presented. Handling peak load requirements of electric utility power networks is examined in some detail. The cavity is charged by heating water with surplus steaming capacity during periods of low power requirement. Later this hot water supplies steam to peaking turbines when high load demands must be met. This system can be applied to either new or existing power plants of nuclear or fossil fuel type. The round trip efficiency (into storage and back) is higher than any other system - over 90%. Capital costs are competitive and the environmental impact is quite benign. Detailed installation and design problems are studied and costs are estimated. The continental United States is examined for the most applicable geology. Formations favorable for these large cavities exist in widespread areas.

Dooley, J.L.; Frost, G.P.; Gore, L.A.; Hammond, R.P.; Rawson, D.L.; Ridgway, S.L.

1977-01-01T23:59:59.000Z

145

Safety Valve Performance Considerations During High-Pressure Station Black-Out Severe Accidents  

Science Conference Proceedings (OSTI)

An assessment of the operating history and test performance of pressurizer safety valves (PSVs) and main steam safety valves (MSSVs) has led to new conclusions on their expected performance during high-pressure station blackout (SBO) severe accident conditions. This report updates conclusions documented in Volume I, focusing on thermal-hydraulic considerations surrounding the reactor coolant system response to an SBO and valve lifts during an SBO event. The report also reconsiders PSV and MSSV tests and ...

1998-01-02T23:59:59.000Z

146

Power plant and system for accelerating a cross compound turbine in such plant, especially one having an HTGR steam supply  

SciTech Connect

An electric power plant having a cross compound steam turbine and a steam source that includes a high temperature gas-cooled nuclear reactor is described. The steam turbine includes high and intermediate-pressure portions which drive a first generating means, and a low-pressure portion which drives a second generating means. The steam source supplies superheat steam to the high-pressure turbine portion, and an associated bypass permits the superheat steam to flow from the source to the exhaust of the high-pressure portion. The intermediate and low-pressure portions use reheat steam; an associated bypass permits reheat steam to flow from the source to the low-pressure exhaust. An auxiliary turbine driven by steam exhausted from the high-pressure portion and its bypass drives a gas blower to propel the coolant gas through the reactor. While the bypass flow of reheat steam is varied to maintain an elevated pressure of reheat steam upon its discharge from the source, both the first and second generating means and their associated turbines are accelerated initially by admitting steam to the intermediate and low-pressure portions. The electrical speed of the second generating means is equalized with that of the first generating means, whereupon the generating means are connected and acceleration proceeds under control of the flow through the high-pressure portion. 29 claims, 2 figures.

Jaegtnes, K.O.; Braytenbah, A.S.

1977-02-15T23:59:59.000Z

147

Hydrogen production by high-temperature steam gasification of biomass and coal  

Science Conference Proceedings (OSTI)

High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K. [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

2009-04-15T23:59:59.000Z

148

Multicomponent fuel vaporization at high pressures.  

DOE Green Energy (OSTI)

We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

Torres, D. J. (David J.); O'Rourke, P. J. (Peter J.)

2002-01-01T23:59:59.000Z

149

Extraction Steam Controls at EPLA-W  

E-Print Network (OSTI)

ExxonMobil's Baton Rouge site encompasses a world-scale refinery, chemical plant and third party power station. Historically, inflexible and unreliable control systems on two high-pressure, extracting/condensing steam turbines prevented the site from ful

Brinker, J. L.

2004-01-01T23:59:59.000Z

150

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

151

Determination of Applicability of EDF Steam Generator Monitoring Algorithm to Pressurized Water Reactors Worldwide  

Science Conference Proceedings (OSTI)

This report documents work undertaken by the Electric Power Research Institute (EPRI) and Electricit de France (EDF) to determine the applicability of an EDF technique that estimates the level of deposit buildup on the steam generator's (SG's) tube support plates (TSPs) to plants worldwide.

2010-12-23T23:59:59.000Z

152

Comparative evaluation of surface and downhole steam-generation techniques  

Science Conference Proceedings (OSTI)

It has long been recognized that the application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil-bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. This paper compares the technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses, with (a) thermally efficient delivery (through insulated strings) of surface generated steam, (b) low pressure combustion downhole steam generation, (c) high pressure combustion downhole steam generation using air as the oxygen source, and (d) high pressure combustion downhole steam generation substituting pure oxygen for air. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality. Therefore, a parametric analysis has been performed which examines varying depths, injection rates and steam qualities. Results indicate that the technologies are not readily distinguishable for low injectivity reservoirs in which conventional steam drives are feasible. However, high injection rates produce a notable cost difference between high pressure combustion systems and the other technologies. Issues that must be addressed before gaining further insight into the economic viability of downhole steam generation are discussed.

Hart, C.

1982-01-01T23:59:59.000Z

153

Portable high precision pressure transducer system  

DOE Patents (OSTI)

A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

1994-04-26T23:59:59.000Z

154

Portable high precision pressure transducer system  

DOE Patents (OSTI)

A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

1992-12-31T23:59:59.000Z

155

Portable high precision pressure transducer system  

SciTech Connect

A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

Piper, Thomas C. (Idaho Falls, ID); Morgan, John P. (Idaho Falls, ID); Marchant, Norman J. (Idaho Falls, ID); Bolton, Steven M. (Pocatello, ID)

1994-01-01T23:59:59.000Z

156

Overspeed protection method for a gas turbine/steam turbine combined cycle  

SciTech Connect

This patent describes a method for achieving overspeed protection in a combined cycle gas and steam turbine power plant. It comprises solidly coupling together to rotate at all times as a single rotor unit, including during sudden loss of load occurrences, the rotating members of a gas turbine with its associated combustor and air compressor, a high pressure steam turbine at least one lower pressure stream turbine and an electrical generator; transferring heat from the gas turbine exhaust to steam exhausted from the high pressure steam turbine in a steam reheater before it is input to the at least one lower pressure steam turbine; connecting an output of the steam reheater with an input of the lower pressure steam turbine via a valveless steam conduit; and using a single overspeed control to detect a sudden loss of load occurrence and, in response, simultaneously reducing steam input to the high pressure steam turbine and reducing fuel input to the gas turbine combustor while permitting residual reheater output to continue to expand freely through the at least one lower pressure steam turbine.

Moore, J.H.

1991-08-27T23:59:59.000Z

157

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

DOE Green Energy (OSTI)

The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

Michael L. Swanson

2005-08-30T23:59:59.000Z

158

Experimental investigation of pressure and blockage effects on combustion limits in H{sub 2}-air-steam mixtures  

DOE Green Energy (OSTI)

Experiments with hydrogen-air-steam mixtures, such as those found within a containment system following a reactor accident, were conducted in the Heated Detonation Tube (43 cm diameter and 12 m long) to determine the region of benign combustion; i.e., the region between the flammability limits and the deflagration-to-detonation transition limits. Obstacles were used to accelerate the flame; these include 30% blockage ratio annular rings, and alternate rings and disks of 60% blockage ratio. The initial conditions were 110 {degree}C and one or three atmospheres pressure. A benign burning region exists for rich mixtures, but is generally smaller than for lean mixtures. Effects of the different obstacles and of the different pressures are discussed.

Sherman, M.P.; Berman, M. [Sandia National Labs., Albuquerque, NM (United States); Beyer, R.F. [Westinghouse Electric Corp., Pittsburgh, PA (US)

1993-06-01T23:59:59.000Z

159

Evaluation of Thermal-, Creep-, and Corrosion-Fatigue of Heat Recovery Steam Generator Pressure Parts  

Science Conference Proceedings (OSTI)

The worldwide fleet of combined cycle units with heat recovery steam generators (HRSG) has exhibited a disappointing track record with respect to reliability and availability in terms of fatigue HRSG tube failures (HTF) which are thermal transient driven. This report, which forms part of a series, will assist designer, owners, and operators with the technical basis to facilitate specifying, designing, and operating HRSG in a manner to minimize fatigue damage.

2006-03-31T23:59:59.000Z

160

Stationary High-Pressure Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Stationary High-Pressure Hydrogen Storage Zhili Feng Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Technology Gap Analysis for Bulk...

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High pressure ceramic heat exchanger  

DOE Patents (OSTI)

Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 5 figs.

Harkins, B.D.; Ward, M.E.

1998-09-22T23:59:59.000Z

162

High pressure ceramic heat exchanger  

DOE Patents (OSTI)

Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

Harkins, Bruce D. (San Diego, CA); Ward, Michael E. (Poway, CA)

1998-01-01T23:59:59.000Z

163

High pressure ceramic heat exchanger  

DOE Patents (OSTI)

Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the reinforcing member and having a strengthening member wrapped around the refractory material. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

Harkins, Bruce D. (San Diego, CA); Ward, Michael E. (Poway, CA)

1999-01-01T23:59:59.000Z

164

Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory  

E-Print Network (OSTI)

Dupont's Marshall Laboratory is an automotive paint research and development facility in Philadelphia, Pennsylvania. The campus is comprised of several buildings that are served by Trigen-Philadelphia Energy Corporation's district steam loop. In 1996 Dupont management announced that it was considering moving the facility out of Philadelphia primarily due to the high operating cost compared to where they were considering relocating. The city officials responded by bringing the local electric and gas utilities to the table to negotiate better rates for Dupont. Trigen also requested the opportunity to propose energy savings opportunities, and dedicated a team of engineers to review Dupont's steam system to determine if energy savings could be realized within the steam system infrastructure. As part of a proposal to help Dupont reduce energy costs while continuing to use Trigen's steam, Trigen recommended modifications to increase energy efficiency, reduce steam system maintenance costs and implement small scale cogeneration. These recommendations included reducing the medium pressure steam distribution to low pressure, eliminating the medium pressure to low pressure reducing stations, installing a back pressure steam turbine generator, and preheating the domestic hot water with the condensate. Dupont engineers evaluated these recommended modifications and chose to implement most of them. An analysis of Dupont's past steam consumption revealed that the steam distribution system sizing was acceptable if the steam pressure was reduced from medium to low. After a test of the system and a few modifications, Dupont reduced the steam distribution system to low pressure. Energy efficiency is improved since the heat transfer losses at the low pressure are less than at the medium pressure distribution. Additionally, steam system maintenance will be significantly reduced since 12 pressure reducing stations are eliminated. With the steam pressure reduction now occurring at one location, the opportunity existed to install a backpressure turbine generator adjacent to the primary pressure reducing station. The analysis of Dupont's steam and electric load profiles demonstrated that cost savings could be realized with the installation of 150 kW of self-generation. There were a few obstacles, including meeting the utility's parallel operation requirements, that made this installation challenging. Over two years have passed since the modifications were implemented, and although cost savings are difficult to quantify since process steam use has increased, the comparison of steam consumption to heating degree days shows a reducing trend. Dupont's willingness to tackle energy conservation projects without adversely affecting their process conditions can be an example to other industrial steam users.

Larkin, A.

2002-04-01T23:59:59.000Z

165

Pressure sensor for high-temperature liquids  

DOE Patents (OSTI)

A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

Forster, George A. (Westmont, IL)

1978-01-01T23:59:59.000Z

166

Steam Field | Open Energy Information  

Open Energy Info (EERE)

Field Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Steam field reservoirs are special cases where the fluid is predominantly found in a gas phase between 230°C to 240°C. "This special class of resource needs to be recognized, its uniqueness being the remarkably consistent initial temperature and pressure

167

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

168

High pressure electrical insulated feed thru connector  

DOE Patents (OSTI)

A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

Oeschger, Joseph E. (Palo Alto, CA); Berkeland, James E. (San Jose, CA)

1979-11-13T23:59:59.000Z

169

Hydrogen at high pressure and temperatures  

DOE Green Energy (OSTI)

Hydrogen at high pressures and temperatures is challenging scientifically and has many real and potential applications. Minimum metallic conductivity of fluid hydrogen is observed at 140 GPa and 2600 K, based on electrical conductivity measurements to 180 GPa (1.8 Mbar), tenfold compression, and 3000 K obtained dynamically with a two-stage light-gas gun. Conditions up to 300 GPa, sixfold compression, and 30,000 K have been achieved in laser-driven Hugoniot experiments. Implications of these results for the interior of Jupiter, inertial confinement fusion, and possible uses of metastable solid hydrogen, if the metallic fluid could be quenched from high pressure, are discussed.

Nellis, W J

1999-09-30T23:59:59.000Z

170

High pressure water jet mining machine  

DOE Patents (OSTI)

A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

Barker, Clark R. (Rolla, MO)

1981-05-05T23:59:59.000Z

171

System Design and New Materials for Reversible, Solid-Oxide, High Temperature Steam Electrolysis  

DOE Green Energy (OSTI)

High temperature solid oxide electrolysis cells (SOECs) offer high electrical efficiency and a potential path to large scale hydrogen production. Solid oxide technology is capable of both power generation and hydrogen production. That makes it possible for the development of a reversible solid-oxide system that can respond to market conditions to produce electricity or hydrogen on demand. New high-temperature electrolyzer cell materials are needed to enable cost-effective hydrogen production system designs based on reversible steam electrolysis. Two test methods were established for the eventual development of the reversible, durable electrode materials: the button cell test and the oxygen electrode test. The button cell test is capable of evaluating the performance and degradation of full solid oxide cells with dual atmosphere of air and hydrogen-steam. The oxygen electrode test is capable of isolating the performance and degradation of the oxygen electrode. It has higher throughput and sensitivity than the button cell test.

Ruud, J.A.

2007-12-20T23:59:59.000Z

172

NETL: Gasification Systems - Development of High-Pressure Dry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Development of High-Pressure Dry Feed Pump for Gasification Systems Project Number: DE-FC26-04NT42237 High-Pressure Solids Pump High-Pressure Solids Pump Pratt &...

173

NETL: Gasification Systems - Development of High-Pressure Dry...  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Pressure Dry Feed Pump for Gasification Systems Project No.: DE-FC26-04NT42237 High-Pressure Solids Pump High-Pressure Solids Pump Pratt & Whitney Rocketdyne (PWR) is...

174

HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT  

SciTech Connect

As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.

Stefano Orsino

2005-03-30T23:59:59.000Z

175

Applications of an Improved Wavelet Network in the Low Pressure Cylinder of Turbine Steam Exhaust Enthalpies Calculation  

Science Conference Proceedings (OSTI)

this paper applies the principle of the immune system adjustment to optimize the structure parameters of wavelet network, so as to establish a new type of wavelet neural network model which will be applied to turbine exhaust steam enthalpies. The calculation ... Keywords: steam turbine, wavelet network Vector distance Eexhaust, steam enthalpy

Zhang Liping; Sun Quanhong; Xu Qi

2011-01-01T23:59:59.000Z

176

Materials Degradation Studies for High Temperature Steam Electrolysis Systems  

DOE Green Energy (OSTI)

Experiments are currently in progress to assess the high temperature degradation behavior of materials in solid oxide electrolysis systems. This research includes the investigation of various electrolysis cell components and balance of plant materials under both anodic and cathodic gas atmospheres at temperatures up to 850C. Current results include corrosion data for a high temperature nickel alloy used for the air-side flow field in electrolysis cells and a commercial ferritic stainless steel used as the metallic interconnect. Three different corrosion inhibiting coatings were also tested on the steel material. The samples were tested at 850C for 500 h in both air and H2O/H2 atmospheres. The results of this research will be used to identify degradation mechanisms and demonstrate the suitability of candidate materials for long-term operation in electrolysis cells.

Paul Demkowicz; Pavel Medvedev; Kevin DeWall; Paul Lessing

2007-06-01T23:59:59.000Z

177

Boiler steam engine with steam recovery and recompression  

SciTech Connect

A boiler type of steam engine is described which uses a conventional boiler with an external combustion chamber which heats water in a pressure chamber to produce steam. A mixing chamber is used to mix the steam from the boiler with recovered recompressed steam. Steam from the mixing chamber actuates a piston in a cylinder, thereafter the steam going to a reservoir in a heat exchanger where recovered steam is held and heated by exhaust gases from the combustion chamber. Recovered steam is then recompressed while being held saturated by a spray of water. Recovered steam from a steam accumulator is then used again in the mixing chamber. Thus, the steam is prevented from condensing and is recovered to be used again. The heat of the recovered steam is saved by this process.

Vincent, O.W.

1980-12-23T23:59:59.000Z

178

Systems Engineering Provides Successful High Temperature Steam Electrolysis Project  

DOE Green Energy (OSTI)

This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability to perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.

Charles V. Park; Emmanuel Ohene Opare, Jr.

2011-06-01T23:59:59.000Z

179

Materials Performance in USC Steam  

DOE Green Energy (OSTI)

Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

2011-09-07T23:59:59.000Z

180

Development of a New Flame Speed Vessel to Measure the Effect of Steam Dilution on Laminar Flame Speeds of Syngas Fuel Blends at Elevated Pressures and Temperatures  

E-Print Network (OSTI)

Synthetic gas, syngas, is a popular alternative fuel for the gas turbine industry, but the composition of syngas can contain different types and amounts of contaminants, such as carbon dioxide, methane, moisture, and nitrogen, depending on the industrial process involved in its manufacturing. The presence of steam in syngas blends is of particular interest from a thermo-chemical perspective as there is limited information available in the literature. This study investigates the effect of moisture content (0 ? 15% by volume), temperature (323 ? 423 K), and pressure (1 ? 10 atm) on syngas mixtures by measuring the laminar flame speed in a newly developed constant-volume, heated experimental facility. This heated vessel also broadens the experimental field of study in the authors? laboratory to low vapor pressure fuels and other vaporized liquids. The new facility is capable of performing flame speed experiments at an initial pressure as high as 30 atm and an initial temperature up to 600 K. Several validation experiments were performed to demonstrate the complete functionality of the flame speed facility. Additionally, a design-of-experiments methodology was used to study the mentioned syngas conditions that are relevant to the gas turbine industry. The design-of-experiments methodology provided the capability to identify the most influential factor on the laminar flame speed of the conditions studied. The experimental flame speed data are compared to the most up-to-date C4 mechanism developed through collaboration between Texas A&M and the National University of Ireland Galway. Along with good model agreement shown with all presented data, a rigorous uncertainty analysis of the flame speed has been performed showing an extensive range of values from 4.0 cm/s to 16.7 cm/s. The amount of carbon monoxide dilution in the fuel was shown to be the most influential factor on the laminar flame speed from fuel lean to fuel rich. This is verified by comparing the laminar flame speed of the atmospheric mixtures. Also, the measured Markstein lengths of the atmospheric mixtures are compared and do not demonstrate a strong impact from any one factor but the ratio of hydrogen and carbon monoxide plays a key role. Mixtures with high levels of CO appear to stabilize the flame structure of thermal-diffusive instability. The increase of steam dilution has only a small effect on the laminar flame speed of high-CO mixtures, while more hydrogen-dominated mixtures demonstrate a much larger and negative effect of increasing water content on the laminar flame speed.

Krejci, Michael

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal  

Open Energy Info (EERE)

Temperature, High Pressure Devices for Zonal Isolation in Geothermal Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Zonal Isolation Project Description For Enhanced Geothermal Systems (EGS), high-temperature high-pressure zonal isolation tools capable of withstanding the downhole environment are needed. In these wells the packers must withstand differential pressures of 5,000 psi at more than 300°C, as well as pressures up to 20,000 psi at 200°C to 250°C. Furthermore, when deployed these packers and zonal isolation tools must form a reliable seal that eliminates fluid loss and mitigates short circuiting of flow from injectors to producers. At this time, general purpose open-hole packers do not exist for use in geothermal environments, with the primary technical limitation being the poor stability of existing elastomeric seals at high temperatures.

182

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site September 18, 2013 - 12:00pm Addthis A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. One of three large smoke stacks comes down during the demolition. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. PIKETON, Ohio - Towering above most nearby buildings, the X-600 Coal-fired Steam Plant had been part of the Portsmouth Gaseous Diffusion

183

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site September 18, 2013 - 12:00pm Addthis A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. One of three large smoke stacks comes down during the demolition. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. PIKETON, Ohio - Towering above most nearby buildings, the X-600 Coal-fired Steam Plant had been part of the Portsmouth Gaseous Diffusion

184

Steam Champions in Manufacturing  

E-Print Network (OSTI)

Traditionally, industrial steam system management has focused on operations and maintenance. Competitive pressures, technology evolution, and increasingly complex regulations provide additional management challenges. The practice of operating a steam system demands the managerial expertise of a "Steam Champion," which will be described in this paper. Briefly, the steam champion is a facility professional who embodies the skills, leadership, and vision needed to maximize the effectiveness of a plant's steam system. Perhaps more importantly, the steam champion's definitive role is that of liaison between the manufacturer's boardroom and the plant floor. As such, the champion is able to translate the functional impacts of steam optimization into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills.

Russell, C.

2001-05-01T23:59:59.000Z

185

High-pressure liquid chromatographic gradient mixer  

DOE Patents (OSTI)

A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

Daughton, C.G.; Sakaji, R.H.

