National Library of Energy BETA

Sample records for high precision products

  1. High Precision Predictions for Exclusive V H Production at the...

    Office of Scientific and Technical Information (OSTI)

    High Precision Predictions for Exclusive V H Production at the LHC Citation Details In-Document Search Title: High Precision Predictions for Exclusive V H Production at the LHC ...

  2. High Precision Predictions for Exclusive V H Production at the...

    Office of Scientific and Technical Information (OSTI)

    High Precision Predictions for Exclusive V H Production at the LHC Citation Details In-Document Search Title: High Precision Predictions for Exclusive V H Production at the LHC...

  3. High precision redundant robotic manipulator

    DOE Patents [OSTI]

    Young, Kar-Keung David (Mountain View, CA)

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

  4. High precision redundant robotic manipulator

    DOE Patents [OSTI]

    Young, K.K.D.

    1998-09-22

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

  5. High Precision Radiometric Dating of Sedimentary Materials

    SciTech Connect (OSTI)

    Hanson, G. N.

    2006-09-19

    To develop field, petrographic and geochemical criteria to allow high precision U-Pb dating of sedimentary minerals within rapidly deposited sequences of carbonate and clastic rocks.

  6. High precision triangular waveform generator

    DOE Patents [OSTI]

    Mueller, Theodore R. (Oak Ridge, TN)

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  7. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema (OSTI)

    Ren-Yuan Zhu

    2010-01-08

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal?s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  8. High-Precision Arithmetic in Mathematical Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bailey, David; Borwein, Jonathan

    2015-05-12

    For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. This article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.

  9. High-Precision Computation and Mathematical Physics

    SciTech Connect (OSTI)

    Bailey, David H.; Borwein, Jonathan M.

    2008-11-03

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  10. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  11. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  12. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  13. Portable high precision pressure transducer system

    DOE Patents [OSTI]

    Piper, Thomas C. (Idaho Falls, ID); Morgan, John P. (Idaho Falls, ID); Marchant, Norman J. (Idaho Falls, ID); Bolton, Steven M. (Pocatello, ID)

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  14. Portable high precision pressure transducer system

    DOE Patents [OSTI]

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  15. Faculty Position in Ultra High Precision Robotics & Manufacturing

    E-Print Network [OSTI]

    Candea, George

    , manipulation and metrology systems targeting additive manufacturing; · New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

  16. Highly damped kinematic coupling for precision instruments

    DOE Patents [OSTI]

    Hale, Layton C. (Livermore, CA); Jensen, Steven A. (Livermore, CA)

    2001-01-01

    A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

  17. The Nearby Supernova Factory: Toward A High-Precision Spectro...

    Office of Scientific and Technical Information (OSTI)

    Conference: The Nearby Supernova Factory: Toward A High-Precision Spectro-Photometry Citation Details In-Document Search Title: The Nearby Supernova Factory: Toward A...

  18. Optimization Online - Efficient high-precision dense matrix algebra ...

    E-Print Network [OSTI]

    John Gunnels

    2008-11-10

    Nov 10, 2008 ... Efficient high-precision dense matrix algebra on parallel architectures for nonlinear discrete optimization. John Gunnels(gunnels ***at*** ...

  19. High-precision triangular-waveform generator

    DOE Patents [OSTI]

    Mueller, T.R.

    1981-11-14

    An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  20. HIGH PRECISION FREQUENCY ESTIMATION FOR HARPSICHORD TUNING CLASSIFICATION

    E-Print Network [OSTI]

    Dixon, Simon

    HIGH PRECISION FREQUENCY ESTIMATION FOR HARPSICHORD TUNING CLASSIFICATION Dan Tidhar, Matthias of conservative transcription, and show that existing high-precision pitch estimation techniques are sufficient that "sound good" together) is de- rived from the sharing of partial frequencies. As musical instruments

  1. Achieving high-precision ground-based photometry for transiting exoplanets

    E-Print Network [OSTI]

    Guyon, Olivier

    Achieving high-precision ground-based photometry for transiting exoplanets Olivier Guyona, USA ABSTRACT Detection of transiting exoplanets requires high precision photometry, at the percent an ideally stable - but costly - environment for high precision photometry. Achieving high precision

  2. High-Precision Spectroscopy of Pulsating Stars

    E-Print Network [OSTI]

    Aerts, C; Desmet, M; Carrier, F; Zima, W; Briquet, M; De Ridder, J

    2007-01-01

    We review methodologies currently available to interprete time series of high-resolution high-S/N spectroscopic data of pulsating stars in terms of the kind of (non-radial) modes that are excited. We illustrate the drastic improvement of the detection treshold of line-profile variability thanks to the advancement of the instrumentation over the past two decades. This has led to the opportunity to interprete line-profile variations with amplitudes of order m/s, which is a factor 1000 lower than the earliest line-profile time series studies allowed for.

  3. High-Precision Spectroscopy of Pulsating Stars

    E-Print Network [OSTI]

    C. Aerts; S. Hekker; M. Desmet; F. Carrier; W. Zima; M. Briquet; J. De Ridder

    2007-01-16

    We review methodologies currently available to interprete time series of high-resolution high-S/N spectroscopic data of pulsating stars in terms of the kind of (non-radial) modes that are excited. We illustrate the drastic improvement of the detection treshold of line-profile variability thanks to the advancement of the instrumentation over the past two decades. This has led to the opportunity to interprete line-profile variations with amplitudes of order m/s, which is a factor 1000 lower than the earliest line-profile time series studies allowed for.

  4. Analytically expanded and integrated results for massive fermion production in two-photon collisions and a high precision alpha_s determination

    E-Print Network [OSTI]

    B. Kamal; Z. Merebashvili

    1998-06-25

    The cross section for massive fermion production in two-photon collisions was examined at next-to-leading order in QCD/QED for general photon helicity. The delta function (virtual+soft) part of the differential cross section was analytically integrated over the final state phase space. Series expansions for the complete differential and total cross sections were given up to tenth order in the parameter beta. These were shown to be of practical use and revealed much structure. Accurate parametrizations of the total cross sections were given, valid up to higher energies. The above results were applied to top quark production in the region not too far above threshold. The cross section was shown to be quite sensitive to alpha_s in the appropriate energy region.

  5. System and method for high precision isotope ratio destructive analysis

    SciTech Connect (OSTI)

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  6. High precision measurements of Na-26 beta(-) decay 

    E-Print Network [OSTI]

    Grinyer, GF; Svensson, CE; Andreoiu, C.; Andreyev, AN; Austin, RAE; Ball, GC; Chakrawarthy, RS; Finlay, P.; Garrett, PE; Hackman, G.; Hardy, John C.; Hyland, B.; Iacob, VE; Koopmans, KA; Kulp, WD; Leslie, JR; Macdonald, JA; Morton, AC; Ormand, WE; Osborne, CJ; Pearson, CJ; Phillips, AA; Sarazin, F.; Schumaker, MA; Scraggs, HC; Schwarzenberg, J.; Smith, MB; Valiente-Dobon, JJ; Waddington, JC; Wood, JL; Zganjar, EF.

    2005-01-01

    High-precision measurements of the half-life and beta-branching ratios for the beta(-) decay of Na-26 to Mg-26 have been measured in beta-counting and gamma-decay experiments, respectively. A 4 pi proportional counter and fast tape transport system...

  7. Low cost robotic imaging system for high precision photometry

    E-Print Network [OSTI]

    Guyon, Olivier

    Low cost robotic imaging system for high precision photometry Olivier Guyon (Subaru Telescope robotic, robust to weather, hardware failures, software errors automatic decision making (flats, darks angular resolution (with longer focal length lens) Installed Dec 30, 2010 ­ working robotically now New

  8. Precise energies of highly excited hydrogen and deuterium

    E-Print Network [OSTI]

    Kotochigova, Svetlana

    1373 Precise energies of highly excited hydrogen and deuterium Svetlana Kotochigova, Peter J. Mohr, and Barry N. Taylor Abstract: The energy levels of hydrogen and deuterium atoms are calculated to provide Rédaction] 1. Introduction In this article, we describe our calculation of the energy levels of hydrogen

  9. High Efficiency Positron Accumulation for High-Precision Measurements

    E-Print Network [OSTI]

    Hoogerheide, S Fogwell; Novitski, E; Gabrielse, G

    2015-01-01

    Positrons are accumulated within a Penning trap designed to make more precise measurements of the positron and electron magnetic moments. The retractable radioactive source used is weak enough to require no license for handling radioactive material and the radiation dosage one meter from the source gives an exposure several times smaller than the average radiation dose on the earth's surface. The 100 mK trap is mechanically aligned with the 4.2 K superconducting solenoid that produces a 6 tesla magnetic trapping field with a direct mechanical coupling.

  10. High precision electrostatic potential calculations for cylindrically symmetric lenses

    SciTech Connect (OSTI)

    Edwards, David Jr. [238 Marylyn Lane, Newark, Vermont 05871 (United States)

    2007-02-15

    A method is developed for a potential calculation within cylindrically symmetric electrostatic lenses using mesh relaxation techniques, and it is capable of considerably higher accuracies than currently available. The method involves (i) creating very high order algorithms (orders of 6, 8, and 10) for determining the potentials at points in the net using surrounding point values, (ii) eliminating the effect of the large errors caused by singular points, and (iii) reducing gradients in the high gradient regions of the geometry, thereby allowing the algorithms used in these regions to achieve greater precisions--(ii) and (iii) achieved by the use of telescopic multiregions. In addition, an algorithm for points one unit from a metal surface is developed, allowing general mesh point algorithms to be used in these situations, thereby taking advantage of the enhanced precision of the latter. A maximum error function dependent on a sixth order gradient of the potential is defined. With this the single point algorithmic errors are able to be viewed over the entire net. Finally, it is demonstrated that by utilizing the above concepts and procedures, the potential of a point in a reasonably high gradient region of a test geometry can realize a precision of less than 10{sup -10}.

  11. High-Precision Computation: Mathematical Physics and Dynamics

    SciTech Connect (OSTI)

    Bailey, D. H.; Barrio, R.; Borwein, J. M.

    2010-04-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  12. High-precision micro/nano-scale machining system

    DOE Patents [OSTI]

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  13. Precise Measurement of Dimuon Production Cross-Sections in Fe Deep Inelastic Scattering at the Tevatron

    E-Print Network [OSTI]

    Precise Measurement of Dimuon Production Cross-Sections in #23; #22; Fe and #22; #23; #22; Fe Deep statistically precise measurement of neutrino-induced dimuon production cross-sections to date. These measure, USA Version 11.02.00 1 #12; (February 14, 2001) Abstract We present measurements of the semi

  14. Precision optical slit for high heat load or ultra high vacuum

    DOE Patents [OSTI]

    Andresen, Nord C. (Hayward, CA); DiGennaro, Richard S. (Albany, CA); Swain, Thomas L. (Richmond, CA)

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  15. Precision optical slit for high heat load or ultra high vacuum

    DOE Patents [OSTI]

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  16. ANTIHYDROGEN PRODUCTION AND PRECISION SPECTROSCOPY WITH ATHENA/AD-1

    SciTech Connect (OSTI)

    M. HOLZSCHEITER; C. AMSLER; ET AL

    2000-11-01

    CPT invariance is a fundamental property of quantum field theories in flat space-time. Principal consequences include the predictions that particles and their antiparticles have equal masses and lifetimes, and equal and opposite electric charges and magnetic moments. It also follows that the fine structure, hyperfine structure, and Lamb shifts of matter and antimatter bound systems should be identical. It is proposed to generate new stringent tests of CPT using precision spectroscopy on antihydrogen atoms. An experiment to produce antihydrogen at rest has been approved for running at the Antiproton Decelerator (AD) at CERN. We describe the fundamental features of this experiment and the experimental approach to the first phase of the program, the formation and identification of low energy antihydrogen.

  17. Experimental Study of Hypernuclei Electroproduction by High Precision Spectroscopy

    SciTech Connect (OSTI)

    Tomislav Seva

    2009-12-01

    Jlab experiment E01-011, carried out in 2005 in JLab Hall C, is the second generation of the hypernuclear spectroscopy experiments by the (e,e{prime}K{sup +}) reaction. The (e,e{prime}K{sup +}) reaction is complimentary to the associated production reactions (K{sup -},{pi}{sup -}), ({pi}{sup +},K{sup +}) since, due to a larger momentum transfer to a hyperon, excitations of both spin-non-flip and spin-flip states are possible. The experiment uses high quality and continuous primary electron beam to produce neutron rich hypernuclei on various targets by the electroproduction. The experimental setup consists of splitter magnet, high resolution kaon spectrometer (HKS) and electron spectrometer (Enge) implemented in new configuration, the so called 'Tilt Method'. Production data was taken on multiple targets: CH{sub 2}, {sup 6}Li, {sup 7}Li, {sup 9}Be, {sup 10}B, {sup 12}C and {sup 28}Si. In present study the analysis of CH{sub 2}, {sup 12}C and {sup 28}Si is presented. The elementary processes of p(e,e{prime}K{sup +}){Lambda}/{Sigma} from CH{sup 2} data were used for calibration of the spectrometer optics and kinematics. The hypernuclear spectra of {sup 12}{sub {Lambda}}B was obtained with ground state resolution of 0.47 {+-} 0.07 MeV (FWHM), the best ever achieved. Feasibility of the electroproduction reaction to study medium to heavy targets has been proven with the first high resolution beyond p-shell hypernuclear spectra from {sup 28}{sub {Lambda}}Al hypernuclei. The obtained results of the E01-011 experiment confirmed that hypernuclear spectroscopy by the (e,e{prime}K{sup +}) reaction is a very useful technique.

  18. Ion source for high-precision mass spectrometry

    DOE Patents [OSTI]

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  19. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    SciTech Connect (OSTI)

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  20. Applied high resolution digital control for universal precision systems

    E-Print Network [OSTI]

    Gawlik, Aaron John

    2008-01-01

    This thesis describes the design and characterization of a high-resolution analog interface for dSPACE digital control systems and a high-resolution, high-speed data acquisition and control system. These designs are intended ...

  1. A high precision, compact electromechanical ground rotation sensor

    SciTech Connect (OSTI)

    Dergachev, V., E-mail: volodya@caltech.edu [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); DeSalvo, R. [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States) [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); University of Sannio, C.so Garibaldi 107, Benevento 82100 (Italy); Asadoor, M. [Mayfield Senior School, 500 Bellefontaine Street, Pasadena, California 91105 (United States) [Mayfield Senior School, 500 Bellefontaine Street, Pasadena, California 91105 (United States); Oklahoma State University, 219 Student Union, Stillwater, Oklahoma 74074 (United States); Bhawal, A. [Arcadia High School, 180 Campus Drive, Arcadia, California 91007 (United States) [Arcadia High School, 180 Campus Drive, Arcadia, California 91007 (United States); Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Gong, P. [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China) [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205 (United States); Kim, C. [California Institute of Technology, Pasadena, California 91125 (United States)] [California Institute of Technology, Pasadena, California 91125 (United States); Lottarini, A. [Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy) [Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Department of Computer Science, Columbia University, 1214 Amsterdam Avenue, New York, New York 10027 (United States); Minenkov, Y. [Sezione INFN Tor Vergata, via della Ricerca Scientifica  1, 00133 Roma (Italy)] [Sezione INFN Tor Vergata, via della Ricerca Scientifica  1, 00133 Roma (Italy); Murphy, C. [School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009 (Australia) [School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009 (Australia); University of Melbourne Grattan Street, Parkville VIC 3010 (Australia); O'Toole, A. [University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095 (United States) [University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095 (United States); Michigan Technological University, 1400 Townsend Dr, Houghton, Michigan 49931 (United States); Peña Arellano, F. E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); and others

    2014-05-15

    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1 × 10{sup ?11}m/?( Hz ). We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7 × 10{sup ?9} rad /?( Hz ) at 10 mHz and 6.4 × 10{sup ?10} rad /?( Hz ) at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.

  2. Mold, flow, and economic considerations in high temperature precision casting

    E-Print Network [OSTI]

    Humbert, Matthew S

    2013-01-01

    Casting high temperature alloys that solidify through a noticeable two phase region, specifically platinum-ruthenium alloys, is a particularly challenging task due to their high melting temperature and this necessitates ...

  3. High precision magnetic susceptibility of novel magnets and supercondu...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resistance region due to the effect of quantum mechanical tunneling, one can make a high resolution resonator (fundamental frequency of about 10 MHz) with a noise level of...

  4. High precision and continuous optical transport using a standing wave optical

    E-Print Network [OSTI]

    Texas at Austin. University of

    High precision and continuous optical transport using a standing wave optical line trap Vassili://chaos.utexas.edu/ Abstract: We introduce the Standing Wave Optical Line Trap (SWOLT) as a novel tool for precise optical nanoparticles. © 2011 Optical Society of America OCIS codes: (000.2170) Equipment and techniques; (120

  5. High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source

    E-Print Network [OSTI]

    High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source A precision laser spectrometer for the detection of CO2 isotopes is reported. The spectrometer measures the fundamental absorption signatures of 13 C and 12 C isotopes in CO2 at 4.32 m using a tunable mid-IR laser

  6. Briefly Noted Towards High-Precision Machine Trans-

    E-Print Network [OSTI]

    in the partic- ular sub-language of that text. The high-level goal is to produce translations that read dealing with (wordy) party programs (good performance) and (concise) party manifestos (worse performance

  7. A High-Precision, Magnetically Levitated Positioning Stage Toward contactless actuation for industrial manufacturing

    E-Print Network [OSTI]

    Maggiore, Manfredi

    A High-Precision, Magnetically Levitated Positioning Stage Toward contactless actuation to replace mechanical microsteppers by magnetically levitated devices. Magnetically levitated microsteppers magnetic levitation devices utilizing the principle of electromagnetic reluctance to achieve planar

  8. High-precision position control of a heavy-lift manipulator in a dynamic environment

    E-Print Network [OSTI]

    Garretson, Justin R. (Justin Richard)

    2005-01-01

    This thesis considers the control of a heavy-lift serial manipulator operating on the deck of a large ocean vessel. This application presents a unique challenge for high- precision control because the system must contend ...

  9. High-Precision Thermodynamics and Hagedorn Density of States

    E-Print Network [OSTI]

    Harvey B. Meyer

    2009-05-26

    We compute the entropy density of the confined phase of QCD without quarks on the lattice to very high accuracy. The results are compared to the entropy density of free glueballs, where we include all the known glueball states below the two-particle threshold. We find that an excellent, parameter-free description of the entropy density between 0.7Tc and Tc is obtained by extending the spectrum with the exponential spectrum of the closed bosonic string.

  10. Precision high energy liner implosion experiments PHELIX [1

    SciTech Connect (OSTI)

    Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Griego, Jeffrey R [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory; Rousculp, Christopher L [Los Alamos National Laboratory; Turchi, Peter J [Los Alamos National Laboratory

    2009-01-01

    This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.

  11. High precision mass measurements of odd-odd T=1 nuclides for the study of the Isobaric Multiplet Mass Equation

    E-Print Network [OSTI]

    MacCormick, M; Atanasov, D; Blaum, K; Boehm, Ch; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; Cocolios, T E; Eliseev, S; Eronen, T; George, S; Herfurth, F; Herlert, A; Kisler, D; Kowalska, M; Kreim, S; Litvinov, Yu A; Lunney, D; Manea, V; Minaya Ramirez, E; Naimi, S; Neidherr, D; Rosenbusch, M; de Roubin, A; Schweikhard, L; Welker, A; Wienholtz, F; Wolf, R N; Zuber, K; Jokinen, A; Moore, I D; CERN. Geneva. ISOLDE and neutron Time-of-Flight Experiments Committee; INTC

    2014-01-01

    High precision mass measurements of odd-odd T=1 nuclides for the study of the Isobaric Multiplet Mass Equation

  12. High-Throughput, High-Precision Hot Testing Tool for High-Brightness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing ToolSustainableSecurityHighDepartment ofLight-Emitting Diode

  13. Abstract--Gear hobbing is a common method of manufacturing high precision involute gears. The thorough

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    Abstract-- Gear hobbing is a common method of manufacturing high precision involute gears importance in order to produce helical and spur gears as they influence the cost of the manufacturing process and the quality of the produced gear. HOB3D is a simulation code that enables users to simulate the process

  14. PoS(HTRS2011)024 Implications of high-precision spectra of

    E-Print Network [OSTI]

    Miller, Cole

    PoS(HTRS2011)024 Implications of high-precision spectra of thermonuclear X-ray bursts A few years after the discovery of thermonuclear X-ray bursts from accreting neutron stars, Jan van Paradijs proposed a method for using observations of thermonuclear X-ray bursts to constrain both

  15. Design and control of a 6-Degree-of-Freedom levitated positioner with high precision 

    E-Print Network [OSTI]

    Hu, Tiejun

    2005-08-29

    This dissertation presents a high-precision positioner with a novel superimposed concentrated-field permanent-magnet matrix. This extended-range multi-axis positioner can generate all 6-DOF (degree-of-freedom) motions with only a single moving part...

  16. Version 3.1 Correlated exponential functions in high precision calculations for

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    of the calculation of the inverse Laplace transform, into the solution of some differential equations. From these differential equations satisfied by the master integral f(r) (see Eq. (2) below), one derived analyticVersion 3.1 Correlated exponential functions in high precision calculations for diatomic molecules

  17. EXPLORATION OF THE KUIPER BELT BY HIGH-PRECISION PHOTOMETRIC STELLAR OCCULTATIONS: FIRST RESULTS

    E-Print Network [OSTI]

    Roques, Françoise

    EXPLORATION OF THE KUIPER BELT BY HIGH-PRECISION PHOTOMETRIC STELLAR OCCULTATIONS: FIRST RESULTS F detected are caused by Kuiper Belt objects beyond 100 AU from the Sun and hence are the farthest known objects in the solar system. These detections show that the Kuiper Belt is much more extended than

  18. High-precision Penning trap mass measurements for tests of the Standard Model

    SciTech Connect (OSTI)

    Blaum, Klaus; Eliseev, Sergey; Nagy, Szilard

    2010-08-04

    With the nowadays achievable accuracy in Penning trap mass spectrometry on short-lived exotic nuclides as well as stable atoms, precision fundamental tests can be performed, among them a test of the Standard Model, in particular with regard to the weak interaction, the CPT symmetry conservation, and the unitarity of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. In addition, accurate mass values of specific nuclides are important for neutrino physics. The presently best tests of the Standard Model with high-precision Penning trap mass spectrometry will be reviewed.

