Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Antihydrogen production and precision experiments  

DOE Green Energy (OSTI)

The study of CPT invariance with the highest achievable precision in all particle sectors is of fundamental importance for physics. Equally important is the question of the gravitational acceleration of antimatter. In recent years, impressive progress has been achieved in capturing antiprotons in specially designed Penning traps, in cooling them to energies of a few milli-electron volts, and in storing them for hours in a small volume of space. Positrons have been accumulated in large numbers in similar traps, and low energy positron or positronium beams have been generated. Finally, steady progress has been made in trapping and cooling neutral atoms. Thus the ingredients to form antihydrogen at rest are at hand. Once antihydrogen atoms have been captured at low energy, spectroscopic methods can be applied to interrogate their atomic structure with extremely high precision and compare it to its normal matter counterpart, the hydrogen atom. Especially the 1S-2S transition, with a lifetime of the excited state of 122 msec and thereby a natural linewidth of 5 parts in 10{sup 16}, offers in principle the possibility to directly compare matter and antimatter properties at a level of 1 part in 10{sup 16}.

Nieto, M.M.; Goldman, T.; Holzscheiter, M.H. [and others

1996-12-31T23:59:59.000Z

2

High precision redundant robotic manipulator  

SciTech Connect

A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

Young, Kar-Keung David (Mountain View, CA)

1998-01-01T23:59:59.000Z

3

High precision redundant robotic manipulator  

SciTech Connect

A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

Young, K.K.D.

1998-09-22T23:59:59.000Z

4

High Precision Radiometric Dating of Sedimentary Materials  

SciTech Connect

To develop field, petrographic and geochemical criteria to allow high precision U-Pb dating of sedimentary minerals within rapidly deposited sequences of carbonate and clastic rocks.

Hanson, G. N.

2006-09-19T23:59:59.000Z

5

High Precision Geophysics & Detailed Structural Exploration ...  

Open Energy Info (EERE)

icon High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Geothermal Project Jump to: navigation, search Last modified on July 22, 2011....

6

High precision thermal neutron detectors  

Science Conference Proceedings (OSTI)

Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex; their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at Brookhaven. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of reliability over time of this type.

Radeka, V.; Schaknowski, N.A.; Smith, G.C.; and Yu, B.

1994-10-01T23:59:59.000Z

7

High-Precision Computation and Mathematical Physics  

SciTech Connect

At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

Bailey, David H.; Borwein, Jonathan M.

2008-11-03T23:59:59.000Z

8

Precision control of high temperature furnaces  

DOE Patents (OSTI)

It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

Pollock, G.G.

1994-12-31T23:59:59.000Z

9

Portable high precision pressure transducer system  

DOE Patents (OSTI)

A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

1994-04-26T23:59:59.000Z

10

Portable high precision pressure transducer system  

DOE Patents (OSTI)

A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

1992-12-31T23:59:59.000Z

11

Portable high precision pressure transducer system  

SciTech Connect

A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

Piper, Thomas C. (Idaho Falls, ID); Morgan, John P. (Idaho Falls, ID); Marchant, Norman J. (Idaho Falls, ID); Bolton, Steven M. (Pocatello, ID)

1994-01-01T23:59:59.000Z

12

Review: Sensing technologies for precision specialty crop production  

Science Conference Proceedings (OSTI)

With the advances in electronic and information technologies, various sensing systems have been developed for specialty crop production around the world. Accurate information concerning the spatial variability within fields is very important for precision ... Keywords: Precision agriculture, Review, Sensing, Specialty crop

W. S. Lee; V. Alchanatis; C. Yang; M. Hirafuji; D. Moshou; C. Li

2010-10-01T23:59:59.000Z

13

Highly damped kinematic coupling for precision instruments  

SciTech Connect

A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

Hale, Layton C. (Livermore, CA); Jensen, Steven A. (Livermore, CA)

2001-01-01T23:59:59.000Z

14

High-precision triangular-waveform generator  

DOE Patents (OSTI)

An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

Mueller, T.R.

1981-11-14T23:59:59.000Z

15

High Precision Geophysics & Detailed Structural Exploration & Slim Well  

Open Energy Info (EERE)

Precision Geophysics & Detailed Structural Exploration & Slim Well Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Existing geologic data show that the basalt has been broken by complex intersecting fault zones at the hot springs. Natural state hot water flow patterns in the fracture network will be interpreted from temperature gradient wells and then tested with moderate depth core holes. Production and injection well tests of the core holes will be monitored with an innovative combination of Flowing Differential Self-Potential (FDSP) and resistivity tomography surveys. The cointerpretation of all these highly detailed geophysical methods sensitive to fracture permeability patterns and water flow during the well tests will provide unprecedented details on the structures and flow in a shallow geothermal aquifer and support effective development of the low temperature reservoir and identification of deep up flow targets.

16

High-precision optical and microwave signal synthesis and distribution  

E-Print Network (OSTI)

In this thesis, techniques for high-precision synthesis of optical and microwave signals and their distribution to remote locations are presented. The first topic is ultrafast optical pulse synthesis by coherent superposition ...

Kim, Jung-Won, 1976-

2007-01-01T23:59:59.000Z

17

System and method for high precision isotope ratio destructive analysis  

DOE Patents (OSTI)

A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

2013-07-02T23:59:59.000Z

18

Future high precision experiments and new physics beyond Standard Model  

SciTech Connect

High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

Luo, Mingxing.

1993-01-01T23:59:59.000Z

19

Future high precision experiments and new physics beyond Standard Model  

SciTech Connect

High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

Luo, Mingxing

1993-04-01T23:59:59.000Z

20

High-Precision, High-Resolution Measurements of Absorption in the Oxygen A-Band  

Science Conference Proceedings (OSTI)

Issues arising in the application of high-resolution, high-precision spectroscopy to remote sensing are discussed in the context of deriving surface pressure from absorption in the O2 A-band. This application requires spectral resolution ...

D. M. O’Brien; S. A. English; Grant Da Costa

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Improving the Precision and Productivity of Green Coke VCM Analysis  

Science Conference Proceedings (OSTI)

Green cokes with high VCM (>12%) are more difficult to calcine and result in a higher porosity and lower bulk density in calcined coke. The paper will review ...

22

HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE  

SciTech Connect

Astrometric detection and mass determination of Earth-mass exoplanets require sub-{mu}as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg{sup 2} field we adopt as a baseline design achieves 0.2 {mu}as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-{mu}as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts.

Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Bendek, Eduardo A.; Milster, Thomas D. [College of Optical Sciences, University of Arizona, Tucson, AZ 85721 (United States); Mark Ammons, S. [Lawrence Livermore National Laboratory, Physics Division L-210, 7000 East Ave., Livermore, CA 94550 (United States); Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Pitman, Joe [Exploration Sciences, P.O. Box 24, Pine, CO 80470 (United States); Woodruff, Robert A. [2081 Evergreen Avenue, Boulder, CO 80304 (United States); Belikov, Ruslan, E-mail: guyon@naoj.org [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

2012-06-01T23:59:59.000Z

23

Experimental Study of Hypernuclei Electroproduction by High Precision Spectroscopy  

SciTech Connect

Jlab experiment E01-011, carried out in 2005 in JLab Hall C, is the second generation of the hypernuclear spectroscopy experiments by the (e,e{prime}K{sup +}) reaction. The (e,e{prime}K{sup +}) reaction is complimentary to the associated production reactions (K{sup -},{pi}{sup -}), ({pi}{sup +},K{sup +}) since, due to a larger momentum transfer to a hyperon, excitations of both spin-non-flip and spin-flip states are possible. The experiment uses high quality and continuous primary electron beam to produce neutron rich hypernuclei on various targets by the electroproduction. The experimental setup consists of splitter magnet, high resolution kaon spectrometer (HKS) and electron spectrometer (Enge) implemented in new configuration, the so called 'Tilt Method'. Production data was taken on multiple targets: CH{sub 2}, {sup 6}Li, {sup 7}Li, {sup 9}Be, {sup 10}B, {sup 12}C and {sup 28}Si. In present study the analysis of CH{sub 2}, {sup 12}C and {sup 28}Si is presented. The elementary processes of p(e,e{prime}K{sup +}){Lambda}/{Sigma} from CH{sup 2} data were used for calibration of the spectrometer optics and kinematics. The hypernuclear spectra of {sup 12}{sub {Lambda}}B was obtained with ground state resolution of 0.47 {+-} 0.07 MeV (FWHM), the best ever achieved. Feasibility of the electroproduction reaction to study medium to heavy targets has been proven with the first high resolution beyond p-shell hypernuclear spectra from {sup 28}{sub {Lambda}}Al hypernuclei. The obtained results of the E01-011 experiment confirmed that hypernuclear spectroscopy by the (e,e{prime}K{sup +}) reaction is a very useful technique.

Tomislav Seva

2009-12-01T23:59:59.000Z

24

Argonne CNM Highlight: High density, high-aspect-ratio precision polyimide  

NLE Websites -- All DOE Office Websites (Extended Search)

High density, high-aspect-ratio precision polyimide nanofilters High density, high-aspect-ratio precision polyimide nanofilters Polyimide Nanofilter SEM of a polyimide film with holes ~250 nm in diameter and ~10 µm deep. The cross-sectional cut of the channels in the front are made visible by focused ion-beam milling. Collaborative users from Creatv MicroTech, Inc. and Los Alamos National Laboratory, working with CNM's Nanofabrication & Devices Group, have demonstrated a novel fabrication process that produces high-porosity polymer nanofilters with smooth, uniform. and straight pores and high aspect ratios. Nanofilters have a wide range of applications for various size-exclusion-based separations in bioseparation and nanomedicine, such as laboratory assays, removing bacteria and viruses, drug delivery devices,

25

Ion source for high-precision mass spectrometry  

DOE Patents (OSTI)

The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

Todd, Peter J. (Oak Ridge, TN); McKown, Henry S. (Oak Ridge, TN); Smith, David H. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

26

Applied high resolution digital control for universal precision systems  

E-Print Network (OSTI)

This thesis describes the design and characterization of a high-resolution analog interface for dSPACE digital control systems and a high-resolution, high-speed data acquisition and control system. These designs are intended ...

Gawlik, Aaron John

2008-01-01T23:59:59.000Z

27

Mold, flow, and economic considerations in high temperature precision casting  

E-Print Network (OSTI)

Casting high temperature alloys that solidify through a noticeable two phase region, specifically platinum-ruthenium alloys, is a particularly challenging task due to their high melting temperature and this necessitates ...

Humbert, Matthew S

2013-01-01T23:59:59.000Z

28

Combination spindle-drive system for high precision machining  

DOE Patents (OSTI)

A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

Gerth, Howard L. (Knoxville, TN)

1977-07-26T23:59:59.000Z

29

Precision high energy liner implosion experiments PHELIX [1  

SciTech Connect

This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.

Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Griego, Jeffrey R [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory; Rousculp, Christopher L [Los Alamos National Laboratory; Turchi, Peter J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

30

High-precision position control of a heavy-lift manipulator in a dynamic environment  

E-Print Network (OSTI)

This thesis considers the control of a heavy-lift serial manipulator operating on the deck of a large ocean vessel. This application presents a unique challenge for high- precision control because the system must contend ...

Garretson, Justin R. (Justin Richard)

2005-01-01T23:59:59.000Z

31

High-precision location and yield of North Korea's 2013 nuclear test Miao Zhang1  

E-Print Network (OSTI)

High-precision location and yield of North Korea's 2013 nuclear test Miao Zhang1 and Lianxing Wen2 Korea's 2009 nuclear test as reference and satellite imagery, we show that the location and yield of North Korea's 2013 nuclear test can be quickly and accurately determined based on seismic data. North

Wen, Lianxing

32

Optimizing the operating conditions in a high precision industrial process using soft computing techniques  

Science Conference Proceedings (OSTI)

This interdisciplinary research is based on the application of unsupervized connectionist architectures in conjunction with modelling systems and on the determining of the optimal operating conditions of a new high precision industrial process known ... Keywords: exploratory projection pursuit, industrial applications, modelling systems, unsupervized learning

Emilio Corchado; Javier Sedano; Leticia Curiel; José R. Villar

2012-07-01T23:59:59.000Z

33

High-precision measurements of the diamond Hugoniot in and above the melt region  

Science Conference Proceedings (OSTI)

High-precision measurements of the diamond principal Hugoniot have been made at pressures between 6 and 19 Mbar. Shock velocities were determined with 0.3%-1.1% precision using a velocity interferometer. Impedance-matching analysis, incorporating systematic uncertainties in the equation of state of the quartz standard, was used to determine the Hugoniot with 1.2%-2.7% precision in density. The results are in good agreement with published ab initio calculations, which predict a small negative melt slope along the Hugoniot, but disagree with previous laser-driven shock wave experiments, which had observed a large density increase in the melt region. In the extensive solid-liquid coexistence regime between 6 and 10 Mbar, the present measurements indicate that the mixed phase is a few percent more dense than what would be expected from a simple interpolation between liquid and solid Hugoniots.

Hicks, D. G.; Celliers, P. M.; Bradley, D. K.; Eggert, J. H.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, New York 14623 (United States); McWilliams, R. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); University of California, Berkeley, California 94720 (United States); Jeanloz, R. [University of California, Berkeley, California 94720 (United States)

2008-11-01T23:59:59.000Z

34

High precision measurements of the diamond Hugoniot in and above the melt region  

Science Conference Proceedings (OSTI)

High precision laser-driven shock wave measurements of the diamond principal Hugoniot have been made at pressures between 6 and 19 Mbar. Shock velocities were determined with 0.3-1.1% precision using a velocity interferometer. Impedance matching analysis, incorporating systematic errors in the equation-of-state of the quartz standard, was used to determine the Hugoniot with 1.2-2.7% precision in density. The results are in good agreement with published ab initio calculations which predict a small negative melt slope along the Hugoniot, but disagree with previous laser-driven shock wave experiments which had observed a large density increase in the melt region. In the extensive solid-liquid coexistence regime between 6 and 10 Mbar these measurements indicate that the mixed phase may be slightly more dense than would be expected from a simple interpolation between liquid and solid Hugoniots.

Hicks, D; Boehly, T; Celliers, P; Bradley, D; Eggert, J; McWilliams, R S; Collins, G

2008-08-05T23:59:59.000Z

35

Development of a Manufacturing Process for High-Precision Cu EOS Targets  

SciTech Connect

This document describes the development of a manufacturing process and the production of Cu EOS targets. The development of a manufacturing process for these targets required a great deal of research, because the specifications for the targets required a level of precision an order of magnitude beyond Target Fabrication's capabilities at the time. Strict limitations on the dimensions of the components and the interfaces between them required research efforts to develop bonding and deposition processes consistent with a manufacturing plan with a dimensional precision on the order of 0.1 {micro}m. Several months into this effort, the specifications for the targets were relaxed slightly as a result of discussions between the Target Fabrication Group and the physicists. The level of precision required for these targets remained an order of magnitude beyond previous capabilities, but the changes made it possible to manufacture targets to the specifications. The development efforts and manufacturing processes described in this document successfully produced a complete Cu EOS target that satisfied all of the fabrication and metrology specifications.

Bono, M J; Castro, C; Hibbard, R L

2006-01-12T23:59:59.000Z

36

High-precision test of collective versus single-particle motion of protons and neutrons in the  

E-Print Network (OSTI)

High-precision test of collective versus single- particle motion of protons and neutrons in the tin for the nuclear shell model (basic microscopic model of all nuclear theory). · These high-precision results sources: DOE Office of Science, Office of Nuclear Physics Resources: Holifield Radioactive Beam Facility

37

High precision measurements of the neutron spin structure in Hall A at Jlab  

SciTech Connect

Conclusions of this presentation are: (1) JLab energy upgrade will offer new exciting opportunities to study the nucleon (spin) structure such as high precision, unexplored phase space, flavor decomposition; (2) Large technological efforts is in progress to optimally exploit these opportunities; (3) HallA will be the first hall to get the new beam, first experiment expected to run in 2014; (4) A1n likely one of the first experiments to take data in the new 12 GeV era; and (5) SIDIS exp. will follow in couple of years.

Annand, R M; Cates, G; Cisbani, E; Franklin, G B; Liyanage, N; Puckett, A; Rosner, G; Wojtsekhowski, B

2012-04-01T23:59:59.000Z

38

Precision Neutrino Oscillation Measurements using Simultaneous High-Power, Low-Energy Project-X Beams  

E-Print Network (OSTI)

The first phase of the long-baseline neutrino experiment, LBNE10, will use a broadband, high-energy neutrino beam with a 10-kt liquid argon TPC at 1300 km to study neutrino oscillation. In this paper, we describe potential upgrades to LBNE10 that use Project X to produce high-intensity, low-energy neutrino beams. Simultaneous, high-power operation of 8- and 60-GeV beams with a 200-kt water Cerenkov detector would provide sensitivity to nu_mu to nu_e oscillations at the second oscillation maximum. We find that with ten years of data, it would be possible to measure sin2(2theta_13) with precision comparable to that expected from reactor antineutrino disappearance and to measure the value of the CP phase, delta_CP, with an uncertainty of (5-10) degrees. This document is submitted for inclusion in Snowmass 2013.

M. Bishai; M. Diwan; S. Kettell; J. Stewart; R. Tschirhart; B. Viren; L. Whitehead; E. Worcester

2013-07-02T23:59:59.000Z

39

High-precision molecular dynamics simulation of UO2-PuO2: pair potentials comparison  

E-Print Network (OSTI)

Our series of articles is devoted to high-precision molecular dynamics simulation of mixed actinide-oxide (MOX) fuel in the rigid ions approximation using high-performance graphics processors (GPU). In the first article we assess 10 most relevant interatomic sets of pair potentials (SPP) by reproduction of solid phase properties of uranium dioxide (UO2) - temperature dependences of the lattice constant, bulk modulus, enthalpy and heat capacity. Measurements were performed with 1K accuracy in a wide temperature range from 300K up to melting point. The best results are demonstrated by two recent SPPs MOX-07 and Yakub-09, which both had been fitted to the recommended thermal expansion in the range of temperatures 300-3100K. Compared with them, the widely used SPPs Basak-03 and Morelon-03 reproduce the experimental data noticeably worse at temperatures above 2500K.

Potashnikov, S I; Nekrasov, K A; Kupryazhkin, A Ya

2011-01-01T23:59:59.000Z

40

High throughput protein production screening  

DOE Patents (OSTI)

Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

Beernink, Peter T. (Walnut Creek, CA); Coleman, Matthew A. (Oakland, CA); Segelke, Brent W. (San Ramon, CA)

2009-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Identifying the sources of subsurface contamination at the Hanford site in Washington using high-precision uranium isotopic measurements  

E-Print Network (OSTI)

J.K. and Cowart, J.B. in Uranium Series Disequilibrium:using High-Precision Uranium Isotopic Measurements John N.groundwater plume of uranium (U) was detected in monitoring

Christensen, John N.; Dresel, P. Evan; Conrad, Mark E.; Maher, Kate; DePaolo, Donald J.

2004-01-01T23:59:59.000Z

42

QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG  

SciTech Connect

We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

Adams, T.; /Florida State U.; Batra, P.; /Columbia U.; Bugel, Leonard G.; /Columbia U.; Camilleri, Leslie Loris; /Columbia U.; Conrad, Janet Marie; /MIT; de Gouvea, A.; /Northwestern U.; Fisher, Peter H.; /MIT; Formaggio, Joseph Angelo; /MIT; Jenkins, J.; /Northwestern U.; Karagiorgi, Georgia S.; /MIT; Kobilarcik, T.R.; /Fermilab /Texas U.

2009-06-01T23:59:59.000Z

43

Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive ?^0 production  

DOE Green Energy (OSTI)

We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sin {phi}{sub h} amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle {phi}{sub h} of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.

Holtrop, M; Hyde, C E; Ireland, D G; Isupov, E L; Jawalkar, S S; Jenkins, D; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal, P; Kim, A; Kimy, W; Klein, A; Klein, F J; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I.J. D.; Markov, N; Mayer, M; McAndrew, J; McKinnon, B; Meyer, C A; Micherdzinska, A.M.; Mokeev, V; Moreno, B; Moutarde, H; Munevar, E; Nadel-Turonski, P; Ni, A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paolone, M; Pappalardo, L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Raue, B A; Ricco, G; Rimal, D; Ripani, M; Rosner, G; Sabatio, F; Saini, M S; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, G D; Sober, D I; Stepanyan, S S; Stepanyan, S; Stoler, P; Strakovsky, I; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tkachenko, S; Ungaro, M; Voskanyan, H; Voutier, E; Watts, D; Weinstein, L B; Weygand, D P; Wood, M H; Zana, L; Zhang, J; Zhao, B; Zhao, Z W

2011-10-25T23:59:59.000Z

44

High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes  

E-Print Network (OSTI)

We present the results of high precision measurements of the thermal expansion of the sintered SiC, SiC-100, intended for use in cryogenic space-telescopes, in which minimization of thermal deformation of the mirror is critical and precise information of the thermal expansion is needed for the telescope design. The temperature range of the measurements extends from room temperature down to $\\sim$ 10 K. Three samples, #1, #2, and #3 were manufactured from blocks of SiC produced in different lots. The thermal expansion of the samples was measured with a cryogenic dilatometer, consisting of a laser interferometer, a cryostat, and a mechanical cooler. The typical thermal expansion curve is presented using the 8th order polynomial of the temperature. For the three samples, the coefficients of thermal expansion (CTE), $\\bar{\\alpha}_{#1}$, $\\bar{\\alpha}_{#2}$, and $\\bar{\\alpha}_{#3}$ were derived for temperatures between 293 K and 10 K. The average and the dispersion (1 $\\sigma$ rms) of these three CTEs are 0.816 and 0.002 ($\\times 10^{-6}$/K), respectively. No significant difference was detected in the CTE of the three samples from the different lots. Neither inhomogeneity nor anisotropy of the CTE was observed. Based on the obtained CTE dispersion, we performed an finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m diameter cryogenic mirror made of six SiC-100 segments. It was shown that the present CTE measurement has a sufficient accuracy well enough for the design of the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope for Cosmology and Astrophysics (SPICA).

K. Enya; N. Yamada; T. Onaka; T. Nakagawa; H. Kaneda; M. Hirabayashi; Y. Toulemont; D. Castel; Y. Kanai; N. Fujishiro

2007-04-12T23:59:59.000Z

45

HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites.

William S. McPhee

2001-08-31T23:59:59.000Z

46

High-precision diode-laser-based temperature measurement for air refractive index compensation  

Science Conference Proceedings (OSTI)

We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

2011-11-01T23:59:59.000Z

47

HIGH-POWER PRECISION CURRENT SUPPLY IST2-1000M FOR ELEMENTS OF MAGNETIC SYSTEMS OF ACCELERATORS AND  

E-Print Network (OSTI)

BF), a detached supply transformer and power switch. Power box PB comprises the following: - a threeHIGH-POWER PRECISION CURRENT SUPPLY IST2-1000M FOR ELEMENTS OF MAGNETIC SYSTEMS OF ACCELERATORS. These supplies are intended to power magnetic systems of accelerators, requiring high stability and low ripples

Kozak, Victor R.

48

HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM  

Science Conference Proceedings (OSTI)

The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and construct a pre-prototype of the nozzle, blast head with wind curtain, sensors, and dust separator and test this system to assess the performance of the new design under controlled conditions at the contractor's facility. In phase III, the Contractor shall design and construct a prototype of the High Productivity Vacuum Blasting System, based on the results of the pre-prototype design and testing performed. This unit will be a full-scale prototype and will be tested at a designated Department of Energy (DOE) facility. Based on the results, the system performance, the productivity, and the economy of the improved vacuum blasting system will be evaluated.

William S. McPhee

1999-05-31T23:59:59.000Z

49

High precision thermal stress study on flip chips by synchrotron polychromatic x-ray microdiffraction  

E-Print Network (OSTI)

Figure captions: Figure 1 (a) Flip chip sample attached onReferences : [1] J. H. Lau, Flip Chip Technologies , McGraw-precision thermal stress study on flip chips by synchrotron

Chen, Kai

2010-01-01T23:59:59.000Z

50

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

51

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

52

Precise Predictions for W+4-Jet Production at the Large Hadron Collider  

Science Conference Proceedings (OSTI)

We present the next-to-leading order (NLO) QCD results for W+4-jet production at hadron colliders. This is the first hadron-collider process with five final-state objects to be computed at NLO. It represents an important background to many searches for new physics at the energy frontier. Total cross sections, as well as distributions in the jet transverse momenta, are provided for the initial LHC energy of {radical}(s)=7 TeV. We use a leading-color approximation, known to be accurate to 3% for W production with fewer jets. The calculation uses the BlackHat library along with the SHERPA package.

Berger, C. F. [Center for Theoretical Physics, MIT, Cambridge, Massachusetts 02139 (United States); Bern, Z.; Ita, H. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095-1547 (United States); Dixon, L. J. [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)] [SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309 (United States); Cordero, F. Febres [Departamento de Fisica, Universidad Simon Bolivar, Caracas 1080A (Venezuela, Bolivarian Republic of); Forde, D. [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)] [NIKHEF Theory Group, Science Park 105, NL-1098 XG Amsterdam (Netherlands); Gleisberg, T. [SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309 (United States); Kosower, D. A. [Institut de Physique Theorique, CEA-Saclay, F-91191 Gif-sur-Yvette cedex (France); Maitre, D. [Department of Physics, University of Durham, Durham DH1 3LE (United Kingdom)

2011-03-04T23:59:59.000Z

53

Precise Predictions for W+4-Jet Production at the Large Hadron Collider  

E-Print Network (OSTI)

We present the next-to-leading order (NLO) QCD results for W+4-jet production at hadron colliders. This is the first hadron-collider process with five final-state objects to be computed at NLO. It represents an important ...

Berger, Carola

54

High Quality, Scalable Graphene Production  

Presentation_namefor the U.S. Department of Energy ... –No good characterization tool for large area ... •Current range of product on the market

55

Investigation of high-precision {Lambda} hypernuclear spectroscopy via the (e,e'K{sup +}) reaction  

SciTech Connect

The study of {Lambda} hypernuclear structure is very interesting in point of the understanding of the interaction between {Lambda} and nucleon ({Lambda}-N interaction) and its ?strange? structure itself due to the containment of a {Lambda} hyperon which has a strangeness as a new degree of freedom. In the several way to study the Lamda hypernuclei, the (e,e'K{sup +}) reaction spectroscopy is a powerful tool for the precise investigation of {Lamda} hypernuclear structure. The purpose of the preset thesis is the establishment of the experimental design with the efficient data analysis method for the (e,e'K{sup +}) hypernuclear spectroscopic experiment in the wide mass region (from A=7 to A=52). It is very challenging to perform the (e,e'K{sup +}) spectroscopic experiment with such a heavy target, because of the huge electron background due to the bremsstrahlung process. In the experiment, it is required to obtain the necessary hypernuclear yield, suppressing the background event ratio. We achieved these requirements by newly constructing the high resolution electron spectrometer (HES) and splitter magnet (SPL) dedicated to the (e,e'K{sup +}) spectroscopic experiment. The HES consists of two quadrupole magnets and a dipole magnets (Q-Q-D) with a momentum resolution of dp/p = 3x10^-4 at p = 0.84 GeV/c. It was used being vertically tilted by 6.5 degree so as to optimize signal to noise ratio and hypernuclear yield. The SPL is a dipole magnet. The experimental target was placed at the entrance of this magnet. The role of the SPL is to separate four kind of particles; scattered kaons, photons created by the bremsstrahlung, the post beam and scattered electrons. In addition, since the SPL is a part of the kaon and electron spectrometers. We designed the magnet shape carefully considering these points. The experiment was performed with 2.344 GeV/c electron beam from CEBAF at Jefferson Lab. The experimental setup consists of the HES, SPL and HKS (high momentum resolution kaon spectrometer). The HKS is also a Q-Q-D type spectrometer with the momentum resolution of dp/p = 2x10^-4 at p = 1.2 GeV/c. In the data analysis, the particle momentum calibration was the most important procedure. At the initial point, the particle momentum was obtained from the calculated magnetic field map of the spectrometer whose accuracy is an order of 10^-2. The initial momentum was calibrated by two step, the the magnetic field map improvement and the calibration with known masses of {Lambda}/{Sigma}{sup 0} which were observed by the CH{sub 2} target data. As a result of the calibration, the momentum resolutions of HKS and HES were estimated as 4x10^-4 and 6x10^-4, respectively. Though these values are the double of the designed value, it was achieved to obtain the {Lambda}/{Sigma}{sup 0} peaks with the same order of the designed energy from the original calculated magnetic field. The cross section was calculated with the several estimated factors. The averaged p({gamma}*, K{sup +}){Lamda} cross section in the HKS acceptance, (0.90 < cos({theta}^CM_K{sup +}) < 1.0) was calculated as 227 ± 12 ±26 [nb/sr], which is consistent within the error bar with the other experiment results of p({gamma}, K{sup +}){Lamda}. The obtained yield of the peak was almost same as the designed value with the considered detector efficiencies. The observed hypernuclear spectrum of ^12_{Lambda} B was also consistent with the other experimental results. These analysis result represents that the experimental setup including the newly constructed HES and SPL worked and the calibration procedure of this unique experimental setup is basically established.

Kawama, Daisuke

2012-03-31T23:59:59.000Z

56

HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM  

SciTech Connect

The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process.

Dr. M.A. Ebadian

2000-01-13T23:59:59.000Z

57

The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results  

E-Print Network (OSTI)

The highest precision in direct mass measurements is obtained with Penning trap mass spectrometry. Most experiments use the interconversion of the magnetron and cyclotron motional modes of the stored ion due to excitation by external radiofrequency-quadrupole fields. In this work a new excitation scheme, Ramsey's method of time-separated oscillatory fields, has been successfully tested. It has been shown to reduce significantly the uncertainty in the determination of the cyclotron frequency and thus of the ion mass of interest. The theoretical description of the ion motion excited with Ramsey's method in a Penning trap and subsequently the calculation of the resonance line shapes for different excitation times, pulse structures, and detunings of the quadrupole field has been carried out in a quantum mechanical framework and is discussed in detail in the preceding article in this journal by M. Kretzschmar. Here, the new excitation technique has been applied with the ISOLTRAP mass spectrometer at ISOLDE/CERN for mass measurements on stable as well as short-lived nuclides. The experimental resonances are in agreement with the theoretical predictions and a precision gain close to a factor of four was achieved compared to the use of the conventional excitation technique.

S. George; K. Blaum; F. Herfurth; A. Herlert; M. Kretzschmar; S. Nagy; S. Schwarz; L. Schweikhard; C. Yazidjian

2007-01-22T23:59:59.000Z

58

A High Precision Reactor Neutrino Detector for the Double Chooz Experiment  

E-Print Network (OSTI)

Double Chooz is a reactor neutrino experiment which investigates the last neutrino mixing angle; theta-13. It is necessary to measure reactor neutrino disappearance with precision 1% or better to detect finite value of theta-13. This requirement is the most strict compared to other reactor neutrino experiments performed so far. The Double Chooz experiment makes use of a number of techniques to reduce the possible errors to achieve the sensitivity. The detector is now under construction and it is expected to take first neutrino data in 2009 and to measure sin^22theta-13 with a sensitivity of 0.03 (90%C.L.) In this proceedings, the technical concepts of Double Chooz detector are explained stressing on how it copes with the systematic errors.

Fumihiko Suekane; for the Double Chooz Collaboration

2009-06-09T23:59:59.000Z

59

Production of high purity radiothallium  

DOE Patents (OSTI)

The method of producing high purity thallium-201 for use as a myocardial scanning agent comprising the steps of irradiating a thallium target with protons to give the reaction .sup.203 Tl(p,3n) .sup.201.sub.Pb, separating in ion exchange columns the lead from the thallium isotopes, permitting the lead to decay, and then purifying the thallium solution and converting the thallium present to thallous form in which it can be used.

Lebowitz, Elliot (Brookline, MA); Greene, Margaret W. (Bellport, NY)

1976-11-23T23:59:59.000Z

60

A7: On-the-fly System Design for High Precision/Ultra Fast/Wide ...  

Science Conference Proceedings (OSTI)

The ultra-high speed laser scanner system is limited by its size of scanning area, for ... via a New Bi-layer Curvature Relaxation Measurement Technique.

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fabrication of precision high quality facets on molecular beam epitaxy material  

DOE Patents (OSTI)

Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

Petersen, Holly E. (Tracy, CA); Goward, William D. (Antioch, CA); Dijaili, Sol P. (Moraga, CA)

2001-01-01T23:59:59.000Z

62

Influence of a high vacuum on the precise positioning using an ultrasonic linear motor  

Science Conference Proceedings (OSTI)

This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

2011-01-15T23:59:59.000Z

63

High volume production of nanostructured materials  

DOE Patents (OSTI)

A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2009-10-13T23:59:59.000Z

64

Precision Mining  

NLE Websites -- All DOE Office Websites (Extended Search)

Precision Mining Precision Mining Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Precision Mining at WIPP is Routine All tunnels that make up the WIPP underground are mined with the same precision that is exhibited in this photo. Typical drift cross sections are about 8m x 4m. Custom excavation and maintenance of openings of any configuration can be made. In 2005, WIPP completed renovations to the 6,000 cubic meter North Experimental Area (NExA). The area, located at the northern end of the mine, was refurbished through rib trimming, floor grading, removal of loose muck, ground support and restoration of basic lighting and mine communications. As of 2010, the NExA is used for the Enriched Xenon Observatory (EXO), the Dark Matter Time Projection Chamber (DMTPC)

65

High-precision molecular dynamics simulation of UO2-PuO2: superionic transition in uranium dioxide  

E-Print Network (OSTI)

Our series of articles is devoted to high-precision molecular dynamics simulation of mixed actinide-oxide (MOX) fuel in the rigid ions approximation using high-performance graphics processors (GPU). In this article we assess the 10 most relevant interatomic sets of pair potential (SPP) by reproduction of the Bredig superionic phase transition (anion sublattice premelting) in uranium dioxide. The measurements carried out in a wide temperature range from 300K up to melting point with 1K accuracy allowed reliable detection of this phase transition with each SPP. The {\\lambda}-peaks obtained are smoother and wider than it was assumed previously. In addition, for the first time a pressure dependence of the {\\lambda}-peak characteristics was measured, in a range from -5 GPa to 5 GPa its amplitudes had parabolic plot and temperatures had linear (that is similar to the Clausius-Clapeyron equation for melting temperature).

