National Library of Energy BETA

Sample records for high pressure laser

  1. Carbon dioxide UV laser-induced fluorescence in high-pressure flames

    E-Print Network [OSTI]

    Lee, Tonghun

    Carbon dioxide UV laser-induced fluorescence in high-pressure flames W.G. Bessler a , C. Schulz a; in final form 16 May 2003 Published online 10 June 2003 Abstract Laser-induced fluorescence (LIF) of carbon dioxide is investigated with excitation between 215 and 255 nm with spectrally resolved detection in 5

  2. Pressure-driven, resistive magnetohydrodynamic interchange instabilities in laser-produced high-energy-density plasmas

    E-Print Network [OSTI]

    Li, Chikang

    Recent experiments using proton backlighting of laser-foil interactions provide unique opportunities for studying magnetized plasma instabilities in laser-produced high-energy-density plasmas. Time-gated proton radiograph ...

  3. Soot particle sizing during high-pressure Diesel spray combustion via time-resolved laser-induced incandescence

    SciTech Connect (OSTI)

    Ryser, R.; Gerber, T.; Dreier, T. [Reaction Analysis Group, Department of General Energy, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2009-01-15

    Single-pulse time-resolved laser-induced incandescence (TiRe-LII) signal transients from soot particulates were acquired during unsteady high pressure Diesel combustion in a constant volume cell for typical top dead center conditions during a Diesel engine cycle. Measurements were performed for initial gas pressures between 1 and 3 MPa, injection pressures between 50 and 130 MPa and laser probe timings between 5 and 16 ms after start of fuel injection. In separate experiments and for the same cell operating conditions gas temperatures were deduced from spectrally resolved soot pyrometry measurements. Implementing the LII model of Kock et al. [Combust. Flame 147 (20006) 79-92] ensemble mean soot particle diameters were evaluated from least-squares fitting of theoretical cooling curves to experimental TiRe-LII signal transients. Since in the experiments the environmental gas temperature and the width of an assumed particle size distribution were not known, the effects of the initial choice of these parameters on retrieved particle diameters were investigated. It is shown that evaluated mean particle diameters are only slightly biased by the choice of typical size distribution widths and gas temperatures. For a fixed combustion phase mean particle diameters are not much affected by gas pressure, however they become smaller at high fuel injection pressure. At a mean chamber pressure of 1.39 MPa evaluated mean particle diameters increased by a factor of two for probe delays between 5 and 16 ms after start of injection irrespective of the choices of first-guess fitting variables, indicating a certain robustness of data analysis procedure. (author)

  4. Soot particle sizing during high-pressure Diesel spray combustion via time-resolved laser-induced incandescence

    SciTech Connect (OSTI)

    Ryser, R.; Gerber, T.; Dreier, T. [Reaction Analysis Group, Department of General Energy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2008-11-15

    Single-pulse time-resolved laser-induced incandescence (TiRe-LII) signal transients from soot particulates were acquired during unsteady high pressure Diesel combustion in a constant volume cell for typical top dead center conditions during a Diesel engine cycle. Measurements were performed for initial gas pressures between 1 and 3 MPa, injection pressures between 50 and 130 MPa and laser probe timings between 5 and 16 ms after start of fuel injection. In separate experiments and for the same cell operating conditions gas temperatures were deduced from spectrally resolved soot pyrometry measurements. Implementing the LII model of Kock et al. [Combust. Flame 147 (2006) 79-92] ensemble mean soot particle diameters were evaluated from least-squares fitting of theoretical cooling curves to experimental TiRe-LII signal transients. Since in the experiments the environmental gas temperature and the width of an assumed particle size distribution were not known, the effects of the initial choice of these parameters on retrieved particle diameters were investigated. It is shown that evaluated mean particle diameters are only slightly biased by the choice of typical size distribution widths and gas temperatures. For a fixed combustion phase mean particle diameters are not much affected by gas pressure, however they become smaller at high fuel injection pressure. At a mean chamber pressure of 1.39 MPa evaluated mean particle diameters increased by a factor of two for probe delays between 5 and 16 ms after start of injection irrespective of the choices of first-guess fitting variables, indicating a certain robustness of data analysis procedure. (author)

  5. Sandia Energy - High Pressure Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Pressure Chemistry Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Combustion Kinetics High Pressure Chemistry High Pressure ChemistryAshley...

  6. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  7. High pressure melt ejection

    SciTech Connect (OSTI)

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.

    1983-01-01

    Recent probabilistic risk assessments have identified the potential for reactor pressure vessel failure while the reactor coolant system is at elevated pressure. The analyses postulate that the blowdown of steam and hydrogen into the reactor cavity will cause the core material to be swept from the cavity region into the containment building. The High Pressure Melt Streaming (HIPS) program is an experimental study of the high pressure ejection of molten material and subsequent interactions within a concrete cavity. The program focuses on using prototypic system conditions and scaled models of reactor geometries to accurately simulate the ex-vessel processes during high-pressure accident sequences. Scaling analyses of the experiment show that the criteria established for core debris removal from the cavity are met or exceeded. Tests are performed at two scales, representing 1/10th and 1/20th linear reproductions of the Zion reactor plant. Results of the 1/20th scale tests are presented.

  8. High pressure counterflow CHF.

    E-Print Network [OSTI]

    Walkush, Joseph Patrick

    1975-01-01

    This is a report of the experimental results of a program in countercurrent flow critical heat flux. These experiments were performed with Freon 113 at 200 psia in order to model a high pressure water system. An internally ...

  9. Pressure wave charged repetitively pulsed gas laser

    DOE Patents [OSTI]

    Kulkarny, Vijay A. (Redondo Beach, CA)

    1982-01-01

    A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.

  10. High pressure furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  11. High pressure furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  12. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  13. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  14. High pressure storage vessel

    DOE Patents [OSTI]

    Liu, Qiang

    2013-08-27

    Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

  15. Steam Oxidation at High Pressure

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL; Carney, Casey [URS

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  16. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  17. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA); Arnold, Don W. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Schoeniger, Joseph S. (Oakland, CA); Neyer, David W. (Castro Valley, CA)

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  18. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  19. High pressure ceramic joint

    DOE Patents [OSTI]

    Ward, Michael E. (Poway, CA); Harkins, Bruce D. (San Diego, CA)

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  20. High pressure ceramic joint

    DOE Patents [OSTI]

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  1. Light pressure acceleration with frequency-tripled laser pulse

    SciTech Connect (OSTI)

    Wang, Xiaofeng; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Ji, Liangliang; Wang, Wenpeng; Zhao, Xueyan; Xu, Jiancai; Yu, Yahong; Yi, Longqing; Shi, Yin; Xu, Tongjun; Zhang, Lingang [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-08-15

    Light pressure acceleration of ions in the interaction of the frequency-tripled (3?) laser pulse and foil target is studied, and a promising method to increase accelerated ion energy is shown. Results show that at a constant laser energy, much higher ion energy peak value is obtained for 3? laser compared with that using the fundamental frequency laser. The effect of energy loss during frequency conversion on ion acceleration is considered, which may slightly decrease the acceleration effect.

  2. High repetition rate fiber lasers

    E-Print Network [OSTI]

    Chen, Jian, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    This thesis reports work in high repetition rate femtosecond fiber lasers. Driven by the applications including optical arbitrary waveform generation, high speed optical sampling, frequency metrology, and timing and frequency ...

  3. High pressure liquid level monitor

    DOE Patents [OSTI]

    Bean, Vern E. (Frederick, MD); Long, Frederick G. (Ijamsville, MD)

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  4. High pressure and high temperature apparatus

    DOE Patents [OSTI]

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  5. Report of the terawatt laser pressure vessel committee

    SciTech Connect (OSTI)

    Woodle, M.H.; Beauman, R.; Czajkowski, C.; Dickinson, T.; Lynch, D.; Pogorelsky, I.; Skjaritka, J.

    2000-09-25

    In 1995 the ATF project sent out an RFP for a CO2 Laser System having a TeraWatt output. Eight foreign and US firms responded. The Proposal Evaluation Panel on the second round selected Optoel, a Russian firm based in St. Petersburg, on the basis of the technical criteria and cost. Prior to the award, BNL representatives including the principal scientist, cognizant engineer and a QA representative visited the Optoel facilities to assess the company's capability to do the job. The contract required Optoel to provide a x-ray preionized high pressure amplifier that included: a high pressure cell, x-ray tube, internal optics and a HV pulse forming network for the main discharge and preionizer. The high-pressure cell consists of a stainless steel pressure vessel with various ports and windows that is filled with a gas mixture operating at 10 atmospheres. In accordance with BNL Standard ESH 1.4.1 ''Pressurized Systems For Experimental Use'', the pressure vessel design criteria is required to comply with the ASME Boiler and Pressure Vessel Code In 1996 a Preliminary Design Review was held at BNL. The vendor was requested to furnish drawings so that we could confirm that the design met the above criteria. The vendor furnished drawings did not have all dimensions necessary to completely analyze the cell. Never the less, we performed an analysis on as much of the vessel as we could with the available information. The calculations concluded that there were twelve areas of concern that had to be addressed to assure that the pressure vessel complied with the requirements of the ASME code. This information was forwarded to the vendor with the understanding that they would resolve these concerns as they continued with the vessel design and fabrication. The assembled amplifier pressure vessel was later hydro tested to 220 psi (15 Atm) as well as pneumatically to 181 psi (12.5 Atm) at the fabricator's Russian facility and was witnessed by a BNL engineer. The unit was shipped to the US and installed at the ATF. As part of the commissioning of the device the amplifier pressure vessel was disassembled several times at which time it became apparent that the vendor had not addressed 7 of the 12 issues previously identified. Closer examination of the vessel revealed some additional concerns including quality of workmanship. Although not required by the contract, the vendor furnished radiographs of a number of pressure vessel welds. A review of the Russian X-rays revealed radiographs of both poor and unreadable quality. However, a number of internal weld imperfections could be observed. All welds in question were excavated and then visually and dye penetrant inspected. These additional inspections confirmed that the weld techniques used to make some of these original welds were substandard. The applicable BNL standard, ESH 1.4.1, addresses the problem of pressure vessel non-compliance by having a committee appointed by the Department Chairman review the design and provide engineering solutions to assure equivalent safety. On January 24, 2000 Dr. M. Hart, the NSLS Chairman, appointed this committee with this charge. This report details the engineering investigations, deliberations, solutions and calculations which were developed by members of this committee to determine that with repairs, new components, appropriate NDE, and lowering the design pressure, the vessel can be considered safe to use.

  6. High power gas laser amplifier

    DOE Patents [OSTI]

    Leland, Wallace T. (Los Alamos, NM); Stratton, Thomas F. (Los Alamos, NM)

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  7. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  8. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, John K. (New Haven, CT)

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  9. Laser Fusion Energy The High Average Power

    E-Print Network [OSTI]

    Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

  10. Electokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

    2000-01-01

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  11. Method of producing a high pressure gas

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Zollinger, William T.

    2006-07-18

    A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.

  12. High-pressure microhydraulic actuator

    DOE Patents [OSTI]

    Mosier, Bruce P. (San Francisco, CA) [San Francisco, CA; Crocker, Robert W. (Fremont, CA) [Fremont, CA; Patel, Kamlesh D. (Dublin, CA) [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  13. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  14. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  15. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  16. High Power Lasers... Another approach to

    E-Print Network [OSTI]

    1 High Power Lasers... Another approach to Fusion Energy John Sethian Plasma Physics Division Naval drive targets Can lead to an attractive electricity generating power plant Developing Laser Fusion Average Power Laser (HAPL) Program #12;4 Electricity Generator Reaction chamber The laser fusion energy

  17. NETL- High-Pressure Combustion Research Facility

    SciTech Connect (OSTI)

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  18. NETL- High-Pressure Combustion Research Facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  19. High-Pressure Hydrogen Tank Testing

    Broader source: Energy.gov [DOE]

    Many types of compressed hydrogen tanks have been certified worldwide and demonstrated in several prototype fuel cell vehicles. The following information discusses high-pressure hydrogen tank...

  20. High power laser perforating tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  1. Development of novel high pressure instrumentation 

    E-Print Network [OSTI]

    Wang, Xiao

    2015-06-29

    piston-cylinder type high pressure cells were developed for high-pressure chemistry studies. These cells were designed to pressurise large amount of liquid sample (particular for water-based sample) up to 800 MPa in a controllable manner. Each design...

  2. Portable high precision pressure transducer system

    DOE Patents [OSTI]

    Piper, Thomas C. (Idaho Falls, ID); Morgan, John P. (Idaho Falls, ID); Marchant, Norman J. (Idaho Falls, ID); Bolton, Steven M. (Pocatello, ID)

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  3. Portable high precision pressure transducer system

    DOE Patents [OSTI]

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  4. Compact and highly efficient laser pump cavity

    DOE Patents [OSTI]

    Chang, Jim J. (Dublin, CA); Bass, Isaac L. (Castro Valley, CA); Zapata, Luis E. (Livermore, CA)

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  5. Flash High-Pressure Condensate to Regenerate Low-Pressure Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Low-pressure process steam requirements are usually met by throttling high- pressure steam, but a portion of the...

  6. High-pressure studies of ammonia hydrates 

    E-Print Network [OSTI]

    Wilson, Craig W.

    2014-06-28

    Ammonia and water are major components of many planetary bodies, from comets and icy moons such as Saturn's Titan to the interiors of the planets Neptune and Uranus. Under a range of high pressures and/or low temperatures known ...

  7. High-pressure synthesis of electronic materials 

    E-Print Network [OSTI]

    Penny, George B. S.

    2010-01-01

    High-pressure techniques have become increasingly important in the synthesis of ceramic and metallic solids allowing the discovery of new materials with interesting properties. In this research dense solid oxides have ...

  8. High Temperature, High Pressure Devices for Zonal Isolation in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Devices for Zonal Isolation in Geothermal Wells track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Complete FiberCopper Cable Solution for...

  9. Pressure-sensitive blackbody point radiation induced by infrared diode laser irradiation

    E-Print Network [OSTI]

    Cao, Wenwu

    Pressure-sensitive blackbody point radiation induced by infrared diode laser irradiation Feng Qin,1, by irradiation of well-matched infrared (IR) lasers upon the Yb3þ ions, ultrabroadband luminescence can

  10. High pressure ceramic heat exchanger

    DOE Patents [OSTI]

    Harkins, B.D.; Ward, M.E.

    1998-09-22

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 5 figs.

  11. High pressure ceramic heat exchanger

    DOE Patents [OSTI]

    Harkins, Bruce D. (San Diego, CA); Ward, Michael E. (Poway, CA)

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  12. High pressure ceramic heat exchanger

    DOE Patents [OSTI]

    Harkins, Bruce D. (San Diego, CA); Ward, Michael E. (Poway, CA)

    1999-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the reinforcing member and having a strengthening member wrapped around the refractory material. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  13. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, In vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos (Reston, VA); Nemes, Peter (Silver Spring, MD)

    2011-11-29

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation (LA) with electrospray ionization (ESI).

  14. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  15. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry

    SciTech Connect (OSTI)

    Vertes, Akos; Nemes, Peter

    2014-08-19

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  16. Apparatus for advancing a wellbore using high power laser energy

    DOE Patents [OSTI]

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  17. High power regenerative laser amplifier

    DOE Patents [OSTI]

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  18. Scientific applications for high-energy lasers

    SciTech Connect (OSTI)

    Lee, R.W. [comp.

    1994-03-01

    The convergence of numerous factors makes the time ripe for the development of a community of researchers to use the high-energy laser for scientific investigations. This document attempts to outline the steps necessary to access high-energy laser systems and create a realistic plan to implement usage. Since an academic/scientific user community does not exist in the USA to any viable extent, we include information on present capabilities at the Nova laser. This will briefly cover laser performance and diagnostics and a sampling of some current experimental projects. Further, to make the future possibilities clearer, we will describe the proposed next- generation high-energy laser, named for its inertial fusion confinement (ICF) goal, the multi-megaJoule, 500-teraWatt National Facility, or NIF.

  19. DEPARTMENT OF ENGINEERING SCIENCE High Pressure Laminar Burning

    E-Print Network [OSTI]

    DEPARTMENT OF ENGINEERING SCIENCE High Pressure Laminar Burning Velocity Measurements S. P data Cellularity Real residuals Results Future plans High Pressure Laminar Burning Velocity temperature 725 K High Pressure Laminar Burning Velocity Measurements October 27, 2008 Page 3 #12;System

  20. High pressure, high current, low inductance, high reliability sealed terminals

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN) [Oak Ridge, TN; McKeever, John W. (Oak Ridge, TN) [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  1. High pressure chemistry of substituted acetylenes

    SciTech Connect (OSTI)

    Chellappa, Raja; Dattelbaum, Dana; Sheffield, Stephen; Robbins, David

    2011-01-25

    High pressure in situ synchrotron x-ray diffraction experiments were performed on substituted polyacetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C{triple_bond}CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-Si{triple_bond}CH] to investigate pressure-induced chemical reactions. The starting samples were the low temperature crystalline phases which persisted metastably at room temperature and polymerized beyond 11 GPa and 26 GPa for TBA and ETMS respectively. These reaction onset pressures are considerably higher than what we observed in the shockwave studies (6.1 GPa for TBA and 6.6 GPa for ETMS). Interestingly, in the case of ETMS, it was observed with fluid ETMS as starting sample, reacts to form a semi-crystalline polymer (crystalline domains corresponding to the low-T phase) at pressures less than {approx}2 GPa. Further characterization using vibrational spectroscopy is in progress.

  2. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Wednesday, 25 April 2007 00:00 Researchers at...

  3. High pressure water jet mining machine

    DOE Patents [OSTI]

    Barker, Clark R. (Rolla, MO)

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  4. A University Consortium on High Pressure, Lean Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure, Lean Combustion for Efficient and Clean IC Engines (UM - lead, MIT, UCB) A University Consortium on High Pressure, Lean Combustion for Efficient and Clean IC Engines...

  5. Consider Installing High-Pressure Boilers with BackpressureTurbine...

    Broader source: Energy.gov (indexed) [DOE]

    high-pressure boilers with backpressure turbine-generators as part of optimized steam systems. STEAM TIP SHEET 22 Consider Installing High-Pressure Boilers with Backpressure...

  6. Consider Installing High-Pressure Boilers with Backpressure Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Pressure Boilers with Backpressure Turbine-Generators When specifying a new boiler, consider a high-pressure boiler with a backpressure steam turbine-generator placed...

  7. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007...

  8. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect (OSTI)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  9. High pressure injection of dimethyl ether

    SciTech Connect (OSTI)

    Glensvig, M.; Sorenson, S.C.; Abata, D.

    1996-12-31

    Partially oxygenated hydrocarbons produced from natural gas have been shown to be viable alternate fuels for the diesel engine, showing favorable combustion characteristics similar to that of diesel fuel but without exhaust particulates and with significantly reduced NO{sub x} emissions and lower engine noise. Further, engine studies have demonstrated that such compounds, like dimethyl ether (DME), can be injected at much lower pressures than conventional diesel fuel with better overall performance. This experimental study compares the injection of DME to that of conventional diesel fuel. Both fuels were injected into a quiescent high pressure chamber containing Nitrogen at pressures up to 25 atmospheres at room temperature with a pintle nozzle and jerk pump. Comparisons were obtained with high speed photography using a Hycam camera. Results indicate that there are significant differences in spray geometry and penetration which are not predictable with analytical models currently used for diesel fuels.

  10. High-Performance OPCPA Laser System

    SciTech Connect (OSTI)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J.

    2006-07-13

    A high-performance optical parametric chirped-pulse amplifier (OPCPA) system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System.

  11. Viscosities of natural gases at high pressures and high temperatures 

    E-Print Network [OSTI]

    Viswanathan, Anup

    2007-09-17

    Estimation of viscosities of naturally occurring petroleum gases provides the information needed to accurately work out reservoir-engineering problems. Existing models for viscosity prediction are limited by data, especially at high pressures...

  12. High energy laser beam dump

    DOE Patents [OSTI]

    Halpin, John (Tracy, CA)

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  13. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOE Patents [OSTI]

    Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  14. High pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, Christian G. (San Pablo, CA); Sakaji, Richard H. (El Cerrito, CA)

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  15. High-pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  16. Cavity closure arrangement for high pressure vessels

    DOE Patents [OSTI]

    Amtmann, Hans H. (San Diego, CA)

    1981-01-01

    A closure arrangement for a pressure vessel such as the pressure vessel of a high temperature gas-cooled reactor wherein a liner is disposed within a cavity penetration in the reactor vessel and defines an access opening therein. A closure is adapted for sealing relation with an annular mounting flange formed on the penetration liner and has a plurality of radially movable locking blocks thereon having outer serrations adapted for releasable interlocking engagement with serrations formed internally of the upper end of the penetration liner so as to effect high strength closure hold-down. In one embodiment, ramping surfaces are formed on the locking block serrations to bias the closure into sealed relation with the mounting flange when the locking blocks are actuated to locking positions.

  17. Very low pressure high power impulse triggered magnetron sputtering

    DOE Patents [OSTI]

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  18. Theory of high pressure hydrogen, made simple

    E-Print Network [OSTI]

    Magdau, Ioan B; Ackland, Graeme J

    2015-01-01

    Phase I of hydrogen has several peculiarities. Despite having a close-packed crystal structure, it is less dense than either the low temperature Phase II or the liquid phase. At high pressure, it transforms into either phase III or IV, depending on the temperature. Moreover, spectroscopy suggests that the quantum rotor behaviour disappears with pressurisation, without any apparent phase transition. Here we present a simple thermodynamic model for this behaviour based on packing atoms and molecules and discuss the thermodynamics of the phase boundaries. We also report first principles molecular dynamics calculations for a more detailed look at the same phase transitions.

  19. Cooling and Trapping Atoms Atoms are slowed and cooled by radiation pressure from laser light

    E-Print Network [OSTI]

    Johannesson, Henrik

    Cooling and Trapping Atoms Atoms are slowed and cooled by radiation pressure from laser light and then trapped in a bottle whose "walls" are magnetic fields. Cooled atoms are ideal for exploring basic. Atoms can now be cooled by shining laser light directly on them. The radiation pres sure exerted

  20. High pressure-resistant nonincendive emulsion explosive

    DOE Patents [OSTI]

    Ruhe, Thomas C. (Duquesne, PA); Rao, Pilaka P. (Baghlingampalli, IN)

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  1. Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond pulses with high repetition rate

    E-Print Network [OSTI]

    Reilly, Anne

    Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond 2002 We have conducted experiments exploring pulsed laser deposition of thin films using the high average power Thomas Jefferson National Accelerator Facility Free Electron Laser. The combination

  2. Laser ablation and ionisation by laser plasma radiation in the atmospheric-pressure mass spectrometry of organic compounds

    SciTech Connect (OSTI)

    Pento, A V; Nikiforov, S M; Simanovsky, Ya O; Grechnikov, A A; Alimpiev, S S

    2013-01-31

    A new method was developed for the mass spectrometric analysis of organic and bioorganic compounds, which involves laser ablation with the ionisation of its products by laser-plasma radiation and enables analysing gaseous, liquid, and solid substances at atmospheric pressure without sample preparation. The capabilities of this method were demonstrated by the examples of fast pharmaceutical composition screening, real-time atmosphere composition analysis, and construction of the mass spectrometric images of organic compound distributions in biological materials. (interaction of laser radiation with matter)

  3. High-pressure coal fuel processor development

    SciTech Connect (OSTI)

    Greenhalgh, M.L. (Caterpillar, Inc., Peoria, IL (United States))

    1992-12-01

    Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

  4. Coherent beam combiner for a high power laser

    DOE Patents [OSTI]

    Dane, C. Brent (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  5. Effect of high pressure on structural oddities 

    E-Print Network [OSTI]

    Johnstone, Russell D. L.

    2010-01-01

    This thesis describes the effect of pressure on crystal structures that are in some way unusual. The aim was to investigate whether pressure could be used to force these ‘structural oddities’ to conform to more conventional ...

  6. Low energy high pressure miniature screw valve

    DOE Patents [OSTI]

    Fischer, Gary J. (Sandia Park, NM); Spletzer, Barry L. (Albuquerque, NM)

    2006-12-12

    A low energy high pressure screw valve having a valve body having an upper portion and a lower portion, said lower portion of said valve body defining an inlet flow passage and an outlet flow passage traversing said valve body to a valve seat, said upper portion of said valve body defining a cavity at said valve seat, a diaphragm restricting flow between said upper portion of said valve body and said lower portion, said diaphragm capable of engaging said valve seat to restrict fluid communication between said inlet passage and said outlet passage, a plunger within said cavity supporting said diaphragm, said plunger being capable of engaging said diaphragm with said valve seat at said inlet and outlet fluid passages, said plunger being in point contact with a drive screw having threads engaged with opposing threads within said upper portion of said valve body such engagement allowing motion of said drive screw within said valve body.

  7. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.

    1996-06-11

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  8. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Yuiko T. (Clarks Summit, PA); Payne, Stephen A. (Castro Valley, CA); Hayden, Joseph S. (Clarks Summit, PA); Campbell, John H. (Livermore, CA); Aston, Mary Kay (Moscow, PA); Elder, Melanie L. (Dublin, CA)

    1996-01-01

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  9. Negative pressure effects in high-pressure oxygen-intercalated C{sub 60}

    SciTech Connect (OSTI)

    Schirber, J.E.; Assink, R.A.; Samara, G.A.; Morosin, B.; Loy, D. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    1995-06-01

    We have observed unexpected and as yet unexplained negative pressure effects in high-oxygen-pressure-treated C{sub 60} in which the orientational ordering temperature is greatly depressed. Such effects are not observed in identical studies with nitrogen.

  10. Laser for high frequency modulated interferometry

    DOE Patents [OSTI]

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.J.

    1991-07-23

    A Stark-tuned laser operating in the 119 micron line of CH[sub 3]OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth. 10 figures.

  11. Laser for high frequency modulated interferometry

    DOE Patents [OSTI]

    Mansfield, Dennis K. (E. Windsor, NJ); Vocaturo, Michael (Columbus, NJ); Guttadora, Lawrence J. (Iselin, NJ)

    1991-01-01

    A Stark-tuned laser operating in the 119 micron line of CH.sub.3 OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth.

  12. Structural behaviour of niobium oxynitride under high pressure

    SciTech Connect (OSTI)

    Sharma, Bharat Bhooshan Poswal, H. K. Pandey, K. K. Sharma, Surinder M.; Yakhmi, J. V.; Ohashi, Y.; Kikkawa, S.

    2014-04-24

    High pressure investigation of niobium oxynitrides (NbN{sub 0.98}O{sub 0.02}) employing synchrotron based angle dispersive x-ray diffraction experiments was carried out in very fine pressure steps using membrane driven diamond anvil cell. Ambient cubic phase was found to be stable up to ?18 GPa. At further high pressure cubic phase showed rhombohedral distortion.

  13. Competition between vitrification and crystallization of methanol at high pressure

    E-Print Network [OSTI]

    Vos, Willem L.

    Competition between vitrification and crystallization of methanol at high pressure Marco J. P methanol at high pressure up to 33 GPa at room temperature with x-ray diffraction, optical polarization and vitrification is observed when methanol is superpressed beyond the freezing pressure of 3.5 GPa: between 5

  14. Structure of crystalline methanol at high pressure David R. Allan

    E-Print Network [OSTI]

    Vos, Willem L.

    Structure of crystalline methanol at high pressure David R. Allan Department of Physics structure, including all atomic positions, of methanol at high pressure and room temperature pressure of methanol is 3.5 GPa. In practice however, it is very easy to superpress the liquid phase

  15. Automated high pressure cell for pressure jump x-ray diffraction

    SciTech Connect (OSTI)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  16. High Pressure Rotary Shaft Sealing Mechanism

    DOE Patents [OSTI]

    Dietle, Lannie (Sugar Land, TX); Gobeli, Jeffrey D. (Houston, TX)

    2001-05-08

    A laterally translatable pressure staged rotary shaft sealing mechanism having a seal housing with a shaft passage therein being exposed to a fluid pressure P1 and with a rotary shaft being located within the shaft passage. At least one annular laterally translatable seal carrier is provided. First and second annular resilient sealing elements are supported in axially spaced relation by the annular seal carriers and have sealing relation with the rotary shaft. The seal housing and at least one seal carrier define a first pressure staging chamber exposed to the first annular resilient sealing element and a second pressure staging chamber located between and exposed to the first and second annular resilient sealing elements. A first fluid is circulated to the first pressure chamber at a pressure P1, and a second staging pressure fluid is circulated to the second pressure chamber at a fraction of pressure P1 to achieve pressure staging, cooling of the seals. Seal placement provides hydraulic force balancing of the annular seal carriers.