  19. Status and Outlook of CHIP-TRAP: the Central Michigan University High Precision Penning Trap

    E-Print Network [OSTI]

    Matthew Redshaw; Richard A. Bryce; Paul Hawks; Nadeesha D. Gamage; Curtis Hunt; Rathnayake M. E. B. Kandegedara; Ishara S. Ratnayake; Lance Sharp

    2015-10-25

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP)that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/?filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m=q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  20. Status and Outlook of CHIP-TRAP: the Central Michigan University High Precision Penning Trap

    E-Print Network [OSTI]

    Redshaw, Matthew; Hawks, Paul; Gamage, Nadeesha D; Hunt, Curtis; Kandegedara, Rathnayake M E B; Ratnayake, Ishara S; Sharp, Lance

    2015-01-01

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP)that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/?filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m=q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  1. A gas chromatography/pyrolysis/isotope ratio mass spectrometry system for high-precision dD measurements

    E-Print Network [OSTI]

    Fischer, Hubertus

    A gas chromatography/pyrolysis/isotope ratio mass spectrometry system for high-precision d we present a highly automated, high-precision online gas chromatography/pyrolysis/isotope ratio from ice, preconcentration, gas chromatographic separation and pyrolysis of CH4 from roughly 500 g

  2. Scientific Results from High-precision Astrometry at the Palomar Testbed Interferometer

    E-Print Network [OSTI]

    Matthew W. Muterspaugh; Benjamin F. Lane; Maciej Konacki; B. F. Burke; M. M. Colavita; S. R. Kulkarni; M. Shao

    2006-05-31

    A new observing mode for the Palomar Testbed Interferometer was developed in2002-2003 which enables differential astrometry at the level of 20 micro-arcseconds for binary systems with separations of several hundred milli-arcseconds (mas). This phase-referenced mode is the basis of the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES), a search for giant planets orbiting either the primary or secondary star in fifty binary systems. We present the first science results from the PHASES search. The properties of the stars comprising binary systems are determined to high precision. The mutual inclinations of several hierarchical triple star systems have been determined. We will present upper limits constraining the the existence of giant planets in a few of the target systems.

  3. High throughput protein production screening

    DOE Patents [OSTI]

    Beernink, Peter T. (Walnut Creek, CA); Coleman, Matthew A. (Oakland, CA); Segelke, Brent W. (San Ramon, CA)

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  4. Comment on "High-Precision Determination of the Electric and Magnetic Form Factors of the Proton"

    E-Print Network [OSTI]

    J. Arrington

    2011-08-15

    In a recent Letter, Bernauer, et al. present fits to the proton electromagnetic form factors, GEp(Q^2) and GMp(Q^2), along with extracted proton charge and magnetization radii based on large set of new, high statistical precision (<0.2%) cross section measurements. The Coulomb corrections they apply differ dramatically from more modern and complete calculations, implying significant error in their final results.

  5. A highly efficient, compact Yb:KYW laser for mobile precision systems

    SciTech Connect (OSTI)

    Kuznetsov, S A; Pivtsov, V S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-05-30

    We have developed a promising scheme of a multimodediode-pumped ytterbium laser. The Yb:KYW laser in the cw regime demonstrates record-high differential (40%) and total optical (35%) efficiencies. Mode locking is realised, which allows the scheme to be used for the development of compact laser systems, such as mobile femtosecond precision synthesisers. The peculiarities of the laser operation and ways of further improving its efficiency are discussed. (lasers)

  6. Thermo-optic noise in coated mirrors for high-precision optical measurements

    E-Print Network [OSTI]

    M. Evans; S. Ballmer; M. Fejer; P. Fritschel; G. Harry; G. Ogin

    2008-07-30

    Thermal fluctuations in the coatings used to make high-reflectors are becoming significant noise sources in precision optical measurements and are particularly relevant to advanced gravitational wave detectors. There are two recognized sources of coating thermal noise, mechanical loss and thermal dissipation. Thermal dissipation causes thermal fluctuations in the coating which produce noise via the thermo-elastic and thermo-refractive mechanisms. We treat these mechanisms coherently, give a correction for finite coating thickness, and evaluate the implications for Advanced LIGO.

  7. Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Discover new 260F and 300F geothermal reservoirs in Oregon. To demonstrate the application of high precision geophysics for well targeting. Demonstrate a combined testing approach to Flowing Differential Self Potential (FDSP) and electrical tomography resistivity as a guide to exploration and development. Demonstrate utility and benefits of sump-less drilling for a low environmental impact. Create both short and long term employment through exploration, accelerated development timeline and operation.

  8. that precise estimation of production can be done within 30 d by sampling for eggs; this goal seems

    E-Print Network [OSTI]

    motivating factors for conducting this research. Production and transport of crude oil appeared to havethat precise estimation of production can be done within 30 d by sampling for eggs; this goal seems- Alaskan oil pipeline and planned outer conti- nental shelf oil and gas lease sales were the principal

  9. A New Multiple-stage Converter Topology for High Power and High Precision Fast Pulsed Current Sources

    E-Print Network [OSTI]

    Cravero, J M; Garcia Retegui, R; Wassinger, N; Benedetti, M

    2010-01-01

    A new high current, low rise time and high precision pulse generator is presented. The topology is based on the use of different stages, each one specific for a particular operation range in terms of power and switching frequency. The design and operating principle of the proposed topology are described. Finally, the results obtained from an implemented reduced scale prototype are compared with the simulation ones in order to validate the design

  10. Devices for high precision x-ray beam intensity monitoring on BSRF

    E-Print Network [OSTI]

    Hua-Peng, LI; Zhao, Yi-Dong; Zheng, Lei; Liu, Shu-Hu; Zhao, Xiao-Liang; Zhao, Ya-Shuai

    2016-01-01

    Synchrotron radiation with the characteristic of high brilliance, high level of polarization, high collimation, low emittance and wide tunability in energy has been used as a standard source in metrology(1, 2). For a decade, lots of calibration work have been done on 4B7A in Beijing Synchrotron Radiation Facility (BSRF) (3, 4). For the calibration process, a high-precision online monitor is indispensable. To control the uncertainty under 0.1%, we studied different sizes parallel ion chambers with rare-gas and used different collecting methods to monitor the x-ray intensity of the beamline. Two methods to collect the signal of the ion chambers: reading the current directly with electrometer or signal amplification to collect the counts were compared.

  11. Characterization of an INVS Model IV Neutron Counter for High Precision ($?,n$) Cross-Section Measurements

    E-Print Network [OSTI]

    C. W. Arnold; T. B. Clegg; H. J Karwowski; G. C. Rich; J. R. Tompkins; C. R. Howell

    2011-01-17

    A neutron counter designed for assay of radioactive materials has been adapted for beam experiments at TUNL. The cylindrical geometry and 60% maximum efficiency make it well suited for ($\\gamma,n$) cross-section measurements near the neutron emission threshold. A high precision characterization of the counter has been made using neutrons from several sources. Using a combination of measurements and simulations, the absolute detection efficiency of the neutron counter was determined to an accuracy of $\\pm$ 3% in the neutron energy range between 0.1 and 1 MeV. It is shown that this efficiency characterization is generally valid for a wide range of targets.

  12. Nuclear Instruments and Methods in Physics Research A 559 (2006) 207210 High precision numerical accuracy in physics research

    E-Print Network [OSTI]

    Villard, Gilles

    2006-01-01

    Nuclear Instruments and Methods in Physics Research A 559 (2006) 207­210 High precision numerical alle´e d'Italie, 69364 Lyon Cedex 07, France Available online 12 December 2005 Abstract Concerns arise: the upcoming quadruple- precision standard is introduced and compared to currently available software

  13. High Precision Tune and Coupling Feedback and Beam Transfer Function Measurements in RHIC

    SciTech Connect (OSTI)

    Minty, M.; Curcio, A.; Dawson, C.; Degen, C.; Luo, Y.; Marr, G.; Martin, B.; Marusic, A.; Mernick, K.; Oddo, P.; Russo, T.; Schoefer, V.; Schroeder, R.; Schultheiss, C.; Wilinski, M.

    2010-05-23

    Precision measurement and control of the betatron tunes and betatron coupling in the Relativistic Heavy Ion Collider (RHIC) are required for establishing and maintaining both good operating conditions and, particularly during the ramp to high beam energies, high proton beam polarization. While the proof-of-principle for simultaneous tune and coupling feedback was successfully demonstrated earlier, routine application of these systems has only become possible recently. Following numerous modifications for improved measurement resolution and feedback control, the time required to establish full-energy beams with the betatron tunes and coupling regulated by feedback was reduced from several weeks to a few hours. A summary of these improvements, select measurements benefitting from the improved resolution and a review of system performance are the subject of this report.

  14. High precision tune and coupling measurements and tune/coupling feedback in RHIC

    SciTech Connect (OSTI)

    Minty, M.; Curcio, A.; Dawson, C.; Degen, C.; Luo, Y.; Marr, G.; Martin, B.; Marusic, A.; Mernick, K.; Oddo, P.; Russo, T.; Schoefer, V.; Schroeder, R.; Schulthiess, C.; Wilinski, M.

    2010-08-01

    Precision measurement and control of the betatron tunes and betatron coupling in RHIC are required for establishing and maintaining both good operating conditions and, particularly during the ramp to high beam energies, high proton beam polarization. While the proof-of-principle for simultaneous tune and coupling feedback was successfully demonstrated earlier, routine application of these systems has only become possible recently. Following numerous modifications for improved measurement resolution and feedback control, the time required to establish full-energy beams with the betatron tunes and coupling regulated by feedback was reduced from several weeks to a few hours. A summary of these improvements, select measurements benefitting from the improved resolution and a review of system performance are the subject of this report.

  15. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    E-Print Network [OSTI]

    Esplin, T L

    2015-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 $\\mu$m bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7$^{\\rm th}$ and 8$^{\\rm th}$ order distortion corrections for the 3.6 and 4.5 $\\mu$m arrays of IRAC, ...

  16. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect (OSTI)

    Adams, T.; /Florida State U.; Batra, P.; /Columbia U.; Bugel, Leonard G.; /Columbia U.; Camilleri, Leslie Loris; /Columbia U.; Conrad, Janet Marie; /MIT; de Gouvea, A.; /Northwestern U.; Fisher, Peter H.; /MIT; Formaggio, Joseph Angelo; /MIT; Jenkins, J.; /Northwestern U.; Karagiorgi, Georgia S.; /MIT; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  17. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    E-Print Network [OSTI]

    T. Adams; P. Batra; L. Bugel; L. Camilleri; J. M. Conrad; A. de Gouvêa; P. H. Fisher; J. A. Formaggio; J. Jenkins; G. Karagiorgi; T. R. Kobilarcik; S. Kopp; G. Kyle; W. A. Loinaz; D. A. Mason; R. Milner; R. Moore; J. G. Morfín; M. Nakamura; D. Naples; P. Nienaber; F. I. Olness; J. F. Owens; S. F. Pate; A. Pronin; W. G. Seligman; M. H. Shaevitz; H. Schellman; I. Schienbein; M. J. Syphers; T. M. P. Tait; T. Takeuchi; C. Y. Tan; R. G. Van de Water; R. K. Yamamoto; J. Y. Yu

    2009-06-19

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.

  18. Vibratory response modeling and verification of a high precision optical positioning system.

    SciTech Connect (OSTI)

    Barraza, J.; Kuzay, T.; Royston, T. J.; Shu, D.

    1999-06-18

    A generic vibratory-response modeling program has been developed as a tool for designing high-precision optical positioning systems. Based on multibody dynamics theory, the system is modeled as rigid-body structures connected by linear elastic elements, such as complex actuators and bearings. The full dynamic properties of each element are determined experimentally or theoretically, then integrated into the program as inertial and stiffness matrices. Utilizing this program, the theoretical and experimental verification of the vibratory behavior of a double-multilayer monochromator support and positioning system is presented. Results of parametric design studies that investigate the influence of support floor dynamics and highlight important design issues are also presented. Overall, good matches between theory and experiment demonstrate the effectiveness of the program as a dynamic modeling tool.

  19. HIGH ENERGY HADRONINDUCED DILEPTON PRODUCTION FROM

    E-Print Network [OSTI]

    HIGH ENERGY HADRON­INDUCED DILEPTON PRODUCTION FROM NUCLEONS AND NUCLEI P.L. McGaughey, J.M. Moss Drell­Yan and W \\Sigma Production 3.3 Charge Symmetry Violation of Parton Distributions 3.4 Parton Scattering and Energy Loss 4. QUARKONIUM PRODUCTION 4.1 Quarkonium Production in Hadronic Collisions 4

  20. Large bearings with incorporated gears, high stiffness and precision for the Swedish Solar Telescope (SST) on La Palma

    E-Print Network [OSTI]

    Rutten, Rob

    1 Large bearings with incorporated gears, high stiffness and precision for the Swedish Solar the meshing teeth of the large gear wheel and the pinion. High preload forces to achieve line contact of the combination of bearing and gear teeth. An additional problem was the relatively thin section of the bearings

  1. NLO electroweak automation and precise predictions for W+multijet production at the LHC

    E-Print Network [OSTI]

    Stefan Kallweit; Jonas M. Lindert; Philipp Maierhöfer; Stefano Pozzorini; Marek Schönherr

    2015-03-19

    We present a fully automated implementation of next-to-leading order electroweak (NLO EW) corrections in the OpenLoops matrix-element generator combined with the Sherpa and Munich Monte Carlo frameworks. The process-independent character of the implemented algorithms opens the door to NLO QCD+EW simulations for a vast range of Standard Model processes, up to high particle multiplicity, at current and future colliders. As a first application, we present NLO QCD+EW predictions for the production of positively charged on-shell W bosons in association with up to three jets at the Large Hadron Collider. At the TeV energy scale, due to the presence of large Sudakov logarithms, EW corrections reach the 20-40% level and play an important role for searches of physics beyond the Standard Model. The dependence of NLO EW effects on the jet multiplicity is investigated in detail, and we find that W+multijet final states feature genuinely different EW effects as compared to the case of W+1jet.

  2. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect (OSTI)

    Dr. M.A. Ebadian

    2000-01-13

    The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process.

  3. HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME

    SciTech Connect (OSTI)

    Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Mehta, Kushal; Metchnik, Marc; Padmanabhan, Nikhil; Pinto, Phillip; Takahashi, Ryuichi; White, Martin; Xu, Xiaoying

    2010-09-10

    We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5-sigma for shift values from different simulations and derive shift alpha(z) -1 = (0.300\\pm 0.015)% [D(z)/D(0)]^{2} using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations: after reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the low and the initial redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compared with Zeldovich approximation and the shifts measured from the chi^2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations: we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 (Gpc/h)^3 of cosmological PM simulations from Takahashi et al. (2009). (abridged)

  4. Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive ?0 production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aghasyan, M.; Avakian, H.; Rossi, P.; De Sanctis, E.; Hasch, D.; Mirazita, M.; Adikaram, D.; Amaryan, M. J.; Anghinolfi, M.; Baghdasaryan, H.; et al

    2011-10-01

    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sin ?h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ?h of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.

  5. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOE Patents [OSTI]

    Pollock, George G. (San Ramon, CA)

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  6. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOE Patents [OSTI]

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  7. Gamma-ray spectrometric determination of UF/sub 6/ assay with 1 percent precision for international safeguards. Part 1: product and feed in 1S and 2S sample cylinders

    SciTech Connect (OSTI)

    Ricci, E.

    1981-06-15

    The method is based on counting the 186-keV gamma rays emitted by /sup 235/U using a Pb-collimated Ge(Li) detector. Measurements of fifty UF/sub 6/ product and feed cylinders reveal the following precisions and counting times: Product - 2S, 0.98% (600 s); Feed - 2S, 0.48% (2500 s); Product - 1S, 0.62% (1000 s); Feed - 1S, 0.73% (3000 s). A 1% precision is desired for variables - attributes verification measurements of /sup 235/U assay in UF/sub 6/ sample cylinders for safeguards inspections by the International Atomic Energy Agency (IAEA). Statistically, these measurements stand between fine, high-precision (or variables) measurements and gross, low-precision (or attributes) ones. Because of their intermediate precisions, the variables-attributes measurements may not require analysis of all samples, and this could result in significant savings of IAEA inspector time. Although the precision of the above results is satisfactory, the average relative differences between gamma-ray and mass-spectrometric determinations for the last two sets of measurements (1S cylinders) have positive biases.

  8. Electronic Supplement for Paper 2001GL014207 A new model of field-aligned currents derived from high-precision

    E-Print Network [OSTI]

    Michigan, University of

    by the interplanetary magnetic field strength and direction for summer, winter and equinox. The high-precision data/winter currents is ~1.35 and the equinox currents ~1. The model allows FAC mapping for IMF |B| 12 nT, except (Figure A2b) polar regions for summer, equinox, and winter. The corresponding IMF conditions are marked

  9. Introducing SummerTime: a package for high-precision computation of sums appearing in DRA method

    E-Print Network [OSTI]

    Lee, Roman N

    2015-01-01

    We introduce the Mathematica package SummerTime for arbitrary-precision computation of sums appearing in the results of DRA method. So far these results include the following families of the integrals: 3-loop onshell massless vertices, 3-loop onshell mass operator type integrals, 4-loop QED-type tadpoles, 4-loop massless propagators. The package can be used for high-precision numerical computation of the expansion coefficients of the integrals from the above families around arbitrary space-time dimension. In addition, this package can also be used for calculation of multiple zeta values, harmonic polylogarithms and other transcendental numbers expressed in terms of nested sums with factorized summand.

  10. Introducing SummerTime: a package for high-precision computation of sums appearing in DRA method

    E-Print Network [OSTI]

    Roman N. Lee; Kirill T. Mingulov

    2015-07-15

    We introduce the Mathematica package SummerTime for arbitrary-precision computation of sums appearing in the results of DRA method. So far these results include the following families of the integrals: 3-loop onshell massless vertices, 3-loop onshell mass operator type integrals, 4-loop QED-type tadpoles, 4-loop massless propagators. The package can be used for high-precision numerical computation of the expansion coefficients of the integrals from the above families around arbitrary space-time dimension. In addition, this package can also be used for calculation of multiple zeta values, harmonic polylogarithms and other transcendental numbers expressed in terms of nested sums with factorized summand.

  11. NLO QCD+EW automation and precise predictions for V+multijet production

    E-Print Network [OSTI]

    Stefan Kallweit; Jonas M. Lindert; Stefano Pozzorini; Marek Schönherr; Philipp Maierhöfer

    2015-05-21

    In this talk we present a fully automated implementation of next-to-leading order electroweak (NLO EW) corrections in OpenLoops together with Sherpa and Munich. As a first application, we present NLO QCD+EW predictions for the production of positively charged W bosons in association with up to three jets and for the production of a Z boson or photon in association with one jet.

  12. High-precision evaluation of Wigner's d-matrix by exact diagonalization

    E-Print Network [OSTI]

    X. M. Feng; P. Wang; W. Yang; G. R. Jin

    2015-07-18

    The precise calculations of the Wigner's rotation matrix are important in various research fields. Due to the presence of large numbers, the direct calculations of the Wigner's formula suffer from loss of precision. We present a simple method to avoid this problem by expanding the d-matrix into a complex Fourier series and calculate the series coefficients by exactly diagonalizing the angular-momentum operator $J_{y}$ in the eigenbasis of $J_{z}$. This method allows us to solve the d-matrix and its various derivatives for spins up to a few thousand. The precision of the d-matrix from our method is about $10^{-14}$ for spins up to $100$.

  13. High-precision optical measurements of 13 isotope ratios in organic compounds at

    E-Print Network [OSTI]

    Zare, Richard N.

    range with an average precision of 0.95 and 0.67 for ethane and propane, respec- tively. The calibrated accuracy for methane, ethane, and propane is within 3 of the values determined using isotope ratio mass-down spectroscopy combustion isotopic ratio It is often taught in beginning chemistry classes that the atoms

  14. High volume production of nanostructured materials

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2009-10-13

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  15. Hatchery Technology for High Quality Juvenile Production

    E-Print Network [OSTI]

    Hatchery Technology for High Quality Juvenile Production Proceedings of the 40th U III, (Acting) Assistant Administrator for Fisheries Hatchery Technology for High Quality Juvenile;SUGGESTED CITATION: Rust, M., P. Olin, A. Bagwill and M. Fujitani (editors). 2013. Hatchery Technology

  16. Precision calculations for the $T$-odd quark pair production at the CLIC $e^+e^-$ linear collider

    E-Print Network [OSTI]

    A. B. Mahfoudh; Guo Lei; Liu Wen; Ma Wen-Gan; Zhang Ren-You; Zhang Wen-Juan

    2014-07-16

    We perform the precision calculations for the \\eeqq ($q_-\\bar{q}_-=u_-\\bar u_-, ~c_-\\bar c_-,~ d_-\\bar d_-,~s_-\\bar s_-$) processes up to the QCD next-to-leading order (NLO) including full weak decays for the final $T$-odd mirror quarks in the littlest Higgs model with $T$-parity (LHT) at the Compact Linear Collider (CLIC). We show the dependence of the leading order (LO) and NLO QCD corrected cross sections on the colliding energy $\\sqrt{s}$, and provide the LO and QCD NLO kinematic distributions of final particles. The results show that the LO cross section can be enhanced by the NLO QCD correction and the $K$-factor increases obviously when the threshold of the on-shell $q_-\\bar{q}_-$-pair production approaches the colliding energy $\\sqrt{s}$. The $K$-factor value varies in the range of $1.04 \\sim 1.41$ in our chosen parameter space. We find that a simple approximation of multiplying the LO kinematic distribution with the integrated $K$-factor is not appropriate for precision study of the \\eeqq ($q_-\\bar{q}_-=u_-\\bar u_-,~c_-\\bar c_-,~d_-\\bar d_-,~s_-\\bar s_-$) processes, since the NLO QCD corrections are phase space dependent. It is necessary to calculate the differential cross sections including full NLO QCD corrections to get reliable results.

  17. High precision measurement of the 87Rb D-line tune-out wavelength

    E-Print Network [OSTI]

    Leonard, R H; Sackett, C A; Safronova, M S

    2015-01-01

    We report an experimental measurement of a light wavelength at which the ac electric polarizability equals zero for 87Rb atoms in the F=2 ground hyperfine state. The experiment uses a condensate interferometer both to find this 'tune-out' wavelength and to accurately determine the light polarization for it. The wavelength lies between the D1 and D2 spectral lines at 790.03235(3) nm. The measurement is sensitive to the tensor contribution to the polarizability, which has been removed so that the reported value is the zero of the scalar polarizability. The precision is fifty times better than previous tune-out wavelength measurements. Our result can be used to determine the ratio of matrix elements |/|^2 = 1.99219(3), a 100-fold improvement over previous experimental values. Both the tune-out wavelength and matrix element ratio are consistent with theoretical calculations, with uncertainty estimates for the theory about an order of magnitude larger than the experimental precision.