Potashnikov, S I; Nekrasov, K A; Kupryazhkin, A Ya

2011-01-01T23:59:59.000Z

66

High-Precision Cross Sections for Low-Energy Electron-Atom Collisions  

Science Conference Proceedings (OSTI)

We describe a recently developed B-spline R-matrix method for electron and photon collisions with atoms and ions. Using non-orthogonal sets of orbitals to construct the target description and to represent the scattering functions, this implementation of the close-coupling approach allows us to employ highly correlated target wavefunctions with relatively small configuration expansions. Example results from recent applications of the method for accurate calculations of low-energy electron scattering from He, Zn, Ne, Ar, Xe, and Fe+ are presented.

Bartschat, Klaus; Zatsarinny, Oleg [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States)

2007-04-06T23:59:59.000Z

67

The CRIRES Search for Planets Around the Lowest-Mass Stars. I. High-Precision Near-Infrared Radial Velocities with an Ammonia Gas Cell  

E-Print Network (OSTI)

Radial velocities measured from near-infrared spectra are a potentially powerful tool to search for planets around cool stars and sub-stellar objects. However, no technique currently exists that yields near-infrared radial velocity precision comparable to that which is routinely obtained in the visible. We describe a method for measuring high-precision relative radial velocities of cool stars from K-band spectra. The method makes use of a glass cell filled with ammonia gas to calibrate the spectrograph response similar to the iodine cell technique that has been used so successfully in the visible. Stellar spectra are obtained through the ammonia cell and modeled as the product of a Doppler-shifted template spectrum of the object and a spectrum of the cell, convolved with a variable instrumental profile model. A complicating factor is that a significant number of telluric absorption lines are present in the spectral regions containing useful stellar and ammonia lines. The telluric lines are modeled simultaneou...

Bean, Jacob L; Hartman, Henrik; Nilsson, Hampus; Wiedemann, Guenter; Reiners, Ansgar; Dreizler, Stefan; Henry, Todd J

2009-01-01T23:59:59.000Z

68

Electrolytic In-process Dressing (ELID) for high-efficiency, precision grinding of ceramic parts: An experiment study  

SciTech Connect

This report describes Electrolytic In-process Dressing (ELID) as applied to the efficient, high-precision grinding of structural ceramics, and describes work performed jointly by Dr. B.P. Bandyopadhyay, University of North Dakota, and Dr. R. Ohmori, of the Institute of Physical and Chemical Research (RINEN), Tokyo, Japan, from June through August, 1994. Dr. Ohmori pioneered the novel ELID grinding technology which incorporates electrolytically enhanced, in-process dressing of metal bonded superabrasive wheels. The principle of ELID grinding technology is discussed in the report as will its application for rough grinding and precision grinding. Two types of silicon nitride based ceramics (Kyocerals Si{sub 3}N{sub 4}, and Eaton`s SRBSN) were ground under various conditions with ELID methods. Mirror surface finishes were obtained with {number_sign} 4000 mesh size wheel (average grain size = 4 {mu}m). Results of these investigations are presented in this report. These include the effects of wheel bond type, type of power supply, abrasive grit friability, and cooling fluid composition. The effects of various parameters are discussed in terms of the mechanisms of ELID grinding, and in particular, the manner of boundary layer formation on the wheels and abrasive grit protrusion.

Bandyopadhyay, B.P.

1995-08-01T23:59:59.000Z

69

High Precision Long-Term Monitoring of Radiatively Active and Related Trace Gases at Surface Sites and from Aircraft in the Southern Hemisphere Atmosphere  

Science Conference Proceedings (OSTI)

Routine high precision measurements of atmospheric CO2, CH4, CO, H2, N2O, and CO2 stable isotopes are conducted by CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia). Of particular relevance to global monitoring of ...

R. J. Francey; L. P. Steele; R. L. Langenfelds; B. C. Pak

1999-01-01T23:59:59.000Z

70

High precision $^{113}$In($?,?$)$^{113}$In elastic scattering at energies around the Coulomb barrier for the astrophysical $?$ process  

E-Print Network (OSTI)

The $\\gamma$ process in supernova explosions is thought to explain the origin of proton-rich isotopes between Se and Hg, the so-called $p$ nuclei. The majority of the reaction rates for $\\gamma$ process reaction network studies has to be predicted in Hauser-Feshbach statistical model calculations using global optical potential parameterizations. While the nucleon+nucleus optical potential is fairly known, for the $\\alpha$+nucleus optical potential several different parameterizations exist and large deviations are found between the predictions calculated using different parameter sets. By the measurement of elastic $\\alpha$-scattering angular distributions at energies around the Coulomb barrier a comprehensive test for the different global $\\alpha$+nucleus optical potential parameter sets is provided. Between 20$^{\\circ}$ and 175$^{\\circ}$ complete elastic alpha scattering angular distributions were measured on the $^{113}$In \\textit{p} nucleus with high precision at E$_{c.m.}$ = 15.59 and 18.82 MeV. The elastic scattering cross sections of the $^{113}$In($\\alpha$,$\\alpha$)$^{113}$In reaction were measured for the first time at energies close to the astrophysically relevant energy region. The high precision experimental data were used to evaluate the predictions of the recent global and regional $\\alpha$+nucleus optical potentials. Parameters for a local $\\alpha$+nucleus optical potential were derived from the measured angular distributions. Predictions for the reaction cross sections of $^{113}$In($\\alpha,\\gamma$)$^{117}$Sb and $^{113}$In($\\alpha$,n)$^{116}$Sb at astrophysically relevant energies were given using the global and local optical potential parameterizations.

G. G. Kiss; P. Mohr; Zs. Fülöp; T. Rauscher; Gy. Gyürky; T. Szücs; Z. Halász; E. Somorjai; A. Ornelas; C. Yalcin; R. T. Güray; N. Özkan

2013-11-02T23:59:59.000Z

71

PRODUCTION OF HIGH BRIGHTNESS PROTON BUNCHES.  

SciTech Connect

Strongly pulsed proton beams for secondary beam production are required for projects such as pulsed spallation neutron sources or neutrino factories where accurate time-of-flight information is required. To meet these demands techniques to produce multi-GeV proton bunches with very high longitudinal brightness are being developed. A review of the present status is presented.

ROSER,T.

2001-06-18T23:59:59.000Z

72

Foolproof completions for high rate production wells  

E-Print Network (OSTI)

Operators, especially those managing production from deepwater reservoirs, are striving to produce hydrocarbons at higher and higher rates without exposing the wells to completion failure risk. To avoid screen failures, recent studies have favored gravel pack (GP) and high rate water pack (HRWP) completions over high-permeability fracturing (HPF), known in the vernacular as a frac&pack (FP) for very high rate wells. While a properly designed GP completion may prevent sand production, it does not stop formation fines migration, and, over time, fines accumulation in the GP will lead to increasing completion skin. Although, and not always, the skin can be removed by acidizing, it is not practical to perform repeated acid treatments on deepwater wells, particularly those with subsea wellheads, and the alternative has been to subject the completion to increasingly high drawdown, accepting a high skin effect. A far better solution is to use a HPF completion. Of course the execution of a successful HPF is not a trivial exercise, and frequently, there is a steep learning curve for such a practice. This work explains the importance to HPF completions of the well trajectory through the interval to be hydraulically fractured, for production, not execution, reasons. A new model quantifies the effect of the well inclination on the connectivity between the fracture and the well via perforations. Guidelines based on the maximum target production rate, including forecasts of multiphase flow, are provided to size the HPF completion to avoid common completion failures that may result from high fluid rate and/or fines movement. Skin model will be developed for both vertical and deviated wells. Once the HPF is properly designed and executed, the operators should end up with a long term low skin good completion quality well. The well will be safely produced at the maximum flow rates, with no need for well surveillance and monitoring.

Tosic, Slavko

2007-12-01T23:59:59.000Z

73

Production Of High Specific Activity Copper-67  

DOE Patents (OSTI)

A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

Jamriska, Sr., David J. (Los Alamos, NM); Taylor, Wayne A. (Los Alamos, NM); Ott, Martin A. (Los Alamos, NM); Fowler, Malcolm (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM)

2002-12-03T23:59:59.000Z

74

Production Of High Specific Activity Copper-67  

DOE Patents (OSTI)

A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

Jamriska, Sr., David J. (Los Alamos, NM); Taylor, Wayne A. (Los Alamos, NM); Ott, Martin A. (Los Alamos, NM); Fowler, Malcolm (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM)

2003-10-28T23:59:59.000Z

75

The precise determination of mass through the oscillations of a very high-Q superconductor oscillating system  

E-Print Network (OSTI)

The present paper is based upon the fact that if an object is part of a highly stable oscillating system, it is possible to obtain an extremely precise measure for its mass in terms of the energy trapped in this resonance. The subject is timely since there is great interest in Metrology on the establishment of a new electronic standard for the kilogram. Our contribution to such effort includes both the proposal of an alternative definition for mass in terms of energy, as well as the description of a realistic experimental system in which this definition might actually be applied. The setup consists of an oscillating type-II superconducting loop (the SEO system) subjected to the gravity and magnetic fields. The system is shown to be able to reach a dynamic equilibrium by trapping energy up to the point it levitates against the surrounding magnetic and gravitational fields, behaving as an extremely high-Q spring-load system. The proposed energy-mass equation applied to the electromechanical oscillating system eventually produces a new experimental relation between mass and standardized constants.

Osvaldo F. Schilling

2013-08-29T23:59:59.000Z

76

High precision trace element and organic constituent analysis of oil shale and solvent-refined coal materials  

DOE Green Energy (OSTI)

The application of a number of sensitive and precise methods for the determination of trace elements, heavy element species and organic compounds in materials from an oil shale research retort process and from a solvent-refined coal pilot plant operation are discussed. The methods were chosen both for their sensitivity, and also for their relative freedom from interference effects. Coal liquids contain much higher concentrations of aromatic compounds, including polynuclear aromatic hydrocarbons (PNA's). A larger relative fraction of the pna's in shale oil are alkyl substituted. Coal liquids are also considerably higher in phenols (28 percent) than is shale oil (2 percent). N-heterocyclics are present in higher concentration (greater than 8 percent) in shale oil due to the high nitrogen content of the raw shale. Hydroaromatics are common in coal liquids but negligible in shale oil. Inorganic elements and speciation measurements indicate significant amounts of the toxic heavy elements Hg, As, Zn, and Se in effluent oil water and gas streams. In addition, the process water contains significant Co, Br, Sb, and U. Raw oil shale is highly enriched in Se, As and Sb and somewhat enriched in U, Pb, Cs, Hg and Zn. Solvent-refined coal liquids were found to be relatively low in most trace elements. The majority of trace elements are concentrated by the process into the mineral residue. Only Br and Hg are not depleted in solvent-refined coal. Other trace elements still remaining in significant amounts are U, Ta, Cr, and Zn.

Fruchter, J.S.; Petersen, M.R.; Laul, J.C.; Ryan, P.W.

1976-11-01T23:59:59.000Z

77

Multiplication acceleration through twin precision  

Science Conference Proceedings (OSTI)

We present the twin-precision technique for integer multipliers. The twin-precision technique can reduce the power dissipation by adapting a multiplier to the bitwidth of the operands being computed. The technique also enables an increased computational ... Keywords: Baugh-Wooley multiplier, SIMD, area efficient, high speed, lowpower, modified-booth multiplier, twin-precision

Magnus Själander; Per Larsson-Edefors

2009-09-01T23:59:59.000Z

78

CLIC RF High Power Production Testing Program  

SciTech Connect

The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation. The testing program overview and test results available to date are presented.

Syratchev, I.; Riddone, G.; /CERN; Tantawi, S.G.; /SLAC

2011-11-02T23:59:59.000Z

79

Targets for Precision Measurements  

E-Print Network (OSTI)

The general properties needed in targets (sources) for high precision, high accuracy measurements are reviewed. The application of these principles to the problem of developing targets for the Fission TPC is described. Longer term issues, such as the availability of actinide materials, improved knowledge of energy losses and straggling and the stability of targets during irradiation are also discussed.

W. Loveland; L. Yao; David M. Asner; R. G. Baker; J. Bundgaard; E. Burgett; M. Cunningham; J. Deaven; D. L. Duke; U. Greife; S. Grimes; M. Heffer; T. Hill; D. Isenhower; J. L. Klay; V. Kleinrath; N. Kornilov; A. B. Laptev; T. N. Massey; R. Meharchand; H. Qu; J. Ruz; S. Sangiorgio; B. Selhan; L. Snyder; S. Stave; G. Tatishvili; R. T. Thornton; F. Tovesson; D. Towell; R. S. Towell; S. Watson; B. Wendt; L. Wood

2013-03-09T23:59:59.000Z

80

Precision electron polarimetry  

SciTech Connect

A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

Chudakov, Eugene A. [JLAB

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydrogen Production from Nuclear Energy via High Temperature Electrolysis  

DOE Green Energy (OSTI)

This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

2006-04-01T23:59:59.000Z

82

Titanium Alloys Production for High Temperature Applications  

Science Conference Proceedings (OSTI)

Lignocellulosic-Based Carbon Fibers from Biofuel Production Wastes · Magnesium Sheets Produced by Extrusion · Magnetite Formation Observed with TEM on ...

83

Production of high power femtosecond terahertz radiation  

SciTech Connect

The terahertz (THz) region of the electromagnetic spectrum is attracting interest for a broad range of applications ranging from diagnosing electron beams to biological imaging. Most sources of short pulse THz radiation utilize excitation of biased semiconductors or electro-optic crystals by high peak power lasers. For example, this was done by using an un-doped InAs wafer irradiated by a femtosecond free-electron laser (FEL) at the Thomas Jefferson National Accelerator Facility. Microwatt levels of THz radiation were detected when excited with FEL pulses at 1.06 mm wavelength and 10W average power. Recently substantially higher powers of femtosecond THz pulses produced by synchrotron emission were extracted from the electron beamline. Calculations and measurements confirm the production of coherent broadband THz radiation from relativistic electrons with an average power of nearly 20W, a world record in this wavelength range by a factor of 10,000. We describe the source, presenting theoretical calculations and their experimental verification. Potential applications of this exciting new source include driving new non-linear phenomena, performing pump-probe studies of dynamical properties of novel materials, and studying molecular vibrations and rotations, low frequency protein motions, phonons, superconductor band gaps, electronic scattering, collective electronic excitations (e.g., charge density waves), and spintronics.

Neil, George R.; Carr, G.L.; Gubeli III, Joseph F.; Jordan, K.; Martin, Michael C.; McKinney, Wayne R.; Shinn, Michelle; Tani, Masahiko; Williams, G.P.; Zhang, X.-C.

2003-07-11T23:59:59.000Z

84

Toward high-precision values of the self energy of non-S states in hydrogen and hydrogen-like ions  

E-Print Network (OSTI)

The method and status of a study to provide numerical, high-precision values of the self-energy level shift in hydrogen and hydrogen-like ions is described. Graphs of the self energy in hydrogen-like ions with nuclear charge number between 20 and 110 are given for a large number of states. The self-energy is the largest contribution of Quantum Electrodynamics (QED) to the energy levels of these atomic systems. These results greatly expand the number of levels for which the self energy is known with a controlled and high precision. Applications include the adjustment of the Rydberg constant and atomic calculations that take into account QED effects.

Eric-Olivier Le Bigot; Ulrich D. Jentschura; Paul Indelicato; Peter J. Mohr

2004-10-14T23:59:59.000Z

85

Precision Flow Technologies | Open Energy Information  

Open Energy Info (EERE)

Precision Flow Technologies Precision Flow Technologies Jump to: navigation, search Name Precision Flow Technologies Place Saugerties, New York Zip 12477 Product New York-based, firm focused on the design and manufacture of ultra high purity gas and control systems. Coordinates 42.07778°, -73.952459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.07778,"lon":-73.952459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Design of highly distributed biofuel production systems .  

E-Print Network (OSTI)

??This thesis develops quantitative methods for evaluation and design of large-scale biofuel production systems with a particular focus on bioreactor-based fuel systems. In Chapter 2,… (more)

Luo, Dexin

2011-01-01T23:59:59.000Z

87

Precision powder feeder  

DOE Patents (OSTI)

A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

Schlienger, M. Eric (Albuquerque, NM); Schmale, David T. (Albuquerque, NM); Oliver, Michael S. (Sandia Park, NM)

2001-07-10T23:59:59.000Z

88

Precision Irrigators Network  

E-Print Network (OSTI)

Identifying best management practices (BMPs) promoting greater water use efficiency while maintaining crop yields is essential to the future of Texas cropping systems. Available water for irrigated crops is vital for sustaining crop production throughout the state. However, the availability of this water for irrigation is diminishing through competition by urban development and, in some regions such as the Edwards Aquifer, is falling under state regulation. The awareness and improvement of efficient irrigation and best management practices to conserve water while maintaining crop production will help preserve the aquifer levels and increase water savings to producers. One component of BMPs for conserving water use is the application of decision support systems (DSS) that are used as tools for implementing irrigation BMPs. This DSS guide was developed as a complement to TWDB Report 362, "Water Conservation Best Management Practices Guide," which is a more comprehensive report on water conservation including an "Agricultural Irrigation Water Use Management" BMPs section. The full TWDB Report 362 can be found at: http://www.twdb.state.tx.us/assistance/conservation/consindex.asp. DSS include the Texas High Plains Evapotranspiration Network (TXHPET), the Precision Irrigators Network (PIN) and the Crop Production Management (CroPMan) model. These DSS strive to promote grower awareness of water conservation strategies. Irrigation conservation strategies are proposed to result in savings of approximately 1.4 million acre-feet per year by 2060 (TWDB and TWRI). TXHPET operates 18 meteorological stations located in 15 counties across the Texas North Plains and Texas South Plains. The regional coverage of TXHPET is estimated at 4 million irrigated acres. The network offers insight to evapotranspiration (ET)-based crop water use that producers and agricultural consultants can reference when making decisions on when and how much to irrigate their crops. This information is available to data users via fax or online (http://txhighplainset.tamu.edu) and currently results in approximately 300,000 downloads or faxes annually. The PIN program was formed in 2004 with a goal of saving millions of gallons of water annually by reducing irrigation water use by as much as 20 percent over several years and currently supports several crops (corn, cotton, sorghum, wheat) in seven counties of South Central Texas. Cooperation of the PIN programs consists of area producers, Texas Agricultural Experiment Station researchers, Texas Cooperative Extension personnel, San Antonio Water System, Edwards Aquifer Authority, Texas Water Resources Institute, Texas Water Development Board, Uvalde County Underground Water Conservation District and Wintergarden Water Conservation District. The PIN database will allow producers to gain historical and real-time information for better management of irrigation scheduling. The PIN program estimates that when all irrigators in the Edwards Aquifer region implement limited irrigation scheduling, approximately 50,000 to 60,000 acre-feet of water can be saved per year and made available for purposes other than agriculture. CroPMan is a computer model designed to aid producers and agricultural consultants in optimizing crop management and maximizing production and profit through a production-risk approach. CroPMan will help growers identify limitations to crop yield, assist in making replant decisions and help recognize management practices that reduce the impact of agriculture on soil erosion and water quality. CroPMan is a Windows-based application program that can be downloaded from the CroPMan Web site (http://cropman.brc.tamus.edu).

Bynum, J.; Cothren, T.; Marek, T.; Piccinni, G.

2007-08-01T23:59:59.000Z

89

Prospective Assessment of Patterns of Failure After High-Precision Definitive (Chemo)Radiation in Head-and-Neck Squamous Cell Carcinoma  

Science Conference Proceedings (OSTI)

Purpose: To prospectively analyze patterns of failure in patients with head-and-neck squamous cell carcinoma treated with definitive high-precision radiotherapy with a focus on location of failure relative to target volume coverage. Methods and Materials: Sixty patients treated with three-dimensional conformal radiotherapy or intensity-modulated radiation therapy were included. Locoregional failure volume was defined on the planning data set at relapse, and dose received was analyzed by use of dose-volume histograms. Results: Thirteen patients were deemed to have had locoregional failures, of which two did not have any viable tumor on salvage neck dissection, leaving eleven patients with proven persistent or recurrent locoregional disease. Of these, 9 patients had in-field failure, 1 marginal failure, and 1 both in-field and marginal failures. Overall, only 2 of 11 patients (18%) with relapse had any marginal failure. Of the 20 sites of locoregional failure, 15 (75%) were in-field and 5 (25%) marginal. Distant metastases were detected in 3 patients, whereas a second new primary developed in 3 others. With a median follow-up of 26 months (interquartile range, 18-31 months) for surviving patients, the 3-year local control, locoregional control, disease-free survival, and overall survival rates were 75.3%, 74%, 67.2%, and 60.5%, respectively. Conclusions: Locoregional relapse remains the predominant pattern of failure in head-and-neck squamous cell carcinoma treated with high-precision definitive radiotherapy with the majority of failures occurring 'in-field' within the high-dose volume. Marginal failures can occur, particularly in the vicinity of the spared parotid gland. The therapeutic index of high-precision conformal radiotherapy is largely dependent on adequate selection and delineation of target volumes and organs at risk.

Gupta, Tejpal, E-mail: tejpalgupta@rediffmail.co [Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer/Tata Memorial Hospital, Tata Memorial Centre, Mumbai (India); Jain, Sandeep; Agarwal, Jai Prakash; Ghosh-Laskar, Sarbani; Phurailatpam, Reena; Pai-Shetty, Rajershi; Dinshaw, Ketayun A. [Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer/Tata Memorial Hospital, Tata Memorial Centre, Mumbai (India)

2011-06-01T23:59:59.000Z

90

The Production of High-Quality Magnesite Ore Concentrate With ...  

Science Conference Proceedings (OSTI)

Thus, high-quality magnesite ore with permroll type magnetic separators, were produced. ... Environmental Assessment of Li-CNT Battery Production.

91

Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Molten Bed Gasifier for High Hydrogen (H2) Syngas Production Gas Technology Institute (GTI) Project Number: FE0012122 Project Description The research team will evaluate and...

92

North Dakota oil production reaches new high in 2012 ...  

U.S. Energy Information Administration (EIA)

North Dakota crude oil production (including lease condensate) averaged an all-time high of 770,000 barrels per day in December 2012. Total annual ...

93

Production of High Translucent Self-Colored Dental Zirconia Blocks  

Science Conference Proceedings (OSTI)

Borate Glass Nanofiber/Whiskers in a Hybrid Orthopedic Composite Implants for ... G6: Production of High Translucent Self-Colored Dental Zirconia Blocks.

94

High-precision measurements of the equation of state of hydrocarbons at 1-10 Mbar using laser-driven shock waves  

Science Conference Proceedings (OSTI)

The equation of state (EOS) of polystyrene and polypropylene were measured using laser-driven shock waves with pressures from 1 to 10 Mbar. Precision data resulting from the use of alpha-quartz as an impedance-matching (IM) standard tightly constrains the EOS of these hydrocarbons, even with the inclusion of systematic errors inherent to IM. The temperature at these high pressures was measured, which, combined with kinematic measurements, provide a complete shock EOS. Both hydrocarbons were observed to reach similar compressions and temperatures as a function of pressure. The materials were observed to transition from transparent insulators to reflecting conductors at pressures of 1 to 2 Mbar.

Barrios, M. A.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and Astronomy, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Hicks, D. G.; Eggert, J. H.; Celliers, P. M.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boehly, T. R.; Fratanduono, D. E. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

2010-05-15T23:59:59.000Z

95

Production of high molecular weight polylactic acid  

DOE Patents (OSTI)

A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

Bonsignore, P.V.

1995-11-28T23:59:59.000Z

96

Production of high molecular weight polylactic acid  

DOE Patents (OSTI)

A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

Bonsignore, Patrick V. (Joilet, IL)

1995-01-01T23:59:59.000Z

97

Tritium production using highly enriched fuel  

SciTech Connect

Preliminary studies utilizing the MOFDA code have been made for tritium production at the K reactors using 33 and 35 grams per foot oralloy (93.5% U-235) in aluminum in conjunction with standard K5N and K5E fuel elements, respectively. For this report, it was assumed that all tritium would be produced in discrete charges of LiAl target elements. It is intended that the study will be extended at some later time to include LiAl splines. The analysis includes the effect of coolant loss on reactivity for hot-or-cold and green-or-exposed conditions for several oralloy loading fractions.

Miller, R.L.

1967-12-18T23:59:59.000Z

98

Hydrogen production from fusion reactors coupled with high temperature electrolysis  

SciTech Connect

An initial study was conducted on a fusion reactor and high temperature electrolyzer system for the production of synthetic fuel. The design temperatures in the fusion reactor blanket were above 1380/sup 0/C. Electrolytic hydrogen production at the high temperatures consumes a high ratio of thermal to electric energy and increases the efficiency of the plant and an overall efficiency of approximately 50% appeared possible. The concepts of the system and the design considerations of the high temperature electrolyzer will be presented.

Isaacs, H.S.; Fillo, J.A.; Dang, V.; Powell, J.R.; Steinberg, M.; Salzano, F.; Benenati, R.

1978-01-01T23:59:59.000Z

99

Statistical considerations in high precision U-Pb geochronology, with an application to the tectonic evolution of the North Cascades, Washington  

E-Print Network (OSTI)

The range of geologic problems that may be addressed by U-Pb geochronology is governed by the precision to which U-Pb dates can be measured, expressed as their estimated uncertainties. Accurate and precise knowledge of ...

McLean, Noah Morgan

2012-01-01T23:59:59.000Z

100

High Efficiency Solar Integrated Roof Membrane Product  

SciTech Connect

This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

Partyka, Eric; Shenoy, Anil

2013-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High precision trace element and organic constituent analysis of oil shale and solvent-refined coal materials  

DOE Green Energy (OSTI)

Broad spectrum inorganic and organic analytical techniques provide the best approach for the initial characterization of the complex samples encountered in working with new energy technologies such as oil shale retorting and solvent refining of coal. In complex samples, analyses are facilitated by techniques, such as neutron activation and x-ray fluorescence, that are relatively insensitive to matrix effects. A comparative organic constituent analysis of the crude shale oil and coal liquid samples analyzed in this study showed that the coal liquids contained higher concentrations of aromatic compounds including polynuclear aromatic hydrocarbons. The coal liquids were considerably richer in phenols than was the shale oil. N-heterocyclics were present in higher concentration in shale oil due to the high nitrogen content of the raw shale. Hydroaromatics were found to be common in coal liquids but negligible in this shale oil. Measurable amounts of the heavy elements Hg, As, Zn, and Se were found in effluent streams from oil shale retorting. The process water also contained significant Co, Br, Sb, and U. The raw oil shale was enriched in Se, As and Sb and somewhat enriched in U, Pb, Cs, Hg, and Zn. Solvent-refined coal liquids were found to be relatively low in most trace elements. Most were concentrated in the mineral residue. Only Br was not depleted in solvent-refined coal. Other trace elements remaining in significant amounts were U, Ta, Cr and Zn. We have not yet measured the trace elements and gaseous and particulate samples from the solvent-refined coal plant. 10 tables.

Fruchter, J.S.; Laul, J.C.; Petersen, M.R.; Ryan, P.W.

1977-03-01T23:59:59.000Z

102

Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production  

E-Print Network (OSTI)

it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, currentSecond Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production Peer M. Schenk that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable

Kudela, Raphael M.

103

Precision metal rulers  

Science Conference Proceedings (OSTI)

... precision metal rulers. Our customers include state bureaus of Weights and Measures and departments of Agriculture. We also ...

2011-10-28T23:59:59.000Z

104

Methods for high volume production of nanostructured materials  

DOE Patents (OSTI)

A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerald M. (Oak Ridge, TN)

2011-03-22T23:59:59.000Z

105

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

106

MST: Organizations: Precision Meso Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Precision Meso Manufacturing Precision Meso Manufacturing Many engineers and product realization teams at Sandia National Laboratories are currently engaged in efforts to create revolutionary national security products that feature unprecedented functionality in ever-smaller, more portable configurations. In the course of development, the Sandia technology community has realized the need for manufacturing capabilities that expand upon what traditional microfabrication provides. The term “meso,” derived from the Greek mesos, meaning “intermediate” or “in the middle,” describes operations on a length scale that typically ranges from hundreds of micrometers to one centimeter. Meso Manufacturing involves a suite of innovative fabrication and metrology tools that compliment each other to make these products a reality. The Meso

107

Hydrogen production from high temperature electrolysis and fusion reactor  

SciTech Connect

Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented.

Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

1978-01-01T23:59:59.000Z

108

SUMMARY OF NIST PRECISION MEASUREMENT GRANTS  

Science Conference Proceedings (OSTI)

... of the Lamb shift in H, n = 2, by the Ram- sey method ... Quantum-mechanical analysis of high-precision measure- ments on harmonic oscillators ...

2013-12-05T23:59:59.000Z

109

First high-temperature electronics products survey 2005.  

Science Conference Proceedings (OSTI)

On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

Normann, Randy Allen

2006-04-01T23:59:59.000Z

110

Hydrogen production from fusion reactors coupled with high temperature electrolysis  

DOE Green Energy (OSTI)

The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets.

Fillo, J A; Powell, J R; Steinberg, M

111

Meson production in high-energy electron-nucleus scattering  

E-Print Network (OSTI)

Experimental studies of meson production through two-photon fusion in inelastic electron-nucleus scattering is now under way. A high-energy photon radiated by the incident electron is fused with a soft photon radiated by the nucleus. The process takes place in the small-angle-Coulomb region of nuclear scattering. We expound the theory for this production process as well as its interference with coherent-radiative-meson production. In particular, we investigate the distortion of the electron wave function due to multiple-Coulomb scattering.

Göran Fäldt

2010-06-09T23:59:59.000Z

112

Precision: Noncompliance Determination (2013-SE-1410) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Precision: Noncompliance Determination (2013-SE-1410) Precision: Noncompliance Determination (2013-SE-1410) Precision: Noncompliance Determination (2013-SE-1410) April 10, 2013 DOE issued a Notice of Noncompliance Determination to Precision Trading Corp. finding that Precision model Premium PFR515M, a freezer, does not comport with the energy conservation standards. DOE determined the product was noncompliant based on DOE testing. Precision must immediately notify each person (or company) to whom Precision distributed the noncompliant products that the product does not meet Federal standards. In addition, Precision must provide to DOE documents and records showing the number of units Precision distributed and to whom. The manufacturer and/or private labeler of the product may be subject to civil penalties.

113

Precision Combustion, Inc  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Reliable, Cost Effective Fuel Processors. Abstract: Precision Combustion, Inc. (PCI) is developing ultra-compact Fuel Processing systems for a range of Fuel Cells and...

114

Computer Study of Isotope Production in High Power Accelerators  

E-Print Network (OSTI)

Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

Van Riper, K A; Wilson, W B

1999-01-01T23:59:59.000Z

115

Computer Study of Isotope Production in High Power Accelerators  

E-Print Network (OSTI)

Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

K. A. Van Riper; S. G. Mashnik; W. B. Wilson

1999-01-25T23:59:59.000Z

116

Intercomparison of High-Resolution Precipitation Products over Northwest Europe  

Science Conference Proceedings (OSTI)

Satellite-derived high-resolution precipitation products (HRPP) have been developed to address the needs of the user community and are now available with 0.25° × 0.25° (or less) subdaily resolutions. This paper evaluates a number of commonly ...

C. Kidd; P. Bauer; J. Turk; G. J. Huffman; R. Joyce; K.-L. Hsu; D. Braithwaite

2012-02-01T23:59:59.000Z

117

Apollo Precision Ltd | Open Energy Information  

Open Energy Info (EERE)

Province, China Sector Solar Product China-based equipment manufacturer of thin-film solar PV modules. References Apollo Precision Ltd1 LinkedIn Connections CrunchBase...

118

Hon Hai Precision Industry Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hon Hai Precision Industry Co Ltd Jump to: navigation, search Name Hon Hai Precision Industry Co Ltd Place Tu-Cheng City, Taiwan Zip 236 Sector Solar Product Taiwan-based...

119

Precision volume measurement system.  

Science Conference Proceedings (OSTI)

A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

Fischer, Erin E.; Shugard, Andrew D.

2004-11-01T23:59:59.000Z

120

New methods for precision Møller polarimetry  

Science Conference Proceedings (OSTI)

Precision electron beam polarimetry is becoming increasingly important as parity violation experiments attempt to probe the frontiers of the standard model. In the few GeV regime, Møller polarimetry is well suited to high-precision measurements, however is generally limited to use at relatively low beam currents (< 10 ?A). We present a novel technique that will enable precision Møller polarimetry at very large currents, up to 100?A.

D. Gaskell; D.G. Meekins; C. Yan

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Precision Electroweak Physics  

Science Conference Proceedings (OSTI)

The status in electroweak precision physics is reviewed. I present a brief summary of the latest data, global fit results, a few implications for new physics, and an outlook.

Erler, Jens [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico)

2006-09-25T23:59:59.000Z

122

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Southern Research Institute Project Number: FE0010231 Project Description Fischer-Tropsch (FT) process converts a mixture of carbon monoxide and hydrogen, called syngas, into liquid hydrocarbons. It is a leading technology for converting syngas derived from gasification of coal and coal-biomass mixtures to hydrocarbons in coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes. However, conventional FTS catalysts produce undesirable waxes (C21+) that need to be upgraded to liquids (C5-C20) by hydrotreating. This adds significantly to the cost of FTS. The objectives of this project are (i) to demonstrate potential for CBTL cost reduction by maximizing the production of C5-C20 hydrocarbon liquids using a selective FTS catalyst and (ii) to evaluate the impacts of the addition of biomass to coal on product characteristics, carbon foot print, and economics.

123

Method for creating high carbon content products from biomass oil  

DOE Patents (OSTI)

In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

Parker, Reginald; Seames, Wayne

2012-12-18T23:59:59.000Z

124

Quarkonium Production and Medium Effects in High Energy Nuclear Collisions  

E-Print Network (OSTI)

Color screening and regeneration are both hot medium effects on quarkonium production in high energy nuclear collisions. However, they affect in an opposite way the finally observed quarkonium spectra. Due to the competition of the two dynamical effects, the ratio of the integrated quarkonium yield between nuclear and elementary nucleon collisions loses its sensitivity. Once the information of quarkonium transverse motion is included, on the other hand, the ratio of averaged transverse momentum square reveals the nature of the QCD medium created in high energy nuclear collisions.