  17. High-Power Solid-State Lasers from a Laser Glass Perspective

    SciTech Connect (OSTI)

    Campbell, J H; Hayden, J S; Marker, A J

    2010-12-17

    Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high-power (HEHP), petawatt (PW) and high-average-power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research and materials processing, respectively. The requirements for these three laser systems are different necessitating different glasses or groups of glasses. The manufacturing technology is now mature for melting, annealing, fabricating and finishing of laser glasses for all three applications. The laser glass properties of major importance for HEHP, PW and HAP applications are briefly reviewed and the compositions and properties of the most widely used commercial laser glasses summarized. Proposed advances in these three laser systems will require new glasses and new melting methods which are briefly discussed. The challenges presented by these laser systems will likely dominate the field of laser glass development over the next several decades.

  18. Radiation Dose Measurement for High-Intensity Laser Interactions...

    Office of Scientific and Technical Information (OSTI)

    Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC Citation Details In-Document Search Title: Radiation Dose Measurement for High-Intensity...

  19. Single stage high pressure centrifugal slurry pump

    DOE Patents [OSTI]

    Meyer, John W. (Palo Alto, CA); Bonin, John H. (Sunnyvale, CA); Daniel, Arnold D. (Alameda, CA)

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  20. High energy femtosecond fiber laser at 1018 nm and high power Cherenkov radiation generation

    E-Print Network [OSTI]

    Yang, Hongyu, S.M. Massachusetts Institute of Technology

    2014-01-01

    Two novel laser systems for ultrafast applications have been designed and built. For the seeding of a high energy cryogenically cooled Yb:YLF laser, a novel 1018 nm fiber laser system is demonstrated. It produces >35 nJ ...

  1. High power laser workover and completion tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  2. Notes 11. High pressure floating ring seals 

    E-Print Network [OSTI]

    San Andres, Luis

    2009-01-01

    Floating ring seals for compressors: leakage and force coefficients, seal lock up and effect on rotor stability, recommendations to reduce seal cross-coupled effects. Long oil seals as pressure barriers in industrial mixers: leakage and force...

  3. High Pressure Fuel Storage Cylinders Periodic Inspection and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Practical Field Experience with High Pressure Gaseous Fuels Natural Gas Vehicle Cylinder Safety, Training and Inspection Project The Compelling Case for Natural Gas Vehicles...

  4. Quantum Vacuum Experiments Using High Intensity Lasers

    E-Print Network [OSTI]

    Mattias Marklund; Joakim Lundin

    2009-04-02

    The quantum vacuum constitutes a fascinating medium of study, in particular since near-future laser facilities will be able to probe the nonlinear nature of this vacuum. There has been a large number of proposed tests of the low-energy, high intensity regime of quantum electrodynamics (QED) where the nonlinear aspects of the electromagnetic vacuum comes into play, and we will here give a short description of some of these. Such studies can shed light, not only on the validity of QED, but also on certain aspects of nonperturbative effects, and thus also give insights for quantum field theories in general.

  5. High-Powered Lasers for Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumps An error occurred. Try|High-Powered Lasers

  6. Evaluation of high-pressure drilling fluid supply systems

    SciTech Connect (OSTI)

    McDonald, M.C.; Reichman, J.M.; Theimer, K.J.

    1981-10-01

    A study was undertaken to help determine the technical and economic feasibility of developing a high-pressure fluid-jet drilling system for the production of geothermal wells. Three system concepts were developed and analyzed in terms of costs, component availability, and required new-component development. These concepts included a single-conduit system that supplies the downhole cutting nozzles directly via surface-located high-pressure pumps; a single-conduit system utilizing low-pressure surface pumps to supply and operate a high-pressure downhole pump, which in turn supplies the cutting nozzles; and a dual-conduit system supplying surface-generated high-pressure fluid for cutting via one conduit and low-pressure scavenging fluid via the other. It is concluded that the single-conduit downhole pump system concept has the greatest potential for success in this application. 28 figures, 11 tables.

  7. High temperature pressurized high frequency testing rig and test method

    DOE Patents [OSTI]

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  8. High average power scaleable thin-disk laser

    DOE Patents [OSTI]

    Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Bibeau, Camille (Dublin, CA); Payne, Stephen A. (Castro Valley, CA); Powell, Howard (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  9. varicose veins smoking obesity swine flu high blood pressure

    E-Print Network [OSTI]

    Rambaut, Andrew

    diabetes kidney failure dementia thrombosis high anorexia nervosa hormone replacement varicose veins underactive thyroid cystitis incontinence breast cancer obesity bulimia nervosa anorexia nervosa hormone obesity bulimia nervosa anorexia nervosa hormone replacement varicose veins smoking high blood pressure

  10. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures

    SciTech Connect (OSTI)

    Farid, N.; Harilal, S. S. Hassanein, A.; Ding, H.

    2014-01-21

    The influence of ambient pressure on the spectral emission features and expansion dynamics of a plasma plume generated on a metal target has been investigated. The plasma plumes were generated by irradiating Cu targets using 6?ns, 1064?nm pulses from a Q-switched Nd:YAG laser. The emission and expansion dynamics of the plasma plumes were studied by varying air ambient pressure levels ranging from vacuum to atmospheric pressure. The ambient pressure levels were found to affect both the line intensities and broadening along with the signal to background and signal to noise ratios and the optimum pressure conditions for analytical applications were evaluated. The characteristic plume parameters were estimated using emission spectroscopy means and noticed that the excitation temperature peaked ?300?Torr, while the electron density showed a maximum ?100?Torr. Fast-gated images showed a complex interaction between the plume and background air leading to changes in the plume geometry with pressure as well as time. Surface morphology of irradiated surface showed that the pressure of the ambient gas affects the laser-target coupling significantly.

  11. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in...

  12. High Power Laser Innovation Sparks Geothermal Power Potential...

    Energy Savers [EERE]

    project partner Foro Energy lab tests a high power laser tool with a patented technology that could maximize heat recovery from geothermal wells. Source: Foro Energy....

  13. High Power Laser Innovation Sparks Geothermal Power Potential...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Department's project partner Foro Energy lab tests a high power laser tool with a patented technology that could maximize heat recovery from geothermal wells. Source: Foro...

  14. The investigation of high intensity laser driven micro neutron sources

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    , access to high temperature states of mat- ter capable of thermonuclear fusion and/or the effi- cientThe investigation of high intensity laser driven micro neutron sources for fusion materials. The application of fast pulse, high intensity lasers to drive low cost DT point neutron sources for fusion

  15. High power solid state laser modulator

    DOE Patents [OSTI]

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  16. High power laser downhole cutting tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  17. Subsea intensifier supplies high pressure to downhole safety valves

    SciTech Connect (OSTI)

    1996-07-01

    A subsea high-pressure hydraulic intensifier (HPI) is now available as an alternative method of operating downhole surface-controlled subsea safety valves (SCSSVs). By generating high hydraulic pressures on the seafloor, the system eliminates need for transmitting high pressure via hose from surface. The new intensifier can generate up to 15,000 psi (1,035 bar) from the 3,000-psi (210-bar) low pressure actuator supply already within the umbilical. It uses low pressure hydraulic fluid acting on a large-area piston to push a second piston, one-fifth the cross sectional area, acting in a second hydraulic circuit. To reduce pulsation, the unit is double acting, with one piston drawing in fluid while the other discharges it. This paper reviews the design, performance, and construction of this equipment.

  18. High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from

    E-Print Network [OSTI]

    High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from, Darmstadt, Germany 2 GSI, Darmstadt, Germany 3 Université de Provence et CNRS, Marseille, France 4, Albuquerque, New Mexico. ~Received 21 February 2005; Accepted 20 April 2005! Abstract High energy heavy ions

  19. Isentropic expansion of copper plasma in Mbar pressure range at “Luch” laser facility

    SciTech Connect (OSTI)

    Bel'kov, S. A.; Derkach, V. N.; Garanin, S. G.; Mitrofanov, E. I.; Voronich, I. N.; Fortov, V. E.; Levashov, P. R.; Minakov, D. V.

    2014-01-21

    We present experimental results on thermodynamic properties of dense copper plasma in Mbar pressure range. The laser facility “Luch” with laser intensity 10{sup 14}?W/cm{sup 2} is used to compress copper up to ?8?Mbar by a strong shock wave; subsequent expansion of copper plasma into Al, Ti, Sn allows us to obtain release isentropes of copper by the impedance–matching method. A theoretical analysis and quantum simulations show that in our experiments strongly coupled quantum plasma is generated.

  20. Neutron scattering at high pressure D. B. McWhan

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    715 Neutron scattering at high pressure D. B. McWhan Room 1D-234, Murray Hill, New Jersey 07974, U scattering at steady-state and pulsed sources are reviewed. The pressure cells available at most neutron 10 GPa have been made. For elastic scattering, a comparison is made between neutron scattering and X

  1. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Guesto-Barnak, D.

    1992-12-22

    Disclosed is a low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K[sub 90 C] >0.85 W/mK, a low coefficient of thermal expansion, [alpha][sub 20-300 C] <80[times]10[sup [minus]7]/C, low emission cross section, [sigma]<2.5[times]10[sup [minus]20] cm[sup 2], and a high fluorescence lifetime, [tau]>325 [mu]secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): (Mole %) P[sub 2]O[sub 5], (52-72); Al[sub 2]O[sub 3], (0-<20); B[sub 2]O[sub 3], (>0-25); ZnO, (0-31); Li[sub 2]O, (0-5); K[sub 2]O, (0-5); Na[sub 2]O, (0-5); Cs[sub 2]O, (0-5); Rb[sub 2]O, (0-5); MgO, (>0-<30); CaO, (0-20); BaO, (0-20); SrO, (0-<20); Sb[sub 2]O[sub 3], (0-<1); As[sub 2]O[sub 3], (0-<1); Nb[sub 2]O[sub 5], (0-<1); Ln[sub 2]O[sub 3], (up to 6.5); PbO, (0-<5); and SiO[sub 2], (0-3); wherein Ln[sub 2]O[sub 3] is the sum of lanthanide oxides; [Sigma]R[sub 2]O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al[sub 2]O[sub 3] and MgO is <24 unless [Sigma]R[sub 2]O is 0, then the sum of Al[sub 2]O[sub 3] and MgO is <42; and the ratio of MgO to B[sub 2]O[sub 3] is 0.48-4.20. 7 figs.

  2. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    SciTech Connect (OSTI)

    Schaefer, J.; Foest, R.; Reuter, S.; Weltmann, K.-D.; Kewitz, T.; Sperka, J.

    2012-10-15

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 {+-} 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 {+-} 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable gradients of refractive index by local gas heating and opens new diagnostics prospects particularly for microplasmas.

  3. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    E-Print Network [OSTI]

    Toshiyuki Hosoya; Martin Miranda; Ryotaro Inoue; Mikio Kozuma

    2014-12-02

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system, which does not depend on complex nonlinear frequency-doubling, has great importance for implementing transportable optical lattice clocks, and is also useful for investigations on condensed matter physics or quantum information processing using cold atoms.

  4. High-pressure stability relations, crystal structures, and physical...

    Office of Scientific and Technical Information (OSTI)

    High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiFsub 3 Citation Details In-Document Search Title:...

  5. High-pressure computational and experimental studies of energetic materials 

    E-Print Network [OSTI]

    Hunter, Steven

    2013-11-28

    On account of the high temperatures and pressures experienced by energetic materials during deflagration and detonation, it is important to know not only the physical properties of these materials at ambient temperatures ...

  6. DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project...

    Broader source: Energy.gov (indexed) [DOE]

    February 8-9, 2005, the Department of Energy held the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting at Argonne National Laboratory. The purpose of...

  7. Sandia Energy - High-Pressure and High-Temperature Neutron Reflectomet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Temperature Neutron Reflectometry Cell for Solid-Fluid Interface Studies Home Carbon Capture & Storage Climate News News & Events Carbon Capture Carbon Storage High-Pressure...

  8. Gas Viscosity at High Pressure and High Temperature 

    E-Print Network [OSTI]

    Ling, Kegang

    2012-02-14

    . Although viscosity of some pure components such as methane, ethane, propane, butane, nitrogen, carbon dioxide and binary mixtures of these components at low-intermediate pressure and temperature had been studied intensively and been understood thoroughly...

  9. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect (OSTI)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  10. High energy XeBr electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  11. High-Pressure Flame Speed Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutron ComputedHigh-Performance

  12. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore »experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  13. Calcium peroxide from ambient to high pressures

    E-Print Network [OSTI]

    Nelson, Joseph R.; Needs, Richard J.; Pickard, Chris J.

    2015-02-06

    of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), as well as the ARCHER UK National Supercomputing Ser- vice (http://www.archer.ac.uk/). Financial support was provided by the Engineering and Physical Sciences Re- search...

  14. Interfacial tension in high-pressure carbon dioxide mixtures

    SciTech Connect (OSTI)

    Chun, B.S.; Wilkinson, G.T.

    1995-12-01

    High-pressure interfacial- and surface-tension phenomena govern the migration and recovery of oil and gas from hydrocarbon reservoirs. The phenomena are of particular relevance to phase separation and mass transfer in light hydrocarbon fractionation plants and in propane deasphalting in lubricating oil refining. Interfacial tensions of carbon dioxide-water-alcohol mixtures were measured at temperatures in the range 5--71 C and pressures 0.1--18.6 MPa, using the capillary rise method. The alcohols were methanol (0.136 mf), ethanol (to 0.523 mf), and isopropyl alcohol (to 0.226 mf). Interfacial tension (IFT) decreased linearly with both temperature and pressure din the low-pressure range (gaseous CO{sub 2}) but was largely independent of pressure at high pressure (liquid or supercritical CO{sub 2}). There was a zone in the vicinity of the critical pressure of CO{sub 2}-as much as 20 C below and 10 C above the carbon dioxide critical temperature--where IFT became small. This is attributed to the formation of a second CO{sub 2}-rich phase. The isotherms exhibited a crossover pressure near 3 MPa for all systems examined.

  15. Confinement of hydrogen at high pressure in carbon nanotubes

    DOE Patents [OSTI]

    Lassila, David H. (Aptos, CA); Bonner, Brian P. (Livermore, CA)

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  16. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    SciTech Connect (OSTI)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  17. Target isolation system, high power laser and laser peening method and system using same

    DOE Patents [OSTI]

    Dane, C. Brent (Livermore, CA); Hackel, Lloyd A. (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  18. Towards radiation pressure acceleration of protons using linearly polarized ultrashort petawatt laser pulses

    E-Print Network [OSTI]

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Yu, Tae Jun; Choi, Il Woo; Lee, Chang-Lyoul; Nam, Kee Hwan; Nickles, Peter V; Jeong, Tae Moon; Lee, Jongmin

    2013-01-01

    Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5x1019 W/cm2 to 3.3x1020 W/cm2 by irradiating linearly polarized, 30-fs, 1-PW laser pulses on 10- to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness was examined. The experiments demonstrated, for the first time with linearly polarized light, a transition from the target normal sheath acceleration to radiation pressure acceleration and showed a maximum proton energy of 45 MeV when a 10-nm-thick target was irradiated by a laser intensity of 3.3x1020 W/cm2. The experimental results were further supported by two- and three-dimensional particle-in-cell simulations. Based on the deduced proton energy scaling, proton beams having an energy of ~ 200 MeV should be feasible at a laser intensity of 1.5x1021 W/cm2.

  19. The High Average Power Laser Program 15th HAPL meeting

    E-Print Network [OSTI]

    , 2006 #12;2 The HAPL team is developing the science, technology and architecture needed for a laser1 The High Average Power Laser Program 15th HAPL meeting Aug 8 & 9, 2006 General Atomics Scientific Inst 16. Optiswitch Technology 17. ESLI Electricity Generator Electricity Generator Reaction

  20. Device for wavefront correction in an ultra high power laser

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Comaskey, Brian J. (Walnut Creek, CA); Kuklo, Thomas C. (Oakdale, CA)

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  1. Master-Oscillator-Power-Amplifier (MOPA) Laser Sources Used as Drive Lasers for Photoinjectors for High-Gain, Free Electron Lasers (FELs)

    E-Print Network [OSTI]

    Anlage, Steven

    Master-Oscillator-Power-Amplifier (MOPA) Laser Sources Used as Drive Lasers for Photoinjectors Milchberg #12;- 1 - Abstract The realization of extremely high gain, and high power in Free Electron Lasers critically on the power and phase stability of the cathode drive laser, and conversely the type of FEL output

  2. 1 6 High-Temperature-High-Pressure Diffractometry R. J. Angel*

    E-Print Network [OSTI]

    Downs, Robert T.

    1 6 High- Temperature-High-Pressure Diffractometry R. J. Angel* Bayerisches Geoinstitut 20015 *Present address: Department ofGeological Sciences, Virginia Tech, Blacksburg, VA 24061 INTRODUCTION Effective techniques for conducting high-pressure and high-temperature single-crystal X

  3. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, Curtis L. (Espanola, NM); Morris, John S. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM)

    1997-01-01

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  4. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  5. High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter 2004...

  6. Structural Behaviour of Uranium Sulfide under High Pressure

    SciTech Connect (OSTI)

    Shareef, F.; Singh, S.; Gour, A.; Bhardwaj, P.; Sarwan, M.; Dubey, R. [High Pressure Research Lab, Department of Physics, Barkatullah University, Bhopal-462026 (India); Singh, R. K. [ITM University, Gurgaon, Haryana-122017 (India)

    2011-07-15

    The study of pressure induced structural phase transition of uranium sulphide, which crystallizes in rock salt (B1) structure, has been performed using the well described three body interaction model (TBIPM). Our present TBIP model consists of long range coulombic interaction, three body interactions, Hafemeister and Flygare type short-range overlap repulsion extended upto the second neighbor ions and the van der Waals interaction. The present results are in good agreement with the available experimental data on the phase transition pressure (Pt = 80.2 GPa). So it can be considered as an adequate and suitable model to perform high pressure studies.

  7. Safety approaches for high power modular laser operation

    SciTech Connect (OSTI)

    Handren, R.T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  8. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutronHigh-Pressure MOF Research YieldsHigh-Pressure

  9. Reinvestigation of high pressure polymorphism in hafnium metal

    SciTech Connect (OSTI)

    Pandey, K. K. Sharma, Surinder M.; Gyanchandani, Jyoti; Dey, G. K.; Somayazulu, M.; Sikka, S. K.

    2014-06-21

    There has been a recent controversy about the high pressure polymorphism of Hafnium (Hf). Unlike, the earlier known ??? structural transition at 38?±?8?GPa, at ambient temperature, Hrubiak et al. [J. Appl. Phys. 111, 112612 (2012)] did not observe it till 51?GPa. They observed this transition only at elevated temperatures. We have reinvestigated the room temperature phase diagram of Hf, employing x-ray diffraction (XRD) and DFT based first principles calculations. Experimental investigations have been carried out on several pure and impure Hf samples and also with different pressure transmitting media. Besides demonstrating the significant role of impurity levels on the high pressure phase diagram of Hf, our studies re-establish room temperature ??? transition at high pressures, even in quasi-hydrostatic environment. We observed this transition in pure Hf with equilibrium transition pressure P{sub o}?=?44.5?GPa; however, with large hysteresis. The structural sequence, transition pressures, the lattice parameters, the c/a ratio and its variation with compression for the ? and ? phases as predicted by our ab-initio scalar relativistic (SR) calculations are found to be in good agreement with our experimental results of pure Hf.

  10. An experimental investigation of high temperature, high pressure paper drying 

    E-Print Network [OSTI]

    Patel, Kamal Raoji

    1994-01-01

    T=1 49 oc alternate T 204 oc some T= 204 oc atternote 2 4 6 6 10 12 Number of Passes o el 0 E ta el J O Sl o el I 0 0. 9 0. 8 0. 7 0. 6 0. 5 0, 4 0. 3 02 0. 1 0. 0 contac t pressure 1. 4 MPa T= 93 aC some T= 93a...C alternate ? a ? T=149 OC Same T=149 ocalternate T=204 oc same T=204 oc alternate 0 2 4 6 8 10 12 Number of Passes 1. 0 0. 9 0. 8 CL I3 07 0 0. 6 le 0. 5 ln 0. 4 0 0. 3 o 0. 2 0. 1 0. 0 contac t pressure 2. 1 MPa I . z' ~ T= 93 oC some...

  11. High Pressure Scanning Tunneling Microscopy and High Pressure X-ray Photoemission Spectroscopy Studies of Adsorbate Structure, Composition and Mobility during Catalytic Reactions on A Model Single Crystal

    E-Print Network [OSTI]

    Montano, M.O.

    2006-01-01

    Exchanger In STM experiments in general, and especially high-pressure andPressure STM Chamber Scan Head Sample Stage Tips Tip Exchangerlow base pressure. Once the sample or tip exchanger has been

  12. Pressure and Temperature effects on the High Pressure Phase Transformation in Zirconium

    SciTech Connect (OSTI)

    Escobedo-Diaz, Juan P.; Cerreta, Ellen K.; Brown, Donald W.; Trujillo, Carl P.; Rigg, Paulo A.; Bronkhorst, Curt A.; Addessio, Francis L.; Lookman, Turab

    2012-06-20

    At high pressure zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase ({alpha}) to the simple hexagonal omega phase ({omega}). Under conditions of shock loading, the high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams. For this reason, the influence of peak shock pressure and temperature on the retention of omega phase in Zr is explored in this study. In situ VISAR measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase, morphology of the shocked alpha and omega phases, and qualitatively understand the kinetics of this transformation. This understanding of the role of peak shock stress will be utilized to address physics to be encoded in our present macro-scale models.

  13. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment.

  14. Ultra-high pressure water jet: Baseline report

    SciTech Connect (OSTI)

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  15. High energy photon production in strong colliding laser beams

    E-Print Network [OSTI]

    Michael Kuchiev; Julian Ingham

    2015-07-21

    The collision of two intense, low-frequency laser beams is considered. The $e^-e^+$ pairs created in this field are shown to exhibit recollisions, which take place at high energy accumulated due to the wiggling of fermions. The resulting $e^-e^+$ annihilation produces high energy photons, or heavy particles. The coherent nature of the laser field provides strong enhancement of the probability of these events. Analytical and numerical results are outlined.

  16. Development of high strength state laser materials

    SciTech Connect (OSTI)

    Marion, J.E.

    1986-08-15

    The threat of laser material fracture limits the average power of many laser to modest levels. Rupture occurs when the tensile surface stress, which results from the temperature gradient within the component, exceeds its strength. To increase the power output potential we have focussed on methods to strengthen the amplifier slabs. Two basic approaches are used; the subsurface damage from machining, and inducing a compressive stress at the slab surface. We report results on several strengthened systems including GSGG, GGG and YAG crystalline hosts, and LHG-5 phosphate glass (Hoya Glass Corp.).

  17. LX-17 Deflagration at High Pressures and Temperatures

    SciTech Connect (OSTI)

    Koerner, J; Maienschein, J; Black, K; DeHaven, M; Wardell, J

    2006-10-23

    We measure the laminar deflagration rate of LX-17 (92.5 wt% TATB, 7.5 wt% Kel-F 800) at high pressure and temperature in a strand burner, thereby obtaining reaction rate data for prediction of thermal explosion violence. Simultaneous measurements of flame front time-of-arrival and temporal pressure history allow for the direct calculation of deflagration rate as a function of pressure. Additionally, deflagrating surface areas are calculated in order to provide quantitative insight into the dynamic surface structure during deflagration and its relationship to explosion violence. Deflagration rate data show that LX-17 burns in a smooth fashion at ambient temperature and is represented by the burn rate equation B = 0.2P{sup 0.9}. At 225 C, deflagration is more rapid and erratic. Dynamic deflagrating surface area calculations show that ambient temperature LX-17 deflagrating surface areas remain near unity over the pressure range studied.

  18. Microhole High-Pressure Jet Drill for Coiled Tubing

    SciTech Connect (OSTI)

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

  19. Capillary toroid cavity detector for high pressure NMR

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Chen, Michael J. (Downers Grove, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Honer Glen, IL); ter Horst, Marc (Chapel Hill, NC)

    2007-09-11

    A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

  20. Stretchers and compressors for ultra-high power laser systems

    SciTech Connect (OSTI)

    Yakovlev, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  1. Performance of Lanthanum Strontium Manganite Electrodes at High Pressure

    SciTech Connect (OSTI)

    Thomsen, Edwin C.; Coffey, Greg W.; Pederson, Larry R.; Marina, Olga A.

    2009-06-15

    The high-pressure performance of lanthanum strontium manganite (LSM), LSM-zirconia, and LSM/ceria composite electrodes was studied by impedance spectroscopy and dc methods. Electrode resistances decreased in proportion to P(O2)1/2 for the LSM electrode in both cathodic and anodic directions to at least 100 atm, a decrease that was attributed to dissociative oxygen adsorption, surface diffusion, and related phenomena. For the LSM-20/zirconia composite electrode, resistances decreased in proportion to P(O2)1/4 across the entire pressure range considered. Two principal features appeared in the impedance spectra, one that showed a P(O2)1/4 dependence attributed to charge transfer reactions, and one that was nearly pressure-independent, possibly due to transport in the zirconia portion of the composite. For the LSM-20/ceria composite electrode, resistances decreased as P(O2)0.3-0.4 at high pressure, depending on temperature. Two features appeared in the impedance spectra: one at low to intermediate frequency having a P(O2)1/2 dependence and one at high frequency having a P(O2)1/4 dependence. These features are attributed to dissociative oxygen adsorption and to charge transfer reactions, respectively. Results suggest that cathodic losses can be substantially lowered by operation of solid oxide fuel cells at greater than ambient pressure.

  2. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect (OSTI)

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  3. Ultra-high pressure water jet: Baseline report; Summary

    SciTech Connect (OSTI)

    NONE

    1997-07-31

    The Husky{trademark} is an ultra high pressure waterjet cutting tool system. The pump is mounted on a steel tube frame which includes slots for transport by a forklift. The Husky{trademark} features an automatic shutdown for several conditions such as low oil pressure and high oil temperature. Placement of the Husky{trademark} must allow for a three foot clearance on all sides for operation and service access. At maximum continuous operation, the output volume is 7.2 gallons per minute with an output pressure of 40,000 psi. A diesel engine provides power for the system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  4. Pressure dependence on the reaction propagation rate of PETN at high pressure

    SciTech Connect (OSTI)

    Foltz, M.F.

    1993-04-01

    The reaction propagation rate (RPR) of the sensitive high explosive pentaerythritol tetranitrate (PETN) was measured in a diamond anvil cell (DAC) over the pressure range of 2--20 GPa. The experimental technique used is the same as that previously reported. The RPR data shows that it burns one to two orders of magnitude faster in the DAC than 1,3,5,-triamino-2,4,6-trinitrobenzene (TATB) and nitromethane (CH{sub 3}NO{sub 2}) respectively. The PETN RPR curve did not show sample pressure-dependent behavior like that of nitromethane, but instead varied abruptly like the RPR curve of TATB. In order to interpret these changes, static-pressure DAC mid-IR FTIR spectra were taken of micro-pellets of PETN embedded in KBr. The relationship between changes in the spectra, the RPR curve, and published single crystal PETN wedge test data are discussed.