  18. High-precision K-band photometry of the secondary eclipse of HD209458

    E-Print Network [OSTI]

    Ignas Snellen

    2005-07-26

    Recently, mid-infrared Spitzer observations have been presented that show the light decrement due to the passage of a planet behind its host star. These measurements of HD209458b and TrES-1 are the first detections of direct light from an extra-solar planet. Interpretation of these results in terms of planet equipartition temperature and bond albedo is however strongly model dependent and require additional observations at shorter wavelengths. Here we report on two attempts to detect the secondary eclipse of HD209458b from the ground in K-band, using the UK InfraRed Telescope (UKIRT). A photometry precision of 0.12% relative to two nearby reference stars was reached during both occasions, but no firm detection of the eclipses were obtained. The first observation shows a flux decrement of -0.13+-0.18%, and the second of -0.10+-0.10%. A detailed description of the observing strategy, data reduction and analysis is given, and a discussion on how the precision in ground-based K-band photometry could be further improved. In addition we show that the relative photometry between the target and the reference stars between the two epochs is consistent down to the <0.1% level, which is interesting in the light of possible near-infrared surveys to search for transiting planets around M and L dwarfs.

  19. High-precision measurements of extensive air showers with the SKA

    E-Print Network [OSTI]

    T. Huege; J. D. Bray; S. Buitink; R. Dallier; R. D. Ekers; H. Falcke; A. Haungs; C. W. James; L. Martin; B. Revenu; O. Scholten; F. G. Schröder; A. Zilles

    2015-08-14

    As of 2023, the Square Kilometre Array will constitute the world's largest radio telescope, offering unprecedented capabilities for a diverse science programme in radio astronomy. At the same time, the SKA will be ideally suited to detect extensive air showers initiated by cosmic rays in the Earth's atmosphere via their radio emission. With its very dense and uniform antenna spacing in a fiducial area of one km$^2$ and its large bandwidth of 50-350 MHz, the low-frequency part of the SKA will provide very precise measurements of individual cosmic ray air showers. These precision measurements will allow detailed studies of the mass composition of cosmic rays in the energy region of transition from a Galactic to an extragalactic origin. Also, the SKA will facilitate three-dimensional "tomography" of the electromagnetic cascades of air showers, allowing the study of particle interactions at energies beyond the reach of the LHC. Finally, studies of possible connections between air showers and lightning initiation can be taken to a new level with the SKA. We discuss the science potential of air shower detection with the SKA and report on the technical requirements and project status.

  20. High-precision measurements of extensive air showers with the SKA

    E-Print Network [OSTI]

    Huege, T; Buitink, S; Dallier, R; Ekers, R D; Falcke, H; Haungs, A; James, C W; Martin, L; Revenu, B; Scholten, O; Schröder, F G; Zilles, A

    2015-01-01

    As of 2023, the Square Kilometre Array will constitute the world's largest radio telescope, offering unprecedented capabilities for a diverse science programme in radio astronomy. At the same time, the SKA will be ideally suited to detect extensive air showers initiated by cosmic rays in the Earth's atmosphere via their radio emission. With its very dense and uniform antenna spacing in a fiducial area of one km$^2$ and its large bandwidth of 50-350 MHz, the low-frequency part of the SKA will provide very precise measurements of individual cosmic ray air showers. These precision measurements will allow detailed studies of the mass composition of cosmic rays in the energy region of transition from a Galactic to an extragalactic origin. Also, the SKA will facilitate three-dimensional "tomography" of the electromagnetic cascades of air showers, allowing the study of particle interactions at energies beyond the reach of the LHC. Finally, studies of possible connections between air showers and lightning initiation ...

  1. The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results

    E-Print Network [OSTI]

    S. George; K. Blaum; F. Herfurth; A. Herlert; M. Kretzschmar; S. Nagy; S. Schwarz; L. Schweikhard; C. Yazidjian

    2007-01-22

    The highest precision in direct mass measurements is obtained with Penning trap mass spectrometry. Most experiments use the interconversion of the magnetron and cyclotron motional modes of the stored ion due to excitation by external radiofrequency-quadrupole fields. In this work a new excitation scheme, Ramsey's method of time-separated oscillatory fields, has been successfully tested. It has been shown to reduce significantly the uncertainty in the determination of the cyclotron frequency and thus of the ion mass of interest. The theoretical description of the ion motion excited with Ramsey's method in a Penning trap and subsequently the calculation of the resonance line shapes for different excitation times, pulse structures, and detunings of the quadrupole field has been carried out in a quantum mechanical framework and is discussed in detail in the preceding article in this journal by M. Kretzschmar. Here, the new excitation technique has been applied with the ISOLTRAP mass spectrometer at ISOLDE/CERN for mass measurements on stable as well as short-lived nuclides. The experimental resonances are in agreement with the theoretical predictions and a precision gain close to a factor of four was achieved compared to the use of the conventional excitation technique.

  2. In mold laser welding for high precision polymer based optical components

    SciTech Connect (OSTI)

    Oliveira, N., E-mail: id2694@alunos.uminho.pt, E-mail: pontes@dep.uminho.pt; Pontes, A. J., E-mail: id2694@alunos.uminho.pt, E-mail: pontes@dep.uminho.pt [IPC - Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, 4800-058 Guimarães (Portugal)

    2014-05-15

    To assemble a complete subsystem as a rear lamp, is necessary to have different machines and to perform several tasks. This necessity obliges the companies to have large structures to support all the assembling process. These huge structures are very costly and have as a consequence the reduction of the competitiveness of the companies. The process presented in this document has the intention of reducing the number of tasks needed to produce the final subsystem/product. To achieve this goal were combined several technologies, as in-mould assembling, laser welding and LEDs (light-emitting diode). One of the advantages of this process was the utilization of only one injection molding machine with three injection units to do all the assembling process. To achieve the main objective, firstly, the rear lamp was designed according to with the legislation of UNECE Vehicle Regulations - 1958 Agreements; Regulation No. 50 -Rev.2 - Position lamps, stop lamps, direction indicators for motorcycles. Posterior several polymeric materials were studied at different levels. Initial were studied several concentrations of carbon nanotubes mixed with PC (polycarbonate). This had the objective of determine, if these materials are suitable to conduct the necessary electric current to turn on the different LEDs. One of the main advantages of this process is the use of the laser transmission welded process. Since, with this welding technology is possible reduce the complexity of the final part. To understand the potentialities of this technology a combination of two materials was studied. The studied showed that all materials presented a high transparency to the laser beam. In terms of weld process, the study showed that the best welding conditions are the lowest velocity, diameter and power. With these studies was possible conclude that this new process is suitable to be implemented at the industrial level.

  3. High-precision determination of the electric and magnetic form factors of the proton

    E-Print Network [OSTI]

    J. C. Bernauer; P. Achenbach; C. Ayerbe Gayoso; R. Böhm; D. Bosnar; L. Debenjak; M. O. Distler; L. Doria; A. Esser; H. Fonvieille; J. M. Friedrich; J. Friedrich; M. Gómez Rodríguez de la Paz; M. Makek; H. Merkel; D. G. Middleton; U. Müller; L. Nungesser; J. Pochodzalla; M. Potokar; S. Sánchez Majos; B. S. Schlimme; S. Širca; Th. Walcher; M. Weinriefer

    2010-12-13

    New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.

  4. Reduced Call-Backs with High Performance Production Builders...

    Energy Savers [EERE]

    Reduced Call-Backs with High Performance Production Builders - Building America Top Innovation Reduced Call-Backs with High Performance Production Builders - Building America Top...

  5. High Performance Home Cost Performance Trade-Offs: Production...

    Energy Savers [EERE]

    High Performance Home Cost Performance Trade-Offs: Production Builders - Building America Top Innovation High Performance Home Cost Performance Trade-Offs: Production Builders -...

  6. Production Of High Specific Activity Copper-67

    DOE Patents [OSTI]

    Jamriska, Sr., David J. (Los Alamos, NM); Taylor, Wayne A. (Los Alamos, NM); Ott, Martin A. (Los Alamos, NM); Fowler, Malcolm (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM)

    2003-10-28

    A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  7. Production Of High Specific Activity Copper-67

    DOE Patents [OSTI]

    Jamriska, Sr., David J. (Los Alamos, NM); Taylor, Wayne A. (Los Alamos, NM); Ott, Martin A. (Los Alamos, NM); Fowler, Malcolm (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM)

    2002-12-03

    A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  8. Reply to Comment on "High-Precision Determination of the Electric and Magnetic Form Factors of the Proton"

    E-Print Network [OSTI]

    J. C. Bernauer; P. Achenbach; C. Ayerbe Gayoso; R. Böhm; D. Bosnar; L. Debenjak; M. O. Distler; L. Doria; A. Esser; H. Fonvieille; J. M. Friedrich; J. Friedrich; M. Gómez Rodríguez de la Paz; M. Makek; H. Merkel; D. G. Middleton; U. Müller; L. Nungesser; J. Pochodzalla; M. Potokar; S. Sánchez Majos; B. S. Schlimme; S. Širca; Th. Walcher; M. Weinriefer

    2011-08-17

    In arXiv:1108.3058v1 [nucl-ex], Arrington criticizes the Coulomb corrections we applied in the analysis of high precision form factor data (see Phys.Rev.Lett.105:242001, 2010, arXiv:1007.5076v3 [nucl-ex]). We show, by comparing different calculations cited in the Comment, that the criticism of the Comment neglects the large uncertainty of "more modern" TPE corrections. This uncertainty has also been seen in recent polarized measurements. We rerun our analysis using one of these calculations. The results show that the Comment exaggerates the quantitative effect at small Q^2.

  9. High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    transfer printing, nanowires, flexible electronics, printable electronics, nanoscale devices ABSTRACT Flexible electronics utilizing single crystalline semiconductors typically require post-growth processes devices. High performance electronics on flexible substrates have been gaining attention from research

  10. Design and manufacturing of high precision roll-to-roll multilayer printing machine -- machine upgrade

    E-Print Network [OSTI]

    Zhu, Yufei

    2009-01-01

    In 2008, a group of MIT Master of Engineering students built a roll to roll machine for printing thiol onto a flexible gold substrate by self-assembly. The machine demonstrated good performance in high speed printing (400 ...

  11. Fabrication of precision high quality facets on molecular beam epitaxy material

    DOE Patents [OSTI]

    Petersen, Holly E. (Tracy, CA); Goward, William D. (Antioch, CA); Dijaili, Sol P. (Moraga, CA)

    2001-01-01

    Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

  12. 'Modal-noise' in single-mode fibers: A cautionary note for high precision radial velocity instruments

    E-Print Network [OSTI]

    Halverson, Samuel; Mahadevan, Suvrath; Schwab, Christian

    2015-01-01

    Exploring the use of single-mode fibers (SMFs) in high precision Doppler spectrometers has become increasingly attractive since the advent of diffraction-limited adaptive optics systems on large-aperture telescopes. Spectrometers fed with these fibers can be made significantly smaller than typical 'seeing-limited' instruments, greatly reducing cost and overall complexity. Importantly, classical mode interference and speckle issues associated with multi-mode fibers, also known as 'modal noise', are mitigated when using SMFs, which also provide perfect radial and azimuthal image scrambling. However, these fibers do support multiple polarization modes, an issue that is generally ignored for larger-core fibers given the large number of propagation modes. Since diffraction gratings used in most high resolution astronomical instruments have dispersive properties that are sensitive to incident polarization changes, any birefringence variations in the fiber can cause variations in the efficiency profile, degrading il...

  13. Storage-discharge relationships at different catchment scales based on local high-precision gravimetry

    E-Print Network [OSTI]

    Troch, Peter

    Storage-discharge relationships at different catchment scales based on local high, Institute of Earth and Environmental Sciences, Potsdam, Germany Abstract: In hydrology, the storage of catchment science. To date, there are no direct methods to measure water storage at catchment scales (101

  14. On the road to precision cosmology with high redshift HII galaxies

    E-Print Network [OSTI]

    Terlevich, Roberto; Melnick, Jorge; Chávez, Ricardo; Plionis, Manolis; Bresolin, Fabio; Basilakos, Spyros

    2015-01-01

    We report the first results of a programme aimed at studying the properties of high redshift galaxies with on-going massive and dominant episodes of star formation (HII galaxies). We use the $L(\\mathrm{H}\\beta) - \\sigma$ distance estimator based on the correlation between the ionized gas velocity dispersions and Balmer emission line luminosities of HII galaxies and Giant HII regions to trace the expansion of the Universe up to $z \\sim 2.33$. This approach provides an independent constraint on the equation of state of dark energy and its possible evolution with look-back time. Here we present high-dispersion (8,000 to 10,000 resolution) spectroscopy of HII galaxies at redshifts between 0.6 and 2.33, obtained at the VLT using XShooter. Using six of these HII galaxies we obtain broad constraints on the plane $\\Omega_m - w_0$. The addition of 19 high-z HII galaxies from the literature improves the constraints and highlights the need for high quality emission line profiles, fluxes and reddening corrections. The 25...

  15. Rapid crustal accretion and magma assimilation in the Oman-U.A.E. ophiolite: High precision U-Pb zircon geochronology of the gabbroic crust

    E-Print Network [OSTI]

    Rioux, Matthew

    New high-precision U/Pb zircon geochronology from the Oman-United Arab Emirates (U.A.E.) ophiolite provides insight into the timing and duration of magmatism and the tectonic setting during formation of the lower crust. ...

  16. Tectonic development of the Samail ophiolite: High-precision U-Pb zircon geochronology and Sm-Nd isotopic constraints on crustal growth and emplacement

    E-Print Network [OSTI]

    Rioux, Matthew

    New high-precision single grain U-Pb zircon geochronology and whole rock Nd isotopic data provide insight into the magmatic and tectonic development of the Samail ophiolite. The analyzed rocks can be broadly divided into ...

  17. Precision Unification and Proton Decay in F-Theory GUTs with High Scale Supersymmetry

    E-Print Network [OSTI]

    Arthur Hebecker; James Unwin

    2014-09-23

    F-theory GUTs provide a promising UV completion for models with approximate gauge coupling unification, such as the (non-supersymmetric) Standard Model. More specifically, if the superparters have masses well above the TeV scale, the resulting imperfection in unification can be accounted for by the, in principle calculable, classical F-theory correction at the high scale. In this paper we argue for the correct form of the F-theory corrections to unification, including KK mode loop effects. However, the price of compensating the imprecise unification in such High Scale SUSY models with F-theory corrections is that the GUT scale is lowered, potentially leading to a dangerously high proton decay rate from dimension-6 operators. We analyse the possibility of suppressing the decay rate by the localization of $X,Y$ gauge bosons in higher dimensions. While this effect can be very strong for the zero modes, we find that in the simplest models of this type it is difficult to realize a significant suppression for higher modes (Landau levels). Notably, in the absence of substantial suppressions to the proton decay rate, the superpartners must be lighter than 100 TeV to satisfy proton decay constraints. We highlight that multiple correlated signals of proton decay could verify this scenario.

  18. A High-Precision Instrument for Mapping of Rotational Errors in Rotary Stages

    SciTech Connect (OSTI)

    Xu W.; Lauer,K.; Chu,Y.; Nazaretski,E.

    2014-10-02

    A rotational stage is a key component of every X-ray instrument capable of providing tomographic or diffraction measurements. To perform accurate three-dimensional reconstructions, runout errors due to imperfect rotation (e.g. circle of confusion) must be quantified and corrected. A dedicated instrument capable of full characterization and circle of confusion mapping in rotary stages down to the sub-10 nm level has been developed. A high-stability design, with an array of five capacitive sensors, allows simultaneous measurements of wobble, radial and axial displacements. The developed instrument has been used for characterization of two mechanical stages which are part of an X-ray microscope.

  19. A High-Precision Instrument for Mapping of Rotational Errors in Rotary Stages

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, W.; Lauer, K.; Chu, Y.; Nazaretski, E.

    2014-11-02

    A rotational stage is a key component of every X-ray instrument capable of providing tomographic or diffraction measurements. To perform accurate three-dimensional reconstructions, runout errors due to imperfect rotation (e.g. circle of confusion) must be quantified and corrected. A dedicated instrument capable of full characterization and circle of confusion mapping in rotary stages down to the sub-10 nm level has been developed. A high-stability design, with an array of five capacitive sensors, allows simultaneous measurements of wobble, radial and axial displacements. The developed instrument has been used for characterization of two mechanical stages which are part of an X-ray microscope.

  20. A Diode Laser Sensor for High Precision CO2 and H2O Flux Measurements |

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0GrantsThe Life of Enrico's The20155 HighU.S. DOE

  1. Electrolytic In-process Dressing (ELID) for high-efficiency, precision grinding of ceramic parts: An experiment study

    SciTech Connect (OSTI)

    Bandyopadhyay, B.P.

    1995-08-01

    This report describes Electrolytic In-process Dressing (ELID) as applied to the efficient, high-precision grinding of structural ceramics, and describes work performed jointly by Dr. B.P. Bandyopadhyay, University of North Dakota, and Dr. R. Ohmori, of the Institute of Physical and Chemical Research (RINEN), Tokyo, Japan, from June through August, 1994. Dr. Ohmori pioneered the novel ELID grinding technology which incorporates electrolytically enhanced, in-process dressing of metal bonded superabrasive wheels. The principle of ELID grinding technology is discussed in the report as will its application for rough grinding and precision grinding. Two types of silicon nitride based ceramics (Kyocerals Si{sub 3}N{sub 4}, and Eaton`s SRBSN) were ground under various conditions with ELID methods. Mirror surface finishes were obtained with {number_sign} 4000 mesh size wheel (average grain size = 4 {mu}m). Results of these investigations are presented in this report. These include the effects of wheel bond type, type of power supply, abrasive grit friability, and cooling fluid composition. The effects of various parameters are discussed in terms of the mechanisms of ELID grinding, and in particular, the manner of boundary layer formation on the wheels and abrasive grit protrusion.

  2. High precision density measurements in the solar corona: I. Analysis methods and results for Fe XII and Fe XIII

    E-Print Network [OSTI]

    P. R. Young; T. Watanabe; H. Hara; J. T. Mariska

    2008-10-28

    The EUV Imaging Spectrometer (EIS) instrument on board the Hinode satellite has access to some of the best coronal density diagnostics and the high sensitivity of the instrument now allows electron number density, N_e, measurements to an unprecedented precision of up to +/-5 % in active regions. This paper gives a thorough overview of data analysis issues for the best diagnostics of Fe XII and Fe XIII and assesses the accuracy of the measurements. Two density diagnostics each from Fe XII (186.88/195.12 and 196.64/195.12) and Fe XIII (196.54/202.04 and 203.82/202.04) are analysed in two active region data-sets from 2007 May 3 and 6 that yield densities in the range 8.5 < log N_e < 11.0. The densities are derived using v5.2 of the CHIANTI atomic database. The Fe XII and Fe XIII diagnostics show broadly the same trend in density across the active region, consistent with their similar temperatures of formation. However the high precision of the EIS measurements demonstrates significant discrepancies of up to 0.5 dex in derived log N_e values, with Fe XII always giving higher densities than Fe XIII. The discrepancies may partly be due to real physical differences between the emitting regions of the two plasmas, but the dominant factor lies in the atomic models of the two ions. Two specific problems are identified for Fe XII 196.64 and Fe XIII 203.82: the former is found to be under-estimated in strength by the CHIANTI atomic model, while the high density limit of the 203.82/202.04 is suggested to be inaccurate in the CHIANTI atomic model. The small grating tilt of the EIS instrument is found to be very significant when deriving densities from emission lines separated by more than a few angstroms.

  3. CLIC RF High Power Production Testing Program

    E-Print Network [OSTI]

    Syratchev, I; Tantawi, S

    2008-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production (~ 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation. The testing program overview and test results available to date are presented.

  4. High Tonnage Forest Biomass Production Systems from Southern...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is designing and demonstrating a high productivity system to harvest, process, and transport woody biomass from southern pine plantations. The final product will be a system...

  5. Time-separated oscillatory fields for high-precision mass measurements on short-lived Al and Ca nuclides

    E-Print Network [OSTI]

    S. George; G. Audi; B. Blank; K. Blaum; M. Breitenfeldt; U. Hager; F. Herfurth; A. Herlert; A. Kellerbauer; H. -J. Kluge; M. Kretzschmar; D. Lunney; R. Savreux; S. Schwarz; L. Schweikhard; C. Yazidjian

    2008-01-17

    High-precision Penning trap mass measurements on the stable nuclide 27Al as well as on the short-lived radionuclides 26Al and 38,39Ca have been performed by use of radiofrequency excitation with time-separated oscillatory fields, i.e. Ramsey's method, as recently introduced for the excitation of the ion motion in a Penning trap, was applied. A comparison with the conventional method of a single continuous excitation demonstrates its advantage of up to ten times shorter measurements. The new mass values of 26,27Al clarify conflicting data in this specific mass region. In addition, the resulting mass values of the superallowed beta-emitter 38Ca as well as of the groundstate of the beta-emitter 26Al m confirm previous measurements and corresponding theoretical corrections of the ft-values.

  6. Production of high specific activity silicon-32

    DOE Patents [OSTI]

    Phillips, Dennis R. (Los Alamos, NM); Brzezinski, Mark A. (Santa Barbara, CA)

    1994-01-01

    A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  7. Pion Production in High-Energy Neutrino Reactions with Nuclei

    E-Print Network [OSTI]

    Ulrich Mosel

    2015-06-11

    [Background] A quantitative understanding of neutrino interactions with nuclei is needed for precision era neutrino long baseline experiments (MINOS, NOvA, DUNE) which all use nuclear targets. Pion production is the dominant reaction channel at the energies of these experiments. [Purpose] Investigate the influence of nuclear effects on neutrino-induced pion production cross sections and compare predictions for pion-production with available data. [Method] The Giessen Boltzmann--Uehling--Uhlenbeck (GiBUU) model is used for the description of all incohrent channels in neutrino-nucleus reactions. [Results] Differential cross sections for charged and neutral pion production for the MINER$\

  8. A high-precision search for magnetic field oscillations in the roAp star HD 24712

    E-Print Network [OSTI]

    O. Kochukhov; G. A. Wade

    2007-02-28

    We have obtained a time series of 81 high-cadence circular polarization observations of the rapidly oscillating Ap star HD 24712 with the new ESPaDOnS spectropolarimeter at CFHT. We used the high-S/N, high-resolution Stokes I and V spectra to investigate possible variation of the mean longitudinal field over the pulsation cycle in this roAp star. Our multiline magnetic field and radial velocity measurements utilized 143 spectral lines of rare-earth elements, attaining precision better than 13 G and 19 m/s, respectively. A multiperiodic radial velocity variation with an amplitude of 40-136 m/s is clearly detected at the known pulsation frequencies of HD 24712. At the same time, no evidence for pulsational changes of the magnetic field can be found. We derive a 3sigma upper limit of 10 G, or about 1% of the mean longitudinal field strength, for magnetic field oscillations in the upper atmosphere of HD 24712. The absence of detectable pulsational variability of the magnetic field provides a valuable constraint for the interaction between pulsations and magnetic field in roAp stars and is compatible with the recent predictions of detailed theoretical models of stellar magnetoacoustic oscillations.