1982-09-08T23:59:59.000Z

186

Engine having a high pressure hydraulic system and low pressure lubricating system  

DOE Patents (OSTI)

An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2000-01-01T23:59:59.000Z

187

Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies  

E-Print Network (OSTI)

A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water movement inside a boiler has remained highly speculative. This paper and support test video of actual boiler operations will illustrate the effects steam quality vs. boiler efficiency during different boiler and steam system demands. There are four different operating situations that effect the steam quality. Each of the following situation will be described in detail using visual aids and supporting literature: Case I: On/Off Feedwater Control: Wide swings in the water level of the boiler can result in unnecessary low water alarms and shut downs. Case II: Reduced Operating Pressure: By running a boiler at a lower pressure, the boiling action within the boiler becomes much more violent causing water to be carried over in to the steam system. Case III: A Demand of 15% over Capacity: Over loading a boiler will cause excessive amounts of water to be carried along with the steam into the system. Case IV: TDS Control: Without proper control of IDS within the boiler carry-over of water into the steam system will occur causing damage to equipment and/or waterhammer.

Hahn, G.

1998-04-01T23:59:59.000Z

188

High pressure-high temperature effect on the HTSC ceramics structure and properties  

Science Conference Proceedings (OSTI)

Keywords: high pressures-high temperatures, high temperature superconductors, mechanical properties, structure, superconductive

T. A. Prikhna

1995-12-01T23:59:59.000Z

189

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE  

E-Print Network (OSTI)

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE JIYONG ZHAOa,? , WOLFGANG, The University of Chicago, Chicago, IL 60637, USA We introduce the combination of nuclear resonant inelastic X the thermal radiation spectra fitted to the Planck radiation function up to 1700 K. Nuclear resonant

Shen, Guoyin

190

PTG 2010PTG 2010 i i 33 P blP bl 55PTG 2010PTG 2010 vningvning 33 ProblemProblem 55 2 kg of steam at a pressure of 1 bar are contained in a  

E-Print Network (OSTI)

of steam at a pressure of 1 bar are contained in a i id l d t k h l i 3 97 3 Th trigid sealed tank whose volume is 3.97 m3. The steam begins to cool off as heat is transferred to the atmosphere. When is the initial temperature of the steam in the tank (°C)? c) What will the temperature be in the tank when thec

Zevenhoven, Ron

191

High pressure ceramic air heater for indirectly fired gas turbine applications  

SciTech Connect

The EFCC cycle is conceptually simple. Air enters the compressor where it is pressurized and becomes the tube-side flow of the ceramic air heater. Heat transferred from the hot combustion gases flowing through the shell-side raises the air temperature to the desired turbine inlet temperature. Internally insulated high pressure piping returns the heated compressor air to the turbine, where it is expanded providing power to drive the electric generator and gas turbine compressor. Exhaust air from the turbine is used as the combustion air for the coal combustor. The EFCC cycle burns pulverized coal in an atmospheric combustion chamber similar to the combustion system in a conventional steam generator. The combustion gas exits the combustor and enters a slag screen, or impact separator, where the larger ash particles are collected to prevent fouling of the heat exchanger. After the slag screen, the combustion gas enters the shell-side of the CerHX where its thermal energy is transferred to the tube side air flow. Shell-side exit temperatures are sufficiently high to provide thermal energy for the bottoming Rankine Cycle through a heat recovery steam generator. Exhaust gas exiting the steam generator passes through a flue gas desulfurization system and a particulate removal system.

LaHaye, P.G.; Briggs, G.F.; Orozxo, N.J.; Seger, J.L.

1993-11-01T23:59:59.000Z

192

Oxidation of advanced steam turbine alloys  

SciTech Connect

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

193

Direct contact low emission steam generating system and method utilizing a compact, multi-fuel burner  

SciTech Connect

A high output, high pressure direct contact steam generator for producing high quality steam particularly suited for use with low grade, low cost fuel. When used in a system incorporating heat recovery and conversion of carryover water enthalpy into shaft horsepower, the unit disclosed provides high quality, high pressure steam for ''steam drive'' or thermal stimulation of petroleum wells through injection of high pressure steam and combustion gas mixtures. A particular feature of the burner/system disclosed provides compression of a burner oxidant such as atmospheric air, and shaft horesepower for pumping high pressure feedwater, from a lowest cost energy source such as leased crude, or other locally available fuel.

Eisenhawer, S.; Donaldson, A. B.; Fox, R. L.; Mulac, A. J.

1985-02-12T23:59:59.000Z

194

Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant  

SciTech Connect

Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

2011-01-01T23:59:59.000Z

195

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

Ryan, M.J.

1987-05-04T23:59:59.000Z

196

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

197

High-pressure coal fuel processor development  

DOE Green Energy (OSTI)

The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

Greenhalgh, M.L.

1992-11-01T23:59:59.000Z

198

High pressure-resistant nonincendive emulsion explosive  

DOE Patents (OSTI)

An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

Ruhe, Thomas C. (Duquesne, PA); Rao, Pilaka P. (Baghlingampalli, IN)

1994-01-01T23:59:59.000Z

199

High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance  

DOE Green Energy (OSTI)

Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode of operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.

J. E. O'Brien; X. Zhang; R. C. O'Brien; G. Tao

2011-11-01T23:59:59.000Z

200

High-pressure coal fuel processor development  

DOE Green Energy (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. A successful conclusion of the program will enable further component development work and full-scale system demonstrations of this potentially important technology. This paper covers the work on fuel processor rig testing completed in FY92.

Greenhalgh, M.L.; Wen, C.S.; Smith, L.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High-pressure coal fuel processor development  

DOE Green Energy (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. A successful conclusion of the program will enable further component development work and full-scale system demonstrations of this potentially important technology. This paper covers the work on fuel processor rig testing completed in FY92.

Greenhalgh, M.L.; Wen, C.S.; Smith, L.

1992-01-01T23:59:59.000Z

202

EXAMINATION OF HIGH PRESSURE RECOMBINER LOOP SPECIMENS  

DOE Green Energy (OSTI)

Speciments of iodide zirconium, Zircaloy-2, Zr-15Nb, iodide titanium, TMCA-45 titanium, A-110AT titanium, and 430 stainless steel were corroded in a highpressure recombiner loop. Analyses were performed to determine the amount of hydrogen pickup. The titanium materials and iodide zirconium showed very high hydrogen pickups, while the zirconium alloys and the 430 stainless steel absorbed smaller amounts of hydrogen Metallographic examination of the specimens showed that recrystallization occurred in all but the Ar-15Nb specimens. There seems to be little difference in the extent of recrystallization and grain growth whether the in the recombiner section at 430 to 500 deg C. Recrystalliplained or correlated in any way with the amount of f hydrogen sion that occured. Since hydrogen is known to seriously embrittle zirconium and titanium, it is recommended that crystal-bar zirconium and titanium alloys not be used as materials of construction in environ ments sinmilar to that of the High Pressure Recombiner Loop. (auth)

Picklesimer, M.L.; Rittenhouse, P.L.

1958-08-14T23:59:59.000Z

203

Development, construction, and use of pneumometric tubes for measurement of steam flow in the steam lines of PVG-1000 at NPP  

Science Conference Proceedings (OSTI)

A system for the direct measurement of steam flow in steam lines after a steam generator, which utilizes a special design of pneumometric tubes and a computing unit that accounts for variation in steam pressure, has been developed to improve the quality of water-level regulation in the steam generators of VVER-1000 power-generating units in the stationary and transitional modes. The advantage of the pneumometric tubes consists in their structural simplicity, high erosion resistance, and absence of irrevocable losses during measurement of steam flow. A similar measurement system is used at foreign NPP. The measurement system in question has been placed in experimental service at the No. 3 unit of the Balakovo NPP, and has demonstrated its worthiness. This measurement system can also be used to determine steam flow in the steam lines of NPP units with VVER-1000 and VVER-440 reactors, and PBMK-1000 power-generating units.

Gorbunov, Yu. S.; Ageev, A. G.; Vasil'eva, R. V.; Korol'kov, B. M. [FGUP 'Elektrogorsk Scientific-Research Center for NPP Safety' (Russian Federation)

2007-05-15T23:59:59.000Z

204

High-pressure coal fuel processor development  

DOE Green Energy (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. (Caterpillar, Inc., Peoria, IL (United States))

1992-12-01T23:59:59.000Z

205

Steam Generator Management Program: Effects of Different pH Control Agents on Pressurized Water Reactor Plant Systems and Components  

Science Conference Proceedings (OSTI)

Corrosion of materials in the condensate, feedwater, and drain systems of PWRs generates a significant amount of corrosion products in the secondary cycle. These corrosion products are generally transported into the steam generators and deposit on tubing surfaces, tubesheets, and tube support plates. Increased corrosion results in elevated levels of undesired corrosion products being deposited into the steam generators. To minimize corrosion of the secondary system components, control of pH in the second...

2009-12-04T23:59:59.000Z

206

Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply  

SciTech Connect

A power plant including dual steam turbine-generators connected to pass superheat and reheat steam from a steam generator which derives heat from the coolant gas of a high temperature gas-cooled nuclear reactor is described. Associated with each turbine is a bypass line to conduct superheat steam in parallel with a high pressure turbine portion, and a bypass line to conduct superheat steam in parallel with a lower pressure turbine portion. Auxiliary steam turbines pass a portion of the steam flow to the reheater of the steam generator and drive gas blowers which circulate the coolant gas through the reactor and the steam source. Apparatus and method are disclosed for loading or unloading a turbine-generator while the other produces a steady power output. During such loading or unloading, the steam flows through the turbine portions are coordinated with the steam flows through the bypass lines for protection of the steam generator, and the pressure of reheated steam is regulated for improved performance of the gas blowers. 33 claims, 5 figures

Braytenbah, A.S.; Jaegtnes, K.O.

1977-02-15T23:59:59.000Z

207

New Jersey Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

New Jersey Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

208

Arkansas Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

Arkansas Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

209

Integrated High Resolution Microearthquake Analysis and Monitoring for Optimizing Steam Production at The Geysers Geothermal Field, California  

E-Print Network (OSTI)

induced seismicity at The Geysers steam reservoir, NorthernMonitoring for Optimizing Steam Production at The Geysersgas concentrations in steam produced from The Geysers,

Majer, Ernest; Peterson, John; Stark, Mitch; Smith, Bill; Rutqvist, Jonny; Kennedy, Mack

2004-01-01T23:59:59.000Z

210

High Pressure Rotary Shaft Sealing Mechanism  

DOE Patents (OSTI)

A laterally translatable pressure staged rotary shaft sealing mechanism having a seal housing with a shaft passage therein being exposed to a fluid pressure P1 and with a rotary shaft being located within the shaft passage. At least one annular laterally translatable seal carrier is provided. First and second annular resilient sealing elements are supported in axially spaced relation by the annular seal carriers and have sealing relation with the rotary shaft. The seal housing and at least one seal carrier define a first pressure staging chamber exposed to the first annular resilient sealing element and a second pressure staging chamber located between and exposed to the first and second annular resilient sealing elements. A first fluid is circulated to the first pressure chamber at a pressure P1, and a second staging pressure fluid is circulated to the second pressure chamber at a fraction of pressure P1 to achieve pressure staging, cooling of the seals. Seal placement provides hydraulic force balancing of the annular seal carriers.

Dietle, Lannie (Sugar Land, TX); Gobeli, Jeffrey D. (Houston, TX)

2001-05-08T23:59:59.000Z

211

Modeling of Proposed Changes to SIUC Central Heating, Air-Conditioning, and Power Plant Incorporating Variable Frequency Drive (VFD) and High Efficiency Turbine.  

E-Print Network (OSTI)

??Currently, the Southern Illinois University Carbondale (SIUC) power plant produces steam at high pressure to drive a high pressure (HP) turbine to make a portion (more)

Su, Heyin

2011-01-01T23:59:59.000Z

212

Steam Turbine Materials and Corrosion  

Science Conference Proceedings (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

213

Steam Turbine Materials and Corrosion  

E-Print Network (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60 % efficiency, which would require steam temperatures of up to 760 C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Gordon R. Holcomb; Derek Hsu

2007-01-01T23:59:59.000Z

214

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

215

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

1994-01-01T23:59:59.000Z

216

Design of a heat recovery steam generator  

SciTech Connect

A gas turbine in the size range of 20,000 hp (14.9 MW) was retrofitted with a heat recovery steam generator (HRSG). The HRSG produces high pressure superheated steam for use in a steam turbine. Supplementary firing is used to more than double the steam production over the unfired case. Because of many unusual constraints, an innovative design of the HRSG was formulated. These design constraints included: a wide range of operating conditions was to be accommodated; very limited space in the existing plant; and a desire to limit the field construction work necessary in order to provide a short turnaround time. This paper discusses the design used to satisfy these conditions.

Logeais, D.R.

1984-06-01T23:59:59.000Z

217

TEST RESULTS OF HIGH TEMPERATURE STEAM/CO2 CO-ELECTROLYSIS IN A 10-CELL STACK  

DOE Green Energy (OSTI)

High temperature coelectrolysis experiments with CO2 / H2O mixtures were performed in a 10-cell planar solid oxide stack. Results indicated that stack apparent ASR values were shown not to vary significantly between pure steam electrolysis and steam / CO2 coelectrolysis values. Product gas compositions measured via an online micro gas chromatograph (GC) showed excellent agreement to predictions obtained from a chemical equilibrium coelectrolysis model developed for this study. Experimentally determined open cell potentials and thermal neutral voltages for coelectrolysis compared favorably to predictions obtained from a chemical equilibrium coelectrolysis and energy balance model, also developed for this study.

James E. O'Brien; Joseph J. Hartvigsen

2007-06-01T23:59:59.000Z

218

Diagnostic/Troubleshooting Monitoring to Identify Damaging Cycle Chemistry or Thermal Transients in Heat Recovery Steam Generator Pressure Parts  

Science Conference Proceedings (OSTI)

The worldwide fleet of combined cycle units with heat recovery steam generators (HRSGs) has exhibited a disappointing track record with respect to reliability and availability in terms of HRSG tube failures (HTFs). This report will assist operators in identifying the harmful chemical and thermal transient excursions that lead to failure.

2005-03-07T23:59:59.000Z

219

Evaluation of 2 Percent CrMoWV HP/LP Rotor Gap Forging for Single Cylinder Steam Turbine Use  

Science Conference Proceedings (OSTI)

There has been considerable industry interest in developing a single shaft rotor configuration that uses the same rotor in the high-pressure (HP) as well as the Low Pressure (LP) sections of a steam turbine. This report evaluates an HP/LP rotor forging for single cylinder steam turbines.

1998-11-24T23:59:59.000Z

220

Gas Viscosity at High Pressure and High Temperature  

E-Print Network (OSTI)

Gas viscosity is one of the gas properties that is vital to petroleum engineering. Its role in the oil and gas production and transportation is indicated by its contribution in the resistance to the flow of a fluid both in porous media and pipes. Although viscosity of some pure components such as methane, ethane, propane, butane, nitrogen, carbon dioxide and binary mixtures of these components at low-intermediate pressure and temperature had been studied intensively and been understood thoroughly, very few investigations were performed on viscosity of naturally occurring gases, especially gas condensates at low-intermediate pressure and temperature, even fewer lab data were published. No gas viscosity data at high pressures and high temperatures (HPHT) is available. Therefore this gap in the oil industry still needs to be filled. Gas viscosity at HPHT becomes crucial to modern oil industry as exploration and production move to deep formation or deep water where HPHT is not uncommon. Therefore, any hydrocarbon encountered there is more gas than oil due to the chemical reaction causing oil to transfer to gas as temperature increases. We need gas viscosity to optimize production rate for production system, estimate reserves, model gas injection, design drilling fluid, and monitor gas movement in well control. Current gas viscosity correlations are derived using measured data at low-moderate pressures and temperatures, and then extrapolated to HPHT. No measured gas viscosities at HPHT are available so far. The validities of these correlations for gas viscosity at HPHT are doubted due to lack of experimental data. In this study, four types of viscometers are evaluated and their advantages and disadvantages are listed. The falling body viscometer is used to measure gas viscosity at a pressure range of 3000 to 25000 psi and a temperature range of 100 to 415 oF. Nitrogen viscosity is measured to take into account of the fact that the concentration of nonhydrocarbons increase drastically in HPHT reservoir. More nitrogen is found as we move to HPHT reservoirs. High concentration nitrogen in natural gas affects not only the heat value of natural gas, but also gas viscosity which is critical to petroleum engineering. Nitrogen is also one of common inject gases in gas injection projects, thus an accurate estimation of its viscosity is vital to analyze reservoir performance. Then methane viscosity is measured to honor that hydrocarbon in HPHT which is almost pure methane. From our experiments, we found that while the Lee-Gonzalez-Eakin correlation estimates gas viscosity at a low-moderate pressure and temperature accurately, it cannot give good match of gas viscosity at HPHT. Apparently, current correlations need to be modified to predict gas viscosity at HPHT. New correlations constructed for HPHT conditions based on our experiment data give more confidence on gas viscosity.

Ling, Kegang

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High-pressure Magic Angle Spinning Nuclear Magnetic Resonance  

Science Conference Proceedings (OSTI)

A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve to include micro-groves at the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal penetration loss of pressure for 72 hours. As an application example, in situ 13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50?C are reported, with relevance to geological sequestration of carbon dioxide.

Hoyt, David W.; Turcu, Romulus VF; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Z.

2011-10-01T23:59:59.000Z

222

Multidisciplinary Conceptual Design of a Transonic High Pressure Compressor.  

E-Print Network (OSTI)

??The aim of this work is to develop a systematic approach for multidisciplinary high pressure transonic axial compressor conceptual design. Several aspects have to be (more)

Ersavas, Funda

2011-01-01T23:59:59.000Z

223

Single Crystal PWA 1472 in High Pressure Hydrogen  

Science Conference Proceedings (OSTI)

SINGLE CRYSTAL PWA 1472. IN HIGH PRESSURE HYDROGEN. D. P. DeLUCA, R. W. HATALA. UNITED TECHNOLOGIES. PRATT & WHITNEY. P. 0.

224

High-Pressure Protein Digestion System - PNNL: Available ...  

Summary. Researchers at PNNL have developed a system that utilizes high pressure to reduce the time of protein fractionation and improve peptide ...

225

Using High Pressure to Reveal Quantum Criticality in an Elemental...  

NLE Websites -- All DOE Office Websites (Extended Search)

| 1998 | Subscribe to APS Science Highlights rss feed Using High Pressure to Reveal Quantum Criticality in an Elemental Antiferromagnet MAY 21, 2009 Bookmark and Share...

226

High-Pressure Tube Trailers and Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

Berry Berry Salvador M. Aceves Lawrence Livermore National Laboratory (925) 422-0864 saceves@LLNL.GOV DOE Delivery Tech Team Presentation Chicago, Illinois February 8, 2005 Inexpensive delivery of compressed hydrogen with ambient temperature or cryogenic compatible vessels * Pressure vessel research at LLNL Conformable (continuous fiber and replicants) Cryo-compressed * Overview of delivery options * The thermodynamics of compressed and cryo-compressed hydrogen storage * Proposed analysis activities * Conclusions Outline We are investigating two techniques for reduced bending stress: continuous fiber vessels and vessels made of replicants Conformable tanks require internal stiffeners (ribs) to efficiently support the pressure and minimize bending stresses Spherical and cylindrical tanks

227

Notes 11. High pressure floating ring seals  

E-Print Network (OSTI)

Floating ring seals for compressors: leakage and force coefficients, seal lock up and effect on rotor stability, recommendations to reduce seal cross-coupled effects. Long oil seals as pressure barriers in industrial mixers: leakage and force coefficients, effect on rotor stability, recommendations for grooved seals with reduced leakage and lesser cross-stiffnesses.

San Andres, Luis

2009-01-01T23:59:59.000Z

228

Ultrasupercritical Steam Turbines: Design and Materials Issues for the Next Generation  

Science Conference Proceedings (OSTI)

The ultrasupercritical fossil power plant is one option for high-efficiency and low-emissions electricity generation. It is based on significant increases in steam temperature and pressure, beyond those traditionally employed for supercritical plants. Such steam conditions put new demands on the steam turbine design, particularly where the new unit has to operate in a business climate that demands flexible, reliable operation of generating plants. This report reviews demands on the ultrasupercritical ste...

2002-03-14T23:59:59.000Z

229

Evaluation of high-pressure drilling fluid supply systems  

DOE Green Energy (OSTI)

A study was undertaken to help determine the technical and economic feasibility of developing a high-pressure fluid-jet drilling system for the production of geothermal wells. Three system concepts were developed and analyzed in terms of costs, component availability, and required new-component development. These concepts included a single-conduit system that supplies the downhole cutting nozzles directly via surface-located high-pressure pumps; a single-conduit system utilizing low-pressure surface pumps to supply and operate a high-pressure downhole pump, which in turn supplies the cutting nozzles; and a dual-conduit system supplying surface-generated high-pressure fluid for cutting via one conduit and low-pressure scavenging fluid via the other. It is concluded that the single-conduit downhole pump system concept has the greatest potential for success in this application. 28 figures, 11 tables.