  5. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect (OSTI)

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  6. Lubricants under high local pressure: Liquids act like solids

    E-Print Network [OSTI]

    Mueser, Martin

    Lubricants under high local pressure: Liquids act like solids Schmierstoffe unter hohem lokalem Druck: Flu¨ ssigkeiten verhalten sich wie Fest- stoffe M. H. Mu¨ ser A lubricant layer solidifies when confining surfaces slide past each other induces flow in the lubricant layer that is akin of plastic flow

  7. Reduction of Film Coolant in High Pressure Turbines

    E-Print Network [OSTI]

    Wirsum Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen Prof. Dr.-Ing. Ingo RöhleReduction of Film Coolant in High Pressure Turbines Bachelor Thesis in Computational Engineering Institute of Propulsion Technology, German Aerospace Center #12;Abstract Gas turbine development has been

  8. High voltage switch triggered by a laser-photocathode subsystem

    DOE Patents [OSTI]

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  9. The Effects of Pressure on the Laser Initiation of TiHx/KC104 and Other Pyrotechnics

    SciTech Connect (OSTI)

    Holy, John A; Girmann, Thomas C

    1987-03-01

    The ignition thresholds of TiHx/KC104, Mg/Teflon, and an A1-torch mix are measured as a function of gas pressure for ignition by 514.5 nm pulses from an argon ion laser. The TiHx/KC104 system in argon gas has three distinct pressure regimes. The thresholds are very high below about 0.3 MPa, decrease rapidly between 0.3 and 1.5 MPa, and decrease gradually and become constant between 1.5 and 7 MPa. Mg/Teflon and the A1-torch mix also have decreasing thresholds with increasing gas pressures and decreasing pellet densities. Ignition pulse lengths between 0.25 and 20 milliseconds at a spot diameter of 65 microns in the TiHx/KC104 system indicate that the thresholds are predominantly power, not energy, thresholds for pulses longer than one millisecond. The increase in threshold power below one millisecond is consistent with a calculated time to reach thermal equilibrium of 0.96 milliseconds. The effect of beam diameters between 40 and 175 microns on the TiHx/KC104 thresholds is consistent with ignitions occurring at approximately the same temperature at the center of the beam. TiHx/KC104 and Zr/KC104/Viton/Graphite pyrotechnics are also ignitied in sealed devices through sapphire windows. Ignition thresholds are comparable to those on open surfaces in pressures of 0.1 to 0.5 MPa which suggests that samples first decompose and ignite under a pocket of pressure. Ignition failures in TiHx/KC104 and in low density Zr/KC104/Viton/Graphite samples are attributed to increased porosity and/or gaps near the windows which allow reaction products to escape from the ignition zone.

  10. High energy KrCl electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

    1981-01-01

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  11. Microsoft Word - NETL-TRS-5-2014_High-Temperature, High-Pressure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    values at 533 K (gray dashed line). Suggested Citation: Gamwo, I. K.; Tapriyal, D.; Enick, R. M.; McHugh, M. A.; Morreale, B. D. High Temperature, High Pressure Equation of...

  12. Development of a frequency doubled high powered laser diode end-pumped Nd:YVO?/LBO laser 

    E-Print Network [OSTI]

    Barr, Aaron Maxwell

    2003-01-01

    The development of a high power solid state laser poses a serious non-trivial task. Several different elements combine to form this complex quantum device. Each of the elements of the laser receives sufficient description herein. The pump source...

  13. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect (OSTI)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and P is the pressure in units of MPa. Details of the experimental method, results and data analysis are discussed herein and briefly compared to other AP based materials that have been measured in this apparatus.

  14. High-pressure lubricity at the meso- and nanoscale

    E-Print Network [OSTI]

    A. Vanossi; A. Benassi; N. Varini; E. Tosatti

    2013-01-11

    The increase of sliding friction upon increasing load is a classic in the macroscopic world. Here we discuss the possibility that friction rise might sometimes turn into a drop when, at the mesoscale and nanoscale, a confined lubricant film separating crystalline sliders undergoes strong layering and solidification. Under pressure, transitions from N to N-1 layers may imply a change of lateral periodicity of the crystallized lubricant sufficient to alter the matching of crystal structures, influencing the ensuing friction jump. A pressure-induced friction drop may occur as the shear gradient maximum switches from the lubricant middle, marked by strong stick-slip with or without shear melting, to the crystalline slider-lubricant interface, characterized by smooth superlubric sliding. We present high pressure sliding simulations to display examples of frictional drops, suggesting their possible relevance to the local behavior in boundary lubrication.

  15. Transport signatures of quantum critically in Cr at high pressure.

    SciTech Connect (OSTI)

    Jaramillo, R.; Feng, Y.; Wang, J.; Rosenbaum, T. F.

    2010-08-03

    The elemental antiferromagnet Cr at high pressure presents a new type of naked quantum critical point that is free of disorder and symmetry-breaking fields. Here we measure magnetotransport in fine detail around the critical pressure, P{sub c} {approx} 10 GPa, in a diamond anvil cell and reveal the role of quantum critical fluctuations at the phase transition. As the magnetism disappears and T {yields} 0, the magntotransport scaling converges to a non-mean-field form that illustrates the reconstruction of the magnetic Fermi surface, and is distinct from the critical scaling measured in chemically disordered Cr:V under pressure. The breakdown of itinerant antiferromagnetism only comes clearly into view in the clean limit, establishing disorder as a relevant variable at a quantum phase transition.

  16. Static and dynamic high pressure experiments on cerium

    SciTech Connect (OSTI)

    Jensen, Brian J [Los Alamos National Laboratory; Velisavljevic, Nenad [Los Alamos National Laboratory; Cherne, Frank J [Los Alamos National Laboratory; Stevens, Gerald [NST, STL; Tschauner, Oliver [UNIV OF NEVADA

    2011-01-25

    There is a scientific need to obtain dynamic data to develop and validate multi phase equation-of-state (EOS) models for metals. Experiments are needed to examine the relevant pure phases, to locate phase boundaries and the associated transition kinetics, and other material properties such as strength. Cerium is an ideal material for such work because it exhibits a complex multiphase diagram at relatively moderate pressures readily accessible using standard shock wave methods. In the current work, shock wave (dynamic) and diamond anvil cell (static) experiments were performed to examine the high pressure, low temperature region of the phase diagram to obtain EOS data and to search for the {alpha}-{var_epsilon} boundary. Past work examining the shock-melt transition and the low-pressure {gamma}-{alpha} transition will be presented in brief followed by details of recent results obtained from DAC and double-shock experiments.

  17. Modified approaches for high pressure filtration of fine clean coal

    SciTech Connect (OSTI)

    Yang, J.; Groppo, J.G.; Parekh, B.K. [Center for Applied Energy Research, Lexington, KY (United States)

    1995-12-31

    Removal of moisture from fine (minus 28 mesh) clean coal to 20% or lower level is difficult using the conventional vacuum dewatering technique. High pressure filtration technique provides an avenue for obtaining low moisture in fine clean coal. This paper describes a couple of novel approaches for dewatering of fine clean coal using pressure filtration which provides much lower moisture in fine clean coal than that obtained using conventional pressure filter. The approaches involve (a) split stream dewatering and (b) addition of paper pulp to the coal slurry. For Pittsburgh No. 8 coal slurry, split stream dewatering at 400 mesh provided filter cake containing 12.9% moisture compared to 24.9% obtained on the feed material. The addition of paper pulp to the slurry provided filter cake containing about 17% moisture.

  18. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect (OSTI)

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  19. Proposal for high pressure RF cavity test in the MTA

    SciTech Connect (OSTI)

    Yonehara, K.; /Fermilab

    2010-09-01

    In order to demonstrate the feasibility of high pressure hydrogen gas filled RF (HPRF) cavities for muon ionization cooling, an HPRF cavity must be tested with a high intensity charged beam. When an HPRF cavity is irradiated with an intense beam each incident particle generates about 1000 electrons and ions per cubic centimeter in a high pressure cavity via ionization. These ionization electrons are influenced by the RF field and the RF quality factor goes down. This Q factor reduction will be a problem with a multi bunch beam, e.g., a muon beam for a muon collider consists of a 12 to 20 bunch train beam with 5 ns timing gap. Thus, the RF field must recover in few nano seconds. We propose to use a 400 MeV proton beam in the MTA and measure a beam loading effect in the HPRF cavity and study the recovery mechanism of the RF field.

  20. Dichroic beamsplitter for high energy laser diagnostics

    DOE Patents [OSTI]

    LaFortune, Kai N (Livermore, CA); Hurd, Randall (Tracy, CA); Fochs, Scott N (Livermore, CA); Rotter, Mark D (San Ramon, CA); Hackel, Lloyd (Livermore, CA)

    2011-08-30

    Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.

  1. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOE Patents [OSTI]

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  2. Generation of high power, high repetition-rate pulses using erbium-doped fiber ring laser 

    E-Print Network [OSTI]

    Hinson, Brett Darren

    1998-01-01

    peak power. The linear cavity laser produced pulses with repetition rates as high as 128 MHz and a peak power of 6 mW. The ring cavity laser produced pulses with repetition rates as high as 1 GHz and a peak power of 36 mW....

  3. Laser enhanced high-intensity focused ultrasound thrombolysis: An in vitro study

    E-Print Network [OSTI]

    Cui, Huizhong; Yang, Xinmai

    2013-01-17

    Laser-enhanced thrombolysis by high intensity focused ultrasound (HIFU) treatment was studied in vitro with bovine blood clots. To achieve laser-enhanced thrombolysis, laser light was employed to illuminate the sample concurrently with HIFU...

  4. Ti-Sapphire Tunable Laser. Verdi G-Series Family High-Power

    E-Print Network [OSTI]

    Wolberg, George

    -Sapphire Tunable Laser. Verdi G-Series Family High-Power Optically Pumped supply ­ to enable a laser platform that is easily scalable in power Semiconductor Laser ( OPSL) The Verdi G-Series is a revolutionary

  5. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGHofWaste

  6. Hollow-waveguide delivery systems for high-power, industrial CO2 lasers

    E-Print Network [OSTI]

    Hollow-waveguide delivery systems for high-power, industrial CO2 lasers Ricky K. Nubling and James to deliver CO2 laser power for industrial laser applications. The transmission, bending loss, and output, beam delivery, industrial lasers, power delivery, CO2 lasers. r 1996 Optical Society of America 1

  7. Fusion neutron yield from high intensity laser-cluster interaction

    SciTech Connect (OSTI)

    Davis, J.; Petrov, G.M.; Velikovich, A.L. [Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2006-06-15

    The fusion neutron yield from a compact neutron source is studied. Laser-irradiated deuterium clusters serve as a precursor of high-energy deuterium ions, which react with the walls of a fusion reaction chamber and produce copious amounts of neutrons in fusion reactions. The explosion of deuterium clusters with initial radius of 50-200 A irradiated by a subpicosecond laser with intensity of 10{sup 16} W/cm{sup 2} is examined theoretically. We studied the conversion efficiency of laser energy to ion kinetic energy, the mean and maximum ion kinetic energy, and ion energy distribution function by a molecular dynamics model. A yield of {approx}10{sup 5}-10{sup 6} neutrons/J is obtainable for a peak laser intensity of 10{sup 16}-10{sup 17} W/cm{sup 2} and clusters with an initial radius of 200-400 A.

  8. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutron ComputedHigh-PerformanceHigh-Pressure MOF

  9. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutron ComputedHigh-PerformanceHigh-Pressure

  10. High-pressure shock behavior of WC and Ta2O5 powders.

    SciTech Connect (OSTI)

    Knudson, Marcus D. (Sandia National Laboratories, Albuquerque, NM); Reinhart, William Dodd (Sandia National Laboratories, Albuquerque, NM); Vogler, Tracy John; Root, Seth (Sandia National Laboratories, Albuquerque, NM)

    2011-10-01

    Planar shock experiments were conducted on granular tungsten carbide (WC) and tantalum oxide (Ta{sub 2}O{sub 5}) using the Z machine and a 2-stage gas gun. Additional shock experiments were also conducted on a nearly fully dense form of Ta{sub 2}O{sub 5}. The experiments on WC yield some of the highest pressure results for granular materials obtained to date. Because of the high distention of Ta{sub 2}O{sub 5}, the pressures obtained were significantly lower, but the very high temperatures generated led to large contributions of thermal energy to the material response. These experiments demonstrate that the Z machine can be used to obtain accurate shock data on granular materials. The data on Ta{sub 2}O{sub 5} were utilized in making improvements to the P-{lambda} model for high pressures; the model is found to capture the results not only of the Z and gas gun experiments but also those from laser experiments on low density aerogels. The results are also used to illustrate an approach for generating an equation of state using only the limited data coming from nanoindentation. Although the EOS generated in this manner is rather simplistic, for this material it gives reasonably good results.

  11. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael Swanson; Daniel Laudal

    2008-03-31

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

  12. High-pressure Raman spectroscopy of phase change materials (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article)SciTechHigh-contrast

  13. High-pressure stability relations, crystal structures, and physical

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article)SciTechHigh-contrastproperties of perovskite

  14. Intermittently-fed high-pressure gasifier process

    DOE Patents [OSTI]

    Bailey, John M. (Dunlap, IL); Zadoks, Abraham L. (Peoria, IL)

    1993-11-30

    An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.

  15. Intermittently-fed high-pressure gasifier process

    DOE Patents [OSTI]

    Bailey, J.M.; Zadoks, A.L.

    1993-11-30

    An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.

  16. Vibratory high pressure coal feeder having a helical ramp

    DOE Patents [OSTI]

    Farber, Gerald (Elmont, NY)

    1978-01-01

    Apparatus and method for feeding powdered coal from a helical ramp into a high pressure, heated, reactor tube containing hydrogen for hydrogenating the coal and/or for producing useful products from coal. To this end, the helical ramp is vibrated to feed the coal cleanly at an accurately controlled rate in a simple reliable and trouble-free manner that eliminates complicated and expensive screw feeders, and/or complicated and expensive seals, bearings and fully rotating parts.

  17. Radiofrequency Initiation and Radiofrequency Sustainment of Laser Initiated Seeded High

    E-Print Network [OSTI]

    Scharer, John E.

    radiofrequency initiation of high pressure(l-70 Ton) inductive plasma discharges in argon, nitrogen, air, decontaminating environmental waste and gaseous pollution. The ap- plication of these plasma sources require

  18. Soot formation in high pressure laminar diffusion flames Ahmet E. Karatas *, mer L. Glder

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Review Soot formation in high pressure laminar diffusion flames Ahmet E. Karatas¸ *, Ömer L. Gülder online 30 June 2012 Keywords: High pressure soot formation High pressure combustion Laminar diffusion laminar co-flow diffusion flames burning at elevated pressures. First, a brief review of soot formation

  19. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOE Patents [OSTI]

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  20. Vitiated ethane oxidation in a high-pressure flow reactor

    SciTech Connect (OSTI)

    Walters, K.M.; Bowman, C.T.

    2009-10-15

    Vitiated combustion processes offer the potential to improve the thermodynamic efficiency in hydrocarbon-fueled combustion systems, providing a subsequent decrease in energy-specific CO{sub 2} emissions along with a decrease in the emission levels of nitrogen oxides (NO{sub x}) and particulate matter. The present work comprises an experimental and modeling study of vitiated ethane oxidation in a high-pressure flow reactor, with pressures of 1-6 bar, O{sub 2} mole fractions of 3.5-7.0%, temperatures of 1075-1100 K and 15-18 mole.% H{sub 2}O. Time-history measurements of species are used to characterize the overall rate of reaction and track the fuel-carbon through intermediate and product species. A one-dimensional mixing-reacting model that accounts for partial oxidation during reactant mixing is used in conjunction with a detailed kinetic mechanism. Changes in competing pathways due to variations in pressure and O{sub 2} mole fraction give rise to the complex pressure dependence seen in the experiments. (author)

  1. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutronHigh-Pressure MOF Research Yields Structural

  2. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutronHigh-Pressure MOF Research Yields

  3. Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures

    SciTech Connect (OSTI)

    Bodet, L.; Dhemaied, A.; Mourgues, R.; Tournat, V.; Rejiba, F.

    2012-05-24

    Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

  4. High Rate Laser Pitting Technique for Solar Cell Texturing

    SciTech Connect (OSTI)

    Hans J. Herfurth; Henrikki Pantsar

    2013-01-10

    High rate laser pitting technique for solar cell texturing Efficiency of crystalline silicon solar cells can be improved by creating a texture on the surface to increase optical absorption. Different techniques have been developed for texturing, with the current state-of-the-art (SOA) being wet chemical etching. The process has poor optical performance, produces surfaces that are difficult to passivate or contact and is relatively expensive due to the use of hazardous chemicals. This project shall develop an alternative process for texturing mc-Si using laser micromachining. It will have the following features compared to the current SOA texturing process: -Superior optical surfaces for reduced front-surface reflection and enhanced optical absorption in thin mc-Si substrates -Improved surface passivation -More easily integrated into advanced back-contact cell concepts -Reduced use of hazardous chemicals and waste treatment -Similar or lower cost The process is based on laser pitting. The objective is to develop and demonstrate a high rate laser pitting process which will exceed the rate of former laser texturing processes by a factor of ten. The laser and scanning technologies will be demonstrated on a laboratory scale, but will use inherently technologies that can easily be scaled to production rates. The drastic increase in process velocity is required for the process to be implemented as an in-line process in PV manufacturing. The project includes laser process development, development of advanced optical systems for beam manipulation and cell reflectivity and efficiency testing. An improvement of over 0.5% absolute in efficiency is anticipated after laser-based texturing. The surface textures will be characterized optically, and solar cells will be fabricated with the new laser texturing to ensure that the new process is compatible with high-efficiency cell processing. The result will be demonstration of a prototype process that is suitable for scale-up to a production tool and process. The developed technique will have an reducing impact on product pricing. As efficiency has a substantial impact on the economics of solar cell production due to the high material cost content; in essence, improved efficiency through cost-effective texturing reduces the material cost component since the product is priced in terms of $/W. The project is a collaboration between Fraunhofer USA, Inc. and a c-Si PV manufacturer.

  5. Laser heating of solid matter by light pressure-driven shocks

    SciTech Connect (OSTI)

    Akli, K; Hansen, S B; Kemp, A J; Freeman, R R; Beg, F N; Clark, D; Chen, S; Hey, D; Highbarger, K; Giraldez, E; Green, J; Gregori, G; Lancaster, K; Ma, T; MacKinnon, A J; Norreys, P A; Patel, N; Patel, P; Shearer, C; Stephens, R B; Stoeckl, C; Storm, M; Theobald, W; Van Woerkom, L; Weber, R; Key, M H

    2007-05-04

    Heating by irradiation of a solid surface in vacuum with 5 x 10{sup 20} W cm{sup -2}, 0.8 ps, 1.05 {micro}m wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo and V. A surface layer is heated to {approx} 5 keV with an axial temperature gradient of 0.6 {micro}m scale length. Images of Ni Ly{sub {alpha}} show the hot region has a {approx} 25 {micro}m diameter, much smaller than {approx} 70 {micro}m region of K{sub {alpha}} emission. 2D particle-in-cell (PIC) simulations suggest that the surface heating is due to a light pressure driven shock.

  6. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOE Patents [OSTI]

    Freitas, Barry L. (Livermore, CA)

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  7. Recent advances in phosphate laser glasses for high power applications

    SciTech Connect (OSTI)

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  8. Free Electron Lasers Seeded by ir Laser Driven High-order Harmonic Generation

    SciTech Connect (OSTI)

    Wu, Juhao; Bolton, Paul R.; /SLAC; Murphy, James B.; /BNL, NSLS; Zhong, Xinming; /Beijing Normal U.

    2007-03-12

    Coherent x-ray production by a seeded free electron laser (FEL) is important for next generation synchrotron light sources. We examine the feasibility and features of FEL emission seeded by a high-order harmonic of an infrared laser (HHG). In addition to the intrinsic FEL chirp, the longitudinal profile and spectral bandwidth of the HHG seed are modified significantly by the FEL interaction well before saturation. This smears out the original attosecond pulselet structure. We introduce criteria for this smearing effect on the pulselet and the stretching effect on the entire pulse. We discuss the noise issue in such a seeded FEL.

  9. Specific features of the behaviour of targets under negative pressures created by a picosecond laser pulse

    SciTech Connect (OSTI)

    Abrosimov, S A; Bazhulin, A P; Voronov, Valerii V; Geras'kin, A A; Krasyuk, Igor K; Pashinin, Pavel P; Semenov, Andrei Yu; Stuchebryukhov, I A; Khishchenko, K V; Fortov, Vladimir E

    2013-03-31

    New experimental data are obtained concerning the character of spallation and the mechanical strength of targets made of aluminium, aluminium - magnesium alloy (AMg6M), polymethylmethacrylate (PMMA, plexiglass), tantalum, copper, tungsten, palladium, silicon, and lead under the impact of laser radiation with the duration 70 ps. The specific features of the spallation phenomenon, in which the separation of a part of the target substance occurs at the back surface as a result of the effect of negative pressures (tensile stresses) in the substance, are experimentally studied. To determine the time moment of spallation, the electrocontact method of measuring the velocity of the spalled layer is developed and implemented. The obtained results show that the values of spall strength of the studied materials at moderate amplitudes of the shock-wave effect agree with the known literature data, while at higher pressures the growth of spall strength is observed, which is an evidence of the material hardening. The results of the studies demonstrate that the dynamic strength of a substance depends on both the duration and the amplitude of the shock-wave impact on the target. (extreme light fields and their applications)

  10. Laser device

    DOE Patents [OSTI]

    Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  11. Laser device

    DOE Patents [OSTI]

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  12. FRICTION FACTOR IN HIGH PRESSURE NATURAL GAS PIPELINES FROM ROUGHNESS MEASUREMENTS

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    FRICTION FACTOR IN HIGH PRESSURE NATURAL GAS PIPELINES FROM ROUGHNESS MEASUREMENTS DETERMINATION DU and Technology, Norway ABSTRACT Pressure drop experiments on natural gas flow at 80 to 120 bar pressure and high of natural gas at typical operating pressures (100-180 bar). At such Reynolds numbers the classical Colebrook

  13. The effect of condensate dropout on pressure transient analysis of a high-pressure gas condensate well 

    E-Print Network [OSTI]

    Briens, Frederic Jean-Louis

    1986-01-01

    THE EFFECT OF CONDENSATE DROPOUT ON PRESSURE TRANSIENT ANALYSIS OF A HIGH-PRESSURE GAS CONDENSATE NELL A thesis FREDERIC JEAN-LOUIS BRIENS Submitted to the Graduate College of Texas A&M University in partial fulfillement of the requirements i...'or the degree of MASTER OF SCIENCE August 1986 Major Subject : Petr oleum Engineering THE EFFECT OF CONDENSATE DROPOUT ON PRESSURE TRANSIENT ANALYSIS OF A HIGH-PRESSURE GAS CONDENSATE WELL A thesis by FREDERIC JEAN-LOUiS SRIENS Approved as to style...

  14. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This information will lead to a variety of beneficial applications including pressure switches, smart body armor, pressure sensors, or shock absorbing materials. A recent review...

  15. System Study: High-Pressure Core Spray 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure core spray (HPCS) at 8 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCS results.

  16. Argon difluoride (ArF2) stabilized at high pressure

    E-Print Network [OSTI]

    Kurzyd?owski, Dominik

    2015-01-01

    On account of the rapid development of noble gas chemistry in the past half-century both xenon and krypton compounds can now be isolated in macroscopic quantities. The same though does not hold true for the next lighter group 18 element, argon, which forms only isolated molecules stable solely in low-temperature matrices or supersonic jet streams. Here we present theoretical investigations into a new high-pressure reaction pathway which enables synthesis of Ar-bearing compounds in bulk and at room temperature.

  17. System Study: High-Pressure Coolant Injection 1998-2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  18. System Study: High-Pressure Safety Injection 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  19. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D. Title: ProfessorHigh-Pressure MOF Research Yields

  20. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D. Title: ProfessorHigh-Pressure MOF Research

  1. Method and system for modulation of gain suppression in high average power laser systems

    DOE Patents [OSTI]

    Bayramian, Andrew James (Manteca, CA)

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  2. High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of...

  3. High average power magnetic modulator for copper lasers

    SciTech Connect (OSTI)

    Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.

    1991-06-14

    Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.

  4. High-Pressure Melt Streaming (HIPS) program plan

    SciTech Connect (OSTI)

    Tarbell, W.; Brockmann, J.; Pilch, M.

    1984-08-01

    The Zion Probabilistic Safety Study (ZPSS) envisions accident sequences that could lead to failure of the reactor vessel while the primary system is pressurized. The resulting ejection of molten core material into the reactor cavity followed by the blowdown of steam and hydrogen is shown to cause the debris to enter into the containment region. The High Pressure Melt Streaming (HIPS) program has been developed to provide an experimental and analytical investigation of the scenario described above. One-tenth linear scale models of the Zion cavity region will be used to investigate the debris dispersal phenomena. Smaller-scale experiments (SPIT-tests) are also used to study high-velocity jets, jet-water interactions, and 1/20th scale cavity geometries. Both matrices are developed using a factorial design approach. The document describes certain aspects of the ZPSS ex-vessel phenomena, the experimental matrices, test equipment, and instrumentation, and the program's analytical efforts. Preliminary data from SPIT testing are included.

  5. DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION

    SciTech Connect (OSTI)

    WHYTE, DG; JERNIGAN, TC; HUMPHREYS, DA; HYATT, AW; LASNIER, CJ; PARKS, PB; EVANS, TE; TAYLOR, PL; KELLMAN, AG; GRAY, DS; HOLLMANN, EM

    2002-10-01

    OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of >95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ({approx} 1-2 eV) and the impurity charge distribution can include > 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

  6. Solidi cation of a high-Reynolds-number ow in laser percussion drilling

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Solidi#12;cation of a high-Reynolds-number ow in laser percussion drilling W. R. Smith y and R. M laser percussion drilling. 1 Introduction Laser percussion drilling is used to machine gas turbine with conventional mechanical drills. The term percussion refers to the repeated operation of the laser in short

  7. Smart Onboard Inspection of High Pressure Gas Fuel Cylinders

    SciTech Connect (OSTI)

    Beshears, D.L.; Starbuck, J.M.

    1999-09-27

    The use of natural gas as an alternative fuel in automotive applications is not widespread primarily because of the high cost and durability of the composite storage tanks. Tanks manufactured using carbon fiber are desirable in weight critical passenger vehicles because of the low density of carbon fiber. The high strength of carbon fiber also translates to a weight reduction because thinner wall designs are possible to withstand the internal pressure loads. However, carbon fiber composites are prone to impact damage that over the life of the storage tank may lead to an unsafe condition for the vehicle operator. A technique that potentially may be a reliable indication of developing hazardous conditions in composite fuel tanks is imbedded fiber optics. The applicability of this technique to onboard inspection is discussed and results from preliminary lab testing indicate that fiber optic sensors can reliably detect impact damage.

  8. Comparison of diesel spray combustion in different high-temperature, high-pressure facilities.

    SciTech Connect (OSTI)

    Christiansen, Caspar; Hermant, Laurent; Malbec, Louis-Marie; Bruneaux, Gilles; Genzale, Caroline L.; Pickett, Lyle M.; Schramm, Jesper

    2010-05-01

    Diesel spray experiments at controlled high-temperature and high-pressure conditions offer the potential for an improved understanding of diesel combustion, and for the development of more accurate CFD models that will ultimately be used to improve engine design. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but uncertainties about their operation exist because of the uniqueness of each facility. For the IMEM meeting, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m{sup 3}, 15% oxygen) and sharing the same injector (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging. Performing experiments at the same high-temperature, high-pressure operating conditions is an objective of the Engine Combustion Network (http://www.ca.sandia.gov/ECN/), which seeks to leverage the research capabilities and advanced diagnostics of all participants in the ECN. We expect that this effort will generate a high-quality dataset to be used for advanced computational model development at engine conditions.

  9. Electrical conductivity of wadsleyite at high temperatures and high pressures Lidong Dai a,b

    E-Print Network [OSTI]

    Electrical conductivity of wadsleyite at high temperatures and high pressures Lidong Dai a,b , Shun 2009 Editor: L. Stixrude Keywords: electrical conductivity wadsleyite oxygen fugacity frequency water The electrical conductivity of wadsleyite aggregates has been determined under the broad range of thermodynamic

  10. Lasers

    SciTech Connect (OSTI)

    1995-01-01

    The scope of our research in laser and related technologies has grown over the years and has attracted a broad user base for applications within DOE, DOD, and private industry. Within the next few years, we expect to begin constructing the National Ignition Facility, to make substantial progress in deploying AVLIS technology for uranium and gadolinium enrichment, and to develop new radar sensing techniques to detect underwater objects. Further, we expect to translate LLNL patent ideas in microlithography into useful industrial products and to successfully apply high-power, diode-based laser technology to industrial and government applications.