  9. High precision stereo profilometry

    E-Print Network [OSTI]

    Aumond, Bernardo Dantas, 1972-

    2001-01-01

    Metrological data from sample surfaces can be obtained by using a variety of profilome try methods. Atomic Force Microscopy (AFM), which relies on contact inter-atomic forces to extract topographical images of a sample, ...

  10. High productivity injection practices at Rouge Steel

    SciTech Connect (OSTI)

    Barker, D.H.; Hegler, G.L.; Falls, C.E. [Rouge Steel Co., Dearborn, MI (United States)

    1995-12-01

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  11. High Precision Measurement of the Proton Elastic Form Factor Ratio $?_pG_E/G_M$ at low $Q^2$

    E-Print Network [OSTI]

    X. Zhan; K. Allada; D. S. Armstrong; J. Arrington; W. Bertozzi; W. Boeglin; J. -P. Chen; K. Chirapatpimol; S. Choi; E. Chudakov; E. Cisbani; P. Decowski; C. Dutta; S. Frullani; E. Fuchey; F. Garibaldi; S. Gilad; R. Gilman; J. Glister; K. Hafidi; B. Hahn; J. -O. Hansen; D. W. Higinbotham; T. Holmstrom; R. J. Holt; J. Huang; G. M. Huber; F. Itard; C. W. de Jager; X. Jiang; J. Johnson; J. Katich; R. de Leo; J. J. LeRose; R. Lindgren; E. Long; D. J. Margaziotis; S. May-Tal Beck; D. Meekins; R. Michaels; B. Moffit; B. E. Norum; M. Olson; E. Piasetzky; I. Pomerantz; D. Protopopescu; X. Qian; Y. Qiang; A. Rakhman; R. D. Ransome; P. E. Reimer; J. Reinhold; S. Riordan; G. Ron; A. Saha; A. J. Sarty; B. Sawatzky; E. C. Schulte; M. Shabestari; A. Shahinyan; S. Sirca; P. Solvignon; N. F. Sparveris; S. Strauch; R. Subedi; V. Sulkosky; I. Vilardi; Y. Wang; B. Wojtsekhowski; Z. Ye; Y. Zhang

    2011-08-31

    We report a new, high-precision measurement of the proton elastic form factor ratio \\mu_p G_E/G_M for the four-momentum transfer squared Q^2 = 0.3-0.7 (GeV/c)^2. The measurement was performed at Jefferson Lab (JLab) in Hall A using recoil polarimetry. With a total uncertainty of approximately 1%, the new data clearly show that the deviation of the ratio \\mu_p G_E/G_M from unity observed in previous polarization measurements at high Q^2 continues down to the lowest Q^2 value of this measurement. The updated global fit that includes the new results yields an electric (magnetic) form factor roughly 2% smaller (1% larger) than the previous global fit in this Q^2 range. We obtain new extractions of the proton electric and magnetic radii, which are ^(1/2)=0.875+/-0.010 fm and ^(1/2)=0.867+/-0.020 fm. The charge radius is consistent with other recent extractions based on the electron-proton interaction, including the atomic hydrogen Lamb shift measurements, which suggests a missing correction in the comparison of measurements of the proton charge radius using electron probes and the recent extraction from the muonic hydrogen Lamb shift.

  12. The precise determination of mass through the oscillations of a very high-Q superconductor oscillating system

    E-Print Network [OSTI]

    Osvaldo F. Schilling

    2013-08-29

    The present paper is based upon the fact that if an object is part of a highly stable oscillating system, it is possible to obtain an extremely precise measure for its mass in terms of the energy trapped in this resonance. The subject is timely since there is great interest in Metrology on the establishment of a new electronic standard for the kilogram. Our contribution to such effort includes both the proposal of an alternative definition for mass in terms of energy, as well as the description of a realistic experimental system in which this definition might actually be applied. The setup consists of an oscillating type-II superconducting loop (the SEO system) subjected to the gravity and magnetic fields. The system is shown to be able to reach a dynamic equilibrium by trapping energy up to the point it levitates against the surrounding magnetic and gravitational fields, behaving as an extremely high-Q spring-load system. The proposed energy-mass equation applied to the electromechanical oscillating system eventually produces a new experimental relation between mass and standardized constants.

  13. HIGH PRECISION ABUNDANCES OF THE OLD SOLAR TWIN HIP 102152: INSIGHTS ON Li DEPLETION FROM THE OLDEST SUN

    SciTech Connect (OSTI)

    Monroe, TalaWanda R.; Melendez, Jorge; Tucci Maia, Marcelo; Freitas, Fabricio C.; Yong, David; Asplund, Martin; Alves-Brito, Alan; Casagrande, Luca; Bergemann, Maria; Bedell, Megan; Bean, Jacob; Lind, Karin; Castro, Matthieu; Do Nascimento, Jose-Dias; Bazot, Michael

    2013-09-10

    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex ({approx}<1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2 m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = -0.013 {+-} 0.004. The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratios examined versus dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 102152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9 Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a potential candidate to host terrestrial planets, which is reinforced by the lack of giant planets in its terrestrial planet region. The following non-local thermodynamic equilibrium Li abundances were obtained for HIP 102152, 18 Sco, and the Sun: log {epsilon} (Li) = 0.48 {+-} 0.07, 1.62 {+-} 0.02, and 1.07 {+-} 0.02, respectively. The Li abundance of HIP 102152 is the lowest reported to date for a solar twin, and allows us to consider an emerging, tightly constrained Li-age trend for solar twin stars.

  14. Comment on the $?^+$-production at high energy

    E-Print Network [OSTI]

    A. I. Titov; A. Hosaka; S. Date'; Y. Ohashi

    2004-09-15

    We show that the cross sections of the $\\Theta^+$-pentaquark production in different processes decrease with energy faster than the cross sections of production of the conventional three-quark hyperons. Therefore, the threshold region with the initial energy of a few GeV or less seemsto be more favorable for the production and experimental study of $\\Theta^+$-pentaquark.

  15. High-precision determination of low-energy effective parameters for a two-dimensional Heisenberg quantum antiferromagnet

    SciTech Connect (OSTI)

    Jiang, F.-J.; Wiese, U.-J.

    2011-04-15

    The two-dimensional (2D) spin-(1/2) Heisenberg antiferromagnet with exchange coupling J is investigated on a periodic square lattice of spacing a at very small temperatures using the loop-cluster algorithm. Monte Carlo data for the staggered and uniform susceptibilities are compared with analytic results obtained in the systematic low-energy effective field theory for the staggered magnetization order parameter. The low-energy parameters of the effective theory, i.e., the staggered magnetization density M{sub s}=0.307 43(1)/a{sup 2}, the spin stiffness {rho}{sub s}=0.180 81(11)J, and the spin wave velocity c=1.6586(3)Ja, are determined with very high precision. Our study may serve as a test case for the comparison of lattice quantum chromodynamics Monte Carlo data with analytic predictions of the chiral effective theory for pions and nucleons, which is vital for the quantitative understanding of the strong interaction at low energies.

  16. Photon and dilepton production in high energy heavy ion collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sakaguchi, Takao

    2015-05-07

    The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.

  17. High Tonnage Forest Biomass Production Systems from Southern...

    Broader source: Energy.gov (indexed) [DOE]

    and demonstrating a high productivity system to harvest, process, and transport woody biomass from southern pine plantations. auburnprojectabstract1.pdf More Documents &...

  18. High productivity in Australian blast furnaces

    SciTech Connect (OSTI)

    Nightingale, R.J.; Mellor, D.G. [BHP Slab and Plate Products Div., Port Kembla, New South Wales (Australia); Jelenich, L. [BHP Rod and Bar Products Div., Newcastle, New South Wales (Australia); Ward, R.F. [BHP Long Products Div., Whyalla, South Australia (Australia)

    1995-12-01

    Since the emergence of the Australian domestic economy from recession in 1992, the productivity of BHP`s blast furnace has increased significantly to meet the demands of both domestic and export markets. BHP Steel operates six blast furnaces at its three Australian integrated plants. These furnaces vary widely in their size, feed, technology and current campaign status. This paper reviews the principal issues associated with productivity improvements over recent years. These gains have been achieved through activities associated with a wide range of process, equipment and human resource based issues.

  19. Precision Mining

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½tank |A suggestion for aPrecision

  20. High power target design and operation considerations for kaon production

    E-Print Network [OSTI]

    McDonald, Kirk

    High power target design and operation considerations for kaon production Philip Pile Collider · LESBIII kaon production target/issues 24/19/2013 #12;PROTON BEAM FY96 FY97 FY98/99 FY2000 FY2001 FY2002 1012 per second during spill · Production Angle: 0 degrees · Particle Flux (per 1013, 22 Ge

  1. Foolproof completions for high rate production wells 

    E-Print Network [OSTI]

    Tosic, Slavko

    2009-05-15

    wells, particularly those with subsea wellheads, and the alternative has been to subject the completion to increasingly high drawdown, accepting a high skin effect. A far better solution is to use a HPF completion. Of course the execution of a successful...

  2. High harmonic generation and attosecond pulse production in dense medium

    E-Print Network [OSTI]

    Becker, Andreas

    High harmonic generation and attosecond pulse production in dense medium v.v. Stre1kov1'2', V ABSTRACT We have studied the high harmonic generation and attosecond pulse production in a plasma or gas positions of the particles using the Monte-Carlo method. We observe a change of the harmonic properties due

  3. Precision electron polarimetry

    SciTech Connect (OSTI)

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  4. Production of high molecular weight polylactic acid

    DOE Patents [OSTI]

    Bonsignore, Patrick V. (Joilet, IL)

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  5. Production of high molecular weight polylactic acid

    DOE Patents [OSTI]

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  6. Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\\sqrt{s}=200$ GeV

    E-Print Network [OSTI]

    STAR Collaboration; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bultmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calderon de la Barca Sanchez; J. M. Campbell; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; G. Contin; J. G. Cramer; H. J. Crawford; A. B. Cudd; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; S. Dhamija; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; L. Eun; O. Evdokimov; O. Eyser; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; E. Finch; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; L. Greiner; D. Grosnick; D. S. Gunarathne; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; A. Hamed; L. -X. Han; R. Haque; J. W. Harris; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; X. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. K. Kosarzewski; L. Kotchenda; A. F. Kraishan; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; M. J. LeVine; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. M. M. D. Madagodagettige Don; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. L. Olvitt Jr.; M. Pachr; B. S. Page; S. K. Pal; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; W. Peryt; P. Pile; M. Planinic; J. Pluta; N. Poljak; K. Poniatowska; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; P. R. Pujahari; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; O. Rusnakova; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. N. Singaraju; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; M. Vandenbroucke; J. A. Vanfossen Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbæk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; J. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I. -K. Yoo; N. Yu; Y. Zawisza; H. Zbroszczyk; W. Zha; J. B. Zhang; J. L. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

    2014-05-20

    We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.

  7. Toward high-precision values of the self energy of non-S states in hydrogen and hydrogen-like ions

    E-Print Network [OSTI]

    Eric-Olivier Le Bigot; Ulrich D. Jentschura; Paul Indelicato; Peter J. Mohr

    2004-10-22

    The method and status of a study to provide numerical, high-precision values of the self-energy level shift in hydrogen and hydrogen-like ions is described. Graphs of the self energy in hydrogen-like ions with nuclear charge number between 20 and 110 are given for a large number of states. The self-energy is the largest contribution of Quantum Electrodynamics (QED) to the energy levels of these atomic systems. These results greatly expand the number of levels for which the self energy is known with a controlled and high precision. Applications include the adjustment of the Rydberg constant and atomic calculations that take into account QED effects.

  8. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOE Patents [OSTI]

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  9. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOE Patents [OSTI]

    Ruffner, Judith Alison (Albuquerque, NM)

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  10. We describe a low cost high precision photometric imaging system, which has been in robotic operation for one year on the Mauna Loa observatory (Hawaii). The system, which can be easily duplicated, offers a 150 sq deg

    E-Print Network [OSTI]

    Guyon, Olivier

    We describe a low cost high precision photometric imaging system, which has been in roboticAchieving high precision photometry for identifying transiting exoplanets with a low-cost robotic DSLR-based imaging systemexoplanets with a low-cost robotic DSLR-based imaging system Mauna Kea Dual camera system

  11. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  12. Multi Jet Production at High Q2

    E-Print Network [OSTI]

    Thomas Kluge

    2005-10-31

    Deep-inelastic $e^+p$ scattering data, taken with the H1 detector at HERA, are used to investigate jet production over a range of four-momentum transfers $150 < Q^2 < 15000 \\mathrm{GeV}^2$ and transverse jet energies $5 < E_T < 50 \\mathrm{GeV}$. The analysis is based on data corresponding to an integrated luminosity of $\\mathcal{L}_\\mathrm{int} = 65.4 \\mathrm{pb}^{-1}$ taken in the years 1999-2000 at a centre-of-mass energy $\\sqrt{s} \\approx 319 \\mathrm{GeV}$. Jets are defined by the inclusive $k_t$ algorithm in the Breit frame of reference. Dijet and trijet jet cross sections are measured with respect to the exchanged boson virtuality and in addition the ratio of the trijet to the dijet cross section $R_{3/2}$ is investigated. The results are compared to the predictions of perturbative QCD calculations in next-to-leading order in the strong coupling constant $\\alpha_s$. The value of $\\alpha_s(m_Z)$ determined from the study of $R_{3/2}$ is $\\alpha_s(m_Z) = 0.1175 \\pm 0.0017 (\\mathrm{stat.}) \\pm 0.0050 (\\mathrm{syst.}) ^{+0.0054}_{-0.0068} (\\mathrm{theo.})$.

  13. Economically Optimum Irrigation Patternsfor Grain Sorghum Production: Texas High Plains 

    E-Print Network [OSTI]

    Zavaleta, L. R.; Lacewell, R. D.; Taylor, C. R.

    1979-01-01

    Agricultural production and associated economic effects of irrigation on the Texas High Plains are seriously threatened by a rapidly declining groundwater supply and a swift upward trend in energy costs. To optimize the ...

  14. Search for anomalous production of events with a high energy...

    Office of Scientific and Technical Information (OSTI)

    ThesisDissertation: Search for anomalous production of events with a high energy lepton and photon at the Tevatron Citation Details In-Document Search Title: Search for anomalous...

  15. High-biomass sorghums for biomass biofuel production 

    E-Print Network [OSTI]

    Packer, Daniel

    2011-05-09

    photoperiod-sensitive (PS) hybrids within the Ma1/Ma5/Ma6 hybrid production system. High-biomass sorghums are PS and the Ma1/Ma5/Ma6 hybrid production system produces PS hybrids with PI parents by manipulating alleles at the Ma1, Ma5 and Ma6 sorghum maturity...

  16. Aquatic primary production in a high-CO2 world

    E-Print Network [OSTI]

    Fussman, Gregor

    Aquatic primary production in a high-CO2 world Etienne Low-De´carie, Gregor F. Fussmann, and Graham-Penfield, Montreal, QC, H3A 1B1, Canada Here, we provide a review of the direct effect of increas- ing CO2 on aquatic: the assessment of theories about limitation of productivity and the integration of CO2 into the co

  17. Optimizing the coffee experience by developing a user-centered, internet connected, high precision coffee machine and integrated system experience

    E-Print Network [OSTI]

    Kuempel, Jeremy (Jeremy J.)

    2011-01-01

    The current state of coffee production is reviewed; from the origins of the plant grown to modem coffee brew techniques. Initial experiments are reported in which coffee was brewed at different temperatures for different ...

  18. Methods for high volume production of nanostructured materials

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerald M. (Oak Ridge, TN)

    2011-03-22

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  19. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  20. Production of High Purity Niobium Ingots at CBMM

    SciTech Connect (OSTI)

    Moura, Lourenco de; Faria Sousa, Clovis Antonio de; Burgos Cruz, Edmundo [CBMM-Companhia Brasileira de Metalurgia e Mineracao, Fazenda Corrego da Mata, P.O. Box 838.183.903, Araxa, MG (Brazil)

    2011-03-31

    CBMM is a fully integrated company, from the mine to the end line of the production chain, supplying different niobium products to the world market: ferroniobium, nickelniobium, niobium pentoxide and high purity metallic niobium. This high purity metallic niobium has long been known to exhibit superconductivity below 9.25 Kelvin. This characteristic has the potential to bring technological benefits for many different areas such as medicine, computing and environment. This paper presents the raw material requirements as well as CBMM experience on producing high purity niobium ingots. The results prove that CBMM material can be the best solution for special applications such as low cost superconductive radiofrequency cavities.

  1. Geochemistry of eclogites from Western Norway: implications from high-precision whole-rock and rutile analyses 

    E-Print Network [OSTI]

    Wilkinson, Darren James

    2015-06-30

    The Western Gneiss Region (WGR) in Norway is home to some of the world’s most spectacular exposures of high pressure (HP) and ultrahigh pressure (UHP) eclogites. Despite extensive petrological studies into their pressure, ...

  2. Meson production in high-energy electron-nucleus scattering

    E-Print Network [OSTI]

    Göran Fäldt

    2010-06-09

    Experimental studies of meson production through two-photon fusion in inelastic electron-nucleus scattering is now under way. A high-energy photon radiated by the incident electron is fused with a soft photon radiated by the nucleus. The process takes place in the small-angle-Coulomb region of nuclear scattering. We expound the theory for this production process as well as its interference with coherent-radiative-meson production. In particular, we investigate the distortion of the electron wave function due to multiple-Coulomb scattering.

  3. Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production

    E-Print Network [OSTI]

    Javey, Ali

    Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0 for solar hydrogen production. KEYWORDS: Water splitting, hydrogen production, photochemistry, high

  4. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    E-Print Network [OSTI]

    Rakhman, A; Nanda, S; Benmokhtar, F; Camsonne, A; Cates, G D; Dalton, M M; Franklin, G B; Friend, M; Michaels, R W; Nelyubin, V; Parno, D S; Paschke, K D; Quinn, B P; Souder, P A; Tobias, W A

    2016-01-01

    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO$_{3}$ crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a total conversion efficiency of 34.8\\%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7~kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7\\%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0\\% precision in polarization measurements of an electron beam with energy and current of 1.0~GeV and 50~$\\mu$A.

  5. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    E-Print Network [OSTI]

    A. Rakhman; M. Hafez; S. Nanda; F. Benmokhtar; A. Camsonne; G. D. Cates; M. M. Dalton; G. B. Franklin; M. Friend; R. W. Michaels; V. Nelyubin; D. S. Parno; K. D. Paschke; B. P. Quinn; P. A. Souder; W. A. Tobias

    2016-01-03

    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO$_{3}$ crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a total conversion efficiency of 34.8\\%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7~kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7\\%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0\\% precision in polarization measurements of an electron beam with energy and current of 1.0~GeV and 50~$\\mu$A.

  6. High-Precision Measurements of [superscript 33]S and [superscript 34]S Fractionation during SO[subscript 2] Oxidation Reveal Causes of Seasonality in SO[subscript 2] and Sulfate Isotopic Composition

    E-Print Network [OSTI]

    Harris, Eliza

    This study presents high-precision isotope ratio-mass spectrometric measurements of isotopic fractionation during oxidation of SO[subscript 2] by OH radicals in the gas phase and H[subscript 2]O[subscript 2] and transition ...

  7. Computer Study of Isotope Production in High Power Accelerators

    E-Print Network [OSTI]

    K. A. Van Riper; S. G. Mashnik; W. B. Wilson

    1999-01-25

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

  8. Statistical considerations in high precision U-Pb geochronology, with an application to the tectonic evolution of the North Cascades, Washington

    E-Print Network [OSTI]

    McLean, Noah Morgan

    2012-01-01

    The range of geologic problems that may be addressed by U-Pb geochronology is governed by the precision to which U-Pb dates can be measured, expressed as their estimated uncertainties. Accurate and precise knowledge of ...

  9. Original article Biomass and nutrient cycling of a highly productive

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Biomass and nutrient cycling of a highly productive Corsican pine stand on former 14 April; accepted 22 September 1997) Abstract - Biomass and nutrient cycling were examined in a 62 on a coarse and dry sandy soil with low exchangeable nutrient pools. Total aboveground biomass was estimated

  10. Well Productivity Enhancement of High Temperature Heterogeneous Carbonate Reservoirs 

    E-Print Network [OSTI]

    Wang, Guanqun

    2014-05-08

    . Uneven acid distribution always results in productivity enhancement under expectation. When such a well is drilled, the temperature of the well could be too high to keep the acid reaction under control. The acid used in the treatment fluid, most commonly...

  11. Fuel Cell Assembly Process Flow for High Productivity

    E-Print Network [OSTI]

    Edwards, David A.

    Fuel Cell Assembly Process Flow for High Productivity Problem Presenter Ram Ramanan Bloom Energy: Introduction Bloom Energy manufactures power modules based on fuel cell technology. These are built up their possible placement within a cell assembly. Currently, these rules for assembling the basic components

  12. Precision powder feeder

    DOE Patents [OSTI]

    Schlienger, M. Eric (Albuquerque, NM); Schmale, David T. (Albuquerque, NM); Oliver, Michael S. (Sandia Park, NM)

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  13. Development of high productivity medium current ion implanter 'EXCEED 3000AH Evo2'

    SciTech Connect (OSTI)

    Ikejiri, T.; Hamamoto, N.; Hisada, S.; Iwasawa, K.; Kawakami, K.; Kokuryu, K.; Miyamoto, N.; Nogami, T.; Sakamoto, T.; Sasada, Y.; Tanaka, K.; Yamamoto, Y.; Yamashita, T. [Nissin Ion Equipment Co., LTD., 575, Kuze-tonoshiro-cho, Minami-ku, Kyoto, 601-8205 (Japan)

    2011-01-07

    High productivity medium current ion implanter 'EXCEED 3000AH Evo2' is developed. In semiconductor manufacturing field, improvement of the productivity is continuously required. Especially mass production lines recently tend to use low energy beam and 2 pass implant for higher throughput. The 'Evo2' has been developed in an effort to fulfill these requirements. The 'Evo2' increases low energy beam current by 150 to 250% by applying electrostatic einzel lens called 'V-lens' installed at the exit of the Collimator magnet. This lens is also able to control the beam incident angle by adjusting the upper and lower electrode's voltages independently. Besides, mechanical scanning speed is enhanced to minimize process time of 2 pass implant, while also frequency of the fast beam scanning is enhanced to keep dose uniformity. In addition, a vacuum pumping capability at the target chamber is enhanced to reduce a vacuum waiting time during processing photo-resist wafers. This improvement achieved to reduce process time by 40% for a specific recipe. Furthermore, a modified Indirectly Heated Cathode with electron active Reflection 2 (IHC-R2) ion source which has a long life time filament has been installed. These new elements and/or functions have realized typically 25% improvement of productivity compared to standard EXCEED, and also improve a precise implantation capability.