McDonald, M.C.; Reichman, J.M.; Theimer, K.J.

1981-10-01T23:59:59.000Z

230

Transient Steam Flow in Porous Media - Theory and Experiment  

SciTech Connect

The adsorption of steam in porous media, leading to a delay in steam pressure breakthrough, has been incorporated into a revised model of steam flow in a porous medium.

Herkelrath, W.N.; Moench, A.F.

1980-12-16T23:59:59.000Z

231

Unsteady Loss in a High Pressure Turbine Stage  

E-Print Network (OSTI)

The widespread use of the gas turbine as a means of aircraft propulsion has provided a considerable impetusUnsteady Loss in a High Pressure Turbine Stage Stephen John Payne Trinity College A thesis in a High Pressure Turbine Stage Stephen John Payne Trinity College A thesis submitted in partial fulfilment

Payne, Stephen J.

232

High Temperature Steam Electrolysis Materials Degradation: Preliminary Results of Corrosion Tests on Ceramatec Electrolysis Cell Components  

DOE Green Energy (OSTI)

Corrosion tests were performed on stainless steel and nickel alloy coupons in H2O/H2 mixtures and dry air to simulate conditions experienced in high temperature steam electrolysis systems. The stainless steel coupons were tested bare and with one of three different proprietary coatings applied. Specimens were corroded at 850C for 500 h with weight gain data recorded at periodic intervals. Post-test characterization of the samples included surface and cross-section scanning electron microscopy, grazing incidence x-ray diffraction, and area-specific resistance measurements. The uncoated nickel alloy outperformed the ferritic stainless steel under all test conditions based on weight gain data. Parabolic rate constants for corrosion of these two uncoated alloys were consistent with values presented in the literature under similar conditions. The steel coatings reduced corrosion rates in H2O/H2 mixtures by as much as 50% compared to the untreated steel, but in most cases showed negligible corrosion improvement in air. The use of a rare-earth-based coating on stainless steel did not result in a significantly different area specific resistance values after corrosion compared to the untreated alloy. Characterization of the samples is still in progress and the findings will be revised when the complete data set is available.

Paul Demkowicz; Prateek Sachdev; Kevin DeWall; Pavel Medvedev

2007-06-01T23:59:59.000Z

233

Steam Generator Management Program: Flaw Handbook Calculator  

Science Conference Proceedings (OSTI)

The EPRI Steam Generator Management Program: Steam Generator Degradation Specific Flaw Handbook v1.0 defines burst pressure equations for steam generator tubes with various degradation morphologies, and the EPRI Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines (1019038) describes a probabilistic evaluation process which can be used to account for key input parameter uncertainties. The Flaw Handbook Calculator software is an automated Microsoft Excelspreadsheet which cal...

2010-04-20T23:59:59.000Z

234

Steam Quality  

E-Print Network (OSTI)

"STEAM QUALITY has been generally defined as the amount of moisture/vapor (or lack thereof) contained within steam produced from some form of boiler. It has long been used as the standard term for the measurement of ""wet or dry"" steam and as a means of measuring enthalpy. Totally dry steam is said to be ""saturated"" steam. It is sometimes defined as the ""dryness faction"". The term in its historical denotation refers to a physical attribute of the steam. That attribute being ""what is the percentage water vapor content of the steam"" as compared to the amount of steam. Dry saturated steam is steam which carries no water vapor with it and is defined as having a quality of 1.00 (100%). Since water vapor is always present at the interface between the water level and the steam in a boiler, some water vapor will always tend to pass through the system with the steam. Hence, a continuing problem. If steam does carry water vapor past the separators it will tend to coalesce as a liquid, and in doing so it also will carry boiler chemicals with it."

Johnston, W.

1989-09-01T23:59:59.000Z

235

Snubbing yields high-pressure savings  

SciTech Connect

Producing wells become deficient because of mechanical problems within the well or depletion of the oil or gas reservoir. Workover is an operation within the well's bore to repair equipment malfunction or well situation, or to enhance the well's performance. Workover performed through existing tubing by means of smaller diameter tubing is called thru-tubing workover. Snubbing utilizes jointed tubing or drill pipe and a hydraulic snubbing unit to run tubing or pipe under pressure conditions without killing the well. Tubing is run either through the blowout preventers and bore of an uncompleted well or through the well-head and tubing of a completed well. Hydraulic snubbing units offer many advantages to well productivity. Some of these are discussed in this article.

Parkhill, T.; Loring, G.; Lirette, R.

1987-09-01T23:59:59.000Z

236

High Speed Rotational Motor Unit with Optimized Couplant Feed System for Ultrasonic Examination of Steam Generator Tubes  

Science Conference Proceedings (OSTI)

A high-speed rotational motor unit was designed and built to increase the ultrasonic data acquisition speed of steam generator tube examination in field applications. Rotational and couplant delivery speeds were optimized as they have a significant impact on data acquisition speed. The motor unit was designed to be waterproof and to move couplant (water) to the ultrasonic search unit in an efficient manner. Lessons learned from design and operations of laboratory motors were applied to this design. The r...

2005-11-15T23:59:59.000Z

237

Compatibility of selected ceramics with steam-methane reformer environments  

DOE Green Energy (OSTI)

Conventional steam reforming of methane to synthesis gas (CO and H{sub 2}) hasa conversion efficiency of about 85%. Replacement of metal tubes in the reformer with ceramic tubes offers the potential for operation at temperatures high enough to increase the efficiency to 98-99%. However, the two candidate ceramic materials being given strongest consideration, sintered alpha Si carbide and Si carbide particulate-strengthened alumina, have been shown to react with components of the reformer environment. Extent of degradation as a function of steam partial pressure and exposure time has been studied, and results suggest limits under which these structural ceramics can be used in advanced steam-methane reformers.

Keiser, J.R.; Howell, M. [Oak Ridge National Lab., TN (United States); Williams, J.J.; Rosenberg, R.A. [Stone and Webster Engineering Corp., Boston, MA (United States)

1996-04-01T23:59:59.000Z

238

FM12 & rus Steam - Steam Users' Forums  

U.S. Energy Information Administration (EIA)

STORE COMMUNITY ABOUT SUPPORT Steam Users' Forums > Steam Game Discussions > D - G > Football Manager series

239

Steam turbine materials and corrosion  

SciTech Connect

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

2007-12-01T23:59:59.000Z

240

Steam Generator Management Program: Steam Generator Engineering Training Course 1  

Science Conference Proceedings (OSTI)

This technical update provides training material that was prepared for the first of three Steam Generator Engineer Training Program courses. The Steam Generator Engineer Training Program is a comprehensive training program of the Steam Generator Management Program. The content of this course is based on an industry-developed job analysis for a steam generator engineer. The job analysis resulted in eight high-level tasks; therefore, eight training modules will be developed over a three-year period beginni...

2009-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Crude oil steam distillation in steam flooding. Final report  

SciTech Connect

Steam distillation yields of sixteen crude oils from various parts of the United States have been determined at a saturated steam pressure of 200 psig. Study made to investigate the effect of steam pressure (200 to 500 psig) on steam distillation yields indicates that the maximum yields of a crude oil may be obtained at 200 psig. At a steam distillation correlation factor (V/sub w//V/sub oi/) of 15, the determined steam distillation yields range from 12 to 56% of initial oil volume for the sixteen crude oils with gravity ranging from 12 to 40/sup 0/API. Regression analysis of experimental steam distillation yields shows that the boiling temperature (simulated distillation temperature) at 20% simulated distillation yield can predict the steam distillation yields reasonably well: the standard error ranges from 2.8 to 3.5% (in yield) for V/sub w//V/sub oi/ < 5 and from 3.5 to 4.5% for V/sub w//V/sub oi/ > 5. The oil viscosity (cs) at 100/sup 0/F can predict the steam distillation yields with standard error from 3.1 to 4.3%. The API gravity can predict the steam distillation yields with standard error from 4.4 to 5.7%. Characterization factor is an unsatisfactory correlation independent variable for correlation purpose.

Wu, C.H.; Elder, R.B.

1980-08-01T23:59:59.000Z

242

Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites  

Science Conference Proceedings (OSTI)

Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

Taib, R. M.; Ramarad, S.; Ishak, Z. A. M. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang (Malaysia); Rozman, H. D. [School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang (Malaysia)

2010-03-11T23:59:59.000Z

243

High Temperature Oxidation of Silicon Carbide and Advanced Iron-Based Alloys in Steam-Hydrogen Environments  

SciTech Connect

A side by side comparison of the oxidation behavior of zirconium alloys with SiC materials and advanced iron-based alloys is provided. Oxidation tests were conducted in steam and steam-hydrogen environments at 800-1350 C and 0.34-2MPa for durations up to 48 hours. Monolithic SiC specimens as well as SiC/SiC composites were examined during the study where the material recession mechanism appeared to be governed by silica layer volatilization at the surface for CVD SiC. A wide set of austenitic and ferritic steels were also examined where a critical Cr content (>20 wt.%) was shown to be necessary to achieve oxidation resistance at high temperatures. SiC materials and alumina-forming ferritic steels exhibited slowest oxidation kinetics; roughly two orders of magnitude lower than zirconium alloys.

Terrani, Kurt A [ORNL; Keiser, James R [ORNL; Brady, Michael P [ORNL; Cheng, Ting [ORNL; Silva, G W Chinthaka M [ORNL; Pint, Bruce A [ORNL; Snead, Lance Lewis [ORNL

2012-01-01T23:59:59.000Z

244

Low Cost, High Efficiency, High Pressure Hydrogen Storage  

DOE Green Energy (OSTI)

A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantums then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel systems performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of smart tanks that could monitor health of tank thus allowing for lower design safety factor, and the development of Cool Fuel technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

Mark Leavitt

2010-03-31T23:59:59.000Z

245

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

Ryan, Michael J. (Plainfield, IL)

1988-01-01T23:59:59.000Z

246

Steam generator replacement overview  

Science Conference Proceedings (OSTI)

Since nuclear power began to be widely used for commercial purposes in the 1960s, unit operators have experienced a variety of problems with major components. Although many of the problems have diminished considerably, those associated with pressurized water reactor (PWR) steam generators persist. Steam generator problems rank second, behind refueling outages, as the most significant contributor to lost electricity generation. As of December 31, 1995, 38 steam generators had been replaced in 13 of the 72 operating PWRs, and three units had been shut down prematurely, due primarily (or partially) to degradation of their steam generators: Portland General Electric`s Trojan unit, located in Prescott, OR, in 1992; Southern California Edison`s San Onofre 1, located in San Clemente, CA, in 1992; and Sacramento Municipal Utility District`s Rancho Seco unit in 1989. In the coming years, operators of PWRs in the US with degraded steam generators will have to decide whether to make annual repairs (with eventual derating likely), replace the generators or shut the plants down prematurely. To understand the issues and decisions utility managers face, this article examines problems encountered at steam generators over the past few decades and identifies some of the remedies that utility operators and the nuclear community have employed, including operational changes, maintenance, repairs and steam generator replacement.

Chernoff, H. [Science Applications International Corp., McLean, VA (United States); Wade, K.C. [USDOE Energy Information Administration, Washington, DC (United States)

1996-01-01T23:59:59.000Z

247

High differential pressure, radial flow characteristics of gun perforations  

Science Conference Proceedings (OSTI)

Tubing conveyed completion techniques are being utilized more frequently than in the past, because of the apparent advantages derived from underbalanced perforating. These advantages include cleaner perforations, reductions of additional stimulation treatments and reduced completion times. This paper presents the results of a laboratory study of gun perforations made under high differential pressure, radial flow conditions. In this study, Berea sandstone cores, modified to permit radial flow, are used to determine the relationship between perforation characteristics and the time-dependent pressure differential between pore pressure (i.e. formation pressure) and ''well bore'' pressure during the completion process. The primary perforation characteristic investigated (Radial Flow Ratio) is defined as the ratio of the perforated flow rate to the flow rate of the unperforated core under identical conditions. The perforated flow rate is measured in radial flow after the perforation has been made under various time-dependent pressure differentials.

Regalbuto, J.A.; Riggs, R.S.

1985-01-01T23:59:59.000Z

248

Energy Systems High Pressure Test Laboratory (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems High Pressure Test Laboratory at the Energy Systems Integration Facility. The purpose of the Energy Systems High Pressure Test Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to provide space where high pressure hydrogen components can be safely tested. High pressure hydrogen storage is an integral part of energy storage technology for use in fuel cell and in other distributed energy scenarios designed to effectively utilize the variability inherent with renewable energy sources. The high pressure storage laboratory is co-located with energy storage activities such as ultra-capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to system development and demonstration. Hazards associated with hydrogen storage at pressures up to 10,000 psi include oxygen displacement, combustion, explosion, and pressurization of room air due to fast release and physical hazards associated with burst failure modes. A critical understanding of component failure modes is essential in developing reliable, robust designs that will minimize failure risk beyond the end of service life. Development of test protocol for accelerated life testing to accurately scale to real world operating conditions is essential for developing regulations, codes and standards required for safe operation. NREL works closely with industry partners in providing support of advanced hydrogen technologies. Innovative approaches to product design will accelerate commercialization into new markets. NREL works with all phases of the product design life cycle from early prototype development to final certification testing. High pressure tests are performed on hydrogen components, primarily for the validation of developing new codes and standards for high pressure hydrogen applications. The following types of tests can be performed: Performance, Component and system level efficiency, Strength of materials and hydrogen compatibility, Safety demonstration, Model validation, and Life cycle reliability.

Not Available

2011-10-01T23:59:59.000Z

249

Simplify heat recovery steam generator evaluation  

SciTech Connect

Heat recovery steam generators (HRSGs) are widely used in process and power plants, refineries and in several cogeneration/combined cycle systems. They are usually designed for a set of gas and steam conditions but often operate under different parameters due to plant constraints, steam demand, different ambient conditions (which affect the gas flow and exhaust gas temperature in a gas turbine plant), etc. As a result, the gas and steam temperature profiles in the HRSG, steam production and the steam temperature differ from the design conditions, affecting the entire plant performance and economics. Also, consultants and process engineers who are involved in evaluating the performance of the steam system as a whole, often would like to simulate the performance of an HRSG under different gas flows, inlet gas temperature and analysis, steam pressure and feed water temperature to optimize the entire steam system and select proper auxiliaries such as steam turbines, condensers, deaerators, etc.

Ganapathy, V. (ABCO Industries, Abilene, TX (US))

1990-03-01T23:59:59.000Z

250

International Steam Turbine Valve Metallurgy Guide  

Science Conference Proceedings (OSTI)

This report reviews the state of the art in materials usage for steam turbine valves manufactured and used in Europe and looks at materials options for the higher-temperature applications now being considered for advanced high-efficiency power plants. The emphasis is on valves for extreme service conditions (high temperatures, pressures, and flow rates), of which bypass valves represent a good example. Some consideration is also given to degradation and failure mechanisms. In focusing on practices outsid...

2011-09-27T23:59:59.000Z

251

Steam purity in PWRs  

Science Conference Proceedings (OSTI)

Impurities enter the secondary loop of the PWR through both makeup water from lake or well and cooling-water leaks in the condenser. These impurities can be carried to the steam generator, where they cause corrosion deposits to form. Corrosion products in steam are swept further through the system and become concentrated at the point in the low-pressure turbine where steam begins to condense. Several plants have effectively reduced impurities, and therefore corrosion, by installing a demineralizer for the makeup water, a resin-bed system to clean condensed steam from the condenser, and a deaerator to remove oxygen from the water and so lower the risk of system metal oxidation. 5 references, 1 figure.

Hopkinson, J.

1982-10-01T23:59:59.000Z

252

Chemical tailoring of steam to remediate underground mixed waste contaminents  

DOE Patents (OSTI)

A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

1999-01-01T23:59:59.000Z

253

Hydro-Pac Inc., A High Pressure Company  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydro-Pac Hydro-Pac Inc. A High Pressure Company * Founded in 1972 * Manufacturer of Hydraulically Driven Intensifiers * High Pressure Hydrogen Compressors Hydrogen Compressor Cost Reduction Topics * Standardize Configuration and Fueling Strategy * Simple Designs and Proven Technologies * Identify Economical Hydrogen Compatible Materials * Specify Well Ventilated Sites with Remote Controls Standardize Configuration and Fueling Strategy * Limit the number of compressors and stages * Narrow the range of supply and discharge pressures * Select a flow and standardize Simple Designs and Proven Technologies * Variable speed drives * Double ended intensifiers * Water cooled cylinders * Flexible operational envelopes * Stop and start under load . Material Research / Installation Requirements

254

High pressure drilling system triples ROPS, stymies bit wear  

Science Conference Proceedings (OSTI)

Recent West Texas field tests of an experiental high-pressure drilling system have nearly tripled typical penetration rates in hard dolomite while putting virtually no visible wear on the bits, even those designed for much softer formations. With this drilling system, developed by FlowDril Corp. of Kent, Wash., and their joint-venture partner Grace Drilling Co., clarified drilling fluids (minimum solids) are pressurized to nearly 30,000 psi and directed to the bottom of the hole through a special nozzle attached to the drill bit. The action of this high pressure stream augments the bit's job, resulting in higher ROPs and decreased bit wear.

Killalea, M.

1989-03-01T23:59:59.000Z

255

Steam generator tube failures  

SciTech Connect

A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

1996-04-01T23:59:59.000Z

256

The value of steam turbine upgrades  

Science Conference Proceedings (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

257

High Rate Plasticity under Pressure using a Windowed Pressure-Shear Impact Experiment  

SciTech Connect

An experimental technique has been developed to study the strength of materials under conditions of moderate pressures and high shear strain rates. The technique is similar to the traditional pressure-shear plate-impact experiments except that window interferometry is used to measure both the normal and transverse particle velocities at a sample-window interface. Experimental and simulation results on vanadium samples backed with a sapphire window show the utility of the technique to measure the flow strength under dynamic loading conditions. The results show that the strength of the vanadium is 600 MPa at a pressure of 4.5 GPa and a plastic strain of 1.7%.

Florando, J N; Jiao, T; Grunschel, S E; Clifton, R J; Ferranti, L; Becker, R C; Minich, R W; Bazan, G

2009-07-29T23:59:59.000Z

258

Simulation of a main steam line break with steam generator tube rupture using trace  

Science Conference Proceedings (OSTI)

A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation of the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)

Gallardo, S.; Querol, A.; Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022, Valencia (Spain)

2012-07-01T23:59:59.000Z

259

Experiment Hazard Class 5.3 High Pressure Vessels  

NLE Websites -- All DOE Office Websites (Extended Search)

3 High Pressure Vessels 3 High Pressure Vessels Applicability This hazard classification applies to working with pressure vessels and systems. Other hazard classifications and associated controls may apply to experiments in this hazard class. Experiment Category Experiments involving previously reviewed hazard controls are catergorized as medium risk experiments. Experiments involving new equipment, processes or materials, or modified hazard control schemes are categorized as high risk experiments. Hazard Control Plan Verification Statements Engineered Controls - The establishment of applicable controls in accordance with the (American Society of Mechanical Engineers) ASME Boiler and Pressure Code, ASME B.31 Piping Code and applicable federal, state, and local codes. Verify vessel is stampled with ASME Code Symbol or allowable

260

High pressure rotary piston coal feeder for coal gasification applications  

DOE Patents (OSTI)

The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

Gencsoy, Hasan T. (Morgantown, WV)

1977-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Confinement of hydrogen at high pressure in carbon nanotubes  

DOE Patents (OSTI)

A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

Lassila, David H. (Aptos, CA); Bonner, Brian P. (Livermore, CA)

2011-12-13T23:59:59.000Z

262

Ultra supercritical turbines--steam oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

263

Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology  

DOE Green Energy (OSTI)

Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

2013-11-01T23:59:59.000Z

264

High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics  

DOE Green Energy (OSTI)

Application of high pressure significantly alters the interatomic distance and thus the nature of intermolecular interaction, chemical bonding, molecular configuration, crystal structure, and stability of solid [1]. With modern advances in high-pressure technologies [2], it is feasible to achieve a large (often up to a several-fold) compression of lattice, at which condition material can be easily forced into a new physical and chemical configuration [3]. The high-pressure thus offers enhanced opportunities to discover new phases, both stable and metastable ones, and to tune exotic properties in a wide-range of atomistic length scale, substantially greater than (often being several orders of) those achieved by other thermal (varying temperatures) and chemical (varying composition or making alloys) means. Simple molecular solids like H{sub 2}, C, CO{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO, NH{sub 3}, and CH{sub 4} are bounded by strong covalent intramolecular bonds, yet relatively weak intermolecular bonds of van der Waals and/or hydrogen bonds. The weak intermolecular bonds make these solids highly compressible (i.e., low bulk moduli typically less than 10 GPa), while the strong covalent bonds make them chemically inert at least initially at low pressures. Carbon-carbon single bonds, carbon-oxygen double bonds and nitrogen-nitrogen triple bonds, for example, are among the strongest. These molecular forms are, thus, often considered to remain stable in an extended region of high pressures and high temperatures. High stabilities of these covalent molecules are also the basis of which their mixtures are often presumed to be the major detonation products of energetic materials as well as the major constituents of giant planets. However, their physical/chemical stabilities are not truly understood at those extreme pressure-temperature conditions. In fact, an increasing amount of experimental evidences contradict the assumed stability of these materials at high pressures and temperatures.