  11. Control system for high power laser drilling workover and completion unit

    DOE Patents [OSTI]

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  12. Present and future perspectives for high energy density physics with intense heavy ion and laser beams

    E-Print Network [OSTI]

    , Germany! accelerator facilities, together with two high energy laser systems: petawatt high energy laserPresent and future perspectives for high energy density physics with intense heavy ion and laser!, Plasmaphysik, Darmstadt, Germany 2 Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt

  13. High-power laser beam control by PTR Bragg gratings Igor Ciapurin(1)

    E-Print Network [OSTI]

    Glebov, Leon

    High-power laser beam control by PTR Bragg gratings Igor Ciapurin(1) , Vadim Smirnov(1,2) , George is a photo-thermo-refractive (PTR) glass, and used for high-power laser beam control. Exceptionally narrow combining (SBC) is considered as a promising way for high power laser systems design in numerous

  14. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOE Patents [OSTI]

    Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1990-10-16

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  15. MODELING AND CONTROL OF A HIGH PRESSURE COMBINED AIR/FUEL INJECTION SYSTEM

    E-Print Network [OSTI]

    Barth, Eric J.

    MODELING AND CONTROL OF A HIGH PRESSURE COMBINED AIR/FUEL INJECTION SYSTEM Chao Yong Eric J. Barth.j.barth@vanderbilt.edu ABSTRACT A high pressure combined air-fuel injection system is designed and tested for an experimental free the compressor's reservoir, and high pressure fuel to mix and then inject into a combustion chamber. This paper

  16. Optical characterization of InN layers grown by high-pressure chemical vapor deposition

    E-Print Network [OSTI]

    Dietz, Nikolaus

    Optical characterization of InN layers grown by high-pressure chemical vapor deposition M. Alevli properties of InN layers grown by high-pressure chemical vapor deposition have been studied. Raman, infrared at elevated temperatures, a high-pressure chemical vapor deposition HPCVD system has been established at GSU.6

  17. High-pressure coal fuel processor development. Final report

    SciTech Connect (OSTI)

    Greenhalgh, M.L. [Caterpillar, Inc., Peoria, IL (United States)

    1992-12-01

    Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

  18. High power continuous-wave titanium:sapphire laser

    DOE Patents [OSTI]

    Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

    1993-09-21

    A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

  19. High power continuous-wave titanium:sapphire laser

    DOE Patents [OSTI]

    Erbert, Gaylen V. (Livermore, CA); Bass, Isaac L. (Castro Valley, CA); Hackel, Richard P. (Livermore, CA); Jenkins, Sherman L. (Livermore, CA); Kanz, Vernon K. (Livermore, CA); Paisner, Jeffrey A. (Danville, CA)

    1993-01-01

    A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).

  20. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect (OSTI)

    N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

    2010-10-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  1. TENSILE TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect (OSTI)

    Duncan, A; Thad Adams, T; Ps Lam, P

    2007-05-02

    An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.

  2. Development of Designer Diamond Technology for High-Pressure-High Temperature Experiments in Support of the Stockpile Stewardship

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2003-08-27

    OAK B127 Development of Designer Diamond Technology for High-Pressure-High Temperature Experiments in Support of the Stockpile Stewardship

  3. A highly efficient, compact Yb:KYW laser for mobile precision systems

    SciTech Connect (OSTI)

    Kuznetsov, S A; Pivtsov, V S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-05-30

    We have developed a promising scheme of a multimodediode-pumped ytterbium laser. The Yb:KYW laser in the cw regime demonstrates record-high differential (40%) and total optical (35%) efficiencies. Mode locking is realised, which allows the scheme to be used for the development of compact laser systems, such as mobile femtosecond precision synthesisers. The peculiarities of the laser operation and ways of further improving its efficiency are discussed. (lasers)

  4. Generation of high pressure shocks relevant to the shock-ignition intensity regime

    SciTech Connect (OSTI)

    Batani, D.; Folpini, G.; Giuffrida, L.; Maheut, Y.; Malka, G.; Nicolai, Ph.; Ribeyre, X. [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France)] [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Antonelli, L. [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France) [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Università di Roma “Tor Vergata,” Roma (Italy); Atzeni, S.; Marocchino, A.; Schiavi, A. [Dipartimento SBAI, Université di Roma “La Sapienza” and CNISM, Roma (Italy)] [Dipartimento SBAI, Université di Roma “La Sapienza” and CNISM, Roma (Italy); Badziak, J.; Chodukowski, T.; Kalinowska, Z.; Pisarczyk, T.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland)] [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Baffigi, F.; Cristoforetti, G.; Gizzi, L. A.; Koester, P. [Intense Laser Irradiation Laboratory, INO-CNR, Pisa (Italy)] [Intense Laser Irradiation Laboratory, INO-CNR, Pisa (Italy); and others

    2014-03-15

    An experiment was performed using the PALS laser to study laser-target coupling and laser-plasma interaction in an intensity regime ?10{sup 16}?W/cm{sup 2}, relevant for the “shock ignition” approach to Inertial Confinement Fusion. A first beam at low intensity was used to create an extended preformed plasma, and a second one to create a strong shock. Pressures up to 90 Megabars were inferred. Our results show the importance of the details of energy transport in the overdense region.

  5. Vacuum surface flashover and high pressure gas streamers

    SciTech Connect (OSTI)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.; Stolz, D.; Wright, S.N. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.; Sampayan, S.E.; Caporaso, G.J.; Vitello, P.; Tishchenko, N. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01

    Pre-breakdown current traces obtained during high pressure gas breakdown and vacuum surface flashover show similar signatures. The initial pre-breakdown current spike, a flat constant current phase, and the breakdown phase with voltage collapse and current surge differ mostly in magnitude. Given these similarities, a model, consisting of the initial current spike corresponding to a fast precursor streamer (ionization wave led by a photoionizing front), the flat current stage as the heating or glow phase, and the terminal avalanche and gap closure, is applied to vacuum surface flashover. A simple analytical approximation based on the resistivity changes induced in the vacuum and dielectric surface is presented. The approximation yields an excellent fit to pre-breakdown time delay vs applied field for previously published experimental data. A detailed kinetics model that includes surface and gas contributions is being developed based in the initial approximation.

  6. On the atomic line profiles in high pressure plasmas

    SciTech Connect (OSTI)

    Janssen, J. F. J.; Gnybida, M.; Rijke, A. J.; Dijk, J. van [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)] [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Suijker, J. L. G. [Philips Lighting R and D Category Professional Lamps, P.O. Box 80020, 5600 JM Eindhoven (Netherlands)] [Philips Lighting R and D Category Professional Lamps, P.O. Box 80020, 5600 JM Eindhoven (Netherlands)

    2013-11-14

    In a previous contribution to this journal [H. P. Stormberg, J. Appl. Phys. 51(4), 1963 (1980)], Stormberg presented an analytical expression for the convolution of Lorentz and Levy line profiles, which models atomic radiative transitions in high pressure plasmas. Unfortunately, the derivations are flawed with errors and the final expression, while correct, is accompanied by misguiding comments about the meaning of the symbols used therein, in particular the “complex error function.” In this paper, we discuss the broadening mechanisms that give rise to Stormberg's model and present a correct derivation of his final result. We will also provide an alternative expression, based on the Faddeeva function, which has decisive computational advantages and emphasizes the real-valuedness of the result. The MATLAB/Octave scripts of our implementation have been made available on the publisher's website for future reference.

  7. Pressure-induced phase transformations during femtosecond-laser doping of silicon

    E-Print Network [OSTI]

    Smith, Matthew J.

    Silicon hyperdoped with chalcogens via femtosecond-laser irradiation exhibits unique near-unity sub-bandgap absorptance extending into the infrared region. The intense light-matter interactions that occur during femtosecond-laser ...

  8. Light scattering from laser induced pit ensembles on high power laser optics

    SciTech Connect (OSTI)

    Feigenbaum, Eyal [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elhadj, Selim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-01

    Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expected to be substantially lower than assuming complete scattering from the total visible footprint of the pits.

  9. Light scattering from laser induced pit ensembles on high power laser optics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feigenbaum, Eyal; Elhadj, Selim; Matthews, Manyalibo J.

    2015-01-01

    Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expectedmore »to be substantially lower than assuming complete scattering from the total visible footprint of the pits.« less

  10. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOE Patents [OSTI]

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  11. Development of high gradient laser wakefield accelerators towards nuclear detection applications at LBNL

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    compact systems. Laser-driven, plasma wakefield accelerators (LWFAs) [2] in use at LBNL provide high than conventional linacs, and confirms the anticipated scaling of laser driven accelerators to GeDevelopment of high gradient laser wakefield accelerators towards nuclear detection applications

  12. PROPERTIES OF RELATIVELY-DILUTEPLASMAS IN PULSED-POWER SYSTEMS OBTAINED FROM HIGH-ACCURACY LASER

    E-Print Network [OSTI]

    PROPERTIES OF RELATIVELY-DILUTEPLASMAS IN PULSED-POWER SYSTEMS OBTAINED FROM HIGH-ACCURACY LASER plasmas under high-power pulses at the nanosecond time scale. The method is based on resonant laser application of laser-spectroscopy to investigate the electric fields and the properties of relatively dilute

  13. Narrowing of high power diode laser arrays using reflection feedback from an etalon

    E-Print Network [OSTI]

    Romalis, Mike

    Narrowing of high power diode laser arrays using reflection feedback from an etalon M. V. Romalisa for publication 27 June 2000 The spectrum of a high power multielement laser array is narrowed using reflection of the laser array is reduced by a factor of 2 with only 6% power loss. This reduction in FWHM is useful

  14. High power CW Tm:YLF laser with a holographic output Alex Dergachev, Peter F. Moulton

    E-Print Network [OSTI]

    Glebov, Leon

    High power CW Tm:YLF laser with a holographic output coupler Alex Dergachev, Peter F. Moulton Q with output power exceeding 30 W. 2003 Optical Society of America OCIS codes: (140.3580) Lasers, solid yet reported of a high power Tm-doped bulk laser operated with a bulk holographic Bragg grating

  15. A LASER-BASED MEASUREMENT DEVICE FOR HIGHLY RADIOACTIVE SPECIMENS

    SciTech Connect (OSTI)

    Strachan, Denis M.; Buchmiller, William C.; Park, Walter R.; Munley, John T.

    2004-01-05

    A laser-based measurement device was developed so that the dimensions of highly radioactive specimens could be monitored over the span of several years. The device employs two laser curtain and diode detector pairs that are mounted orthogonally to each other. Each pair has its own controller, which is used to obtain 3500 simultaneous measurements of the height and diameter of the specimens. The precision of the measurements is less than 10 {micro}m over a period of more that two years. The device was also used to measure various parallelepipeds. It was possible to determine the dimensions of these parallelepipeds and the angle between the sides. Several improvements to the device are recommended.

  16. Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation

    SciTech Connect (OSTI)

    Jerzembeck, S.; Peters, N. [RWTH, Aachen (Germany); Pepiot-Desjardins, P.; Pitsch, H. [Department of Mechanical Engineering, Stanford University, CA (United States)

    2009-02-15

    Spherical flames of n-heptane, iso-octane, PRF 87 and gasoline/air mixtures are experimentally investigated to determine laminar burning velocities and Markstein lengths under engine-relevant conditions by using the constant volume bomb method. Data are obtained for an initial temperature of 373 K, equivalence ratios varying from {phi}=0.7 to {phi}=1.2, and initial pressures from 10 to 25 bar. To track the flame front in the vessel a dark field He-Ne laser Schlieren measurement technique and digital image processing were used. The propagating speed with respect to the burned gases and the stretch rate are determined from the rate of change of the flame radius. The laminar burning velocities are obtained through a linear extrapolation to zero stretch. The experimentally determined Markstein numbers are compared to theoretical predictions. A reduced chemical kinetic mechanism for n-heptane and iso-octane was derived from the Lawrence Livermore comprehensive mechanisms. This mechanism was validated for ignition delay times and flame propagation at low and high pressures. In summary an overall good agreement with the various experimental data sets used in the validation was obtained. (author)

  17. Bright x-ray sources from laser irradiation of foams with high...

    Office of Scientific and Technical Information (OSTI)

    Bright x-ray sources from laser irradiation of foams with high concentration of Ti Citation Details In-Document Search Title: Bright x-ray sources from laser irradiation of foams...

  18. Equations of state of ice VI and ice VII at high pressure and high temperature

    SciTech Connect (OSTI)

    Bezacier, Lucile; Hanfland, Michael; Journaux, Baptiste; Perrillat, Jean-Philippe; Cardon, Hervé; Daniel, Isabelle

    2014-09-14

    High-pressure H{sub 2}O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H{sub 2}O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V{sub 0} = 14.17(2) cm{sup 3}?mol{sup ?1}, K{sub 0} = 14.05(23) GPa, and ?{sub 0} = 14.6(14) × 10{sup ?5} K{sup ?1} for ice VI and V{sub 0} = 12.49(1) cm{sup 3}?mol{sup ?1}, K{sub 0} = 20.15(16) GPa, and ?{sub 0} = 11.6(5) × 10{sup ?5} K{sup ?1} for ice VII.

  19. High-pressure cell for neutron diffraction with in situ pressure control at cryogenic temperatures

    SciTech Connect (OSTI)

    Jacobsen, Matthew K.; Ridley, Christopher J.; Bocian, Artur; Kamenev, Konstantin V.; Kirichek, Oleg; Manuel, Pascal; Khalyavin, Dmitry; Azuma, Masaki; Attfield, J. Paul

    2014-04-15

    Pressure generation at cryogenic temperatures presents a problem for a wide array of experimental techniques, particularly neutron studies due to the volume of sample required. We present a novel, compact pressure cell with a large sample volume in which load is generated by a bellow. Using a supply of helium gas up to a pressure of 350 bar, a load of up to 78 kN is generated with leak-free operation. In addition, special fiber ports added to the cryogenic center stick allow for in situ pressure determination using the ruby pressure standard. Mechanical stability was assessed using finite element analysis and the dimensions of the cell have been optimized for use with standard cryogenic equipment. Load testing and on-line experiments using NaCl and BiNiO{sub 3} have been done at the WISH instrument of the ISIS pulsed neutron source to verify performance.

  20. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  1. High-pressure studies on molecular systems at ambient and low temperatures 

    E-Print Network [OSTI]

    Cameron, Christopher Alistair

    2015-06-30

    Pressure and temperature are two environmental variables that are increasingly being exploited by solid-state researchers probing structure-property relationships in the crystalline state. Modern high-pressure apparatus ...

  2. High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results

    SciTech Connect (OSTI)

    J.E. O'Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

    2012-09-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.

  3. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Döppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; et al

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore »the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v???. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v???) and is additional evidence that these experiments have significant alpha heating.« less

  4. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Callahan, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000315498916); Hurricane, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinkel, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Döppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. -S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios Garcia, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berzak Hopkins, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000291875667); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerjan, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000251686845); Dewald, E. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dittrich, T. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000184045131); Hamza, A. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kline, J. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Knauer, J. P. [Univ. of Rochester, NY (United States); Kritcher, A. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacPhee, A. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000341604479); Milovich, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikroo, A. [General Atomics, San Diego, CA (United States)] (ORCID:0000000288550378); Pak, A. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salmonson, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spears, B. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Springer, P. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tommasini, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benedetti, L. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bionta, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bond, E. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Field, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fittinghoff, D. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Gatu Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Grim, G. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hatarik, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Merrill, F. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000277686819); Izumi, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khan, S. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-01

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v???. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v???) and is additional evidence that these experiments have significant alpha heating.

  5. High power laser heating of low absorption materials

    SciTech Connect (OSTI)

    Olson, K.; Talghader, J.; Ogloza, A.; Thomas, J.

    2014-09-28

    A model is presented and confirmed experimentally that explains the anomalous behavior observed in continuous wave (CW) excitation of thermally isolated optics. Distributed Bragg Reflector (DBR) high reflective optical thin film coatings of HfO? and SiO?were prepared with a very low absorption, about 7 ppm, measured by photothermal common-path interferometry. When illuminated with a 17 kW CW laser for 30 s, the coatings survived peak irradiances of 13 MW/cm², on 500 ?m diameter spot cross sections. The temperature profile of the optical surfaces was measured using a calibrated thermal imaging camera for illuminated spot sizes ranging from 500 ?m to 5 mm; about the same peak temperatures were recorded regardless of spot size. This phenomenon is explained by solving the heat equation for an optic of finite dimensions and taking into account the non-idealities of the experiment. An analytical result is also derived showing the relationship between millisecond pulse to CW laser operation where (1) the heating is proportional to the laser irradiance (W/m²) for millisecond pulses, (2) the heating is proportional to the beam radius (W/m) for CW, and (3) the heating is proportional to W/m? tan?¹(?(t)/m) in the transition region between the two.

  6. Bonfire Tests of High Pressure Hydrogen Storage Tanks

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  7. High-pressure solvent extraction of methane from geopressured...

    Office of Scientific and Technical Information (OSTI)

    followed by conventional mechanical pumping. The contributions of hydraulic (pressure) energy recovery and geothermal power production are also assessed. For deep injection into...

  8. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    SciTech Connect (OSTI)

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady Hassanein, Ahmed

    2014-04-15

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained from the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1?atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1?atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.

  9. Radiation Pressure Induced Instabilities in Laser Interferometric Detectors of Gravitational Waves

    E-Print Network [OSTI]

    A. Pai; S. V. Dhurandhar; P. Hello; J-Y. Vinet

    2000-11-28

    The large scale interferometric gravitational wave detectors consist of Fabry-Perot cavities operating at very high powers ranging from tens of kW to MW for next generations. The high powers may result in several nonlinear effects which would affect the performance of the detector. In this paper, we investigate the effects of radiation pressure, which tend to displace the mirrors from their resonant position resulting in the detuning of the cavity. We observe a remarkable effect, namely, that the freely hanging mirrors gain energy continuously and swing with increasing amplitude. It is found that the `time delay', that is, the time taken for the field to adjust to its instantaneous equilibrium value, when the mirrors are in motion, is responsible for this effect. This effect is likely to be important in the optimal operation of the full-scale interferometers such as VIRGO and LIGO.

  10. X-ray Imaging of Shock Waves Generated by High-Pressure

    E-Print Network [OSTI]

    Gruner, Sol M.

    , the fuel jets can exceed supersonic speeds and result in gaseous shock waves. High-pressure, high-speed monochromat- ic x-radiography to probe the high-speed fuel sprays and show the generation of shock waves. We studied a high-pressure common-rail diesel injection system typical of that in a passenger car

  11. Method and apparatus for delivering high power laser energy over long distances

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-04-07

    Systems, devices and methods for the transmission and delivery of high power laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  12. Experimental astrophysics with high power lasers and Z pinches

    SciTech Connect (OSTI)

    Remington, B A; Drake, R P; Ryutov, D D

    2004-12-10

    With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

  13. Practical high resolution detection method for laser-induced breakdown spectroscopy

    SciTech Connect (OSTI)

    Andrew J. Effenberger Jr; Jill R. Scott

    2012-02-01

    A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer to acquire high-resolution measurements in laser-induced breakdown spectroscopy (LIBS). The spectrometer was built using an inexpensive etalon coupled to a standard 0.5-m imaging spectrometer. The Hg emission doublet at 313.2 nm was used to evaluate instrument performance because it has a splitting of 29 pm. The 313.2 nm doublet was chosen due to the similar splitting seen in isotope splitting from uranium at 424.437 nm, which is 25 pm. The Hg doublet was easily resolved from a continuous source Hg-lamp with a 2 s acquisition. The doublet was also resolved in LIBS spectra of cinnabar (HgS) from the accumulation of 600 laser shots at rate of 10 Hz, or 1 min, under a helium atmosphere. In addition to observed spitting of the 313.2 nm Hg doublet, the FWHM of the 313.1844 nm line from the doublet is reported at varying He atmospheric pressures. The high performance, low cost, and compact footprint makes this system highly competitive with 2-m double pass Czerny-Turner spectrometers.

  14. Elastic properties, sp³ fraction, and Raman scattering in low and high pressure synthesized diamond-like boron rich carbides

    SciTech Connect (OSTI)

    Zinin, Pavel V.; Burgess, Katherine; Jia, Ruth; Sharma, Shiv; Ming, Li-Chung; Liu, Yongsheng; Ciston, Jim; Hong, Shiming

    2014-10-07

    Dense BC{sub x} phases with high boron concentration are predicted to be metastable, superhard, and conductors or superconductors depending on boron concentration. However, up to this point, diamond-like boron rich carbides BC{sub x} (dl-BC{sub x}) phases have been thought obtainable only through high pressure and high temperature treatment, necessitating small specimen volume. Here, we use electron energy loss spectroscopy combined with transmission electron microscopy, Raman spectroscopy, surface Brillouin scattering, laser ultrasonics (LU) technique, and analysis of elastic properties to demonstrate that low pressure synthesis (chemical vapor deposition) of BC{sub x} phases may also lead to the creation of diamond-like boron rich carbides. The elastic properties of the dl-BC{sub x} phases depend on the carbon sp²versus sp³ content, which decreases with increasing boron concentration, while the boron bonds determine the shape of the Raman spectra of the dl-BC{sub x} after high pressure-high temperature treatment. Using the estimation of the density value based on the sp³ fraction, the shear modulus ? of dl-BC?, containing 10% carbon atoms with sp³ bonds, and dl-B?C?, containing 38% carbon atoms with sp³ bonds, were found to be ? = 19.3 GPa and ? = 170 GPa, respectively. The presented experimental data also imply that boron atoms lead to a creation of sp³ bonds during the deposition processes.

  15. Size-dependent structure of silver nanoparticles under high pressure

    SciTech Connect (OSTI)

    Koski, Kristie Jo

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  16. Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser

    E-Print Network [OSTI]

    Byer, Robert L.

    Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials across grain boundaries (GBs) in Nd3+ :YAG laser ceramics. It is clearly shown that Nd3+ segregation point the way to further improvements in what is already an impressive class of ceramic laser materials

  17. High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source

    E-Print Network [OSTI]

    High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source A precision laser spectrometer for the detection of CO2 isotopes is reported. The spectrometer measures the fundamental absorption signatures of 13 C and 12 C isotopes in CO2 at 4.32 m using a tunable mid-IR laser

  18. Title of Dissertation: HIGH POWER NONLINEAR PROPAGATION OF LASER PULSES IN TENUOUS GASES

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Dissertation: HIGH POWER NONLINEAR PROPAGATION OF LASER PULSES IN TENUOUS GASES gas focusing, is observed. For even higher powers, the laser pulse is partially trapped by the plasma laser pulses in tenuous gases is studied. The dynamics of these pulses will be affected by nonlinear

  19. Invited Paper 505 In High-Power Laser Ablation V, Claude R. Phipps, Editor

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Invited Paper 505 In High-Power Laser Ablation V, Claude R. Phipps, Editor Proceedings of SPIE, Vol. 5448 (2004) Computer modeling of laser melting and spallation of metal targets Leonid V. Zhigilei in short pulse laser processing are investigated in a computational study performed with a hybrid atomistic

  20. Aerosol source term in high pressure melt ejection

    SciTech Connect (OSTI)

    Brockmann, J.E.; Tarbell, W.W.

    1984-11-01

    Pressurized ejection of melt from a reactor pressure vessel has been identified as an important element of a severe reactor accident. Copious aerosol production is observed when thermitically generated melts pressurized with nitrogen or carbon dioxide to 1.3 to 17 MPa are ejected into an air atmosphere. Aerosol particle size distributions measured in the tests have modes of about 0.5, 5, and > 10 ..mu..m. Mechanisms leading to formation of these multimodal size distributions are suggested. This aerosol is a potentially important fission product source term that has not been considered in previous severe accident analyses.

  1. High-pressure gasification of Montana subbituminous coal

    SciTech Connect (OSTI)

    Goyal, A.; Bryan, B.; Rehmat, A.

    1991-01-01

    A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

  2. Materials for High-Pressure Fuel Injection Systems

    SciTech Connect (OSTI)

    Blau, P.; Shyam, A.; Hubbard, C.; Howe, J.; Trejo, R.; Yang, N.; Pollard, M.

    2011-09-30

    The high-level goal of this multi-year effort was to facilitate the Advanced Combustion Engine goal of 20% improvement (compared to 2009 baseline) of commercial engine efficiency by 2015. A sub-goal is to increase the reliability of diesel fuel injectors by investigating modelbased scenarios that cannot be achieved by empirical, trial and error methodologies alone. During this three-year project, ORNL developed the methodology to evaluate origins and to record the initiation and propagation of fatigue cracks emanating from holes that were electrodischarge machined (EDM), the method used to form spray holes in fuel injector tips. Both x-ray and neutron-based methods for measuring residual stress at four different research facilities were evaluated to determine which, if any, was most applicable to the fuel injector tip geometry. Owing to the shape and small volumes of material involved in the sack area, residual stress data could only be obtained in the walls of the nozzle a few millimeters back from the tip, and there was a hint of only a small compressive stress. This result was consistent with prior studies by Caterpillar. Residual stress studies were suspended after the second year, reserving the possibility of pursuing this in the future, if and when methodology suitable for injector sacks becomes available. The smooth specimen fatigue behavior of current fuel injector steel materials was evaluated and displayed a dual mode initiation behavior. At high stresses, cracks started at machining flaws in the surface; however, below a critical threshold stress of approximately 800 MPa, cracks initiated in the bulk microstructure, below the surface. This suggests that for the next generation for high-pressure fuel injector nozzles, it becomes increasingly important to control the machining and finishing processes, especially if the stress in the tip approaches or exceeds that threshold level. Fatigue tests were also conducted using EDM notches in the gage sections. Compared to the smooth specimens, EDM notching led to a severe reduction in total fatigue life. A reduction in fatigue life of nearly four orders of magnitude can occur at an EDM notch the approximate size of fuel injector spray holes. Consequently, the initiation and propagation behavior of cracks from small spray holes is relevant for generation of design quality data for the next generation diesel fuel injection devices. This is especially true since the current design methodologies usually rely on the less conservative smooth specimen fatigue testing results, and since different materials can have varying levels of notch fatigue resistance.

  3. Surface structure, composition, and polarity of indium nitride grown by high-pressure chemical vapor deposition

    E-Print Network [OSTI]

    Dietz, Nikolaus

    grown by high-pressure chemical vapor deposition have been studied. Atomic hydrogen cleaning produced and heterostructures--which can be accomplished by low- pressure metalorganic chemical vapor deposition MOCVD --the- rium vapor pressure of nitrogen during growth. This requires different approaches in growing structures

  4. Instrumentation development for neutron scattering at high pressure 

    E-Print Network [OSTI]

    Fang, Junwei

    2012-11-29

    Neutron scattering at extremes of pressure is a powerful tool for studying the response of structural and magnetic properties of materials on microscopic level to applied stresses. However, experimental neutron studies ...

  5. Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma acceleratorsa)

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    -average power laser-plasma acceleratorsa) C. Benedetti,b) C. B. Schroeder, E. Esarey, and W. P. Leemans Lawrence enable a technologically simpler path to high-repetition rate, high-average power laserPlasma wakefields driven by an incoherent combination of laser pulses: A path towards high

  6. Method and system for advancement of a borehole using a high power laser

    DOE Patents [OSTI]

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  7. Method and apparatus for delivering high power laser energy over long distances

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2013-08-20

    Systems, devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  8. An In-situ Tensile Test Apparatus for Polymers in High Pressure Hydrogen

    SciTech Connect (OSTI)

    Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; Johnson, Kenneth I.; Skorski, Daniel C.; Tucker, Joseph C.; Roosendaal, Timothy J.; Dahl, Michael E.

    2014-10-10

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex-situ measurements of mechanical properties problematic. Designing in-situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in-situ tensile tester under high-pressure hydrogen environments up to 5,000 psi. Modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.