  14. Method for creating high carbon content products from biomass oil

    DOE Patents [OSTI]

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  15. Higgs pair production at the High Luminosity LHC

    E-Print Network [OSTI]

    CMS Collaboration

    2015-01-01

    Studies of the Higgs boson pair production and decays into $bb\\gamma\\gamma$, $bb\\tau\\tau$, and $bb\\mathrm{W}\\mathrm{W}$ final states are presented. The studies are performed assuming the operational conditions of the High-Luminosity LHC, with an integrated luminosity of 3000~$\\mathrm{fb}^{-1}$, and the upgraded CMS experiment. Combining the studies of $bb\\gamma\\gamma$ and $bb\\tau\\tau$ final states, the expected significance for Higgs boson pair production is 1.9 standard deviation. The resulting expected uncertainty in the signal yield is $54\\%$. The benefits of the CMS Phase-II upgrade, to meet the challenges presented by the high luminosity environment, are emphasized.

  16. Precision Robotic Assembly Machine

    ScienceCinema (OSTI)

    None

    2010-09-01

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  17. Double Pair Production by Ultra High Energy Cosmic Ray Photons

    E-Print Network [OSTI]

    S. V. Demidov; O. E. Kalashev

    2008-12-22

    With use of CompHEP package we've made the detailed estimate of the influence of double e+e- pair production by photons (DPP) on the propagation of ultra high energy electromagnetic cascade. We show that in the models in which cosmic ray photons energy reaches few thousand EeV refined DPP analysis may lead to substantial difference in predicted photon spectrum compared to previous rough estimates.

  18. High-precision CoRoT space photometry and fundamental parameter determination of the B2.5V star HD 48977

    E-Print Network [OSTI]

    Thoul, Anne; Catala, Claude; Aerts, Conny; Morel, Thierry; Briquet, Maryline; Hillen, Michel; Raskin, Gert; Van Winckel, Hans; Auvergne, Michel; Baglin, Annie; Baudin, Frédéric; Michel, Eric

    2012-01-01

    We present the CoRoT light curve of the bright B2.5V star HD 48977 observed during a short run of the mission in 2008, as well as a high-resolution spectrum gathered with the HERMES spectrograph at the Mercator telescope. We use several time series analysis tools to explore the nature of the variations present in the light curve. We perform a detailed analysis of the spectrum of the star to determine its fundamental parameters and its element abundances. We find a large number of high-order g-modes, and one rotationally induced frequency. We find stable low-amplitude frequencies in the p-mode regime as well. We conclude that HD 48977 is a new Slowly Pulsating B star with fundamental parameters found to be Teff = 20000 $\\pm$ 1000 K and log(g)=4.2 $/pm$ 0.1. The element abundances are similar to those found for other B stars in the solar neighbourhood. HD 48977 was observed during a short run of the CoRoT satellite implying that the frequency precision is insufficient to perform asteroseismic modelling of the s...

  19. Entropy Production at High Energy and mu_B

    E-Print Network [OSTI]

    Peter Steinberg

    2007-02-08

    The systematics of bulk entropy production in experimental data on A+A, p+p and e+e- interactions at high energies and large mu_B is discussed. It is proposed that scenarios with very early thermalization, such as Landau's hydrodynamical model, capture several essential features of the experimental results. It is also pointed out that the dynamics of systems which reach the hydrodynamic regime give similar multiplicities and angular distributions as those calculated in weak-coupling approximations (e.g. pQCD) over a wide range of beam energies. Finally, it is shown that the dynamics of baryon stopping are relevant to the physics of total entropy production, explaining why A+A and e+e- multiplicities are different at low beam energies.

  20. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01

    release from agro-biofuel production negates global warmingcultivation and biofuel production (www.lyxia.com).engineering for biofuel production: towards affordable

  1. High efficiency of collisional Penrose process requires heavy particle production

    E-Print Network [OSTI]

    Kota Ogasawara; Tomohiro Harada; Umpei Miyamoto

    2015-10-31

    The center-of-mass energy of two particles can become arbitrarily large if they collide near the event horizon of an extremal Kerr black hole, which is called the Ba$\\rm \\tilde n$ados-Silk-West (BSW) effect. We consider such a high-energy collision of two particles which started from infinity and follow geodesics in the equatorial plane and investigate the energy extraction from such a high-energy particle collision and the production of particles in the equatorial plane. We analytically show that, on the one hand, if the produced particles are as massive as the colliding particles, the energy-extraction efficiency is bounded by $2.19$ approximately. On the other hand, if a very massive particle is to be produced as a result of the high-energy collision, which has negative energy and necessarily falls into the black hole, the upper limit of the energy-extraction efficiency is increased to $(2+\\sqrt{3})^2 \\simeq 13.9$. Thus, higher efficiency of the energy extraction, which is typically as large as 10, provides strong evidence for the production of a heavy particle.

  2. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  3. Precision flyer initiator

    DOE Patents [OSTI]

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  4. Precision flyer initiator

    DOE Patents [OSTI]

    Frank, Alan M. (Livermore, CA); Lee, Ronald S. (Livermore, CA)

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  5. The impact of the Kuiper Belt Objects and of the asteroid ring on future high-precision relativistic Solar System tests

    E-Print Network [OSTI]

    Lorenzo Iorio

    2007-08-08

    We preliminarily investigate the impact of the Kuiper Belt Objects (KBOs) and of the asteroid ring on some proposed high-precision tests of Newtonian and post-Newtonian gravity to be performed in the Solar System by means of spacecraft in heliocentric \\approx 1 AU orbits and accurate orbit determination of some of the inner planets. It turns out that the Classical KBOSs (CKBOS), which amount to \\approx 70% of the observed population of Trans-Neptunian bodies, induce a systematic secular error of about 1 m after one year in the transverse direction T of the orbit of a test particle orbiting at 1 AU from the Sun. For Mercury the ratios of the secular perihelion precessions induced by CKBOs to the ones induced by the general relativity and the solar oblateness J_2 amount to 6 10^-7 and 8 10^-4, respectively. The secular transverse perturbation induced on a \\approx 1 AU orbit by the asteroid ring, which globally accounts for the action of the minor asteroids whose mass is about 5 10^-10 solar masses, is 10 m yr^-1; the bias on the relativistic and J_2 Mercury perihelion precessions is 6.1 10^-6 and 1 10^-2, respectively. Given the very ambitious goals of many expensive and complex missions aimed to testing gravitational theories to unprecedented levels of accuracy, these notes may suggest further and more accurate investigations of such sources of potentially insidious systematic bias.

  6. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  7. Pricing bundles of products and services in the high-tech industry

    E-Print Network [OSTI]

    Ferrer, Juan-Carlos O., 1970-

    2002-01-01

    The High-Tech industry faces tremendous complexity in product design because of the large number of different products that can be offered and the mix of products and services that exists. Information Technology (IT) ...

  8. KELT-8b: A highly inflated transiting hot Jupiter and a new technique for extracting high-precision radial velocities from noisy spectra

    E-Print Network [OSTI]

    Fulton, Benjamin J; Gaudi, B Scott; Stassun, Keivan G; Pepper, Joshua; Beatty, Thomas G; Siverd, Robert J; Penev, Kaloyan; Howard, Andrew W; Baranec, Christoph; Corfini, Giorgio; Eastman, Jason D; Gregorio, Joao; Law, Nicholas M; Lund, Michael B; Oberst, Thomas E; Penny, Matthew T; Riddle, Reed; Rodriguez, Joseph E; Stevens, Daniel J; Zambelli, Roberto; Ziegler, Carl; Bieryla, Allyson; D`Ago, Giuseppe; DePoy, Darren L; Jensen, Eric L N; Kielkopf, John F; Latham, David W; Manner, Mark; Marshall, Jennifer; McLeod, Kim K; Reed, Phillip A

    2015-01-01

    We announce the discovery of a highly inflated transiting hot Jupiter discovered by the KELT-North survey. A global analysis including constraints from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly evolved, G dwarf with $T_{\\rm eff} = 5754_{-55}^{+54}$ K, $\\log{g} = 4.078_{-0.054}^{+0.049}$, $[Fe/H] = 0.272\\pm0.038$, an inferred mass $M_{*}=1.211_{-0.066}^{+0.078}$ M$_{\\odot}$, and radius $R_{*}=1.67_{-0.12}^{+0.14}$ R$_{\\odot}$. The planetary companion has mass $M_P = 0.867_{-0.061}^{+0.065}$ $M_{J}$, radius $R_P = 1.86_{-0.16}^{+0.18}$ $R_{J}$, surface gravity $\\log{g_{P}} = 2.793_{-0.075}^{+0.072}$, and density $\\rho_P = 0.167_{-0.038}^{+0.047}$ g cm$^{-3}$. The planet is on a roughly circular orbit with semimajor axis $a = 0.04571_{-0.00084}^{+0.00096}$ AU and eccentricity $e = 0.035_{-0.025}^{+0.050}$. The best-fit linear ephemeris is $T_0 = 2456883.4803 \\pm 0.0007$ BJD$_{\\rm TDB}$ and $P = 3.24406 \\pm 0.00016$ days. This planet is one of the most inflated of all known transiti...

  9. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01

    W. N2O release from agro-biofuel production negates globalcultivation and biofuel production (www.lyxia.com).183 (2001) Amin S. Review on biofuel oil and gas production

  10. Cosmic Ray production of Beryllium and Boron at high redshift

    E-Print Network [OSTI]

    Emmanuel Rollinde; David Maurin; Elisabeth Vangioni; Keith A. Olive; Susumu Inoue

    2007-07-13

    Recently, new observations of Li6 in Pop II stars of the galactic halo have shown a surprisingly high abundance of this isotope, about a thousand times higher than its predicted primordial value. In previous papers, a cosmological model for the cosmic ray-induced production of this isotope in the IGM has been developed to explain the observed abundance at low metallicity. In this paper, given this constraint on the Li6, we calculate the non-thermal evolution with redshift of D, Be, and B in the IGM. In addition to cosmological cosmic ray interactions in the IGM, we include additional processes driven by SN explosions: neutrino spallation and a low energy component in the structures ejected by outflows to the IGM. We take into account CNO CRs impinging on the intergalactic gas. Although subdominant in the galactic disk, this process is shown to produce the bulk of Be and B in the IGM, due to the differential metal enrichment between structures (where CRs originate) and the IGM. We also consider the resulting extragalactic gamma-ray background which we find to be well below existing data. The computation is performed in the framework of hierarchical structure formation considering several star formation histories including Pop III stars. We find that D production is negligible and that a potentially detectable Be and B plateau is produced by these processes at the time of the formation of the Galaxy (z ~ 3).

  11. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    SciTech Connect (OSTI)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

  12. Approaches To Crisis Prevention In Lean Product Development By High Performance Teams And Through Risk Management

    E-Print Network [OSTI]

    Oehmen, Josef

    This thesis investigates crisis prevention in lean product development, focusing on high performance teams and risk management methods.

  13. Measuring Productivity on High Performance Computers Marvin Zelkowitz1,2

    E-Print Network [OSTI]

    Basili, Victor R.

    Measuring Productivity on High Performance Computers Marvin Zelkowitz1,2 Victor Basili1,2 Sima and measuring productivity for these machines and we develop a model of productivity that includes both with respect to our model of productivity. 1. Introduction Productivity is an economic concept that measures

  14. Precision positioning device

    DOE Patents [OSTI]

    McInroy, John E.

    2005-01-18

    A precision positioning device is provided. The precision positioning device comprises a precision measuring/vibration isolation mechanism. A first plate is provided with the precision measuring mean secured to the first plate. A second plate is secured to the first plate. A third plate is secured to the second plate with the first plate being positioned between the second plate and the third plate. A fourth plate is secured to the third plate with the second plate being positioned between the third plate and the fourth plate. An adjusting mechanism for adjusting the position of the first plate, the second plate, the third plate, and the fourth plate relative to each other.

  15. Precision autonomous underwater navigation

    E-Print Network [OSTI]

    Bingham, Brian S. (Brian Steven), 1973-

    2003-01-01

    Deep-sea archaeology, an emerging application of autonomous underwater vehicle (AUV) technology, requires precise navigation and guidance. As science requirements and engineering capabilities converge, navigating in the ...

  16. The magic road to precision

    E-Print Network [OSTI]

    Safronova, M S; Safronova, U I; Clark, Charles W

    2015-01-01

    We predict a sequence of magic-zero wavelengths for the Sr excited $5s5p~ ^3P_0$ state, and provide a general roadmap for extracting transition matrix elements using precise frequency measurements. We demonstrate that such measurements can serve as a best global benchmark of the spectroscopic accuracy that is required for the development of high-precision predictive methods. These magic-zero wavelengths are also needed for state-selective atom manipulation for implementation of quantum logic operations. We also identify five magic wavelengths of the $5s^2\\ ^1S_0 - 5s5p\\ ^3P_0$ Sr clock transition between 350 nm and 500 nm which can also serve as precision benchmarks.

  17. The magic road to precision

    E-Print Network [OSTI]

    M. S. Safronova; Z. Zuhrianda; U. I. Safronova; Charles W. Clark

    2015-07-23

    We predict a sequence of magic-zero wavelengths for the Sr excited $5s5p~ ^3P_0$ state, and provide a general roadmap for extracting transition matrix elements using precise frequency measurements. We demonstrate that such measurements can serve as a best global benchmark of the spectroscopic accuracy that is required for the development of high-precision predictive methods. These magic-zero wavelengths are also needed for state-selective atom manipulation for implementation of quantum logic operations. We also identify five magic wavelengths of the $5s^2\\ ^1S_0 - 5s5p\\ ^3P_0$ Sr clock transition between 350 nm and 500 nm which can also serve as precision benchmarks.

  18. High precision high flow range control valve

    DOE Patents [OSTI]

    McCray, J.A.

    1999-07-13

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.

  19. High precision high flow range control valve

    DOE Patents [OSTI]

    McCray, John A. (Idaho Falls, ID)

    1999-01-01

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.

  20. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production

    E-Print Network [OSTI]

    Kudela, Raphael M.

    range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel production systems using microalgae. Keywords Algae . Carbon sequestration . Biofuel . Biogas . Biohydrogen . Biomethane . Bioreactor. Lipid . Oil . Raceway pond . Triacylglycerides . Review Abbreviations BTL biomass

  1. Soviet precision timekeeping research and technology

    SciTech Connect (OSTI)

    Vessot, R.F.C.; Allan, D.W.; Crampton, S.J.B.; Cutler, L.S.; Kern, R.H.; McCoubrey, A.O.; White, J.D.

    1991-08-01

    This report is the result of a study of Soviet progress in precision timekeeping research and timekeeping capability during the last two decades. The study was conducted by a panel of seven US scientists who have expertise in timekeeping, frequency control, time dissemination, and the direct applications of these disciplines to scientific investigation. The following topics are addressed in this report: generation of time by atomic clocks at the present level of their technology, new and emerging technologies related to atomic clocks, time and frequency transfer technology, statistical processes involving metrological applications of time and frequency, applications of precise time and frequency to scientific investigations, supporting timekeeping technology, and a comparison of Soviet research efforts with those of the United States and the West. The number of Soviet professionals working in this field is roughly 10 times that in the United States. The Soviet Union has facilities for large-scale production of frequency standards and has concentrated its efforts on developing and producing rubidium gas cell devices (relatively compact, low-cost frequency standards of modest accuracy and stability) and atomic hydrogen masers (relatively large, high-cost standards of modest accuracy and high stability). 203 refs., 45 figs., 9 tabs.

  2. Production trap improvements using high-efficiency internals

    SciTech Connect (OSTI)

    Delavan, D.P.; Wilson, T.T.

    1995-10-01

    Most of the Gas-Oil Separation Plants (GOSP) in Southern Area Producing of Saudi Aramco will be producing between 40% and 75% water cuts by the turn of the century. Many GOSPs will be producing more than twice the amount of water they were originally designed for. Consequently, modifications must be made to the GOSPs so that they will have the capacity to separate and clean up these large volumes of produced water. The most attractive option is to improve the separation efficiency of the High Pressure Production Traps (HPPT) where formation water is first removed from the wellhead fluid. These traps have historically removed very little water from the wellhead fluid. However, the following modifications have proven to significantly improve the separation efficiency of the traps: double the height of the weir, and raise the oil level from 40% to 65% full; install a new inlet device to minimize the formation of foam; install coalescing and foam-breaking internals to enhance oil/water coalescing and separation and to break the foam on top of the oil layer.

  3. Short Communication High hydrogen production rate of microbial electrolysis cell (MEC) with

    E-Print Network [OSTI]

    Short Communication High hydrogen production rate of microbial electrolysis cell (MEC) with reduced production rate Microbial electrolysis cell a b s t r a c t Practical applications of microbial electrolysis cells (MECs) require high hydrogen production rates and a compact reactor. These goals can be achieved

  4. Management of a high mix production system with interdependent demands : finished goods requirements and raw materials control

    E-Print Network [OSTI]

    Palano, Diego

    2009-01-01

    A product line, characterized by high level of customization, diversification and demand correlation between different finished goods products, requires increased efficiency and effectiveness. The product line, along with ...

  5. Covered Product Category: Industrial Luminaires (High/Low Bay...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that for FEMP-designated luminaires fewer luminaires can be used to provide equivalent light output. Exceptions Products meeting FEMP-designated efficiency requirements or...

  6. High Tonnage Forest Biomass Production Systems from Southern...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest Biomass Production Systems from Southern Pine Energy Plantations Feedstock Supply and Logistics: Biomass as a Commodity Feedstock Supply and Logistics:Biomass as a Commodity...

  7. Microbial production of wax esters from highly branched alkanes

    DOE Patents [OSTI]

    Bogan, William W.; Sullivan, Wendy R.; Paterek, James R.

    2005-02-01

    A microbial culture and method for producing wax esters using highly branched alkanes. In accordance with one embodiment, the highly branched alkane is squalane.

  8. Precision photometry for planetary transits

    E-Print Network [OSTI]

    Frederic Pont; Claire Moutou

    2007-02-06

    We review the state of the art in follow-up photometry for planetary transit searches. Three topics are discussed: (1) Photometric monitoring of planets discovered by radial velocity to detect possible transits (2) Follow-up photometry of candidates from photometric transit searches to weed out eclipsing binaries and false positives (3) High-precision lightcurves of known transiting planets to increase the accuracy on the planet parameters.

  9. Method for grinding precision components

    DOE Patents [OSTI]

    Ramanath, Srinivasan (Holden, MA); Kuo, Shih Yee (Westboro, MA); Williston, William H. (Holden, MA); Buljan, Sergej-Tomislav (Acton, MA)

    2000-01-01

    A method for precision cylindrical grinding of hard brittle materials, such as ceramics or glass and composites comprising ceramics or glass, provides material removal rates as high as 19-380 cm.sup.3 /min/cm. The abrasive tools used in the method comprise a strong, light weight wheel core bonded to a continuous rim of abrasive segments containing superabrasive grain in a dense metal bond matrix.

  10. Precision displacement reference system

    DOE Patents [OSTI]

    Bieg, Lothar F. (Albuquerque, NM); Dubois, Robert R. (Albuquerque, NM); Strother, Jerry D. (Edgewood, NM)

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  11. HIGH CURRENT D- PRODUCTION BY CHARGE EXCHANGE IN SODIUM

    E-Print Network [OSTI]

    Hooper, E.B.

    2011-01-01

    good beam optics at the 1 keV energy and below required forto relatively high energies. optics is goou. Uo)~ but the

  12. PoS(Nufact08)090 High Yield Production of 6

    E-Print Network [OSTI]

    McDonald, Kirk

    PoS(Nufact08)090 High Yield Production of 6 He and 8 Li RIB for Astrophysics and Neutrino Physics@soreq.gov.il Francois de Oliveira Ganil, Caen, France E-mail: oliveira@ganil.fr A production scheme by fast secondary neutrons from a 40 MeV deuteron beam impinging on a converter target provides efficient production

  13. Phosphate bonded structural products from high volume wastes

    DOE Patents [OSTI]

    Singh, D.; Wagh, A.S.

    1998-12-08

    A method to produce structural products from benign waste is provided comprising mixing pretreated oxide with phosphoric acid to produce an acid solution, mixing the acid solution with waste particles to produce a slurry, and allowing the slurry to cure. The invention also provides for a structural material comprising waste particles enveloped by an inorganic binder. 1 fig.

  14. Phosphate bonded structural products from high volume wastes

    DOE Patents [OSTI]

    Singh, Dileep (Naperville, IL); Wagh, Arun S. (Joliet, IL)

    1998-01-01

    A method to produce structural products from benign waste is provided comprising mixing pretreated oxide with phosphoric acid to produce an acid solution, mixing the acid solution with waste particles to produce a slurry, and allowing the slurry to cure. The invention also provides for a structural material comprising waste particles enveloped by an inorganic binder.

  15. High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water

    E-Print Network [OSTI]

    Vinh, N Q; Allen, S James; George, D K; Rahmani, A J; Plaxco, Kevin W

    2015-01-01

    Because it is sensitive to fluctuations occurring over femtoseconds to picoseconds, gigahertz-to-terahertz dielectric relaxation spectroscopy can provide a valuable window into water's most rapid intermolecular motions. In response, we have built a vector network analyzer dielectric spectrometer capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision. Using this to determine the complex dielectric response of water and aqueous salt solutions from 5.9 GHz to 1.12 THz (which we provide in the SI), we have obtained strong new constraints on theories of water's collective dynamics. For example, while the salt-dependencies we observe for water's two slower relaxations (8 and 1 ps) are easily reconciled with suggestions that they arise due to rotations of fully and partially hydrogen bonded molecules, respectively, the salt-dependence of the fastest relaxation (180 fs) appears difficult to reconcile with its prior assignment to liberations of single hydrogen bon...

  16. High Tunnel Crop Production Tips Lewis W. Jett

    E-Print Network [OSTI]

    Goodman, Robert M.

    . Specifically, high tunnels are passively vented, solar greenhouses covered with 1-2 layers of greenhouse supplemental heating systems? High tunnels should be designed and managed as passively vented and solar heated structures. However, supplemental heat (propane space heaters, wood stoves, etc) can be used to protect

  17. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, Michael E. (Albuquerque, NM); Sullivan, William H. (Albuquerque, NM)

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  18. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  19. Prolific pair production with high-power lasers

    E-Print Network [OSTI]

    Bell, A R

    2008-01-01

    Prolific electron-positron pair production is possible at laser intensities approaching 10^{24} W/cm^2 at a wavelength of 1 micron. An analysis of electron trajectories and interactions at the nodes (B=0) of two counter-propagating, circularly polarised laser beams shows that a cascade of gamma-rays and pairs develops. The geometry is generalised qualitatively to linear polarisation and laser beams incident on a solid target.