Zhou, Kai; Zhuang, Pengfei

2013-01-01T23:59:59.000Z

125

Soviet precision timekeeping research and technology  

DOE Green Energy (OSTI)

This report is the result of a study of Soviet progress in precision timekeeping research and timekeeping capability during the last two decades. The study was conducted by a panel of seven US scientists who have expertise in timekeeping, frequency control, time dissemination, and the direct applications of these disciplines to scientific investigation. The following topics are addressed in this report: generation of time by atomic clocks at the present level of their technology, new and emerging technologies related to atomic clocks, time and frequency transfer technology, statistical processes involving metrological applications of time and frequency, applications of precise time and frequency to scientific investigations, supporting timekeeping technology, and a comparison of Soviet research efforts with those of the United States and the West. The number of Soviet professionals working in this field is roughly 10 times that in the United States. The Soviet Union has facilities for large-scale production of frequency standards and has concentrated its efforts on developing and producing rubidium gas cell devices (relatively compact, low-cost frequency standards of modest accuracy and stability) and atomic hydrogen masers (relatively large, high-cost standards of modest accuracy and high stability). 203 refs., 45 figs., 9 tabs.

Vessot, R.F.C.; Allan, D.W.; Crampton, S.J.B.; Cutler, L.S.; Kern, R.H.; McCoubrey, A.O.; White, J.D.

1991-08-01T23:59:59.000Z

126

High precision high flow range control valve  

DOE Patents (OSTI)

A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.

McCray, John A. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

127

Research on Precise Support for Armored Equipment  

Science Conference Proceedings (OSTI)

The current support of the armored equipment is traditional extensive mode. There are many problems, such as excessive maintenance, late maintenance and high ratio of expenses to battle effectiveness. Aiming at these problems, the significance of Precise ... Keywords: Precise Support, Armored Equipment, advanced sensors, C4ISR

Yong-chun Xia; Yu-hua Zhou; Ren-jie Xu; Bi-wei Xie

2012-03-01T23:59:59.000Z

128

Precision linear ramp function generator  

DOE Patents (OSTI)

A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

1984-08-01T23:59:59.000Z

129

Method for grinding precision components  

DOE Patents (OSTI)

A method for precision cylindrical grinding of hard brittle materials, such as ceramics or glass and composites comprising ceramics or glass, provides material removal rates as high as 19-380 cm.sup.3 /min/cm. The abrasive tools used in the method comprise a strong, light weight wheel core bonded to a continuous rim of abrasive segments containing superabrasive grain in a dense metal bond matrix.

Ramanath, Srinivasan (Holden, MA); Kuo, Shih Yee (Westboro, MA); Williston, William H. (Holden, MA); Buljan, Sergej-Tomislav (Acton, MA)

2000-01-01T23:59:59.000Z

130

Bio-Fuel Production Assisted with High Temperature Steam Electrolysis  

SciTech Connect

Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

Grant Hawkes; James O'Brien; Michael McKellar

2012-06-01T23:59:59.000Z

131

Production of intense highly charged ion beams with SERSE  

E-Print Network (OSTI)

The source SERSE is operational at LNS since June 1998 and many improvements have been carried out in this period. The frequency has been increased from 14.5 GHz to 18 GHz and the use of two frequency heating has given positive results. Metallic ion production has been tested by means of a high temperature oven and the preliminary results are described. Tests of magnetic field scaling and frequency scaling have confirmed the results of previous tests with SC-ECRIS at lower frequency and seems to suggest that the upgrading of the source to higher frequency may be considered.

Gammino, S; Ciavola, G; Castro, M; Chines, F; Marletta, S; Melin, G; Briand, P; Girard, A; Ludwig, P; Seyfert, P; Guillaume, D

1999-01-01T23:59:59.000Z

132

Precision surface machining  

DOE Patents (OSTI)

Precision finishing apparatus utilizing line contact polishing to produce optical quality parts. A rotatable cylinder is horizontally disposed above a workpiece which is mounted on a rotatable, and horizontally and vertically adjustable chuck. Predetermined surfaces can be cut into the surface of the cylinder to produce figures of revolution, such as aspheres,, when the workpiece is being rotated.

Lazazzera, V.J.; Schmell, R.A.

1991-03-06T23:59:59.000Z

133

Cholesterol and Phytosterol Oxidation ProductsChapter 4 Determination of Cholesterol Oxidation Products by High-Performance Liquid Chromatography  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 4 Determination of Cholesterol Oxidation Products by High-Performance Liquid Chromatography Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health -

134

High Throughput, Continuous, Mass Production of Photovoltaic Modules  

DOE Green Energy (OSTI)

AVA Solar has developed a very low cost solar photovoltaic (PV) manufacturing process and has demonstrated the significant economic and commercial potential of this technology. This I & I Category 3 project provided significant assistance toward accomplishing these milestones. The original goals of this project were to design, construct and test a production prototype system, fabricate PV modules and test the module performance. The original module manufacturing costs in the proposal were estimated at $2/Watt. The objectives of this project have been exceeded. An advanced processing line was designed, fabricated and installed. Using this automated, high throughput system, high efficiency devices and fully encapsulated modules were manufactured. AVA Solar has obtained 2 rounds of private equity funding, expand to 50 people and initiated the development of a large scale factory for 100+ megawatts of annual production. Modules will be manufactured at an industry leading cost which will enable AVA Solar's modules to produce power that is cost-competitive with traditional energy resources. With low manufacturing costs and the ability to scale manufacturing, AVA Solar has been contacted by some of the largest customers in the PV industry to negotiate long-term supply contracts. The current market for PV has continued to grow at 40%+ per year for nearly a decade and is projected to reach $40-$60 Billion by 2012. Currently, a crystalline silicon raw material supply shortage is limiting growth and raising costs. Our process does not use silicon, eliminating these limitations.

Kurt Barth

2008-02-06T23:59:59.000Z

135

Thin Film Packaging Solutions for High Efficiency OLED Lighting Products  

Science Conference Proceedings (OSTI)

The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

None

2008-06-30T23:59:59.000Z

136

Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection  

DOE Green Energy (OSTI)

In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

Grant, Marion B.

2012-04-30T23:59:59.000Z

137

Pair-production opacity at high and very-high gamma-ray energies  

E-Print Network (OSTI)

The propagation of high energy (HE, $E_\\gamma>100$ MeV) and very high-energy gamma-rays (VHE, $E_\\gamma>100$ GeV) in the extra-galactic photon field leads to pair-production and consequently energy- and distance-dependent attenuation of the primary intensity. The spectroscopy of an increasing number of extra-galactic objects at HE and VHE energies has demonstrated indeed the presence of such an attenuation which in turn has been used to constrain the photon density in the medium. At large optical depth ($\\tau\\gtrsim 2$) potential modifications of pair-production due to competing but rare processes (as, e.g., the presence of sub-neV axion-like particle) may be found. Indications for a pair-production anomaly have previously been found with VHE-spectra. Here, we present further indications (at the level of $3.68 \\sigma$) for a reduced optical depth at high energies from an analysis of Fermi-\\textit{LAT} data.

Dieter Horns; Manuel Meyer

2013-09-16T23:59:59.000Z

138

Approaches To Crisis Prevention In Lean Product Development By High Performance Teams And Through Risk Management  

E-Print Network (OSTI)

This thesis investigates crisis prevention in lean product development, focusing on high performance teams and risk management methods.

Oehmen, Josef

139

Method and Apparatus for Production of 213Bi from a High ...  

automated generator system would enable highly reproducible and error-free production of 213Bi isotope; Related Links.

140

Experience with Production Scale Usage of Optifine – A High ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Cast Shop for Aluminum Production. Presentation Title, Experience with ...

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Precision Cosmology and the Landscape  

E-Print Network (OSTI)

After reviewing the cosmological constant problem - why is Lambda not huge? - I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments.

Raphael Bousso

2006-10-18T23:59:59.000Z

142

Precision Designs | Open Energy Information  

Open Energy Info (EERE)

Designs Designs Jump to: navigation, search Name Precision Designs Place Rochester, New York Zip 14624 Product Manufacturer of test equipment for fuel cells. Coordinates 43.1555°, -77.616033° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1555,"lon":-77.616033,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Overview of High-Temperature Electrolysis for Hydrogen Production  

SciTech Connect

Over the last five years there has been a growing interest in the use of hydrogen as an energy carrier, particularly to augment transportation fuels and thus reduce our dependence on imported petroleum. Hydrogen is now produced primarily via steam reforming of methane. However, in the long term, methane reforming is not a viable process for the large-scale hydrogen production since such fossil fuel conversion processes consume non-renewable resources and emit greenhouse gases. Nuclear energy can be used to produce hydrogen without consuming fossil fuels and without emitting greenhouse gases through the splitting of water into hydrogen and oxygen. The Nuclear Hydrogen Initiative of the DOE Office of Nuclear Energy is developing three general categories of high temperature processes for hydrogen production: thermochemical, electrolytic and hybrid thermo-electrolytic. This paper introduces the work being done in the development of high temperature electrolysis of steam. High Temperature Electrolysis (HTE) is built on the technology of solid oxide fuel cells (SOFCs), which were invented over a century ago, but which have been most vigorously developed during the last twenty years. SOFCs consume hydrogen and oxygen and produce steam and electricity. Solid Oxide Electrolytic Cells (SOECs) consume electricity and steam and produce hydrogen and oxygen. The purpose of the HTE research is to solve those problems unique to the electrolytic mode of operation, while building further on continuing fuel cell development. ORGANIZATION Experiments have been conducted for the last three years at the Idaho National Laboratory and at Ceramatec, Inc. on the operation of button cells and of progressively larger stacks of planar cells. In addition, the INL has been performing analyses of the cell-scale fluid dynamics and plant-scale flowsheets in order to determine optimum operating conditions and plant configurations. Argonne National Laboratory has been performing experiments for the development of new electrode materials, as well as modeling of the fluid dynamics and flowsheets for comparison with the work being done at the INL. ANL has also been performing diagnostic measures on components form long-duration tests at the INL and Ceramatec to determine the causes for the slow degradation in cell performance. Oak Ridge National Laboratory has been developing high temperature porous membranes for the separation of hydrogen from the residual steam, thus avoiding the need to condense and reheat the steam. The University of Nevada at Las Vegas has been collaborating with ANL on the development of electrode and electrolyte materials and will soon begin to investigate the causes of cell degradation. HTE research also includes NERI projects at the Virginia Polytechnic Institute on the development of toughened SOEC composite seals and at the Georgia Institute of Technology on the microstructural design of SOEC materials. EXPERIMENTAL RESULTS The most recent large-scale test of HTE was performed from June 28 through Sept 22, 2006 at the Ceramatec plant in Salt Lake City. The test apparatus consists of two stacks of 60 cells each in a configuration that will be used in the Integrated Laboratory Scale (ILS) experiment during FY-07. The ILS will contain three modules of four stacks each. The “Half-Module” initially produced 1.2 normal m3of H2/hour and 0.65 Nm3/hr at the end of the 2040-hour continuous test.

Herring, J. S.; O' Brien, J. E.; Stoots, C. M.; Hartvigsen, J. J.; Petri, M. C.; Carter, J. D.; Bischoff, B. L.

2007-06-01T23:59:59.000Z

144

Precision Data -Laboratory Proficiency Program  

Science Conference Proceedings (OSTI)

Precision Data Series is a valuable reference tool that can be used for determining the expected variability in the methods used in your lab. Precision Data -Laboratory Proficiency Program Laboratory Services analysis analytical methods aocs certi

145

North Dakota oil production reaches new high in 2012, transported ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... and this can cause supply chain problems at times. Severe weather can impede truck travel, which may lower oil production in the state.

146

High Activity catalysts for Polyols Production From C-6 Sugars  

DOE Green Energy (OSTI)

Over the course of this project, many significant discoveries have been made in the process for the conversion of sorbitol to value added products. The object was developing a process for the production of propylene glycol (PG), ethylene glycol (EG), and glycerol from sorbitol.

Todd Werpy; Alan Zacher; John Frye; Keith Peterson; Gary Neuenschwander; Eric Alderson; Daniel Muzatko; Jim White

2003-05-06T23:59:59.000Z

147

Overview of Hard processes at RHIC: high-pt light hadron and charm production  

E-Print Network (OSTI)

An overview of the experimental results on high-pt light hadron production and open charm production is presented. Data on particle production in elementary collisions are compared to next-to-leading order perturbative QCD calculations. Particle production in Au+Au collisions is then compared to this baseline.

M. van Leeuwen

2004-12-10T23:59:59.000Z

148

High intensity production of high and medium charge state uraniumand other heavy ion beams with VENUS  

SciTech Connect

The next generation, superconducting ECR ion source VENUS(Versatile ECR ion source for NUclear Science) started operation with 28GHzmicrowave heating in 2004. Since then it has produced world recordion beam intensities. For example, 2850 e mu A of O6+, 200 e mu A of U33+or U34+, and in respect to high charge state ions, 1 e mu A of Ar18+, 270e mu A of Ar16+, 28 e mu A of Xe35+ and 4.9 e mu A of U47+ have beenproduced. A brief overview of the latest developments leading to theserecord intensities is given and the production of high intensity uraniumbeams is discussed in more detail.

Leitner, Daniela; Galloway, Michelle L.; Loew, Timothy J.; Lyneis, Claude M.; Rodriguez, Ingrid Castro; Todd, Damon S.

2007-11-15T23:59:59.000Z

149

The Pentagon-S process: A systematic approach for achieving high confidence in high-consequence products  

Science Conference Proceedings (OSTI)

Sandia National Laboratories has developed a systematic approach for achieving high confidence in major products requiring high reliability for use in high-consequence applications. A high-consequence application is one in which product failure could result in significant loss of life, damage to major systems or to the environment, financial loss, or political repercussions. The application of this process has proven to be of significant benefit in the early identification, verification, and correction of potential product design and manufacturing process failure modes. Early identification and correction of these failures modes and the corresponding controls placed on safety-critical features, ensures product adherence to safety-critical design requirements, and enhances product quality, reliability, and the cost effectiveness of delivered products. Safety-critical features include design features such as materials and dimensions, as well as manufacturing features such as assembly processes, inspections, and testing.

D`Antonio, P.E.; Covan, J.M.; Ekman, M.E.

1997-10-01T23:59:59.000Z

150

Design and development of high precision elastomeric-stamp wrapping system for roll-to-roll multi-layer microcontact printing  

E-Print Network (OSTI)

Microcontact printing is an emerging printing technique that could potentially find application in the electronics industry. High-speed roll-to-roll equipment was built at Nano Terra, Inc in 2008, for microcontact printing. ...

Datar, Charudatta Achyut

2009-01-01T23:59:59.000Z

151

Gallant Precision Machining GPM | Open Energy Information  

Open Energy Info (EERE)

Gallant Precision Machining GPM Gallant Precision Machining GPM Jump to: navigation, search Name Gallant Precision Machining (GPM) Place Hsinchu, Taiwan Sector Solar Product Engaged in the design and manufacture of solar cell manufacturing equpiment. Coordinates 24.69389°, 121.148064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.69389,"lon":121.148064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Production Problems in Stamping of Advanced High Strength Steels  

Science Conference Proceedings (OSTI)

D8: Study of Rack and Chord Assembly Formability for Jack-up Platforms ... Zone of Zr-Ti Microalloyed High-strength High-toughness Offshore Structural Steels.

153

IMPACT OF HIGH-INPUT PRODUCTION PRACTICES ON SOYBEAN YIELD.  

E-Print Network (OSTI)

??High-input management practices are often heavily marketed to producers to increase soybean [Glycine max (L) Merr.] yield in already high-yielding environments. Field research was conducted… (more)

Jordan, Daniel L.

2010-01-01T23:59:59.000Z

154

Apparatus for precision micromachining with lasers  

DOE Patents (OSTI)

A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

Chang, J.J.; Dragon, E.P.; Warner, B.E.

1998-04-28T23:59:59.000Z

155

Apparatus for precision micromachining with lasers  

DOE Patents (OSTI)

A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialogroaphic sections of machined parts show little (submicron scale) recast layer and heat affected zone.

Chang, Jim J. (Dublin, CA); Dragon, Ernest P. (Danville, CA); Warner, Bruce E. (Pleasanton, CA)

1998-01-01T23:59:59.000Z

156

Phosphate bonded structural products from high volume wastes  

DOE Patents (OSTI)

A method to produce structural products from benign waste is provided comprising mixing pretreated oxide with phosphoric acid to produce an acid solution, mixing the acid solution with waste particles to produce a slurry, and allowing the slurry to cure. The invention also provides for a structural material comprising waste particles enveloped by an inorganic binder. 1 fig.

Singh, D.; Wagh, A.S.

1998-12-08T23:59:59.000Z

157

Inexpensive Production of High Density Thin Ceramic Films on ...  

Steven Visco, Lutgard DeJonghe, and Craig Jacobson have developed a simple, inexpensive method for producing high density, crack-free, thin ceramic ...

158

TurboTech Precision Engineering Private Limited | Open Energy Information  

Open Energy Info (EERE)

TurboTech Precision Engineering Private Limited TurboTech Precision Engineering Private Limited Jump to: navigation, search Name TurboTech Precision Engineering Private Limited Place Bangalore, India Zip 560 044 Sector Efficiency Product Designs and manufactures of high-efficiency steam turbines in the 50-250kW range. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Inference from Low Precision Transcriptome Data Representation  

Science Conference Proceedings (OSTI)

Microarray measurements are being widely used to infer gene functions, identify regulatory mechanisms and to predict phenotypes. These measurements are usually made and recorded to high numerical precision (e.g. 0.24601). However, aspects of the underlying ... Keywords: Gene expression, Inference, Microarray, Quantization

Salih Tuna; Mahesan Niranjan

2010-03-01T23:59:59.000Z

160

SunShot Initiative: Development and Productization of High-Efficiency,  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Productization of Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells to someone by E-mail Share SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Facebook Tweet about SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Twitter Bookmark SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Google Bookmark SunShot Initiative: Development and Productization of

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS  

E-Print Network (OSTI)

be manufactured having cement replacement with Illinois coal ashes and their blends in the range of 0 to 60LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS Investigators technology for high-volume applications of Illinois coal combustion by-products generated by using both

Wisconsin-Milwaukee, University of

162

Building Fusion Targets with Precision Robotics  

The precision robotic assembly machine’s manipulator system provides precise and repeatable motions, the force and torque

163

Transmutation and energy-production with high power accelerators  

SciTech Connect

Accelerator-driven transmutation offers attractive new solutions to complex nuclear problems. This paper outlines the basics of the technology, summarizes the key application areas, and discusses designs of and performance issues for the high-power proton accelerators that are required.

Lawrence, G.P.

1995-07-01T23:59:59.000Z

164

Production and Properties of Solidified High-Level  

E-Print Network (OSTI)

of glass composition. A high concentration of B2 0, or substitution of sodium with lithium diminishes viscosity of the molten glasses even at the refining temperatures. Small gas bubbles is another type of in of the glass. The weight of the cylinder is recorded continuously during the casting operation. The viscosity

165

High-intensity, high-brightness polarized and unpolarized beam production in charge-exchange collisions  

DOE Green Energy (OSTI)

Basic limitations on the high-intensity H{sup -} ion beam production were experimentally studied in charge-exchange collisions of the neutral atomic hydrogen beam in the Na-vapour jet ionizer cell. These studies are the part of the polarized source upgrade (to 10 mA peak current and 85% polarization) project for RHIC. In the source the atomic hydrogen beam of a 5-10 keV energy and total (equivalent) current up to 5 A is produced by neutralization of proton beam in pulsed hydrogen gas target. Formation of the proton beam (from the surface of the plasma emitter with a low transverse ion temperature {approx}0.2 eV) is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. The hydrogen atomic beam intensity up to 1.0 A/cm{sup 2} (equivalent) was obtained in the Na-jet ionizer aperture of a 2.0 cm diameter. At the first stage of the experiment H-beam with 36 mA current, 5 keV energy and {approx}1.0 cm {center_dot} mrad normalized emittance was obtained using the flat grids and magnetic focusing.

Zelenski, A.; Ritter, J.; Zubets, V.; Steski, D.; Atoian, G.; Davydenko, V.; Ivanov, A.; Kolmogorov, A.

2011-03-28T23:59:59.000Z

166

Towards a high-precision atomic gyroscope  

E-Print Network (OSTI)

In this thesis, I report on the design and construction of the Rubidium Atomic Gyroscope Experiment (RAGE) at Draper Lab.

Van Camp, Mackenzie A. (Mackenzie Anne)

2013-01-01T23:59:59.000Z

167

Compact high precision adjustable beam defining aperture  

DOE Patents (OSTI)

The present invention provides an adjustable aperture for limiting the dimension of a beam of energy. In an exemplary embodiment, the aperture includes (1) at least one piezoelectric bender, where a fixed end of the bender is attached to a common support structure via a first attachment and where a movable end of the bender is movable in response to an actuating voltage applied to the bender and (2) at least one blade attached to the movable end of the bender via a second attachment such that the blade is capable of impinging upon the beam. In an exemplary embodiment, the beam of energy is electromagnetic radiation. In an exemplary embodiment, the beam of energy is X-rays.

Morton, Simon A; Dickert, Jeffrey

2013-07-02T23:59:59.000Z

168

Very-High-Precision Calculations in Physics  

E-Print Network (OSTI)

This is the introductory part of my Ph.D thesis, defended at the Faculty of Science and Technology, NTNU on December 10, 2012.

Amna Noreen

2013-04-10T23:59:59.000Z

169

High-Precision Isotopic Reference Materials  

Science Conference Proceedings (OSTI)

... sources, is now capable of measuring isotope ratios with ... revolution in the use of isotopes by revealing ... This program will have an impact in several ...

2012-10-22T23:59:59.000Z

170

High-energy x-ray production with pyroelectric crystals  

Science Conference Proceedings (OSTI)

The invention of pyroelectric x-ray generator technology has enabled researchers to develop ultraportable, low-power x-ray sources for use in imaging, materials analysis, and other applications. For many applications, the usefulness of an x-ray source is determined by its yield and endpoint energy. In x-ray fluorescence, for example, high-energy sources enable the excitation of the K-shell x-ray peaks for high-Z materials as well as the lower-energy L-shell peaks, allowing more positive sample identification. This report shows how a paired-crystal pyroelectric source can be used to approximately double the endpoint x-ray energy, in addition to doubling the x-ray yield, versus a single-crystal source. As an example of the advantage of a paired-crystal system, we present a spectrum showing the fluorescence of the K shell of thorium using a pyroelectric source, as well as a spectrum showing the fluorescence of the K shell of lead. Also shown is an x-ray spectrum with an endpoint energy of 215 keV.

Geuther, Jeffrey A.; Danon, Yaron [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

2005-05-15T23:59:59.000Z

171

THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

M. G. McKellar; G. L. Hawkes; J. E. O'Brien

2008-11-01T23:59:59.000Z

172

Measuring Productivity on High Performance Computers Marvin Zelkowitz1,2  

E-Print Network (OSTI)

Measuring Productivity on High Performance Computers Marvin Zelkowitz1,2 Victor Basili1,2 Sima, lorin, hollings, nakamura}@cs.umd.edu Abstract In the high performance computing domain, the speed of concern to high performance computing developers. In this paper we will discuss the problems of defining

Basili, Victor R.

173

A flexible assembly system for low volume and high diversity production  

E-Print Network (OSTI)

This thesis project seeks to optimize floor layouts for semiconductor equipment assembly operations. The assembly of semiconductor equipment is characterized by low volume and high product diversity and complexity. Demand ...

Schwenke, Richard Clemens

2009-01-01T23:59:59.000Z

174

Technology strategy of competing with industrial design in markets of high-tech consumer products  

E-Print Network (OSTI)

This thesis explores the role of industrial design in the formulation of technology strategy for certain firms that compete in markets of high-tech consumer products. The initial intuition is that the role of industrial ...

Mak, Arthur T

2009-01-01T23:59:59.000Z

175

EERE News: Reports Show Record High U.S. Wind Energy Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reports Show Record High U.S. Wind Energy Production and Manufacturing August 06, 2013 Two men work on the nacelle of a wind turbine. The Energy Department released two new reports...

176

Low Cost High-H2 Syngas Production for Power and Liquid Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost High-H2 Syngas Production for Power and Liquid Fuels Gas Technology Institute (GTI) Project Number: FE0011958 Project Description Proof-of-concept of a metal-polymeric...

177

Improvement of high-resolution satellite rainfall product for Typhoon Morakot (2009) over Taiwan  

Science Conference Proceedings (OSTI)

The authors improve the high-resolution Global Satellite Mapping of Precipitation (GSMaP) product, for Typhoon Morakot (2009) over Taiwan, by using an orographic/non-orographic rainfall classification scheme. For the estimation of the ...

Aina Taniguchi; Shoichi Shige; Munehisa K. Yamamoto; Tomoaki Mega; Satoshi Kida; Takuji Kubota; Misako Kachi; Tomoo Ushio; Kazumasa Aonashi

178

High-temperature nuclear reactors as an energy source for hydrogen production  

SciTech Connect

From hydrogen economy Miami energy conference; Miami Beach, Florida, USA (18 Mar 1974). Application of current high-temperature reactor technology to hydrogen production is reviewed. The requirements and problems of matching a thermochemical hydrogen production cycle to a nuclear heat source are discussed. Possibilities for extending the temperature of reactors upward are outlined. The major engineering problem is identified as the development of a high-temperature process heat exchanger separating the nuclear heat source from the chemical process. (auth)

Balcomb, J.D.; Booth, L.A.

1974-01-01T23:59:59.000Z

179

Production of High-Hydrogen Content Coal-Derived Liquids [Part 3 of 3  

Science Conference Proceedings (OSTI)

The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

Stephen Bergin

2011-03-30T23:59:59.000Z

180

Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3  

SciTech Connect

The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

Stephen Bergin

2011-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Production of High-Hydrogen Content Coal-Derived Liquids [Part 1 of 3  

Science Conference Proceedings (OSTI)

The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

Stephen Bergin

2011-03-30T23:59:59.000Z

182

Microbiopsy/precision cutting devices  

DOE Patents (OSTI)

Devices are disclosed for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways (1) intravascularly, (2) extravascularly, (3) by vessel puncture, and (4) externally. Additionally, the devices may be used in precision surgical cutting. 6 figs.

Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Benett, W.J.

1999-07-27T23:59:59.000Z

183

FISSION PRODUCT TRAPS FOR USE IN HIGH-TEMPERATURE GAS-COOLED GRAPHITE REACTORS  

SciTech Connect

A proposal is given of an approach to a fission-product trapping system which appears feasible on the basis of thermodynamic and other data available. Reactor and trapping conditions are outlined. The half-lives, fission yields, and volatility of the fission products of interest are described. To provide the most effective retention at elevated temperatures, two types of reagents are required: a highly electropositive metal that will not melt or appreciably vaporize and which will form stable non-volatile compounds with non-metallic or near non-metallic fission products; and a reagent to provide a highly electronegative element to form stable, non-volatile compounds with metallic fission products. Thermodynamic properties are included for compounds formed by reactions between the fission products and the trapping reagents. (B.O.G.)

Zumwalt, L.R.

1958-03-13T23:59:59.000Z

184

Precision Tests of Electroweak Interactions  

Science Conference Proceedings (OSTI)

The status of the precision tests of the electroweak interactions is reviewed in this paper. An emphasis is put on the Standard Model analysis based on measurements at LEP/SLC and the Tevatron. The results of the measurements of the electroweak mixing angle in the NuTeV experiment and the future prospects are discussed.

Akhundov, Arif [Institute of Physics, Azerbaijan Academy of Sciences, 370143 Baku (Azerbaijan); Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC, 46100 Valencia (Spain)

2008-04-21T23:59:59.000Z

185

Utility of atomic kicked-rotor interferometers for precision measurements  

Science Conference Proceedings (OSTI)

We theoretically investigate a proposed scheme to use an atomic {delta}-kicked rotor resonance for high-precision measurements of accelerations and the photon recoil frequency. Although the technique offers rapid scaling of the measurement sensitivity with pulse number, it also features a high sensitivity to initial atomic momentum. We find that for realistic atom sources, the momentum sensitivity significantly limits the achievable precision. We consider several different variations on the technique, but find similar limitations in all cases.

Horne, R. A.; Leonard, R. H.; Sackett, C. A. [Physics Department, University of Virginia, Charlottesville, Virginia 22904 (United States)

2011-06-15T23:59:59.000Z

186

System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

2010-10-01T23:59:59.000Z

187

Low-Volume Wastes With High-Volume Coal Combustion By-Products: P4 Site  

Science Conference Proceedings (OSTI)

Historically, utilities have comanaged some or all of their low-volume wastes with their high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement of coal combustion by-products at a utility-owned dry landfill in the midwestern United States. The findings from this research provide technical information for use in an ongoing study of comanagement by the U.S. Environmental Protection Agency (EPA).

1998-12-30T23:59:59.000Z

188

Reports Show Record High U.S. Wind Energy Production and Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports Show Record High U.S. Wind Energy Production and Reports Show Record High U.S. Wind Energy Production and Manufacturing Reports Show Record High U.S. Wind Energy Production and Manufacturing August 6, 2013 - 12:00pm Addthis Two men work on the nacelle of a wind turbine. The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time-representing 43% of all new electric additions and accounting for $25 billion in U.S. investment.

189

Production and supply of radioisotopes with high-energy particle accelerators current status and future directions  

Science Conference Proceedings (OSTI)

Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose.

Srivastava, S.C.; Mausner, L.F.

1994-03-01T23:59:59.000Z

190

A Process Model for the Production of Hydrogen Using High Temperature Electrolysis  

DOE Green Energy (OSTI)

High temperature electrolysis (HTE) involves the splitting of stream into hydrogen and oxygen at high temperatures. The primary advantage of HTE over conventional low temperature electrolysis is that considerably higher hydrogen production efficiencies can be achieved. Performing the electrolysis process at high temperatures results in more favorable thermodynamics for electrolysis, more efficient production of electricity, and allows direct use of process heat to generate steam. This paper presents the results of process analyses performed to evaluate the hydrogen production efficiencies of an HTE plant coupled to a 600 MWt Modular Helium Reactor (MHR) that supplies both the electricity and process heat needed to drive the process. The MHR operates with a coolant outlet temperature of 950 C. Approximately 87% of the high-temperature heat is used to generate electricity at high efficiency using a direct, Brayton-cycle power conversion system. The remaining high-temperature heat is used to generate a superheated steam / hydrogen mixture that is supplied to the electrolyzers. The analyses were performed using the HYSYS process modeling software. The model used to perform the analyses consisted of three loops; a primary high temperature helium loop, a secondary helium loop and the HTE process loop. The detailed model included realistic representations of all major components in the system, including pumps, compressors, heat exchange equipment, and the electrolysis stack. The design of the hydrogen production process loop also included a steam-sweep gas system to remove oxygen from the electrolysis stack so that it can be recovered and used for other applications. Results of the process analyses showed that hydrogen production efficiencies in the range of 45% to 50% are achievable with this system.

M. G. Mc Kellar; E. A. Harvego; M. Richards; A. Shenoy

2006-07-01T23:59:59.000Z

191

High Conversion of Coal to Transportation Fuels for the Future With Low HC Gas Production  

DOE Green Energy (OSTI)

An announced objective of the Department of Energy in funding this work, and other current research in coal liquefaction, is to produce a synthetic crude from coal at a cost lower than $30.00 per barrel (Task A). A second objective, reflecting a recent change in direction in the synthetic fuels effort of DOE, is to produce a fuel which is low in aromatics, yet of sufficiently high octane number for use in the gasoline- burning transportation vehicles of today. To meet this second objective, research was proposed, and funding awarded, for conversion of the highly-aromatic liquid product from coal conversion to a product high in isoparaffins, which compounds in the gasoline range exhibit a high octane number (Task B).

Alex G. Oblad; Wendell H. Wiser

1996-07-01T23:59:59.000Z

192

Workshop on Precision Measurements of $\\alpha_s$  

Science Conference Proceedings (OSTI)

These are the proceedings of the Workshop on Precision Measurements of {alpha}{sub s} held at the Max-Planck-Institute for Physics, Munich, February 9-11, 2011. The workshop explored in depth the determination of {alpha}{sub s}(m{sub Z}) in the {ovr MS} scheme from the key categories where high precision measurements are currently being made, including DIS and global PDF fits, {tau}-decays, electro-weak precision observables and Z-decays, event-shapes, and lattice QCD. These proceedings contain a short summary contribution from the speakers, as well as the lists of authors, conveners, participants, and talks.

Bethke, Siegfried; /Munich, Max Planck Inst.; Hoang, Andre H.; /Vienna U.; Kluth, Stefan; /Munich, Max Planck Inst.; Schieck, Jochen; /Munich U.; Stewart, Iain W.; Aoki, S.; Beneke, M.; Bethke, S.; Blumlein, J.; Brambilla, N.; Brodsky, S.; /MIT, LNS

2011-10-01T23:59:59.000Z

193

Quarkonium production in high energyproton-proton and proton-nucleus collisions  

Science Conference Proceedings (OSTI)

We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarization studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

del Valle, Z C; Corcella, G; Fleuret, F; Ferreiro, E G; Kartvelishvili, V; Kopeliovich, B; Lansberg, J P; Lourenco, C; Martinez, G; Papadimitriou, V; Satz, H; Scomparin, E; Ullrich, T; Teryaev, O; Vogt, R; Wang, J X

2011-03-14T23:59:59.000Z

194

Precision measurement of cosmic magnification from 21 cm emitting galaxies  

DOE Green Energy (OSTI)

We show how precision lensing measurements can be obtained through the lensing magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic magnification measurements have been seriously complicated by galaxy clustering. With precise redshifts obtained from 21cm emission line wavelength, one can correlate galaxies at different source planes, or exclude close pairs to eliminate such contaminations. We provide forecasts for future surveys, specifically the SKA and CLAR. SKA can achieve percent precision on the dark matter power spectrum and the galaxy dark matter cross correlation power spectrum, while CLAR can measure an accurate cross correlation power spectrum. The neutral hydrogen fraction was most likely significantly higher at high redshifts, which improves the number of observed galaxies significantly, such that also CLAR can measure the dark matter lensing power spectrum. SKA can also allow precise measurement of lensing bispectrum.