  9. An in situ tensile test apparatus for polymers in high pressure hydrogen

    SciTech Connect (OSTI)

    Alvine, K. J. Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E.

    2014-10-15

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

  10. Performance and production requirements for the optical components in a high-average-power laser system

    SciTech Connect (OSTI)

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  11. Generation of high-purity higher-order Laguerre-Gauss beams at high laser power

    E-Print Network [OSTI]

    L. Carbone; C. Bogan; P. Fulda; A. Freise; B. Willke

    2013-03-14

    We have investigated the generation of highly pure higher-order Laguerre-Gauss (LG) beams at high laser power of order 100W, the same regime that will be used by 2nd generation gravitational wave interferometers such as Advanced LIGO. We report on the generation of a helical type LG33 mode with a purity of order 97% at a power of 83W, the highest power ever reported in literature for a higher-order LG mode.

  12. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  13. Constant pressure high throughput membrane permeation testing system

    DOE Patents [OSTI]

    Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

    2014-09-02

    The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.

  14. High-temperature fiber optic cubic-zirconia pressure sensor - article no. 124402

    SciTech Connect (OSTI)

    Peng, W.; Pickrell, G.R.; Wang, A.B.

    2005-12-15

    There is a critical need for pressure sensors that can operate reliably at high temperatures in many industrial segments such as in the combustion section of gas turbine engines for both transportation and power generation, coal gasifiers, coal fired boilers, etc. Optical-based sensors are particularly attractive for the measurement of a wide variety of physical and chemical parameters in high-temperature and high-pressure industrial environments due to their small size and immunity to electromagnetic interference. A fiber optic pressure sensor utilizing single-crystal cubic zirconia as the sensing element is reported. The pressure response of this sensor has been measured at temperatures up to 1000{sup o}C. Additional experimental results show that cubic zirconia could be used for pressure sensing at temperatures over 1000{sup o}C. This study demonstrates the feasibility of using a novel cubic-zirconia sensor for pressure measurement at high temperatures.

  15. Annual Scientific Report for DE-FG03-02NA00063 Coherent imaging of laser-plasma interactions using XUV high harmonic radiation

    SciTech Connect (OSTI)

    Prof. Henry C. Kapteyn

    2005-05-03

    In this project, we use coherent short-wavelength light generated using high-order harmonic generation as a probe of laser-plasma dynamics and phase transitions on femtosecond time-scales. The interaction of ultrashort laser pulses with materials and plasmas is relevant to stockpile stewardship, to understanding the equation of state of matter at high pressures and temperatures, and to plasma concepts such as the fast-ignitor ICF fusion concept and laser-based particle acceleration. Femtosecond laser technology makes it possible to use a small-scale setup to generate 20fs pulses with average power >10W at multiple kHz repetition rates, that can be focused to intensities in excess of 1017W/cm2. These lasers can be used either to rapidly heat materials to initiate phase transitions, or to create laser plasmas over a wide parameter space. These lasers can also be used to generate fully spatially coherent XUV beams with which to probe these materials and plasma systems. We are in process of implementing imaging studies of plasma hydrodynamics and warm, dense matter. The data will be compared with simulation codes of laser-plasma interactions, making it possible to refine and validate these codes.

  16. Spectrographic temperature measurement of a high power breakdown arc in a high pressure gas switch

    SciTech Connect (OSTI)

    Yeckel, Christopher; Curry, Randy

    2011-09-15

    A procedure for obtaining an approximate temperature value of conducting plasma generated during self-break closure of a RIMFIRE gas switch is described. The plasma is in the form of a breakdown arc which conducts approximately 12 kJ of energy in 1 {mu}s. A spectrographic analysis of the trigger-section of the 6-MV RIMFIRE laser triggered gas switch used in Sandia National Laboratory's ''Z-Machine'' has been made. It is assumed that the breakdown plasma has sufficiently approached local thermodynamic equilibrium allowing a black-body temperature model to be applied. This model allows the plasma temperature and radiated power to be approximated. The gas dielectric used in these tests was pressurized SF{sub 6}. The electrode gap is set at 4.59 cm for each test. The electrode material is stainless steel and insulator material is poly(methyl methacrylate). A spectrum range from 220 to 550 nanometers has been observed and calibrated using two spectral irradiance lamps and three spectrograph gratings. The approximate plasma temperature is reported.

  17. A BEAMLINE FOR HIGH PRESSURE STUDIES AT THE ADVANCED LIGHT SOURCE WITH A SUPERCONDUCTING BENDING MAGNET AS THE SOURCE

    SciTech Connect (OSTI)

    Kunz, M; MacDowell, A A; Caldwell, W A; Cambie, D; Celestre, R S; Domning, E E; Duarte, R M; Gleason, A; Glossinger, J; Kelez, N; Plate, D W; Yu, T; Zaug, J M; Padmore, H A; Jeanloz, R; Alivisatos, A P; Clark, S M

    2005-04-19

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/{Delta}E {approx} 7000) and a W/B{sub 4}C multilayer (E/{Delta}E {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  18. A Beamline for High-Pressure Studies at the Advanced Light Sourcewith a Superconducting Bending Magnet as the Source

    SciTech Connect (OSTI)

    Kunz, Martin; MacDowell, Alastair A.; Caldwell, Wendel A.; Cambie, Daniella; Celestre, Richard S.; Domning, Edward E.; Duarte,Robert M.; Gleason, Arianna E.; Glossinger, James M.; Kelez, Nicholas; Plate, David W.; Yu, Tony; Zaug, Joeseph M.; Padmore, Howard A.; Jeanloz,Raymond; Alivisatos, A. Paul; Clark, Simon M.

    2005-06-30

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/DE {approx}7000) and a W/B4C multilayers (E/DE {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  19. Auto-ignition during instationary jet evolution of dimethyl ether (DME) in a high-pressure atmosphere

    SciTech Connect (OSTI)

    Fast, G.; Kuhn, D.; Class, A.G.; Maas, U.

    2009-01-15

    The auto-ignition process during transient injection of gaseous dimethyl ether (DME) in a constant high-pressure atmosphere is studied experimentally by laser-optical methods and compared with numerical calculations. With different non-intrusive measurement techniques jet properties and auto-ignition are investigated at high temporal and spatial resolution. The open jet penetrates a constant pressure oxidative atmosphere of up to 4 MPa. During the transient evolution, the fuel jet entrains air at up to 720 K. The subsequent auto-ignition of the ignitable part of the jet occurs simultaneously over a wide spatial extension. The ignition delay times are not affected by variation of the nozzle exit velocity. Thus, the low-temperature oxidation is slow compared with the shorter time scales of mixing, so that chemical kinetics is dominating the process. The typical two-stage ignition is resolved optically with high-speed shadowgraphy at a sampling rate of 10 kHz. The 2D fields of jet velocity and transient mixture fraction are measured phase-coupled with Particle Image Velocimetry (PIV) and Tracer Laser Induced Fluorescence (LIF) during the time-frame of ignition. The instationary Probability Density Functions (PDF) of mixture fraction are described very well by Beta functions within the complete area of the open jet. Additional 1D flamelet simulations of the auto-ignition process are computed with a detailed reaction mechanism for DME [S. Fischer, F. Dryer, H. Curran, Int. J. Chem. Kinet. 32 (12) (2000) 713-740; H. Curran, S. Fischer, F. Dryer, Int. J. Chem. Kinet. 32 (12) (2000) 741-759]. Calculated ignition delay times are in very good agreement with the measured mean ignition delay times of 3 ms. Supplemental flamelet simulations address the influence of DME and air temperature, pressure and strain. Underneath a critical strain rate the air temperature is identified to be the most sensitive factor on ignition delay time. (author)

  20. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOE Patents [OSTI]

    Cross, J.B.; Cremers, D.A.

    1986-01-10

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species is described. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  1. OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR

    E-Print Network [OSTI]

    OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR K.J. BACHMANN simulations as a fundamental design tool in developing a new prototype high pressure organometallic chemical vapor deposition (HPOMCVD) reactor for use in thin film crystal growth. The advantages of such a reactor

  2. Energy-transfer dynamics of high-pressure rovibrationally excited molecular H2

    E-Print Network [OSTI]

    Augustine, Mathew P.

    Energy-transfer dynamics of high-pressure rovibrationally excited molecular H2 David J. Saiki 2005; published online 14 September 2005 The energy-transfer dynamics of high-pressure molecular H2 gas energy transfer is described and used to fit the experimental Raman scattering results obtained

  3. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOE Patents [OSTI]

    Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  4. CARS study of linewidths of the Q-branch of hydrogen molecules at high temperatures in a pulsed high-pressure H{sub 2}-O{sub 2} combustion chamber

    SciTech Connect (OSTI)

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M

    2005-03-31

    The results of measurements of individual line widths of the Q-branch of a hydrogen molecule and the corresponding coefficients of broadening caused by collisions with water molecules at T = 2700 K in a repetitively pulsed high-pressure (50-200 atm) hydrogen-oxygen combustion chamber are presented. CARS spectra of individual Q{sub 1}-Q{sub 7} hydrogen lines, pressure pulses, and the broadband CARS spectra of the entire Q-branch of hydrogen are recorded simultaneously during a single laser pulse. The shape of line profiles was analysed using a Fabry-Perot interferometer. The temperature in the volume being probed was determined from the 'broadband' CARS spectra. The entire body of the experimental results gives information on the spectral linewidths, temperature and pressure in the combustion chamber during CARS probing. (laser applications and other topics in quantum electronics)

  5. Methods for enhancing the efficiency of creating a borehole using high power laser systems

    DOE Patents [OSTI]

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-06-24

    Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.

  6. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Soules, Thomas F. (Livermore, CA); Fochs, Scott N. (Livermore, CA); Rotter, Mark D. (San Ramon, CA); Letts, Stephan A. (San Ramon, CA)

    2008-12-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges using a substantially high index bonding elastomer or epoxy to a predetermined electromagnetic absorbing arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  7. Instrumentation development for magneto-transport and neutron scattering measurements at high pressure and low temperature 

    E-Print Network [OSTI]

    Wang, Weiwei

    2013-07-01

    High pressure, high magnetic field and low temperature techniques are required to investigate magnetic transitions and quantum critical behaviour in different ferromagnetic materials to elucidate how novel forms of ...

  8. Deformable Mirrors for High-Power Lasers Supriyo Sinha*a, Justin D. Mansell**b, and Robert L. Byer'

    E-Print Network [OSTI]

    Byer, Robert L.

    Deformable Mirrors for High-Power Lasers Supriyo Sinha*a, Justin D. Mansell**b, and Robert L. Byer with high power lasers. A reflectance of greater than 99.9% was measured and the mirror had a residual of average laser power (350W/cm2) was reduced from 88 nmto 31 nmrms. Keywords: deformable mirrors, lasers

  9. High pressure ejection of melt from a reactor pressure vessel. The discharge phase. Revision 7

    SciTech Connect (OSTI)

    Pilch, M.; Tarbell, W.M.

    1985-09-01

    Recent probabilistic risk-assessment studies identified potential accident sequences in which reactor vessel failure occurs while the primary system is at elevated pressure. The phenomenology of the discharge phase is reviewed here. We propose an improved model for hole ablation following vessel failure, and we compare the model with experiment data. Gas blowthrough is identified as a mechanism that allows steam to escape through the vessel breach before melt ejection is complete. Gas blowthrough leads to pneumatic atomization of the remaining melt before significant depressurization of the primary system occurs.

  10. Development and utilization of a coiled tubing equipment package for work in high pressure wells

    SciTech Connect (OSTI)

    Adrichem, W.P. van; Gordon, D.G.; Newlands, D.J.

    1995-12-31

    Cleanouts of deep, high pressure, high temperature gas wells are a common operation in South Texas. Until recently, these cleanouts required the use of snubbing units due to the high pressures encountered. This resulted in time consuming (7--12 days) and thus expensive operations. Because of this expense, efforts have been made to extend the application of coiled tubing (CT) to operations where wellhead pressures approach 10,000 psi. Testing of a specially equipped 1-1/4 inch CT unit in conditions simulating a 10,000 psi South Texas well cleanout proved that the use of a CT unit was a viable alternative to snubbing operations. Since then, some 50 high pressure cleanouts have been successfully performed at an average cost saving of 50% while taking 1--3 days to complete. This paper will focus on the operating parameters, the design, the testing and the field implementation of a high pressure CT unit.

  11. High-temperature, high-pressure bonding of nested tubular metallic components

    DOE Patents [OSTI]

    Quinby, Thomas C. (Kingston, TN)

    1980-01-01

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  12. Heat transfer and pressure drop data for high heat flux densities to water at high subcritical pressures

    E-Print Network [OSTI]

    Rohsenow, Warren M.

    1951-01-01

    Local surface ooeffioients of heat t-ansfer, overall pressure drop data and mean friction factor are presented for heat flamms up to 3.52106 BtuAr ft2 for water flowing in a nickel tabe isder the following conditions: mass ...

  13. High harmonic generation spectra of aligned benzene in circular polarized laser field

    E-Print Network [OSTI]

    Moiseyev, Nimrod

    High harmonic generation spectra of aligned benzene in circular polarized laser field Petra Zda-order harmonic generation in benzene, aligned in the polarization plane of circular polarized laser field-lived resonance state up to the intensity of about 90 TW cm 2 . The high-order harmonics emitted by the system

  14. Prolific pair production with high-power lasers

    E-Print Network [OSTI]

    Bell, A R

    2008-01-01

    Prolific electron-positron pair production is possible at laser intensities approaching 10^{24} W/cm^2 at a wavelength of 1 micron. An analysis of electron trajectories and interactions at the nodes (B=0) of two counter-propagating, circularly polarised laser beams shows that a cascade of gamma-rays and pairs develops. The geometry is generalised qualitatively to linear polarisation and laser beams incident on a solid target.

  15. Prolific pair production with high-power lasers

    E-Print Network [OSTI]

    A. R. Bell; John G. Kirk

    2008-10-16

    Prolific electron-positron pair production is possible at laser intensities approaching 10^{24} W/cm^2 at a wavelength of 1 micron. An analysis of electron trajectories and interactions at the nodes (B=0) of two counter-propagating, circularly polarised laser beams shows that a cascade of gamma-rays and pairs develops. The geometry is generalised qualitatively to linear polarisation and laser beams incident on a solid target.

  16. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation...

  17. High repetition rate fiber and integrated waveguide femtosecond lasers

    E-Print Network [OSTI]

    Sander, Michelle Y. (Michelle Yen-Ling)

    2012-01-01

    Femtosecond lasers and the development of frequency combs have revolutionized multiple fields like metrology, spectroscopy, medical diagnostics and optical communications. However, to enable wider adoption of the technology ...

  18. Lithium pellet injection into high pressure magnetically confined plasmas

    E-Print Network [OSTI]

    Böse, Brock (Brock Darrel)

    2010-01-01

    The ablation of solid pellets injected into high temperature magnetically confined plasmas is characterized by rapid oscillations in the ablation rate, and the formation of field aligned filaments in the ablatant. High ...

  19. Eigenmode analysis of a high-gain free-electron laser based on...

    Office of Scientific and Technical Information (OSTI)

    Eigenmode analysis of a high-gain free-electron laser based on a transverse gradient undulator Citation Details In-Document Search Title: Eigenmode analysis of a high-gain...

  20. A versatile high-resolution x-ray imager (HRXI) for laser-plasma...

    Office of Scientific and Technical Information (OSTI)

    x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a high-speed...

  1. High average power laser using a transverse flowing liquid host

    DOE Patents [OSTI]

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2003-07-29

    A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.

  2. High energy, high average power solid state green or UV laser

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  3. A proposal for testing subcritical vacuum pair production with high power lasers

    E-Print Network [OSTI]

    Gregori, G; Rajeev, P P; Chen, H; Clarke, R J; Huffman, T; Murphy, C D; Prozorkevich, A V; Roberts, C D; Röpke, G; Schmidt, S M; Smolyansky, S A; Wilks, S; Bingham, R; 10.1016/j.hedp.2009.11.001

    2010-01-01

    We present a proposal for testing the prediction of non-equilibrium quantum field theory below the Schwinger limit. The proposed experiments should be able to detect a measurable number of gamma rays resulting from the annihilation of pairs in the focal spot of two opposing high intensity laser beams. We discuss the dependence of the expected number of gamma rays with the laser parameters and compare with the estimated background level of gamma hits for realistic laser conditions.

  4. A proposal for testing subcritical vacuum pair production with high power lasers

    E-Print Network [OSTI]

    G. Gregori; D. B. Blaschke; P. P. Rajeev; H. Chen; R. J. Clarke; T. Huffman; C. D. Murphy; A. V. Prozorkevich; C. D. Roberts; G. Röpke; S. M. Schmidt; S. A. Smolyansky; S. Wilks; R. Bingham

    2010-05-18

    We present a proposal for testing the prediction of non-equilibrium quantum field theory below the Schwinger limit. The proposed experiments should be able to detect a measurable number of gamma rays resulting from the annihilation of pairs in the focal spot of two opposing high intensity laser beams. We discuss the dependence of the expected number of gamma rays with the laser parameters and compare with the estimated background level of gamma hits for realistic laser conditions.

  5. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    SciTech Connect (OSTI)

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%.

  6. High power and high repetition rate pulse generation using self injection-locking in Fabry-Perot Laser diode

    E-Print Network [OSTI]

    Wai, Ping-kong Alexander

    , but the output power is not very high. High repetition pulse generation based on nonlinear propagation of a dual1 High power and high repetition rate pulse generation using self injection-locking in Fabry-doped fiber ring lasers (ED-FRL) [2-3] are attractive methods to generate high speed pulse trains

  7. Carrier concentration and surface electron accumulation in indium nitride layers grown by high pressure chemical vapor deposition

    E-Print Network [OSTI]

    Dietz, Nikolaus

    pressure chemical vapor deposition R. P. Bhatta, B. D. Thoms,a A. Weerasekera, A. G. U. Perera, M. Alevli properties of InN layer grown by high pressure chemical vapor deposition have been studied by high-nitride alloys is challenging under low pressure process conditions due to higher equilibrium vapor pressure

  8. Hydrogen incorporation in stishovite at high pressure and symmetric hydrogen bonding in N-AlOOH

    E-Print Network [OSTI]

    Stixrude, Lars

    Hydrogen incorporation in stishovite at high pressure and symmetric hydrogen bonding in N significant amounts of hydrogen in stishovite under lower-mantle conditions. The enthalpy of solution pressure and temperature. We predict asymmetric hydrogen bonding in the stishovite^N-AlOOH solid solution

  9. Fermi Surface of Uranium at Ambient Pressure Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Fermi Surface of ­Uranium at Ambient Pressure Gregory S. Boebinger, National High Magnetic Field Laboratory DMR-Award 0654118 DC Field Facility User Program The fermi surface of ­Uranium has been measured surface of alpha-uranium at ambient pressure, Phys. Rev. B Rapid Commun., 80, 241101 (2009). B//c-axis B

  10. Alternated high-and low-pressure nitriding of austenitic stainless steel: Mechanisms and results

    E-Print Network [OSTI]

    Alternated high- and low-pressure nitriding of austenitic stainless steel: Mechanisms and results G a gas mixture of (N2 /H2):(50/50) in pressure, was applied to stainless-steel AISI 304. In the first penetrate far beyond the compound layer. These nitrogen atoms, uptaken into the austenitic stainless-steel

  11. Development test report for the high pressure water jet system nozzles

    SciTech Connect (OSTI)

    Takasumi, D.S.

    1995-09-28

    The high pressure water jet nozzle tests were conducted to identify optimum water pressure, water flow rate, nozzle orifice size and fixture configuration needed to effectively decontaminate empty fuel storage canisters in KE-Basin. This report gives the tests results and recommendations from the these tests.

  12. APPLICATION OF CERAMICS TO HIGH PRESSURE FUEL SYSTEMS

    SciTech Connect (OSTI)

    Mandler, Jr., William F.

    2000-08-20

    Diesel fuel systems are facing increased demands as engines with reduced emissions are developed. Injection pressures have increased to provide finer atomization of fuel for more efficient combustion, Figure 1. This increases the mechanical loads on the system and requires tighter clearances between plungers and bores to prevent leakage. At the same time, fuel lubricity has decreased as a byproduct of reducing the sulfur levels in fuel. Contamination of fuel by water and debris is an ever-present problem. For oil-lubricated fuel system components, increased soot loading in the oil results in increased wear rates. Additionally, engine manufacturers are lengthening warranty periods for engines and systems. This combination of factors requires the development of new materials to counteract the harsher tribological environment.

  13. Development of high-repetition-rate laser pump/x-ray probe methodologies for synchrotron facilities

    SciTech Connect (OSTI)

    March, Anne Marie; Doumy, Gilles; Kanter, Elliot P.; Kraessig, Bertold; Southworth, Stephen H.; Attenkofer, Klaus; Kurtz, Charles A.; Young, Linda [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Stickrath, Andrew [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Chen, Lin X. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2011-07-15

    We describe our implementation of a high repetition rate (54 kHz-6.5 MHz), high power (>10 W), laser system at the 7ID beamline at the Advanced Photon Source for laser pump/x-ray probe studies of optically driven molecular processes. Laser pulses at 1.06 {mu}m wavelength and variable duration (10 or 130 ps) are synchronized to the storage ring rf signal to a precision of {approx}250 fs rms. Frequency doubling and tripling of the laser radiation using nonlinear optical techniques have been applied to generate 532 and 355 nm light. We demonstrate that by combining a microfocused x-ray probe with focused optical laser radiation the requisite fluence (with <10 {mu}J/pulse) for efficient optical excitation can be readily achieved with a compact and commercial laser system at megahertz repetition rates. We present results showing the time-evolution of near-edge x-ray spectra of a well-studied, laser-excited metalloporphyrin, Ni(II)-tetramesitylporphyrin. The use of high repetition rate, short pulse lasers as pump sources will dramatically enhance the duty cycle and efficiency in data acquisition and hence capabilities for laser-pump/x-ray probe studies of ultrafast structural dynamics at synchrotron sources.

  14. Theoretical and Experimental Studies on Molybdenum and Stainless Steel Mirrors Cleaning by High Repetition Rate Laser Beam

    E-Print Network [OSTI]

    Theoretical and Experimental Studies on Molybdenum and Stainless Steel Mirrors Cleaning by High Repetition Rate Laser Beam

  15. Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity Laser Pulses

    E-Print Network [OSTI]

    Umstadter, Donald

    Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High%) and a decreased electron-beam divergence angle (by 45%), as compared with single-pulse illumination. Simulations reveal that increased stochastic heating of electrons may have also contributed to the electron-beam

  16. High Pressure PEM Electrolysis: Status, Key Issues, and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGH PERFORMANCE and1High

  17. Driving high-gain shock-ignited inertial confinement fusion targets by green laser light

    SciTech Connect (OSTI)

    Atzeni, Stefano; Marocchino, Alberto; Schiavi, Angelo [Dipartimento SBAI, Universita di Roma 'La Sapienza' and CNISM, Via A. Scarpa 14-16, I-00161 Roma (Italy)

    2012-09-15

    Standard direct-drive inertial confinement fusion requires UV light irradiation in order to achieve ignition at total laser energy of the order of 1 MJ. The shock-ignition approach opens up the possibility of igniting fusion targets using green light by reducing the implosion velocity and laser-driven ablation pressure. An analytical model is derived, allowing to rescale UV-driven targets to green light. Gain in the range 100-200 is obtained for total laser energy in the range 1.5-3 MJ. With respect to the original UV design, the rescaled targets are less sensitive to irradiation asymmetries and hydrodynamic instabilities, while operating in the same laser-plasma interaction regime.

  18. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOE Patents [OSTI]

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  19. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Ault, Earl R. (Livermore, CA); Kuklo, Thomas C. (Oakdale, CA)

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  20. PHYSICAL REVIEW A 81, 033828 (2010) Intracavity dynamics in high-power mode-locked fiber lasers

    E-Print Network [OSTI]

    Turitsyn, Sergei K.

    2010-01-01

    PHYSICAL REVIEW A 81, 033828 (2010) Intracavity dynamics in high-power mode-locked fiber lasers the intracavity pulse evolutions in high-power fiber lasers. It is shown that experimentally observed dynamics within a single round trip, this new generation of high-power fiber lasers depends strongly

  1. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators - Steam Tip Sheet #22

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on installing high-pressure boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  2. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on installing high-pressure boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  3. Development of the High-Pressure Direct-Injection ISX G Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    Fact sheet details work by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

  4. PLASTIC-PDMS HYBRID DEVICES FOR HIGH PRESSURE HYDROLYTICALLY STABLE ACTIVE

    E-Print Network [OSTI]

    Ram, Rajeev J.

    for microfluidic chip fabrication [1]. Plastics can be manufactured using mass fabrication technologies the functionality of PDMS with established plastic fabrication technologies. BACKGROUND Irreversible bonding betweenPLASTIC-PDMS HYBRID DEVICES FOR HIGH PRESSURE HYDROLYTICALLY STABLE ACTIVE MICROFLUIDICS Kevin S

  5. Design strategies for optimizing high burnup fuel in pressurized water reactors

    E-Print Network [OSTI]

    Xu, Zhiwen, 1975-

    2003-01-01

    This work is focused on the strategy for utilizing high-burnup fuel in pressurized water reactors (PWR) with special emphasis on the full array of neutronic considerations. The historical increase in batch-averaged discharge ...

  6. High-pressure three-phase fluidization: Hydrodynamics and heat transfer

    SciTech Connect (OSTI)

    Luo, X.; Jiang, P.; Fan, L.S.

    1997-10-01

    High-pressure operations are common in industrial applications of gas-liquid-solid fluidized-bed reactors for resid hydrotreating, Fischer-Tropsch synthesis, coal methanation, methanol synthesis, polymerization, and other reactions. The phase holdups and the heat-transfer behavior were studied experimentally in three-phase fluidized beds over a pressure range of 0.1--15.6 MPa. Bubble characteristics in the bed are examined by direct flow visualization. Pressure effects on the bubble coalescence and breakup are analyzed mechanistically. The study indicates that the pressure affects the hydrodynamics and heat-transfer properties of a three-phase fluidized bed significantly. The average bubble size decreases and the bubble-size distribution becomes narrower with an increase in pressure. The bubble-size reduction leads to an increase in the transition gas velocity from the dispersed bubble regime to the coalesced bubble regime, an increase in the gas holdup, and a decrease in the liquid and solids holdups. The pressure effect is insignificant above 6 MPa. The heat-transfer coefficient between an immersed surface and the bed increases to a maximum at pressure 6--8 MPa and then decreases with an increase in pressure at a given gas and liquid flow rate. This variation is attributed to the pressure effects on phase holdups and physical properties of the gas and liquid phases. A mechanistic analysis revealed that the major heat-transfer resistance in high-pressure three-phase fluidized beds resides in a liquid film surrounding the heat-0transfer surface. An empirical correlation is proposed to predict the heat-transfer coefficient under high-pressure conditions.

  7. Innovative fuel designs for high power density pressurized water reactor

    E-Print Network [OSTI]

    Feng, Dandong, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

  8. A device for debridement using high pressure water jets

    E-Print Network [OSTI]

    Brown, Ashley (Ashley A.)

    2014-01-01

    Removing devitalized tissue from chronic wounds through debridement is critical to promote wound healing. In this thesis, technology using high-speed water jets is explored toward applications for debridement. After ...

  9. Ultra-low repetition rate mode-locked fiber laser with high-energy pulses

    E-Print Network [OSTI]

    Kobtsev, Sergei M.

    of research into passively mode- locked fiber laser with a record-setting optical length of the resonant-repetition rate high- energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser," presented at the Optical Amplifiers and their Applications Conference (OAA 2006), Whistler, British Columbia

  10. Seeding of a soft-x-ray laser in a plasma waveguide by high harmonic generation

    E-Print Network [OSTI]

    Seeding of a soft-x-ray laser in a plasma waveguide by high harmonic generation Ping-Hsun Lin,1 University, Chia-Yi 621, Taiwan *Corresponding author: sychen@ltl.iams.sinica.edu.tw Received August 10, 2009 November 12, 2009 A strongly saturated waveguide-based optical-field-ionization soft-x-ray laser seeded

  11. High efficiency cholesteric liquid crystal lasers with an external stable resonator

    E-Print Network [OSTI]

    Richardson, Martin C.