Yoo, C

2004-05-26T23:59:59.000Z

265

Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation  

SciTech Connect

A control system for a combined cycle electric power plant is described. It contains: at least one gas turbine including an exit through which heated exhaust gases pass; means for generating steam coupled to said gas turbine exit for transferring heat from the exhaust gases to a fluid passing through the steam generator; a steam turbine coupled to the steam generator and driven by the steam supplied thereby; means for generating electric power by the driving power of the turbines; condenser means for receiving and converting the spent steam from the steam turbine into condensate; and steam generating means comprising a low pressure storage tank, a first heat exchange tube, a boiler feedwater pump for directing fluid from a low pressure storage tank through the first heat exchange tube, a main storage drum, a second heat exchange tube, and a high pressure recirculation pump for directing fluid from the main storage pump through the second heat exchange tube. The control system monitors the temperature of the exhaust gas turbine gases as directed to the steam generator and deactuates the steam turbine when a predetermined temperature is exceeded.

Martz, L.F.; Plotnick, R.J.

1974-08-08T23:59:59.000Z

266

Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities  

E-Print Network (OSTI)

Fossil fuels remain the dominant source for primary energy production worldwide. In relation to this trend, energy consumption in turbomachinery has been increasing due to the scale up of both the machinery itself as well as the processing plants in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance configurations and applications / selections of steam turbines. According to the change in output demand, in some cases the original plants are modified by increasing capacity and consequently the turbines and compressors are revamped internally or replaced totally. The authors will introduce several case studies on revamping to increase efficiency and reliability as per the following cases: a) Replacement of High Pressure Section Internals b) Replacement of Low Pressure Section Internals c) Replacement of All Internals d) Internals and Casing Replacement e) Efficiency Recovery Technique Modification Finally, life cycle cost (LCC) evaluation and sensitivity due to turbomachinery performance are explained as a case study of a mega ethylene plant.

Hata, S.; Horiba, J.; Sicker, M.

2011-01-01T23:59:59.000Z

267

Oxidation of alloys for advanced steam turbines  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, M.

2005-01-01T23:59:59.000Z

268

Heat Recovery Steam Generator (HRSG) Deposits  

Science Conference Proceedings (OSTI)

Under-deposit corrosion represents the second leading mechanism of chemistry-influenced heat recovery steam generator (HRSG) tube failures (HTFs) and third leading cause of major availability losses. This report was prepared, in recognition of the lack of information, to assemble the state of knowledge on deposition in HRSG high-pressure (HP) evaporator tubing and to identify the major deficiencies in that knowledge. Findings of this effort can be used to establish immediate remediation and correction of...

2009-11-11T23:59:59.000Z

269

A high-pressure nanoimaging breakthrough | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers A high-pressure nanoimaging breakthrough July 16, 2013 Tweet EmailPrint A team of researchers made a major breakthrough in measuring the structure of nanomaterials under extremely high pressures. Bragg coherent x-ray diffraction imaging (CXDI) is a promising tool to probe the internal strains of nanometer-sized crystals. But for high-pressure studies the x-ray beam must pass through a component of the diamond anvil cell, which can significantly affect the coherence properties of the beam. The researchers have developed a technique to deal with this that could lead to

270

THE USE OF MODERATELY HIGH PRESSURES AT CRYOGENIC TEMPERATURES  

SciTech Connect

The application of moderately high pressures to work at low temperatures is described. The problems involved in the merging of these two disciplines are discussed as they relate to laboratory research as well as to large scale nuclear rocket testing facility usage. The equipment used to determine some physical properties of liquid cryogens up to 50000 lb/in./sup 2/ are also described. The methods of obtaining and applying the low temperature to the high pressure volume will be mentioned. The use of a reciprocating piston pump to pump cryogenic liquids to high pressures is described. Consideration is also given to the problems of cryogenic seals for large size vacuum jacketed cryogenic piping. Safety requirements are also mentioned. (P.C.H.)

Edeskuty, F.J.; Mills, R.L.

1963-01-01T23:59:59.000Z

271

Carbon Neutral Production Of Syngas Via High Temperature Electrolytic Reduction Of Steam And CO2  

SciTech Connect

This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying coelectrolysis of steam and carbon dioxide in solid-oxide electrolysis stacks. Two 10-cell planar stacks were tested under various gas compositions, operating voltages, and operating temperatures. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. Measured outlet compositions, open cell potentials, and coelectrolysis thermal neutral voltages compared reasonably well with a coelectrolysis computer model developed at the INL. Stack ASRs did not change significantly when switching from electrolysis to coelectrolysis operation.

C. Stoots; J. O' Brien; J. Hartvigsen

2007-11-01T23:59:59.000Z

272

Process Modeling Results of Bio-Syntrolysis: Converting Biomass to Liquid Fuel with High Temperature Steam Electrolysis  

SciTech Connect

A new process called Bio-Syntrolysis is being researched at the Idaho National Laboratory (INL) investigating syngas production from renewable biomass that is assisted with high temperature steam electrolysis (HTSE). The INL is the world leader in researching HTSE and has recently produced hydrogen from high temperature solid oxide cells running in the electrolysis mode setting several world records along the way. A high temperature (~800C) heat source is necessary to heat the steam as it goes into the electrolytic cells. Biomass provides the heat source and the carbon source for this process. Syngas, a mixture of hydrogen and carbon monoxide, can be used for the production of synthetic liquid fuels via Fischer-Tropsch processes. This concept, coupled with fossil-free electricity, provides a possible path to reduced greenhouse gas emissions and increased energy independence, without the major infrastructure shift that would be required for a purely hydrogen-based transportation system. Furthermore, since the carbon source is obtained from recyclable biomass, the entire concept is carbon-neutral

G. L. Hawkes; M. G. McKellar; R. Wood; M. M. Plum

2010-06-01T23:59:59.000Z

273

Adaptive temperature control system for the supply of steam to a steam turbine  

SciTech Connect

A combined-cycle steam turbine power generating plant is described including a heat recovery steam generator for outputting steam at an instantaneous temperature and pressure, and a steam turbine having rotor expanding steam therethrough from the steam generator; means providing a signal representative of the temperature of the rotor of the turbine; and means for controlling the generation of steam by the steam generator to control the temperature of steam in accordance with a predetermined temperature gradient, the combination of: function generator means responsive to a signal representative of steam turbine throttle pressure for providing a throttle pressure related steam limit temperature according to a constant enthalpy characteristic; bias means responsive to the rotor temperature representative signal for providing a bias signal in excess of the rotor temperature signal by a predetermined amount; means responsive to the larger of the limit temperature signal and the bias signal for controlling the generation of steam by the steam generator to control the temperature of steam to iteratively raise the temperature of the rotor in accordance with the constant enthalpy characteristic and the bias signal during soaking.

Martens, A.; Myers, G.A.

1986-05-20T23:59:59.000Z

274

LX-17 Deflagration at High Pressures and Temperatures  

DOE Green Energy (OSTI)

We measure the laminar deflagration rate of LX-17 (92.5 wt% TATB, 7.5 wt% Kel-F 800) at high pressure and temperature in a strand burner, thereby obtaining reaction rate data for prediction of thermal explosion violence. Simultaneous measurements of flame front time-of-arrival and temporal pressure history allow for the direct calculation of deflagration rate as a function of pressure. Additionally, deflagrating surface areas are calculated in order to provide quantitative insight into the dynamic surface structure during deflagration and its relationship to explosion violence. Deflagration rate data show that LX-17 burns in a smooth fashion at ambient temperature and is represented by the burn rate equation B = 0.2P{sup 0.9}. At 225 C, deflagration is more rapid and erratic. Dynamic deflagrating surface area calculations show that ambient temperature LX-17 deflagrating surface areas remain near unity over the pressure range studied.

Koerner, J; Maienschein, J; Black, K; DeHaven, M; Wardell, J

2006-10-23T23:59:59.000Z

275

Why Pressure Reducing Valves (PVR's) are costing you money  

E-Print Network (OSTI)

Throughout many manufacturing facilities, colleges, commercial sites or industrial complexes, pressure reducing valves (PRV's) provide a cheap, reliable method to produce low pressure steam from a high pressure source in order to meet a process requirement or heating load. This simple method of expanding steam in a PRV creates no work and supplies the same heat content available in the high pressure steam at a more manageable low pressure. What if you could produce the same low pressure steam while saving hundreds of thousands of dollars on your electric bill and taking only a minimal hit in the available heat content? Why let steam down and get no benefit from it, when putting it through a low pressure steam turbine coupled to a generator would produce the heat you need for process with the byproduct of onsite electrical generation. This paper analyzes the costs, concerns and benefits of replacing a pressure reducing valve with a Steam Turbine Generator set including illustrations of what the marginal fuel increase would be in order to take advantage of the added benefits of clean, cheap and reliable onsite power production.

Downing, A.

2012-01-01T23:59:59.000Z

276

Microhole High-Pressure Jet Drill for Coiled Tubing  

SciTech Connect

Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

Ken Theimer; Jack Kolle

2007-06-30T23:59:59.000Z

277

Capillary toroid cavity detector for high pressure NMR  

DOE Patents (OSTI)

A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

Gerald, II, Rex E. (Brookfield, IL); Chen, Michael J. (Downers Grove, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Honer Glen, IL); ter Horst, Marc (Chapel Hill, NC)

2007-09-11T23:59:59.000Z

278

High Pressure Hydrogen Materials Compatibility of Piezoelectric Films  

DOE Green Energy (OSTI)

Abstract: Hydrogen is being considered as a next-generation clean burning fuel. However, hydrogen has well known materials issues, including blistering and embrittlement in metals. Piezoelectric materials are used as actuators in hydrogen fuel technology. We present studies of materials compatibility of piezoelectric films in a high pressure hydrogen environment. Absorption of high pressure hydrogen was studied with Elastic Recoil Detection Analysis (ERDA) and Rutherford Back Scattering (RBS) in lead zirconate titanate (PZT) and barium titanate (BTO) thin films. Hydrogen surface degradation in the form of blistering and Pb mixing was also observed.

Alvine, Kyle J.; Shutthanandan, V.; Bennett, Wendy D.; Bonham, Charles C.; Skorski, Daniel C.; Pitman, Stan G.; Dahl, Michael E.; Henager, Charles H.

2010-12-02T23:59:59.000Z

279

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

(Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield SteamThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Plant Operator Bohdan Sawa Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley

Raina, Ramesh

280

Guest disorder and high pressure behavior of argon hydrates  

SciTech Connect

The structure of argon hydrate was studied at ambient pressure and low temperature, and between 1.7 and 4.2 GPa at 295 K. This analysis produced a single Ar guest atom, positionally disordered off-center in the large cages of sII. Above 1.7 GPa Ar clathrate transformed to a mixture of a body-centered orthorhombic filled-ice phase, which can be viewed as a polytype of ice-Ih, and high pressure forms of pure ice. The guest disorder is further substantiated by analysis of the guest to host ratio in this high pressure filled-ice structure. The bulk modulus of Ar filled-ice found to be 11.7 {+-} 0.4 GPa.

Yang, L.; Tulk, C.A.; Klug, D.D.; Chakoumakos, B.C.; Ehm, L.; Molaison, J.J.; Parise, J.B.; Simonson, J.M. (NRCC); (SBU); (ORNL)

2010-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High-pressure solvent extraction of methane from geopressured fluids  

DOE Green Energy (OSTI)

Solvent extraction is propsed as a means of recovering dissolved methane from geopressured-geothermal brines at high pressures. Our assessment shows that additional investment in a high pressure solvent extraction plant preceding direct injection disposal of brines into isolated aquifers can be profitable. The technical and economic issues are discussed and compared with other injection methods such as complete depressurization for methane recovery followed by conventional mechanical pumping. The contributions of hydraulic (pressure) energy recovery and geothermal power production are also assessed. As a first step in the evaluation of solvent extraction, the solubilities of a promising solvent candidate, n-hexadecane, and a potential low cost solvent, No. 2 Diesel fuel, were measured in 15 wt % NaCl solutions at temperatures up to 150/sup 0/C. Preliminary results of initial extraction tests at 150/sup 0/C and 1000 psi in sub-pilot scale equipment are also presented.

Quong, R.; Otsuki, H.H.; Locke, F.E.; Netherton, R.

1981-08-01T23:59:59.000Z

282

Magnetism In 3d Transition Metals at High Pressures  

SciTech Connect

This research project examined the changes in electronic and magnetic properties of transition metals and oxides under applied pressures, focusing on complex relationship between magnetism and phase stability in these correlated electron systems. As part of this LDRD project, we developed new measurement techniques and adapted synchrotron-based electronic and magnetic measurements for use in the diamond anvil cell. We have performed state-of-the-art X-ray spectroscopy experiments at the dedicated high-pressure beamline HP-CAT (Sector 16 Advanced Photon Source, Argonne National Laboratory), maintained in collaboration with of University of Nevada, Las Vegas and Geophysical Laboratory of The Carnegie Institution of Washington. Using these advanced measurements, we determined the evolution of the magnetic order in the ferromagnetic 3d transition metals (Fe, Co and Ni) under pressure, and found that at high densities, 3d band broadening results in diminished long range magnetic coupling. Our experiments have allowed us to paint a unified picture of the effects of pressure on the evolution of magnetic spin in 3d electron systems. The technical and scientific advances made during this LDRD project have been reported at a number of scientific meetings and conferences, and have been submitted for publication in technical journals. Both the technical advances and the physical understanding of correlated systems derived from this LDRD are being applied to research on the 4f and 5f electron systems under pressure.

Iota, V

2006-02-09T23:59:59.000Z

283

INSTRUMENT TRANSMITTERS FOR HIGH-PRESSURE, AQUEOUS, NUCLEAR REACTORS  

SciTech Connect

A review of the criteria involved in the selection of primary sensing elements for the measurement of process variables in high-pressure, aqueous, nuclear reactors is presented. Some acceptable types of sensing elements now in use at ORNL are described. (auth)

Moore, R.L.

1958-10-28T23:59:59.000Z

284

An Electrical Cathode Model of a High Pressure Sodium Lamp  

Science Conference Proceedings (OSTI)

An electrical cathode model (ECM) of a high pressure sodium lamp (HPS) based on physical laws has been developed. The proposed ECM calculates the instantaneous voltage drop in a cathode sheath and the temperature distribution inside the cathode using ... Keywords: cathode model, HPS lamp ballast designs

Jose Luis Tapia; Joel O. Pacheco Sotelo; Eduardo Diaz Rodriguez; Yulia Nikolaevna Ledeneva; Rene Arnulfo Garcia Hernandez

2010-09-01T23:59:59.000Z

285

Solar production of industrial process steam at Ore-Ida frozen-fried-potato plant  

DOE Green Energy (OSTI)

TRW is designing a system for the demonstration of the Solar Production of Industrial Process Steam. Included, besides the Conceptual Design, is an Environmental Impact Assessment and a System Safety Analysis report. The system as proposed and conceptualized consists of an array of 9520 square feet of parabolic trough concentrating solar energy collectors which generate pressurized hot water. The pressurized water is allowed to flash to steam at 300 psi (417/sup 0/F) and fed directly into the high pressure steam lines of the Ore-Ida Foods, Inc., processing plant in Ontario, Oregon. Steam is normally generated in the factory by fossil-fired boilers and is used by means of a steam-to-oil heat exchanger for the process of frying potatoes in their frozen food processing line. The high pressure steam is also cascaded down to 125 psi for use in other food processing operations. This solar system will generate 2 x 10/sup 6/ Btu/hr during peak periods of insolation. Steam requirements in the plant for frying potatoes are: 43 x 10/sup 6/ Btu/hr at 300 psi and 52 x 10/sup 6/ Btu/hr at the lower temperatures and pressures. The Ontario plant operates on a 24 hr/day schedule six days a week during the potato processing campaigns and five days a week for the remainder of the year. The seventh day and sixth day, respectively, use steam for cleanup operations. An analysis of the steam generated, based on available annual insolation data and energy utilized in the plant, is included.

Cherne, J.M.; Gelb, G.H.; Pinkerton, J.D.; Paige, S.F.

1978-12-29T23:59:59.000Z

286

Thermal and Electrochemical Performance of a High-Temperature Steam Electrolysis Stack  

SciTech Connect

A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. We are conducting a progression of electrolysis stack testing activities, at increasing scales, along with a continuation of supporting research activities in the areas of materials development, single-cell testing, detailed computational fluid dynamics (CFD) and systems modeling. This paper will present recent experimental results obtained from testing of planar solid-oxide stacks operating in the electrolysis mode. The hydrogen-production and electrochemical performance of these stacks will be presented, over a range of operating conditions. In addition, internal stack temperature measurements will be presented, with comparisons to computational fluid dynamic predictions.

J. O' Brien; C. Stoots; G. Hawkes; J. Hartvigsen

2006-11-01T23:59:59.000Z

287

ORTAP: a nuclear steam supply system simulation for the dynamic analysis of high temperature gas cooled reactor transients  

SciTech Connect

ORTAP was developed to predict the dynamic behavior of the high temperature gas cooled reactor (HTGR) Nuclear Steam Supply System for normal operational transients and postulated accident conditions. It was developed for the Nuclear Regulatory Commission (NRC) as an independent means of obtaining conservative predictions of the transient response of HTGRs over a wide range of conditions. The approach has been to build sufficient detail into the component models so that the coupling between the primary and secondary systems can be accurately represented and so that transients which cover a wide range of conditions can be simulated. System components which are modeled in ORTAP include the reactor core, a typical reheater and steam generator module, a typical helium circulator and circulator turbine and the turbine generator plant. The major plant control systems are also modeled. Normal operational transients which can be analyzed with ORTAP include reactor start-up and shutdown, normal and rapid load changes. Upset transients which can be analyzed with ORTAP include reactor trip, turbine trip and sudden reduction in feedwater flow. ORTAP has also been used to predict plant response to emergency or faulted conditions such as primary system depressurization, loss of primary coolant flow and uncontrolled removal of control poison from the reactor core.

Cleveland, J.C.; Hedrick, R.A.; Ball, S.J.; Delene, J.G.

1977-08-10T23:59:59.000Z

288

Pressure testing of a high temperature naturally fractured reservoir  

DOE Green Energy (OSTI)

Los Alamos National Laboratory has conducted a number of pumping and flow-through tests at the Hot Dry Rock (HDR) test site at Fenton Hill, New Mexico. These tests consisted of injecting fresh water at controlled rates up to 12 BPM (32 l/s) and surface pressures up to 7000 psi (48 MPa) into the HDR formation at depths from 10,000 to 13,180 feet (3050 to 4000 m). The formation is a naturally fractured granite at temperatures of about 250/sup 0/C. The matrix porosity is <1% and permeability is on the order of 1 nD. Hence most of the injected fluid is believed to move through fractures. There has been no evidence of fracture breakdown phenomena, and hence it is believed that preexisting joints in the formation are opened by fluid injection. Water losses during pumping are significant, most likely resulting from flow into secondary fractures intersecting the main fluid conducting paths. The pressure-time response observed in these tests can be interpreted in terms of non-isothermal, fracture-dominated flow. As the fluid pressure increases from small values to those comparable to fracturing pressures, the formation response changes from linear fracture flow to the highly nonlinear situation where fracture lift-off occurs. A numerical heat and mass flow model was used to match the observed pressure response. Good matches were obtained for pressure buildup and shut-in data by assigning pressure dependent fracture and leak-off permeabilities. 12 refs., 5 figs., 2 tabs.

Kelkar, S.M.; Zyvoloski, G.A.; Dash, Z.V.

1986-01-01T23:59:59.000Z

289

Proposal for high pressure RF cavity test in the MTA  

DOE Green Energy (OSTI)

In order to demonstrate the feasibility of high pressure hydrogen gas filled RF (HPRF) cavities for muon ionization cooling, an HPRF cavity must be tested with a high intensity charged beam. When an HPRF cavity is irradiated with an intense beam each incident particle generates about 1000 electrons and ions per cubic centimeter in a high pressure cavity via ionization. These ionization electrons are influenced by the RF field and the RF quality factor goes down. This Q factor reduction will be a problem with a multi bunch beam, e.g., a muon beam for a muon collider consists of a 12 to 20 bunch train beam with 5 ns timing gap. Thus, the RF field must recover in few nano seconds. We propose to use a 400 MeV proton beam in the MTA and measure a beam loading effect in the HPRF cavity and study the recovery mechanism of the RF field.