Zhang, Pengjie; /Fermilab; Pen, Ue-Li; /Canadian Inst. Theor. Astrophys.

2005-04-01T23:59:59.000Z

195

On the history of multi-particle production in high energy collisions  

E-Print Network (OSTI)

The 60th birthday of Johann Rafelski was celebrated during the Strangeness in Quark Matter 2011 in Krakow. Johann was born in Krakow and he initiated the series of the SQM conferences. This report, which briefly presents my personal view on a history of multi-particle production in high energy collisions, is dedicated to Johann.

Gazdzicki, M

2012-01-01T23:59:59.000Z

196

On the history of multi-particle production in high energy collisions  

E-Print Network (OSTI)

The 60th birthday of Johann Rafelski was celebrated during the Strangeness in Quark Matter 2011 in Krakow. Johann was born in Krakow and he initiated the series of the SQM conferences. This report, which briefly presents my personal view on a history of multi-particle production in high energy collisions, is dedicated to Johann.

M. Gazdzicki

2012-01-02T23:59:59.000Z

197

Precision Energy Technology | Open Energy Information  

Open Energy Info (EERE)

Energy Technology Energy Technology Jump to: navigation, search Name Precision Energy & Technology Place Kettering, Ohio Zip 45420 Product Dayton-based, fuel cell designer and manufacturer. Coordinates 39.69525°, -84.162974° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.69525,"lon":-84.162974,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations  

E-Print Network (OSTI)

Improved production costs will accelerate commercialization of polyhydroxyalkanoate (PHA) polymer and PHA-based products. Plant oils are considered favorable feedstocks, due to their high carbon content and relatively low ...

Yusof, Zainal Abidin Mohd

199

Production of High Resolution Irradiance Data for Central America and Cuba  

Open Energy Info (EERE)

Production of High Resolution Irradiance Data for Central America and Cuba Production of High Resolution Irradiance Data for Central America and Cuba Dataset Summary Description (Abstract): The main object of the SUNY task for SWERA is to prepare high resolution global irradiance (GHI) and direct irradiance (DNI) data sets for the countries of Cuba, El Salvador, Guatemala, Honduras and Nicaragua.Much of our initial effort focused on building up the satellite data tx_metadatatool, and in strengthening and validating the models capable of converting that data into ground surface irradiances. Three research articles, acknowledging all or partial funding from UNEP & SWERA have been published on this subject. (Purpose): SWERA documentation Source SUNY Albany Date Released July 31st, 2003 (11 years ago) Date Updated August 29th, 2003 (11 years ago)

200

Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-08-01T23:59:59.000Z

202

LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS  

DOE Green Energy (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

James E. O'Brien

2010-08-01T23:59:59.000Z

203

Correlation between precision gravity and subsidence measurements at Cerro Prieto  

DOE Green Energy (OSTI)

Precision gravity measurements were made in the region of the Cerro Prieto geothermal field at yearly intervals from 1977 to 1981 to assess the feasibility of using gravity to determine subsurface reservoir changes with time. The extent of mass recharge in response to the continued production of fluids from this field was studied. Changes in gravity and ground elevation were observed throughout the region for the period of observation. Results indicate that the largest changes observed were the result of the Magnitude 6.1 (Caltech) Victoria earthquake of 8 June 1980. The epicenter of this earthquake was located 25 km southeast of the field on the Cerro Prieto Fault, which bounds the field on the southwest. Subsidence of up to 55 cm was measured east of the power plant, in the region between the northern end of the Cerro Prieto Fault and the southern end of the Imperial Fault. This area has been postulated to be the site of an active spreading center or pull-apart basin, and has been characterized by a high level of seismic activity during the last 10 years. Minor subsidence and small related gravity changes for the period preceeding the Victoria earthquake suggest that in spite of large fluid production rates, the reservoir is being almost completely recharged and that a measurable increase in subsurface density may be taking place. The results of measurements of horizontal ground motions made in this area are discussed in relation to the gravity and subsidence observations.

Zelwer, R.; Grannell, R.B.

1982-10-01T23:59:59.000Z

204

Precision moisture generation and measurement.  

SciTech Connect

In many industrial processes, gaseous moisture is undesirable as it can lead to metal corrosion, polymer degradation, and other materials aging processes. However, generating and measuring precise moisture concentrations is challenging due to the need to cover a broad concentration range (parts-per-billion to percent) and the affinity of moisture to a wide range surfaces and materials. This document will discuss the techniques employed by the Mass Spectrometry Laboratory of the Materials Reliability Department at Sandia National Laboratories to generate and measure known gaseous moisture concentrations. This document highlights the use of a chilled mirror and primary standard humidity generator for the characterization of aluminum oxide moisture sensors. The data presented shows an excellent correlation in frost point measured between the two instruments, and thus provides an accurate and reliable platform for characterizing moisture sensors and performing other moisture related experiments.

Thornberg, Steven Michael; White, Michael I.; Irwin, Adriane Nadine

2010-03-01T23:59:59.000Z

205

High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors  

Science Conference Proceedings (OSTI)

We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.

Andersen, T.; Jensen, R.; Christensen, M. K.; Chorkendorff, I. [Department of Physics, Danish National Research Foundation's Center for Individual Nanoparticle Functionality (CINF), Technical University of Denmark, Building 312, DK-2800 Kgs. Lyngby (Denmark); Pedersen, T.; Hansen, O. [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark)

2012-07-15T23:59:59.000Z

206

Feasibility of high protein flour and ethanol production in northern Idaho  

SciTech Connect

The results of a study on the technical and economic feasibility of constructing and operating a medium-scale (3,000,000 gal/year) ethanol plant in northern Idaho are presented. The boilers will be fueled with a wood waste fuel (WOODEX) and sawdust. Distiller's dried grains will be processed and produce high-protein flour which will be sold as a health food product for human consumption. The feedstock will be locally grown wheat and barley. Carbon dioxide by-product will be collected and sold to a chemical plant. A third by-product, fusel oil, will be produced and sold for use as a solvent. Processes and equipment were evaluated and recommendations are included. 5 figs. (DMC)

Snipes, D.; Korus, R.

1981-04-30T23:59:59.000Z

207

Evidence for high mass exclusive dijet production in the D0 experiment  

SciTech Connect

Exclusive diffractive Higgs boson production is an interesting process which could be studied at the Large Hadron Collider. While the cross section for the Higgs boson production at the Fermilab Tevatron Collider is too low for this channel, it is important to check if the class of exclusive diffraction events exists. We present the evidence for the high mass exclusive dijet production in the D0 experiment. Hard diffractive processes are usually described by the exchange of a colorless object called Pomeron. In diffractive hadron hadron collisions, the hadrons will exchange the Pomeron and either one or both hadrons will not dissolve. The events are identified by either a presence of a large forward region of the detector devoid of any activity (rapidity gap) or by a tagging of the intact beam hadron(s). A subset of diffractive events is called exclusive when the whole Pomeron energy is used to produce the diffractive state, i.e there are no Pomeron remnants. Exclusive diffractive production (EDP) of the Higgs boson or any other new final state X pp {yields} p + X + p has been recently proposed as a search channel at the LHC. The cross section for the Higgs boson production is too low at the Tevatron (0.2fb is predicted for a Higgs boson mass of 120 GeV), but it is important to check if this class of events exists in this kinematic region. The CDF Collaboration has recently confirmed the existence of EDP in several channels. In this report, we present the evidence for the exclusive production of high dijet invariant mass events, i.e. a dijet event accompanied by large rapidity gaps on both sides of the calorimeter.

Hubacek, Zdenek; /Prague, Tech. U.

2010-10-01T23:59:59.000Z

208

The University of Missouri Bioinformatics Consortium (UMBC) provides an integrated array of high performance computing and communications products  

E-Print Network (OSTI)

performance computing and communications products and related services to their users, including The University of Missouri Bioinformatics Consortium (UMBC) provides an integrated array of high

Glaser, Rainer

209

Combined Water-Fertilizer Management to Minimize Non-Point Water Pollution While Achieving High Crop Production  

E-Print Network (OSTI)

POLLUTION WHILE ACHIEVING HIGH CROP PRODUCTION JOHN ~ETEYand broccoli relationships and crop yield and nitrogen as amust anticipate Applica- crop nutrient and must be placed in

Letey, John; Jarrell, Wesley M

1983-01-01T23:59:59.000Z

210

Microbial Electrolysis Cells (MECs) for High Yield Hydrogen (H2) Production from Biodegradable Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Microbial Electrolysis Cells (MECs) for High Yield H Microbial Electrolysis Cells (MECs) for High Yield H 2 Production from Biodegradable Materials Zhiyong "Jason" Ren, Ph.D Associate Professor, Environmental and Sustainability Engineering University of Colorado Boulder Jason.Ren@colorado.edu (303) 492-4137 http://spot.colorado.edu/~zhre0706/ MxC or Microbial Electrochemical System (MES) is a platform technology for energy and resource recovery Main type of MXC Products Microbial Fuel Cell (MFC) Electricity Microbial Electrolysis Cell (MEC) H 2 , H 2 O 2 , NaOH, Struvite Microbial Chemical Cell (MCC) CH 4 , C 2 H 4 O 2 , Organics Microbial Remediation Cell (MRC) Reduced/non-toxic chemicals Microbial Desalination Cell (MDC) Desalinated water >90% H 2 MEC for H 2 Recovery PS e - e - Wang and Ren, Biotechnol. Adv. 2013

211

Highly efficient photochemical HCOOH production from CO{sub 2} and water using an inorganic system  

SciTech Connect

We have constructed a system that uses solar energy to react CO{sub 2} with water to generate formic acid (HCOOH) at an energy conversion efficiency of 0.15%. It consists of an AlGaN/GaN anode photoelectrode and indium (In) cathode that are electrically connected outside of the reactor cell. High energy conversion efficiency is realized due to a high quantum efficiency of 28% at 300 nm, attributable to efficient electron-hole separation in the semiconductor's heterostructure. The efficiency is close to that of natural photosynthesis in plants, and what is more, the reaction product (HCOOH) can be used as a renewable energy source.

Yotsuhashi, Satoshi; Hashiba, Hiroshi; Deguchi, Masahiro; Zenitani, Yuji; Hinogami, Reiko; Yamada, Yuka [Advanced Technology Research Laboratory, Panasonic Corporation, Soraku-gun, Kyoto 619-0237 (Japan); Deura, Momoko; Ohkawa, Kazuhiro [Department of Applied Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601 (Japan)

2012-12-15T23:59:59.000Z

212

Very High Efficiency Reactor (VHER) Concepts for Electrical Power Generation and Hydrogen Production  

DOE Green Energy (OSTI)

The goal of the Very High Efficiency Reactor study was to develop and analyze concepts for the next generation of nuclear power reactors. The next generation power reactor should be cost effective compared to current power generation plant, passively safe, and proliferation-resistant. High-temperature reactor systems allow higher electrical generating efficiencies and high-temperature process heat applications, such as thermo-chemical hydrogen production. The study focused on three concepts; one using molten salt coolant with a prismatic fuel-element geometry, the other two using high-pressure helium coolant with a prismatic fuel-element geometry and a fuel-pebble element design. Peak operating temperatures, passive-safety, decay heat removal, criticality, burnup, reactivity coefficients, and material issues were analyzed to determine the technical feasibility of each concept.

PARMA JR.,EDWARD J.; PICKARD,PAUL S.; SUO-ANTTILA,AHTI JORMA

2003-06-01T23:59:59.000Z

213

Economic Effect on Agricultural Production of Alternative Energy Input Prices: Texas High Plains  

E-Print Network (OSTI)

The Arab oil embargo of 1973 awakened the world to the reality of energy shortages and higher fuel prices. Agriculture in the United States is highly mechanized and thus energy intensive. This study seeks to develop an evaluative capability to readily determine the short-run effect of rising energy prices on agricultural production. The results are measured in terms of demand schedules for each input investigated, net revenue adjustments, cropping pattern shifts, and changes in agricultural output. The High Plains of Texas was selected as a study area due to the heterogeneous nature of agricultural production in the region and highly energy intensive methods of production employed. The region is associated with a diversity in crops and production practices as well as a high degree of mechanization and irrigation, which means agriculture is very dependent upon energy inputs and, in turn, is significantly affected by energy price changes. The study area was defined by the Texas Agricultural Extension subregions of High Plains II, High Plains III, and High Plains IV. The crops chosen for study were cotton, grain sorghum, wheat, corn, and soybeans. The energy and energy-related inputs under investigation were diesel, herbicide, natural gas, nitrogen fertilizer, and water. Mathematical linear programming was used as the analytical technique with parametric programming techniques incorporated into the LP model to evaluate effect of varying input price parameters over a specified range. Thus, demand schedules were estimated. The objective function was constructed using variable costs only; no fixed costs are considered. Therefore, the objective function maximizes net revenue above variable costs and thus limits the study to the short run. The data bases for the model were crop enterprise budgets developed by the Texas Agricultural Extension Service. These budgets were modified to adapt them to the study. Particularly important was the substitution of owner-operated harvesting equipment for custom-harvesting costs. This procedure made possible the delineation of fuel use by crop and production alternative which was necessary information in the accounting of costs. The completed LP model was applied to 16 alternative situations made up of various input and product price combinations which are considered as feasible in the short run future. The results reveal that diesel consumption would change very little in the short run unless commodity prices simultaneously decline below the lowest prices since 1971 or unless diesel price approaches $2.00 per gallon. Under average commodity price conditions, natural gas consumption would not decline appreciably until the price rose above $4.00 per 1000 cubic feet (mcf). Even when using the least product prices since 1971, natural gas would be consumed in substantial amounts as long as the price was below $1.28 per Mcf. The findings regarding nitrogen indicate that present nitrogen prices are within a critical range such that consumption would be immediately affected by nitrogen price increases. Water price was considered as the price a farmer can afford to pay for water above pumping and distribution costs. Application of water was defined as the price that would be paid for imported water. Under average commodity price conditions, the study results show that as water price rises from zero dollars to $22 per acre foot there would be less than a 4 percent reduction in consumption. However, as the price continues to rise, consumption would decline dramatically reaching zero at a water price of $71.75 per acre foot. This study indicates that rising input prices would cause acreage shifts from irrigated to dryland; however, with average commodity prices, these shifts do not occur until diesel reaches $2.69 per gallon, or natural gas sells for $1.92 per Mcf, or nitrogen price is $.41 per pound, or water price reaches $14.69 per acre foot. In general, the first crops that would shift out of production as energy input prices rise woul

Adams, B. M.; Lacewell, R. D.; Condra, G. D.

1976-06-01T23:59:59.000Z

214

Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes  

DOE Green Energy (OSTI)

High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered.

Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

2007-04-01T23:59:59.000Z

215

Design of an Integrated Laboratory Scale Test for Hydrogen Production via High Temperature Electrolysis  

DOE Green Energy (OSTI)

The Idaho National Laboratory (INL) is researching the feasibility of high-temperature steam electrolysis for high-efficiency carbon-free hydrogen production using nuclear energy. Typical temperatures for high-temperature electrolysis (HTE) are between 800º-900ºC, consistent with anticipated coolant outlet temperatures of advanced high-temperature nuclear reactors. An Integrated Laboratory Scale (ILS) test is underway to study issues such as thermal management, multiple-stack electrical configuration, pre-heating of process gases, and heat recuperation that will be crucial in any large-scale implementation of HTE. The current ILS design includes three electrolysis modules in a single hot zone. Of special design significance is preheating of the inlet streams by superheaters to 830°C before entering the hot zone. The ILS system is assembled on a 10’ x 16’ skid that includes electronics, power supplies, air compressor, pumps, superheaters, , hot zone, condensers, and dew-point sensor vessels. The ILS support system consists of three independent, parallel supplies of electrical power, sweep gas streams, and feedstock gas mixtures of hydrogen and steam to the electrolysis modules. Each electrolysis module has its own support and instrumentation system, allowing for independent testing under different operating conditions. The hot zone is an insulated enclosure utilizing electrical heating panels to maintain operating conditions. The target hydrogen production rate for the ILS is 5000 Nl/hr.

G.K. Housley; K.G. Condie; J.E. O'Brien; C. M. Stoots

2007-06-01T23:59:59.000Z

216

Collision of fast highly charged ions in gas targets: ionization, recoil-ion production, and charge transfer  

DOE Green Energy (OSTI)

Electron-capture, ionization, and recoil-ion-production cross sections are measured and calculated for fast highly charged projectiles in hydrogen and rare-gas targets. Recoil-ion-production cross sections are found to be large; the low energy and high charge states of the recoil ions make them useful for subsequent collision studies.

Schalchter, A.S.; Berkner, K.H.; Beyer, H.F.

1982-07-01T23:59:59.000Z

217

System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities  

DOE Green Energy (OSTI)

This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2012-05-01T23:59:59.000Z

218

Advanced Intermediate Heat Transport Loop Design Configurations for Hydrogen Production Using High Temperature Nuclear Reactors  

DOE Green Energy (OSTI)

The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic evaluations and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view.

Chang Oh; Cliff Davis; Rober Barner; Paul Pickard

2005-11-01T23:59:59.000Z

219

Development of a robot control method for curved seal extrusion for high productivity in an advanced Toyota production system  

Science Conference Proceedings (OSTI)

Recent Japanese enterprises have been promoting global production to realize uniform quality worldwide and production at optimal locations for survival amid severe competition. The authors considered the necessity of including the above method in the ... Keywords: Advanced TPS, Automobile-window mole, Curved seal extrusion (CSE), Robot

H. Sakai; K. Amasaka

2007-07-01T23:59:59.000Z

220

High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production  

Science Conference Proceedings (OSTI)

The development of highly reliable downhole equipment is an essential element in enabling the widespread utilization of Enhanced Geothermal Systems (EGS). The downhole equipment used in these systems will be required to operate at high voltages and temperatures on the order of 200 to 250°C (and eventually to 300?C). These conditions exceed the practical operating ranges of currently available thermoplastic wire insulations, and thus limit the operating lifetime of tools such as Electric Submersible Pumps (ESPs). In this work, high-temperature insulations based on composite materials were developed and demonstrated. The products of this work were found to exhibit electrical resistivities and dielectric breakdown strengths that PEEK at temperatures above 250C. In addition, sub-scale motor windings were fabricated and tested to validate the performance of this technology

Hooker, Matthew; Hazelton, Craig; Kano, Kimi

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Systematic Study of High-pT Direct Photon Production with the PHENIX Experiment at RHIC  

E-Print Network (OSTI)

When studying the initial state and evolution of the matter created in relativistic heavy ion collisions, high-pT direct photons are a powerful probe. They are created in initial hard processes and in parton fragmentation, and possibly in interactions of partons with the hot and dense medium. We present systematic measurements of high-pT direct photon production in \\sqrt{s_{NN}} = 200 GeV p+p and Au+Au collisions. The nuclear modification factor of direct photons is shown for 5 < pT < 18 GeV/c, and at very high transverse momenta it seems to be below unity in the most central Au+Au collisions.

Tadaaki Isobe

2007-01-23T23:59:59.000Z

222

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

223

EM Waste Acceptance Product Specification (WAPS) for Vitrified High-Level Waste Forms  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Waste Acceptance Product EM Waste Acceptance Product Specification (WAPS) for Vitrified High-Level Waste Forms Presentation to the HLW Corporate Board July 24, 2008 By Tony Kluk/Ken Picha 2 Background * Originally Waste Acceptance Preliminary Specifications were Office of Civilian Radioactive Waste Management (RW) documents and project specific: - Defense Waste Processing Facility (PE-03, July 1989) - West Valley Demonstration Project (PE-04, January 1990) * Included many of same specifications as current version of WAPS * First version of RW Waste Acceptance System Requirements Document in January 1993 (included requirements for both SNF and HLW) * EM decided to extract requirements for HLW and put into the WAPS document 3 Background (Cont'd) * Lists technical specifications for acceptance of borosilicate HLW

224

Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor  

Science Conference Proceedings (OSTI)

This paper presents an overview of the engineering methods, models, and results used in an evaluation for locating a hydrogen production facility near a proposed next-generation nuclear power plant. Standard probabilistic safety assessment methodologies were used to answer the risk-related questions for a combined nuclear and chemical facility: what can go wrong? how likely is it to happen? and what are the consequences of it happening? As part of answering these questions, a model was developed suitable for determining the distances separating a hydrogen-production process and nuclear plant structures. The objective of the model-development and analysis is to answer key safety questions relating to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic efficiency standpoint, close proximity of the two facilities is beneficial. Safety and regulatory implications, however, force the separation to be increased, perhaps substantially. The likelihood of obtaining a permit to construct and build such as facility in the United States without answering these safety questions is uncertain. The quantitative analysis performed and described in this paper offers a scoping mechanism to determine key parameters relating to the development of a nuclear-based hydrogen production facility. The calculations indicate that when the facilities are less than 100 m apart, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications (blast-deflection barriers, for example) could significantly reduce risk and should be further explored as design of the hydrogen production facility evolves.

Curtis Smith; Scott Beck; William Galyean

2006-06-01T23:59:59.000Z

225

LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS  

DOE Green Energy (OSTI)

Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

G. L. Hawkes; J. E. O'Brien; M. G. McKellar

2011-11-01T23:59:59.000Z

226

Evaluation of polymer free drill-in fluids for use in high productivity, horizontal well completions  

E-Print Network (OSTI)

Advancements in deepwater drilling have necessitated the use of more specialized reservoir drill-in fluids (RDIF). These RDIFs must exhibit unique rheological properties while minimizing formation damage. Xanthan gum biopolymer is generally used as a primary viscosifier in RDIFs. In high salinity brines the high shear rate viscosity that xanthan gum provides can approach levels that could exceed the fracture gradient of the well. Therefore, it is important to maintain a xanthan gum concentration that keeps the equivalent circulating density at a modest level. Reducing the xanthan gum level, however, compromises the hole cleaning properties that the low- shear-rate viscosity provides. Xanthan gum biopolymers are also associated with formation damage, which inhibits the flow of oil and gas during production. A new RDIF, which utilizes no xanthan gum biopolymer, has been recently developed. The new product uses a starch instead of polymer to develop rheological properties. This fluid will primarily be targeted for production zone drilling in highly deviated and horizontal wells. This research focused on filtercake cleanup and the reduced formation damage associated with this biopolymer-free fluid. The behavior of the polymer free fluid was analyzed developing tests at different temperatures, at different drill solids content, and with different treatment fluids. The laboratory methods used were a ceramic disc cell and a linear flow cell. The former will permit an analysis of the time that a certain cleaning treatment takes to flow through a filter cake. The latter simulates well completions in unconsolidated horizontal well reservoirs permitting the estimation of formation damage produced by drilling and completion fluids and the effectiveness of the cleaning treatment applied. Multivariate statistical analysis was performed with the experimental results obtained. Comparison with conventional RDIF data from polymer carbonate and sized salt fluids provided informative contrasts in performance.

Falla Ramirez, Jorge H

2001-01-01T23:59:59.000Z

227

TASI Lectures on Precision Electroweak Physics  

E-Print Network (OSTI)

These notes are a written version of a set of lectures given at TASI-02 on the topic of precision electroweak physics.

Konstantin Matchev

2004-02-03T23:59:59.000Z

228

Precision: Compromise Agreement (2013-SE-1410)  

Energy.gov (U.S. Department of Energy (DOE))

DOE and Precision Trading Corp. entered into a Compromise Agreement to resolve a case involving the distribution in commerce of noncompliant freezers.

229

Efficient design of precision medical robotics  

E-Print Network (OSTI)

Medical robotics is increasingly demonstrating the potential to improve patient care through more precise interventions. However, taking inspiration from industrial robotics has often resulted in large, sometimes cumbersome ...

Hanumara, Nevan Clancy

2012-01-01T23:59:59.000Z

230

Electrolytic electrodes having high durability and process for the production of same  

SciTech Connect

An electrolytic electrode having high durability for use in electrolysis where the generation of oxygen occurs, and a process for the production of the electrolytic electrode are disclosed. The electrolytic electrode comprises: an electrode substrate of titanium or a titanium-based alloy; an electrode coating of a metal oxide; and an intermediate layer comprising an electrically conductive oxide of tantalum and/or niobium, provided between the electrode substrate and the electrode coating, in a thickness calculated as the metal, of 0.001 to 2 g/m/sup 2/.

Asano, H.; Nitta, H.; Shimamune, T.

1984-08-28T23:59:59.000Z

231

Constraints on proton structure from precision atomic physics measurements  

DOE Green Energy (OSTI)

The ground-state hyperfine splittings in hydrogen and muonium are extremely well measured. The difference between them, after correcting for the different magnetic moments of the muon and proton and for reduced mass effects, is due solely to the structure of the proton - the large QED contributions for a pointlike nucleus essentially cancel. A major contribution to the rescaled hyperfine difference is proportional to the Zemach radius, a fundamental measure of the proton which can be computed as an integral over the product of the elastic electric and magnetic form factors of the proton. The remaining proton structure corrections, the polarization contribution from inelastic states in the spin-dependent virtual Compton amplitude and the proton size dependence of the relativistic recoil corrections, have small uncertainties. The resulting high precision determination of the Zemach radius (1.013 {+-} 0.016) fm from atomic physics provides an important constraint on fits to accelerator measurements of the proton electric and magnetic form factors. Conversely, the authors use the muonium data to extract an 'experimental' value for the QED corrections to the hyperfine splitting of hydrogenic atoms. There is a significant discrepancy between measurement and theory which is in the same direction as a corresponding discrepancy in positronium.

Brodsky, S

2004-08-10T23:59:59.000Z

232

Studies of Plutonium-238 Production at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) is a versatile 85 MW{sub th}, pressurized, light water-cooled and -moderated research reactor. The core consists of two fuel elements, an inner fuel element (IFE) and an outer fuel element (OFE), each constructed of involute fuel plates containing high-enriched-uranium (HEU) fuel ({approx}93 wt% {sup 235}U/U) in the form of U{sub 3}O{sub 8} in an Al matrix and encapsulated in Al-6061 clad. An over-moderated flux trap is located in the center of the core, a large beryllium reflector is located on the outside of the core, and two control elements (CE) are located between the fuel and the reflector. The flux trap and reflector house numerous experimental facilities which are used for isotope production, material irradiation, and cold/thermal neutron scattering. Over the past five decades, the US Department of Energy (DOE) and its agencies have been producing radioisotope power systems used by the National Aeronautics and Space Administration (NASA) for unmanned, long-term space exploration missions. Plutonium-238 is used to power Radioisotope Thermoelectric Generators (RTG) because it has a very long half-life (t{sub 1/2} {approx} 89 yr.) and it generates about 0.5 watts/gram when it decays via alpha emission. Due to the recent shortage and uncertainty of future production, the DOE has proposed a plan to the US Congress to produce {sup 238}Pu by irradiating {sup 237}Np as early as in fiscal year 2011. An annual production rate of 1.5 to 2.0 kg of {sup 238}Pu is expected to satisfy these needs and could be produced in existing national nuclear facilities like HFIR and the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Reactors at the Savannah River Site were used in the past for {sup 238}Pu production but were shut down after the last production in 1988. The nation's {sup 237}Np inventory is currently stored at INL. A plan for producing {sup 238}Pu at US research reactor facilities such as the High Flux Isotope Reactor at ORNL has been initiated by the US DOE and NASA for space exploration needs. Two Monte Carlo-based depletion codes, TRITON (ORNL) and VESTA (IRSN), were used to study the {sup 238}Pu production rates with varying target configurations in a typical HFIR fuel cycle. Preliminary studies have shown that approximately 11 grams and within 15 to 17 grams of {sup 238}Pu could be produced in the first irradiation cycle in one small and one large VXF facility, respectively, when irradiating fresh target arrays as those herein described. Important to note is that in this study we discovered that small differences in assumptions could affect the production rates of Pu-238 observed. The exact flux at a specific target location can have a significant impact upon production, so any differences in how the control elements are modeled as a function of exposure, will also cause differences in production rates. In fact, the surface plot of the large VXF target Pu-238 production shown in Figure 3 illustrates that the pins closest to the core can potentially have production rates as high as 3 times those of pins away from the core, thus implying that a cycle-to-cycle rotation of the targets may be well advised. A methodology for generating spatially-dependent, multi-group self-shielded cross sections and flux files with the KENO and CENTRM codes has been created so that standalone ORIGEN-S inputs can be quickly constructed to perform a variety of {sup 238}Pu production scenarios, i.e. combinations of the number of arrays loaded and the number of irradiation cycles. The studies herein shown with VESTA and TRITON/KENO will be used to benchmark the standalone ORIGEN.

Lastres, Oscar [University of Tennessee, Knoxville (UTK); Chandler, David [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Jarrell, Joshua J [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

233

MCRUNJOB: A High energy physics workflow planner for grid production processing  

SciTech Connect

McRunjob is a powerful grid workflow manager used to manage the generation of large numbers of production processing jobs in High Energy Physics. In use at both the DZero and CMS experiments, McRunjob has been used to manage large Monte Carlo production processing since 1999 and is being extended to uses in regular production processing for analysis and reconstruction. Described at CHEP 2001, McRunjob converts core metadata into jobs submittable in a variety of environments. The powerful core metadata description language includes methods for converting the metadata into persistent forms, job descriptions, multi-step workflows, and data provenance information. The language features allow for structure in the metadata by including full expressions, namespaces, functional dependencies, site specific parameters in a grid environment, and ontological definitions. It also has simple control structures for parallelization of large jobs. McRunjob features a modular design which allows for easy expansion to new job description languages or new application level tasks.

Graham, Gregory E.

2004-08-26T23:59:59.000Z

234

Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions  

DOE Green Energy (OSTI)

Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Meisel, D. [Argonne National Lab., IL (United States)

1992-07-01T23:59:59.000Z

235

Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions  

DOE Green Energy (OSTI)

Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E. (Westinghouse Savannah River Co., Aiken, SC (United States)); Meisel, D. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

236

High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary  

DOE Green Energy (OSTI)

The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

2010-02-01T23:59:59.000Z

237

Repetitive precision gravity studies at the Cerro Prieto and Heber geothermal fields  

DOE Green Energy (OSTI)

To study subsidence and mass removal, a precise gravity network was established on 60 permanent monuments in the Cerro Prieto geothermal field in early 1978, and repeated annually through early 1981; the survey was tied to two bedrock sites outside the limits of the current production zone. The looping technique of station occupation was utilized, in which occupation of the base was followed by occupation of several stations, followed by a return to the base. Use of two LaCoste and Romberg gravity meters, and replication of values within loops as well as entire loops, enhanced precision such that the median standard deviations of the base-to-station differences, reduced to observed gravity values, ranged from 7 to 15 microgals for individual surveys. The smaller values were obtained as field and data reduction techniques were improved and experience was gained. A similar survey was initiated in the Heber area just north of the Mexican border in early 1980. It too was established on permanent monuments, was tied to bedrock stations outside the geothermal area, and used multiple repetitions of values with two meters to achieve high precision.

Grannell, R.B.

1982-09-01T23:59:59.000Z

238

High brightness--multiple beamlets source for patterned X-ray production  

DOE Patents (OSTI)

Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 .mu.m, with inter-aperture spacings of 12 .mu.m. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.

Leung, Ka-Ngo (Hercules, CA); Ji, Qing (Albany, CA); Barletta, William A. (Oakland, CA); Jiang, Ximan (El Cerrito, CA); Ji, Lili (Albany, CA)

2009-10-27T23:59:59.000Z

239

Production of high Resoulution Irradiance Data for Central America and Cuba  

Open Energy Info (EERE)

DRAFT REPORT - JULY 2003 DRAFT REPORT - JULY 2003 Production of high Resolution Irradiance Data For Central America and Cuba Prepared by Richard Perez ASRC, the University at Albany (SUNY) For United Nations Environmental Program Solar Energy and Wind Resource Assessment (SWERA) Deliverable for July, 2003 The main objective of the SUNY task for SWERA is to prepare high resolution global irradiance (GHI) and direct irradiance (DNI) data sets for the countries of Cuba, El Salvador, Guatemala, Honduras and Nicaragua. Much of our initial effort focused on building up the satellite data archive, and in strengthening and validating the models capable of converting that data into ground surface irradiances. Three research articles, acknowledging all or partial funding

240

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SIMULTANEOUS PRODUCTION OF HIGH-PURITY HYDROGEN AND SEQUESTRATION-READY CO2 FROM SYNGAS  

DOE Green Energy (OSTI)

This final report summarizes the progress made on the program ''Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO{sub 2} from Syngas (contract number DE-FG26-99FT40682)'', during October 2000 through September of 2003. GE Energy and Environmental Research (GE-EER) and Southern Illinois University (SIU) at Carbondale conducted the research work for this program. This program addresses improved methods to efficiently produce simultaneous streams of high-purity hydrogen and separated carbon dioxide from synthesis gas (syngas). The syngas may be produced through either gasification of coal or reforming of natural gas. The process of production of H{sub 2} and separated CO{sub 2} utilizes a dual-bed reactor and regenerator system. The reactor produces hydrogen and the regenerator produces separated CO{sub 2}. The dual-bed system can be operated under either a circulating fluidized-bed configuration or a cyclic fixed-bed configuration. Both configurations were evaluated in this project. The experimental effort was divided into lab-scale work at SIU and bench-scale work at GE-EER. Tests in a lab-scale fluidized bed system demonstrated the process for the conversion of syngas to high purity H{sub 2} and separated CO{sub 2}. The lab-scale system generated up to 95% H{sub 2} (on a dry basis). Extensive thermodynamic analysis of chemical reactions between the syngas and the fluidized solids determined an optimum range of temperature and pressure operation, where the extent of the undesirable reactions is minimum. The cycling of the process between hydrogen generation and oxygen regeneration has been demonstrated. The fluidized solids did not regenerate completely and the hydrogen purity in the reuse cycle dropped to 70% from 95% (on a dry basis). Changes in morphology and particle size may be the most dominant factor affecting the efficiency of the repeated cycling between hydrogen production and oxygen regeneration. The concept of simultaneous production of hydrogen and separated stream of CO{sub 2} was proved using a fixed bed 2 reactor system at GE-EER. This bench-scale cyclic fixed-bed reactor system designed to reform natural gas to syngas has been fabricated in another coordinated DOE project. This system was modified to reform natural gas to syngas and then convert syngas to H{sub 2} and separated CO{sub 2}. The system produced 85% hydrogen (dry basis).