    High efficiency cholesteric liquid crystal lasers with an external stable resonator Hamidreza Shirvani-Mahdavi,1,2 Shima Fardad,2 Ezeddin Mohajerani,1 and Shin-Tson Wu2* 1 Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin St., Tehran, Iran 2 College of Optics and Photonics

  12. Circularly polarized high-efficiency cholesteric liquid crystal lasers with a tunable

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Circularly polarized high-efficiency cholesteric liquid crystal lasers with a tunable nematic phase retarder Hamidreza Shirvani-Mahdavi,1,2 Ezeddin Mohajerani,1 and Shin-Tson Wu2* 1 Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin St., Tehran, Iran 2 College of Optics and Photonics

  13. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    Micro-engineered first wall tungsten armor for high average power laser fusion energy systems is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first is a coordinated effort to develop laser inertial fusion energy [1]. The first stage of the HAPL program

  14. Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses

    E-Print Network [OSTI]

    Nikogosyan, David N.

    efficiency with that for other existing meth- ods of recording. We studied the temperature sensing properties changes in the fiber core induced by thermal heating, were developed. They include the use of a CO2 laserInvestigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses

  15. Method for optical pumping of thin laser media at high average power

    DOE Patents [OSTI]

    Zapata, Luis E. (Livermore, CA); Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Payne, Stephen A. (Castro Valley, CA)

    2004-07-13

    A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.

  16. Limits of survivability and damage for optical components used in a high repetition rate visible laser

    SciTech Connect (OSTI)

    Taylor, J.R.; Stolz, C.J.; Sarginson, T.G.

    1991-10-01

    An effort is being made to understand the limits of survivability and damage for optical components exposed to a visible laser operating continuously at a high repetition rate over 4 kHz. Results of this work are reported and related to the materials and manufacturing conditions for coatings and substrates as well as defects seen at the surface under laser illumination. These results were obtained for a variety of optical coatings and conditions using lasers from the Laser Demonstration Facility, part of the Atomic Vapor Laser Isotope Separation (AVLIS) Program at LLNL. Better understanding of the reliability of optical components in this environment could lead to improvements in design and manufacture that would result in reduced size for the laser optical system and correspondingly lower costs for the facilities that can use this technology.

  17. Fiberoptic Fabry-Perot engine pressure sensor system using a continuous wave laser source 

    E-Print Network [OSTI]

    Choi, Han-Sun

    1994-01-01

    sensor. Through the tests with engines, the feasibility as a useful pressure sensing device is assesed and described. Finally, an internal mirror tensile strength test is accomplished in an effort to build more reliable Fabry-Perot sensors and the results...

  18. Laser Radar Point-Target Localization at High Photon Efficiency

    E-Print Network [OSTI]

    Shapiro, Jeffrey H.

    2013-01-01

    Minimum error-probability laser radar point-target localization is analyzed, including the effects of dark counts, background counts, and target speckle. Results from preliminary table-top experiments are reported.

  19. Vehicle having hydraulic and power steering systems using a single high pressure pump

    DOE Patents [OSTI]

    Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

    2001-06-22

    A vehicle comprises a plurality of wheels attached to a vehicle housing. Also attached to the vehicle housing is a power steering system, including a fluid flow circuit, which is operably coupled to a number of the wheels. An internal combustion engine attached to the vehicle housing is connected to a hydraulically actuated system that includes a high pressure pump. An outlet of the high pressure pump is in fluid communication with the fluid flow circuit.

  20. Limitations on the attainable intensity of high power lasers

    E-Print Network [OSTI]

    A. M. Fedotov; N. B. Narozhny; G. Mourou; G. Korn

    2010-04-29

    It is shown that even a single $e^-e^+$ pair created by a super strong laser field in vacuum would cause development of an avalanche-like QED cascade which rapidly depletes the incoming laser pulse. This confirms the old N. Bohr conjecture that the electric field of the critical QED strength $E_S=m^2c^3/e\\hbar$ could never be created.

  1. Phase transitions in delafossite CuLaO{sub 2} at high pressures

    SciTech Connect (OSTI)

    Salke, Nilesh P.; Rao, Rekha Gupta, M. K.; Mittal, R.; Garg, Alka B.; Achary, S. N.; Tyagi, A. K.

    2014-04-07

    Structural stability of a transparent conducting oxide CuLaO{sub 2} at high pressures is investigated using in-situ Raman spectroscopy, electrical resistance, and x-ray diffraction techniques. The present Raman investigations indicate a sequence of structural phase transitions at 1.8?GPa and 7?GPa. The compound remains in the first high pressure phase when pressure is released. Electrical resistance measurements carried out at high pressures confirm the second phase transition. These observations are further supported by powder x-ray diffraction at high pressures which also showed that a-axis is more compressible than c-axis in this compound. Fitting the pressure dependence of unit cell volume to 3{sup rd} order Birch-Murnaghan equation of state, zero pressure bulk modulus of CuLaO{sub 2} is determined to be 154(25) GPa. The vibrational properties in the ambient delafossite phase of CuLaO{sub 2} are investigated using ab-initio calculations of phonon frequencies to complement the Raman spectroscopic measurements. Temperature dependence of the Raman modes of CuLaO{sub 2} is investigated to estimate the anharmonicity of Raman modes.

  2. High Pressure Hydrogen Tank Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGH PERFORMANCE and1

  3. DEVELOPMENT OF ASME SECTION X CODE RULES FOR HIGH PRESSURE COMPOSITE HYDROGEN PRESSURE VESSELS WITH NON-LOAD SHARING LINERS

    SciTech Connect (OSTI)

    Rawls, G.; Newhouse, N.; Rana, M.; Shelley, B.; Gorman, M.

    2010-04-13

    The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPa (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.

  4. Annealed high-density amorphous ice under pressure

    E-Print Network [OSTI]

    Loss, Daniel

    : 28 May 2006; doi:10.1038/nphys313 The well-known expansion of water on cooling below 277 K is one below 277 K responsible for lakes and seas freezing from the top down. This curious behaviour has been- order transition line between low- and high-density water below 220 K, but that cannot be tested

  5. Pyrolysis product distribution of a Victorian brown coal under high pressures

    SciTech Connect (OSTI)

    Sathe, C.; Li, C.Z.

    1999-07-01

    A Loy Yang brown coal sample was pyrolyzed in a wire-mesh reactor at pressures ranging from 100 kPa to 1000 kPa. Tar yield was found to be very sensitive to changes in heating rate, peak temperature, holding time and pressure. Tar yield decreased with increases in pressure at high heating rate. At low heating rate tar yield was not sensitive to changes in pressure. Char yields were found to be much less sensitive to changes in pressure and/or heating rate. UV absorption spectroscopy of the tar samples indicated that the yields of larger aromatic ring systems decreased with increasing pressure and/or decreasing heating rate. The effects of pressure are mainly due to the changes in the transportation of volatile precursors with pressure. Increases in pressure might have slowed down the bulk diffusion within meso- and macro-pores in char, which in turn have slowed down the Knudsen diffusion in the micro-pores due to the reduced concentration gradients for the Knudsen diffusion. During the extended stay within the char particle, volatile precursors were thermally cracked, leading to the retention of some larger aromatic ring systems as char and the release of other components as tar and gas.

  6. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    SciTech Connect (OSTI)

    Ming, L. C.; Zinin, P. V.; Sharma, S. K.

    2014-04-22

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  7. A Laser System for the Spectroscopy of Highly-Charged Bismuth Ions

    E-Print Network [OSTI]

    S. Albrecht; S. Altenburg; C. Siegel; N. Herschbach; G. Birkl

    2011-08-25

    We present and characterize a laser system for the spectroscopy on highly-charged ^209Bi^82+ ions at a wavelength of 243.87 nm. For absolute frequency stabilization, the laser system is locked to a near-infra-red laser stabilized to a rubidium transition line using a transfer cavity based locking scheme. Tuning of the output frequency with high precision is achieved via a tunable rf offset lock. A sample-and-hold technique gives an extended tuning range of several THz in the UV. This scheme is universally applicable to the stabilization of laser systems at wavelengths not directly accessible to atomic or molecular resonances. We determine the frequency accuracy of the laser system using Doppler-free absorption spectroscopy of Te_2 vapour at 488 nm. Scaled to the target wavelength of 244 nm, we achieve a frequency uncertainty of \\sigma_{244nm} = 6.14 MHz (one standard deviation) over six days of operation.

  8. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  9. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  10. High-Pressure Hydrogen Tanks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartmentHigh-EfficiencyPatrickMaterials

  11. High-Pressure Tube Trailers and Tanks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartmentHigh-EfficiencyPatrickMaterialsTube

  12. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutron

  13. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect (OSTI)

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  14. Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

    SciTech Connect (OSTI)

    Sadeghi, J., E-mail: j-sadeghi@sbu.ac.ir; Chenari, Z.; Ziaee, F. [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Latifi, H., E-mail: latifi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Santos, J. L., E-mail: josantos@fc.up.pt [INESC Porto—Instituto de Engenharia de Sistemas e Computadores do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Física, da Faculdade de Ciências, da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2014-02-17

    Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5?×?10{sup ?5}?nm/psi at 1480?nm to 1.3?×?10{sup ?3}?nm/psi at 1680?nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000?psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from ?3.4?×?10{sup ?6} 1/psi to ?1.3?×?10{sup ?6} 1/psi and from ?5?×?10{sup ?6} 1/psi to ?1.8?×?10{sup ?6} 1/psi, respectively, which were in a good accordance with each other.

  15. High efficiency 2 micrometer laser utilizing wing-pumped Tm.sup.3+ and a laser diode array end-pumping architecture

    DOE Patents [OSTI]

    Beach, Raymond J. (Livermore, CA)

    1997-01-01

    Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.

  16. High efficiency 2 micrometer laser utilizing wing-pumped Tm{sup 3+} and a laser diode array end-pumping architecture

    DOE Patents [OSTI]

    Beach, R.J.

    1997-11-18

    Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.

  17. Working with SRNL - Our Facilities- High Pressure Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in1: ModelGloveboxMetalGammaHigh

  18. High resolution laser spectroscopy of cesium and rubidium molecules with optically induced coherence 

    E-Print Network [OSTI]

    Chen, Hui

    2006-10-30

    This work is devoted to the study of the quantum coherent effects in diatomic molecular systems by using high resolution laser spectroscopy. In particular, we have studied the rubidium diatomic molecular gaseous medium's ...

  19. A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme

    E-Print Network [OSTI]

    Razavipour, S. G.

    A Terahertz quantum cascade laser with a rather high injection coupling strength based on an indirectly pumped scheme is designed and experimentally implemented. To effectively suppress leakage current, the chosen quantum ...

  20. High repetition rate mode-locked erbium-doped fiber lasers with complete electric field control

    E-Print Network [OSTI]

    Sickler, Jason William, 1978-

    2008-01-01

    Recent advances in fully-stabilized mode-locked laser systems are enabling many applications, including optical arbitrary waveform generation (OAWG). In this thesis work, we describe the development of high repetition-rate ...

  1. Stability of coal microstructure on exposure to high pressures of helium.

    SciTech Connect (OSTI)

    Sakurovs, Richard [ORNL; Radlinski, Andrzej Pawell [ORNL; Melnichenko, Yuri B [ORNL; Blach, Tomasz P [ORNL; Cheng, Gang [ORNL

    2009-01-01

    Small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) measurements of the structure of two Australian bituminous coals (particle size -1mm+0.5mm) before, during and after exposure to 155 bar of helium were made in order to identify any effects of pressure alone on the pore size distribution of coal, and any irreversible effects on exposure to high pressures of helium in the pore size range from 3 nm to 10 m. No irreversible effects on exposure were identified for any pore size. No effects of pressure on pore size distribution were observed, except for a small effect at a pore size of about 2 m for one coal. This study provides a convenient baseline for SANS and USANS investigations on sorption of gases at elevated pressures on coals, by distinguishing between the effect of pressure alone on coal pore size distribution as against the effect of the gas to be investigated.

  2. Relay telescope for high power laser alignment system

    DOE Patents [OSTI]

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  3. Adaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power laser pulses

    E-Print Network [OSTI]

    Umstadter, Donald

    point of a 100-TW peak-power laser in vacuum. The spectral-phase distortion induced by the dispersion that use high-power laser pulses must be performed in vacuum in order to prevent degradation of the laserAdaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power

  4. High power spatial single-mode quantum cascade lasers at 8.9 $\\mu$m

    E-Print Network [OSTI]

    Forget, S; Bengloan, J Y; Calligaro, M; Parillaud, O; Giovannini, Massimo; Faist, J; Sirtori, C; Forget, Sebastien; Faugeras, Clement; Bengloan, Jean Yves; Calligaro, Michel; Parillaud, Olivier; Giovannini, Marcella; Faist, Jerome; Sirtori, Carlo

    2005-01-01

    High performance of InP-based quantum cascade lasers emitting at $\\lambda$ ~ 9$\\mu$m are reported. Thick electroplated gold layer was deposited on top of the laser to improve heat dissipation. With one facet high reflection coated, the devices produce a maximum output power of 175mW at 40% duty cycle at room temperature and continuous-wave operation up to 278K.

  5. Progress Report for UNLV High Pressure Science and Engineering Center

    SciTech Connect (OSTI)

    Mailhiot, C.; Pepper, D.; Lindle, D.; Nicol, M.

    1998-11-20

    In this report we present results of an in-depth analysis of the SP error densities for 29 satellites. These satellites were divided into three groups--Low Earth Orbit (LEO), Near Circular Orbit (NCO) and Highly Eccentric Orbit (HEO). Included in the first group were those satellites with eccentricities of less than 0.2 and perigees below 450km. The second group included satellites in near circular orbits (eccentricities of less than 0.015) and perigees from 700km to 1500km. The third group consisted of those satellites that were in highly eccentric orbits, namely those with eccentricities greater than 0.2. These satellites have perigees far into the thermosphere. Table 1 contains a summary of the orbit characteristics for the 29 satellites. In our study we attempted to unravel and elucidate the networks of relationships above. The satellite groupings and the report are organized in a way that reflects these efforts. We begin in Section 2 with a summary of the methods used in our analysis. One objective in this study was to establish a baseline for future work in satellite orbit propagators. Section 2 contains descriptions of the SP, truth orbits, and the satellite observation data used to establish this baseline. In the report we show how satellite error densities evolve in time up to thirty-six hours. We present error profiles, error histograms, rms errors and 95/9970 confidence limits for the along-track cross-track, and radial axes of motion for satellites in each of the three groupings. We present results of a regression analysis that establishes a physical model of the error densities. We also link the errors in the various regimes to the quality and quantity of the observational data.

  6. High power 938 nanometer fiber laser and amplifier

    DOE Patents [OSTI]

    Dawson, Jay W. (Livermore, CA); Liao, Zhi Ming (Pleasanton, CA); Beach, Raymond J. (Livermore, CA); Drobshoff, Alexander D. (Livermore, CA); Payne, Stephen A. (Castro Valley, CA); Pennington, Deanna M. (Livermore, CA); Hackenberg, Wolfgang (Munich, DE); Calia, Domenico Bonaccini (Garching, DE); Taylor, Luke (Montauban de Bretagne, FR)

    2006-05-02

    An optical fiber amplifier includes a length of silica optical fiber having a core doped with neodymium, a first cladding and a second cladding each with succeeding lower refractive indices, where the first cladding diameter is less than 10 times the diameter of the core. The doping concentration of the neodymium is chosen so that the small signal absorption for 816 nm light traveling within the core is less than 15 dB/m above the other fiber losses. The amplifier is optically pumped with one laser into the fiber core and with another laser into the first cladding.

  7. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScienceLaboratoryandBryanoutreach LaserLaser

  8. Systematic prediction of high-pressure melting curves of transition metals

    SciTech Connect (OSTI)

    Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2014-10-28

    The pressure effects on melting temperatures of transition metals have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed for five transition metals including Cu, Pd, Pt, Ni, and Mn up to pressure 100?GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure melting of materials.

  9. Extension of high-order harmonic generation cutoff via coherent control of intense few-cycle chirped laser pulses

    E-Print Network [OSTI]

    Carrera, Juan J.; Chu, Shih-I

    2007-03-16

    We present an ab initio quantum investigation of the high-order harmonic generation (HHG) cutoff extension using intense few-cycle chirped laser pulses. For a few-cycle chirped driving laser pulse, it is shown that significant ...

  10. Stability analysis and testing of a train of centrifugal compressors for high pressure gas injection

    SciTech Connect (OSTI)

    Memmott, E.A. [Dresser-Rand Co., Olean, NY (United States)

    1999-07-01

    This paper describes the rotor dynamic stability analysis and the PTC-10 Class 1 test of a three body centrifugal compressor train for high pressure natural gas injection services. This train had a full load full pressure string test on hydrocarbon gases to a final discharge pressure of 500 BAR (7250 PSIA). Each compressor is of the back to back configuration, and is equipped with tilting pad seals, damper bearings, and a honeycomb labyrinth at the division wall with shunt holes. The driver is a gas turbine.

  11. High Pressure Transformation of La4Cu3MoO12 to a Layered Perovskite

    E-Print Network [OSTI]

    Poeppelmeier, Kenneth R.

    High Pressure Transformation of La4Cu3MoO12 to a Layered Perovskite Douglas A. Vander Griend it stabilizes the perovskite structure. In this paper, we describe the HP synthesis of a new copper-rich layered perovskite, La4Cu3MoO12, which is isotypic with La2- CuSnO6.1 When synthesized at ambient pressure (AP

  12. High power laser having a trivalent liquid host

    DOE Patents [OSTI]

    Ault, Earl R.

    2005-08-16

    A laser having a lasing chamber and a semiconductor pumping device with trivalent titanium ions dissolved in a liquid host within the lasing chamber. Since the host is a liquid, it can be removed from the optical cavity when it becomes heated avoiding the inevitable optical distortion and birefringence common to glass and crystal hosts.

  13. Strong-Field QED and High Power Lasers

    E-Print Network [OSTI]

    Thomas Heinzl

    2011-11-22

    This contribution presents an overview of fundamental QED processes in the presence of an external field produced by an ultra-intense laser. The discussion focusses on the basic intensity effects on vacuum polarisation and the prospects for their observation. Some historical remarks are added where appropriate.

  14. Development of a High Pressure/High Temperature Down-hole Turbine Generator

    SciTech Connect (OSTI)

    Ben Plamp

    2008-06-30

    As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to test the tool.

  15. DIRECT CORRELATION OF PROTEIN STRUCTURE AND FUNCTION USING HIGH-PRESSURE X-RAY CRYSTALLOGRAPHY

    E-Print Network [OSTI]

    Gruner, Sol M.

    protein Citrine as a model system under high-pressure perturbation. Citrine has been compressed by high Buz Michael Barstow, Ph. D. Cornell University 2009 A protein molecule is an intricate system whose is used to refer to my co-authors: Nozomi Ando, Chae Un Kim, and my advisor, Sol Gruner, to whom I owe

  16. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; Anderson, K. S.; Beg, F. N.; Epstein, R.; Fiksel, G.; Giraldez, E. M.; Glebov, V. Yu.; Habara, H.; et al

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achievemore »areal densities in excess of 300 mg cm#2;-2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.« less

  17. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion

    SciTech Connect (OSTI)

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; Anderson, K. S.; Beg, F. N.; Epstein, R.; Fiksel, G.; Giraldez, E. M.; Glebov, V. Yu.; Habara, H.; Ivancic, S.; Jarrott, L. C.; Marshall, F. J.; McKiernan, G.; McLean, H. S.; Mileham, C.; Nilson, P. M.; Patel, P. K.; Pérez, F.; Sangster, T. C.; Santos, J. J.; Sawada, H.; Shvydky, A.; Stephens, R. B.; Wei, M. S.

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm#2;-2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.

  18. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    SciTech Connect (OSTI)

    Hanson, Ronald; Whitty, Kevin

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  19. Analyses of High Pressure Molten Debris Dispersion for a Typical PWR Plant

    SciTech Connect (OSTI)

    Osamu KAawabata; Mitsuhiro Kajimoto [Japan Nuclear Energy Safety Organization (Japan)

    2006-07-01

    In such severe core damage accident, as small LOCAs with no ECCS injection or station blackout, in which the primary reactor system remains pressurized during core melt down, certain modes of vessel failure would lead to a high pressure ejection of molten core material. In case of a local failure of the lower head, the molten materials would initially be ejected into the cavity beneath the pressure vessel may subsequently be swept out from the cavity to the containment atmosphere and it might cause the early containment failure by direct contact of containment steel liner with core debris. When the contribution of a high-pressure scenario in a core damage frequency increases, early conditional containment failure probability may become large. In the present study, the verification analysis of PHOENICS code and the combining analysis with MELCOR and PHOENICS codes were performed to examine the debris dispersion behavior during high pressure melt ejection. The PHOENICS code which can treat thermal hydraulic phenomena, was applied to the verification analysis for melt dispersion experiments conducted by the Purdue university in the United States. A low pressure melt dispersion experiment at initial pressure 1.4 MPas used metal woods as a molten material was simulated. The analytical results with molten debris dispersion mostly from the model reactor cavity compartment showed an agreement with the experimental result, but the analysis result of a volumetric median diameter of the airborne debris droplets was estimated about 1.5 times of the experimental result. The injection rates of molten debris and steam after reactor vessel failure for a typical PWR plant were analyzed using the MELCOR code. In addition, PHOENICS was applied to a 3D analysis for debris dispersion with low primary pressure at the reactor vessel failure. The analysis result showed that almost all the molten debris were dispersed from the reactor vessel cavity compartment by about 45 seconds after the start of steam release. (authors)

  20. Microaspiration for high-pressure freezing: a new method for ultrastructural preservation of fragile and sparse tissues for TEM and electron tomography

    E-Print Network [OSTI]

    Triffo, W.J.

    2008-01-01

    specimens by high-pressure freezing. In: The Science offor high-pressure freezing: a new method for ultrastructuralL.A. (1989) High-pressure freezing for the preservation of

  1. High-resolution thermal expansion measurements under helium-gas pressure

    SciTech Connect (OSTI)

    Manna, Rudra Sekhar; Wolf, Bernd; Souza, Mariano de; Lang, Michael

    2012-08-15

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K Less-Than-Or-Slanted-Equal-To T Less-Than-Or-Slanted-Equal-To 300 K and hydrostatic pressure P Less-Than-Or-Slanted-Equal-To 250 MPa. Helium ({sup 4}He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P Asymptotically-Equal-To 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu{sub 3}(CO{sub 3}){sub 2}(OH){sub 2}, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  2. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris Oculata microalgae

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.

    2012-12-01

    The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage.more »Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.« less

  3. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris Oculata microalgae

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samarasinghe, Nalin [Texas A & M Univ., College Station, TX (United States). Dept. of Biological and Agricultural Engineering; Fernando, Sandun [Texas A & M Univ., College Station, TX (United States). Dept. of Biological and Agricultural Engineering; Faulkner, William B. [Texas A & M Univ., College Station, TX (United States). Dept. of Biological and Agricultural Engineering

    2012-01-01

    The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage. Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.

  4. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris Oculata microalgae

    SciTech Connect (OSTI)

    Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.

    2012-12-01

    The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage. Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.

  5. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; et al

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ?-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ?-phase is 0.5–1.2 GPa, more than three times higher than that of the ?-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can bemore »attributed to the relatively strong directional bonding in the ? phase, which significantly increases its shear plastic resistance over the ?-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.« less

  6. Numerical investigation of high-pressure combustion in rocket engines using Flamelet/Progress-variable models

    E-Print Network [OSTI]

    Coclite, A; De Palma, P; Pascazio, G

    2015-01-01

    The present paper deals with the numerical study of high pressure LOx/H2 or LOx/hydrocarbon combustion for propulsion systems. The present research effort is driven by the continued interest in achieving low cost, reliable access to space and more recently, by the renewed interest in hypersonic transportation systems capable of reducing time-to-destination. Moreover, combustion at high pressure has been assumed as a key issue to achieve better propulsive performance and lower environmental impact, as long as the replacement of hydrogen with a hydrocarbon, to reduce the costs related to ground operations and increase flexibility. The current work provides a model for the numerical simulation of high- pressure turbulent combustion employing detailed chemistry description, embedded in a RANS equations solver with a Low Reynolds number k-omega turbulence model. The model used to study such a combustion phenomenon is an extension of the standard flamelet-progress-variable (FPV) turbulent combustion model combined ...

  7. Laser spectroscopy of hyperfine structure in highly-charged ions: a test of QED at high fields

    E-Print Network [OSTI]

    D. F. A. Winters; M. Vogel; D. M. Segal; R. C. Thompson; W. Noertershaeuser

    2007-04-26

    An overview is presented of laser spectroscopy experiments with cold, trapped, highly-charged ions, which will be performed at the HITRAP facility at GSI in Darmstadt (Germany). These high-resolution measurements of ground state hyperfine splittings will be three orders of magnitude more precise than previous measurements. Moreover, from a comparison of measurements of the hyperfine splittings in hydrogen- and lithium-like ions of the same isotope, QED effects at high electromagnetic fields can be determined within a few percent. Several candidate ions suited for these laser spectroscopy studies are presented.

  8. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL)

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  9. High-pressure structural and elastic properties of Tl?O?

    SciTech Connect (OSTI)

    Gomis, O., E-mail: osgohi@fis.upv.es; Vilaplana, R. [Centro de Tecnologías Físicas, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Santamaría-Pérez, D. [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjassot (Spain); Earth Sciences Department, University College London, Gower Street, WC1E 6BT London (United Kingdom); Ruiz-Fuertes, J. [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjassot (Spain); Geowissenschaften, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany); Sans, J. A.; Manjón, F. J.; Mollar, M. [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); and others

    2014-10-07

    The structural properties of Thallium (III) oxide (Tl?O?) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-energy calculations. The equation of state of Tl?O? has been determined and compared to related compounds. It has been found experimentally that Tl?O? remains in its initial cubic bixbyite-type structure up to 22.0 GPa. At this pressure, the onset of amorphization is observed, being the sample fully amorphous at 25.2 GPa. The sample retains the amorphous state after pressure release. To understand the pressure-induced amorphization process, we have studied theoretically the possible high-pressure phases of Tl?O?. Although a phase transition is theoretically predicted at 5.8 GPa to the orthorhombic Rh?O?-II-type structure and at 24.2 GPa to the orthorhombic ?-Gd?S?-type structure, neither of these phases were observed experimentally, probably due to the hindrance of the pressure-driven phase transitions at room temperature. The theoretical study of the elastic behavior of the cubic bixbyite-type structure at high-pressure shows that amorphization above 22 GPa at room temperature might be caused by the mechanical instability of the cubic bixbyite-type structure which is theoretically predicted above 23.5 GPa.

  10. Stages of destruction and elastic compression of granular nanoporous carbon medium at high pressures

    E-Print Network [OSTI]

    I. M. Neklyudov; O. P. Ledenyov; N. B. Bobrova; A. A. Chupikov

    2015-05-14

    The granular nanoporous carbon medium, made of the cylindrical coal granules of the adsorbent of SKT 3, at an influence by the high pressures from 1MPa to 3GPa has been researched. The eight consecutive stages of the materials specific volume change, which is characterized by a certain dependence of the volume change on the pressure change, have been registered. It is shown that there is a linear dependence on the double log log plot of the materials specific volume change on the pressure for an every stage of considered process. The two stages are clearly distinguished such as a stage of materials mechanical destruction, and a stage of elastic compression of material without the disintegration of structure at a nanscale. The hysteresis dependence of the materials specific volume change on the pressure change at the pressure decrease is observed. The small disperse coal dust particles jettisoning between the high pressure cell and the base plate was observed, resulting in the elastic stress reduction in relation to the small disperse coal dust particles volume. The obtained research data can be used to improve the designs of air filters for the radioactive chemical elements absorption at the NPP with the aims to protect the environment.