Yonehara, K.; /Fermilab

2010-09-01T23:59:59.000Z

290

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

Michael Swanson; Daniel Laudal

2008-03-31T23:59:59.000Z

291

FEMP-FTA--Steam Trap Performance Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam Trap Function Steam Trap Function Steam traps are automatic valves used in every steam system to remove conden- sate, air, and other non-condensable gases while preventing or minimizing the passing of steam. If condensate is allowed to collect, it reduces the flow capacity of steam lines and the thermal capacity of heat transfer equipment. In addition, excess condensate can lead to "water hammer," with potentially destructive and dangerous results. Air that remains after system startup reduces steam pressure and temperature and may also reduce the thermal capacity of heat transfer equipment. Non-condensable gases, such as oxygen and carbon dioxide, cause corrosion. Steam that passes through the trap provides no heating ser- vice. This effectively reduces the heating capacity

292

Steam Generator Management Program: Steam Generator Progress Report: Revision 18  

Science Conference Proceedings (OSTI)

BackgroundSince 1985, the Electric Power Research Institute (EPRI) has published the Steam Generator Progress Report (SGPR), which provides historical information on worldwide steam generator activities. This document was published once a year and distributed via hardcopy. Until 1998, the method of acquiring data for this report had been to issue annual survey forms to all PWR and pressurized heavy water reactor nuclear utilities worldwide. The information included in ...

2013-11-20T23:59:59.000Z

293

Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. The integrity assessments are normally performed during a reactor refueling outage. Nuclear power plant licensees who follow the guidance in this report will have satisfied the requirements for degradation assessments, condition monitoring, and operational assessment as defined in the Nuclear Energy Institute (NEI) Steam Generator Program Guidelin...

2009-11-19T23:59:59.000Z

294

Downhole steam generator having a downhole oxidant compressor  

SciTech Connect

Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

295

CORROSION STUDIES OF TERNARY ZIRCONIUM ALLOYS IN HIGH-TEMPERATURE WATER AND STEAM  

DOE Green Energy (OSTI)

The alloying of zirconium to improve corrosion resistance has an empirical basis, and satisfactory explanations for the alloying effects are not available. A theory of compensating valencies in the corrosion oxide is proposed, in which cations of lower and higher valence than zirconium (+4) are present in ratios such that electrostatic neutrality is ensured. An example is an alloy containing equimolar amounts of scandium (+3) and niobium (+5). A number of zirconium alloys were prepared in which scandium or yttrium were paired with elements capable of a +5 or +6 valence. The ternary alloys containing scanadium were superior to the alloys combining yttrium. The alloys containing scandium plus molybdenum, tantalum, or tungsten had relatively long lifetimes in steam at 540 deg C and 600 psi as compared with other alloy combinations, including Zircaloy-2. A quenched alloy containing 0.025 wt% Sc and 0.053 at.% Mlo, that is, 0.05 mol.% of each additive, corroded approximately according to a cubic law up to 758 hr, at which potnt the rate suddenly increased in a manner suggesting hydrogen damage. Examination of the oxide film from alloys containing scandium and molybdenum showed only monoclinic ZrO/sub 2/. It is believed that stabilization of this form of ZrO/sub 2/ instead of the cubic or tetragonal forms is a factor in promoting corrosion resistance. In this way the protective character of the film can be improved independently of the addition of cathodes. (auth)

Misch, R.D.; Van Drunen, C.

1961-07-01T23:59:59.000Z

296

High-temperature gas-cooled reactor steam cycle/cogeneration: lead project strategy plan  

SciTech Connect

The strategy, contained herein, for developing the HTGR system and introducing it into the energy marketplace is based on using the most developed technology path to establish a HTGR-Steam Cycle/Cogeneration (SC/C) Lead Project. Given the status of the HTGR-SC/C technology, a Lead Plant could be completed and operational by the mid 1990s. While there is remaining design and technology development that must be accomplished to fulfill technical and licensing requirements for a Lead Project commitment, the major barriers to the realization a HTGR-SC/C Lead Project are institutional in nature, e.g. budget priorities and constraints, cost/risk sharing between the public and private sector, Project organization and management, and Project financing. These problems are further complicated by the overall pervading issues of economic and regulatory instability that presently confront the utility and nuclear industries. This document addresses the major institutional issues associated with the HTGR-SC/C Lead Project and provides a starting point for discussions between prospective Lead Project participants toward the realization of such a Project.

1982-07-01T23:59:59.000Z

297

Intermittently-fed high-pressure gasifier process  

DOE Patents (OSTI)

An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.

Bailey, John M. (Dunlap, IL); Zadoks, Abraham L. (Peoria, IL)

1993-11-30T23:59:59.000Z

298

Intermittently-fed high-pressure gasifier process  

DOE Patents (OSTI)

An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.

Bailey, J.M.; Zadoks, A.L.

1993-11-30T23:59:59.000Z

299

Superalloys for ultra supercritical steam turbines--oxidation behavior  

Science Conference Proceedings (OSTI)

Goals of the U.S. Department of Energys Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

Holcomb, G.R.

2008-09-01T23:59:59.000Z

300

Vibratory high pressure coal feeder having a helical ramp  

SciTech Connect

Apparatus and method for feeding powdered coal from a helical ramp into a high pressure, heated, reactor tube containing hydrogen for hydrogenating the coal and/or for producing useful products from coal. To this end, the helical ramp is vibrated to feed the coal cleanly at an accurately controlled rate in a simple reliable and trouble-free manner that eliminates complicated and expensive screw feeders, and/or complicated and expensive seals, bearings and fully rotating parts.

Farber, Gerald (Elmont, NY)

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integrated manufacturing system of high-pressure FRP pipes  

Science Conference Proceedings (OSTI)

In order to realise industrialised manufacturing of epoxy FRP pipes, the manufacturing system which can accomplish winding, internal heating curing and extraction processes by only one machine tool was developed. The winding motion control is undertaken ... Keywords: FEM, FRP pipes, blowing control, cooling control, curing control, embedded controllers, fibreglass reinforced plastics, finite element method, high-pressure pipes, integrated manufacturing, internal heating curing, motion control, simulation, thermochemical modelling, winding

Bo You; Jiazhong Xu; Xiongjian Wang

2007-11-01T23:59:59.000Z

302

Improved Steam Assisted Gravity Drainage (SAGD) Performance with Solvent as Steam Additive  

E-Print Network (OSTI)

Steam Assisted Gravity Drainage (SAGD) is used widely as a thermal recovery technique in Canada to produce a very viscous bitumen formation. The main research objectives of this simulation and experimental study are to investigate oil recovery mechanisms under SAGD process with different injection fluids, including steam, solvent or steam with solvent. 2D simulation studies based on typical Athabasca reservoir properties have been performed. Results show that a successful solvent co-injection design can utilize the advantages of solvent and steam. There is an optimal solvent type and concentration ratio range for a particular reservoir and operating condition. Long, continuous shale barriers located vertically above or near the wellbore delay production performance significantly. Co-injecting a multi-component solvent can flush out the oil in different areas with different drainage mechanisms from vaporized and liquid components. Placing an additional injector at the top of the reservoir results only in marginal improvement. The pure high-temperature diluent injection appears feasible, although further technical and economic evaluation of the process is required. A 2D scaled physical model was fabricated that represented in cross-section a half symmetry element of a typical SAGD drainage volume in Athabasca. The experimental results show co-injecting a solvent mixture of C7 and xylene with steam gives better production performance than the injection of pure steam or steam with C7 at the study condition. Compared to pure steam injection runs ( Run 0 and 1), coinjecting C7 (Run 2) with steam increases the ultimate recovery factor of oil inside the cell from 25 percent to 29 percent and decreases the ultimate CSOR from 2.2 to 1.9 and the ultimate CEOR from 4892 J/cm 3 to 4326 J/cm 3 ; coinjecting C7 and Xylene (Run 3) increases the ultimate recovery factor of oil from 25 percent to 34 percent, and decreases the ultimate CSOR 2.2 to 1.6 and the ultimate CEOR from 4892 J/cm 3 to 3629 J/cm 3 . Analyses of the experimental results indicate that partial pressure and the near wellbore flow play important roles in production performance. In conclusion, a successful solvent injection design can effectively improve the production performance of SAGD. Further research on evaluating the performance of various hydrocarbon types as steam additives is desirable and recommended.

Li, Weiqiang

2010-12-01T23:59:59.000Z

303

A High Pressure Carbon Dioxide Separation Process for IGCC Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

High Pressure Carbon Dioxide Separation Process for IGCC Plants High Pressure Carbon Dioxide Separation Process for IGCC Plants 1 A High Pressure Carbon Dioxide Separation Process for IGCC Plants S.S. Tam 1 , M.E. Stanton 1 , S. Ghose 1 , G. Deppe 1 , D.F. Spencer 2 , R.P. Currier 3 , J.S. Young 3 , G.K. Anderson 3 , L.A. Le 3 , and D.J. Devlin 3 1 Nexant, Inc. (A Bechtel Technology & Consulting Company) 45 Fremont St., 7 th Fl., San Francisco, CA 94506 2 SIMTECHE 13474 Tierra Heights Road, Redding, CA 96003 3 Los Alamos National Laboratory P.O. Box 1663 (MS J567), Los Alamos, NM 87545 1.0 INTRODUCTION Under separate contracts from the U.S. Department of Energy, Office of Fossil Energy (DOE- FE), Los Alamos National Laboratory, and a team of SIMTECHE and Nexant (a Bechtel Technology and Consulting Company) are jointly working to develop the proprietary process for

304

Hardware-in-the-loop simulation of pressurized water reactor steam-generator water-level control, designed for use within physically distributed testing environments.  

E-Print Network (OSTI)

??A hardware-in-the-loop model was developed to represent digital sensing and control of steam generator water-level. The model was created with an intention to serve as (more)

Brink, Michael Joseph

2013-01-01T23:59:59.000Z

305

Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. This integrity assessment is normally performed during a reactor refueling outage. Nuclear power plant licensees who follow this document's guidelines will have satisfied their requirements for condition monitoring and operational assessment as defined in the Nuclear Energy Institute (NEI) initiative, Steam Generator Program Guidelines, NEI 97-06.

2006-07-25T23:59:59.000Z

306

Specific features of geothermal steam turbine control and emergency system  

SciTech Connect

There are significant construction as well as operational differences between geothermal and conventional steam turbines. These result in specific features associated with geothermal steam turbine control and emergency system. Several aspects of geothermal steam turbine control have been considered. Some proposals of geothermal steam turbine control have been presented. Among others the following operation modes have been considered: Driving turbine, driving well, turbine power and well steam pressure coupled control.

Domachowski, Z.; Gutierrez, A.

1986-01-01T23:59:59.000Z

307

The Applicability of Supercritical Topping Cycles for Repowering Subcritical Steam-Electric Power Plants  

Science Conference Proceedings (OSTI)

Steam cycle efficiency of existing plants is limited by the steam temperatures and pressures to which the plant has been designed. Capacity and efficiency might be increased at subcritical steam-electric plants by adding a supercritical topping cycle that exhausts at the inlet steam conditions of the existing steam turbine. Implementation of such a topping cycle will require a new steam generator that might be a low-cost solution if the existing steam generator and its associated air quality control syst...

2010-12-31T23:59:59.000Z

308

Method and apparatus for determining quality and mass flow rate of flowing steam  

SciTech Connect

An apparatus is described for determining the quality and the two-phase mass flow rate of steam containing both liquid and vapor components and flowing in an orifice-containing steam line. The apparatus consists of: steam sampling means for drawing off through an orifice-containing sample conduit from the steam line a sample of the steam having substantially the same quality as the line steam, means for measuring the temperature in the sample conduit, means for measuring the static pressure in the sample conduit, means for measuring the differential pressure across the sample conduit orifice, means connected to the sample conduit for measuring the two-phase mass flow rate of the drawn off sample of steam, such that the sample steam quality may be determined by means of an equation relating the measured sample conduit temperature, static pressure, differential pressure, and two-phase mass flow rate, the determined sample steam quality being substantially the same as the desired line steam quality, means for measuring the temperature in the steam line, means for measuring the static pressure in the steam line, and means for measuring the differential pressure across the steam line orifice, such that the line steam two-phase mass flow rate may be determined by means of an equation relating the measured steam line temperature, static pressure, and differential pressure, and the line steam quality which is substantially the same as the determined sample steam quality.

Huang, W.-S.; Mims, D.S.; Allen, R.S.

1986-03-18T23:59:59.000Z

309

A high pressure, high temperature study of 1,1-diamino-2,2-dinitro ethylene  

SciTech Connect

We report a synchrotron energy-dispersive X-ray diffraction study of the novel high explosive 1,1-diamino-2,2-dinitroethylene at high pressures and high temperatures. Pressure was generated using a Paris-Edinburgh cell to employ larger sample volumes. High temperatures were created using a resistive graphite cylinder surrounding the sample. The PT phase diagram was explored in the 3.3 GPa pressure range and in the {approx} 400 C temperature range. We believe that the sample commenced in the {alpha}-phase and then ended up in an amorphous phase when the temperature increased beyond 280 C near 2 GPa, which we believe to be the {gamma}-phase. Further pressure and temperature cycling suggests that the sample transformed reversibly into and out of the amorphous phase near the phase line.

Pravica, Michael; Galley, Martin; Park, Changyong; Ruiz, Harrison; Wojno, Jennifer (UNLV); (CIW)

2012-08-29T23:59:59.000Z

310

Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode  

Science Conference Proceedings (OSTI)

Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

2012-07-01T23:59:59.000Z

311

Experimental study of oil yields and properties of light and medium Venezuelan crude oils under steam and steam-propane distillation  

E-Print Network (OSTI)

Six experimental runs were carried out to study the yields for a light crude oil (34.2API) and an intermediate crude oil (25.1API) under steam distillation and steam-propane distillation. Yields, were measured at five temperatures, 110, 150, 200, 250, and 300C at slightly superheated conditions. A propane:steam mass ratio of 5:100 was used for the steam-propane distillation runs. For the 34.2API crude oil, weight yields are very similar for steam and steam-propane distillation, about 54% weight of original oil. However for the 25.1API crude oil, weight yield for steam-propane distillation, 63%, is significantly higher than for steam distillation, 42% weight of original oil. The results indicate that propane has a stronger distillation effect on the intermediate oil than on the light oil. This is possibly due to the following reasons: (1) lesser amount of light fractions in the intermediate oil that enhance the separation of components in the oil caused by the concentration gradient, (2) the solvent effect of the propane on paraffinic fractions, these being more abundant in the intermediate than in the light oil, and (3) the propane is inducing a cracking of the oil at the higher temperatures and pressure. The positive effect of propane on distillation of the intermediate oil is also evident from the fact that the residual oil is highly viscous (due most likely to asphaltene precipitation), while lighter fractions have been distilled off.

Plazas Garcia, Joyce Vivia

2002-01-01T23:59:59.000Z

312

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network (OSTI)

Earthquakes in a Geothermal Steam Reservoir, The Geysersanalysis of the geothermal steam production and cold waterAs a result of high rate of steam withdrawal, the reservoir

Rutqvist, J.

2008-01-01T23:59:59.000Z

313

Design strategies for optically-accessible, high-temperature, high-pressure reactor  

Science Conference Proceedings (OSTI)

The authors have developed two optical cell designs for high-pressure and high-temperature fluid research: one for flow systems, and the other for larger batch systems. The flow system design uses spring washers to balance the unequal thermal expansions of the reactor and the window materials. A typical design calculation is presented showing the relationship between system pressure, operating temperature, and torque applied to the window-retaining nut. The second design employs a different strategy more appropriate for larger windows. This design uses two seals: one for the window that benefits from system pressure, and a second one that relies on knife-edge, metal-to-metal contact.

S. F. Rice; R. R. Steeper; C. A. LaJeunesse; R. G. Hanush; J. D. Aiken

2000-02-01T23:59:59.000Z

314

Design Strategies for Optically-Accessible, High-Temperature, High-Pressure Reactor  

SciTech Connect

The authors have developed two optical cell designs for high-pressure and high-temperature fluid research: one for flow systems, and the other for larger batch systems. The flow system design uses spring washers to balance the unequal thermal expansions of the reactor and the window materials. A typical design calculation is presented showing the relationship between system pressure, operating temperature, and torque applied to the window-retaining nut. The second design employs a different strategy more appropriate for larger windows. This design uses two seals: one for the window that benefits from system pressure, and a second one that relies on knife-edge, metal-to-metal contact.

S. F. Rice; R. R. Steeper; C. A. LaJeunesse; R. G. Hanush; J. D. Aiken

2000-02-01T23:59:59.000Z

315

Reduction in Unit Steam Production  

E-Print Network (OSTI)

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects of thes

Gombos, R.

2004-01-01T23:59:59.000Z

316

Steam-flooding  

SciTech Connect

Steam-flooding has become an established recovery technique within the last 20 years. This overview discusses its evolution, methods for selecting and designing steam-floods, constraints, and possible improvements. The term steam-flooding is used here in a general sense. The discussion includes steam soak (cyclic steam injection) and steam drive.

Matthews, C.S.

1983-03-01T23:59:59.000Z

317

X-ray Imaging of Shock Waves Generated by High-Pressure Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Imaging of Shock Waves Generated by High-Pressure Fuel Sprays High-pressure, high-speed fuel sprays are a critical technology for many applications including fuel injection...

318

High pressure testing of see-through labyrinth seals  

E-Print Network (OSTI)

Detailed results are presented for teeth-on-stator labyrinth seals tested under high pressure of 70 bar-a (1015 psi-a) and 52 bar-a (754 psi-a) in the centered position. The seals were tested at pressure ratios of 0.52, 0.36 and 0.16, speeds of 10,200, 15,200 and 20,200 rpm and clearances of 0.1 and 0.2 mm. The effects of changes in radial clearance and pressure differential across the seal are studied for various inlet tangential velocities. The results confirm the existence of negative direct stiffness, positive cross-coupled stiffness as shown by Benckert and Wachter and low direct damping (when compared to hole-pattern seals). Experimental results are compared with predictions from the one-control-volume model (Childs and Scharrer) and two-control-volume model (Scharrer). Results show that both models under-predict the rotordynamic coefficients significantly. Leakage is also under predicted by both the codes. However, the effective damping and whirl frequency ratio (wfr) predicted by the one-control volume theory is comparable with the test results.

Picardo, Arthur Michael

2003-01-01T23:59:59.000Z

319

Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation  

SciTech Connect

Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

2012-05-01T23:59:59.000Z

320

Low-Cost High-Pressure Hydrogen Generator  

DOE Green Energy (OSTI)

Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES) developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count. Economic analysis indicates that hydrogen could be produced for $3.79 per gge at an electricity cost of $0.05/kWh by the lower-cost PEM electrolyzer developed in this project, assuming high-volume production of large-scale electrolyzer systems.

Cropley, Cecelia C.; Norman, Timothy J.

2008-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High-Temperature Experiments using a Resistively-Heated High-Pressure Membrane Diamond Anvil Cell  

SciTech Connect

A reliable high-performance heating method using resistive heaters and a membrane driven diamond anvil cell (mDAC) is presented. Two micro-heaters are mounted in a mDAC and use electrical power of less than 150 W to achieve sample temperatures up to 1200 K. For temperature measurement we use two K-type thermocouples mounted near the sample. The approach can be used for in-situ Raman spectroscopy and x-ray diffraction at high pressures and temperatures. A W-Re alloy gasket material permits stable operation of mDAC at high temperature. Using this method, we made an isothermal compression at 900 K to pressures in excess of 100 GPa and isobaric heating at 95 GPa to temperatures in excess of 1000 K. As an example, we present high temperature Raman spectroscopy measurements of nitrogen at high pressures.

Jenei, Z; Visbeck, K; Cynn, H; Yoo, C; Evans, W

2009-04-22T23:59:59.000Z

322

Ultra-High Temperature Steam Corrosion of Complex Silicates for Nuclear Applications: A Computational Study  

SciTech Connect

Stability of materials under extreme conditions is an important issue for safety of nuclear reactors. Presently, silicon carbide (SiC) is being studied as a cladding material candidate for fuel rods in boiling-water and pressurized water-cooled reactors (BWRs and PWRs) that would substitute or modify traditional zircaloy materials. The rate of corrosion of the SiC ceramics in hot vapor environment (up to 2200 degrees C) simulating emergency conditions of light water reactor (LWR) depends on many environmental factors such as pressure, temperature, viscosity, and surface quality. Using the paralinear oxidation theory developed for ceramics in the combustion reactor environment, we estimated the corrosion rate of SiC ceramics under the conditions representing a significant power excursion in a LWR. It was established that a significant time at least 100 h is required for a typical SiC braiding to significantly degrade even in the most aggressive vapor environment (with temperatures up to 2200 C) which is possible in a LWR at emergency condition. This provides evidence in favor of using the SiC coatings/braidings for additional protection of nuclear reactor rods against off-normal material degradation during power excursions or LOCA incidents. Additionally, we discuss possibilities of using other silica based ceramics in order to find materials with even higher corrosion resistance than SiC. In particular, we found that zircon (ZrSiO4) is also a very promising material for nuclear applications. Thermodynamic and first-principles atomic-scale calculations provide evidence of zircon thermodynamic stability in aggressive environments at least up to 1535 degrees C.