Linda Denton; Hana Lorethova; Tomasz Wiltowski; Court Moorefield; Parag Kulkarni; Vladimir Zamansky; Ravi Kumar

2003-12-01T23:59:59.000Z

242

Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product  

DOE Patents (OSTI)

In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

Dykes, Charles D. (303 Shore Rd., Milton, VT); Daniel, Sabah S. (303 Shore Rd., Pittsburgh, PA); Wood, J. F. Barry (303 Shore Rd., Burlington, VT 05401)

1990-02-20T23:59:59.000Z

243

Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor  

DOE Green Energy (OSTI)

This report provides the methods, models, and results of an evaluation for locating a hydrogen production facility near a nuclear power plant. In order to answer the risk-related questions for this combined nuclear and chemical facility, we utilized standard probabilistic safety assessment methodologies to answer three questions: what can happen, how likely is it, and what are the consequences? As part of answering these questions, we developed a model suitable to determine separation distances for hydrogen process structures and the nuclear plant structures. Our objective of the model-development and analysis is to answer key safety questions related to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic standpoint we would like the two facilities to be quite close. However, safety and regulatory implications force the separation distance to be increased, perhaps substantially. Without answering these safety questions, the likelihood for obtaining a permit to construct and build such as facility in the U.S. would be questionable. The quantitative analysis performed for this report provides us with a scoping mechanism to determine key parameters related to the development of a nuclear-based hydrogen production facility. From our calculations, we estimate that when the separation distance is less than 100m, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications, for example blast-deflection barriers, were explored to determine the impact of potential mitigating strategies. We found that these mitigating cases may significantly reduce risk and should be explored as the design for the hydrogen production facility evolves.

Curtis Smith; Scott Beck; Bill Galyean

2005-09-01T23:59:59.000Z

244

LPP Precision Data Series 2012-2013  

Science Conference Proceedings (OSTI)

The Laboratory Proficiency Program Precision Data Series is a valuable reference tool that can be used for determining the expected variability in the methods used in your lab. LPP Precision Data Series 2012-2013 Lab Supplies Lab Supplies Lab Supplies

245

LPP Precision Data Series 2009-2010  

Science Conference Proceedings (OSTI)

The Laboratory Proficiency Program Precision Data Series is a valuable reference tool that can be used for determining the expected variability in the methods used in your lab. LPP Precision Data Series 2009-2010 Lab Supplies Lab Supplies AOCS Technical

246

LPP Precision Data Series 2011-2012  

Science Conference Proceedings (OSTI)

The Laboratory Proficiency Program Precision Data Series is a valuable reference tool that can be used for determining the expected variability in the methods used in your lab. LPP Precision Data Series 2011-2012 Lab Supplies Lab Supplies Lab Supplies

247

LPP Precision Data Series 2010-2011  

Science Conference Proceedings (OSTI)

The Laboratory Proficiency Program Precision Data Series is a valuable reference tool that can be used for determining the expected variability in the methods used in your lab. LPP Precision Data Series 2010-2011 Lab Supplies Lab Supplies AOCS Technical

248

Utilization of high sulfur coal in carbon fiber production. Final report, April 1993--August 1994  

Science Conference Proceedings (OSTI)

PYROGRAF-III{trademark} is a highly graphitic vapor grown carbon fiber (VGCF) produced by the chemical vapor deposition of carbon on metallic catalysts in the temperature range of 1000{degrees}C. This is entirely different from commercial carbon fiber, which is made by first forming a filament and then graphitizing it in a high temperature oven. For PYROGRAF-III{trademark} small amounts of sulfur in the form of hydrogen sulfide are added to the process to enhance the yield. This method of supplying the necessary sulfur is both expensive and hazardous since hydrogen sulfide is flammable, toxic, and corrosive. To supply the sulfur more economically and safely, high sulfur coal was proposed as a replacement for the hydrogen sulfide gas. Applied Sciences, Inc. is the sole producer of this material in pound quantities. The primary objective of research grant OCDO-922-8 was to demonstrate that Ohio`s high sulfur coal can replace the expensive, toxic hydrogen sulfide in the production of vapor grown carbon fiber as well as become a partial or complete source of carbon. The secondary objective was to analyze the exhaust for the release of harmful sulfur compounds and to project the economic potential of the use of coal.

Burton, D.J.; Guth, J.R.

1994-12-12T23:59:59.000Z

249

Improved InGaN epitaxy yield by precise temperature measurement :yearly report 1.  

SciTech Connect

This Report summarizes the first year progress (October 1, 2004 to September 30, 2005) made under a NETL funded project entitled ''Improved InGaN Epitaxy Yield by Precise Temperature Measurement''. This Project addresses the production of efficient green LEDs, which are currently the least efficient of the primary colors. The Project Goals are to advance IR and UV-violet pyrometry to include real time corrections for surface emissivity on multiwafer MOCVD reactors. Increasing wafer yield would dramatically reduce high brightness LED costs and accelerate the commercial manufacture of inexpensive white light LEDs with very high color quality. This work draws upon and extends our previous research (funded by DOE) that developed emissivity correcting pyrometers (ECP) based on the high-temperature GaN opacity near 400 nm (the ultraviolet-violet range, or UVV), and the sapphire opacity in the mid-IR (MIR) near 7.5 microns.

Koleske, Daniel David; Creighton, James Randall; Russell, Michael J.; Fischer, Arthur Joseph

2006-08-01T23:59:59.000Z

250

HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION  

DOE Green Energy (OSTI)

Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via a gas analyser, and their relationship to conversion efficiencies will be presented. These measurements will be compared to predictions obtained from chemical equilibrium computer codes. Better understanding of the feasibility of producing syngas using high-temperature electrolysis will initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

Stoots, C.M.

2006-11-01T23:59:59.000Z

251

Dietary Fats and Risk of Chronic DiseaseChapter 19 Functionalities and Production with Biocatalysis of Two Highly Polyunsaturated Phospholipids  

Science Conference Proceedings (OSTI)

Dietary Fats and Risk of Chronic Disease Chapter 19 Functionalities and Production with Biocatalysis of Two Highly Polyunsaturated Phospholipids Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press ...

252

A precision manipulation system for polymer microdevice production  

E-Print Network (OSTI)

Microfluidic science is currently going through a transition from the research laboratories to the industry as the applications and technologies increase and improve. One of the challenges of this transition is the automated ...

Zarrouati, Nadège

2010-01-01T23:59:59.000Z

253

Idaho National Laboratory Experimental Research In High Temperature Electrolysis For Hydrogen And Syngas Production  

DOE Green Energy (OSTI)

The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO2 feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to ~15 kW testing capacity (H2 production rate based upon lower heating value).

Carl M. Stoots; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2008-09-01T23:59:59.000Z

254

Heavy quark production in photon-Pomeron interactions at high energies  

Science Conference Proceedings (OSTI)

The diffractive heavy quark cross sections are estimated considering photon-Pomeron interactions in hadron - hadron at RHIC, Tevatron, and CERN LHC energies. We assume the validity of the hard diffractive factorization and calculate the charm and bottom total cross sections and rapidity distributions using the diffractive parton distribution functions of the Pomeron obtained by the H1 Collaboration at DESY-HERA. Such processes are sensitive to the gluon content of the Pomeron at high energies and are a good place to constrain the behavior of this distribution. We also compare our predictions with those obtained using the dipole model, and verify that these processes are a good test of the different mechanisms for heavy quarks diffractive production at hadron colliders.

Machado, M. M. [Instituto Federal de Ciencia, Educacao e Tecnologia Farroupilha, Campus Sao Borja, Rua Otaviano Castilho Mendes, 355, CEP 97670-000, Sao Borja, RS (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica - IFM, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, RS (Brazil)

2013-03-25T23:59:59.000Z

255

High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies  

DOE Green Energy (OSTI)

This thesis describes a study of the production of high transverse momentum direct photons and {pi}{sup 0} mesons by proton beams at 530 and 800 GeV/c and {pi}{sup -} beams at 515 GeV/c incident on beryllium, copper, and liquid hydrogen targets. The data were collected by Fermilab experiment E706 during the 1990 and 1991-92 fixed target runs. The apparatus included a large, finely segmented lead and liquid argon electromagnetic calorimeter and a charged particle spectrometer featuring silicon strip detectors in the target region and proportional wire chambers and drift tubes downstream of a large aperture analysis magnet. The inclusive cross sections are presented as functions of transverse momentum and rapidity. The measurements are compared with next-to-leading order perturbative QCD calculations and to results from previous experiments.

Apanasevich, Leonard; /Michigan State U.

2005-05-01T23:59:59.000Z

256

Dijet production, collision centrality and backgrounds in high-energy p-p collisions  

E-Print Network (OSTI)

Two aspects of high-energy \\pp collisions share common phenomenological elements: (a) A correlation between jet production and \\pp centrality is suggested by the transverse partonic structure of hadrons inferred from deep-inelastic scattering data. (b) The {\\em underlying event} (UE) is defined as the final-state particles complementary to a triggered high-energy dijet. An observable common to both topics is variation of so-called {\\em transverse multiplicity} $N_\\perp$ with a $p_{t,trig}$ dijet trigger. We test assumptions associated with \\pp collision centrality and the UE. We determine the nature of the UE and explore the relation between jet production and \\pp centrality. We use the {\\em two-component model} (TCM) of spectra and correlations derived from 200 GeV \\pp collisions to construct a simulated particle distribution on $(p_t,n_{ch})$ to predict the $N_\\perp$ response to $p_{t,trig}$. The $p_t$ spectrum TCM combined in this analysis with measured minimum-bias \\pp angular correlations suggests that the UE includes a substantial contribution from the triggered dijet in addition to the contribution from projectile fragmentation (beam-beam remnants). The jet contribution to $N_\\perp$ may represent a universal large-angle base common to all dijets that extends across $2\\pi$ azimuth. The analysis further suggests that \\pp centrality is not controlled significantly by $p_{t,trig}$ but may be correlated to some extent with an imposed $n_{ch}$ condition, depending on the role of fluctuations. Future correlation studies may better determine the role of \\pp centrality. These results may have implications for ongoing RHIC analysis and LHC searches for physics beyond the standard model.

Thomas A. Trainor

2012-10-18T23:59:59.000Z

257

Parametric Study Of Large-Scale Production Of Syngas Via High Temperature Co-Electrolysis  

DOE Green Energy (OSTI)

A process model has been developed to evaluate the potential performance of a largescale high-temperature co-electrolysis plant for the production of syngas from steam and carbon dioxide. The co-electrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the Honeywell UniSim systems analysis code. Using this code, a detailed process flow sheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard UniSim component, a custom one-dimensional co-electrolysis model was developed for incorporation into the overall UniSim process flow sheet. The one dimensional co-electrolysis model assumes local chemical equilibrium among the four process-gas species via the gas shift reaction. The electrolyzer model allows for the determination of co-electrolysis outlet temperature, composition (anode and cathode sides); mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully three dimensional computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the UniSim flow sheet model for a 300 MW co-electrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the overall process, from production through utilization, would be climate neutral.

J. E. O'Brien; M. G. McKellar; C. M. Stoots; J. S. Herring; G. L. Hawkes

2007-11-01T23:59:59.000Z

258

Precision spectroscopy of the helium atom.  

SciTech Connect

Persistent efforts in both theory and experiment have yielded increasingly precise understanding of the helium atom. Because of its simplicity, the helium atom has long been a testing ground for relativistic and quantum electrodynamic effects in few-body atomic systems theoretically and experimentally. Comparison between theory and experiment of the helium spectroscopy in 1s2p{sup 3}P{sub J} can potentially extract a very precise value of the fine structure constant a. The helium atom can also be used to explore exotic nuclear structures. In this paper, we provide a brief review of the recent advances in precision calculations and measurements of the helium atom.

Hu, S.-M.; Lu, Z.-T.; Yan, Z.-C.; Physics; Univ. of Science and Technology of China; Univ. of Chicago; Univ. of New Brunswick

2009-06-01T23:59:59.000Z

259

Simultaneous Saccharification and Fermentation of Dry-grind Highly Digestible Grain Sorghum Lines for Ethanol Production  

E-Print Network (OSTI)

The potential of high digestible grain sorghum (HDGS) with a modified starch protein endosperm matrix to replace corn in ethanol production was investigated using dry grind simultaneous saccharification and fermentation (SSF). Preliminary experiments showed that HDGS yielded higher amounts of glucose and ethanol than normal digestible grain sorghum (NDGS) and corn particularly in the first 48 hrs of fermentation. It was hypothesized that fast conversion of starch to glucose and ethanol during hydrolysis and fermentation are results of improved protein digestibility of HDGS. The invagination of protein structures in HDGS produced a flourier endosperm texture, softer kernels and lower starch content than the normal digestible protein (ND) lines. Highly digestible protein (HD) lines have better pasting properties (significantly lower pasting temperature, faster rate of gelatinization and higher peak viscosity) than ND lines based on the RVA profile. Increasing protein digestibility of the HDGS improved starch digestibility (increased rate of glucose conversion and total glucose yield during saccharification), which is supported by highly significant correlation of turbidity with rate of glucose conversion and efficiency of enzymatic conversion. The efficiency of ethanol conversion is significantly correlated with starch digestibility, pasting properties, and protein digestibility. Results also showed that HD sorghum lines had significantly faster rate of conversion and shorter reaction time needed to achieve completion than ND sorghum lines and corn. Increasing the dry solid concentration from 22% to 30% (w/v) increased the ethanol yield from 8% v/v to 13%v/v. This will allow considerable saving of water, reduced distillation cost and increased ethanol production for a given plant capacity and labor cost. Fineness of grind influences the amount of sugar formed due to variation in surface area of the flour. The hypothesis that finer particles has faster and higher glucose yield, defined as g of glucose converted per g of theoretical glucose, is supported by highly significant correlation of mass fraction of 3 to 60 mu m size range and mass median diameter (MMD) of 60 to 1000 mu m size range with glucose conversion efficiency and glucose conversion rate during saccharification and fermentation.

Hernandez, Joan R.

2009-05-01T23:59:59.000Z

260

Spark-gap device for precise switching  

DOE Patents (OSTI)

An improved spark gap apparatus is provided for precise switching of high currents from charged capacitors, and for protecting circuitry and circuit components, such as an energy storage capacitor, from overvoltage surges. The invention includes a pair of niobium electrodes with a melting point greater than 2000/sup 0/C that forms the spark gap. The electrodes are supported by conductive caps spaced apart from one another by an insulating member all of which form a hermetically sealed chamber filled with an inert, ionizable gas, preferably pure xenon. The spark gap device includes a quantity of solid radioactive stabilizer, carbon-14, placed within the hermetically sealed chamber adjacent to the spark gap. Methods for fabricating the device and its components are described. It is claimed that use of the Nb electrodes forestalls electrode erosion even under severe voltage and discharge conditions, that, by employing pure Xe gas, and solid carbon-14 radiation stabilizer, it is unnecessary to employ radioactive gases or chemically plated radioactive sources to promote ionization, and that, by selection of a suitable spark gap, a spark gap device is obtained which is capable of switching at 1700 V +- 10% for input voltage rates up to 570 V/ms and allowing peak discharge currents up to 3000 A from a 0.3 microfarad energy storage capacitor for more than 1000 operations. (LCL)

Boettcher, G.E.

1982-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Benchmark precision and random initial state  

E-Print Network (OSTI)

The applications of software benchmarks place an obvious demand on the precision of the benchmark results. An intuitive and frequently employed approach to obtaining precise enough benchmark results is having the benchmark collect a large number of samples that are simply averaged or otherwise statistically processed. We show that this approach ignores an inherent and unavoidable nondeterminism in the initial state of the system that is evaluated, often leading to an implausible estimate of result precision. We proceed by outlining the sources of nondeterminism in a typical system, illustrating the impact of the nondeterminism on selected classes of benchmarks. Finally, we suggest a method for quantitatively assessing the influence of nondeterminism on a benchmark, as well as approach that provides a plausible estimate of result precision in face of the nondeterminism.

Tomas Kalibera; Lubomir Bulej; Petr Tuma

2005-01-01T23:59:59.000Z

262

Processing high solids concentration of municipal solid waste by anaerobic digester for methane production  

SciTech Connect

Cellulosic solids are pretreated by calcium hydroxide to produce salts of volatile orangic acids and other water-soluble substances. Pure cellulose, sawdust, and waste paper are used as model substances for the study of alkaline degradation. It is found that sawdust is more difficult to degrade than the other two substances. The cooking conditions for high conversion of model substances and high yeild of orangic acids are found to be 275/degree/C to 300/degree/C with the corresponding reaction time from 30 minutes to 15 minutes. The cooking liquor can be readily fermented in an anaerobic fluidized-bed digester for methane production. The cooking liquor from different reaction conditions can all be digested by the methanogens. Higher than 90% of COD can be removed under the conditions of low organic loading rate (<2.0 g COD/1/day) and low hydraulic retention time (1.5 to 2.0 days). 14 refs., 10 figs., 2 tabs.

Tsao, G.T.

1988-01-01T23:59:59.000Z

263

Precision engineering center. 1988 Annual report, Volume VI  

SciTech Connect

To reverse the downward trend in the balance of trade, American companies must concentrate on increasing research into new products, boosting productivity, and improving manufacturing processes. The Precision Engineering Center at North Carolina State University is a multidisciplinary research and graduate education program dedicated to providing the new technology necessary to respond to this challenge. One extremely demanding manufacturing area is the fabrication and assembly of optical systems. These systems are at the heart of such consumer products as cameras, lenses, copy machines, laser bar-code scanners, VCRs, and compact audio discs - products that the Japanese and other East Asian countries are building dominance. A second critical area is the fabrication of VLSI and ULSI circuits. The tolerances required to produce the next generation of components for such systems have created the need for new approaches - approaches that could either make or break America`s competitive position. This report contains individual reports on research projects grouped into three broad areas: measurement and actuation; real-time control; precision fabrication. Separate abstracts for these articles have been indexed into the energy database.

Dow, T. [ed.; Fornaro, R.; Keltie, R.; Paesler, M. [and others

1988-12-01T23:59:59.000Z

264

Identifying and Remediating High Water Production Problems in Basin-Centered Formations  

SciTech Connect

Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses, seismic mapping, petrophysics, and reservoir simulation indicate a lithologic and structural component to excessive in situ water permeability. Higher formation water salinity was found to be a good pay indicator. Thus spontaneous potential (SP) and resistivity ratio approaches combined with accurate formation water resistivity (Rw) information may be underutilized tools. Reservoir simulation indicates significant infill potential in the demonstration area. Macro natural fracture permeability was determined to be a key element affecting both gas and water production. Using the reservoir characterization results, we generated strategies for avoidance and mitigation of unwanted water production in the field. These strategies include (1) more selective perforation by improved pay determination, (2) using seismic attributes to avoid small-scale fault zones, and (3) utilizing detailed subsurface information to deliberately target optimally located small scale fault zones high in the reservoir gas column. Tapping into the existing natural fracture network represents opportunity for generating dynamic value. Recognizing the crucial role of stress release in the natural generation of permeability within tight reservoirs raises the possibility of manmade generation of permeability through local confining stress release. To the extent that relative permeabilities prevent gas and water movement in the deep subsurface a reduction in stress around a wellbore has the potential to increase the relative permeability conditions, allowing gas to flow. For this reason, future research into cavitation completion methods for deep geopressured reservoirs is recommended.

R.L. Billingsley

2005-12-01T23:59:59.000Z

265

Conversion of high carbon refinery by-products. Quarterly report, October 1--December 31, 1995  

SciTech Connect

The overall objective of the project is to demonstrate that a partial oxidation system, which utilizes a transport reactor, is a viable means of converting refinery wastes, byproducts, and other low value materials into valuable products. The primary product would be a high quality fuel gas, which could also be used as a source of hydrogen. The concept involves subjecting the hydrocarbon feed to pyrolysis and steam gasification in a circulating bed of solids. Carbon residue formed during pyrolysis, as well as metals in the feed, are captured by the circulating solids which are returned to the bottom of the transport reactor. Air or oxygen is introduced in this lower zone and sufficient carbon is burned, sub-stoichiometrically, to provide the necessary heat for the endothermic pyrolysis and gasification reactions. The hot solids and gases leaving this zone pass upward to contact the feed material and continue the partial oxidation process. Studies were conducted in the Transport Reactor Test Unit (TRTU) to pyrolyze naphtha with untreated as well as potassium-impregnated spent FCC (Fluid Catalytic Cracker) catalyst as the circulating medium over a temperature range of 1,400 to 1,600 F. The results from these studies are presented and discussed here. Studies were also performed in the Bench Scale Reactor Unit (BRU) in an effort to develop suitable catalyst formulations and to study the steam reforming of methane and propane in support of the experiments conducted in the TRTU. The results from these studies are also presented here. A Cold Flow Simulator (CFS) was designed and built to investigate the flow problems experienced in the TRTU.

O`Donnell, J.; Katta, S.; Henningsen, G.; Lin, Y.Y.

1996-01-19T23:59:59.000Z

266

Fast History Matching of Time-Lapse Seismic and Production-Data for High Resolution Models  

E-Print Network (OSTI)

Seismic data have been established as a valuable source of information for the construction of reservoir simulation models, most commonly for determination of the modeled geologic structure, and also for population of static petrophysical properties (e.g. porosity, permeability). More recently, the availability of repeated seismic surveys over the time scale of years (i.e., 4D seismic) has shown promising results for the qualitative determination of changes in fluid phase distributions and pressure required for determination of areas of bypassed oil, swept volumes and pressure maintenance mechanisms. Quantitatively, and currently the state of the art in reservoir model characterization, 4D seismic data have proven distinctively useful for the calibration of geologic spatial variability which ultimately contributes to the improvement of reservoir development and management strategies. Among the limited variety of techniques for the integration of dynamic seismic data into reservoir models, streamline-based techniques have been demonstrated as one of the more efficient approaches as a result of their analytical sensitivity formulations. Although streamline techniques have been used in the past to integrate time-lapse seismic attributes, the applications were limited to the simplified modeling scenarios of two-phase fluid flow and invariant streamline geometry throughout the production schedule. This research builds upon and advances existing approaches to streamline-based seismic data integration for the inclusion of both production and seismic data under varying field conditions. The proposed approach integrates data from reservoirs under active reservoir management and the corresponding simulation models can be constrained using highly detailed or realistic schedules. Fundamentally, a new derivation of seismic sensitivities is proposed that is able to represent a complex reservoir evolution between consecutive seismic surveys. The approach is further extended to manage compositional reservoir simulation with dissolution effects and gravity-convective-driven flows which, in particular, are typical of CO2 transport behavior following injection into deep saline aquifers. As a final component of this research, the benefits of dynamic data integration on the determination of swept and drained volumes by injection and production, respectively, are investigated. Several synthetic and field reservoir modeling scenarios are used for an extensive demonstration of the efficacy and practical feasibility of the proposed developments.

Rey Amaya, Alvaro

2011-08-01T23:59:59.000Z

267

The impact and management of cognitive gap in high performance product development organizations  

Science Conference Proceedings (OSTI)

The close alignment of applied research and development units with manufacturing operational structures can provide excellent opportunities for maintaining robust product pipelines and reducing product development cycle times. Within such an integrated ... Keywords: Adaption, Innovation, O3 (technological change), Organizational development, Problem solving, Product development, Research and development

Kathryn W. Jablokow; David E. Booth

2006-12-01T23:59:59.000Z

268

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS  

DOE Green Energy (OSTI)

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

269

Characterization and Qualification of a Precision Diamond Saw  

SciTech Connect

A precision diamond saw was characterized and qualified for production using the MCCS Encryption Translator (MET) network. This characterization was performed in three steps. First the equipment was evaluated and characterized, and then a process was developed and characterized to saw cofire networks. Finally, the characterized process was qualified for production using the MET network. During the development of the low-temperature cofired ceramic (LTCC) processes needed to build the MCCS Encryption Translator (MET) network, a problem was uncovered. The laser process planned for scribing and separating was found to weaken the LTCC material by about 30%. A replacement process was needed, and precision diamond sawing was chosen. During the equipment evaluation and characterization, several parameters were investigated. These were cut depth, feed rate, spindle speed, and saw blade thickness. Once these were understood the process was then developed. Initially 24 variables were identified for the process, and eventually 12 of these variables were found to be critical. These variables were then adjusted until a process envelope was found that produced acceptable product. Finally parameters were chosen from the middle of the process envelope for production. With the production process set, the next step was to qualify it for production. Two criteria had to be met: visual acceptability and bending strength. The parts were examined under a microscope and found to be visually acceptable. Parts were then put through a four-point bend test, and the strengths recorded were equivalent to those measured in the past. With the completion of this work and the acceptable results, this process was qualified for production use.

Morgenstern, H.A.

1999-03-04T23:59:59.000Z

270

Hydrogen Production via a High-Efficiency Low-Temperature Reformer  

DOE Green Energy (OSTI)

Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400ºC with our invention, as opposed to >800ºC of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18-21% conversion of the packed bed and an adsorptive reactor respectively. In addition CO contamination with <10 to 120 ppm is predicted for the invented process depending upon the cycle time for the PSA type operation. In comparison, the adsorption reactor can also deliver a similar CO contaminant at the low end; however, its high end reaches as high as 300 ppm based upon the simulation of our proposed operating condition. Our experimental results for the packed bed and the membrane reactor deliver 12 and 18% conversion at 400°C, approaching the conversion by the mathematical simulation. Due to the time constraint, the experimental study on the conversion of the invented process has not been complete. However, our in-house study using a similar process concept for the water gas shift reaction has demonstrated the reliability of our mathematical simulation for the invented process. In summary, we are confident that the invented process can deliver efficiently high purity hydrogen at a low temperature (~400°C). According to our projection, the invented process can further achieve 5% energy savings and ~50% capital savings over conventional reforming for fuel cell applications. The pollution abatement potential associated with the implementation of fuel cells, including the elimination of nitrogen oxides and CO, and the reduction in volatile organics and CO2, can thus be realized with the implementation of this invented process. The projected total market size for equipment sale for the proposed process in US is $1.5 billion annually.

Paul KT Liu; Theo T. Tsotsis

2006-05-31T23:59:59.000Z

271

Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of High Purity Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies August 30, 2010 DOE/NETL-2010/1432 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States (U.S.) government. Neither the U.S., nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

272

PROCESS MODEL FOR THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE CO-ELECTROLYSIS  

DOE Green Energy (OSTI)

A process model has been developed to evaluate the potential performance of a large-scale high-temperature coelectrolysis plant for the production of syngas from steam and carbon dioxide. The coelectrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the HYSYS systems analysis code. Using this code, a detailed process flowsheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard HYSYS component, a custom one-dimensional coelectrolysis model was developed for incorporation into the overall HYSYS process flowsheet. The 1-D coelectrolysis model assumes local chemical equilibrium among the four process-gas species via the shift reaction. The electrolyzer model allows for the determination of coelectrolysis outlet temperature, composition (anode and cathode sides), mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully 3-D computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the HYSYS flowsheet model for a 300 MW coelectrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the entire process would be climate neutral.

M. G. McKellar; J. E. O'Brien; C. M. Stoots; G. L. Hawkes

2007-11-01T23:59:59.000Z

273

Hydrogen production by high-temperature steam gasification of biomass and coal  

Science Conference Proceedings (OSTI)

High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K. [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

2009-04-15T23:59:59.000Z

274

HighYield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a CellFree System  

NLE Websites -- All DOE Office Websites (Extended Search)

300766 300766 High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System** Julia S. Martín del Campo, Joseph Rollin, Suwan Myung, You Chun, Sanjeev Chandrayan, Rodrigo PatiÇo, Michael WW Adams, and Y.-H. Percival Zhang* Approximately 50 million metric tons of dihydrogen are produced annually from nonrenewable natural gas, petro- leum, and coal. [1] H 2 production from water remains costly. [2] Technologies for generating H 2 from less costly biomass, such as microbial fermentation, [3] enzymatic decomposition, [4] gasification, [5] steam reforming, [6] and aqueous phase reform- ing, [7] suffer from low product yields. The production of H 2 from relatively evenly distributed renewable biomass resources would address challenges per- taining to 1) sustainable H 2 production without net green- house gas emissions, 2) the availability

275

Precision Electroweak Measurements on the Z Presonance  

SciTech Connect

The authors report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. the data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarized beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarized asymmetries. The mass and width of the Z boson, m{sub Z} and {Lambda}{sub Z}, and its couplings to fermions, for example the {rho} parameter and the effective electroweak mixing angle for leptons, are precisely measured: m{sub Z} = 91.1875 {+-} 0.0021 GeV; {Lambda}{sub Z} = 2.4952 {+-} 0.0023 GeV; {rho}{sub {ell}} = 1.0050 {+-} 0.0010; sin{sup 2} {theta}{sub eff}{sup lept} = 0.23153 {+-} 0.00016. The number of light neutrino species is determined to be 2.9840 {+-} 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model. At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its Standard Model expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m{sub t} = 173{sub -10}{sup +13} GeV, and the mass of the W boson, m{sub W} = 80.363 {+-} 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the Standard Model. Using in addition the direct measurements of m{sub t} and m{sub W}, the mass of the as yet unobserved Standard Model Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level.

Aleph,Delphi,L3,Opal,SLD , Collaborations

2005-09-08T23:59:59.000Z

276

Hydrogen Production via a High-Efficiency Low-Temperature Reformer  

Science Conference Proceedings (OSTI)

Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400ºC with our invention, as opposed to >800ºC of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18-21% conversion of the packed bed and an adsorptive reactor respectively. In addition CO contamination with energy savings and ~50% capital savings over conventional reforming for fuel cell applications. The pollution abatement potential associated with the implementation of fuel cells, including the elimination of nitrogen oxides and CO, and the reduction in volatile organics and CO2, can thus be realized with the implementation of this invented process. The projected total market size for equipment sale for the proposed process in US is $1.5 billion annually.

Paul KT Liu; Theo T. Tsotsis

2006-05-31T23:59:59.000Z

277

Producing media knowledge : an exploration of the instructional landscape in Austin High School media production classes.  

E-Print Network (OSTI)

??This thesis is an exploratory study of media production classes in Austin, Texas. Through examination of Texas state standards, lesson plans, and interviews with educators,… (more)

Darland, Daniel Charles

2010-01-01T23:59:59.000Z

278

Precise Photometry and Spectroscopy of Transits  

E-Print Network (OSTI)

A planetary transit produces both a photometric signal and a spectroscopic signal. Precise observations of the transit light curve reveal the planetary radius and allow a search for timing anomalies caused by satellites or additional planets. Precise measurements of the stellar Doppler shift throughout a transit (the Rossiter-McLaughlin effect) place a lower bound on the stellar obliquity, which may be indicative of the planet's migration history. I review recent results of the Transit Light Curve project, and of a parallel effort to measure the Rossiter effect for many of the known transiting planets.

Joshua N. Winn

2007-10-04T23:59:59.000Z

279

Production of high brightness H- beam by charge exchange of hydrogen atom beam in sodium jet  

DOE Green Energy (OSTI)

Production of H{sup -} beam for accelerators applications by charge exchange of high brightness hydrogen neutral beam in a sodium jet cell is experimentally studied in joint BNL-BINP experiment. In the experiment, a hydrogen-neutral beam with 3-6 keV energy, equivalent current up to 5 A and 200 microsecond pulse duration is used. The atomic beam is produced by charge exchange of a proton beam in a pulsed hydrogen target. Formation of the proton beam is performed in an ion source by four-electrode multiaperture ion-optical system. To achieve small beam emittance, the apertures in the ion-optical system have small enough size, and the extraction of ions is carried out from the surface of plasma emitter with a low transverse ion temperature of {approx}0.2 eV formed as a result of plasma jet expansion from the arc plasma generator. Developed for the BNL optically pumped polarized ion source, the sodium jet target with recirculation and aperture diameter of 2 cm is used in the experiment. At the first stage of the experiment H{sup -} beam with 36 mA current, 5 keV energy and {approx}0.15 cm {center_dot} mrad normalized emittance was obtained. To increase H{sup -} beam current ballistically focused hydrogen neutral beam will be applied. The effects of H{sup -} beam space-charge and sodium-jet stability will be studied to determine the basic limitations of this approach.

Davydenko, V.; Zelenski, A.; Ivanov, A.; Kolmogorov, A.

2010-11-16T23:59:59.000Z

280

Demonstration and System Analysis of High Temperature Steam Electrolysis for Large-Scale Hydrogen Production Using SOFCs  

DOE Green Energy (OSTI)

At the Idaho National Engineering Laboratory, an integrated laboratory scale (ILS), 15 kW high-temperature electrolysis (HTE) facility has been developed under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. Additionally, a reference process model of a commercial-scale high-temperature electrolysis plant for hydrogen production has been developed. The reference plant design is driven by a 600 megawatt thermal high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The electrolysis unit used to produce hydrogen consists of 4.01×106 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.36 kg/s with the high-temperature helium-cooled reactor concept. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation. The paper will also present the optimized design for the reference nuclear-driven HTE hydrogen production plant which may be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics.

Michael G. McKellar; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production  

SciTech Connect

The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

Carl Marcel Stoots; Lee Shunn; James O'Brien

2010-06-01T23:59:59.000Z

282

Production of high density fuel through low temperature devolatilization of fossil fuels with hydrogen and iron oxides  

DOE Patents (OSTI)

A method is provided for producing high-energy high-density fuels and valuable co-products from fossil fuel sources which comprises the low temperature devolatilization of a fossil fuel such as coal in a moving fluid-bed reactor at a temperature of about 450-650C in the presence of hydrogen and iron oxides. The method is advantageous in that high quality liquid fuels are obtained in addition to valuable co-products such as elemental iron, elemental sulfur and carbon black, and the process is carried out efficiently with a large number of recyclable steps. In addition, the hydropyrolysis of the present invention can produce a highly reactive low-sulfur char which is convertible into a slurry fuel. 1 fig.

Khan, M.R.

1990-01-29T23:59:59.000Z

283

Precision aligned split V-block  

SciTech Connect

A precision aligned split V-block for holding a workpiece during a milling operation having an expandable frame for allowing various sized workpieces to be accommodated, is easily secured directly to the mill table and having key lugs in one base of the split V-block that assures constant alignment.