  20. Prolific pair production with high-power lasers

    E-Print Network [OSTI]

    A. R. Bell; John G. Kirk

    2008-10-16

    Prolific electron-positron pair production is possible at laser intensities approaching 10^{24} W/cm^2 at a wavelength of 1 micron. An analysis of electron trajectories and interactions at the nodes (B=0) of two counter-propagating, circularly polarised laser beams shows that a cascade of gamma-rays and pairs develops. The geometry is generalised qualitatively to linear polarisation and laser beams incident on a solid target.

  1. Rapid and Precise Determination of Cellular Amino Acid Flux Rates

    E-Print Network [OSTI]

    Wikswo, John

    in hepa- tocyte and hepatoma cell lines where extensive gluconeogen- esis, urea production, and protein, therefore, can increase productivity compared to offline methods. Consistent automated OPARapid and Precise Determination of Cellular Amino Acid Flux Rates Using HPLC with Automated

  2. High energy photon production in strong colliding laser beams

    E-Print Network [OSTI]

    Michael Kuchiev; Julian Ingham

    2015-07-21

    The collision of two intense, low-frequency laser beams is considered. The $e^-e^+$ pairs created in this field are shown to exhibit recollisions, which take place at high energy accumulated due to the wiggling of fermions. The resulting $e^-e^+$ annihilation produces high energy photons, or heavy particles. The coherent nature of the laser field provides strong enhancement of the probability of these events. Analytical and numerical results are outlined.

  3. High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGH

  4. High-intensity, high-brightness polarized and unpolarized beam production in charge-exchange collisions

    SciTech Connect (OSTI)

    Zelenski, A.; Ritter, J.; Zubets, V.; Steski, D.; Atoian, G.; Davydenko, V.; Ivanov, A.; Kolmogorov, A.

    2011-03-28

    Basic limitations on the high-intensity H{sup -} ion beam production were experimentally studied in charge-exchange collisions of the neutral atomic hydrogen beam in the Na-vapour jet ionizer cell. These studies are the part of the polarized source upgrade (to 10 mA peak current and 85% polarization) project for RHIC. In the source the atomic hydrogen beam of a 5-10 keV energy and total (equivalent) current up to 5 A is produced by neutralization of proton beam in pulsed hydrogen gas target. Formation of the proton beam (from the surface of the plasma emitter with a low transverse ion temperature {approx}0.2 eV) is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. The hydrogen atomic beam intensity up to 1.0 A/cm{sup 2} (equivalent) was obtained in the Na-jet ionizer aperture of a 2.0 cm diameter. At the first stage of the experiment H-beam with 36 mA current, 5 keV energy and {approx}1.0 cm {center_dot} mrad normalized emittance was obtained using the flat grids and magnetic focusing.

  5. Workshop on Precision Measurements of alphas

    E-Print Network [OSTI]

    S. Bethke; A. H. Hoang; S. Kluth; J. Schieck; I. W. Stewart; S. Aoki; M. Beneke; J. Blumlein; N. Brambilla; S. Brodsky; S. Descotes-Genon; J. Erler; S. Forte; T. Gehrmann; C. Glasman; M. Golterman; S. Hashimoto; A. Kronfeld; J. Kuhn; P. Lepage; A. Martin; V. Mateu; S. Menke; Y. Nomura; C. Pahl; F. Petriello; A. Pich; K. Rabbertz; G. Salam; H. Schulz; R. Sommer; M. Steinhauser; B. Webber; CP. Yuan; G. Zanderighi

    2011-10-22

    These are the proceedings of the "Workshop on Precision Measurements of alphas" held at the Max-Planck-Institute for Physics, Munich, February 9-11, 2011. The workshop explored in depth the determination of alphas(mZ) in the MS-bar scheme from the key categories where high precision measurements are currently being made, including DIS and global PDF fits, tau-decays, electroweak precision observables and Z-decays, event-shapes, and lattice QCD. These proceedings contain a short summary contribution from the speakers, as well as the lists of authors, conveners, participants, and talks.

  6. Precision tests of QED and non-standard models by searching photon-photon scattering in vacuum with high power lasers

    E-Print Network [OSTI]

    Daniele Tommasini; Albert Ferrando; Humberto Michinel; Marcos Seco

    2009-11-11

    We study how to search for photon-photon scattering in vacuum at present petawatt laser facilities such as HERCULES, and test Quantum Electrodynamics and non-standard models like Born-Infeld theory or scenarios involving minicharged particles or axion-like bosons. First, we compute the phase shift that is produced when an ultra-intense laser beam crosses a low power beam, in the case of arbitrary polarisations. This result is then used in order to design a complete test of all the parameters appearing in the low energy effective photonic Lagrangian. In fact, we propose a set of experiments that can be performed at HERCULES, eventually allowing either to detect photon-photon scattering as due to new physics, or to set new limits on the relevant parameters, improving by several orders of magnitude the current constraints obtained recently by PVLAS collaboration. We also describe a multi-cross optical mechanism that can further enhance the sensitivity, enabling HERCULES to detect photon-photon scattering even at a rate as small as that predicted by QED. Finally, we discuss how these results can be improved at future exawatt facilities such as ELI, thus providing a new class of precision tests of the Standard Model and beyond.

  7. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    SciTech Connect (OSTI)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  8. Covered Product Category: Industrial Luminaires (High/Low Bay)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for Industrial Luminaires (High/Low Bay). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  9. Transmutation and energy-production with high power accelerators

    SciTech Connect (OSTI)

    Lawrence, G.P.

    1995-07-01

    Accelerator-driven transmutation offers attractive new solutions to complex nuclear problems. This paper outlines the basics of the technology, summarizes the key application areas, and discusses designs of and performance issues for the high-power proton accelerators that are required.

  10. A passion for precision

    ScienceCinema (OSTI)

    None

    2011-10-06

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  11. Raw material preparation for ultra high production rate sintering

    SciTech Connect (OSTI)

    Kortmann, H.A.; Ritz, V.J. [Studiengesellschaft fuer Eisenerzaufbereitung, Liebenburg-Othfresen (Germany); Cappel, F.; Weisel, H.; Richter, G. [LURGI AG, Frankfurt (Germany)

    1995-12-01

    An R and D program in pot grate sintering showed, that an intensive preparation of ores, additives and coke breeze improves the sintering capacity. The tests were conducted using an ore mixture composed of typical ores imported to Europe. The highest capacities were attained up to 63.8 t/m{sup 2} {times} 24 h maximum for a sinter which well fulfills the high requirements on chemical, physical and metallurgical properties.

  12. High Tonnage Forest Biomass Production Systems from Southern Pine Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing ToolSustainableSecurityHigh Energy CostHighofPlantations |

  13. High Tonnage Forest Biomass Production Systems from Southern Pine Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡HighApproaches |

  14. High-energy x-ray production with pyroelectric crystals Jeffrey A. Geuthera

    E-Print Network [OSTI]

    Danon, Yaron

    High-energy x-ray production with pyroelectric crystals Jeffrey A. Geuthera and Yaron Danon, the usefulness of an x-ray source is determined by its yield and endpoint energy. In x-ray fluorescence, for example, high-energy sources enable the excitation of the K-shell x-ray peaks for high-Z materials as well

  15. Measuring Productivity on High Performance Computers Marvin Zelkowitz1,2

    E-Print Network [OSTI]

    Zelkowitz, Marvin V.

    Measuring Productivity on High Performance Computers Marvin Zelkowitz1,2 Victor Basili1,2 Sima, lorin, hollings, nakamura}@cs.umd.edu Abstract In the high performance computing domain, the speed of concern to high performance computing developers. In this paper we will discuss the problems of defining

  16. IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 12, NO. 3, JUNE 2007 317 A Modular and High-Precision Motion Control

    E-Print Network [OSTI]

    Hollerbach, John M.

    IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 12, NO. 3, JUNE 2007 317 A Modular and High- tegrated mechatronics, mechatronics system, modular controller, modular joint, motion control system, robot

  17. Design and development of high precision elastomeric-stamp wrapping system for roll-to-roll multi-layer microcontact printing

    E-Print Network [OSTI]

    Datar, Charudatta Achyut

    2009-01-01

    Microcontact printing is an emerging printing technique that could potentially find application in the electronics industry. High-speed roll-to-roll equipment was built at Nano Terra, Inc in 2008, for microcontact printing. ...

  18. A flexible assembly system for low volume and high diversity production

    E-Print Network [OSTI]

    Schwenke, Richard Clemens

    2009-01-01

    This thesis project seeks to optimize floor layouts for semiconductor equipment assembly operations. The assembly of semiconductor equipment is characterized by low volume and high product diversity and complexity. Demand ...

  19. Proposal for an Electron Antineutrino Disappearance Search Using High-Rate 8Li Production and Decay

    E-Print Network [OSTI]

    Bungau, Adriana

    This paper introduces an experimental probe of the sterile neutrino with a novel, high-intensity source of electron antineutrinos from the production and subsequent decay of [superscript 8]Li. When paired with an existing ...

  20. Inventory optimization model for NIKE's long lifecycle highly seasonal replenishment products

    E-Print Network [OSTI]

    Kang, John H. (John Hyun-June)

    2015-01-01

    Currently, demand and inventory planners at NIKE Always Available (NIKE's replenishment business) experience difficulty in managing long-lifecycle highly-seasonal products like soccer equipment and fleece apparel. Very ...

  1. Recursive Programming Model for Crop Production on the Texas High Plains 

    E-Print Network [OSTI]

    Reneau, D. R.; Lacewell, R. D.; Ellis, J. R.

    1984-01-01

    A flexible, recursive programming model of crop production on the Texas High Plains was developed. Besides the linear programming (LP) Optimization routine and recursive feedback section, the model also includes a matrix generator and report writer...

  2. Congestion control schemes for single and parallel TCP flows in high bandwidth-delay product networks 

    E-Print Network [OSTI]

    Cho, Soohyun

    2006-08-16

    In this work, we focus on congestion control mechanisms in Transmission Control Protocol (TCP) for emerging very-high bandwidth-delay product networks and suggest several congestion control schemes for parallel and single-flow ...

  3. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in

    E-Print Network [OSTI]

    Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis Park, PA 16802, USA E-mail: blogan@psu.edu Hydrogen gas can be produced from fermentation end products is improved for producing H2 gas in MECs using AEMs. Key words | BEAMR, biohydrogen, bioreactors, catalysts

  4. TIME STRUCTURE OF PARTICLE PRODUCTION IN THE MERIT HIGH-POWER TARGET EXPERIMENT

    E-Print Network [OSTI]

    McDonald, Kirk

    TIME STRUCTURE OF PARTICLE PRODUCTION IN THE MERIT HIGH-POWER TARGET EXPERIMENT I. Efthymiopoulos power proton beam to be used as front-end for a neutrino factory complex or a muon collider production from the tar- get will be reported. In particular, the analysis is focused on the time evolution

  5. Feedback Controlled High Frequency Electrochemical Micromachining 

    E-Print Network [OSTI]

    Ozkeskin, Fatih Mert

    2008-10-10

    are different from those for silicon. A promising mass production method for micro/meso scale components is electrochemical micromachining. The complex system, however, requires high precision mechanical fixtures and sophisticated instrumentation for proper...

  6. Verification of the MCU precision code and ROSFOND neutron data in application to the calculations of criticality of fast reactors with highly enriched uranium

    SciTech Connect (OSTI)

    Alekseev, N. I.; Kalugin, M. A.; Kulakov, A. S.; Novosel’tsev, A. P.; Sergeev, G. S.; Shkarovskiy, D. A.; Yudkevich, M. S., E-mail: umark@adis.vver.kiae.ru [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15

    Calculation of 335 critical assemblies (benchmark experiments) with the core of highly enriched uranium and reflectors of various materials is performed. The statistical analysis of the results shows that, for all 16 materials studied, the absolute value of the most probable deviation of the calculated value of K{sub eff} from the experimental one does not exceed 0.005.

  7. Economic effect on agricultural production of alternative energy input prices: Texas High Plains 

    E-Print Network [OSTI]

    Adams, Benjamin Michael

    1975-01-01

    ECONOMIC EFFECT ON AGRICULTURAL PRODUCTION OF ALTERNATIYE ENERGy INPUT PRICES: TEXAS HIGH PLAlNS A Thesis by BENJAMIN MICHAEL ADAMS Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1975 Major Subject: Agricultural Economics ECONOMIC EFFECT ON AGRICULTURAL PRODUCTION OF ALTERNATIVE ENERGY INPUT PRICES: TEXAS HIGH PLAINS A Thesis by BENJAMIN MICHAEL ADAMS Approved as to style and content...

  8. Selectable resistance-area product by dilute highly charged ion irradiation

    SciTech Connect (OSTI)

    Pomeroy, J. M.; Grube, H.; Perrella, A. C.; Gillaspy, J. D. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2007-08-13

    Considerable effort worldwide has been invested in producing low resistance-area (RA) product magnetic tunnel junction sensors for future hard drive read heads. Here the authors present a method of producing tunnel barriers with a selectable RA value spanning orders of magnitude. A single process recipe is used with only the dose of highly charged ions (HCIs) varied. The HCIs reduce the tunnel barrier integrity, providing enhanced conduction that reduces the overall RA product. The final RA product is selected by appropriate choice of the HCI density; e.g., 100 HCIs/{mu}m{sup 2} typically results in the RA product being reduced by a factor of 100.

  9. SPLAT II: An Aircraft Compatible, Ultra-Sensitive, High Precision Instrument for In-Situ Characterization of the Size and Composition of Fine and Ultrafine Particles

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Yang, Juan; Choi, Eric Y.; Imre, Dan G.

    2009-05-01

    The properties of aerosols depend on the size and internal compositions of the individual particles. The vast majority of atmospheric aerosols are smaller than 200 nm, yet the single particle mass spectrometers, the only instruments that can characterize the size and internal compositions of individual particles, typically detect these small particles with extremely low efficiencies. In this paper we describe a new instrument called SPLAT II that provides unparalleled sensitivity to small particles, detecting 100% of particles that are larger than 125 nm and 40% of 100 nm particles. This instrument also brings an increase by a factor of 10 in temporal resolution, sizing up to 500 particles per second and characterizing the composition of up to 100 of them. SPLAT II uses a two-laser, two-step process to evaporate the particles and generate ions, producing high quality, reproducible mass spectra of the refractive and non-refractive aerosol fractions to yield the complete compositions of individual particles. The instrument control board provides for size dependent delays for lasers’ triggers to eliminate a size dependent hit rate. The mass spectra are recorded with 14-bit vertical resolution and analyzed using custom software packages. The instrument’s high sizing resolution and sensitivity makes it possible to combine it with the differential mobility analyzer(s) and measure particle size, composition, density, dynamic shape factor, hygroscopicity, and fractal dimension.

  10. Production of High-Hydrogen Content Coal-Derived Liquids [Part 1 of 3

    SciTech Connect (OSTI)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

  11. Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3

    SciTech Connect (OSTI)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

  12. Production of High-Hydrogen Content Coal-Derived Liquids [Part 3 of 3

    SciTech Connect (OSTI)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

  13. Rapidity dependence of the photon to pion production ratio in high energy collisions

    E-Print Network [OSTI]

    Jamal Jalilian-Marian

    2007-03-22

    We investigate rapidity dependence of the ratio of photon and pion production cross sections in high energy proton (deuteron) - nucleus collisions at RHIC and LHC. This ratio, and its rapidity dependence can be a sensitive probe of high density QCD (Color Glass Condensate) dynamics and shed further light on the role of saturation physics at RHIC and LHC.

  14. Archiving Data from New Survey Technologies: Lessons Learned on Enabling Research with High-Precision Data While Preserving Participant Privacy: Preprint

    SciTech Connect (OSTI)

    Gonder, J.; Burton, E.; Murakami, E.

    2014-11-01

    During the past 15 years, increasing numbers of organizations and planning agencies have begun collecting high-resolution Global Positioning System (GPS) travel data. Despite the significant effort and expense to collect it, privacy concerns often lead to underutilization of the data. To address this dilemma of providing data access while preserving privacy, the National Renewable Energy Laboratory, with support from the U.S. Department of Transportation and U.S. Department of Energy, established the Transportation Secure Data Center (TSDC). Lessons drawn from best-practice examples from other data centers have helped shape the structure and operating procedures for the TSDC, which functions under the philosophy of first and foremost preserving privacy, but doing so in a way that balances security with accessibility and usability of the data for legitimate research. This paper provides details about the TSDC approach toward achieving these goals, which has included creating a secure enclave with no external access for backing up and processing raw data, a publicly accessible website for downloading cleansed data, and a secure portal environment through which approved users can work with detailed spatial data using a variety of tools and reference information. This paper also describes lessons learned from operating the TSDC with respect to improvements in GPS data handling, processing, and user support, along with plans for continual enhancements to better support the needs of both data providers and users and to thus advance the research value derived from such valuable data.

  15. Apparatus for precision micromachining with lasers

    DOE Patents [OSTI]

    Chang, Jim J. (Dublin, CA); Dragon, Ernest P. (Danville, CA); Warner, Bruce E. (Pleasanton, CA)

    1998-01-01

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialogroaphic sections of machined parts show little (submicron scale) recast layer and heat affected zone.

  16. Apparatus for precision micromachining with lasers

    DOE Patents [OSTI]

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  17. A Highly Granular Silicon-Tungsten Electromagnetic Calorimeter and Top Quark Production at the International Linear Collider

    E-Print Network [OSTI]

    Rouëné, J

    2014-01-01

    This thesis deals with two aspects of the International Linear Collider (ILC) which is a project of a linear electron-positron collider of up to at least 500 GeV center of mass energy. The first aspect is the development of a silicon-tungsten electromagnetic calorimeter (SiW-ECAL) for one of the detectors of the ILC. The concept of this detector is driven by the ILC beam specifications and by the Particle Flow Algorithm (PFA). This requires highly granular calorimeter and very compact one with integrated electronics. To prove the capability of the SiW- ECAL a technological prototype has been built and tested in test beam at DESY. The results are presented here, and show, after the calibration procedure a signal over noise ratio of 10, even in the power pulsing mode. The second aspect is the study of one of the important physics channels of the ILC, the top anti-top quark pairs production. The main goal of this study is to determine the precision that we can expect at the ILC on the top coupling with the W bos...

  18. The high-energy limit of H+2 jet production via gluon fusion

    E-Print Network [OSTI]

    V. Del Duca; W. B. Kilgore; C. Oleari; C. R. Schmidt; D. Zeppenfeld

    2002-03-16

    We consider Higgs + 2 jet production via gluon fusion in the limit where either one of the Higgs-jet or the dijet invariant masses become much larger than the typical momentum transfers in the scattering. These limits also occur naturally in Higgs production via weak-boson fusion. We show that the scattering amplitudes factorize in the high energy limit, and we obtain the relevant effective vertices.

  19. Jet production in high Q 2 deepinelastic ep scattering at HERA

    E-Print Network [OSTI]

    Jet production in high Q 2 deep­inelastic ep scattering at HERA ZEUS Collaboration Abstract Two­jet:01 ! x ! 0:1 and 0:04 ! y ! 0:95 with the ZEUS detector at HERA. The kinematic properties of the jets and the jet production rates are presented. The partonic scaling variables of the two­jet system and the rate

  20. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  1. Attaining the Photometric Precision Required by Future Dark Energy Projects

    SciTech Connect (OSTI)

    Stubbs, Christopher

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  2. A Process Model for the Production of Hydrogen Using High Temperature Electrolysis

    SciTech Connect (OSTI)

    M. G. Mc Kellar; E. A. Harvego; M. Richards; A. Shenoy

    2006-07-01

    High temperature electrolysis (HTE) involves the splitting of stream into hydrogen and oxygen at high temperatures. The primary advantage of HTE over conventional low temperature electrolysis is that considerably higher hydrogen production efficiencies can be achieved. Performing the electrolysis process at high temperatures results in more favorable thermodynamics for electrolysis, more efficient production of electricity, and allows direct use of process heat to generate steam. This paper presents the results of process analyses performed to evaluate the hydrogen production efficiencies of an HTE plant coupled to a 600 MWt Modular Helium Reactor (MHR) that supplies both the electricity and process heat needed to drive the process. The MHR operates with a coolant outlet temperature of 950 C. Approximately 87% of the high-temperature heat is used to generate electricity at high efficiency using a direct, Brayton-cycle power conversion system. The remaining high-temperature heat is used to generate a superheated steam / hydrogen mixture that is supplied to the electrolyzers. The analyses were performed using the HYSYS process modeling software. The model used to perform the analyses consisted of three loops; a primary high temperature helium loop, a secondary helium loop and the HTE process loop. The detailed model included realistic representations of all major components in the system, including pumps, compressors, heat exchange equipment, and the electrolysis stack. The design of the hydrogen production process loop also included a steam-sweep gas system to remove oxygen from the electrolysis stack so that it can be recovered and used for other applications. Results of the process analyses showed that hydrogen production efficiencies in the range of 45% to 50% are achievable with this system.

  3. Very-High-Precision Calculations in Physics

    E-Print Network [OSTI]

    Amna Noreen

    2013-04-10

    This is the introductory part of my Ph.D thesis, defended at the Faculty of Science and Technology, NTNU on December 10, 2012.

  4. High Precision Geophysics & Detailed Structural Exploration ...

    Open Energy Info (EERE)

    reservoir and identification of deep up flow targets. These surveys and the drilling process have been designed to severely limit the impact of the exploration. The geophysics...

  5. Towards a high-precision atomic gyroscope

    E-Print Network [OSTI]

    Van Camp, Mackenzie A. (Mackenzie Anne)

    2013-01-01

    In this thesis, I report on the design and construction of the Rubidium Atomic Gyroscope Experiment (RAGE) at Draper Lab.

  6. Precision hybrid pipelined ADC

    E-Print Network [OSTI]

    Markova, Mariana (Mariana T.)

    2014-01-01

    Technology scaling poses challenges in designing analog circuits because of the decrease in intrinsic gain and reduced swing. An alternative to using high-gain amplifiers in the implementation of switched-capacitor circuits ...

  7. Precision Irrigators Network 

    E-Print Network [OSTI]

    Bynum, J.; Cothren, T.; Marek, T.; Piccinni, G.

    2007-01-01

    conservation including an "Agricultural Irrigation Water Use Management" BMPs section. The full TWDB Report 362 can be found at: http://www.twdb.state.tx.us/assistance/conservation/consindex.asp. DSS include the Texas High Plains Evapotranspiration Network...