Sergey N. Rashkeev; Michael V. Glazoff; Akira Tokuhiro

2014-01-01T23:59:59.000Z

323

Processing of High Performance Alloys for A-USC Steam Turbine ...  

Science Conference Proceedings (OSTI)

Fracture Toughness Evaluation of Polymeric Materials for Wind Turbine Blades Using the Spiral Notch Torsion Test High Performance Alloys for Advanced...

324

Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production  

SciTech Connect

The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

Carl Marcel Stoots; Lee Shunn; James O'Brien

2010-06-01T23:59:59.000Z

325

DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION  

Science Conference Proceedings (OSTI)

OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of >95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ({approx} 1-2 eV) and the impurity charge distribution can include > 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

WHYTE, DG; JERNIGAN, TC; HUMPHREYS, DA; HYATT, AW; LASNIER, CJ; PARKS, PB; EVANS, TE; TAYLOR, PL; KELLMAN, AG; GRAY, DS; HOLLMANN, EM

2002-10-01T23:59:59.000Z

326

Significant Silica Solubility in Geothermal Steam  

DOE Green Energy (OSTI)

Although it is widely believed that silica solubility in low pressure (5 to 10 bar) geothermal steam is negligible, when one takes into account steam flows exceeding 10 million tonnes a year--at Wairakei, for instance--it is found that the amount transmitted in the vapor has the potential to give significant deposits on turbine nozzles and blades. A 150 MWe power station, when based on flows from a hot water reservoir at (a) 250 C or (b) 315 C, and with separator pressures of 6 bar, is found to carry about 100 and 200 kg/year respectively in the steam phase. In the case of a similar sized station exploiting a dry steam reservoir such as The Geysers, equivalent silica flows are obtained, dissolved in steam and carried as dust--the latter as solid particles precipitating from the vapor en route from source to turbine, and not preexisting in the formations as is commonly considered. Choking or coating of subterranean rock near such dry steam wells due to exsolving silica, may be the principal cause of declining steam discharge under production. Silica from completely dry or superheated steam can also seal the cap and sides of steam reservoirs when expanding below the criticus temperature (236 C) in a way previously thought possible only by hot water or wet steam.

James, Russell

1986-01-21T23:59:59.000Z

327

Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes an economizer tube and a high pressure evaporator tube and a boiler feed pump for directing the heat exchange fluid serially through the aforementioned tubes. A condenser is associated with the steam turbine for converting the spent steam into condensate water to be supplied to a deaerator for removing undesired air and for preliminarily heating the water condensate before being pumped to the economizer tube. Condensate flow through the economizer tube is maintained substantially constant by maintaining the boiler feed pump at a predetermined, substantially constant rate. A bypass conduit is provided to feed back a portion of the flow heated in the economizer tube to the deaerator; the portion being equal to the difference between the constant flow through the economizer tube and the flow to be directed through the high pressure evaporator tube as required by the steam turbine for its present load.

Martz, L.F.; Plotnick, R.J.

1976-06-29T23:59:59.000Z

328

Steam separator latch assembly  

SciTech Connect

A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

Challberg, Roy C. (Livermore, CA); Kobsa, Irvin R. (San Jose, CA)

1994-01-01T23:59:59.000Z

329

Steam separator latch assembly  

DOE Patents (OSTI)

A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

Challberg, R.C.; Kobsa, I.R.

1994-02-01T23:59:59.000Z

330

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil  

E-Print Network (OSTI)

In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane injection accelerated oil production by as much as 23 % pore volume of steam injected (cold-water equivalent). The apparatus and procedure used in this study have been improved. Steam injection rate was kept constant at 5 cc/min (cold-water equivalent) for all runs. Four thermocouples were placed along the longitudinal axis of the cell to measure temperature profiles during injection. A new, more efficient method was developed to break emulsion in the produced sample. For four of the eight runs, consistent operating conditions were obtained by use of superheated steam, cell pressure of 50 psig, and identical insulation. Eight experimental runs were made in which the propane:steam mass ratios used were 0:100 (steam only), 1:100, 2.5:100, and 5:100. A run using 5:100 nitrogen: steam mass ratio was also made. The main findings of this research (derived from four runs with consistent operating conditions) are as follows. First, the propane:steam mass ratio of 5:100 accelerated the start and peak of oil production by 20 % and 13 % pore volume steam injected (cold-water equivalent), compared to steam injection alone. Second, oil recoveries for practical purposes are similar in all cases, 63 % - 70 % OOIP if average high and low values are taken. Third, the start of production is practically the same for 0:100 and 1:100 propane:steam ratio and for 5:100 nitrogen: steam ratio. In the latter case, the production peak is higher due to additional drive from nitrogen injection. Fourth, oil production acceleration in the 5:100 propane:steam case is probably caused by dry distillation in which light fractions of the oil partition into and are carried by the injected propane to lower the viscosity of the oil ahead of the steam front. Last, convective heat transfer at any of these low (5:100) ratios appears to be of secondary importance.

Ferguson,Mark Anthony

2000-01-01T23:59:59.000Z

331

Comparison of diesel spray combustion in different high-temperature, high-pressure facilities.  

DOE Green Energy (OSTI)

Diesel spray experiments at controlled high-temperature and high-pressure conditions offer the potential for an improved understanding of diesel combustion, and for the development of more accurate CFD models that will ultimately be used to improve engine design. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but uncertainties about their operation exist because of the uniqueness of each facility. For the IMEM meeting, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m{sup 3}, 15% oxygen) and sharing the same injector (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging. Performing experiments at the same high-temperature, high-pressure operating conditions is an objective of the Engine Combustion Network (http://www.ca.sandia.gov/ECN/), which seeks to leverage the research capabilities and advanced diagnostics of all participants in the ECN. We expect that this effort will generate a high-quality dataset to be used for advanced computational model development at engine conditions.

Christiansen, Caspar (Technical University of Denmark); Hermant, Laurent (IFP); Malbec, Louis-Marie (IFP); Bruneaux, Gilles (IFP); Genzale, Caroline L.; Pickett, Lyle M.; Schramm, Jesper (Technical University of Denmark)

2010-05-01T23:59:59.000Z

332

SUBJECT: Insights and Implications of Steam Generator Operating, Inspecting and Maintenance Experience  

E-Print Network (OSTI)

The steam generator tube failure event at Indian Point Unit 2 and the potential issues surrounding the in-situ pressure testing of selected tubes and test specimens at Arkansas Nuclear One Unit 2, prompted industry to evaluate its generic steam generator guidelines, plant experiences, and insights gained from the periodic steam generator program review visits conducted by the Institute of Nuclear Power Operations (INPO). The purpose of this letter is to share with the NRC staff the industry conclusions and actions taken. As the NRC staff is well aware, the operation, inspection, and maintenance of steam generators are a high industry priority. Given the critical role of the steam generator in providing safe, reliable, and economic power production, steam generator performance has received broad industry attention for years. Generic industry activities, managed by EPRI, have been underway continuously since 1978. NRC staff is familiar with those efforts based on past briefings on the activities of the EPRI Steam Generator Management Program (SGMP) and attendance at selected SGMP workshops. More recently, other industry support organizations, such as NEI, INPO, and NSSS Owners Groups, have played important roles as well. Industry data indicates continual improvement in steam generator performance since the initiation of these efforts.

David J. Modeen; Dr. Brian; W. Sheron

2000-01-01T23:59:59.000Z

333

High-pressure coal fuel processor development. Final report  

DOE Green Energy (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. [Caterpillar, Inc., Peoria, IL (United States)

1992-12-01T23:59:59.000Z

334

Analysis of hydrogen vehicles with cryogenic high pressure storage  

DOE Green Energy (OSTI)

Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LIQ) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

Aceves, S. M.; Berry, G. D.

1998-06-19T23:59:59.000Z

335

Hydrogen chloride in superheated steam and chloride in deep brine at The Geysers geothermal field, California  

SciTech Connect

Chloride (Cl) concentrations of 10-120 ppm{sub w} have been measured in superheated steam produced by wells at The Geysers, a vapor-dominated geothermal field in northern California. Corrosion of the well casing and steam-gathering system has been recognized in some parts of The Geysers, and is apparently related to the presence of Cl. Cl in the steam is in a volatile form, generated with the steam at reservoir temperatures, and probably travels to the wellhead as HCl gas. Published experimental data for partial pressures of HCl in steam over aqueous HCl solutions and for dissociation constants of HCl were used to calculate distribution coefficients for HCl. Reservoir liquid Cl concentrations capable of generating steam with the observed Cl concentrations were then calculated as a function of pH and temperatures from 250 to 350 C. Equilibrium mineral/liquid reactions with the K-mica and K-feldspar assemblage found in the wells limit the reservoir liquid pH values at various Cl concentrations to about 5 to 6 (near neutral at 250 to 350 C). Within this pH range, liquid at 250 C could not produce steam containing the high Cl concentrations observed. However, liquid at higher temperatures (300 to 350 C) with chloride concentrations greater than 10,000 ppm{sub w} could generate steam with 10 to over 200 ppm{sub w} Cl. There is a positive correlation between pH and the chloride concentrations required to generate a given Cl concentration in steam. The concentration of Cl in superheated steam constrains not only the reservoir liquid composition, but the temperature at which the steam last equilibrated with liquid.

Haizlip, J.R.; Truesdell, A.H.

1988-01-01T23:59:59.000Z

336

Pressurization Tests on High-Pressure Fluid-Filled Underground Transmission Cables of Public Service Electric & Gas Company  

Science Conference Proceedings (OSTI)

This report describes pressurization tests performed on 138-kV and 230-kV high-pressure fluid-filled (HPFF) transmission cable samples. The samples were removed from two Public Service Electric & Gas Company (PSE&G) underground transmission lines.

2009-12-10T23:59:59.000Z

337

Study of structural change in Wyodak coal in high-pressure CO2 by ...  

Science Conference Proceedings (OSTI)

scattering intensities on the exposure of the coal to high- pressure CO2 showed ... ture of coal caused by high-pressure CO2 also confirms that. CO2 at elevated...

338

Pressure Resistance Welding of High Temperature Metallic Materials  

Science Conference Proceedings (OSTI)

Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

2010-10-01T23:59:59.000Z

339

TENSILE TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN  

DOE Green Energy (OSTI)

An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.

Duncan, A; Thad Adams, T; Ps Lam, P

2007-05-02T23:59:59.000Z

340

MECHANICAL TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN  

DOE Green Energy (OSTI)

The methods and interim results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. The scope is carbon steels commonly used for natural gas pipelines in the United States that are candidates for hydrogen service in the hydrogen economy. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in 1500 psig hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test program will continue with tests to quantify the fracture behavior in terms of J-R curves for these materials at air and hydrogen pressure conditions.

Duncan, A

2006-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Variable pressure insulating jackets for high-temperature batteries  

DOE Green Energy (OSTI)

A new method is proposed for controlling the temperature of high-temperature batteries namely, varying the hydrogen pressure inside of multifoil insulation by varying the temperature of a reversible hydrogen getter. Calculations showed that the rate of heat loss through 1.5 cm of multifoil insulation between a hot-side temperature of 425[degrees]C and a cold-side temperature of 25[degrees]C could be varied between 17.6 W/m[sup 2] and 7,000 W/m[sup 2]. This change in heat transfer rate can be achieved by varying the hydrogen pressure between 1.0 Pa and 1,000 Pa, which can be done with an available hydrogen gettering alloy operating in the range of 50[degrees]C to 250[degrees]C. This approach to battery cooling requires cylindrical insulating jackets, which are best suited for bipolar batteries having round cells approximately 10 to 18 cm in diameter.

Nelson, P.A.; Chilenskas, A.A.; Malecha, R.F.

1992-01-01T23:59:59.000Z

342

Variable pressure insulating jackets for high-temperature batteries  

DOE Green Energy (OSTI)

A new method is proposed for controlling the temperature of high-temperature batteries namely, varying the hydrogen pressure inside of multifoil insulation by varying the temperature of a reversible hydrogen getter. Calculations showed that the rate of heat loss through 1.5 cm of multifoil insulation between a hot-side temperature of 425{degrees}C and a cold-side temperature of 25{degrees}C could be varied between 17.6 W/m{sup 2} and 7,000 W/m{sup 2}. This change in heat transfer rate can be achieved by varying the hydrogen pressure between 1.0 Pa and 1,000 Pa, which can be done with an available hydrogen gettering alloy operating in the range of 50{degrees}C to 250{degrees}C. This approach to battery cooling requires cylindrical insulating jackets, which are best suited for bipolar batteries having round cells approximately 10 to 18 cm in diameter.

Nelson, P.A.; Chilenskas, A.A.; Malecha, R.F.

1992-12-31T23:59:59.000Z

343

The Results From the First High-Pressure Melt Ejection Test Completed in the Molten Fuel Moderator Interaction Facility at Chalk River Laboratories  

SciTech Connect

A high-pressure melt ejection test using prototypical corium was conducted at Atomic Energy of Canada Limited Chalk River Laboratories. This test was planned by the CANDU Owners Group to study the potential for an energetic interaction between molten fuel and water under postulated single-channel flow-blockage events. The experiments were designed to address regulator concerns surrounding this very low probability postulated accident events in CANDU Pressurized Heavy Water Reactors. The objective of the experimental program is to determine whether a highly energetic 'steam explosion' and associated high-pressure pulse, is possible when molten material is finely fragmented as it is ejected from a fuel channel into the heavy-water moderator. The finely fragmented melt particles would transfer energy to the moderator as it is dispersed, creating a modest pressure pulse in the calandria vessel. The high-pressure melt ejection test consisted of heating up a {approx} 5 kg thermite mixture of U, U{sub 3}O{sub 8}, Zr, and CrO{sub 3} inside a 1.14-m length of insulated pressure tube. When the molten material reached the desired temperature of {approx} 2400 deg C, the pressure inside the tube was raised to 11.6 MPa, failing the pressure tube at a pre-machined flaw, and releasing the molten material into the surrounding tank of 68 deg C water. The experiment investigated the dynamic pressure history, debris size, and the effects of the material interacting with tubes representing neighbouring fuel channels. The measured mean particle size was 0.686 mm and the peak dynamic pressures were between 2.54 and 4.36 MPa, indicating that an energetic interaction between the melt and the water did not occur in the test. (authors)

Nitheanandan, T.; Kyle, G.; O'Connor, R.; Sanderson, DB. [Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada, K0J 1J0 (Canada)

2006-07-01T23:59:59.000Z

344

High-pressure ceramic air heater for indirectly fired gas turbine applications  

SciTech Connect

The Externally-Fired Combined Cycle (EFCC) offers a method for operating high-efficiency gas and steam turbine combined cycles on coal. In the EFCC, an air heater replaces the gas turbine combustor so that the turbine can be indirectly fired. Ceramic materials are required for the heat exchange surfaces to accommodate the operating temperatures of modern gas turbines. The ceramic air heater or heat exchanger is the focus of this program, and the two primary objectives are (1) to demonstrate that a ceramic air heater can be reliably pressurized to a level of 225 psia (1.5 MPa); and (2) to show that the air heater can withstand exposure to the products of coal combustion at elevated temperatures. By replacing the gas turbine combustor with a ceramic air heater, the cycle can use coal or other ash-bearing fuels. Numerous programs have attempted to fuel high efficiency gas turbines directly with coal, often resulting in significant ash deposition upon turbine components and corrosion or erosion of turbine blades. This report will show that a ceramic air heater is significantly less susceptible to ash deposition or corrosion than a gas turbine when protected by rudimentary methods of gas-stream clean-up. A 25 [times] 10[sup 6] Btu/hr (7 MW) test facility is under construction in Kennebunk, Maine. It is anticipated that this proof of concept program will lead to commercialization of the EFCC by electric utility and industrial organizations. Applications are being pursued for power plants ranging from 10 to 100 megawatts.

LaHaye, P.G.; Briggs, G.F.; Vandervort, C.L.; Seger, J.L.

1992-01-01T23:59:59.000Z

345

High-pressure ceramic air heater for indirectly fired gas turbine applications  

SciTech Connect

The Externally-Fired Combined Cycle (EFCC) offers a method for operating high-efficiency gas and steam turbine combined cycles on coal. In the EFCC, an air heater replaces the gas turbine combustor so that the turbine can be indirectly fired. Ceramic materials are required for the heat exchange surfaces to accommodate the operating temperatures of modern gas turbines. The ceramic air heater or heat exchanger is the focus of this program, and the two primary objectives are (1) to demonstrate that a ceramic air heater can be reliably pressurized to a level of 225 psia (1.5 MPa); and (2) to show that the air heater can withstand exposure to the products of coal combustion at elevated temperatures. By replacing the gas turbine combustor with a ceramic air heater, the cycle can use coal or other ash-bearing fuels. Numerous programs have attempted to fuel high efficiency gas turbines directly with coal, often resulting in significant ash deposition upon turbine components and corrosion or erosion of turbine blades. This report will show that a ceramic air heater is significantly less susceptible to ash deposition or corrosion than a gas turbine when protected by rudimentary methods of gas-stream clean-up. A 25 {times} 10{sup 6} Btu/hr (7 MW) test facility is under construction in Kennebunk, Maine. It is anticipated that this proof of concept program will lead to commercialization of the EFCC by electric utility and industrial organizations. Applications are being pursued for power plants ranging from 10 to 100 megawatts.

LaHaye, P.G.; Briggs, G.F.; Vandervort, C.L.; Seger, J.L.

1992-12-01T23:59:59.000Z

346

A STEAM POWER INSTALLATION FOR NUCLEAR POWER PLANT WITH GAS-COOLED REACTORS  

SciTech Connect

A steam power plant is designed for use with gas-cooled power reactors. In this plant, the turbine is divided into two sections, one high pressure and the other low pressure, the low-pressure turbine being the condensing turbine. The feed water from the condensing turbine is divided into two streams, one of which is brought to a higher pressure than the other. The high-pressure feed water is evaporated and superheated in the heat exchanger and then supplied to the high-pressure turbine, while the low-pressure feed water is evaporated and mixed with the exhaust steam of the highpressure turbine before superhenting and then passing to the low-pressure condensing turbine. Circulation of the reactor coolant is effected by a blower driven by a series turbine with no regulating devices and arranged in the steam plant circuit upstream of the low-pressure turbine; such a turbine works with constant efficiency over its whole load range. (D.L.C.)

1961-03-01T23:59:59.000Z

347

The dissociation of liquid silica at high pressure and temperature  

Science Conference Proceedings (OSTI)

Liquid silica at high pressure and temperature is shown to undergo significant structural modifications and profound changes in its electronic properties. Temperature measurements on shock waves in silica at 70-1000 GPa indicate that the specific heat of liquid SiO{sub 2} rises well above the Dulong-Petit limit, exhibiting a broad peak with temperature that is attributable to the growing structural disorder caused by bond-breaking in the melt. The simultaneous sharp rise in optical reflectivity of liquid SiO{sub 2} indicates that dissociation causes the electrical and therefore thermal conductivities of silica to attain metallic-like values of 1-5 x 10{sup 5} S/m and 24-600 W/m.K respectively.

Hicks, D; Boehly, T; Eggert, J; Miller, J; Celliers, P; Collins, G

2005-11-17T23:59:59.000Z

348

NUCLEAR FLASH TYPE STEAM GENERATOR  

DOE Patents (OSTI)

A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

1962-09-01T23:59:59.000Z

349

GFOC Project results: High Temperature / High Pressure, Hydrogen Tolerant Optical Fiber  

Science Conference Proceedings (OSTI)

Tests results are given for exposure of multimode optical fiber to high temperatures (300 deg. C) and high partial pressure (15 bar) hydrogen. These results demonstrate that fluorine down doped optical fibers are much more hydrogen tolerant than traditional germanium doped multimode optical fibers. Also demonstrated is the similar hydrogen tolerance of carbon coated and non-carbon coated fibers. Model for reversible H2 impact in fiber versus T{sup o}C and H2 pressure is given. These results have significant impact for the longevity of use for distributed temperature sensing applications in harsh environments such as geothermal wells.

E. Burov; A. Pastouret; E. Aldea; B. Overton; F. Gooijer; A. Bergonzo

2012-02-12T23:59:59.000Z

350

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator RichardThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

351

Steam Basics: Use Available Data to Lower Steam System Cost  

E-Print Network (OSTI)

Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity target. However, the quality of steam is often taken for granted, even overlooked at times. When the recent global recession challenged companies to remain profitable as a first priority, the result was that maintenance budgets were cut and long term cost reduction initiatives for steam systems set aside due to more pressing issues. One of the regrettable results of such actions is that knowledgeable personnel are re-assigned, retired, or released when necessary steam system cost reduction programs are eliminated. When the time arrives to refocus on long term cost reduction by improving the steam system, some programs may have to start from the beginning and a clear path forward may not be evident. New personnel are often tasked with steam improvements when the programs restart, and they may experience difficulty in determining the true key factors that can help reduce system cost. The urgency for lowering long term fuel use and reducing the cost of producing steam is near for each plant. Population growth and resultant global demand are inevitable, so the global economy will expand, production will increase, more fossil fuel energy will be needed, and that fuel will become scarce and more costly. Although fuel prices are low now, energy costs can be expected to trend significantly upward as global production and demand increase. Now is the time for plants to make certain that they can deliver high quality steam to process equipment at lowest system cost. There are three stages to help optimize plant steam for best performance at a low system cost; Phase 1: Manage the condensate discharge locations (where the steam traps & valves are located), Phase 2: Optimize steam-using equipment, and Phase 3: Optimize the entire steam system. This presentation will focus primarily on management of the condensate discharge locations (CDLs) and show sites how to use readily available data to more efficiently achieve goals; but will also provide insight into how the three stages interact to reduce system cost and improve process performance.