George, Irwin S. (3240 Siringo Rd., Santa Fe, NM 87501)

1984-01-01T23:59:59.000Z

284

Reduced-precision redundancy on FPGAs  

Science Conference Proceedings (OSTI)

Reduced-precision redundancy (RPR) has been shown to be a viable alternative to triple modular redundancy (TMR) for digital circuits. This paper builds on previous research by offering a detailed analysis of the implementation of RPR on FPGAs to improve ...

Brian Pratt; Megan Fuller; Michael Wirthlin

2011-01-01T23:59:59.000Z

285

Precise Measurement of Deuteron Tensor Analyzing Powers with BLAST  

SciTech Connect

We report a precision measurement of the deuteron tensor analyzing powers T{sub 20} and T{sub 21} at the MIT-Bates Linear Accelerator Center. Data were collected simultaneously over a momentum transfer range Q=2.15-4.50 fm{sup -1} with the Bates Large Acceptance Spectrometer Toroid using a highly polarized deuterium internal gas target. The data are in excellent agreement with calculations in a framework of effective field theory. The deuteron charge monopole and quadrupole form factors G{sub C} and G{sub Q} were separated with improved precision, and the location of the first node of G{sub C} was confirmed at Q=4.19{+-}0.05 fm{sup -1}. The new data provide a strong constraint on theoretical models in a momentum transfer range covering the minimum of T{sub 20} and the first node of G{sub C}.

Zhang, C.; Akdogan, T.; Bertozzi, W.; Botto, T.; Clasie, B.; DeGrush, A.; Dow, K.; Farkhondeh, M.; Franklin, W.; Gilad, S.; Hasell, D.; Kolster, H.; Maschinot, A.; Matthews, J.; Meitanis, N.; Milner, R.; Redwine, R.; Seely, J.; Shinozaki, A.; Tschalaer, C. [Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2011-12-16T23:59:59.000Z

286

Precision Electroweak Measurements and Constraints on the Standard Model  

Science Conference Proceedings (OSTI)

This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2007 are new combinations of results on the W-boson mass and width and the mass of the top quark.

Not Available

2011-11-11T23:59:59.000Z

287

High-yield hydrogen production by catalytic gasification of coal or biomass  

DOE Green Energy (OSTI)

Gasification of coal or wood, catalyzed by soluble metallic cations to maximize reaction rates and hydrogen yields, offers a potential for large-scale, economical hydrogen production with near-commercial technology. With optimum reaction conditions and catalysts, product gas rich in both hydrogen and methane can be used in fuel cells to produce electricity at efficiencies nearly double those of conventional power plant. If plantation silvaculture techniques can produce wood at a raw energy cost competitive with coal, further enhancement of product gas yields may be possible, with zero net contribution of CO{sub 2} to the atmosphere.

Hauserman, W.B.

1992-01-01T23:59:59.000Z

288

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume By-Products: CY Site  

Science Conference Proceedings (OSTI)

This report documents an investigation into the effects of comanagement of low-volume wastes with high-volume coal combustion by-products at the CY site. This is one of 14 sites investigated by EPRI to provide background information to the United States Environmental Protection Agency (EPA) for the 2000 Regulatory Determination on comanagement under the Resource Conservation and Recovery Act (RCRA).

2005-09-19T23:59:59.000Z

289

Rice Production Texas produces nearly 225,000 acres high quality long grain rice for domestic and export  

E-Print Network (OSTI)

Rice Production · Texas produces nearly 225,000 acres high quality long grain rice for domestic and export markets. · Rice produces $145 million for farmers and generates $480 million for Texas. · Pest-chemicalpracticestoreducewaterweevildamageincludelaserlevelinganddelayed floodingforwatermanagement,seedingratesforuniformstands,andselectiveplanting dates. · 100% of the Texas rice acreage

Wilkins, Neal

290

Evaluation of High-Resolution Satellite Precipitation Products over Very Complex Terrain in Ethiopia  

Science Conference Proceedings (OSTI)

This study focuses on the evaluation of 3-hourly, 0.25° × 0.25°, satellite-based precipitation products: the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT, the NOAA/Climate Prediction Center ...

Feyera A. Hirpa; Mekonnen Gebremichael; Thomas Hopson

2010-05-01T23:59:59.000Z

291

Managing configuration options for build-to-order highly customized products with application to specialty vehicles  

E-Print Network (OSTI)

In the past decades there has been a shift in customer expectations that has had a significant effect in the business models of manufacturing companies. Customer requirements have shifted from accepting standardized products ...

Amador Gallardo, Jorge Enrique

2010-01-01T23:59:59.000Z

292

Multiple-part-type systems in high volume manufacturing : Kanban System design for automatic production scheduling  

E-Print Network (OSTI)

A Kanban Production System is designed to help a factory line meet fluctuating demands for multiple part types. Based on the parameter settings of the Control-Point Policy, the optimum Kanban levels are obtained. The ...

Lee, Kaizhao

2008-01-01T23:59:59.000Z

293

Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry  

SciTech Connect

A ThermoFisher 'Triton' multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotoperatioanalysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (10{sup 4} atoms to 10{sup 5} atoms) for {sup 239-242+244}Pu, {sup 233+236}U, {sup 241-243}Am, {sup 89,90}Sr, and {sup 134,135,137}Cs, and {le} 1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 x 10{sup 6} or better using a SEM are reported here. Precisions of RSD {approx} 0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.

Bürger, Stefan [New Brunswick Laboratory, Argonne, IL; Riciputi, Lee R [Los Alamos National Laboratory (LANL); Bostick, Debra A [ORNL; Turgeon, Steven [University of Alberta, Edmondton, Canada; McBay, Eddie H [ORNL; Lavelle, Mark [ORNL

2009-01-01T23:59:59.000Z

294

Building America Top Innovations Hall of Fame Profile Â… Reduced Call-Backs with High-Performance Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When Grupe of Stockton, California, worked When Grupe of Stockton, California, worked with Building America to build 144 energy- efficient homes in its Carsten Crossings development, the site superintendent said he had the lowest call-back rate of any community he had worked on. He credited the third-party HERS inspections and testing for keeping the quality of work high and catching problems before move-in (Dakin et al. 2008). BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Reduced Call-Backs with High-Performance Production Builders It is essential to engage production builders to successfully transform the market to high-performance homes. Building America has effectively addressed this

295

Optimized Flow Sheet for a Reference Commercial-Scale Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

This report presents results from the development and optimization of a reference commercialscale high-temperature electrolysis (HTE) plant for hydrogen production. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540° C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4.176 × 10 6 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 49.07% at a hydrogen production rate of 2.45 kg/s with the high-temperature helium-cooled reactor concept. The information presented in this report is intended to establish an optimized design for the reference nuclear-driven HTE hydrogen production plant so that parameters can be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics.

M. G. McKellar; J. E. O'Brien; E. A. Harvego; J. S. Herring

2007-11-01T23:59:59.000Z

296

A linear merging methodology for high-resolution precipitation products using spatiotemporal regression  

SciTech Connect

Currently, the only viable option for a global precipitation product is the merger of several precipitation products from different modalities. In this article, we develop a linear merging methodology based on spatiotemporal regression. Four highresolution precipitation products (HRPPs), obtained through methods including the Climate Prediction Center's Morphing (CMORPH), Geostationary Operational Environmental Satellite-Based Auto-Estimator (GOES-AE), GOES-Based Hydro-Estimator (GOES-HE) and Self-Calibrating Multivariate Precipitation Retrieval (SCAMPR) algorithms, are used in this study. The merged data are evaluated against the Arkansas Red Basin River Forecast Center's (ABRFC's) ground-based rainfall product. The evaluation is performed using the Heidke skill score (HSS) for four seasons, from summer 2007 to spring 2008, and for two different rainfall detection thresholds. It is shown that the merged data outperform all the other products in seven out of eight cases. A key innovation of this machine learning method is that only 6% of the validation data are used for the initial training. The sensitivity of the algorithm to location, distribution of training data, selection of input data sets and seasons is also analysed and presented.

Turlapaty, Anish C. [Mississippi State University (MSU); Younan, Nicolas H. [Mississippi State University (MSU); Anantharaj, Valentine G [ORNL

2012-01-01T23:59:59.000Z

297

The Perfect Nanocube: Precise Control of Size, Shape, and ...  

Science Conference Proceedings (OSTI)

The Perfect Nanocube: Precise Control of Size, Shape, and Composition. For Immediate Release: August 31, 2010. ...

2010-09-28T23:59:59.000Z

298

High-Precision Numerical Integration: Progress and ... - CECM  

E-Print Network (OSTI)

Jul 14, 2009 ... Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231.

299

A Water Hypsometer Utilizing High-Precision Thermocouples  

Science Conference Proceedings (OSTI)

A boiling-point barometer—commonly called hypsometer—has been developed for use on meteorological radiosondes. In this hypsometer, water is heated electrically, and its boiling temperature is measured with a thermocouple. Once the boiling ...

Hans Richner; Jürg Joss; Paul Ruppert

1996-02-01T23:59:59.000Z

300

Optimization Online - Efficient high-precision dense matrix algebra ...  

E-Print Network (OSTI)

Nov 10, 2008... we have delineated the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger ...

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaluation of Independent High-Precision Assay Procedures ...  

Science Conference Proceedings (OSTI)

... a large SRM batch. A trial intermediate-size batch was stoichiometric, but it contained excess water. However, as an uncharacterized ...

2012-10-09T23:59:59.000Z

302

Developing Biomimetic Design Principles for the Highly Optimized and Robust Design of Products and Their Components  

E-Print Network (OSTI)

Engineering design methods focus on developing products that are innovative, robust, and multi-functional. In this context, the term robust refers to a product's ability to accomplish successfully its predetermined functions. Owing to the abundance of optimized and robust biological systems, engineering designers are now looking to nature for inspiration. Researchers believe that biomimetic or bio-inspired engineering systems can leverage the principles, mechanisms, processes, strategies, and/or morphologies of nature's successful designs. Unfortunately, two important problems associated with biomimetic design are a designer's limited knowledge of biology and the difference in biological and engineering terminologies. This research developed a new design tool that addresses these problems and proposes to help engineering designers develop candidate bio-inspired products or solutions. A methodology that helps users infer or extract biomimetic design principles from a given natural system or biomimetic product pair is described in this thesis. The method incorporates and integrates five existing design tools and theories to comprehensively investigate a given natural system or biomimetic product. Subsequently, this method is used to extract biomimetic design principles from 23 biomimetic products and natural systems. It is proposed that these principles have the potential to inspire ideas for candidate biomimetic products that are novel, innovative, and robust. The principle extraction methodology and the identified principles are validated using two separate case studies and a detailed analysis using the validation square framework. In the first case study, two students and the author use the principle extraction methodology to extract characteristics from a natural system and a biomimetic product pair. Results from this case study showed that the methodology effectively and repeatedly identifies system characteristics that exemplify inherent biomimetic design principles. In the second case study, the developed biomimetic design principles are used to inspire a solution for an engineering design problem. The resulting solution and its evaluation show that the design's achieved usefulness is linked to applying the biomimetic design principles. Similar to the TRIZ principles, the biomimetic design principles can inspire ideas for solutions to a given problem. The key difference is that designers using TRIZ leverage the solution strategies of engineering patents, while designers using the biomimetic design principles leverage nature’s solution strategies. The biomimetic design principles are compared to TRIZ and the BioTRIZ matrix.

Wadia, Anosh Porus

2011-08-01T23:59:59.000Z

303

Precision replenishable grinding tool and manufacturing process  

DOE Patents (OSTI)

A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

1998-06-09T23:59:59.000Z

304

High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor  

DOE Green Energy (OSTI)

Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

2011-07-31T23:59:59.000Z

305

Trestles: a high-productivity HPC system targeted to modest-scale and gateway users  

Science Conference Proceedings (OSTI)

Trestles is a new 100TF HPC resource at SDSC designed to enhance scientific productivity for modest-scale and gateway users within the TeraGrid. This paper discusses the Trestles hardware and user environment, as well as the rationale for targeting ... Keywords: allocations, capacity computing, gateways, on-demand, scheduling

Richard L. Moore; David L. Hart; Wayne Pfeiffer; Mahidhar Tatineni; Kenneth Yoshimoto; William S. Young

2011-07-01T23:59:59.000Z

306

Ceramic membranes for partial oxygenation of hydrocarbon fuels to high-value-added products  

DOE Patents (OSTI)

This report describes the design of a membrane reactor for converting methane into value added products. The design includes an outer tube of perovskite which contacts air, an inner tube of zirconium oxide which contacts methane, and a bonding layer of a mixture of zirconium oxide and perovskite.

Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

1994-12-31T23:59:59.000Z

307

System Analyses of High and Low-Temperature Interface Designs for a Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

As part of the Next Generation Nuclear Plant (NGNP) project, an evaluation of a low-temperature heat-pump interface design for a nuclear-driven high-temperature electrolysis (HTE) hydrogen production plant was performed using the UniSim process analysis software. The lowtemperature interface design is intended to reduce the interface temperature between the reactor power conversion system and the hydrogen production plant by extracting process heat from the low temperature portion of the power cycle rather than from the high-temperature portion of the cycle as is done with the current Idaho National Laboratory (INL) reference design. The intent of this design change is to mitigate the potential for tritium migration from the reactor core to the hydrogen plant, and reduce the potential for high temperature creep in the interface structures. The UniSim model assumed a 600 MWt Very-High Temperature Reactor (VHTR) operating at a primary system pressure of 7.0 MPa and a reactor outlet temperature of 900°C. The lowtemperature heat-pump loop is a water/steam loop that operates between 2.6 MPa and 5.0 MPa. The HTE hydrogen production loop operated at 5 MPa, with plant conditions optimized to maximize plant performance (i.e., 800°C electrolysis operating temperature, area specific resistance (ASR) = 0.4 ohm-cm2, and a current density of 0.25 amps/cm2). An air sweep gas system was used to remove oxygen from the anode side of the electrolyzer. Heat was also recovered from the hydrogen and oxygen product streams to maximize hydrogen production efficiencies. The results of the UniSim analysis showed that the low-temperature interface design was an effective heat-pump concept, transferring 31.5 MWt from the low-temperature leg of the gas turbine power cycle to the HTE process boiler, while consuming 16.0 MWe of compressor power. However, when this concept was compared with the current INL reference direct Brayton cycle design and with a modification of the reference design to simulate an indirect Brayton cycle (both with heat extracted from the high-temperature portion of the power cycle), the latter two concepts had higher overall hydrogen production rates and efficiencies compared to the low-temperature heatpump concept, but at the expense of higher interface temperatures. Therefore, the ultimate decision on the viability of the low-temperature heat-pump concept involves a tradeoff between the benefits of a lower-temperature interface between the power conversion system and the hydrogen production plant, and the reduced hydrogen production efficiency of the low-temperature heat-pump concept compared to concepts using high-temperature process heat.

E. A. Harvego; J. E. O'Brien

2009-07-01T23:59:59.000Z

308

Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with the construction of the combined nuclear plant and hydrogen production facility. Operation and maintenance costs represent about 18% of the total cost ($0.57/kg). Variable costs (including the cost of nuclear fuel) contribute about 8.7% ($0.28/kg) to the total cost of hydrogen production, and decommissioning and raw material costs make up the remaining fractional cost.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-01-01T23:59:59.000Z

309

Review of Cyclotron Production and Quality Control of High Specific Activity Radionuclides for Biomedical, Biological, Industrial and Environmental Applications at INFN-LASA  

E-Print Network (OSTI)

Review of Cyclotron Production and Quality Control of High Specific Activity Radionuclides for Biomedical, Biological, Industrial and Environmental Applications at INFN-LASA

Birattari, C; Groppi, F; Gini, L

2001-01-01T23:59:59.000Z

310

Particle Generation by Laser Ablation in Support of Chemical Analysis of High Level Mixed Waste from Plutonium Production Operations  

Science Conference Proceedings (OSTI)

Investigate particles produced by laser irradiation and their analysis by Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA/ICP-MS), with a view towards optimizing particle production for analysis of high level waste materials and waste glass. LA/ICP-MS has considerable potential to increase the safety and speed of analysis required for the remediation of high level wastes from cold war plutonium production operations. In some sample types, notably the sodium nitrate-based wastes at Hanford and elsewhere, chemical analysis using typical laser conditions depends strongly on the details of sample history composition in a complex fashion, rendering the results of analysis uncertain. Conversely, waste glass materials appear to be better behaved and require different strategies to optimize analysis.

J. Thomas Dickinson; Michael L. Alexander

2001-11-30T23:59:59.000Z

311

High-level production of C-11-carboxyl-labeled amino acids. [For use in tumor and pancreatic imaging  

SciTech Connect

Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two others for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period.

Washburn, L.C.; Sun, T.T.; Byrd, B.L.; Hayes, R.L.; Butler, T.A.; Callahan, A.P.

1979-01-01T23:59:59.000Z

312

Integrated Operation of the INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production  

Science Conference Proceedings (OSTI)

Technical Paper / Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Nuclear Hydrogen Production

Carl Stoots; Lee Shunn; James O'Brien

313

Production of High Quality Dust Control Foam to Minimize Moisture Addition to Coal  

E-Print Network (OSTI)

Foam is displacing wet suppression as the method of choice for controlling fugitive emissions from coal. Coal treated by wet suppression consumes through moisture addition, a heat energy equivalent of 1 ton out of every 500 tons fired. The application of foam requires less than 10% of the moisture usually required for wet suppression. In addition, foam is a much more effective dust suppressant, especially on respirable dust (particle with an aerodynamic diameter less than 10 microns). To achieve maximum benefit from foam dust control, efficient on-site production of dry, stable foam is required. This paper discusses the basics of foam production and the many variables affecting foam expansion ratios. Successful applications of foam are also described.

Termine, F.; Jordan, S. T.

1985-05-01T23:59:59.000Z

314

Method for the production of electrodes for lead--acid storage batteries. [drying by inert gas at high temperature  

SciTech Connect

A method for the production of lead--acid storage batteries having a grid of lead alloy filled with active materials consisting of lead oxides, lead powder, sulfuric acid, and water is described. The electrodes are subjected to a jet of an inert gas at a high temperature and velocity for several seconds to dry the surface of the electrodes while leaving the interior thereof moist.

Nikolaou, P.

1978-08-29T23:59:59.000Z

315

Whole Product Performance for 2X High-Efficiency Incandescent Lamps  

Science Conference Proceedings (OSTI)

FirstEnergy (FE) approached EPRI’s Lighting Lab in 2011 to validate the performance of a newly developed “2X” incandescent lighting technology developed by a manufacturing company in their service territory. This manufacturer claimed that their product was identical in light output, but twice (2X) as efficient as traditional 100W incandescent bulbs. In collaboration with FE, EPRI conducted a series of tests to independently verify the energy and photometric performance of this ...

2012-11-12T23:59:59.000Z

316

Technology Effects in Distributed Team Coordination--High-Interdependency Tasks in Offshore Oil Production  

Science Conference Proceedings (OSTI)

For highly interdependent yet location-specific tasks, distributed teams need to closely coordinate activities and processes. This field study in the upstream oil and gas industry focused on challenges in the coordination of highly interdependent tasks ... Keywords: computer-mediated communication, coordination, distributed teams, task interdependency

Petra Saskia Bayerl; Kristina Lauche

2010-04-01T23:59:59.000Z

317

Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel  

DOE Green Energy (OSTI)

The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [{approx}1000 Mw(e)] with passive safety systems to provide the potential for improved economics.

Forsberg, C.W.

2002-02-21T23:59:59.000Z

318

Batch fabrication of precision miniature permanent magnets  

DOE Patents (OSTI)

A new class of processes for fabrication of precision miniature rare earth permanent magnets is disclosed. Such magnets typically have sizes in the range 0.1 to 10 millimeters, and dimensional tolerances as small as one micron. Very large magnetic fields can be produced by such magnets, lending to their potential application in MEMS and related electromechanical applications, and in miniature millimeter-wave vacuum tubes. This abstract contains simplifications, and is supplied only for purposes of searching, not to limit or alter the scope or meaning of any claims herein.

Christenson, Todd R. (Albuquerque, NM); Garino, Terry J. (Albuquerque, NM); Venturini, Eugene L. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

319

Prospects for Precision Higgs Physics at Linear Colliders  

E-Print Network (OSTI)

A linear e+e- collider provides excellent possibilities for precision measurements of the properties of the Higgs boson. At energies close to the Z-Higgs threshold, the Higgs boson can be studied in recoil against a Z boson, to obtain not only a precision mass measurement but also direct measurements of the branching ratios for most decay modes, including possible decay to invisible species. At higher energies, the Higgs boson coupling to top quarks and the Higgs boson self-coupling can also be measured. At energies approaching 1 TeV and above, the rising cross section for Higgs production in WW fusion allows the measurement of very small branching ratios, including the branching ratio to muon pairs. These experiments make it possible to determine the complete profile of the Higgs boson in a model-independent way. The prospects for these measurements are summarized, based on the results of detailed simulation studies performed within the frameworks of the CLIC conceptual design report and the ILC technical design report.

Frank Simon

2012-11-30T23:59:59.000Z

320

Precision monitoring of relative beam intensity for Mu2e  

SciTech Connect

For future experiments at the intensity frontier, precise and accurate knowledge of beam time structure will be critical to understanding backgrounds. The proposed Mu2e experiment will utilize {approx}200 ns (FW) bunches of 3 x 10{sup 7} protons at 8 GeV with a bunch-to-bunch period of 1695 ns. The out-of-bunch beam must be suppressed by a factor of 10{sup -10} relative to in-bunch beam and continuously monitored. I propose a Cerenkov-based particle telescope to measure secondary production from beam interactions in a several tens of microns thick foil. Correlating timing information with beam passage will allow the determination of relative beam intensity to arbitrary precision given a sufficiently long integration time. The goal is to verify out-of-bunch extinction to the level 10{sup -6} in the span of several seconds. This will allow near real-time monitoring of the initial extinction of the beam resonantly extracted from Fermilabs Debuncher before a system of AC dipoles and collimators, which will provide the final extinction. The effect on beam emittance is minimal, allowing the necessary continuous measurement. I will present the detector design and some concerns about bunch growth during the resonant extraction.

Evans, N.J.; Kopp, S.E.; /Texas U.; Prebys, E.; /Fermilab

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Superallowed nuclear beta decay: Precision measurements for basic physics  

Science Conference Proceedings (OSTI)

For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

Hardy, J. C. [Cylotron Institute, Texas A and M University, College station, TX, 77843-3366 (United States)

2012-11-20T23:59:59.000Z

322

New applications of high-temperature solar energy for the production of transportable fuels and chemicals and for energy storage  

DOE Green Energy (OSTI)

The solar fuels and chemicals study was limited to the examination of processes requiring temperatures in excess of 1000/sup 0/K since lower temperature processes had already been examined in studies concerned with the application of waste heat from nuclear power plants to industrial processes. In developing the carbon cycle processes, the primary activity included an extensive literature search and the thermodynamic evaluation of a number of candidate chemical cycles. Although both hydrogen and carbon closed- and open-loop chemical cycles were studied, it was concluded that the carbon cycles offered sufficient additional potential to warrant concentrating on them in subsequent work. The section on new ideas for transportable fuels presents the elements of a new concept for a carbon cycle recovery technique to produce transportable fuels. The elements discussed are sources of carbon dioxide, solar energy reduction of CO/sub 2/, potential carbon cycles, and use of carbon monoxide as fuel and feedstocks. Another section presents some new concepts for the use of high-temperature solar energy in the production of essential materials and for closed-loop chemical storage, as well as for the production of hydrogen as a fuel and open-loop applications. Potential problem areas pertinent to solar-derived fuels and chemicals have been identified. These problems are primarily associated with the limited high temperature experience in industry and include materials compatibility, separation of reaction products, development of solid electrolytes and high-temperature electrodes, selective emission of receiver coatings at high temperature, and a lack of chemical kinetics data, and high-temperature thermodynamic data.

Not Available

1979-01-19T23:59:59.000Z

323

Diagnostic and Forecast Graphics Products at NMC Using High Frequency Model Output  

Science Conference Proceedings (OSTI)

Archived hourly output from the National Meteorological Center (NMC) prediction models has provided the basis for advanced graphic diagnostic and forecast tools. The high-frequency data are available on a regional selected station network. Each ...

David W. Plummer

1989-03-01T23:59:59.000Z

324

Production of carbon monoxide-free hydrogen and helium from a high-purity source  

DOE Patents (OSTI)

The invention provides vacuum swing adsorption processes that produce an essentially carbon monoxide-free hydrogen or helium gas stream from, respectively, a high-purity (e.g., pipeline grade) hydrogen or helium gas stream using one or two adsorber beds. By using physical adsorbents with high heats of nitrogen adsorption, intermediate heats of carbon monoxide adsorption, and low heats of hydrogen and helium adsorption, and by using vacuum purging and high feed stream pressures (e.g., pressures of as high as around 1,000 bar), pipeline grade hydrogen or helium can purified to produce essentially carbon monoxide -free hydrogen and helium, or carbon monoxide, nitrogen, and methane-free hydrogen and helium.

Golden, Timothy Christopher (Allentown, PA); Farris, Thomas Stephen (Bethlehem, PA)

2008-11-18T23:59:59.000Z

325

Co-Cr-Mo Alloys Production by Self Propagating High Temperature ...  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

326

Designing an alternative project for a product design curriculum for high school students  

E-Print Network (OSTI)

An alternative curriculum is designed for Engineering the Future, a high school level engineering curriculum developed by the Boston Museum of Science. It is designed on the premise that a hands-on curriculum providing an ...

Kirby, Jeffrey (Jeffrey T.)

2008-01-01T23:59:59.000Z

327

CPR Meeting Production and Conditioning of High Sulfur Biogas for Fuel Cell„Preliminary Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture by a Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process Jim Zhou, Howard Meyer, and Ben Bikson Nov. 13, 2009 DE-FE0000646 Project Management Plan 2 Project Management Plan 2 Outline  Introduction of GTI and PoroGen  Introduction of Membrane Contactor Technology  Details of the Project  Summary Project Management Plan 3 Project Management Plan 3 Gas Technology Institute > Contract Research > Program Management > Technical Services > Education and Training > Over 1,000 patents > Nearly 500 products commercialized Solving Important Energy Challenges via: Project Management Plan 4 Project Management Plan 4 Facilities & Staff > Main Facility: 18-Acre Campus

328

Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products  

DOE Patents (OSTI)

A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

Norman, Eric B. (Oakland, CA); Prussin, Stanley G. (Kensington, CA)

2007-10-02T23:59:59.000Z

329

Heavy Quarkonium Production in Single Transverse Polarized HighEnergy Scattering  

Science Conference Proceedings (OSTI)

We formulate the single transverse spin asymmetry in heavyquarkoniumproduction in lepton-nucleon and nucleon-nucleon collisionsinthe non-relativistic limit. We findthat the asymmetry is very sensitiveto the production mechanism. The finalstate interactions with the heavyquark and antiquark cancel out among themselves whenthe pair are producedin a color-single configuration, or cancel out with the initialstateinteraction in pp scattering when they are in color-octet. As aconsequence, the asymmetry is nonzero in ep collisions only in thecolor-octet model, whereas in pp collisions only in the color-singletmodel.

Yuan, Feng

2008-01-17T23:59:59.000Z

330

Progress in converting {sup 99}Mo production from high- to low-enriched uranium--1999.  

SciTech Connect

Over this past year, extraordinary progress has been made in executing our charter to assist in converting Mo-99 production worldwide from HEU to LEU. Building on the successful development of the experimental LEU-foil target, we have designed a new, economical irradiation target. We have also successfully demonstrated, in collaboration with BATAN in Indonesia, that LEU can be substituted for HEU in the Cintichem target without loss of product yield or purity; in fact, conversion may make economic sense. We are interacting with a number of commercial producers--we have begun active collaborations with the CNEA and ANSTO; we are working to define the scope of collaborations with MDS Nordion and Mallinckrodt; and IRE has offered its services to irradiate and test a target at the appropriate time. Conversion of the CNEA process is on schedule. Other papers presented at this meeting will present specific results on the demonstration of the LEU-modified Cintichem process, the development of the new target, and progress in converting the CNEA process.

Snelgrove, J. L.; Vandegrift, G. F.; Conner, C.; Wiencek, T. C.; Hofman, G. L.

1999-09-29T23:59:59.000Z

331

Precision linac and laser technologies for nuclear photonics gamma-ray sources  

SciTech Connect

Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

2012-05-15T23:59:59.000Z

332

High Efficiency Hydrogen Production from Nuclear Energy: Laboratory Demonstration of S-I Water-Splitting  

DOE Green Energy (OSTI)

The objective of the French CEA, US-DOE INERI project is to perform a lab scale demonstration of the sulfur iodine (S-I) water splitting cycle, and assess the potential of this cycle for application to nuclear hydrogen production. The project will design, construct and test the three major component reaction sections that make up the S-I cycle. The CEA will design and test the prime (Bunsen) reaction section. General Atomics will develop and test the HI decomposition section, and SNL will develop and test the H2SO4 decomposition section. Activities for this period included initial program coordination and information exchange, the development of models and analyses that will support the design of the component sections, and preliminary designs for the component reaction sections. The sections are being designed to facilitate integration into a closed loop demonstration in a later stage of the program.

Buckingham, R.; Russ, B.; Brown, L.; Besenbruch, G.E.; Gelbard, F.; Pickard F.S.; Leybros, J.; Le Duigou, A.; Borgard, J.M.

2004-11-30T23:59:59.000Z

333

Recent Progress At The Idaho National Laboratory In High Temperature Electrolysis For Hydrogen And Syngas Production  

DOE Green Energy (OSTI)

This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying electrolysis of steam and coelectrolysis of steam / carbon dioxide in solid-oxide electrolysis stacks. Single button cell tests as well as multi-cell stack testing have been conducted. Multi-cell stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec, Inc (Salt Lake City, Utah, USA) and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to 15 kW testing capacity (H2 production rate based upon lower heating value).

C. Stoots; J. O'Brien; J. Herring; J. Hartvigsen

2008-11-01T23:59:59.000Z

334

High-statistics study of K^0_S pair production in two-photon collisions  

E-Print Network (OSTI)

We report a high-statistics measurement of the differential cross section of the process gamma gamma --> K^0_S K^0_S in the range 1.05 GeV K^0_S K^0_S is reported. The detailed behavior of the cross section is updated and compared with QCD-based calculations.

The Belle Collaboration; S. Uehara; Y. Watanabe; H. Nakazawa; I. Adachi; H. Aihara; D. M. Asner; V. Aulchenko; T. Aushev; A. M. Bakich; A. Bala; V. Bhardwaj; B. Bhuyan; A. Bondar; G. Bonvicini; A. Bozek; M. Bra?ko; V. Chekelian; A. Chen; P. Chen; B. G. Cheon; K. Chilikin; R. Chistov; K. Cho; V. Chobanova; S. -K. Choi; Y. Choi; D. Cinabro; J. Dalseno; J. Dingfelder; Z. Doležal; D. Dutta; S. Eidelman; D. Epifanov; H. Farhat; J. E. Fast; M. Feindt; T. Ferber; A. Frey; V. Gaur; N. Gabyshev; S. Ganguly; R. Gillard; F. Giordano; Y. M. Goh; B. Golob; J. Haba; K. Hayasaka; H. Hayashii; Y. Hoshi; W. -S. Hou; H. J. Hyun; T. Iijima; A. Ishikawa; R. Itoh; Y. Iwasaki; T. Julius; D. H. Kah; J. H. Kang; E. Kato; H. Kawai; T. Kawasaki; C. Kiesling; D. Y. Kim; H. O. Kim; J. B. Kim; J. H. Kim; Y. J. Kim; J. Klucar; B. R. Ko; P. Kodyš; S. Korpar; P. Križan; P. Krokovny; T. Kumita; A. Kuzmin; Y. -J. Kwon; S. -H. Lee; J. Li; Y. Li; C. Liu; Z. Q. Liu; D. Liventsev; P. Lukin; D. Matvienko; K. Miyabayashi; H. Miyata; R. Mizuk; A. Moll; T. Mori; N. Muramatsu; R. Mussa; Y. Nagasaka; M. Nakao; C. Ng; N. K. Nisar; S. Nishida; O. Nitoh; S. Ogawa; S. Okuno; G. Pakhlova; C. W. Park; H. Park; H. K. Park; T. K. Pedlar; R. Pestotnik; M. Petri?; L. E. Piilonen; M. Ritter; M. Röhrken; A. Rostomyan; H. Sahoo; T. Saito; Y. Sakai; S. Sandilya; L. Santelj; T. Sanuki; V. Savinov; O. Schneider; G. Schnell; C. Schwanda; R. Seidl; K. Senyo; O. Seon; M. Shapkin; C. P. Shen; T. -A. Shibata; J. -G. Shiu; B. Shwartz; A. Sibidanov; F. Simon; Y. -S. Sohn; A. Sokolov; E. Solovieva; M. Stari?; M. Steder; M. Sumihama; T. Sumiyoshi; U. Tamponi; K. Tanida; G. Tatishvili; Y. Teramoto; M. Uchida; T. Uglov; Y. Unno; S. Uno; P. Urquijo; S. E. Vahsen; C. Van Hulse; G. Varner; M. N. Wagner; C. H. Wang; M. -Z. Wang; P. Wang; X. L. Wang; K. M. Williams; E. Won; Y. Yamashita; S. Yashchenko; Y. Yook; C. Z. Yuan; Y. Yusa; C. C. Zhang; Z. P. Zhang; V. Zhilich; V. Zhulanov; A. Zupanc

2013-07-29T23:59:59.000Z

335

High energy neutrino absorption by W production in a strong magnetic field  

E-Print Network (OSTI)

An influence of a strong external magnetic field on the neutrino self-energy operator is investigated. The width of the neutrino decay into the electron and W boson, and the mean free path of an ultra-high energy neutrino in a strong magnetic field are calculated. A kind of energy cutoff for neutrinos propagating in a strong field is defined.

Kuznetsov, A V; Serghienko, A V

2010-01-01T23:59:59.000Z

336

High energy neutrino absorption by W production in a strong magnetic field  

E-Print Network (OSTI)

An influence of a strong external magnetic field on the neutrino self-energy operator is investigated. The width of the neutrino decay into the electron and W boson, and the mean free path of an ultra-high energy neutrino in a strong magnetic field are calculated. A kind of energy cutoff for neutrinos propagating in a strong field is defined.