  8. Making a high-mix make-to-order production system lean

    E-Print Network [OSTI]

    Li, Bo, M. Eng. Massachusetts Institute of Technology

    2009-01-01

    A high-mix, make-to-order production system can become inefficient when non-value added operations consume too much time, space or labour. To address these issues, cell re-layout is conducted and a CONWIP system is proposed. ...

  9. On the history of multi-particle production in high energy collisions

    E-Print Network [OSTI]

    M. Gazdzicki

    2012-01-02

    The 60th birthday of Johann Rafelski was celebrated during the Strangeness in Quark Matter 2011 in Krakow. Johann was born in Krakow and he initiated the series of the SQM conferences. This report, which briefly presents my personal view on a history of multi-particle production in high energy collisions, is dedicated to Johann.

  10. Mechanisms of multiparticle production in heavy ion collisions at high energy

    E-Print Network [OSTI]

    A. Capella

    2003-03-19

    In the framework of a microscopic string model inclusive charged particle distribution and baryon and antibaryon production are described. The emphasis is put on high energies (RHIC) where shadowing corrections play a crucial role. Some recent developments on $J/\\psi$ suppression at CERN-SPS are also discussed. Possible consequences for the crucial issue of thermal equilibration of the produced system are considered.

  11. LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    conventional and clean coal technologies. This project was primarily directed toward developing concrete technologies. Based on these properties, two sources of both conventional and clean coal ashes were selected technology for high-volume applications of Illinois coal combustion by-products generated by using both

  12. Factorized power expansion for high-pT heavy quarkonium production

    SciTech Connect (OSTI)

    Ma, Yan-Qing; Qiu, Jian-Wei; Sterman, George; Zhang, Hong

    2014-10-02

    We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high pT results calculated in nonrelativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, ³S[1]1 and ¹S[8]0, are dominated by the next-to-leading power contributions for a very wide pT range. The large next-to-leading order corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on heavy quarkonium production and its polarization is discussed.

  13. Factorized power expansion for high-pT heavy quarkonium production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Yan-Qing [Brookhaven National Laboratory, Physics Department, Upton, NY (United States); Qiu, Jian-Wei [Brookhaven National Laboratory, Physics Department, Upton, NY (United States); Stony Brook University, C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy, Stony Brook, NY (United States); Sterman, George [Stony Brook University, C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy, Stony Brook, NY (United States); Zhang, Hong [Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States)

    2014-10-01

    We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high pT results calculated in nonrelativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, ³S[1]1 and ¹S[8]0, are dominated by the next-to-leading power contributions for a very wide pT range. The large next-to-leading order corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on heavy quarkonium production and its polarization is discussed.

  14. Factorized power expansion for high-$p_T$ heavy quarkonium production

    E-Print Network [OSTI]

    Ma, Yan-Qing; Sterman, George; Zhang, Hong

    2014-01-01

    We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power (NLP) contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high $p_T$ results calculated in non-relativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, ${^3\\hspace{-0.6mm}S_{1}^{[1]}}$ and ${^1\\hspace{-0.6mm}S_{0}^{[8]}}$, are dominated by the NLP contributions for a very wide $p_T$ range. The large next-to-leading order corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on the heavy quarkonium production and its polarization is discussed.

  15. Factorized power expansion for high-$p_T$ heavy quarkonium production

    E-Print Network [OSTI]

    Yan-Qing Ma; Jian-Wei Qiu; George Sterman; Hong Zhang

    2014-10-11

    We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power (NLP) contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high $p_T$ results calculated in non-relativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, ${^3\\hspace{-0.6mm}S_{1}^{[1]}}$ and ${^1\\hspace{-0.6mm}S_{0}^{[8]}}$, are dominated by the NLP contributions for a very wide $p_T$ range. The large next-to-leading order corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on the heavy quarkonium production and its polarization is discussed.

  16. Factorized power expansion for high-pT heavy quarkonium production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Yan -Qing; Qiu, Jian -Wei; Sterman, George; Zhang, Hong

    2014-10-02

    In this study, we show that when the factorized cross section for heavy quarkonium production includes next-to-leading power contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high pT results calculated in nonrelativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, ³S[1]1 and ¹S[8]0, are dominated by the next-to-leading power contributions for a very wide pT range. The large next-to-leading ordermore »corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on heavy quarkonium production and its polarization is discussed.« less

  17. High-order threshold corrections for top-pair and single-top production

    E-Print Network [OSTI]

    Nikolaos Kidonakis

    2015-09-25

    I present results for high-order corrections from threshold resummation to cross sections and differential distributions in top-antitop pair production and in single-top production. I show aN$^3$LO results for the total $t{\\bar t}$ cross section as well as for the top-quark transverse momentum ($p_T$) and rapidity distributions, and the top-quark forward-backward asymmetry in $t{\\bar t}$ production. I compare with the most recent Tevatron and LHC data, including at 13 TeV. I also present aNNLO results for cross sections and $p_T$ distributions in $t$-channel, $s$-channel, and $tW$-channel single-top production.

  18. Factorized power expansion for high-pT heavy quarkonium production

    SciTech Connect (OSTI)

    Ma, Yan-Qing [Brookhaven National Laboratory, Physics Department, Upton, NY (United States); Qiu, Jian-Wei [Brookhaven National Laboratory, Physics Department, Upton, NY (United States); Stony Brook University, C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy, Stony Brook, NY (United States); Sterman, George [Stony Brook University, C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy, Stony Brook, NY (United States); Zhang, Hong [Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States)

    2014-10-01

    We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high pT results calculated in nonrelativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, ³S[1]1 and ¹S[8]0, are dominated by the next-to-leading power contributions for a very wide pT range. The large next-to-leading order corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on heavy quarkonium production and its polarization is discussed.

  19. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations

    E-Print Network [OSTI]

    Yusof, Zainal Abidin Mohd

    Improved production costs will accelerate commercialization of polyhydroxyalkanoate (PHA) polymer and PHA-based products. Plant oils are considered favorable feedstocks, due to their high carbon content and relatively low ...

  20. Precision Polarimetry at the International Linear Collider

    E-Print Network [OSTI]

    C. Helebrant; D. Käfer; J. List

    2008-10-13

    The International Linear Collider (ILC) will collide polarised electrons and positrons at beam energies of 45.6 GeV to 250 GeV and optionally up to 500 GeV. To fully exploit the physics potential of this machine, not only the luminosity and beam energy have to be known precisely, but also the polarisation of the particles has to be measured with an unprecedented precision of dP/P ~ 0.25% for both beams. An overall concept of high precision polarisation measurements at high beam energies will be presented. The focus will be on the polarimeters (up- and downstream of the e+e- interaction point) embedded in the ILC beam delivery system. Some challenges concerning the design of the Compton spectrometers and the appropriate Cherenkov detectors for each polarimeter are discussed. Detailed studies of photodetectors and their readout electronics are presented focusing specifically on the linearity of the device, since this is expected to be the limiting factor on the precision of the polarisation measurement at the ILC.

  1. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  2. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

  3. Generalized Lyapunov exponents in high-dimensional chaotic dynamics and products of large random matrices

    SciTech Connect (OSTI)

    Crisanti, A.; Paladin, G.; Vulpiani, A.

    1988-11-01

    We study the behavior of the generalized Lyapunov exponents for chaotic symplectic dynamical systems and products of random matrices in the limit of large dimensions D. For products of random matrices without any particular structure the generalized Lyapunov exponents become equal in this limit and the value of one of the generalized Lyapunov exponents is obtained by simple arguments. On the contrary, for random symplectic matrices with peculiar structures and for chaotic symplectic maps the generalized Lyapunov exponents remains different for D ..-->.. infinity, indicating that high dimensionality cannot always destroy intermittency.

  4. High Precision Analyses of Lyman alpha Damping Wing of Gamma-Ray Bursts in the Reionization Era: On the Controversial Results from GRB 130606A at z = 5.91

    E-Print Network [OSTI]

    Totani, Tomonori; Hattori, Takashi; Kawai, Nobuyuki

    2015-01-01

    The unprecedentedly bright afterglow of GRB 130606A at z = 5.91 gave us a unique opportunity to probe the reionization era by high precision analyses of the redward damping wing of Lyman alpha absorption, but the reported constraints on the neutral hydrogen fraction (f_{HI}) in intergalactic medium (IGM) derived from spectra taken by different telescopes are in contradiction. Here we examine the origin of this discrepancy by analyzing the spectrum taken by VLT with our own analysis code previously used to fit the Subaru spectrum. Though the VLT team reported no evidence for IGM HI using the VLT spectrum, we confirmed our previous result of 3-4 sigma preference for non-zero IGM HI (f_{HI} ~ 0.06, when IGM HI extends to the GRB redshift). The fit residuals of the VLT spectrum by the model without IGM HI show the same systematic trend as the Subaru spectrum. We consider that the likely origin of the discrepancy between the two teams is the difference of the wavelength ranges adopted in the fittings; our waveleng...

  5. PROSPECT - A precision oscillation and spectrum experiment

    E-Print Network [OSTI]

    T. J. Langford

    2014-12-22

    Segmented antineutrino detectors placed near a compact research reactor provide an excellent opportunity to probe short-baseline neutrino oscillations and precisely measure the reactor antineutrino spectrum. Close proximity to a reactor combined with minimal overburden yield a high background environment that must be managed through shielding and detector technology. PROSPECT is a new experimental effort to detect reactor antineutrinos from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, managed by UT Battelle for the U.S. Department of Energy. The detector will use novel lithium-loaded liquid scintillator capable of neutron/gamma pulse shape discrimination and neutron capture tagging. These enhancements improve the ability to identify neutrino inverse-beta decays and reject background events in analysis. Results from these efforts will be covered along with their implications for an oscillation search and a precision spectrum measurement.

  6. PROSPECT - A precision oscillation and spectrum experiment

    E-Print Network [OSTI]

    ,

    2015-01-01

    Segmented antineutrino detectors placed near a compact research reactor provide an excellent opportunity to probe short-baseline neutrino oscillations and precisely measure the reactor antineutrino spectrum. Close proximity to a reactor combined with minimal overburden yield a high background environment that must be managed through shielding and detector technology. PROSPECT is a new experimental effort to detect reactor antineutrinos from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, managed by UT Battelle for the U.S. Department of Energy. The detector will use novel lithium-loaded liquid scintillator capable of neutron/gamma pulse shape discrimination and neutron capture tagging. These enhancements improve the ability to identify neutrino inverse-beta decays and reject background events in analysis. Results from these efforts will be covered along with their implications for an oscillation search and a precision spectrum measurement.

  7. Characteristics of Strange Hadron Production in Some High Energy Collisions and The Role of Power Laws

    E-Print Network [OSTI]

    Biswas, Sunil Kumar; Ghosh, Amar Chandra Das; Bhattacharyya, Subrata; 10.4236/ojm.2012.21001

    2012-01-01

    Studies on `strange' particle production have always occupied a very important space in the domain of Particle Physics. This was and is so, just because of some conjectures about specially abundant or excess production of `strange' particles, at certain stages and under certain conditions arising out of what goes by the name of `Standard' model in Particle Physics. With the help of Hagedornian power laws we have attempted to understand and interpret here the nature of the $p_T$-spectra for the strange particle production in a few high energy nuclear collisions, some interesting ratio-behaviours and the characteristics of the nuclear modification factors that are measured in laboratory experiments. After obtaining and analysing the final results we do not confront any peculiarities or oddities or extraneous excesses in the properties of the relevant observables with no left-over problems or puzzles. The model(s) used by us work(s) quite well for explaining the measured data.

  8. Characteristics of Strange Hadron Production in Some High Energy Collisions and The Role of Power Laws

    E-Print Network [OSTI]

    Sunil Kumar Biswas; Goutam Sau; Amar Chandra Das Ghosh; Subrata Bhattacharyya

    2012-03-13

    Studies on `strange' particle production have always occupied a very important space in the domain of Particle Physics. This was and is so, just because of some conjectures about specially abundant or excess production of `strange' particles, at certain stages and under certain conditions arising out of what goes by the name of `Standard' model in Particle Physics. With the help of Hagedornian power laws we have attempted to understand and interpret here the nature of the $p_T$-spectra for the strange particle production in a few high energy nuclear collisions, some interesting ratio-behaviours and the characteristics of the nuclear modification factors that are measured in laboratory experiments. After obtaining and analysing the final results we do not confront any peculiarities or oddities or extraneous excesses in the properties of the relevant observables with no left-over problems or puzzles. The model(s) used by us work(s) quite well for explaining the measured data.

  9. Precision mechatronics lab robot development 

    E-Print Network [OSTI]

    Rogers, Adam Gregory

    2009-05-15

    based mobile robot. The principal goal of this work was the demonstration of the Precision Mechatronics Lab (PML) robot. This robot should be capable of traversing any known distance while maintaining a minimal position error. An optical correction...

  10. Statistical foundations for precision medicine

    E-Print Network [OSTI]

    Manrai, Arjun Kumar

    2015-01-01

    Physicians must often diagnose their patients using disease archetypes that are based on symptoms as opposed to underlying pathophysiology. The growing concept of "precision medicine" addresses this challenge by recognizing ...

  11. Acceleration of matrix element computations for precision measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brandt, O.; Gutierrez, G.; Wang, M. H.L.S.; Ye, Z.

    2015-03-01

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the concrete example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of themore »matrix element technique. Second, we utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.« less

  12. Acceleration of matrix element computations for precision measurements

    SciTech Connect (OSTI)

    Brandt, Oleg; Gutierrez, Gaston; Wang, M. H.L.S.; Ye, Zhenyu

    2014-11-25

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. We then utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.

  13. Acceleration of matrix element computations for precision measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brandt, O. [Physikalisches Inst, Gottingen (Germany); Univ. Heidelberg, Heidelberg (Germany); Gutierrez, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Wang, M. H.L.S. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Ye, Z. [Univ. of Illinois at Chicago, Chicago, IL (United States)

    2015-03-01

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the concrete example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. Second, we utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.

  14. Acceleration of matrix element computations for precision measurements

    E-Print Network [OSTI]

    Oleg Brandt; Gaston Gutierrez; Michael H. L. S. Wang; Zhenyu Ye

    2014-11-19

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the concrete example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. Second, we utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.

  15. Acceleration of matrix element computations for precision measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brandt, Oleg; Gutierrez, Gaston; Wang, M. H.L.S.; Ye, Zhenyu

    2014-11-25

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix elementmore »technique. We then utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.« less

  16. Method for producing through extrusion an anisotropic magnet with high energy product

    DOE Patents [OSTI]

    Chandhok, Vijay K.

    2004-09-07

    A method for producing an anisotropic magnet with high energy product through extrusion and, more specifically, by placing a particle charge of a composition from the which magnet is to be produced in a noncircular container, heating the container and particle charge and extruding the container and particle charge through a noncircular extrusion die in such a manner that one of the cross-sectional axes or dimension of the container and particle charge is held substantially constant during the extrusion to compact the particle charge to substantially full density by mechanical deformation produced during the extrusion to achieve a magnet with anisotropic magnetic properties along the axes or dimension thereof and, more specifically, a high energy product along the transverse of the smallest cross-sectional dimension of the extruded magnet.

  17. Implementing the Data Center Energy Productivity Metric in a High Performance Computing Data Center

    SciTech Connect (OSTI)

    Sego, Landon H.; Marquez, Andres; Rawson, Andrew; Cader, Tahir; Fox, Kevin M.; Gustafson, William I.; Mundy, Christopher J.

    2013-06-30

    As data centers proliferate in size and number, the improvement of their energy efficiency and productivity has become an economic and environmental imperative. Making these improvements requires metrics that are robust, interpretable, and practical. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful work produced by the data center to the energy consumed performing that work. We describe our approach for using DCeP as the principal outcome of a designed experiment using a highly instrumented, high-performance computing data center. We found that DCeP was successful in clearly distinguishing different operational states in the data center, thereby validating its utility as a metric for identifying configurations of hardware and software that would improve energy productivity. We also discuss some of the challenges and benefits associated with implementing the DCeP metric, and we examine the efficacy of the metric in making comparisons within a data center and between data centers.

  18. Simultaneous Saccharification and Fermentation of Dry-grind Highly Digestible Grain Sorghum Lines for Ethanol Production 

    E-Print Network [OSTI]

    Hernandez, Joan R.

    2010-07-14

    digestibility and corn; and 2. determine the best sorghum lines that have been developed by breeders that will require lower energy input during gelatinization and liquefaction and shorter SSF time for ethanol production. 7 CHAPTER... to explain this low digestibility and high energy requirements needed for gelatinization prior to liquefaction and saccharification. The predominant theory is that the starch being imbedded in the protein body (kafirin) matrices restricts gelatinization...

  19. Studies of heavy flavour production and the hadronic final state in high energy ep collisions

    E-Print Network [OSTI]

    Thomas Kluge

    2005-10-31

    An extract of recent results from the H1 and ZEUS Collaborations is shown. Various properties of quantum chromo dynamics are investigated by studying the details of the hadronic final state of high energy electron proton collisions at HERA. The presented results include analyses of jet cross sections and single particle production such as $\\gamma$ and $D$. Part of the measurements deal with final states involving identified heavy quarks (charm and beauty).

  20. Production of D*+ (2010) mesons by high-energy neutrinos from the Tevatron

    SciTech Connect (OSTI)

    Asratian, A.E.; Aderholz, M.; Ammosov, V.V.; Barth, M.; Bingham, H.H.; Brucker, E.B.; Burnstein, R.A.; Chatterjee, T.K.; Clayton, E.C.; Ermolov, P.F.; Erofeeva, I.N.; Faulkner, P.J.W.; Gapienko, G.S.; Guy, J.; Hanlon, J.; Harigel, G.; Ivanilov, A.A.; Jain, V.; Jones, G.T.; Jones, M.D.; Kafka, T.; /UC, Berkeley /Birmingham U. /Brussels U., IIHE

    1997-08-01

    Charged vector D*{sup +}(2010) meson production is studied in a high energy neutrino bubble chamber experiment with mean neutrino energy of 141 GeV. The D*{sup +} are produced in (5.6 {+-} 1.8)% of the neutrino charged current interactions, indicating a steep increase of cross section with energy. The mean fractional hadronic energy of the D*{sup +} meson is 0.55 {+-} 0.06.

  1. Production of heavy flavor and photons on high-energy colliders, and rare decays of heavy mesons

    E-Print Network [OSTI]

    Production of heavy flavor and photons on high-energy colliders, and rare decays of heavy mesons (FCNC) decay ¯B0 ¯K0 e+ e- K- + e+ e-. Prompt photon production in pp (p¯p) collisions. Production s transition? Observation: in the SM, the photons, produced in the decay b s, are mainly left-handed polarized

  2. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma acceleratorsa...

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Production of high-quality electron bunches by dephasing and beam loading in channeled beams, with a few 109 electrons within a few percent of the same energy above 80 MeV, were produced with these data, particle-in-cell simulations indicate production of high-quality electron beams when trapping

  3. Fundamental Symmetries of the Early Universe and the Precision Frontier

    SciTech Connect (OSTI)

    Ramsey-Musolf, Michael J. [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States) and Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-12-17

    The search for the next Standard Model of fundamental interactions is being carried out at two frontiers: the high energy frontier involving the Tevatron and Large Hadron Collider, and the high precision frontier where the focus is largely on low energy experiments. I discuss the unique and powerful window on new physics provided by the precision frontier and its complementarity to the information we hope to gain from present and future colliders.

  4. Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with $?$ Beams of High Intensity and Large Brilliance

    E-Print Network [OSTI]

    D. Habs; U. Köster

    2010-09-08

    We study the production of radioisotopes for nuclear medicine in $(\\gamma,x{\\rm n}+y{\\rm p})$ photonuclear reactions or ($\\gamma,\\gamma'$) photoexcitation reactions with high flux [($10^{13}-10^{15}$)$\\gamma$/s], small diameter $\\sim (100 \\, \\mu$m$)^2$ and small band width ($\\Delta E/E \\approx 10^{-3}-10^{-4}$) $\\gamma$ beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,$x$n$ + y$p) reactions with (ion=p,d,$\\alpha$) from particle accelerators like cyclotrons and (n,$\\gamma$) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow $\\gamma$ beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). $(\\gamma,\\gamma')$ isomer production via specially selected $\\gamma$ cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with $\\gamma$ beams allow to produce certain radioisotopes, e.g. $^{47}$Sc, $^{44}$Ti, $^{67}$Cu, $^{103}$Pd, $^{117m}$Sn, $^{169}$Er, $^{195m}$Pt or $^{225}$Ac, with higher specific activity and/or more economically than with classical methods. This will open the way for completely new clinical applications of radioisotopes. For example $^{195m}$Pt could be used to verify the patient's response to chemotherapy with platinum compounds before a complete treatment is performed. Also innovative isotopes like $^{47}$Sc, $^{67}$Cu and $^{225}$Ac could be produced for the first time in sufficient quantities for large-scale application in targeted radionuclide therapy.

  5. High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production

    SciTech Connect (OSTI)

    Hooker, Matthew; Hazelton, Craig; Kano, Kimi

    2010-12-31

    The development of highly reliable downhole equipment is an essential element in enabling the widespread utilization of Enhanced Geothermal Systems (EGS). The downhole equipment used in these systems will be required to operate at high voltages and temperatures on the order of 200 to 250°C (and eventually to 300?C). These conditions exceed the practical operating ranges of currently available thermoplastic wire insulations, and thus limit the operating lifetime of tools such as Electric Submersible Pumps (ESPs). In this work, high-temperature insulations based on composite materials were developed and demonstrated. The products of this work were found to exhibit electrical resistivities and dielectric breakdown strengths that PEEK at temperatures above 250C. In addition, sub-scale motor windings were fabricated and tested to validate the performance of this technology

  6. Non-relativistic high-energy physics: top production and dark matter annihilation

    E-Print Network [OSTI]

    Beneke, Martin

    2015-01-01

    Non-relativistic physics is often associated with atomic physics and low-energy phenomena of the strong interactions between nuclei and quarks. In this review we cover three topics in contemporary high-energy physics at or close to the TeV scale, where non-relativistic dynamics plays an important if not defining role. We first discuss in detail the third-order corrections to top-quark pair production in electron-positron collisions in the threshold region, which plays a major role at a future high-energy e+ e- collider. Threshold effects are also relevant in the production of heavy particles in hadronic collisions, where in addition to the Coulomb force soft gluon radiation contributes to enhanced quantum corrections. We review the joint resummation of non-relativistic and soft gluon effects for pair production of top quarks and supersymmetric particles to next-to-next-to-leading logarithmic accuracy. The third topic deals with pair annihilation of dark matter particles within the framework of the Minimal Sup...