Risko, J. R.

2011-01-01T23:59:59.000Z

352

Method and apparatus for powering engine with exhaust generated steam  

SciTech Connect

An apparatus for installation in an automobile to generate steam with heat from the exhaust of an engine is provided. The steam is generated at a sufficient pressure for entry into the combustion chambers of the engine to increase the power output of the engine. The apparatus includes a water storage unit and a steam generator for generating steam with the water from the unit through transfer of heat from combusted gases in the exhaust system. The steam travels through steam inlet manifolds for entry into the combustion chambers. The entry is controlled by a cylinder injection timing valve assembly timed to the operation of the engine to enter the steam during the power stroke. A steam throttling control valve assembly is provided to throttle the steam input to the combustion chambers. A throttle proportioning control unit proportions the carburetor throttle and steam throttle assembly to the operator throttle input to provide the greatest efficiency in engine operation. The throttle proportioning control unit operates in response to the steam temperature and pressure within the steam generator. The apparatus may be adapted for use on an engine design for solely air fuel combustion with the cylinder adapter. A throttle linkage interchange unit may be provided to initiate operation of steam input only upon reaching a minimum engine temperature. An intake manifold vacuum control valve may be provided for selectively entering exhaust gases into the intake manifold of the engine to compensate for the vacuum variation due to the steam input to the combustion chamber.

Gill, P.A.

1983-10-18T23:59:59.000Z

353

High temperature vapor pressure and the critical point of potassium  

SciTech Connect

The vapor pressure of potassium was experimentally determined from 2100 deg F up to-its critical temperature. An empirical equation of the form ln P = A + B/T + C ln T + DT/sup 1.5/ was found to best fit the data. A critical pressure of 2378.2 plus or minus 4.0 psia (161.79 plus or minus 0.27 ata) was measured. The corresponding critical temperature, extrapolated from the pressure-- temperature curve, is 4105.4 plus or minus 5 deg R (2280.8 plus or minus 3 deg K). The technique employed was tae pressure tube method developed earlier in this laboratory and used for determining the vapor pressure of rubidium and cesium. This method measures tae critical pressure directly, as well as the vapor pressure st lower temperatures. (4 tables, 6 figures, 26 references) (auth)

Jerez, W.R.; Bhise, V.S.; Das Gupta, S.; Bonilla, C.F.

1973-01-01T23:59:59.000Z

354

Thermodynamic and Experimental Study on the Steam Reforming ...  

Science Conference Proceedings (OSTI)

For improving hydrogen yield, a new system for steam reforming of bio-oil with site ... Kinetic Modeling Study of Oxy-methane Combustion at Ordinary Pressure.

355

EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS  

E-Print Network (OSTI)

EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS A REPORT SUBMITTED;Abstract A set of relative permeability relations for simultaneous ow of steam and water in porous media with saturation and pressure measurements. These relations show that the relative permeability for steam phase

Stanford University

356

Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks  

SciTech Connect

Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

2012-07-26T23:59:59.000Z

357

Preconcentrator with high volume chiller for high vapor pressure particle detection  

Science Conference Proceedings (OSTI)

Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

Linker, Kevin L

2013-10-22T23:59:59.000Z

358

Turbine power plant with back pressure turbine  

SciTech Connect

A combined gas/steam turbine power plant is disclosed including a gas turbine having a combustion chamber and a steam turbine driven by steam generated with heat from the combustion gases of the gas turbine. The steam is utilized in a technological process downstream of the steam turbine. Relatively small fluctuations in back pressure are compensated by varying a delivery of fuel to the combustion chamber. Relatively large fluctuations in back pressure are compensated by supplying live steam directly to the technological process downstream of the steam turbine. Various devices are provided for conditioning the steam prior to being supplied to the technological process.

Kalt, J.; Kehlhofer, R.

1981-06-23T23:59:59.000Z

359

Steam Condensation Induced Waterhammer  

E-Print Network (OSTI)

This is the type of waterhammer that kills people. It's initiating mechanism is much different than the image most engineers have of what causes waterhammer-- i.e. fast moving steam picking up a slug of condensate and hurling it downstream against an elbow or a valve. Condensation Induced Waterhammer can be 100 times more powerful than this type of waterhammer. Because it does not require flowing steam, it often occurs during relatively quiescent periods when operators least expect it. It's most often initiated by opening a valve, even a drain valve to remove condensate. The overpressure from an event can easily exceed 1000 psi. This is enough pressure to fracture a cast iron valve, blow out a steam gasket, or burst an accordion type expansion joint. And, in fact, failure of each of these components in separate condensation induced waterhammer accidents has resulted in operator fatalities. Operators and engineers need to understand this type of waterhammer so they can avoid procedures which can initiate it and designs which are susceptible to it.

Kirsner, W.

2000-04-01T23:59:59.000Z

360

Consider Steam Turbine Drives for Rotating Equipment: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No.21  

SciTech Connect

Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure non-condensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Performance Fuel Desing for Next Generation Pressurized Water Reactors  

SciTech Connect

The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

Mujid S. Kazimi; Pavel Hejzlar

2006-01-31T23:59:59.000Z

362

High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results  

SciTech Connect

A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.

J.E. O'Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

2012-09-01T23:59:59.000Z

363

Steam System Optimization  

E-Print Network (OSTI)

Most plant steam systems are complex systems. Usually the fuel required to produce the steam represents a major expense for manufacturing facilities. By properly operating and maintaining the steam system and making minor improvements, significant savings can be realized.

Aegerter, R. A.

1998-04-01T23:59:59.000Z

364

Method and apparatus for improving the performance of a steam driven power system by steam mixing  

SciTech Connect

A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

1998-01-01T23:59:59.000Z

365

Method and apparatus for improving the performance of a steam driven power system by steam mixing  

DOE Patents (OSTI)

A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

1998-01-01T23:59:59.000Z

366

Oxidation of alloys targeted for advanced steam turbines  

Science Conference Proceedings (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

2006-03-12T23:59:59.000Z

367

Heat-recovery steam generators: Understand the basics  

Science Conference Proceedings (OSTI)

Gas turbines with heat-recovery steam generators (HRSGs) can be found in virtually every chemical process industries (CPI) plant. They can be operated in either the cogeneration mode or the combined-cycle mode. In the cogeneration mode, steam produced from the HRSG is mainly used for process applications, whereas in the combined-cycle mode, power is generated via a steam turbine generator. Recent trends in HRSG design include multiple-pressure units for maximum energy recovery, the use of high-temperature superheaters or reheaters in combined-cycle plants, and auxiliary firing for efficient steam generation. In addition, furnace firing is often employed in small capacity units when the exhaust gas is raised to temperatures of 2,400--3,000 F to maximize steam generation and thus improve fuel utilization. This article highlights some of the basic facts about gas turbine HRSGs. This information can help plant engineers, consultants, and those planning cogeneration projects make important decisions about the system and performance related aspects.

Ganapathy, V.

1996-08-01T23:59:59.000Z

368

Natural circulation steam generator model for optimal steam generator water level control  

SciTech Connect

Several authors have cited the control of steam generator water level as an important problem in the operation of pressurized water reactor plants. In this paper problems associated with steam generator water level control are identified, and advantages of modern estimation and control theory in dealing with these problems are discussed. A new state variable steam generator model and preliminary verification results using data from the loss of fluid test (LOFT) plant are also presented.

Feeley, J.J.

1979-06-01T23:59:59.000Z

369

Steam Generator Management Program: Flaw Tolerance Evaluation of the Steam Generator Channel Head  

Science Conference Proceedings (OSTI)

Indications have previously been reported in the steam generator divider plate at operating plants outside the United States. The function of the divider plate in most steam generators is to separate the cold and hot legs of the channel head as the primary water enters the steam generator so that the primary coolant flows up into the tubes. As such, the divider plate is not considered a primary pressure ...

2013-04-25T23:59:59.000Z

370

Pre-SW - Steam Generator Management Program: Flaw Handbook Calculator for Excel 2010, Version 2.0  

Science Conference Proceedings (OSTI)

The EPRI Steam Generator Management Program: Steam Generator Degradation Specific Flaw Handbook (1019037) defines burst pressure equations for steam generator tubes with various degradation morphologies, and the EPRI Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines (1019038) describes a probabilistic evaluation process which can be used to account for key input parameter uncertainties. The Flaw Handbook Calculator software is an automated ...

2013-11-20T23:59:59.000Z

371

Materials for Ultra-Supercritical Steam Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

372

Closed cycle steam turbine system with liquid vortex pump  

SciTech Connect

A closed cycle steam generating system is described comprising a steam boiler, and a steam turbine includes a vacuum pump of the liquid vortex type for condensing the exhaust steam from the turbine, a feedwater pump being employed for returning the condensate to the boiler. The tank of the vortex pump is maintained filled with water and the pressure in the tank is regulated automatically to maintain a predetermined value thereof.

Brown, K.D.

1976-08-10T23:59:59.000Z

373

Plasma etching of cavities into diamond anvils for experiments at high pressures and high temperatures  

Science Conference Proceedings (OSTI)

We describe a method for precisely etching small cavities into the culets of diamond anvils for the purpose of providing thermal insulation for samples in experiments at high pressures and high temperatures. The cavities were fabricated using highly directional oxygen plasma to reactively etch into the diamond surface. The lateral extent of the etch was precisely controlled to micron accuracy by etching the diamond through a lithographically fabricated tungsten mask. The performance of the etched cavities in high-temperature experiments in which the samples were either laser heated or electrically heated is discussed.

Weir, S.T.; Cynn, H.; Falabella, S.; Evans, W.J.; Aracne-Ruddle, C.; Farber, D.; Vohra, Y.K. (LLNL); (UAB)

2012-10-23T23:59:59.000Z

374

Steam Generator Management Program: Steam Generator Engineering Training Course 2 Handbook  

Science Conference Proceedings (OSTI)

This Technical Update provides training material that was prepared for the second Steam Generator Engineering Training class. The Steam Generator Engineering Training is a comprehensive training program for steam generator program managers. The content of the training is based on an industry-developed job analysis for a steam generator engineer. The job analysis resulted in eight high-level tasks; consequently, eight training modules were planned to be developed over a three-year period beginning in 2008...

2010-04-26T23:59:59.000Z

375

SteamMaster: Steam System Analysis Software  

E-Print Network (OSTI)

As director of Oregon's Industrial Assessment Center, I have encountered many industrial steam systems during plant visits. We analyze steam systems and make recommendations to improve system efficiency. In nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a 0.4-year payback. 75% of those recommendations have been implemented for $1.1 million annual savings with 0.3-year payback. Recently I have developed a tool to facilitate the process. SteamMaster is based on an Excel spreadsheet with a Visual Basic interface to simplify system modeling and analysis. SteamMaster has many features and capabilities, including energy and cost savings calculations for five steam recommendations. This presentation will demonstrate SteamMaster software applied to one or more industrial steam systems. Software will be made available on a national web site at no cost.

Wheeler, G.

2003-05-01T23:59:59.000Z

376

High fidelity field simulations using density and pressure based approaches  

Science Conference Proceedings (OSTI)

Density-based and pressure-based approaches in solving the Navier-Stokes equations for computational field simulations for compressible and incompressible flows have been presented. For the density-based flow solver, a generalized grid based framework ... Keywords: CFD, Density-based method, Pressure-based method

Gary C. Cheng; Roy P. Koomullil; Bharat K. Soni

2005-11-01T23:59:59.000Z

377

Lubricants under high local pressure: Liquids act like solids  

E-Print Network (OSTI)

it is confined between two walls at large normal pressures. The atomic scale motion that occurs when the two, atomic- scale details of the plastic flow mechanism are investigated by means of molecular dynamics- city v over a broad velocity range. Under non-extreme condi- tions (intermediate pressures

Müser, Martin H.

378

Spectroscopic Study of the Effects of Pressure Media on High-Pressure Phase Transitions in Natrolite  

DOE Green Energy (OSTI)

Structural phase transitions in natrolite have been investigated as a function of pressure and different hydrostatic media using micro-Raman scattering and synchrotron infrared (IR) spectroscopy. Natrolite undergoes two reversible phase transitions at 0.86 and 1.53 GPa under pure water pressure medium. These phase transitions are characterized by the changes in the vibrational frequencies of four- and eight-membered rings related to the variations in the bridging T-O-T angles and the geometry of the elliptical eight-ring channels under pressure. Concomitant to the changes in the framework vibrational modes, the number of the O-H stretching vibrational modes of natrolite changes as a result of the rearrangements of the hydrogen bonds in the channels caused by a successive increase in the hydration level under hydrostatic pressure. Similar phase transitions were also observed at relatively higher pressures (1.13 and 1.59 GPa) under alcohol-water pressure medium. Furthermore, no phase transition was found up to 2.52 GPa if a lower volume ratio of the alcohol-water to natrolite was employed. This indicates that the water content in the pressure media plays a crucial role in triggering the pressure-induced phase transitions in natrolite. In addition, the average of the mode Grueneisen parameters is calculated to be about 0.6, while the thermodynamic Grueneisen parameter is found to be 1.33. This might be attributed to the contrast in the rigidity between the TO{sub 4} tetrahedral primary building units and other flexible secondary building units in the natrolite framework upon compression and subsequent water insertion.

D Liu; W Lei; Z Liu; Y Lee

2011-12-31T23:59:59.000Z

379

Chemical recovery process using break up steam control to prevent smelt explosions  

DOE Patents (OSTI)

An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.

Kohl, Arthur L. (Woodland Hills, CA); Stewart, Albert E. (Eagle Rock, CA)

1988-08-02T23:59:59.000Z

380

Modeling of Pressurized Electrochemistry and Steam-Methane Reforming in Solid Oxide Fuel Cells and the Effects on Thermal and Electrical Stack Performance  

SciTech Connect

Summarizes work done to extend the electrochemical performance and methane reforming submodels to include the effects of pressurization and to demonstrate this new modeling capability by simulating large stacks operating on methane-rich fuel under pressurized and non-pressurized conditions. Pressurized operation boosts electrochemical performance, alters the kinetics of methane reforming, and effects the equilibrium composition of methane fuels. This work developed constitutive submodels that couple the electrochemistry, reforming, and pressurization to yield an increased capability of the modeling tool for prediction of SOFC stack performance.

Recknagle, Kurtis P.; Khaleel, Mohammad A.

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High pressure HC1 conversion of cellulose to glucose  

DOE Green Energy (OSTI)

The production of ethanol from glucose by means of fermentation represents a potential long-range alternative to oil for use as a transportation fuel. Today's rising oil prices and the dwindling world supply of oil have made other fuels, such as ethanol, attractive alternatives. It has been shown that automobiles can operate, with minor alterations, on a 10% ethanol-gasoline mixture popularly known as gasohol. Wood has long been known as a potential source of glucose. Glucose may be obtained from wood following acid hydrolysis. In this research, it was found that saturating wood particles with HCl gas under pressure was an effective pretreatment before subjecting the wood to dilute acid hydrolysis. The pretreatment is necessary because of the tight lattice structure of cellulose, which inhibits dilute acid hydrolysis. HCl gas makes the cellulose more susceptible to hydrolysis and the glucose yield is doubled when dilute acid hydrolysis is preceded by HCl saturation at high pressure. The saturation was most effectively performed in a fluidized bed reactor, with pure HCl gas fluidizing equal volumes of ground wood and inert particles. The fluidized bed effectively dissipated the large amount of heat released upon HCl absorption into the wood. Batch reaction times of one hour at 314.7 p.s.i.a. gave glucose yields of 80% and xylose yields of 95% after dilute acid hydrolysis. A non-catalytic gas-solid reaction model, with gas diffusing through the solid limiting the reaction rate, was found to describe the HCl-wood reaction in the fluidized bed. HCl was found to form a stable adduct with the lignin residue in the wood, in a ratio of 3.33 moles per mole of lignin monomer. This resulted in a loss of 0.1453 lb. of HCl per pound of wood. The adduct was broken upon the addition of water. A process design and economic evaluation for a plant to produce 214 tons per day of glucose from air-dried ground Populus tristi gave an estimated glucose cost of 15.14 cents per pound. This would correspond to $2.54 per gallon of ethanol if the glucose were fermented. Key factors contributing to the cost of glucose production were unrecovered HCl, which contributed 5.70 cents per pound of glucose, and the cost of wood, which at $25 per ton contribute 4.17 cents per pound.

Antonoplis, Robert Alexander; Blanch, Harvey W.; Wilke, Charles R.

1981-08-01T23:59:59.000Z

382

Size-dependent structure of silver nanoparticles under high pressure  

SciTech Connect

Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

Koski, Kristie Jo

2008-12-31T23:59:59.000Z

383

Procedural and administrative techniques to improve steam generator layup  

Science Conference Proceedings (OSTI)

A number of utilities have been working to improve layup techniques for steam generators; especially once-through steam generators. There are two main elements to successful layup of steam generators: (a) starting with and maintaining high-quality layup water and (b) minimizing the exposure of steam generator internals to air. Specific procedural and administrative techniques have been developed to ensure these two elements are achieved. These appear to be applicable to most steam generators.

Carrick, B.J.

1985-01-01T23:59:59.000Z

384

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold: 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in their early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were modeled using the process code HYSYS; a three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. A high temperature steam electrolysis hydrogen production plant was coupled to the reactor and power conversion unit by means of an intermediate heat transport loop. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative heat exchanger size and turbomachinery work were estimated for the different working fluids. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. Recommendations on the optimal working fluid for each configuration were made. The helium working fluid produced the highest overall plant efficiency for the three-shaft and reheat cycle; however, the nitrogen-helium mixture produced similar efficiency with smaller component sizes. The CO2 working fluid is recommend in the combined cycle configuration.

Barner, Robert Buckner

2006-12-01T23:59:59.000Z

385

Materials for High-Pressure Fuel Injection Systems  

DOE Green Energy (OSTI)

The high-level goal of this multi-year effort was to facilitate the Advanced Combustion Engine goal of 20% improvement (compared to 2009 baseline) of commercial engine efficiency by 2015. A sub-goal is to increase the reliability of diesel fuel injectors by investigating modelbased scenarios that cannot be achieved by empirical, trial and error methodologies alone. During this three-year project, ORNL developed the methodology to evaluate origins and to record the initiation and propagation of fatigue cracks emanating from holes that were electrodischarge machined (EDM), the method used to form spray holes in fuel injector tips. Both x-ray and neutron-based methods for measuring residual stress at four different research facilities were evaluated to determine which, if any, was most applicable to the fuel injector tip geometry. Owing to the shape and small volumes of material involved in the sack area, residual stress data could only be obtained in the walls of the nozzle a few millimeters back from the tip, and there was a hint of only a small compressive stress. This result was consistent with prior studies by Caterpillar. Residual stress studies were suspended after the second year, reserving the possibility of pursuing this in the future, if and when methodology suitable for injector sacks becomes available. The smooth specimen fatigue behavior of current fuel injector steel materials was evaluated and displayed a dual mode initiation behavior. At high stresses, cracks started at machining flaws in the surface; however, below a critical threshold stress of approximately 800 MPa, cracks initiated in the bulk microstructure, below the surface. This suggests that for the next generation for high-pressure fuel injector nozzles, it becomes increasingly important to control the machining and finishing processes, especially if the stress in the tip approaches or exceeds that threshold level. Fatigue tests were also conducted using EDM notches in the gage sections. Compared to the smooth specimens, EDM notching led to a severe reduction in total fatigue life. A reduction in fatigue life of nearly four orders of magnitude can occur at an EDM notch the approximate size of fuel injector spray holes. Consequently, the initiation and propagation behavior of cracks from small spray holes is relevant for generation of design quality data for the next generation diesel fuel injection devices. This is especially true since the current design methodologies usually rely on the less conservative smooth specimen fatigue testing results, and since different materials can have varying levels of notch fatigue resistance.