A. V. Kuznetsov; N. V. Mikheev; A. V. Serghienko

2010-02-19T23:59:59.000Z

337

Building America Top Innovations Hall of Fame Profile Â… High-Performance Home Cost Performance Trade-Offs Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

projects with production builders have demonstrated projects with production builders have demonstrated that high-performance homes experience significant cost trade-offs that offset other cost increases. This proved transformational, gaining builder traction with related market-based programs like ENERGY STAR for Homes and DOE Challenge Home. "Break points" or cost trade-offs that are identified during the engineering analysis of the residential construction process can yield two types of business savings: 1) reductions in costs of warranty and call-back service; and 2) offsets or "credits" attributed to reductions in other construction costs. The tables below show examples of cost and savings trade-offs experienced by Building America projects in hot-dry and cold climates. Energy-Efficiency

338

URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

A process is described wherein an anionic exchange technique is employed to separate uramium from a large variety of impurities. Very efficient and economical purification of contamimated uranium can be achieved by treatment of the contaminated uranium to produce a solution containing a high concentration of chloride. Under these conditions the uranium exists as an aniomic chloride complex. Then the uranium chloride complex is adsorbed from the solution on an aniomic exchange resin, whereby a portion of the impurities remain in the solution and others are retained with the uramium by the resin. The adsorbed impurities are then removed by washing the resin with pure concentrated hydrochloric acid, after which operation the uranium is eluted with pure water yielding an acidic uranyl chloride solution of high purity.

Bailes, R.H.; Long, R.S.; Grinstead, R.R.

1957-09-17T23:59:59.000Z

339

High velocity continuous-flow reactor for the production of solar grade silicon. Second quarterly report  

DOE Green Energy (OSTI)

The objective is to determine the feasibility of a high volume-high velocity continuous reduction reactor as an economical means for producing solar grade polycrystalline silicon. Preheated streams of hydrogen and bromosilanes are used as feed to the reduction reactor. Nucleation and deposition sites are provided by the additional feed of preheated silicon particles to the reactor. The effort has been directed at studying the chemistry taking place in the reactor, determining the factors which influence its course, and making necessary reactor modifications as dictated by observed results. The initial reactor design has been extensively changed. Energy losses due to gas expansion in the nozzle/mixer section of the reactor dictated these design changes. A ''Tee'' configuration, in which the two preheated gas streams are merged at right angles without any expansion, has replaced the nozzle/mixer. Results of the hydrogen reduction of tetrabromosilane with and without the use of silicon deposition substrate particles are analyzed.

Woerner, L.

1978-03-01T23:59:59.000Z

340

Universality of electron distributions in high-energy air showers - description of Cherenkov light production  

E-Print Network (OSTI)

The shower simulation code CORSIKA has been used to investigate the electron energy and angular distributions in high-energy showers. Based on the universality of both distributions, we develop an analytical description of Cherenkov light emission in extensive air showers, which provides the total number and angular distribution of photons. The parameterisation can be used e.g. to calculate the contribution of direct and scattered Cherenkov light to shower profiles measured with the air fluorescence technique.

F. Nerling; J. Blümer; R. Engel; M. Risse

2005-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Plasma analysis and diagnostics for high efficiency amorphous solar cell production. Final report  

DOE Green Energy (OSTI)

This is a project that sought to improve the amorphous silicon-germanium (SiGe) thin film deposition process in the production of solar cells. To accomplish this, the electron cyclotron resonance (ECR) plasma discharge, employed for the thin film deposition, was modified. Changes in the parameters of the plasma were monitored with diagnostic techniques, similar to those used in fusion plasma studies. That was the primary contribution from ORNL. Only one phase was contained in the statement of work, with the following tasks: (1) Develop a detailed program for plasma characterization. (2) Carry-out plasma modeling and analysis to support deposition systems design. (3) Operate experimental deposition systems for the purpose of plasma characterization. (4) Analyze data. (5) Modify deposition as directed by measurements. (6) This final report, which was deemed to be the only deliverable of this small project. And while the modified ECR discharge did not show measurable improvement of the conditions relevant to the deposition process, much was learned about the plasma parameters in the process. Some ideas on alternative designs are being discuss and funding options for testing such designed are being sought.

Klepper, C.C.

1994-12-21T23:59:59.000Z

342

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

DOE Green Energy (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

343

Byte-precision level of detail processing for variable precision analytics  

Science Conference Proceedings (OSTI)

I/O bottlenecks in HPC applications are becoming a more pressing problem as compute capabilities continue to outpace I/O capabilities. While double-precision simulation data often must be stored losslessly, the loss of some of the fractional component ...

John Jenkins; Eric R. Schendel; Sriram Lakshminarasimhan; David A. Boyuka, II; Terry Rogers; Stephane Ethier; Robert Ross; Scott Klasky; Nagiza F. Samatova

2012-11-01T23:59:59.000Z

344

Design, implementation and testing of extended and mixed precision BLAS  

Science Conference Proceedings (OSTI)

This article describes the design rationale, a C implementation, and conformance testing of a subset of the new Standard for the BLAS (Basic Linear Algebra Subroutines): Extended and Mixed Precision BLAS. Permitting higher internal precision and mixed ... Keywords: BLAS, double-double arithmetic, extended and mixed precision

Xiaoye S. Li; James W. Demmel; David H. Bailey; Greg Henry; Yozo Hida; Jimmy Iskandar; William Kahan; Suh Y. Kang; Anil Kapur; Michael C. Martin; Brandon J. Thompson; Teresa Tung; Daniel J. Yoo

2002-06-01T23:59:59.000Z

345

High-power liquid-lithium jet target for neutron production  

E-Print Network (OSTI)

A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution and angular distribution. Liquid lithium is circulated through the target loop at ~200oC and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of > 4 kW/cm2 and volume power density of ~ 2 MW/cm3 at a lithium flow of ~4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91- 2.5 MeV, 1-2 mA) at SARAF.

S. Halfon; A. Arenshtam; D. Kijel; M. Paul; D. Berkovits; I. Eliyahu; G. Feinberg; M. Friedman; N. Hazenshprung; I. Mardor; A. Nagler; G. Shimel; M. Tessler; I. Silverman

2013-11-13T23:59:59.000Z

346

HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS  

DOE Green Energy (OSTI)

Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

Gorensek, M.

2011-07-06T23:59:59.000Z

347

System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

2012-11-01T23:59:59.000Z

348

high  

Gasoline and Diesel Fuel Update (EIA)

0 0 Highlights International Oil Markets Prices. We have raised our world oil price projection by about $2 per barrel for this month because of assumed greater compliance by OPEC to targeted cuts, especially for the second quarter of 2000 (Figure 1). The expected decline in world petroleum inventories continues (Figure 2), and, given the generally stiff resolve of OPEC members to maintain production cuts, any sign of a turnaround in stocks may be postponed until later this year than previously assumed (Q3 instead of Q2). Our current estimate for the average import cost this past January is now $25 per barrel, a nearly $15-per-barrel increase from January 1999. Crude oil prices are expected to remain at relatively high levels for the first half of 2000, but

349

Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species  

DOE Patents (OSTI)

Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

Cross, Jon B. (Santa Fe, NM); Cremers, David A. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

350

Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species  

DOE Patents (OSTI)

Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species is described. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

Cross, J.B.; Cremers, D.A.

1986-01-10T23:59:59.000Z

351

Precision measurements of the top quark mass and width with the D0 detector  

Science Conference Proceedings (OSTI)

Since the discovery of the top quark in 1995 at the Fermliab Tevatron Collider, top quark properties have been measured with ever higher precision. In this article, recent measurements of the top quark mass and its width using up to 3.6 fb{sup -1} of D0 data are summarized. Different techniques and final states have been examined and no deviations within these measurements have been observed. In addition to the direct measurements, a measurement of the top quark mass from its production cross section and a measurement of the top-antitop quark mass difference are discussed. With a mass of 173.3 {+-} 1.1 GeV, the top quark is the heaviest of all known fundamental particles. Due to the high mass, its Yukawa coupling is close to unity suggesting that it may play a special role in electroweak symmetry breaking. Precise measurements of both, the W boson and the top quark mass, constrain the mass of the yet unobserved Higgs boson and allow to restrict certain extensions of the Standard Model. At the Tevatron collider with a center-of-mass energy of 1.96 TeV, 85% of the top quark pairs are produced in quark-antiquark annihilation; 15% originate from gluon fusion. Top quarks are predicted to decay almost exclusively to a W boson and a bottom quark. According to the number of hadronic W decays, top events are classified into all-jets, lepton+jets and dilepton events. The lepton+jets channel is characterized by four jets, one isolated, energetic charged lepton and missing transverse energy. With 30%, the branching fraction of the lepton+jets channel is about seven times larger than the one of the dilepton channel whereas the signal to background ratio is about three times smaller. The main background in this final state comes from W +jets events. Instrumental background arises from events in which a jet is misidentified as an electron and events with heavy hadrons that decay into leptons which pass the isolation requirements. The topology of the dilepton channel is described by two jets, two isolated, energetic charged leptons and significant missing transverse energy from the undetected neutrinos. The main background are Z + jets and diboson events (WW/WZ/ZZ+jets) as well as instrumental background as characterized above. At the D0 experiment, different techniques are used to measure the top quark mass. They are summarized in the following sections together with the first measurement of the top anti-top quark mass difference and the first precise determination of the top quark width.

Grohsjean, Alexander; /IRFU, SPP, Saclay

2010-01-01T23:59:59.000Z

352

Multiple Production, Transport in Atmosphere and Detection of High Energy Cosmic Rays  

E-Print Network (OSTI)

We describe the general aspects of Monte Carlo Collision Generators suitable for cosmic ray nucleon-Air and nuclei-Air interactions, including accelerator and collider data. The problem of the extrapolation at 3 energy decades above the LHC of the main features of high energy collisions is discussed and under theoretical and phenomenological assumptions, the properties of the longitudinal and lateral development of giant extensive air showers simulated with the CORSIKA program are presented. The determination of the primary energy near $10^{20}$ eV is examined for different observables, total size, densities of charged particles interpolated at 600~m from shower core. The extensive air shower data collected around LHC energy is in better agreement with models of large multiplicities. Beyond this energy, the extrapolation carried assuming the diquark breaking mechanism can change the classic conversion to primary energy and such circumstance can have consequences on the validity of the GZK cut off. In those conditions, we have simulated large and giant air showers taking into account, in addition, new processes, such as diquark breaking, and topological problems involving adequate structure functions for lateral distributions, up to energies exceeding $10^{20}$ eV for P.AUGER and EUSO experiments.

Jean-No{ë}l Capdevielle; Fabrice Cohen; Corentin Le Gall

2001-11-30T23:59:59.000Z

353

Materials technology assessment of high-temperature solar receivers for fuels and chemicals production  

DOE Green Energy (OSTI)

Current interest in using solar thermal energy to produce fuels and chemicals has prompted an assessment of materials technology for five proposed designs of solar receivers. The principal process of interest is water splitting. Reaction schemes considered involve the high-temperature decomposition of sulfuric acid, and silicon carbide is the structural ceramic material usually considered most resistant to the conditions of this reaction. Hence we have assessed the fabricability of the designs from SiC for that reaction system, even though most designs envision use with air, helium, or nitrogen as a heat transfer medium. Honeycomb and hemispherical dome receivers have been fabricated from SiC. A receiver using planar coiled tubes has been fabricated from cordierite but not from SiC. Fabrication has not been demonstrated for helical coil and long tube designs. The last three of these should be fabricable with up to two years development. All lack the ultimate test: operational experience. The need for relable seals is common to all designs. Metallic gaskets are subject to corrosion, and ceramic and mechanical seals have not been demonstrated for the anticipated thermal cycling.

Tiegs, T.N.

1981-07-01T23:59:59.000Z

354

Numerical simulation of high-level radioactive nuclear waste glass production  

SciTech Connect

Vitrification of radioactive waste has become an international approach for converting highly radioactive wastes into a durable solid prior to placing them in a permanent disposal repository. The technology for the process is not new. The conversion melter is a direct descendant of all electric melters used for manufacturing of some commercial glass types. Therefore, the vitrification process of radioactive wastes inherits typical problems of all electric furnaces and creates some other specific problems such as noble metal sedimentation. The noble metals and nickel sulfides in the melter are heavier than molten glass and have a low solubility. In a reducing condition, these metals amalgamate and tend to settle on the melter floor. The metal deposit resulting from this settling has a potential to short circuit the melter. The objective of this paper is to identify the typical problems that have been encountered in the waste melter operations and to address how these problems can be tackled using state-of-the-art numerical simulation techniques. It is believed that the large amount of pilot-scale melter experience throughout the world, combined with the knowledge gained from state-of-the-art computer modeling techniques would give assurance that the existing and future radioactive wastes can be effectively converted into a durable glass material and safely placed in a permanent repository.

Choi, I.G. (Westinghouse Savannah River Co., Aiken, SC (United States)); Ungan, A. (Purdue Univ., Indianapolis, IN (United States). Dept. of Mechanical Engineering)

1991-01-01T23:59:59.000Z

355

Numerical simulation of high-level radioactive nuclear waste glass production  

SciTech Connect

Vitrification of radioactive waste has become an international approach for converting highly radioactive wastes into a durable solid prior to placing them in a permanent disposal repository. The technology for the process is not new. The conversion melter is a direct descendant of all electric melters used for manufacturing of some commercial glass types. Therefore, the vitrification process of radioactive wastes inherits typical problems of all electric furnaces and creates some other specific problems such as noble metal sedimentation. The noble metals and nickel sulfides in the melter are heavier than molten glass and have a low solubility. In a reducing condition, these metals amalgamate and tend to settle on the melter floor. The metal deposit resulting from this settling has a potential to short circuit the melter. The objective of this paper is to identify the typical problems that have been encountered in the waste melter operations and to address how these problems can be tackled using state-of-the-art numerical simulation techniques. It is believed that the large amount of pilot-scale melter experience throughout the world, combined with the knowledge gained from state-of-the-art computer modeling techniques would give assurance that the existing and future radioactive wastes can be effectively converted into a durable glass material and safely placed in a permanent repository.

Choi, I.G. [Westinghouse Savannah River Co., Aiken, SC (United States); Ungan, A. [Purdue Univ., Indianapolis, IN (United States). Dept. of Mechanical Engineering

1991-12-31T23:59:59.000Z

356

Experimental Demonstration of Advanced Palladium Membrane Separators for Central High Purity Hydrogen Production  

DOE Green Energy (OSTI)

The overall objectives for this project were to: (1) confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia; (2) develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m{sup 3}m{sup -2}atm{sup -0.5}h{sup -1} at 400 C and capable of operating at pressures of 12.1 MPa ({approx}120 atm, 1750 psia); and (3) construct and experimentally validate the performance of 0.1 kg/day H{sup 2} PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H{sub 2}S, NH{sub 3}, and HCl. This project successfully increased the technology readiness level of palladium-based metallic membranes for hydrogen separation from coal-biomass gasifier exhaust or similar hydrogen-containing gas streams. The reversible tolerance of palladium-copper (PdCu) alloys was demonstrated for H{sub 2}S concentrations varying from 20 ppmv up to 487 ppmv and NH{sub 3} concentrations up to 9 ppmv. In addition, atomistic modeling validated the resistance of PdCu alloys to carbon formation, irreversible sulfur corrosion, and chlorine attack. The experimental program highlighted two key issues which must be addressed as part of future experimental programs: (1) tube defects and (2) non-membrane materials of construction. Four out of five FCC PdCu separators developed leaks during the course of the experimental program because {approx}10% of the alloy tubes contained a single defect that resulted in a thin, weak point in the tube walls. These defects limited operation of the existing tubes to less than 220 psig. For commercial applications of a PdCu alloy hydrogen separator under high sulfur concentrations, it was determined that stainless steel 316 is not suitable for housing or supporting the device. Testing with sulfur concentrations of 487 {+-} 4 ppmv resulted in severe corrosion of the stainless steel components of the separators. The project identified an experimental methodology for quantifying the impact of gas contaminants on PdCu alloy membrane performance as well as an atomistic modeling approach to screen metal alloys for their resistance to irreversible sulfur corrosion. Initial mathematical descriptions of the effect of species such as CO and H{sub 2}S were developed, but require further experimental work to refine. At the end of the project, an improvement to the experimental approach for acquiring the necessary data for the permeability model was demonstrated in preliminary tests on an enhanced PdCu separator. All of the key DOE 2010 technical targets were met or exceeded except for the hydrogen flux. The highest flux observed for the project, 125 ft{sup 3}ft{sup -2}h{sup -1}, was obtained on a single tube separator with the aforementioned enhanced PdCu separator with a hydrogen feed pressure of 185 psig at 500 C.

Sean Emerson; Neal Magdefrau; Susanne Opalka; Ying She; Catherine Thibaud-Erkey; Thoman Vanderspurt; Rhonda Willigan

2010-06-30T23:59:59.000Z

357

Precision envelope detector and linear rectifier circuitry  

DOE Patents (OSTI)

Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.

Davis, Thomas J. (Richland, WA)

1980-01-01T23:59:59.000Z

358

Spark gap device for precise switching  

DOE Patents (OSTI)

A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

Boettcher, Gordon E. (Albuquerque, NM)

1984-01-01T23:59:59.000Z

359

Spark gap device for precise switching  

DOE Patents (OSTI)

A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

Boettcher, G.E.

1984-10-02T23:59:59.000Z

360

PROSPECT - A Precision Reactor Neutrino and Oscillation Spectrum Experiment at Very Short Baselines  

E-Print Network (OSTI)

Antineutrino detectors operated close to a compact research reactor can provide excellent sensitivity to short-baseline oscillation effects through a precision measurement of the reactor antineutrino spectrum at various distances from the core. We describe a proposed 2-detector experiment with a baseline of 4-20m that will enable a high-precision measurement of the reactor antineutrino spectrum from a highly-enriched uranium core at a US research reactor and provide a definitive search for short-baseline neutrino oscillations. In addition, this experiment will provide important enabling technology for reactor monitoring applications.

Z. Djurcic; S. Hans; M. Yeh; E. Blucher; R. Johnson; B. R. Littlejohn; M. Dolinski; C. Lane; T. Allen; S. Morrell; J. G. Learned; J. Maricic; A. Bernstein; N. S. Bowden; T. Classen; A. Glenn; N. Zaitseva; H. P. Mumm; J. S. Nico; R. E. Williams; R. Henning; C. Bryan; D. Dean; Y. Efremenko; D. Radford; P. Huber; J. M. Link; C . Mariani; A. B. Balantekin; H. R. Band; J. C. Cherwinka; K. M. Heeger; W. Wang; T. Langford

2013-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PROSPECT - A Precision Reactor Neutrino and Oscillation Spectrum Experiment at Very Short Baselines  

E-Print Network (OSTI)

Antineutrino detectors operated close to a compact research reactor can provide excellent sensitivity to short-baseline oscillation effects through a precision measurement of the reactor antineutrino spectrum at various distances from the core. We describe a proposed 2-detector experiment with a baseline of 4-20m that will enable a high-precision measurement of the reactor antineutrino spectrum from a highly-enriched uranium core at a US research reactor and provide a definitive search for short-baseline neutrino oscillations. In addition, this experiment will provide important enabling technology for reactor monitoring applications.

Djurcic, Z; Yeh, M; Blucher, E; Johnson, R; Littlejohn, B R; Dolinski, M; Lane, C; Allen, T; Morrell, S; Learned, J G; Maricic, J; Bernstein, A; Bowden, N S; Classen, T; Glenn, A; Zaitseva, N; Mumm, H P; Nico, J S; Williams, R E; Henning, R; Bryan, C; Dean, D; Efremenko, Y; Radford, D; Huber, P; Link, J M; Mariani, C; Balantekin, A B; Band, H R; Cherwinka, J C; Heeger, K M; Wang, W; Langford, T

2013-01-01T23:59:59.000Z

362

Precision manufacture of optical disc master stampers  

E-Print Network (OSTI)

industry term for the mold used to replicate polymer compact discs (CDs) in an injection molding device are not required, and a ceramic master is used directly as a stamper for injection molding. In the new process, ceramic substrates are ion machined through a photoresist mask, resulting in improved productivity

Bifano, Thomas

363

The Value of ENSO Forecast Information to Dual-Purpose Winter Wheat Production in the U.S. Southern High Plains  

Science Conference Proceedings (OSTI)

The value of El Niño–Southern Oscillation (ENSO) forecast information to southern high plains winter wheat and cattle-grazing production systems was estimated here by simulation. Although previous work has calculated average forecast value, the ...

Steve Mauget; John Zhang; Jonghan Ko

2009-10-01T23:59:59.000Z

364

Climate Change, High-Temperature Stress, Rice Productivity, and Water Use in Eastern China: A New Superensemble-Based Probabilistic Projection  

Science Conference Proceedings (OSTI)

The impact of climate change on rice productivity in China remains highly uncertain because of uncertainties from climate change scenarios, parameterizations of biophysical processes, and extreme temperature stress in crop models. Here, the Model ...

Fulu Tao; Zhao Zhang

2013-03-01T23:59:59.000Z

365

PRECISION POINTING OF IBEX-Lo OBSERVATIONS  

SciTech Connect

Post-launch boresight of the IBEX-Lo instrument on board the Interstellar Boundary Explorer (IBEX) is determined based on IBEX-Lo Star Sensor observations. Accurate information on the boresight of the neutral gas camera is essential for precise determination of interstellar gas flow parameters. Utilizing spin-phase information from the spacecraft attitude control system (ACS), positions of stars observed by the Star Sensor during two years of IBEX measurements were analyzed and compared with positions obtained from a star catalog. No statistically significant differences were observed beyond those expected from the pre-launch uncertainty in the Star Sensor mounting. Based on the star observations and their positions in the spacecraft reference system, pointing of the IBEX satellite spin axis was determined and compared with the pointing obtained from the ACS. Again, no statistically significant deviations were observed. We conclude that no systematic correction for boresight geometry is needed in the analysis of IBEX-Lo observations to determine neutral interstellar gas flow properties. A stack-up of uncertainties in attitude knowledge shows that the instantaneous IBEX-Lo pointing is determined to within {approx}0.{sup 0}1 in both spin angle and elevation using either the Star Sensor or the ACS. Further, the Star Sensor can be used to independently determine the spacecraft spin axis. Thus, Star Sensor data can be used reliably to correct the spin phase when the Star Tracker (used by the ACS) is disabled by bright objects in its field of view. The Star Sensor can also determine the spin axis during most orbits and thus provides redundancy for the Star Tracker.

Hlond, M.; Bzowski, M. [Space Research Centre of the Polish Academy of Sciences, 18A Bartycka, 00-716 Warsaw (Poland); Moebius, E.; Kucharek, H.; Heirtzler, D.; Schwadron, N. A.; Neill, M. E. O'; Clark, G. [Space Science Center and Department of Physics, University of New Hampshire, Morse Hall, 8 College Road, Durham, NH 03824 (United States); Crew, G. B. [Haystack Observatory, Massachusetts Institute of Technology, Route 40, Westford, MA 01886 (United States); Fuselier, S. [Lockheed Martin, Space Physics Lab, 3251 Hanover Street, Palo Alto, CA 94304 (United States); McComas, D. J., E-mail: mhlond@cbk.waw.pl, E-mail: eberhard.moebius@unh.edu, E-mail: gbc@haystack.mit.edu, E-mail: stephen.a.fuselier@linco.com, E-mail: DMcComas@swri.edu, E-mail: DMcComas@swri.edu [Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228 (United States)

2012-02-01T23:59:59.000Z

366

COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal  

SciTech Connect

Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

Smith, V.E.; Merriam, N.W.

1994-10-01T23:59:59.000Z

367

Hazard Analysis for the High Power Accelerator Production of Tritium (APT) Experiments at the Los Alamos Neutron Scattering Center (LANSCE).  

SciTech Connect

The Accelerator Production of Tritium (APT) Target/Blanket and Materials Engineering Demonstration and Development (ED and D) Project has undertaken a major program of high-power materials irradiation at the Los Alamos Neutron Science Center (LANSCE) Accelerator. Five experiments have been installed in the Target A-6 area, immediately before the Isotope Production facility and the LANSCE bearnstop, where they will take a 1.0-mAmp-proton beam for up to 10 months. This operation is classed as a Nuclear Category (cat)-3 activity, since enough radionuclides buildup in the path of tie beam to exceed cat-3 threshold quantities. In the process of analyzing this buildup, it was realized that a loss of coolant accident (LOCA) could result in oxidation and subsequent vaporization of certain tungsten elements contained in our experiments. If this process occurs in the presence of steam, breakup of the water molecule would also provide a potentially explosive source of hydrogen, causing maximum release of radioactive aerosols to the surrounding environment. This process can occur in a matter of seconds. Such a release would result in potentially unacceptable dose to the public at the LANSCE site boundary, 800 meters from the A-6 area.

Waters, L.S.

1999-06-08T23:59:59.000Z

368

AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking  

Science Conference Proceedings (OSTI)

An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

Wei-Kao Lu

2002-09-15T23:59:59.000Z

369

Radio Frequency Phototube, Optical Clock and Precise Measurements in Nuclear Physics  

E-Print Network (OSTI)

Recently a new experimental program of novel systematic studies of light hypernuclei using pionic decay was established at JLab (Study of Light Hypernuclei by Pionic Decay at JLab, JLab Experiment PR-08-012). The highlights of the proposed program include high precision measurements of binding energies of hypernuclei by using a high resolution pion spectrometer, HpiS. The average values of binding energies will be determined within an accuracy of ~10 keV or better. Therefore, the crucial point of this program is an absolute calibration of the HpiS with accuracy 10E-4 or better. The merging of continuous wave laser-based precision optical-frequency metrology with mode-locked ultrafast lasers has led to precision control of the visible frequency spectrum produced by mode-locked lasers. Such a phase-controlled mode-locked laser forms the foundation of an optical clock or femtosecond optical frequency comb (OFC) generator, with a regular comb of sharp lines with well defined frequencies. Combination of this technique with a recently developed radio frequency (RF) phototube results in a new tool for precision time measurement. We are proposing a new time-of-flight (TOF) system based on an RF phototube and OFC technique. The proposed TOF system achieves 10 fs instability level and opens new possibilities for precise measurements in nuclear physics such as an absolute calibration of magnetic spectrometers within accuracy 10E-4 - 10E-5.

Amur Margaryan

2009-10-16T23:59:59.000Z

370

NIST Requests Funding Proposals for Projects in Precision ...  

Science Conference Proceedings (OSTI)

... Funding Opportunity (FFO) for the Precision Measurement Grant Program, available from Grants.gov at http://www07.grants.gov/search/search.do ...

2013-12-04T23:59:59.000Z

371

PRECISION CLEANING OF SEMICONDUCTOR SURFACES USING CARBON DIOXIDE-BASED FLUIDS  

SciTech Connect

The Los Alamos National Laboratory, on behalf of the Hewlett-Packard Company, is conducting tests of a closed-loop CO{sub 2}-based supercritical fluid process, known as Supercritical CO{sub 2} Resist Remover (SCORR). We have shown that this treatment process is effective in removing hard-baked, ion-implanted photoresists, and appears to be fully compatible with metallization systems. We are now performing experiments on production wafers to assess not only photoresist removal, but also residual surface contamination due to particulate and trace metals. Dense-phase (liquid or supercritical) CO{sub 2}, since it is non-polar, acts like an organic solvent and therefore has an inherently high volubility for organic compounds such as oils and greases. Also, dense CO{sub 2} has a low-viscosity and a low dielectric constant. Finally, CO{sub 2} in the liquid and supercritical fluid states can solubilize metal completing agents and surfactants. This combination of properties has interesting implications for the removal not only of organic films, but also trace metals and inorganic particulate. In this paper we discuss the possibility of using CO{sub 2} as a precision-cleaning solvent, with particular emphasis on semiconductor surfaces.

J. RUBIN; L. SIVILS; A. BUSNAINA

1999-07-01T23:59:59.000Z

372

Forest Products: Acoustic Humidity Sensor  

SciTech Connect

The new acoustic sensor, designed as a humidity-control system for the paper and textile industries, can both eliminate overdrying and improve product quality by measuring humidity precisely. This new fact sheet explains how the process works.

Poole, L.; Recca, L.

1999-01-29T23:59:59.000Z

373

A Precise Open-Loop Torque Control for an Interior Permanent Magnet Synchronous Motor  

E-Print Network (OSTI)

A Precise Open-Loop Torque Control for an Interior Permanent Magnet Synchronous Motor (IPMSM@lea.upb.de Abstract-Interior permanent magnet synchronous motors (IPMSM) are preferentially chosen as traction drives. INTRODUCTION Interior permanent magnet synchronous motors (IPMSM) provide high power and torque densities

Noé, Reinhold

374

New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report  

SciTech Connect

This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

Ray, W. Harmon

2002-06-05T23:59:59.000Z

375

Precise and Accurate Density Determination of Explosives Using Hydrostatic Weighing  

SciTech Connect

Precise and accurate density determination requires weight measurements in air and water using sufficiently precise analytical balances, knowledge of the densities of air and water, knowledge of thermal expansions, availability of a density standard, and a method to estimate the time to achieve thermal equilibrium with water. Density distributions in pressed explosives are inferred from the densities of elements from a central slice.

B. Olinger

2005-07-01T23:59:59.000Z

376

Remote Sensing Tools Can Add Precision to Your Farming Operation  

E-Print Network (OSTI)

Remote Sensing Tools Can Add Precision to Your Farming Operation Harold Kaufman, Terry Wheeler is therefore important for the success of precision agriculture on individual farms. Remote sensing is a method.digitalglobe.com). However, the most inexpensive method of remote sensing is to shoot infrared images with a 35mm camera

Mukhtar, Saqib

377

5. oktober 2009 Precision control of biogas plants  

E-Print Network (OSTI)

5. oktober 2009 Precision control of biogas plants Final report Henrik B. Møller, Anders M. Nielsen: "Precision control of biogas plants", J. Nr. 33031-0028, funded by EUDP 2005. The final report consists. Danish summary of the results: Det har været formålet at udvikle drift og design af biogas anlæg med

378

Precision selection for energy-efficient pixel shaders  

Science Conference Proceedings (OSTI)

In this work, we seek to realize energy savings in modern pixel shaders by reducing the precision of their arithmetic. We explore three schemes for controlling this reduction. The first is a static analysis technique, which analyzes shader programs to ... Keywords: energy efficient, pixel shader, variable precision

Jeff Pool; Anselmo Lastra; Montek Singh

2011-08-01T23:59:59.000Z

379

Training ultra precision engineers for UK manufacturing industry  

Science Conference Proceedings (OSTI)

Ultra Precision Engineers are in demand in both UK and European manufacturing industries. Engineering Companies can address this skills shortage by training existing staff or recruiting new staff with the appropriate skills. Since companies are understandably ... Keywords: Higher education, Industry, Knowledge transfer, Postgraduate, Precision engineering

Christopher Sansom; Paul Shore

2013-06-01T23:59:59.000Z

380

Energy Production Processes in Deuterated Metals: Volume 1  

Science Conference Proceedings (OSTI)

EPRI sponsored an experimental program to investigate the idea that heat, and possibly nuclear products, could be created electrolytically in palladium lattices. Observations using high precision mass flow calorimetry revealed that excess heat could be produced in electrochemical cells with palladium cathodes and a heavy water electrolyte in a more or less reproducible manner, when a number of criteria were satisfied. This excess heat generated is far too large to be a chemical or metallurgical transform...

1998-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Production Data Integration into High Resolution Geologic Models with Trajectory-based Methods and A Dual Scale Approach  

E-Print Network (OSTI)

Inverse problems associated with reservoir characterization are typically underdetermined and often have difficulties associated with stability and convergence of the solution. A common approach to address this issue is through the introduction of prior constraints, regularization or reparameterization to reduce the number of estimated parameters. We propose a dual scale approach to production data integration that relies on a combination of coarse-scale and fine-scale inversions while preserving the essential features of the geologic model. To begin with, we sequentially coarsen the fine-scale geological model by grouping layers in such a way that the heterogeneity measure of an appropriately defined 'static' property is minimized within the layers and maximized between the layers. Our coarsening algorithm results in a non-uniform coarsening of the geologic model with minimal loss of heterogeneity and the ?optimal? number of layers is determined based on a bias-variance trade-off criterion. The coarse-scale model is then updated using production data via a generalized travel time inversion. The coarse-scale inversion proceeds much faster compared to a direct fine-scale inversion because of the significantly reduced parameter space. Furthermore, the iterative minimization is much more effective because at the larger scales there are fewer local minima and those tend to be farther apart. At the end of the coarse-scale inversion, a fine-scale inversion may be carried out, if needed. This constitutes the outer iteration in the overall algorithm. The fine-scale inversion is carried out only if the data misfit is deemed to be unsatisfactory. We propose a fast and robust approach to calibrating geologic models by transient pressure data using a trajectory-based approach that based on a high frequency asymptotic expansion of the diffusivity equation. The trajectory or ray-based methods are routinely used in seismic tomography. In this work, we investigate seismic rays and compare them with streamlines. We then examine the applicability of streamline-based methods for transient pressure data inversion. Specifically, the high frequency asymptotic approach allows us to analytically compute the sensitivity of the pressure responses with respect to reservoir properties such as porosity and permeability. It facilitates a very efficient methodology for the integration of pressure data into geologic models.