  11. Generation of high-energy-density ion bunches by ultraintense laser-cone-target interaction

    SciTech Connect (OSTI)

    Yang, X. H.; Zhuo, H. B., E-mail: hongbin.zhuo@gmail.com; Ma, Y. Y.; Zou, D. B.; Yu, T. P.; Ge, Z. Y.; Yin, Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China); Yu, W. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, H., E-mail: xuhanemail@gmail.com [State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073 (China); Borghesi, M., E-mail: m.borghesi@qub.ac.uk [School of Mathematics and Physics, Queen's University of Belfast, Belfast BT7 1NN (United Kingdom); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic)

    2014-06-15

    A scheme in which carbon ion bunches are accelerated to a high energy and density by a laser pulse (?10{sup 21}?W/cm{sup 2}) irradiating cone targets is proposed and investigated using particle-in-cell simulations. The laser pulse is focused by the cone and drives forward an ultrathin foil located at the cone's tip. In the course of the work, best results were obtained employing target configurations combining a low-Z cone with a multispecies foil transversely shaped to match the laser intensity profile.

  12. Laminar shocks in high power laser plasma interactions

    SciTech Connect (OSTI)

    Cairns, R. A. [University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom)] [University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Bingham, R.; Norreys, P.; Trines, R. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX (United Kingdom)] [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2014-02-15

    We propose a theory to describe laminar ion sound structures in a collisionless plasma. Reflection of a small fraction of the upstream ions converts the well known ion acoustic soliton into a structure with a steep potential gradient upstream and with downstream oscillations. The theory provides a simple interpretation of results dating back more than forty years but, more importantly, is shown to provide an explanation for recent observations on laser produced plasmas relevant to inertial fusion and to ion acceleration.

  13. Laser synchronized high-speed shutter for spectroscopic application

    DOE Patents [OSTI]

    Miles, Paul C. (Tracy, CA); Porter, Eldon L. (Tracy, CA); Prast, Thomas L. (Livermore, CA); Sunnarborg, Duane A. (Livermore, CA)

    2002-01-01

    A fast mechanical shutter, based on rotating chopper wheels, has been designed and implemented to shutter the entrance slit of a spectrograph. This device enables an exposure time of 9 .mu.s to be achieved for a 0.8 mm wide spectrograph entrance slit, achieves 100% transmission in the open state, and an essentially infinite extinction ratio. The device further incorporates chopper wheel position sensing electronics to permit the synchronous triggering of a laser source.

  14. Highly Nonlinear Luminescence Induced by Gold Nanoparticles on Glass Surfaces with Continuous-Wave Laser Illumination

    E-Print Network [OSTI]

    Wu, Yong; Toro, Ligia; Stefani, Enrico

    2015-01-01

    We report on highly nonlinear luminescence being observed from individual spherical gold nanoparticles immobilized on a borosilicate glass surface and illuminated by continuous-wave (CW) lasers with relatively low power. The nonlinear luminescence shows optical super-resolution beyond the diffraction limit in three dimensions compared to the scatting of the excitation laser light. The luminescence intensity from most nanoparticles is proportional to the 5th--7th power of the excitation laser power and has wide excitation and emission spectra across the visible wavelength range. Strong nonlinear luminescence is only observed near the glass surface. High optical nonlinearity excited by low CW laser power is related to a long-lived dark state of the gold nanoparticles, where the excitation light is strongly absorbed. This phenomenon has potential biological applications in super-resolution and deep tissue imaging.

  15. High-pressure coiled-tubing technology solves resin-sand-control problems

    SciTech Connect (OSTI)

    1997-06-01

    Operators of high-pressure offshore gas wells (> 5,000 psi) have had few options for controlling sand production. Sand-control (SC) processes can be economically prohibitive when they involve extensive mobilization, demobilization, and rig-up cost of the conventional offshore rig or hydraulic workover unit. Bullheading SC chemicals from the surface can damage the formation and prohibit production. Coiled-tubing (CT) technology now allows an offshore operator to remove extensive cement residue effectively from the wellbore and place chemical SC treatments in a high-pressure-gas environment. An example from the Gulf of Mexico illustrates the technology.

  16. High Efficiency Electron-Laser Interactions in Tapered Helical Undulators

    E-Print Network [OSTI]

    Duris, Joseph

    2015-01-01

    Demonstration of high-trapping efficiency and narrow energylaser accelerator for efficient production of high qualityand J. S. Wurtele. High-efficiency extraction of microwave

  17. Proton radiography of dynamic electric and magnetic fields in laser-produced high-energy-density plasmasa...

    E-Print Network [OSTI]

    Proton radiography of dynamic electric and magnetic fields in laser-produced high-energy measurements of the electric E and magnetic B fields produced in laser-foil interactions and during, and dissipation of self-generated electric E and magnetic B fields by inter- actions of laser light with matter1

  18. The origins of pressure-induced phase transformations during the surface texturing of silicon using femtosecond laser irradiation

    E-Print Network [OSTI]

    Smith, Matthew J.

    Surface texturing of silicon using femtosecond (fs) laser irradiation is an attractive method for enhancing light trapping, but the laser-induced damage that occurs in parallel with surface texturing can inhibit device ...

  19. Analysis of CZT crystals and detectors grown in Russia and the Ukraine by high-pressure Bridgman methods

    SciTech Connect (OSTI)

    H. Hermon; M. Schieber; R. B. James; E. Y. Lee; N. Yang; A. J. Antolak; D. H. Morse; C. Hackett; E. Tarver; N. N. P. Kolesnikov; Yu N. Ivanov; V. Komar; M. S. Goorsky; H. Yoon

    2000-01-10

    Sandia National Laboratories (SNL) is leading an effort to evaluate vertical high pressure Bridgman (VHPB) Cd{sub 1-x}Zn{sub x}Te (CZT) crystals grown in the former Soviet Union (FSU) (Ukraine and Russia), in order to study the parameters limiting the crystal quality and the radiation detector performance. The stoichiometry of the CZT crystals, with 0.04 < x < 0.25, has been determined by methods such as proton-induced X-ray emission (PIXE), X-ray diffraction (XRD), microprobe analysis and laser ablation ICP mass spectroscopy (LA-ICP/MS). Other methods such as triaxial double crystal x-ray diffraction (TADXRD), infrared transmission spectroscopy (IR), atomic force microscopy (AFM), thermoelectric emission spectroscopy (TEES) and laser induced transient charge technique (TCT) were also used to evaluate the material properties. The authors have measured the zinc distribution in a CZT ingot along the axial direction and also its homogeneity. The (Cd+Zn)/Te average ratio measured on the Ukraine crystals was 1.2, compared to the ratio of 0.9-1.06 on the Russian ingots. The IR transmission showed highly decorated grain boundaries with precipitates and hollow bubbles. Microprobe elemental analysis and LA-ICP/MS showed carbon precipitates in the CZT bulk and carbon deposits along grain boundaries. The higher concentration of impurities and the imperfect crystallinity lead to shorter electron and hole lifetimes in the range of 0.5--2 {micro}s and 0.1 {micro}s respectively, compared to 3--20 {micro}s and 1--7 {micro}s measured on US spectrometer grade CZT detectors. These results are consistent with the lower resistivity and worse crystalline perfection of these crystals, compared to US grown CZT. However, recently grown CZT from FSU exhibited better detector performance and good response to alpha particles.

  20. Analysis of CZT crystals and detectors grown in Russia and the Ukraine by high-pressure Bridgman methods

    SciTech Connect (OSTI)

    Hermon, H.; Schieber, M. [Sandia National Labs., Livermore, CA (United States)]|[Hebrew Univ., Jerusalem (Israel); James, R.B. [Sandia National Labs., Livermore, CA (United States)] [and others

    1999-06-01

    Sandia National Laboratories (SNL) is leading an effort to evaluate vertical high pressure Bridgman (VHPB) Cd{sub 1{minus}x}Zn{sub x}Te (CZT) crystals grown in the former Soviet Union (FSU) (Ukraine and Russia), in order to study the parameters limiting the crystal quality and the radiation detector performance. The stoichiometry of the CZT crystals, with 0.04 < x < 0.25, has been determined by methods such as proton-induced x-ray emission (PIXE), x-ray diffraction (XRD), microprobe analysis and laser ablation ICP mass spectroscopy (LA-ICP/MS). Other methods such as triaxial double crystal x-ray diffraction (TADXRD), infrared transmission spectroscopy (IR), atomic force microscopy (AFM), thermoelectric emission spectroscopy (TEES) and laser induced transient charge technique (TCT) were also used to evaluate the material properties. The authors have measured the zinc distribution in a CZT ingot along the axial direction and also its homogeneity. The (Cd+Zn)/Te average ratio measured on the Ukraine crystals was 1.2, compared to the ratio of 0.9--1.06 on the Russian ingots. The IR transmission showed highly decorated grain boundaries with precipitates and hollow bubbles. Microprobe elemental analysis and LA-ICP/MS showed carbon precipitates in the CZT bulk and carbon deposits along grain boundaries. The higher concentration of impurities and the imperfect crystallinity lead to shorter electron and hole lifetimes in the range of 0.5--2 and 0.1 {micro}s, respectively, compared to 3--20 and 1--7 {micro}s measured on US spectrometer grade CZT detectors. These results are consistent with the lower resistivity and worse crystalline perfection of these crystals, compared to US-grown CZT. However, recently grown CZT from FSU exhibited better detector performance and good response to alpha particles.

  1. High Spatial Resolution Laser Cavity Extinction and Laser Induced Incandescence in Low Soot Producing Flames

    E-Print Network [OSTI]

    Tian, B.; Gao, Y.; Balusamy, S.; Hochgreb, S.

    2015-06-26

    1 Introduction Soot particles generated from combustion are both a significant atmo- spheric pollutant, as well as a contributor to climate change [1–4]. Many techniques have therefore been developed to measure soot particles from a variety... ,34] is that the present technique does not rely on pulsed, shot-to-shot measurements, but rather a low power, low cost CW laser. This allows for a much simpler, less expensive system, which does not require a fast response detector and signal receiver capable of nanosec...

  2. Cladding glass ceramic for use in high powered lasers

    DOE Patents [OSTI]

    Marker, Alexander J. (Moscow, PA); Campbell, John H. (Livermore, CA)

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  3. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScienceLaboratoryandBryanoutreach Laser

  4. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- Energy Innovation PortalImpactLaser

  5. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- Energy InnovationLaser Seeding Yields

  6. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- Energy InnovationLaser Seeding

  7. Design, modeling, fabrication and testing of a piezoelectric microvalve for high pressure, high frequency hydraulic applications

    E-Print Network [OSTI]

    Roberts, David C. (David Christopher)

    2002-01-01

    A piezoelectrically-driven hydraulic amplification microvalve for use in high specific power hydraulic pumping applications was designed, fabricated, and experimentally characterized. High frequency, high force actuation ...

  8. High pressure studies on uranium and thorium silicide compounds: Experiment S. Yagoubi a,b,c,

    E-Print Network [OSTI]

    Svane, Axel Torstein

    High pressure studies on uranium and thorium silicide compounds: Experiment and theory S. Yagoubi a, USi3, as well as some non-stoichiometric phases presented in Table 1. Among the thoriumB-type) that a ferromagnetic ordering is reported, with TC = 127 K and a saturated moment of 0.1 lB [3]. Concerning the thorium

  9. Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure,

    E-Print Network [OSTI]

    Shimizu, Seishi

    Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure as a result of a biochemical process such as binding and allosteric effects? Volumetric and osmotic stress number from volumetric data, provides a quantitative condition to gauge the accuracy of osmotic stress

  10. Self-Diffusion Coefficients of Methane or Ethane Mixtures with Hydrocarbons at High Pressure by NMR

    E-Print Network [OSTI]

    Dysthe, Dag Kristian

    Self-Diffusion Coefficients of Methane or Ethane Mixtures with Hydrocarbons at High Pressure by NMR in homogeneous mixtures of methane + hexane, ethane + hexane, methane + octane, ethane + octan, methane + decane, ethane + decane, and methane + hexane + benzene over the whole concentration range, at 303.2 K and 333

  11. PlasticPDMS bonding for high pressure hydrolytically stable active microfluidics

    E-Print Network [OSTI]

    Ram, Rajeev J.

    to plastics. Plastics can be manufactured using mass fabrication technologies such as injection molding with established plastic mass fabri- cation technologies. Bonding technologies Bonding between PDMS and plasticsPlastic­PDMS bonding for high pressure hydrolytically stable active microfluidics Kevin S. Lee

  12. FLOW OF A FLUID THROUGH A POROUS SOLID DUE TO HIGH PRESSURE GRADIENTS

    E-Print Network [OSTI]

    Bonito, Andrea

    applications involving the flow of fluids through a porous media, like the problems of enhanced oil recovery technical problem where such high pressure differentials are involved is that of extracting unconventional oil deposits such as shale which is becoming ever so important now. In this study, we show

  13. Aragonite pseudomorphs in high-pressure marbles of Syros, Greece John B. Bradya,*, Michelle J. Markleyb

    E-Print Network [OSTI]

    Brady, John B.

    Aragonite pseudomorphs in high-pressure marbles of Syros, Greece John B. Bradya,*, Michelle J in the blueschist to eclogite facies marbles of Syros, Greece. The rods show a shape-preferred orientation is unusually low (Carlson and Rosenfeld, 1981). Although marbles on the island of Syros (Cyclades, Greece

  14. Studies of Charge Exchange in a High?Pressure Pulsed Electron Impact Source

    E-Print Network [OSTI]

    Sharma, D. K. Sen; Hierl, Peter M.; Franklin, J. L.

    1972-01-01

    A high pressure pulsed ion source has been used in a time?of?flight mass spectrometer in order to study the charge exchangereactions in Ar–H2 and Ar–D2 systems using the ion source in the ?ermák mode of operation. As the source was used in a pulsed...

  15. High-harmonic generation in plasmas from relativistic laser-electron scattering

    E-Print Network [OSTI]

    Umstadter, Donald

    High-harmonic generation in plasmas from relativistic laser-electron scattering S. Banerjee, A. R Results are presented on the generation of high harmonics through the scattering of relativistic electrons to be the emission of even- order harmonics, linear dependence on the electron density, significant amount

  16. The system for delivery of IR laser radiaton into high vacuum

    E-Print Network [OSTI]

    Abakumova, E V; Krasnov, A A; Muchnoi, N Yu; Pyata, E E

    2015-01-01

    The system for insertion of a laser beam into the vacuum chamber of high-energy storage ring is described. The main part of the system is the high-vacuum viewport for the IR radiation, based on ZnSe or GaAs crystals. The design of the viewports is presented.

  17. Highly Reproducible Laser Beam Scanning Device for an Internal Source Laser Desorption Microprobe Fourier Transform Mass Spectrometer

    SciTech Connect (OSTI)

    Scott, Jill Rennee; Tremblay, Paul Leland

    2002-03-01

    Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (~5 µm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ~9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.

  18. A compact high-performance low-field NMR apparatus for measurements on fluids at very high pressures and temperatures

    SciTech Connect (OSTI)

    Freedman, R.; Anand, V. Ganesan, K.; Tabrizi, P.; Torres, R.; Grant, B.; Catina, D.; Ryan, D.; Borman, C.; Krueckl, C.

    2014-02-15

    We discuss an innovative new high-performance apparatus for performing low-field Nuclear Magnetic Resonance (NMR) relaxation times and diffusion measurements on fluids at very high pressures and high temperatures. The apparatus sensor design and electronics specifications allow for dual deployment either in a fluid sampling well logging tool or in a laboratory. The sensor and electronics were designed to function in both environments. This paper discusses the use of the apparatus in a laboratory environment. The operating temperature and pressure limits, and the signal-to-noise ratio (SNR) of the new system exceed by a very wide margin what is currently possible. This major breakthrough was made possible by a revolutionary new sensor design that breaks many of the rules of conventional high pressure NMR sensor design. A metallic sample holder capable of operating at high pressures and temperatures is provided to contain the fluid under study. The sample holder has been successfully tested for operation up to 36 Kpsi. A solenoid coil wound on a slotted titanium frame sits inside the metallic sample holder and serves as an antenna to transmit RF pulses and receive NMR signals. The metal sample holder is sandwiched between a pair of gradient coils which provide a linear field gradient for pulsed field gradient diffusion measurements. The assembly sits in the bore of a low-gradient permanent magnet. The system can operate over a wide frequency range without the need for tuning the antenna to the Larmor frequency. The SNR measured on a water sample at room temperature is more than 15 times greater than that of the commercial low-field system in our laboratory. Thus, the new system provides for data acquisition more than 200 times faster than was previously possible. Laboratory NMR measurements of relaxations times and diffusion coefficients performed at pressures up to 25 Kpsi and at temperatures up to 175?°C with crude oils enlivened with dissolved hydrocarbon gases (referred to as “live oils”) are shown. This is the first time low-field NMR measurements have been performed at such high temperatures and pressures on live crude oil samples. We discuss the details of the apparatus design, tuning, calibration, and operation. NMR data acquired at multiple temperatures and pressures on a live oil sample are discussed.

  19. Experimental Investigation on High-pressure, High-temperature Viscosity of Gas Mixtures 

    E-Print Network [OSTI]

    Davani, Ehsan

    2012-02-14

    was used to measure the viscosity of mixtures of nitrogen and methane, and mixtures of CO2 and methane at a pressure range of 5,000 to 25,000 psi, and a temperature range of 100 to 360 degrees F. The viscosity of mixtures of nitrogen and methane...

  20. Design and performance of a high-pressure Fischer-Tropsch fluidized bed reactor

    SciTech Connect (OSTI)

    Weimer, A.W.; Quarderer, G.J.; Cochran, G.A.; Conway, M.M. )

    1988-01-01

    A 900 kg/day, CO/H/sub 2/, high-pressure, fluidized bed, pilot reactor was designed from first principles to achieve high reactant conversions and heat removal rates for the Fischer-Tropsch (F-T) synthesis of liquefied petroleum gases (LPG's). Suppressed bubble growth at high pressure allowed high reactant conversions which nearly matched those obtained at identical conditions in a lab scale fixed bed reactor. For GHSV approximately 1400 hr/sup -1/ and T = 658 {Kappa} at P approximately 7000 {kappa}Pa, reactant conversion exceeded 75%. The reactor heat removal capability exceeded twice design performance with the fluidized bed easily operating under thermally stable conditions. The fluidized catalyst was a potassium promoted, molybdenum on carbon (Mo/{Kappa}/C) catalyst which did not produce any detrimental waxy products. Long catalyst lifetimes of 1000 hrs on steam between regenerations allowed the fluidized bed to be operated in a batch mode.

  1. Infrared spectroscopic and modeling studies of H{sub 2}/CH{sub 4} microwave plasma gas phase from low to high pressure and power

    SciTech Connect (OSTI)

    Rond, C. Lombardi, G.; Gicquel, A.; Hamann, S.; Röpcke, J.; Wartel, M.

    2014-09-07

    InfraRed Tunable Diode Laser Absorption Spectroscopy technique has been implemented in a H{sub 2}/CH{sub 4} Micro-Wave (MW frequency f?=?2.45 GHz) plasma reactor dedicated to diamond deposition under high pressure and high power conditions. Parametric studies such as a function of MW power, pressure, and admixtures of methane have been carried out on a wide range of experimental conditions: the pressure up to 270 mbar and the MW power up to 4?kW. These conditions allow high purity Chemical Vapor Deposition diamond deposition at high growth rates. Line integrated absorption measurements have been performed in order to monitor hydrocarbon species, i.e., CH{sub 3}, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The densities of the stable detected species were found to vary in the range of 10{sup 12}–10{sup 17} molecules cm{sup ?3}, while the methyl radical CH{sub 3} (precursor of diamond growth under these conditions) measured into the plasma bulk was found up to 10{sup 14} molecules cm{sup ?3}. The experimental densities have been compared to those provided by 1D-radial thermochemical model for low power and low pressure conditions (up to 100 mbar/2?kW). These densities have been axially integrated. Experimental measurements under high pressure and power conditions confirm a strong increase of the degree of dissociation of the precursor, CH{sub 4}, associated to an increase of the C{sub 2}H{sub 2} density, the most abundant reaction product in the plasma.

  2. TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS

    SciTech Connect (OSTI)

    Rathborne, J. M.; Contreras, Y. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW, 1710 (Australia); Longmore, S. N.; Bastian, N. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Jackson, J. M. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Kruijssen, J. M. D. [Max-Planck Institut fur Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748, Garching (Germany); Alves, J. F. [University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Bally, J. [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 8030 (United States); Foster, J. B. [Department of Astronomy, Yale University, P.O. Box 208101 New Haven, CT 06520-8101 (United States); Garay, G. [Universidad de Chile, Camino El Observatorio1515, Las Condes, Santiago (Chile); Testi, L. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen (Germany); Walsh, A. J., E-mail: Jill.Rathborne@csiro.au [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth (Australia)

    2014-11-10

    Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10{sup 5} K cm{sup –3}) molecular clouds in the solar neighborhood. However, it is unknown whether or not these theories extend to clouds in high-pressure (P/k > 10{sup 7} K cm{sup –3}) environments, like those in the Galaxy's inner 200 pc central molecular zone (CMZ) and in the early universe. Here, we present Atacama Large Millimeter/submillimeter Array 3 mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density probability distribution function (PDF) are strikingly similar to those of solar neighborhood clouds, there is one important quantitative difference: its mean column density is one to two orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighborhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighborhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighborhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early universe.

  3. Summary report of working group 3: High gradient and laser-structure based acceleration

    SciTech Connect (OSTI)

    Solyak, N.; Cowan, B.M.; /Tech-X, Boulder

    2010-01-01

    The charge for the working group on high gradient and laser-structure based acceleration was to assess the current challenges involved in developing an advanced accelerator based on electromagnetic structures, and survey state-of-the-art methods to address those challenges. The topics of more than 50 presentations in the working group covered a very broad range of issues, from ideas, theoretical models and simulations, to design and manufacturing of accelerating structures and, finally, experimental results on obtaining extremely high accelerating gradients in structures from conventional microwave frequency range up to THz and laser frequencies. Workshop discussion topics included advances in the understanding of the physics of breakdown and other phenomena, limiting high gradient performance of accelerating structures. New results presented in this workshop demonstrated significant progress in the fields of conventional vacuum structure-based acceleration, dielectric wakefield acceleration, and laser-structure acceleration.

  4. Emission parameters and thermal management of single high-power 980-nm laser diodes

    SciTech Connect (OSTI)

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A; Pevtsov, V F; Popov, Yu M; Cheshev, E A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-02-28

    We report emission parameters of high-power cw 980-nm laser diodes (LDs) with a stripe contact width of 100 ?m. On copper heat sinks of the C-mount type, a reliable output power of 10 W is obtained at a pump current of 10 A. Using a heat flow model derived from analysis of calculated and measured overall efficiencies at pump currents up to 20 A, we examine the possibility of raising the reliable power limit of a modified high-power LD mounted on heat sinks of the F-mount type using submounts with optimised geometric parameters and high thermal conductivity. The possibility of increasing the maximum reliable cw output power to 20 W with the use of similar laser crystals is discussed. (lasers)

  5. Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same

    DOE Patents [OSTI]

    Dane, C. Brent (Livermore, CA); Hackel, Lloyd (Livermore, CA); Harris, Fritz B. (Rocklin, CA)

    2007-04-24

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  6. Studying single nanocrystals under high pressure using an x-ray nanoprobe

    SciTech Connect (OSTI)

    Wang Lin; Ding Yang; Yang Wenge; Patel, Umesh; Xiao Zhili; Cai Zhonghou; Mao, Wendy L.; Mao Hokwang

    2011-04-15

    In this report, we demonstrate the feasibility of applying a 250-nm focused x-ray beam to study a single crystalline NbSe{sub 3} nanobelt under high-pressure conditions in a diamond anvil cell. With such a small probe, we not only resolved the distribution and morphology of each individual nanobelt in the x-ray fluorescence maps but also obtained the diffraction patterns from individual crystalline nanobelts with thicknesses of less than 50 nm. Single crystalline diffraction measurements on NbSe{sub 3} nanobelts were performed at pressures up to 20 GPa.

  7. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    SciTech Connect (OSTI)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data.

  8. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.

    2015-01-06

    In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO2, the occurrence of the tetrahedrally-coordinated carbonates based on CO4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO3 carbonates up to relevant lower-mantle conditions ofmore »approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.« less

  9. Can we detect "Unruh radiation" in the high intensity lasers?

    E-Print Network [OSTI]

    Satoshi Iso; Yasuhiro Yamamoto; Sen Zhang

    2011-02-23

    An accelerated particle sees the Minkowski vacuum as thermally excited, which is called the Unruh effect. Due to an interaction with the thermal bath, the particle moves stochastically like the Brownian motion in a heat bath. It has been discussed that the accelerated charged particle may emit extra radiation (the Unruh radiation) besides the Larmor radiation, and experiments are under planning to detect such radiation by using ultrahigh intensity lasers. There are, however, counterarguments that the radiation is canceled by an interference effect between the vacuum fluctuation and the radiation from the fluctuating motion. In this reports, we review our recent analysis on the issue of the Unruh radiation. In this report, we particularly consider the thermalization of an accelerated particle in the scalar QED, and derive the relaxation time of the thermalization.

  10. High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets

    SciTech Connect (OSTI)

    Dollar, F.; Reed, S. A.; Matsuoka, T.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; McGuffey, C.; Rousseau, P.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Maksimchuk, A.; Litzenberg, D. W.

    2013-09-30

    Laser driven proton acceleration experiments from micron and submicron thick targets using high intensity (2 × 10{sup 21} W/cm{sup 2}), high contrast (10{sup ?15}) laser pulses show an enhancement of maximum energy when hydrogen containing targets were used instead of non-hydrogen containing. In our experiments, using thin (<1?m) plastic foil targets resulted in maximum proton energies that were consistently 20%–100% higher than when equivalent thickness inorganic targets, including Si{sub 3}N{sub 4} and Al, were used. Proton energies up to 20 MeV were measured with a flux of 10{sup 7} protons/MeV/sr.

  11. Specification of optical components for a high average-power laser environment

    SciTech Connect (OSTI)

    Taylor, J.R.; Chow, R.; Rinmdahl, K.A.; Willis, J.B.; Wong, J.N.

    1997-06-25

    Optical component specifications for the high-average-power lasers and transport system used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant must address demanding system performance requirements. The need for high performance optics has to be balanced against the practical desire to reduce the supply risks of cost and schedule. This is addressed in optical system design, careful planning with the optical industry, demonstration of plant quality parts, qualification of optical suppliers and processes, comprehensive procedures for evaluation and test, and a plan for corrective action.

  12. High Temperature, high pressure equation of state density correlations and viscosity correlations

    SciTech Connect (OSTI)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  13. High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection

    SciTech Connect (OSTI)

    Po?ízka, Pavel [BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669 Brno (Czech Republic); Klessen, Benjamin; Gornushkin, Igor; Riedel, Jens [BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kaiser, Jozef [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669 Brno (Czech Republic); Panne, Ulrich [BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Chemistry Department, Humboldt Universität zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin (Germany)

    2014-07-15

    This contribution introduces a new type of setup for fast sample analysis using laser-induced breakdown spectroscopy (LIBS). The novel design combines a high repetition rate laser (up to 50 kHz) as excitation source and an acousto-optical modulator (AOM) as a fast switch for temporally gating the detection of the emitted light. The plasma radiation is led through the active medium of the AOM where it is diffracted on the transient ultrasonic Bragg grid. The diffracted radiation is detected by a compact Czerny-Turner spectrometer equipped with a CCD line detector. Utilizing the new combination of high repetition rate lasers and AOM gated detection, rapid measurements with total integration times of only 10 ms resulted in a limit of detection (LOD) of 0.13 wt.% for magnesium in aluminum alloys. This short integration time corresponds to 100 analyses/s. Temporal gating of LIP radiation results in improved LODs and consecutively higher sensitivity of the LIBS setup. Therefore, an AOM could be beneficially utilized to temporally detect plasmas induced by high repetition rate lasers. The AOM in combination with miniaturized Czerny-Turner spectrometers equipped with CCD line detectors and small footprint diode pumped solid state lasers results in temporally gateable compact LIBS setups.