Blau, P.; Shyam, A.; Hubbard, C.; Howe, J.; Trejo, R.; Yang, N. (Caterpillar, Inc. Technical Center); Pollard, M. (Caterpillar, Inc. Technical Center)

2011-09-30T23:59:59.000Z

386

ADVANCED STEAM GENERATORS  

SciTech Connect

Concerns about climate change have encouraged significant interest in concepts for ultra-low or ''zero''-emissions power generation systems. In some proposed concepts, nitrogen is removed from the combustion air and replaced with another diluent such as carbon dioxide or steam. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO{sub 2} and steam or water streams. The concentrated CO{sub 2} stream could then serve as input to a CO{sub 2} sequestration process or utilized in some other way. Some of these concepts are illustrated in Figure 1. This project is an investigation of one approach to ''zero'' emission power generation. Oxy-fuel combustion is used with steam as diluent in a power cycle proposed by Clean Energy Systems, Inc. (CES) [1,2]. In oxy-fuel combustion, air separation is used to produce nearly pure oxygen for combustion. In this particular concept, the combustion temperatures are moderated by steam as a diluent. An advantage of this technique is that water in the product stream can be condensed with relative ease, leaving a pure CO{sub 2} stream suitable for sequestration. Because most of the atmospheric nitrogen has been separated from the oxidant, the potential to form any NOx pollutant is very small. Trace quantities of any minor pollutants species that do form are captured with the CO{sub 2} or can be readily removed from the condensate. The result is a nearly zero-emission power plant. A sketch of the turbine system proposed by CES is shown in Figure 2. NETL is working with CES to develop a reheat combustor for this application. The reheat combustion application is unusual even among oxy-fuel combustion applications. Most often, oxy-fuel combustion is carried out with the intent of producing very high temperatures for heat transfer to a product. In the reheat case, incoming steam is mixed with the oxygen and natural gas fuel to control the temperature of the output stream to about 1480 K. A potential concern is the possibility of quenching non-equilibrium levels of CO or unburned fuel in the mixing process. Inadequate residence times in the combustor and/or slow kinetics could possibly result in unacceptably high emissions. Thus, the reheat combustor design must balance the need for minimal excess oxygen with the need to oxidize the CO. This paper will describe the progress made to date in the design, fabrication, and simulation of a reheat combustor for an advanced steam generator system, and discuss planned experimental testing to be conducted in conjunction with NASA Glenn Research Center-Plumb Brook Station.

Richards, Geo. A.; Casleton, Kent H.; Lewis, Robie E.; Rogers, William A. (U.S. DOE National Energy Technology Laboratory); Woike, Mark R.; Willis; Brian P. (NASA Glenn Research Center)

2001-11-06T23:59:59.000Z

387

Materials Performance in USC Steam Portland  

SciTech Connect

Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

G.R. Holcomb; J. Tylczak; R. Hu

2011-04-26T23:59:59.000Z

388

ProSteam- A Structured Approach to Steam System Improvement  

E-Print Network (OSTI)

Optimal operation of site utility systems is becoming an increasingly important part of any successful business strategy as environmental, legislative and commercial pressures grow. A reliable steam model allows a clear understanding of the system and of any operational constraints. It can also be used to determine the true cost of improvement projects, relating any changes in steam demand back to purchased utilities (fuel, power, and make-up water) at the site boundary. Example projects could include improved insulation, better condensate return, increased process integration, new steam turbines or even the installation of gas-turbine based cogeneration. This approach allows sites to develop a staged implementation plan for both operational and capital investment projects in the utility system. Steam system models can be taken one step further and linked to the site DCS data to provide real-time balances and improve the operation of the system, providing an inexpensive but very effective optimizer. Such a model ensures that the steam system is set in the optimum manner to react to current utility demands, emissions regulations, equipment availability, fuel and power costs, etc. This optimization approach typically reduces day-to-day utility system operating costs by between 1% and 5% at no capital cost.

Eastwood, A.

2002-04-01T23:59:59.000Z

389

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

The industrial sector consumes the largest share of the world's energy. The pulp and paper industry is one of the five most energy-intensive industries in the world. Therefore, optimum energy efficiency plays a pivotal role in the profitability of this sector. Also, energy cost accounts for a significant share in production cost in pulp and paper industries. This paper highlights the findings of a study done on the steam system of a paper mill (covering steam generation, steam distribution and steam usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper-making process at various pressure levels. This New England paper mill spends approximately $1.9 million every year on its steam system. The study identified an opportunity to save the plant steam costs in the amount of 12%. Among the identified saving measures, there are some measures that can be done through better maintenance and improvement of operating conditions. The average payback period to implement the identified saving measures is 12 months. In addition to this, upon the implementation of the proposed measures, the paper mill can reduce its carbon emissions in the amount of 500 tons per year and thus, can help save the environment as well.

Leigh, N.; Venkatesan, V. V.

1999-05-01T23:59:59.000Z

390

Effect of high silica content on scale deposition and pipe-wall loss in oilfield steam generators  

Science Conference Proceedings (OSTI)

Studies were conducted on site in the Coalinga, Belridge, and Midway Sunset fields in California to research the cause of metal losses detected in the radiant section return bends and immediate piping downstream form the stem generators. This paper reports on the surveillance of silica content in the influent and effluent streams of the selected steam generators and the results of X-ray inspection of bends, elbows, welds, and pipings which indicated that a correlation is likely to exist between the silica and bicarbonate concentration in the feedwater and the silicate scale buildup, and incident rate of wall loss and the cause of wall loss/pipe failures is a combination of corrosion and erosion mechanisms accelerated at higher steam qualities.

Khatib, Z.I.; Olson, E.E.; Place, M.C. Jr. (Shell Development Co., Houston, TX (United States))

1992-11-01T23:59:59.000Z

391

Steam driven markets  

Science Conference Proceedings (OSTI)

The market for steam equipment has been relatively level. Looking ahead, manufacturers anticipate steady market growth worldwide. Steam equipment manufacturers share a similar view of the market for next few years - upward. The steady upward climb is being attributed to a number of factors that will benefit steam turbine and heat recovery steam generator (HRSG) makers.

Anderson, J.L.

1993-02-01T23:59:59.000Z

392

Water cooled steam jet  

DOE Patents (OSTI)

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

393

IMPROVEMENTS IN AND RELATING TO STEAM CONDENSER INSTALLATIONS FOR STEAM TURBINE POWER PLANT  

SciTech Connect

A steam condenser arrangement for turbine power plants which have excess steam at times is described. A dump condenser with cooling water connections in parallel with steam turbine condensers receives surplus steam. Cooling water from the turbine condensers is mixed with coolant from the dump condenser so that a predetermined maximum temperature is not exceeded. The quantity of cooling water passing through the dump condenser is a proportion of the total circulating water requirements of the condenser installation, and the pressure drop across it is less than that across the main condensers. (T.R.H.)

1960-05-18T23:59:59.000Z

394

Dual shell reactor vessel: A pressure-balanced system for high pressure and temperature reactions  

Science Conference Proceedings (OSTI)

The main purpose of this work was to demonstrate the Dual Shell Pressure Balanced Vessel (DSPBV) as a safe and economical reactor for the hydrothermal water oxidation of hazardous wastes. Experimental tests proved that the pressure balancing piston and the leak detection concept designed for this project will work. The DSPBV was sized to process 10 gal/hr of hazardous waste at up to 399{degree}C (750{degree}F) and 5000 psia (34.5 MPa) with a residence time of 10 min. The first prototype reactor is a certified ASME pressure vessel. It was purchased by Innotek Corporation (licensee) and shipped to Pacific Northwest Laboratory for testing. Supporting equipment and instrumentation were, to a large extent, transported here from Battelle Columbus Division. A special air feed system and liquid pump were purchased to complete the package. The entire integrated demonstration system was assembled at PNL. During the activities conducted for this report, the leak detector design was tested on bench top equipment. Response to low levels of water in oil was considered adequate to ensure safety of the pressure vessel. Shakedown tests with water only were completed to prove the system could operate at 350{degree}C at pressures up to 3300 psia. Two demonstration tests with industrial waste streams were conducted, which showed that the DSPBV could be used for hydrothermal oxidation. In the first test with a metal plating waste, chemical oxygen demand, total organic carbon, and cyanide concentrations were reduced over 90%. In the second test with a munitions waste, the organics were reduced over 90% using H{sub 2}O{sub 2} as the oxidant.

Robertus, R.J.; Fassbender, A.G.; Deverman, G.S.

1995-03-01T23:59:59.000Z

395

Process for CO2 Capture Using Zeolites from High Pressure and...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2012 Opportunity Research is currently active on the patented technology "Process for CO 2 Capture Using Zeolites from High Pressure and Moderate Temperature Gas...

396

High-pressure science gets super-sized | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

leap forward with the discovery of a way to generate super high pressures without using shock waves whose accompanying heat turns solids to liquid. This discovery will allow...

397

On the stability of sp-valent materials at high pressure.  

E-Print Network (OSTI)

??The behavior of sp-valent solids and liquids under compression is a field of intense re- search. At high pressure, they often undergo phase transitions to (more)

Boates, Brian

2013-01-01T23:59:59.000Z

398

Method for improving the steam splits in a multiple steam injection process using multiple steam headers  

SciTech Connect

This patent describes a method for enhancing the uniformity of steam distribution in a multiple steam injection system comprising a steam generator, a primary steam header, at least one secondary steam header, a primary steam line connecting the generator to the primary header, at lease one secondary steam line connecting the primary header to the secondary steam header, and a plurality of tertiary steam lines connecting the secondary steam header to a plurality of stem injection wells. It comprises injecting a surfactant into the primary steam line, mixing the surfactant and steam in the primary steam line sufficiently so that the surfactant and the steam enter the primary steam header as a foam, and mixing the surfactant and steam in the secondary steam lines sufficiently so that the surfactant and the steam enter the secondary steam header as a foam.

Stowe, G.R.

1991-03-19T23:59:59.000Z

399

Circumferential cracking of steam generator tubes  

SciTech Connect

On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

Karwoski, K.J.

1997-04-01T23:59:59.000Z

400

Drag-disc turbine transducer data evaluation methods for dynamic steam-water mass flow measurements. [PWR  

SciTech Connect

The mechanical design of a two-phase mass flow rate transducer for a highly corrosive, high temperature (651 K) hot water environment is presented. Performance data for transient steam-water flows are presented. Details of the applications of the device during loss-of-coolant experiments in a pressurized water reactor environment are discussed.

Winsel, C.E.; Fincke, J.R.; Deason, V.A.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high pressure steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heat Treatment of High Pressure Die Castings; Challenges and ...  

Science Conference Proceedings (OSTI)

High Strength Aluminum Brazing Sheets for Condenser Fins of Automotive Heat Exchangers High Temperature Creep Characterization of A380 Cast...

402

Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam with propane-distillation  

E-Print Network (OSTI)

Recent experimental and simulation studies -conducted at the Department of Petroleum Engineering at Texas A&M University - confirm oil production is accelerated when propane is used as an additive during steam injection. To better understand this phenomenon, distillation experiments were performed using seven-component synthetic oil consisting of equal weights of the following alkanes: n-C5, n-C6, n-C7, n-C8, n-C9, nC10, and n-C15. For comparison purposes, three distillation processes were investigated: dry-, steam-, and steam-propane-distillation, the latter at a propane:steam mass ratio of 0.05. The injection rate of nitrogen during dry-and steam-distillation was the same as that of propane during steam-propane distillation, 0.025 g/min, with steam injection rate kept at 0.5 g/min. The distillation temperatures ranged from 115C to 300C and were increased in steps of 10C. The cell was kept at each temperature plateau (cut) for 30 minutes. Distillation pressures ranged from 0 psig for dry distillation to 998 psig for steam-and steam-propane distillation. The temperature-pressure combination used represented 15C superheated steam conditions. Distillate samples were collected at each cut, and the volume and weight of water and hydrocarbon measured. In addition, the composition of the hydrocarbon distillate was measured using a gas chromatograph. Main results of the study may be summarized as follows. First, the hydrocarbon yield at 125C is highest with steam-propane distillation (74 wt%) compared to steam distillation (58 wt%), and lowest with dry distillation (36 wt%). This explains in part the oil production acceleration observed in steam-propane displacement experiments. Second, the final hydrocarbon yield at 300C however is the same for the three distillation processes. This observation is in line with the fact that oil recoveries were very similar in steam- and steam-propane displacement experiments. Third, based on the yields of individual hydrocarbon components, steam-propane distillation lowers the apparent boiling points of the hydrocarbons significantly. This phenomenon may be the most fundamental effect of propane on hydrocarbon distillation, which results in a higher yield during steam-propane distillation and oil production acceleration during steam-propane displacement. Fourth, experimental K-values are higher in distillations with steam-propane for the components n-hexane, n-heptane, n-octane, and n-nonane. Fifth, vapor fugacity coefficients for each component are higher in distillations with steam-propane than with steam. Finally, Gibbs excess energy is overall lower in distillations with steam-propane than with steam. The experimental results clearly indicate the importance of distillation on oil recovery during steam-or steam-propane injection. The experimental procedure and method of analysis developed in this study (for synthetic oil) will be beneficial to future researchers in understanding the effect of propane as steam additive on actual crude oils.

Ramirez Garnica, Marco Antonio

2003-05-01T23:59:59.000Z

403

Steam Path Audits on Industrial Steam Turbines  

E-Print Network (OSTI)

The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify areas of performance degradation during a turbine outage. Repair priorities can then be set in accordance with quantitative results from the steam path audit. As a result of optimized repair decisions, turbine efficiency increases, emissions decrease, and maintenance expenses decrease. These benefits can be achieved by using a computer program Encotech, Inc. developed for the utility industry to perform steam path audits. With the increased emphasis on industrial turbine efficiency, and as a result of the experience with the Destec Operating Company, Encotech is adapting the computer program to respond to the needs of the industrial steam turbine community. This paper describes the results of using the STPE computer program to conduct a steam path audit at Destec Energy's Lyondell Cogeneration power plant.

Mitchell, D. R.

1992-04-01T23:59:59.000Z

404

THE EFFECTS OF NON-CONDENSIBLE GAS AND SALINITY ON STEAM ADSORPTION  

E-Print Network (OSTI)

THE EFFECTS OF NON-CONDENSIBLE GAS AND SALINITY ON STEAM ADSORPTION A REPORT SUBMITTED reservoir materials was investigated by a transient flow technique using steam and C02 gas. Theoretical pressure exerted by steam pressure inside the sample was measured against time during a desorption process

Stanford University

405

Integrated vacuum absorption steam cycle gas separation  

Science Conference Proceedings (OSTI)

Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

Chen, Shiaguo (Champaign, IL); Lu, Yonggi (Urbana, IL); Rostam-Abadi, Massoud (Champaign, IL)

2011-11-22T23:59:59.000Z

406

A small pelton turbine for steam turbocharger  

SciTech Connect

The use of exhaust gas turbocharger for internal combustion engines is usually accompanied by mechanical loss. This loss is due to the raise of exhaust gas back pressure with the increase of engine speed. This back pressure prevents the discharge of the exhaust gas from the engine and causes mechanical loss. To avoid this undesirable phenomenon, a Clausius-Rankine cycle is used. In this case the thermal energy in the exhaust gas is used to vaporise water in a steam generator. The generated steam expands in a steam turbocharger which supercharges the engine. A small Pelton steam turbine has been designed and fabricated. The expected output for this small turbine is 10 kW. A computer program has been prepared to estimate the values of optimum cycle parameters.

Rautenberg, M.; Abdelkader, M.; Malobabic, M.; Mobarak, A.

1984-08-01T23:59:59.000Z

407

Development of High-Pressure Dry Feed Pump for Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Dry Feed Pressure Dry Feed Pump for Gasification Systems Background Even though coal-based power generation via Integrated Gasification Combined Cycle (IGCC) is more efficient, cleaner, and uses less water than conventional pulverized coal burning systems, widespread IGCC deployment has not occurred because of its relatively high cost. The Pratt & Whitney Rocketdyne (PWR) high-pressure dry feed pump addresses IGCC cost disparity by enabling lower cost and more reliable coal feed

408

A Comparison of Mass Rate and Steam Quality Reductions to Optimize Steamflood Performance  

SciTech Connect

Many operators of steamdrive projects will reduce the heat injection rate as the project matures. The major benefit of this practice is to reduce the fuel costs and thus extend the economic life of the project. However, there is little industry consensus on whether the heat cuts should take the form of: (1) mass rate reductions while maintaining the same high steam quality, or (2) steam quality decreases while keeping the same mass rate. Through the use of a commercial three-phase, three-dimensional simulator, the oil recovery schedules obtained when reducing the injected steam mass rate or quality with time were compared under a variety of reservoir and operating conditions. The simulator input was validated for Kern River Field conditions by using the guidelines developed by Johnson, et at. (1989) for four steamflood projects in Kern River. The results indicate that for equivalent heat injection rates, decreasing the steam injection mass rate at a constant high quality will yield more economic oil than reducing the steam quality at a constant mass rate. This conclusion is confirmed by a sensitivity analysis which demonstrates the importance of the gravity drainage/steam zone expansion mechanism in a low-pressure, heavy oil steamflood with gravity segregation. Furthermore, the impact of discontinuous silts and nonuniform initial temperatures within the steamflood zone was studied, indicating again that a decreasing mass rate injection strategy is a superior operating practice.

Messner, Gregory L.

1999-08-09T23:59:59.000Z

409

Structure Stability of Methane Hydrate at High Pressures  

SciTech Connect

The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P6{sub 3}/mmc, respectively. Upon compression, sI methanehydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methanehydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methanehydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3mstructure and ice VII (Pn3m). The results highlight the role of guest (CH{sub 4})-host (H{sub 2}O) interactions in the stabilization of the hydratestructures under pressure.

J Shu; X Chen; I Chou; W Yang; J Hu; R Hemley; K Mao

2011-12-31T23:59:59.000Z

410

High-temperature, high-pressure bonding of nested tubular metallic components  

DOE Patents (OSTI)

This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

Quinby, Thomas C. (Kingston, TN)

1980-01-01T23:59:59.000Z

411

Heat transfer and pressure drop data for high heat flux densities to water at high subcritical pressures  

E-Print Network (OSTI)

Local surface ooeffioients of heat t-ansfer, overall pressure drop data and mean friction factor are presented for heat flamms up to 3.52106 BtuAr ft2 for water flowing in a nickel tabe isder the following conditions: mass ...

Rohsenow, Warren M.

1951-01-01T23:59:59.000Z

412

EPRI steam-turbine-related research projects  

SciTech Connect

The current perspective is provided of EPRI-project activities that relate to steam turbine reliability. Compiling status information is a part of the planning effort for continuing projects on turbine rotor reliability, turbine chemistry monitoring and materials behavior, and for the proposed project related to cracking of shrunk-on discs in low pressure nuclear steam turbines. This document includes related work beyond the steam turbine itself to cover those research projects whose scope and results impact the efforts specific to the turbine.

Gelhaus, F.; Jaffee, R.; Kolar, M.; Poole, D.

1978-08-01T23:59:59.000Z

413

ORCENT2. Nuclear Steam Turbine Cycle Analysis  

SciTech Connect

ORCENT2 performs heat and mass balance calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam, characteristic of contemporary light-water reactors. The program handles both condensing and back-pressure turbine exhaust arrangements. Turbine performance calculations are based on the General Electric Company method for 1800-rpm large steam turbine-generators operating with light-water-cooled nuclear reactors. Output includes all information normally shown on a turbine-cycle heat balance diagram.

Fuller, L.C. [Oak Ridge National Lab, TN (United States)

1979-07-01T23:59:59.000Z

414

Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump  

DOE Patents (OSTI)

An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2001-01-01T23:59:59.000Z

415

Steady-state heat transfer in an inverted U-tube steam generator  

Science Conference Proceedings (OSTI)

Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during stead-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K steam generator inlet plenum fluid temperatures, 6.2 MPa secondary pressure). The Semiscale (MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations.

Boucher, T.J.

1987-01-01T23:59:59.000Z

416

Demonstration of EIC's copper sulfate process for removal of hydrogen sulfide and other trace contaminants from geothermal steam at turbine inlet temperatures and pressures. Final report  

DOE Green Energy (OSTI)

The results obtained during the operation of an integrated, one-tenth commercial scale pilot plant using EIC's copper sulfate process for the removal of hydrogen sulfide and other contaminants from geothermal steam at turbine upstream conditions are discussed. The tests took place over a six month period at Pacific Gas and Electric Company's Unit No. 7 at The Geysers Power Plant. These tests were the final phase of a development effort which included the laboratory research and engineering design work which led to the design of the pilot plant. Broadly, the objectives of operating the pilot plant were to confirm the preliminary design criteria which had been developed, and provide data for their revisions, if appropriate, in a plant which contained all the elements of a commercial process using equipment of a size sufficient to provide valid scale-up data. The test campaign was carried out in four phases: water testing; open circuit, i.e., non integrated scrubbing, liquid-solid separation and regeneration testing; closed circuit short term; and closed circuit long term testing.

Not Available

1980-05-01T23:59:59.000Z

417

Structural Behaviors of Cubic Gd2O3 at High Pressures  

SciTech Connect

An irreversible structural transformation from the cubic phase to a hexagonal high-pressure phase was verified in Gd2O3 between 7.0 and 15 GPa. The compressibility and bond distances of both phases were determined by the refinem