Kim, Jong Uk

2009-08-01T23:59:59.000Z

382

Precision shape modification of nanodevices with a low-energy electron beam  

DOE Patents (OSTI)

Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

Zettl, Alex (Kensington, CA); Yuzvinsky, Thomas David (Berkeley, CA); Fennimore, Adam (Berkeley, CA)

2010-03-09T23:59:59.000Z

383

Precision Measurements of Tau Lepton Decays  

SciTech Connect

Using data collected with the BABAR detector at the SLAC PEP-II electron-positron storage ring operating at a center-of-mass energy near 10.58 GeV, the branching fractions {Beta}({tau}{sup -} {yields} {pi}{sup -}{pi}{sup -}{pi}{sup +}{nu}{sub {tau}}) = (8.83 {+-} 0.01 {+-} 0.13)%, {Beta}({tau}{sup -} {yields} K{sup -}{pi}{sup -}{pi}{sup +}{nu}{sub {tau}}) = (0.273 {+-} 0.002 {+-} 0.009)%, {Beta}({tau}{sup -} {yields} K{sup -}{pi}{sup -}K{sup +}{nu}{sub {tau}}) = (0.1346 {+-} 0.0010 {+-} 0.0036)%, and {Beta}({tau}{sup -} {yields} K{sup -}K{sup -}K{sup +}{nu}{sub {tau}}) = (1.58 {+-} 0.13 {+-} 0.12) x 10{sup -5} are measured where the uncertainties are statistical and systematic, respectively. The invariant mass distribution for the {tau}{sup -} {yields} {pi}{sup -}{pi}{sup -}{pi}{sup +}{nu}{sub {tau}} {yields} K{sup -}{pi}{sup -}{pi}{sup +}{nu}{sub {tau}}, {tau}{sup -} {yields} K{sup -}{pi}{sup -}K{sup +}{nu}{sub {tau}} and {tau}{sup -} {yields} K{sup -}K{sup -}K{sup +}{nu}{sub {tau}} decays are unfolded to correct for detector effects. A measurement of {Beta}({tau}{sup -} {yields} {phi}{pi}{sup -}{nu}{sub {tau}}) = (3.42 {+-} 0.55 {+-} 0.25) x 10{sup -5}, a measurement of {Beta}({tau}{sup -} {yields} {phi}K{sup -}{nu}{sub {tau}}) = (3.39 {+-} 0.20 {+-} 0.28) x 10{sup -5} and an upper limit on {Beta}({tau}{sup -} {yields} K{sup -}K{sup -}K{sup +}{nu}{sub {tau}}[ex.{phi}]) {le} 2.5 x 10{sup -6} {at} 905 CL are determined from a binned maximum likelihood fit of the {tau}{sup -} {yields} K{sup -}{pi}{sup -}K{sup +}{nu}{sub {tau}} and {tau}{sup -} {yields} K{sup -}K{sup -}K{sup +}{nu}{sub {tau}} K{sup +}K{sup -} invariant mass distributions. The branching ratio {Beta}({tau}{sup -} {yields} K{sup -}{nu}{sub {tau}})/{Beta}({tau}{sup -} {yields} {pi}{sup -}{nu}{sub {tau}}) is measured to be (6.531 {+-} 0.056 {+-} 0.093) x 10{sup -2} from which |V{sub us}| is determined to be 0.2255 {+-} 0.0023. The branching ratio {Beta}/({tau}{sup -} {yields} {mu}{nu}{sub {tau}}{bar {nu}}{sub {mu}})/{Beta}({tau}{sup -} {yields} e{sup -} {nu}{sub {tau}}{bar {nu}}{sub e}) = (9.796 {+-} 0.016 {+-} 0.035) x 10{sup -1} is measured enabling a precision test of the Standard Model assumption of charged current lepton universality, g{sub {mu}}/g{sub e} = 1.0036 {+-} 0.0020. The branching ratios {Beta}({tau}{sup -} {yields} K{sup -}{nu}{sub {tau}})/{Beta}({tau}{sup -} {yields} e{sup -}{nu}{sub {tau}}{bar {nu}}{sub e}) = (3.882 {+-} 0.032 {+-} 0.057) x 10{sup -2}, and {Beta}({tau}{sup -} {yields} {pi}{sup -}{nu}{sub {tau}})/{Beta}({tau}{sup -} {yields} e{nu}{sub {tau}}{bar {nu}}{sub e}) = (5.9545 {+-} 0.014 {+-} 0.061) x 10{sup -1} are measured which provide additional tests of charged current lepton universality, (g{sub {tau}}/g{sub {mu}}){sub {pi}} = 0.9856 {+-} 0.0057 and (g{sub {tau}}/g{sub {mu}}){sub K} = 0.9827 {+-} 0.0086 which can be combined to give (g{sub {tau}}/g{sub {mu}}){sub {pi}/K} = 0.9850 {+-} 0.0054. Any deviation of these measurements from the expected Standard Model values would be an indication of new physics.

Nugent, Ian M.; /Victoria U.

2010-03-16T23:59:59.000Z

384

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: HA Site  

Science Conference Proceedings (OSTI)

Typically, utilities comanage some or all of their low-volume wastes with their high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement of coal combustion by-products at a utility-owned impoundment in the midwestern United States (HA site). The findings from this research provided technical information for use in a study of comanagement practices by the U.S. Environmental Protection Agency (EPA).

2000-10-30T23:59:59.000Z

385

Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories  

Science Conference Proceedings (OSTI)

The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

Not Available

1983-06-01T23:59:59.000Z

386

On software certification: we need product-focused approaches  

Science Conference Proceedings (OSTI)

In this paper we begin by examining the “certification” of a consumer product, a baby walker, that is product-focused, i.e., the certification process requires the performance of precisely defined tests on the product with measurable ...

Alan Wassyng; Tom Maibaum; Mark Lawford

2008-09-01T23:59:59.000Z

387

SPATIAL DISTRIBUTION OF FISSION-PRODUCT GAMMA-RAY ENERGY DEPOS WATER REACTOR FUEL ELEMENTS, VOLUME 2  

Science Conference Proceedings (OSTI)

Reports studies undertaken to produce a precise and readily interpretable description of the distribution of absorbed energy in an LWR fuel element. Data are useful in determining the spatial distribution of absorption of fission-product gamma-ray energy around regions of high local power density following the shutdown of a nuclear reactor.

1978-04-01T23:59:59.000Z

388

Integrated High Resolution Microearthquake Analysis and Monitoring for Optimizing Steam Production at The Geysers Geothermal Field, California  

E-Print Network (OSTI)

induced seismicity at The Geysers steam reservoir, NorthernMonitoring for Optimizing Steam Production at The Geysersgas concentrations in steam produced from The Geysers,

Majer, Ernest; Peterson, John; Stark, Mitch; Smith, Bill; Rutqvist, Jonny; Kennedy, Mack

2004-01-01T23:59:59.000Z

389

Production of high-energy chemicals using solar energy heat. Project 8999, final report for the period September 1, 1977--May 31, 1978  

DOE Green Energy (OSTI)

The first phase of a study to identify candidate processes and products suitable for future exploitation using high-temperature solar energy is presented. This phase has been principally analytical, consisting of techno-economic studies, thermodynamic assessments of chemical reactions and processes, and the determination of market potentials for major chemical commodities that use significant amounts of fossil resources today. The objective was to identify energy-intensive processes that would be suitable for the production of chemicals and fuels using solar energy process heat. Of particular importance was the comparison of relative costs and energy requirements for the selected solar product versus costs for the product derived from conventional processing. The assessment methodology used a systems analytical approach to identify processes and products having the greatest potential for solar energy-thermal processing. This approach was used to establish the basis for work to be carried out in subsequent phases of development. It has been the intent of the program to divide the analysis and process identification into the following three distinct areas: (1) process selection, (2) process evaluation, and (3) ranking of processes. Four conventional processes were selected for assessment namely, methanol synthesis, styrene monomer production, vinyl chloride monomer production, and terephthalic acid production.

Dafler, J.R.; Sinnott, J.; Novil, M.; Yudow, B.D.; Rackoff, M.G.

1978-12-01T23:59:59.000Z

390

Prospects For Precision Measurements with Reactor Antineutrinos at Daya Bay  

E-Print Network (OSTI)

In 2012 the Daya Bay experiment made an unambiguous observation of reactor antineutrino disappearance over kilometer-long baselines and determined that the neutrino mixing angle $\\theta_{13}$ is non-zero. The measurements of Daya Bay have provided the most precise determination of $\\theta_{13}$ to date. This whitepaper outlines the prospects for precision studies of reactor antineutrinos at Daya Bay in the coming years. This includes precision measurements of sin$^2 2\\theta_{13}$ and $\\Delta m^2_{ee}$ to $reactor flux and spectrum, and non-standard physics searches.

The Daya Bay Collaboration

2013-09-30T23:59:59.000Z

391

Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: LS Site  

Science Conference Proceedings (OSTI)

The electric power industry has historically comanaged low-volume wastes with high-volume by-products as a cost-effective means of disposal. This report documents an investigation into the effects of comanagement of low-volume wastes with high-volume coal combustion by-products at the LS site. This is one of 14 sites investigated by EPRI to provide background information to the Environmental Protection Agency (EPA) for the 2000 Regulatory Determination on comanagement under the Resource Conservation and ...

2007-06-18T23:59:59.000Z

392

Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals  

SciTech Connect

This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

McKimpson, Marvin G.

2006-04-06T23:59:59.000Z

393

Precision electronic speed controller for an alternating-current  

DOE Patents (OSTI)

A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

Bolie, Victor W. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

394

Precise reddening and metallicity of NGC6752 from FLAMES spectra  

E-Print Network (OSTI)

(abridged) Accurate reddenings for Globular Clusters could be obtained by comparing the colour-temperature obtained using temperatures from reddening-free indicator (Halpha), with that given by standard colour-temperature calibrations. From a single 1300 seconds exposure with FLAMES at VLT2 we obtained spectra centred on Halpha (R=6000, 5high precision reddening estimate has been obtained for the cluster: E(B-V)=0.046 +/- 0.005. The same exposure provided UVES spectra of seven stars near the red giant branch bump (R=40000, 20

Gratton, R G; Carretta, E; De Angeli, F; Lucatello, S; Momany, Y; Piotto, G; Recio-Blanco, A

2005-01-01T23:59:59.000Z

395

Electroweak Precision Measurements and Collider Probes of the Standard Model with Large Extra Dimensions  

SciTech Connect

The elementary particles of the Standard Model may live in more than 3+1 dimensions. We study the consequences of large compactified dimensions on scattering and decay observables at high-energy colliders. Our analysis includes global fits to electroweak precision data, indirect tests at high-energy electron-positron colliders (LEP2 and NLC), and direct probes of the Kaluza-Klein resonances at hadron colliders (Tevatron and LHC). The present limits depend sensitively on the Higgs sector, both the mass of the Higgs boson and how many dimensions it feels. If the Higgs boson is trapped on a 3+1 dimensional wall with the fermions, large Higgs masses (up to 500 GeV) and relatively light Kaluza-Klein mass scales (less than 4 TeV) can provide a good fit to precision data. That is, a light Higgs boson is not necessary to fit the electroweak precision data, as it is in the Standard Model. If the Higgs boson propagates in higher dimensions, precision data prefer a light Higgs boson (less than 260 GeV), and a higher compactification scale (greater than 3.8 TeV). Future colliders can probe much larger scales. For example, a 1.5 TeV electron-positron linear collider can indirectly discover Kaluza-Klein excitations up to 31 TeV if 500 fb{sup {minus}1} integrated luminosity is obtained.

Rizzo, Thomas G.

1999-06-03T23:59:59.000Z

396

Modeling and precision control of ionic polymer metal composite  

E-Print Network (OSTI)

This thesis describes the open-loop behavior of an ionic polymer metal composite (IPMC) strip as a novel actuator, the empirical force and position models, the control system and the improved dynamic characteristics with the feedback control implemented. Ionic polymer metal composite is a novel polymer in the class of electroactive polymers. IPMC consists of a base polymer coated with electrodes made up of highly conducting pure metals such as gold. The actuation behavior of IPMC can be attributed to the bending of an IPMC strip upon application of voltage across its thickness. The main reasons for the bending are ion migration on the application of voltage and swelling and contraction caused by water content. An experimental setup to study the open-loop force and tip displacement of an IPMC strip in a cantilever configuration was developed, and real time controllers were implemented. In open loop, the force response of the IPMC strip of dimensions 25 mm x 3.9 mm x 0.16 mm to a 1.2-V step input is studied. The open-loop rise time was 0.08 s and the percent overshoot was 131.62 %, while the settling time was about 10 s. Based on this open-loop step response using a least-square curve-fitting methodology, a fourth-order empirical transfer function from the voltage input to the force output was derived. The tip displacement response of an IPMC strip of dimensions 23 mm x 3.96 mm x 0.16 mm to a 1.2-V step input was also studied. The step response exhibited a 205.34 % overshoot with a rise time of 0.08 s, and the settling time was 27 s. A fourth-order empirical transfer function from the step input to the tip displacement as output was also derived. Based on the derived transfer functions lead-lag feedback controllers were designed for precision control of both force and displacement. The control objectives were to decrease the settling time and the percent overshoot, and achieve reference input tracking. After implementing the controllers, the percent overshoot decreased to 30% while the settling time was reduced to 1.5 s in case of force control. With position control, the settling time was reduced to 1 s while the percent overshoot decreased to 20%. Precision micro-scale force and position-control capabilities of the IPMC were also demonstrated. A 4 ?N force resolution was achieved, with a force noise of 0.904-?N rms. The position resolution was 20 ?m with a position noise of 7.6-?m rms.

Bhat, Nikhil Dilip

2003-08-01T23:59:59.000Z

397

DOE - Office of Legacy Management -- Precision Extrusion Co - IL 20  

NLE Websites -- All DOE Office Websites (Extended Search)

Precision Extrusion Co - IL 20 Precision Extrusion Co - IL 20 FUSRAP Considered Sites Site: PRECISION EXTRUSION CO. (IL.20) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 720 East Green Avenue , Bensenville , Illinois IL.20-1 Evaluation Year: 1987 IL.20-2 Site Operations: 1956-1959, metal fabrication - extruded uranium billets. IL.20-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited quantities of materials handled at the site IL.20-2 Radioactive Materials Handled: Yes IL.20-1 Primary Radioactive Materials Handled: Uranium IL.20-1 Radiological Survey(s): Yes IL.20-3 Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to PRECISION EXTRUSION CO.

398

Precision gravity studies at Cerro Prieto: the second year  

DOE Green Energy (OSTI)

Precision gravity measurements were initiated at Cerro Prieto in 1978. Interpretation of the first annual repetition of the measurements is presented. Field procedures, data reduction, and data interpretation are reviewed briefly. (MHR)

Grannell, R.B.; Tarman, D.W.; Clover, R.C.; Leggewie, R.M.; Aronstam, P.S.; Kroll, R.C.; Eppink, J.

1980-02-01T23:59:59.000Z

399

Correlation Between Precision Gravity and Subsidence Measurements at Cerro Prieto  

E-Print Network (OSTI)

PRECISION GRAVITY AND SUBSIDENCE MEASUREMENTS AT CERROPRECISION GRAVITY AND SUBSIDENCE MEASUREMENTS AT CERROn d i c a t e s t h a t subsidence took place. Uost of t h e

Zelwer, R.

2010-01-01T23:59:59.000Z

400

Precise goal-independent abstract interpretation of constraint logic programs  

Science Conference Proceedings (OSTI)

We present a goal-independent abstract interpretation framework for constraint logic programs, and prove the sufficiency of a set of conditions for abstract domains to ensure that the analysis will never lose precision. Along the way, we formally define ...

Peter Schachte

2003-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Coatings to Prevent Diffusion of Fission Products into Turbine Materials Used in High Temperature Gas Cooled Nuclear Electric Genera ting Stations  

Science Conference Proceedings (OSTI)

This report describes EPRI activities relating to turbine blade coatings to prevent diffusion of fission products into turbine materials used in high temperature gas cooled nuclear electric generating stations. Specifically, this report describes activities that have identified candidate coatings and methodologies for evaluating the effectiveness of these coatings.

2003-12-31T23:59:59.000Z

402

IT enabled redesign of export procedure for high-value pharmaceutical product under temperature control: the case of drug living lab  

Science Conference Proceedings (OSTI)

In this paper, we analyze and redesign the export procedure for shipping a high-value pharmaceutical product in a strict temperature-controlled logistics environment (cold chain) from Ireland to the US using the e3-control methodology. The ... Keywords: G2B, business process redesign, case study, export procedure, redesign methodology

Jianwei Liu; Allen Higgins; Yao-Hua Tan

2010-05-01T23:59:59.000Z

403

Inclusive ?0, ?, and direct photon production at high transverse momentum in p+p and d+Au collisions at ?sNN=200 GeV  

E-Print Network (OSTI)

We report a measurement of high-p[subscript T] inclusive ? [pi][superscript 0], ?[eta], and direct photon production in p+p and d+Au collisions at ?s[subscript NN]=200?GeV at midrapidity (0

Balewski, Jan T.

404

High pT [p subscript T] nonphotonic electron production in p+p collisions at ?s=200??[square root of s=200] GeV  

E-Print Network (OSTI)

We present the measurement of nonphotonic electron production at high transverse momentum (pT>2.5??GeV/c) [(p subscript T > 2.5 GeV/c)] in p+p collisions at ?s=200??[square root of s=200] GeV using data recorded during ...

Balewski, Jan T.

405

FACTORS WHICH AFFECT FORMATION AND DEPOSITION OF TRANSPORT CORROSION PRODUCTS IN HIGH-TEMPERATURE RECIRCULATING WATER LOOPS  

SciTech Connect

Deposits of corrosion products form on heat transfer surfaces and in radiation flux zones attemperatures around 500 deg F in stainless steel systems operating with circulating watcr. The report considers the possible harmful effects of such deposits on heat transfer and fluid flow, as well as factors involved in the origin of these corrosion products and in the mechanisms of deposition. The prevention of d electrostatic methods is discussed. (auth)

Wohlberg, C.; Kleimola, F.W.

1953-12-01T23:59:59.000Z

406

Integrated High Resolution Microearthquake Analysis and Monitoring for Optimizing Steam Production at The Geysers Geothermal Field, California  

DOE Green Energy (OSTI)

In December of 2003 a large amount of water from the Santa Rosa wastewater project began being pumped to The Geysers for injection. Millions of dollars are being spent on this injection project in the anticipation that the additional fluid will not only extend the life of The Geysers but also greatly increase the net amount of energy extracted. Optimal use of the injected water, however, will require that the water be injected at the right place, in the right amount and at the proper rate. It has been shown that Microearthquake (MEQ) generation is a direct indicator of the effect of fluid injection at The Geysers (Majer and McEvilly 1979; Eberhart-Phillips and Oppenheimer 1984; Enedy et al. 1992; Stark 1992; Kirkpatrick et al. 1999; Smith et al. 2000). It is one of the few, if not only methods, practical to monitor the volumetric effect of water injection at The Geysers. At the beginning of this project there was not a detailed MEQ response, Geysers-wide, to a large influx of water such as will be the case from the Santa Rosa injection project. New technology in MEQ acquisition and analysis, while used in parts of The Geysers for short periods of time had not been applied reservoir-wide to obtain an integrated analysis of the reservoir. Also needed was a detailed correlation with the production and injection data on a site wide basis. Last but not least, needed was an assurance to the community that the induced seismicity is documented and understood such that if necessary, mitigation actions can be undertaken in a timely manner. This project was necessary not only for optimizing the heat recovery from the resource, but for assuring the community that there is no hazard associated with the increased injection activities. Therefore, the primary purpose of this project was to develop and apply high-resolution micro earthquake methodology for the entire Geysers geothermal field such that at the end of this project a monitoring and process definition methodology will be available to: (1) Optimize the economic development of The Geysers (as well as other areas) by providing improved information on fluid flow and reservoir dynamics. (2) Aid in the mitigation of environmental impacts of increased fluid injection by improving the understanding between fluid injection and seismicity. (3) Provide a cost-effective blueprint such that the technology can be applied on a routine basis in the future.

Majer, Ernest; Peterson, John; Stark, Mitch; Smith, Bill; Rutqvist, Jonny; Kennedy, Mack

2004-04-26T23:59:59.000Z

407

Development of precision machining and inspection technology for structural ceramics  

SciTech Connect

Finish machining operations contribute the majority of the costs associated with fabricating high quality ceramic products. These components are typically used in harsh environments such as diesel engines, the defense industry, and automotive applications. The required finishing operations involve a variety of technology areas including process controls, process analysis, product certification, etc. and are not limited only to component grinding methods. The broad range of manufacturing problem solving expertise available in Oak Ridge provided resources that were far beyond what is available to the Coors manufacturing sites. Coors contributed equipment, such as the computer controls and part handling mechanisms associated with a state-of-the-art inspection machine plus operation-specific experience base. In addition, addressing these challenging tasks enabled Oak Ridge personnel to maintain familarity with rapidly advancing technologies, such as those associated with machine vision equipment, process monitoring techniques, and computer control systems.

Barkman, W.E.

1997-03-06T23:59:59.000Z

408

Fission Product Impact Reduction via Protracted In-core Retention in Very High Temperature Reactor (VHTR) Transmutation Scenarios  

E-Print Network (OSTI)

The closure of the nuclear fuel cycle is a topic of interest in the sustainability context of nuclear energy. The implication of such closure includes considerations of nuclear waste management. This originates from the fact that a closed fuel cycle requires recycling of useful materials from spent nuclear fuel and discarding of non-usable streams of the spent fuel, which are predominantly the fission products. The fission products represent the near-term concerns associated with final geological repositories for the waste stream. Long-lived fission products also contribute to the long-term concerns associated with such repository. In addition, an ultimately closed nuclear fuel cycle in which all actinides from spent nuclear fuels are incinerated will result in fission products being the only source of radiotoxicity. Hence, it is desired to develop a transmutation strategy that will achieve reduction in the inventory and radiological parameters of significant fission products within a reasonably short time. In this dissertation, a transmutation strategy involving the use of the VHTR is developed. A set of specialized metrics is developed and applied to evaluate performance characteristics. The transmutation strategy considers six major fission products: 90Sr, 93Zr, 99Tc, 129I, 135Cs and 137Cs. In this approach, the unique core features of VHTRs operating in equilibrium fuel cycle mode of 405 effective full power days are used for transmutation of the selected fission products. A 30 year irradiation period with 10 post-irradiation cooling is assumed. The strategy assumes no separation of each nuclide from its corresponding material stream in the VHTR fuel cycle. The optimum locations in the VHTR core cavity leading to maximized transmutation of each selected nuclides are determined. The fission product transmutation scenarios are simulated with MCNP and ORIGEN-S. The results indicate that the developed fission product transmutation strategy offers an excellent potential approach for the reduction of inventories and radiological parameters, particularly for long-lived fission products (93Zr, 99Tc, 129I and 135Cs). It has been determined that the in-core transmutation of relatively short-lived fission products (90Sr and 137Cs) has minimal advantage over a decay-only scenario for these nuclides. It is concluded that the developed strategy is a viable option for the reduction of radiotoxicity contributions of the selected fission products prior to their final disposal in a geological repository. Even in the cases where the transmutation advantage is minimal, it is deemed that the improvement gained, coupled with the virtual storage provided for the fission products during the irradiation period, makes the developed fission product transmutation strategy advantageous in the spent fuel management scenarios. Combined with the in-core incineration options for TRU, the developed transmutation strategy leads to potential achievability of engineering time scales in the comprehensive nuclear waste management.

Alajo, Ayodeji Babatunde

2010-05-01T23:59:59.000Z

409

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

DOE Green Energy (OSTI)

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

410

High conversion of coal to transportation fuels for the future with low HC gas production. Progress report, October 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

Experimental coal liquefaction studies conducted in a batch microreactor in our laboratory have demonstrated potential for high conversions of coal to liquids with low yields of hydrocarbon (HC) gases, hence a small consumption of hydrogen in the primary liquefaction step. Ratios of liquids/HC gases as high as 30/1, at liquid yields as high as 82% of the coal by weight, have been achieved. The principal objective of this work is to examine how nearly we may approach these results in a continuous-flow system, at a size sufficient to evaluate the process concept for production of transportation fuels from coal.

Wiser, W.H.; Oblad, A.G.

1996-01-01T23:59:59.000Z

411

Lumitrack: low cost, high precision, high speed tracking with projected m-sequences  

Science Conference Proceedings (OSTI)

We present Lumitrack, a novel motion tracking technology that uses projected structured patterns and linear optical sensors. Each sensor unit is capable of recovering 2D location within the projection area, while multiple sensors can be combined for ... Keywords: input devices, optical tracking, structured light

Robert Xiao, Chris Harrison, Karl D.D. Willis, Ivan Poupyrev, Scott E. Hudson

2013-10-01T23:59:59.000Z

412

Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

Freels, James D [ORNL; Jain, Prashant K [ORNL; Hobbs, Randy W [ORNL

2012-01-01T23:59:59.000Z

413

Open Charm Production at RHIC  

E-Print Network (OSTI)

Recent experimental measurements on open charm production in proton-proton, proton (deuteron)-nucleus and nucleus-nucleus collisions at RHIC are reviewed. A comparison with theoretical predictions is made. Some unsettled issues in open charm production call for precise measurements on directly reconstructed open charm hadrons.

Xin Dong

2005-09-30T23:59:59.000Z

414

Precision timing of PSR J1012+5307 and strong-field GR tests  

E-Print Network (OSTI)

We report on the high precision timing analysis of the pulsar-white dwarf binary PSR J1012+5307. Using 15 years of multi-telescope data from the European Pulsar Timing Array (EPTA) network, a significant measurement of the variation of the orbital period is obtained. Using this ideal strong-field gravity laboratory we derive theory independent limits for both the dipole radiation and the variation of the gravitational constant.

Lazaridis, Kosmas; Jessner, Axel; Kramer, Michael; Zensus, J Anton; Stappers, Ben W; Janssen, Gemma H; Purver, Mark B; Lyne, Andrew G; Jordan, Christine A; Desvignes, Gregory; Cognard, Ismael; Theureau, Gilles

2010-01-01T23:59:59.000Z

415

Precision timing of PSR J1012+5307 and strong-field GR tests  

E-Print Network (OSTI)

We report on the high precision timing analysis of the pulsar-white dwarf binary PSR J1012+5307. Using 15 years of multi-telescope data from the European Pulsar Timing Array (EPTA) network, a significant measurement of the variation of the orbital period is obtained. Using this ideal strong-field gravity laboratory we derive theory independent limits for both the dipole radiation and the variation of the gravitational constant.

Kosmas Lazaridis; Norbert Wex; Axel Jessner; Michael Kramer; J. Anton Zensus; Ben W. Stappers; Gemma H. Janssen; Mark B. Purver; Andrew G. Lyne; Christine A. Jordan; Gregory Desvignes; Ismael Cognard; Gilles Theureau

2010-01-26T23:59:59.000Z

416

The critical role of manufacturing-process innovation on product development excellence in high-technology companies  

E-Print Network (OSTI)

Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

Duarte, Carlos E. A., 1962-

2004-01-01T23:59:59.000Z

417

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2006.01.01 - 2006.12.31 Lead Scientist : Marc Fischer For data sets, see below. Description Accurate prediction of the regional responses of CO2 flux to changing climate, land use, and management requires models that are parameterized and tested against measurements made in multiple land cover types and over seasonal to inter-annual time scales. In an extension of our earlier work on crop systems, we investigated the effects of burning on the cycles of carbon, water, and energy in an example of grazed land of the Southern Great Plains. In collaboration with Dr. Herman Mayeux, of the USDA Grazing

418

Precise Gravimetry and Geothermal Reservoir Management | Open Energy  

Open Energy Info (EERE)

Precise Gravimetry and Geothermal Reservoir Management Precise Gravimetry and Geothermal Reservoir Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Precise Gravimetry and Geothermal Reservoir Management Abstract Modern portable gravimeters can routinely achieve a5 ugal uncertainty with careful measurementprocedures involving multiple station occupations inthe same day, and stacking of readings over at least15 minutes during each occupation. Although furtherimprovements in gravimeter accuracy are feasible,other practical factors relating to repeat surveys ofgeothermal fields make such improvements oflimited value. The two most important factors arebenchmark elevation variations (3 ugal/cm) andgroundwater level fluctuations (5-10 ugal/m). Dualfrequency GPS receivers can give elevations

419

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2003.04.02 - 2003.09.02 Lead Scientist : Marc Fischer For data sets, see below. Description Ecosystem-atmosphere exchange of carbon, water, and energy varies with climate, soil, and land management, in ways 1) that influence the CO2 flux and planetary boundary layer CO2 concentration in ARM CART and 2) that we can model and predict. This activity repeated portable flux system measurements that we performed in spring 2002, by continuing measurements of the spatial heterogeneity of carbon, water, and energy fluxes in fields surrounding the ARM SGP Central Facility (CF).

420

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2004.04.15 - 2004.12.15 Lead Scientist : Marc Fischer For data sets, see below. Description Accurate prediction of the regional responses of CO2 flux to changing climate, land use, and management requires models that are parameterized and tested against measurements made in multiple land cover types and over seasonal to inter-annual time scales. Models predicting fluxes for un-irrigated agriculture were posed with the challenge of characterizing the onset and severity of plant water stress. We conducted a study that quantified the spatial heterogeneity and temporal variations in land

Note: This page contains sample records for the topic "high precision products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

TRITIUM PERMEATION AND TRANSPORT IN THE GASOLINE PRODUCTION SYSTEM COUPLED WITH HIGH TEMPERATURE GAS-COOLED REACTORS (HTGRS)  

Science Conference Proceedings (OSTI)

This paper describes scoping analyses on tritium behaviors in the HTGR-integrated gasoline production system, which is based on a methanol-to-gasoline (MTG) plant. In this system, the HTGR transfers heat and electricity to the MTG system. This system was analyzed using the TPAC code, which was recently developed by Idaho National Laboratory. The global sensitivity analyses were performed to understand and characterize tritium behaviors in the coupled HTGR/MTG system. This Monte Carlo based random sampling method was used to evaluate maximum 17,408 numbers of samples with different input values. According to the analyses, the average tritium concentration in the product gasoline is about 3.05×10-3 Bq/cm3, and 62 % cases are within the tritium effluent limit (= 3.7x10-3 Bq/cm3[STP]). About 0.19% of released tritium is finally transported from the core to the gasoline product through permeations. This study also identified that the following four parameters are important concerning tritium behaviors in the HTGR/MTG system: (1) tritium source, (2) wall thickness of process heat exchanger, (3) operating temperature, and (4) tritium permeation coefficient of process heat exchanger. These four parameters contribute about 95 % of the total output uncertainties. This study strongly recommends focusing our future research on these four parameters to improve modeling accuracy and to mitigate tritium permeation into the gasol ine product. If the permeation barrier is included in the future study, the tritium concentration will be significantly reduced.

Chang H. Oh; Eung S. Kim; Mike Patterson

2011-05-01T23:59:59.000Z

422

Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides  

DOE Patents (OSTI)

A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

Ramkumar, Shwetha; Fan, Liang-Shih

2013-07-30T23:59:59.000Z

423

Method for making precisely configured flakes useful in optical devices  

DOE Patents (OSTI)

Precisely configured, especially of geometric shape, flakes of liquid crystal material are made using a mechanically flexible polymer mold with wells having shapes which are precisely configured by making the mold with a photolithographically manufactured or laser printed master. The polymer liquid crystal is poured into the wells in the flexible mold. When the liquid crystal material has solidified, the flexible mold is bent and the flakes are released and collected for use in making an electrooptical cell utilizing the liquid crystal flakes as the active element therein.

Trajkovska-Petkoska, Anka (Rochester, NY); Jacobs, Stephen D. (Pittsford, NY); Kosc, Tanya Z. (Rochester, NY); Marshall, Kenneth L. (Rochester, NY)

2007-07-03T23:59:59.000Z

424

Precise Measurement of Laser Power using an Optomechanical System  

E-Print Network (OSTI)

This paper shows a novel method to precisely measure the laser power using an optomechanical system. By measuring a mirror displacement caused by the reflection of an amplitude modulated laser beam, the number of photons in the incident continuous-wave laser can be precisely measured. We have demonstrated this principle by means of a prototype experiment uses a suspended 25 mg mirror as an mechanical oscillator coupled with the radiation pressure and a Michelson interferometer as the displacement sensor. A measurement of the laser power with an uncertainty of less than one percent (1 sigma) is achievable.

Agatsuma, Kazuhiro; Ballmer, Stefan; DeSalvo, Giulia; Sakata, Shihori; Nishida, Erina; Kawamura, Seiji

2013-01-01T23:59:59.000Z

425

Precise Measurement of Laser Power using an Optomechanical System  

E-Print Network (OSTI)

This paper shows a novel method to precisely measure the laser power using an optomechanical system. By measuring a mirror displacement caused by the reflection of an amplitude modulated laser beam, the number of photons in the incident continuous-wave laser can be precisely measured. We have demonstrated this principle by means of a prototype experiment uses a suspended 25 mg mirror as an mechanical oscillator coupled with the radiation pressure and a Michelson interferometer as the displacement sensor. A measurement of the laser power with an uncertainty of less than one percent (1 sigma) is achievable.

Kazuhiro Agatsuma; Daniel Friedrich; Stefan Ballmer; Giulia DeSalvo; Shihori Sakata; Erina Nishida; Seiji Kawamura

2013-09-18T23:59:59.000Z

426

Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation  

Science Conference Proceedings (OSTI)

Expressions for the yield of electron-positron pairs, their energy spectra, and production rates have been obtained in the interaction of multi-kJ pulses of high-intensity laser light interacting with solid targets. The Bethe-Heitler conversion of hard x-ray bremsstrahlung [D. A. Gryaznykh, Y. Z. Kandiev, and V. A. Lykov, JETP Lett. 67, 257 (1998); K. Nakashima and H. Takabe, Phys. Plasmas 9, 1505 (2002)] is shown to dominate over direct production (trident process) [E. P. Liang, S. C. Wilks, and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998)]. The yields and production rates have been optimized as a function of incident laser intensity by the choice of target material and dimensions, indicating that up to 5x10{sup 11} pairs can be produced on the OMEGA EP laser system [L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)]. The corresponding production rates are high enough to make possible the creation of a pair plasma.

Myatt, J.; Delettrez, J. A.; Maximov, A. V.; Meyerhofer, D. D.; Short, R. W.; Stoeckl, C.; Storm, M. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

2009-06-15T23:59:59.000Z

427

An inventory planning methodology based on the value of inventory in high-mix low-volume production.  

E-Print Network (OSTI)

??xiv, 121 p. : ill. ; 30 cm HKUST Call Number: Thesis IELM 2012 Radke The transition of manufacturing systems towards high responsiveness and flexibility… (more)

Radke, Andreas Martin

2012-01-01T23:59:59.000Z

428

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: FC Site  

Science Conference Proceedings (OSTI)

Utilities typically comanage some or all of their low-volume wastes with high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement practices at an impoundment at a power plant located in the sou