  14. Stability of the bituminous coal microstructure upon exposure to high pressures of helium

    SciTech Connect (OSTI)

    Richard Sakurovs; Andrzej P. Radliski; Yuri B. Melnichenko; Tomas Blach; Gang Cheng; Hartmut Lemmel; Helmut Rauch [CSIRO Energy Technology, Newcastle, NSW (Australia)

    2009-09-15

    Small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) measurements of the structure of two Australian bituminous coals (particle size of 1-0.5 mm) before, during, and after exposure to 155 bar of helium were made to identify any effects of pressure alone on the pore size distribution of coal and any irreversible effects upon exposure to high pressures of helium in the pore size range from 3 nm to 10 {mu}m. No irreversible effects upon exposure were identified for any pore size. No effects of pressure on pore size distribution were observed, except for a small effect at a pore size of about 2 {mu}m for one coal. This study provides a convenient baseline for SANS and USANS investigations on sorption of gases at elevated pressures on coals, by distinguishing between the effect of pressure alone on coal pore size distribution and against the effect of the gas to be investigated. 35 refs., 5 figs., 1 tab.

  15. High-beta plasma effects in a low-pressure helicon plasma

    SciTech Connect (OSTI)

    Corr, C. S.; Boswell, R. W. [Space Plasma, Power and Propulsion Group (SP3), Research School of Physical Science and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2007-12-15

    In this work, high-beta plasma effects are investigated in a low-pressure helicon plasma source attached to a large volume diffusion chamber. When operating above an input power of 900 W and a magnetic field of 30 G a narrow column of bright blue light (due to Ar II radiation) is observed along the axis of the diffusion chamber. With this blue mode, the plasma density is axially very uniform in the diffusion chamber; however, the radial profiles are not, suggesting that a large diamagnetic current might be induced. The diamagnetic behavior of the plasma has been investigated by measuring the temporal evolution of the magnetic field (B{sub z}) and the plasma kinetic pressure when operating in a pulsed discharge mode. It is found that although the electron pressure can exceed the magnetic field pressure by a factor of 2, a complete expulsion of the magnetic field from the plasma interior is not observed. In fact, under our operating conditions with magnetized ions, the maximum diamagnetism observed is {approx}2%. It is observed that the magnetic field displays the strongest change at the plasma centre, which corresponds to the maximum in the plasma kinetic pressure. These results suggest that the magnetic field diffuses into the plasma sufficiently quickly that on a long time scale only a slight perturbation of the magnetic field is ever observed.

  16. Influence of oxygen pressure and aging on LaAlO{sub 3} films grown by pulsed laser deposition on SrTiO{sub 3} substrates

    SciTech Connect (OSTI)

    Park, Jihwey; Aeppli, Gabriel [London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom); Soh, Yeong-Ah, E-mail: yeongahsoh@gmail.com [London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); David, Adrian; Lin, Weinan [Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371 (Singapore); Wu, Tom [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2014-02-24

    The crystal structures of LaAlO{sub 3} films grown by pulsed laser deposition on SrTiO{sub 3} substrates at oxygen pressure of 10{sup ?3} millibars or 10{sup ?5} millibars, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our results show that the interface between LaAlO{sub 3} and SrTiO{sub 3} is sharper when the oxygen pressure is lower. Over time, the formation of various crystalline phases is observed while the crystalline thickness of the LaAlO{sub 3} layer remains unchanged. X-ray scattering as well as atomic force microscopy measurements indicate three-dimensional growth of such phases, which appear to be fed from an amorphous capping layer present in as-grown samples.

  17. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect (OSTI)

    Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros; Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A.

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  18. Comparison of high pressure transient PVT measurements and model predictions. Part I.

    SciTech Connect (OSTI)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Evans, Gregory Herbert; Rice, Steven F.; Winters, William Stanley, Jr.

    2010-07-01

    A series of experiments consisting of vessel-to-vessel transfers of pressurized gas using Transient PVT methodology have been conducted to provide a data set for optimizing heat transfer correlations in high pressure flow systems. In rapid expansions such as these, the heat transfer conditions are neither adiabatic nor isothermal. Compressible flow tools exist, such as NETFLOW that can accurately calculate the pressure and other dynamical mechanical properties of such a system as a function of time. However to properly evaluate the mass that has transferred as a function of time these computational tools rely on heat transfer correlations that must be confirmed experimentally. In this work new data sets using helium gas are used to evaluate the accuracy of these correlations for receiver vessel sizes ranging from 0.090 L to 13 L and initial supply pressures ranging from 2 MPa to 40 MPa. The comparisons show that the correlations developed in the 1980s from sparse data sets perform well for the supply vessels but are not accurate for the receivers, particularly at early time during the transfers. This report focuses on the experiments used to obtain high quality data sets that can be used to validate computational models. Part II of this report discusses how these data were used to gain insight into the physics of gas transfer and to improve vessel heat transfer correlations. Network flow modeling and CFD modeling is also discussed.

  19. Direct containment heating and aerosol generation during high-pressure-melt expulsion experiments

    SciTech Connect (OSTI)

    Tarbell, W.W.; Brockmann, J.E.; Washington, K.E.; Pilch, M.; Marx, K.D.

    1988-01-01

    Severe nuclear plant accidents can involve the degradation of the reactor core while the primary coolant system remains pressurized. Molten fuel reaching the lower head of the reactor pressure vessel (RPV) may attack and fail the instrument guide tube penetrations, allowing the tube to be expelled from the vessel. The resulting aperture allows the molten fuel to be ejected into the cavity, followed by the blowdown of the contents of the primary system (high-pressure-melt ejection). Entrainment of the core debris in the cavity by the blowdown gases may cause high-temperature fuel particles to be carried into the containment building. Energy exchange between the particles and the atmosphere may cause heating and pressurizing of the containment (direct containment heating (DCH)). The complex phenomena associated with direct containment heating accident sequences are not well understood. This work describes a series of four experiments that have been performed to study and quantify the processes involved. The data from the experiments are used to guide the development of computer models to describe the response of containments under accident conditions.

  20. High pressure pair distribution function studies of Green River oil shale.

    SciTech Connect (OSTI)

    Chapman, K. W.; Chupas, P. J.; Locke, D. R.; Winans, R. E.; Pugmire, R. J.; Univ. of Utah

    2008-01-01

    The compression behavior of a silicate-rich oil shale from the Green River formation in the pressure range 0.0-2.4 GPa was studied using in situ high pressure X-ray pair distribution function (PDF) measurements for the sample contained within a Paris-Edinburgh cell. The real-space local structural information in the PDF, G(r), was used to evaluate the compressibility of the oil shale. Specifically, the pressure-induced reduction in the medium- to long-range atom distances ({approx}6-20 {angstrom}) yielded an average sample compressibility corresponding to a bulk modulus of ca. 61-67 GPa. A structural model consisting of a three phase mixture of the principal crystalline oil shale components (quartz, albite and Illite) provided a good fit to the ambient pressure PDF data (R {approx} 30.7%). Indeed the features in the PDF beyond {approx} {angstrom}, were similarly well fit by a single phase model of the highest symmetry, highly crystalline quartz component. The factors influencing the observed compression behavior are discussed.

  1. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  2. Understanding Depth Variation of Deep Seismicity from in situ Measurements of Mineral Strengths at High Pressures

    SciTech Connect (OSTI)

    Chen, J.

    2010-01-01

    Strengths of major minerals of Earth's mantle have been measured using in situ synchrotron X-ray diffraction at high pressures. Analysis of the diffraction peak widths is used to derive the yield strengths. Systematic analysis of the experimental result for olivine, wadsleyite, ringwoodite and perovskite indicates that minerals in the upper mantle, the transition zone and the lower mantle have very distinct strength character. Increasing temperature weakens the upper mantle mineral, olivine, significantly. At high temperature and high pressure, the transition zone minerals, wadsleyite and ringwoodite, have higher strengths than the upper mantle mineral. Among all the minerals studied, the lower mantle mineral, perovskite, has the highest strength. While both the upper mantle and the transition zone minerals show a notable strength drop, the strength of the lower mantle mineral shows just an increase of relaxation rate (no strength drop) when the temperature is increased stepwise by 200 K. The strength characteristics of these major mantle minerals at high pressures and temperatures indicate that yield strength may play a crucial role in defining the profile of deep earthquake occurrence with depth.

  3. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    SciTech Connect (OSTI)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for optimization. The results reveal that for the SPOC design, absorption and emission due to particles is the dominant factor for determining the wall heat flux. The mechanism of “radiative trapping” of energy within the high-temperature flame region and the approach to utilizing this mechanism to control wall heat flux are described. This control arises, by design, from the highly non-uniform (non-premixed) combustion characteristics within the SPOC boiler, and the resulting gradients in temperature and particle concentration. Finally, a simple method for estimating the wall heat flux in pressurized combustion systems is presented.

  4. Recent advances in phosphate laser glasses for high power applications. Revision 1

    SciTech Connect (OSTI)

    Campbell, J.H.

    1996-05-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4 cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  5. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOE Patents [OSTI]

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  6. High repetition rate, high average power, femtosecond erbium fiber ring laser

    E-Print Network [OSTI]

    Ippen, Erich P.

    A 301 MHz fundamentally mode-locked erbium fiber ring laser generating 108 fs pulses is demonstrated. Novel combination of gain fiber with anomalous group-velocity dispersion and intra-cavity silicon with normal group-velocity ...

  7. Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure

    SciTech Connect (OSTI)

    Hsieh, Wen-Pin Mao, Wendy L.; Trigo, Mariano; Reis, David A.; Andrea Artioli, Gianluca; Malavasi, Lorenzo

    2014-01-13

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1}) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.

  8. The NEXT experiment: A high pressure xenon gas TPC for neutrinoless double beta decay searches

    E-Print Network [OSTI]

    D. Lorca; J. Martín-Albo; F. Monrabal; for the NEXT Collaboration

    2012-10-15

    Neutrinoless double beta decay is a hypothetical, very slow nuclear transition in which two neutrons undergo beta decay simultaneously and without the emission of neutrinos. The importance of this process goes beyond its intrinsic interest: an unambiguous observation would establish a Majorana nature for the neutrino and prove the violation of lepton number. NEXT is a new experiment to search for neutrinoless double beta decay using a radiopure high-pressure xenon gas TPC, filled with 100 kg of Xe enriched in Xe-136. NEXT will be the first large high-pressure gas TPC to use electroluminescence readout with SOFT (Separated, Optimized FuncTions) technology. The design consists in asymmetric TPC, with photomultipliers behind a transparent cathode and position-sensitive light pixels behind the anode. The experiment is approved to start data taking at the Laboratorio Subterr\\'aneo de Canfranc (LSC), Spain, in 2014.

  9. Ground state properties and high pressure behavior of plutonium dioxide: Systematic density functional calculations

    E-Print Network [OSTI]

    Zhang, Ping; Zhao, Xian-Geng

    2010-01-01

    Plutonium dioxide is of high technological importance in nuclear fuel cycle and is particularly crucial in long-term storage of Pu-based radioactive waste. Using first-principles density-functional theory, in this paper we systematically study the structural, electronic, mechanical, thermodynamic properties, and pressure induced structural transition of PuO$_{2}$. To properly describe the strong correlation in the Pu $5f$ electrons, the local density approximation$+U$ and the generalized gradient approximation$+U$ theoretical formalisms have been employed. We optimize the $U$ parameter in calculating the total energy, lattice parameters, and bulk modulus at the nonmagnetic, ferromagnetic, and antiferromagnetic configurations for both ground state fluorite structure and high pressure cotunnite structure. The best agreement with experiments is obtained by tuning the effective Hubbard parameter $U$ at around 4 eV within the LDA$+U$ approach. After carefully testing the validity of the ground state, we further in...

  10. Enhancement of high-harmonic generation by laser-induced cluster vibration

    E-Print Network [OSTI]

    Enhancement of high-harmonic generation by laser-induced cluster vibration Yen-Mu Chen,1,2 Ming a new tool for studying the vibrational dynamics of nanometer atomic clusters. © 2007 Optical Society vibration was reported [8], and the results indicate that HHG is a very sensitive probe for vibrational

  11. High Average Power Operation of a Scraper-Outcoupled Free-Electron Laser

    SciTech Connect (OSTI)

    Michelle D. Shinn; Chris Behre; Stephen Vincent Benson; Michael Bevins; Don Bullard; James Coleman; L. Dillon-Townes; Tom Elliott; Joe Gubeli; David Hardy; Kevin Jordan; Ronald Lassiter; George Neil; Shukui Zhang

    2004-08-01

    We describe the design, construction, and operation of a high average power free-electron laser using scraper outcoupling. Using the FEL in this all-reflective configuration, we achieved approximately 2 kW of stable output at 10 um. Measurements of gain, loss, and output mode will be compared with our models.

  12. Optimization of EUV laser and discharge devices for high-volume manufacturing

    E-Print Network [OSTI]

    Harilal, S. S.

    Optimization of EUV laser and discharge devices for high-volume manufacturing A. Hassanein* , V for improving source brightness is to simulate the source environment in order to optimize the EUV output necessitate investigation and optimization not only of power sources but also plasma irradiation parameters

  13. High-throughput imaging of heterogeneous cell organelles with an X-ray laser

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hantke, Max, F.

    Preprocessed detector images that were used for the paper "High-throughput imaging of heterogeneous cell organelles with an X-ray laser". The CXI file contains the entire recorded data - including both hits and blanks. It also includes down-sampled images and LCLS machine parameters. Additionally, the Cheetah configuration file is attached that was used to create the pre-processed data.

  14. High-throughput imaging of heterogeneous cell organelles with an X-ray laser

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hantke, Max, F.

    2014-11-17

    Preprocessed detector images that were used for the paper "High-throughput imaging of heterogeneous cell organelles with an X-ray laser". The CXI file contains the entire recorded data - including both hits and blanks. It also includes down-sampled images and LCLS machine parameters. Additionally, the Cheetah configuration file is attached that was used to create the pre-processed data.

  15. Attosecond laser pulse synthesis using bichromatic high-order harmonic generation Avner Fleischer and Nimrod Moiseyev

    E-Print Network [OSTI]

    Moiseyev, Nimrod

    2006 We analyze the dynamical symmetries and the selection rules relevant to the process of production of high-order harmonics as a result of irradiating an atom with strong, continuous bichromatic laser spectrum of harmonics could be a source for the production of attosecond light pulses. We demonstrate our

  16. Ion current detector for high pressure ion sources for monitoring separations

    DOE Patents [OSTI]

    Smith, R.D.; Wahl, J.H.; Hofstadler, S.A.

    1996-08-13

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source. 7 figs.

  17. High-R Walls for New Construction Structural Performance: Wind Pressure Testing

    SciTech Connect (OSTI)

    DeRenzis, A.; Kochkin, V.

    2013-01-01

    This technical report is focused primarily on laboratory testing that evaluates wind pressure performance characteristics for wall systems constructed with exterior insulating sheathing. This research and test activity will help to facilitate the ongoing use of non-structural sheathing options and provide a more in-depth understanding of how wall system layers perform in response to high wind perturbations normal to the surface.

  18. Engine having hydraulic and fan drive systems using a single high pressure pump

    DOE Patents [OSTI]

    Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

    2000-01-01

    An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

  19. High-R Walls for New Construction Structural Performance. Wind Pressure Testing

    SciTech Connect (OSTI)

    DeRenzis, A.; Kochkin, V.

    2013-01-01

    This technical report is focused primarily on laboratory testing that evaluates wind pressure performance characteristics for wall systems constructed with exterior insulating sheathing. This research and test activity will help to facilitate the ongoing use of non-structural sheathing options and provide a more in-depth understanding of how wall system layers perform in response to high wind perturbations normal to the surface.

  20. Phase transition and dielectric properties of nanograin BaTiO3 ceramic under high pressure

    E-Print Network [OSTI]

    Cao, Wenwu

    Phase transition and dielectric properties of nanograin BaTiO3 ceramic under high pressure Jinlong Temperature dependence of the dielectric constant of nanograin BaTiO3 ceramic has been investigated under decreases with at a rate of dTC/d =-40.0 1.1 K/GPa for coarse-grain ceramic and -34.3 1.4 K/GPa for ceramic

  1. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers

    SciTech Connect (OSTI)

    Moskovitz, Yevgeny [Middle Tennessee State Univ., Murfreesboro, TN (United States). Dept. of Chemistry; Univ. of Capetown (South Africa). Dept. of Chemistry, Scientific Computing Research Unit; Yang, Hui [Middle Tennessee State Univ., Murfreesboro, TN (United States). Dept. of Chemistry

    2015-01-01

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.

  2. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moskovitz, Yevgeny; Yang, Hui

    2015-01-08

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distributionmore »functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.« less

  3. REVIEW OF SCIENTIFIC INSTRUMENTS 83, 043101 (2012) High passive-stability diode-laser design for use

    E-Print Network [OSTI]

    Steck, Daniel A.

    2012-01-01

    -laser system optimized for high stability, low passive spectral linewidth, low cost, and ease of in-house assemREVIEW OF SCIENTIFIC INSTRUMENTS 83, 043101 (2012) High passive-stability diode-laser design-frequency mechanical resonances. The cavity is vacuum sealed, and a custom-molded silicone external housing further

  4. Equilibrium separation in a high pressure helium plasma and its application to the determination of temperatures

    SciTech Connect (OSTI)

    Rodero, A.; Garcia, M.C.; Gamero, A. [Universidad de Cordoba (Spain)

    1995-12-31

    The spectroscopy method based on the Boltzmann-plot of emission lines has been usually employed for measuring the excitation temperature (T{sub exc}) in high pressure plasmas. In the present work, it is shown that this method can produce great errors in the temperature determination when equilibrium separation exists. In this way, the suitability of this determination is tested comparing with other alternative methods in a high pressure helium plasma and also studying its separation from the equilibrium situation, via the absolute population measurements of atomic levels and the estimation of its atomic state distribution function (ASDF). We have made this study using a new excitation structure, the axial injection torch (Torche A Injection Axiale or T.I.A.), which produces a high power microwave plasma at atmospheric pressure. The measurements were carried out at the beginning of the flame (the highest line intensity zone) for a 300-900 W power range at 2.45 GHz and 71/min. of helium gas flow.

  5. High-order temporal coherences of chaotic and laser light

    E-Print Network [OSTI]

    Berggren, Karl K.

    We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector. The four independent, interleaved single-photon-sensitive elements parse ...

  6. Science on high-energy lasers: From today to the NIF

    SciTech Connect (OSTI)

    Lee, R.W.; Petrasso, R.; Falcone, R.W.

    1995-01-01

    This document presents both a concise definition of the current capabilities of high energy lasers and a description of capabilities of the NIF (National Ignition Facility). Five scientific areas are discussed (Astrophysics, Hydrodynamics, Material Properties, Plasma Physics, Radiation Sources, and Radiative Properties). In these five areas we project a picture of the future based on investigations that are being carried on today. Even with this very conservative approach we find that the development of new higher energy lasers will make many extremely exciting areas accessible to us.

  7. A contactless microwave-based diagnostic tool for high repetition rate laser systems

    SciTech Connect (OSTI)

    Braggio, C., E-mail: caterina.braggio@unipd.it [Dip. di Fisica e Astronomia and INFN sez. di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Borghesani, A. F. [CNISM unit, Dip. di Fisica e Astronomia and INFN sez. di Padova, Via F. Marzolo 8, I-35131 Padova (Italy)] [CNISM unit, Dip. di Fisica e Astronomia and INFN sez. di Padova, Via F. Marzolo 8, I-35131 Padova (Italy)

    2014-02-15

    We report on a novel electro-optic device for the diagnostics of high repetition rate laser systems. It is composed of a microwave receiver and of a second order nonlinear crystal, whose irradiation with a train of short laser pulses produces a time-dependent polarization in the crystal itself as a consequence of optical rectification. This process gives rise to the emission of microwave radiation that is detected by a receiver and is analyzed to infer the repetition rate and intensity of the pulses. We believe that this new method may overcome some of the limitations of photodetection techniques.

  8. Vertical cavity surface-emitting laser scanning cytometer for high speed analysis of cells

    SciTech Connect (OSTI)

    Gourley, P.L.; McDonald, A.E.; Gourley, M.F.

    1995-12-31

    We have constructed a new semiconductor laser device that may be useful in high speed characterization of cell morphology for diagnosis of disease. This laser device has critical advantages over conventional cell fluorescence detection methods since it provides intense, monochromatic, low-divergence fight signals that are emitted from lasing modes confined by a cell. Further, the device integrates biological structures with semiconductor materials at the wafer level to reduce device size and simplify cell preparation. In this paper we discuss operational characteristics of the prototype cytometer and present preliminary data for blood cells and dielectric spheres.

  9. Observations of the filamentation of high-intensity laser-produced electron beams

    SciTech Connect (OSTI)

    Wei, M.S.; Beg, F.N.; Dangor, A.E.; Gopal, A.; Tatarakis, M.; Krushelnick, K. [Blackett Laboratory, Imperial College London SW7 2BZ (United Kingdom); Clark, E.L.; Evans, R.G. [Blackett Laboratory, Imperial College London SW7 2BZ (United Kingdom); Plasma Physics Department, AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom); Ledingham, K.W.D. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Plasma Physics Department, AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom); McKenna, P. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Norreys, P.A. [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Oxon OX11 OQX (United Kingdom); Zepf, M. [Department of Physics, The Queen's University, University Road, Belfast BT7 1NN (United Kingdom)

    2004-11-01

    Filamented electron beams have been observed to be emitted from the rear of thin solid targets irradiated by a high-intensity short-pulse laser when there is low-density plasma present at the back of the target. These observations are consistent with a laser-generated beam of relativistic electrons propagating through the target, which is subsequently fragmented by a Weibel-like instability in the low-density plasma at the rear. These measurements are in agreement with particle-in-cell simulations and theory, since the filamentation instability is predicted to be dramatically enhanced when the electron beam density approaches that of the background plasma.

  10. Characterization and modeling of ferroelectric materials for high pressure, high temperature applications

    E-Print Network [OSTI]

    VALADEZ PEREZ, JUAN CARLOS

    2012-01-01

    Applications in the Aerospace and automotive industrytemperature, etc. In the automotive industry is a similarThe automotive and aerospace industries also require high

  11. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Höppner, H.; Hage, A.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Prandolini, M. J.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore »hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  12. Observable effects caused by vacuum pair creation in the field of high-power optical lasers

    E-Print Network [OSTI]

    David B. Blaschke; Andrey V. Filatov; Irina A. Egorova; Alexander V. Prozorkevich; Stanislav A. Smolyansky

    2008-11-29

    We consider the possibility of an experimental proof of vacuum e+e- pair creation in the focus of two counter-propagating optical laser beams with an intensity of the order of 10^20 - 10^22 W/cm^2. Our approach is based on the collisionless kinetic equation for the distribution function of the e+e- pairs with the source term for particle production. As a possible experimental signal of vacuum pair production we consider the refraction of a high-frequency probe laser beam by the produced e+e- plasma to be observed by an interference filter. The generation of higher harmonics of the laser frequency in the self-consistent electric field is also investigated.

  13. High-pressure cells for in situ multi-anvil experiments

    SciTech Connect (OSTI)

    Leinenweber, K.; Mosenfelder, J.; Diedrich, T.; Soignard, E.; Sharp, T.G.; Tyburczy, J.A.; Wang, Y.

    2008-10-14

    A new series of high-pressure cells for in situ multi-anvil experiments is described. The cells are based on the conventional COMPRES cells, but modifications are made to improve the passage of X-rays. The modifications include cutting slits in parts of the assemblies that have very high X-ray absorption, such as lanthanum chromite and rhenium, the use of low-Z thermal insulation, such as forsterite, in place of zirconia, and the partial replacement of zirconia by MgO equatorial windows combined with a mullite octahedron. Details of the designs, thermal characterizations, and examples of the application of these cells are described.

  14. High-pressure science gets super-sized | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutronHigh-PressureLaboratory

  15. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOE Patents [OSTI]

    Neev, Joseph (Laguna Beach, CA); Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Glinsky, Michael E. (Livermore, CA); Stuart, Brent C. (Fremont, CA); Perry, Michael D. (Livermore, CA); Feit, Michael D. (Livermore, CA); Rubenchik, Alexander M. (Livermore, CA)

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  16. High-intracavity-power thin-disk laser for the alignment of molecules

    E-Print Network [OSTI]

    Deppe, Bastian; Kränkel, Christian; Küpper, Jochen

    2015-01-01

    We propose a novel approach for strong alignment of gas-phase molecules for experiments at arbitrary repetition rates. A high-intracavity-power continuous-wave laser will provide the necessary ac electric field of $\\!10^{10}$- $10^{11}~\\text{W}/\\text{cm}^2$. We demonstrate thin-disk lasers based on Yb:YAG and Yb:Lu$_2$O$_3$ in a linear high-finesse resonator providing intracavity power levels in excess of 100~kW at pump power levels on the order of 50~W. The multi-longitudinal-mode operation of this laser avoids spatial-hole burning even in a linear standing-wave resonator. The system will be scaled up as in-vacuum system to allow for the generation of fields of $10^{11}~\\text{W}/\\text{cm}^2$. This system will be directly applicable for experiments at modern X-ray light sources, such as synchrotrons or free-electron lasers, which operate at various very high repetition rates. This would allow to record molecular movies through temporally resolved diffractive imaging of fixed-in-space molecules, as well as the...

  17. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOE Patents [OSTI]

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  18. A high-power 626 nm diode laser system for Beryllium ion trapping

    E-Print Network [OSTI]

    H. Ball; M. W. Lee; S. D. Gensemer; M. J. Biercuk

    2013-04-07

    We describe a high-power, frequency-tunable, external cavity diode laser (ECDL) system near 626 nm useful for laser cooling of trapped $^9$Be$^+$ ions. A commercial single-mode laser diode with rated power output of 170 mW at 635 nm is cooled to $\\approx - 31$ C, and a single longitudinal mode is selected via the Littrow configuration. In our setup, involving multiple stages of thermoelectric cooling, we are able to obtain $\\approx$130 mW near 626 nm, sufficient for efficient frequency doubling to the required Doppler cooling wavelengths near 313 nm in ionized Beryllium. In order to improve nonlinear frequency conversion efficiency, we achieve larger useful power via injection locking of a slave laser. In this way the entirety of the slave output power is available for frequency doubling, while analysis may be performed on the master output. We believe that this simple laser system addresses a key need in the ion trapping community and dramatically reduces the cost and complexity associated with Beryllium ion trapping experiments.

  19. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    SciTech Connect (OSTI)

    Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550 ; Chen, C. D.; Patel, P. K.; McLean, H.; Beg, F. N.

    2014-03-15

    Experiments on the Titan laser (?150?J, 0.7 ps, 2 × 10{sup 20} W cm{sup ?2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2?MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5?MeV and 4?MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  20. High spin polarization at room temperature in Ge-substituted Fe{sub 3}O{sub 4} epitaxial thin film grown under high oxygen pressure

    SciTech Connect (OSTI)

    Seki, Munetoshi, E-mail: m-seki@ee.t.u-tokyo.ac.jp; Takahashi, Masanao; Ohshima, Toshiyuki; Yamahara, Hiroyasu; Tabata, Hitoshi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2013-11-18

    Epitaxial thin films of room-temperature ferrimagnetic (Fe,Ge){sub 3}O{sub 4} were fabricated using pulsed laser deposition. Films with a single-phase spinel structure were grown under high oxygen pressures (0.01–0.6?Pa). The carrier transport across (Fe,Ge){sub 3}O{sub 4}/Nb:SrTiO{sub 3} interface was studied to estimate the spin polarization of (Fe, Ge){sub 3}O{sub 4}. Current–voltage curves of Fe{sub 2.8}Ge{sub 0.2}O{sub 4}/Nb:SrTiO{sub 3} junction showed rectifying behavior even at 300?K whereas Fe{sub 3}O{sub 4}/Nb:SrTiO{sub 3} junction showed ohmic behavior. Calculations based on a model for a Schottky contact with a ferromagnetic component yielded a spin polarization of 0.50 at 300?K for Fe{sub 2.8}Ge{sub 0.2}O{sub 4}, indicating its potential as a promising spin injector.