  7. Non-relativistic high-energy physics: top production and dark matter annihilation

    E-Print Network [OSTI]

    Martin Beneke; Matthias Steinhauser

    2015-06-26

    Non-relativistic physics is often associated with atomic physics and low-energy phenomena of the strong interactions between nuclei and quarks. In this review we cover three topics in contemporary high-energy physics at or close to the TeV scale, where non-relativistic dynamics plays an important if not defining role. We first discuss in detail the third-order corrections to top-quark pair production in electron-positron collisions in the threshold region, which plays a major role at a future high-energy e+ e- collider. Threshold effects are also relevant in the production of heavy particles in hadronic collisions, where in addition to the Coulomb force soft gluon radiation contributes to enhanced quantum corrections. We review the joint resummation of non-relativistic and soft gluon effects for pair production of top quarks and supersymmetric particles to next-to-next-to-leading logarithmic accuracy. The third topic deals with pair annihilation of dark matter particles within the framework of the Minimal Supersymmetric Standard Model. Here the electroweak Yukawa force generated by the exchange of gauge and Higgs bosons can cause large "Sommerfeld" enhancements of the annihilation cross section in some parameter regions.

  8. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

  9. Precision cleaning apparatus and method

    DOE Patents [OSTI]

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  10. Precision cleaning apparatus and method

    DOE Patents [OSTI]

    Schneider, Thomas W. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Martin, Stephen J. (Albuquerque, NM)

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  11. Long-range Cooper pair splitter with high entanglement production rate

    E-Print Network [OSTI]

    Wei Chen; D. N. Shi; D. Y. Xing

    2015-01-05

    Cooper pairs in the superconductor are a natural source of spin entanglement. The existing proposals of the Cooper pair splitter can only realize a low efficiency of entanglement production, and its size is constrained by the superconducting coherence length. Here we show that a long-range Cooper pair splitter can be implemented in a normal metal-superconductor-normal metal (NSN) junction by driving a supercurrent in the S. The supercurrent results in a band gap modification of the S, which significantly enhances the crossed Andreev reflection (CAR) of the NSN junction and simultaneously quenches its elastic cotunneling. Therefore, a high entanglement production rate close to its saturation value can be achieved by the inverse CAR. Interestingly, in addition to the conventional entangled electron states between opposite energy levels, novel entangled states with equal energy can also be induced in our proposal.

  12. Microbiopsy/precision cutting devices

    DOE Patents [OSTI]

    Krulevitch, Peter A. (Pleasanton, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, M. Allen (Berkeley, CA); Benett, William J. (Livermore, CA)

    1999-01-01

    Devices for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways 1) intravascularly, 2) extravascularly, 3) by vessel puncture, and 4) externally. Additionally, the devices may be used in precision surgical cutting.

  13. Microbiopsy/precision cutting devices

    DOE Patents [OSTI]

    Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Benett, W.J.

    1999-07-27

    Devices are disclosed for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways (1) intravascularly, (2) extravascularly, (3) by vessel puncture, and (4) externally. Additionally, the devices may be used in precision surgical cutting. 6 figs.

  14. Ceria based inverse opals for thermochemical fuel production: Quantification and prediction of high temperature behavior

    E-Print Network [OSTI]

    Casillas, Danielle Courtney

    2015-01-01

    Solar Beam and Solar Heat: Hydrogen Production, Storage andSolar Thermochemical Hydrogen Production Research (STCH),on thermochemical hydrogen production. Low tortuosity and

  15. Estimation of charm production cross section in hadronic interactions at high energies

    E-Print Network [OSTI]

    G. M. Vereshkov; Yu. F. Novoseltsev

    2004-04-24

    Results of processing experimental data on charm production in hadron-hadron interactions are presented. The analysis is carried out within the frame of phenomenological model of diffraction production and quark statistics based on additive quark model (AQM). In low energy region sqrt s = 20 - 40GeV, the cross sections si_ {pN to c bar cX} (s), si_ {pi N to c bar cX} (s) are fitted by logarithmic function with the parameters connected by relationship of AQM. At collider energies 200, 540, 900, 1800 GeV, the values of si_{bar pp to c bar cX} (s) were obtained by a quark statistics method from the data on diffraction dissociation. It is established, that logarithmic function with universal numerical parameters describes the whole set of low-energy and high-energy data with high accuracy. The expected values of cross sections are si_{pp to c bar cX} = 250 pm 40 mu b and 355 pm 57 mu b at TEVATRON energy sqrt {s} = 1.96 TeV and LHC energy sqrt {s} = 14 TeV accordingly. Opportunities of use of the obtained results for calibration of a flux of "prompt" muons in high-energy component of cosmic rays are discussed.

  16. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  17. t tbar Production via Vector Boson Fusion at High Energy e^+ e^- Colliders

    E-Print Network [OSTI]

    Mikulas Gintner; Stephen Godfrey

    1996-12-12

    We examine t tbar production via vector boson fusion at high energy e^+ e^- colliders using the effective vector-boson approximation. We show cross sections as functions of CM energy for various Higgs masses ranging from 100 GeV up to 1 TeV, and also for M_H = infinity which corresponds to the LET. We give expressions for sigma(V_i V_j -> t tbar) in the 2M_(W,Z)/sqrt(s) = 0 approximation and show how this approximation effects the results.

  18. ? production as a probe for early state dynamics in high energy nuclear collisions at RHIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yunpeng; Chen, Baoyi; Xu, Nu; Zhuang, Pengfei

    2011-02-01

    ? production in heavy ion collisions at RHIC energy is investigated. While the transverse momentum spectra of the ground state ?(1s) are controlled by the initial state Cronin effect, the excited bb? states are characterized by the competition between the cold and hot nuclear matter effects and sensitive to the dissociation temperatures determined by the heavy quark potential. We emphasize that it is necessary to measure the excited heavy quark states in order to extract the early stage information in high energy nuclear collisions at RHIC.

  19. Long range rapidity correlations and jet production in high energy nuclear collisions 

    E-Print Network [OSTI]

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bnzarov, I.; Bombara, M.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L. C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X. -H; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.

    2009-01-01

    REVIEW C 80, 064912 (2009) Long range rapidity correlations and jet production in high energy nuclear collisions B. I. Abelev,8 M. M. Aggarwal,30 Z. Ahammed,47 A. V. Alakhverdyants,17 B. D. Anderson,18 D. Arkhipkin,3 G. S. Averichev,17 J. Balewski,22 O.... Barannikova,8 L. S. Barnby,2 J. Baudot,15 S. Baumgart,52 D. R. Beavis,3 R. Bellwied,50 F. Benedosso,27 M. J. Betancourt,22 R. R. Betts,8 A. Bhasin,16 A. K. Bhati,30 H. Bichsel,49 J. Bielcik,10 J. Bielcikova,11 B. Biritz,6 L. C. Bland,3 I. Bnzarov,17 M...

  20. High oil production continues to cut U.S. oil imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowerslong4,Guide toHigh oil production

  1. High brightness--multiple beamlets source for patterned X-ray production

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ji, Qing (Albany, CA); Barletta, William A. (Oakland, CA); Jiang, Ximan (El Cerrito, CA); Ji, Lili (Albany, CA)

    2009-10-27

    Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 .mu.m, with inter-aperture spacings of 12 .mu.m. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.

  2. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    SciTech Connect (OSTI)

    Ghorbani, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Rashidi, A.M., E-mail: Rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rastegari, S.; Mirdamadi, S. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Alaei, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)] [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  3. The twofold emergence of the $a_1$ axial vector meson in high energy hadronic production

    E-Print Network [OSTI]

    Jean-Louis Basdevant; Edmond L. Berger

    2015-01-19

    The high statistics COMPASS results on diffractive dissociation $\\pi N \\rightarrow \\pi \\pi \\pi N$ suggest that the isospin $I=1$ spin-parity $J^{PC}= 1^{++}$ $a_1(1260)$ resonance could be split into two states: $a_1(1260)$ decaying into an S-wave $\\rho\\pi$ system, and $a_1^\\prime(1420)$ decaying into a P-wave $f_0(980)\\pi$ system. We analyse the reaction by incorporating our previous treatment of resonant re-scattering corrections in the Drell-Deck forward production process. Our results show that the COMPASS results are fully consistent with the existence of a single axial-vector $a_1$ resonance. The characteristic structure of the production process, which differs in the two orbital angular momentum states, plays a crucial role in this determination. Provided the theoretical analysis of the reaction is done in a consistent manner, this single resonance produces two peaks at different locations in the two channels, with a rapid increase of the phase difference between their amplitudes arising mainly from the structure of the production process itself, and not from a dynamical resonance effect. In addition, this analysis clarifies questions related to the mass, width, and decay rates of the $a_1$ resonance.

  4. SIMULTANEOUS PRODUCTION OF HIGH-PURITY HYDROGEN AND SEQUESTRATION-READY CO2 FROM SYNGAS

    SciTech Connect (OSTI)

    Linda Denton; Hana Lorethova; Tomasz Wiltowski; Court Moorefield; Parag Kulkarni; Vladimir Zamansky; Ravi Kumar

    2003-12-01

    This final report summarizes the progress made on the program ''Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO{sub 2} from Syngas (contract number DE-FG26-99FT40682)'', during October 2000 through September of 2003. GE Energy and Environmental Research (GE-EER) and Southern Illinois University (SIU) at Carbondale conducted the research work for this program. This program addresses improved methods to efficiently produce simultaneous streams of high-purity hydrogen and separated carbon dioxide from synthesis gas (syngas). The syngas may be produced through either gasification of coal or reforming of natural gas. The process of production of H{sub 2} and separated CO{sub 2} utilizes a dual-bed reactor and regenerator system. The reactor produces hydrogen and the regenerator produces separated CO{sub 2}. The dual-bed system can be operated under either a circulating fluidized-bed configuration or a cyclic fixed-bed configuration. Both configurations were evaluated in this project. The experimental effort was divided into lab-scale work at SIU and bench-scale work at GE-EER. Tests in a lab-scale fluidized bed system demonstrated the process for the conversion of syngas to high purity H{sub 2} and separated CO{sub 2}. The lab-scale system generated up to 95% H{sub 2} (on a dry basis). Extensive thermodynamic analysis of chemical reactions between the syngas and the fluidized solids determined an optimum range of temperature and pressure operation, where the extent of the undesirable reactions is minimum. The cycling of the process between hydrogen generation and oxygen regeneration has been demonstrated. The fluidized solids did not regenerate completely and the hydrogen purity in the reuse cycle dropped to 70% from 95% (on a dry basis). Changes in morphology and particle size may be the most dominant factor affecting the efficiency of the repeated cycling between hydrogen production and oxygen regeneration. The concept of simultaneous production of hydrogen and separated stream of CO{sub 2} was proved using a fixed bed 2 reactor system at GE-EER. This bench-scale cyclic fixed-bed reactor system designed to reform natural gas to syngas has been fabricated in another coordinated DOE project. This system was modified to reform natural gas to syngas and then convert syngas to H{sub 2} and separated CO{sub 2}. The system produced 85% hydrogen (dry basis).

  5. THE PRECISION MEDICINE INITIATIVE WHAT IS IT?

    E-Print Network [OSTI]

    Bandettini, Peter A.

    THE PRECISION MEDICINE INITIATIVE WHAT IS IT? Precision medicine is an emerging approach, environment, and lifestyle. The Precision Medicine Initiative will generate the scientific evidence needed to move the concept of precision medicine into clinical practice. WHY NOW? The time is right because of

  6. Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product

    DOE Patents [OSTI]

    Dykes, Charles D. (303 Shore Rd., Milton, VT); Daniel, Sabah S. (303 Shore Rd., Pittsburgh, PA); Wood, J. F. Barry (303 Shore Rd., Burlington, VT 05401)

    1990-02-20

    In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

  7. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  8. HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION

    SciTech Connect (OSTI)

    Stoots, C.M.

    2006-11-01

    Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via a gas analyser, and their relationship to conversion efficiencies will be presented. These measurements will be compared to predictions obtained from chemical equilibrium computer codes. Better understanding of the feasibility of producing syngas using high-temperature electrolysis will initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

  9. Environmental proteomics of microbial plankton in a highly productive coastal upwelling system

    SciTech Connect (OSTI)

    Sowell, Sarah [Oregon State University, Corvallis; Abraham, Paul E [ORNL; Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Smith, Daniel [Oregon State University, Corvallis; Barofsky, Douglas [Oregon State University, Corvallis; Giovannoni, Stephen [Oregon State University, Corvallis

    2011-01-01

    Metaproteomics is one of a suite of new approaches providing insights into the activities of microorganisms in natural environments. Proteins, the final products of gene expression, indicate cellular priorities, taking into account both transcriptional and posttranscriptional control mechanisms that control adaptive responses. Here, we report the proteomic composition of the o 1.2 lm fraction of a microbial community from Oregon coast summer surface waters, detected with two-dimensional liquid chromatography coupled with electrospray tandem mass spectrometry. Spectra corresponding to proteins involved in protein folding and biosynthesis, transport, and viral capsid structure were the most frequently detected. A total of 36% of all the detected proteins were best matches to the SAR11 clade, and other abundant coastal microbial clades were also well represented, including the Roseobacter clade (17%), oligotrophic marine gammaproteobacteria group (6%), OM43 clade (1%). Viral origins were attributed to 2.5% of proteins. In contrast to oligotrophic waters, phosphate transporters were not highly detected in this nutrient-rich system. However, transporters for amino acids, taurine, polyamines and glutamine synthetase were among the most highly detected proteins, supporting predictions that carbon and nitrogen are more limiting than phosphate in this environment. Intriguingly, one of the highly detected proteins was methanol dehydrogenase originating from the OM43 clade, providing further support for recent reports that the metabolism of one-carbon compounds by these streamlined methylotrophs might be an important feature of coastal ocean biogeochemistry.

  10. Baryon Production at LHC and Very High Energy Cosmic Ray Spectra

    E-Print Network [OSTI]

    Olga I. Piskounova

    2015-01-27

    The spectra of baryons at LHC can explain the features of the proton spectra in cosmic rays (CR). It seems important to study all baryon data that are available from collider experiments in wide range of energies. Transverse momentum spectra of baryons from RHIC ($\\sqrt(s)$=62 and 200 GeV) and from LHC ($\\sqrt(s)$=0.9 and 7 TeV) have been considered. It is seen that the slope of distributions at low $p_T$'s is changing with energy. The QGSM fit of these spectra gives the average transverse momenta which behave as $s^{0.06}$ that is similar to the previously observed behavior of $\\Lambda^0$ hyperon spectra. The change in average transverse momenta that are slowly growing in VHE hadron interactions at CR detectors cannot cause the "knee" in measured cosmic ray proton spectra. In addition, the available data on heavy quark hadron production from LHC-b at $\\sqrt{s}$=7 TeV were also studied. The preliminary dependence of hadron average transverse momenta on their masses at LHC energy is presented. The possible source of cosmic ray antiparticle-to-particle ratios that are growing with energy was analyzed in the framework of QGSM, where the growing ratios are the result of local leading asymmetry between the production spectra of baryons and antibaryons in the kinematical region of proton target fragmentation. In the laboratory system of cosmic ray measurements this spectrum asymmetry will be seen as growing ratio of secondary antiparticle-to-particle spectra until the certain energy of secondaries. This conclusion makes the particle production at the sources of very high energy cosmic protons important, if the interactions with positive target matter would have place in proximity of these sources.

  11. Anisotropic particle production and azimuthal correlations in high-energy pA collisions

    E-Print Network [OSTI]

    Dumitru, Adrian; Skokov, Vladimir

    2015-01-01

    We summarize some recent ideas relating to anisotropic particle production in high-energy collisions. Anisotropic gluon distributions lead to anisotropies of the single-particle azimuthal distribution and hence to disconnected contributions to multi-particle cumulants. When these dominate, the four-particle elliptic anisotropy $c_2\\{4\\}$ changes sign. On the other hand, connected diagrams for $m$-particle cumulants are found to quickly saturate with increasing $m$, a ``coherence'' quite unlike conventional ``non-flow'' contributions such as decays. Finally, we perform a first exploratory phenomenological analysis in order to estimate the amplitude ${\\cal A}$ of the $\\cos(2\\varphi)$ anisotropy of the gluon distribution at small $x$, and we provide a qualitative prediction for the elliptic asymmetry from three-particle correlations, $c_2\\{3\\}$.

  12. Observation and Measurement of Se-79 in SRS High-Level Tank Fission Product Waste

    SciTech Connect (OSTI)

    Dewberry, R.A.

    2000-08-21

    The authors report the first observation of confirmed Se-79 activity in Savannah River Site high level fission product waste. Se-79 was measured after a seven step chemical treatment to remove interfering activity from Cs-137, Sr-90, and plutonium at levels 105 times higher than the observed Se-79 content and to remove Tc-99 at levels 300 times higher than observed Se-79. Se-79 was measured by liquid scintillation beta-decay counting after specific tests to eliminate uncertainties from possible contributions from Tc-99, Pm-147, Sm-151, Zr-93, or Pu-241, whose beta-decay spectra could appear similar to that of Se-79, and whose content would be expected at levels near or greater than Se-79.

  13. Multi-Electron Production at High Transverse Momenta in ep Collisions at HERA

    E-Print Network [OSTI]

    Aktas, A; Anthonis, T; Asmone, A; Babaev, A; Backovic, S; Bähr, J; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berndt, T; Bizot, J C; Böhme, J; Boenig, M O; Boudry, V; Bracinik, J; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Chekelian, V; Clarke, D; Collard, Caroline; Contreras, J G; Coppens, Y R; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Delcourt, B; Delerue, N; Demirchyan, R; de Roeck, A; De Wolf, E A; Diaconu, C; Dingfelder, J; Dodonov, V; Dowell, John D; Dubak, A; Duprel, C; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Görlich, L; Gogitidze, N; Gorbounov, S; Grab, C; Grabskii, V; Grässler, Herbert; Greenshaw, T; Gregori, M; Grindhammer, G; Haidt, Dieter; Hajduk, L; Haller, J; Heinzelmann, G; Henderson, R C W; Henschel, H; Henshaw, O; Heremans, R; Herrera-Corral, G; Herynek, I; Hildebrandt, M; Hiller, K H; Hladky, J; Hoting, P; Hoffmann, D; Horisberger, R P; Hovhannisyan, A; Ibbotson, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, C; Johnson, D P; Jung, H; Kant, D; Kapichine, M; Karlsson, M; Katzy, J; Keil, F; Keller, N; Kennedy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knies, G; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Koutouev, R; Kropivnitskaya, A; Kroseberg, J; Kueckens, J; Kuhr, T; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; List, B; Lobodzinska, E; Loktionova, N A; López-Fernandez, R; Lubimov, V; Lüders, H; Lüders, S; Lüke, D; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martyn, H U; Martyniak, J; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michine, S; Mikocki, S; Milstead, D; Moreau, F; Morozov, A; Morris, J V; Müller, K; Murn, P; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebergall, F; Niebuhr, C B; Nikitin, D K; Nowak, G; Nozicka, M; Olivier, B; Olsson, J E; Ozerov, D; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Petrukhin, A; Pitzl, D; Pöschl, R; Povh, B; Raicevic, N; Rauschenberger, J; Reimer, P; Reisert, B; Risler, C; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, D; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schöning, A; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V; Specka, A; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Turney, J E; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vasilev, S; Vazdik, Ya A; Veelken, C; Vest, A; Vichnevski, A; Volchinski, V; Wacker, K; Wagner, J; Waugh, B; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wessling, B; Winde, M; Winter, G G; Wissing, C; Woerling, E E; Wünsch, E; Zaicek, J; Zaleisak, J; Zhang, Z; Zhokin, A; Zomer, F; Zur Nedden, M

    2003-01-01

    Multi-electron production is studied at high electron transverse momentum in positron- and electron-proton collisions using the H1 detector at HERA. The data correspond to an integrated luminosity of 115 pb-1. Di-electron and tri-electron event yields are measured. Cross sections are derived in a restricted phase space region dominated by photon-photon collisions. In general good agreement is found with the Standard Model predictions. However, for electron pair invariant masses above 100 GeV, three di-electron events and three tri-electron events are observed, compared to Standard Model expectations of 0.30 pm 0.04 and 0.23 pm 0.04, respectively.

  14. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    E-Print Network [OSTI]

    De Melo Mendonca, T M

    2014-01-01

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  15. Precision diamond grinding of ceramics and glass

    SciTech Connect (OSTI)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  16. Z .Surface and Coatings Technology 130 2000 164 172 Production of high-density Ni-bonded tungsten carbide

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    Z .Surface and Coatings Technology 130 2000 164 172 Production of high-density Ni-bonded tungsten carbide coatings using an axially fed DC-plasmatron S. Sharafata,U , A. Kobayashib , S. Chena , N of high-density Ni WC coatings were produces with uniform distribution of WC particles. The small powder

  17. Externally Dispersed Interferometry for Precision Radial Velocimetry

    SciTech Connect (OSTI)

    Erskine, D J; Muterspaugh, M W; Edelstein, J; Lloyd, J; Herter, T; Feuerstein, W M; Muirhead, P; Wishnow, E

    2007-03-27

    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.

  18. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect (OSTI)

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  19. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    SciTech Connect (OSTI)

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses, seismic mapping, petrophysics, and reservoir simulation indicate a lithologic and structural component to excessive in situ water permeability. Higher formation water salinity was found to be a good pay indicator. Thus spontaneous potential (SP) and resistivity ratio approaches combined with accurate formation water resistivity (Rw) information may be underutilized tools. Reservoir simulation indicates significant infill potential in the demonstration area. Macro natural fracture permeability was determined to be a key element affecting both gas and water production. Using the reservoir characterization results, we generated strategies for avoidance and mitigation of unwanted water production in the field. These strategies include (1) more selective perforation by improved pay determination, (2) using seismic attributes to avoid small-scale fault zones, and (3) utilizing detailed subsurface information to deliberately target optimally located small scale fault zones high in the reservoir gas column. Tapping into the existing natural fracture network represents opportunity for generating dynamic value. Recognizing the crucial role of stress release in the natural generation of permeability within tight reservoirs raises the possibility of manmade generation of permeability through local confining stress release. To the extent that relative permeabilities prevent gas and water movement in the deep subsurface a reduction in stress around a wellbore has the potential to increase the relative permeability conditions, allowing gas to flow. For this reason, future research into cavitation completion methods for deep geopressured reservoirs is recommended.

  20. Search for SUSY at LHC: Precision Measurements

    E-Print Network [OSTI]

    Frank E. Paige

    1997-12-16

    Methods to make precision measurements of SUSY masses and parameters at the CERN Large Hadron Collider are described.

  1. Toward Precise Control of a Robotic Boat

    E-Print Network [OSTI]

    Vedantam, Satish; Zhang, Wenyi; Mitra, Urbashi; Sabharwal, Ashutosh

    2007-01-01

    Precise Control of a Robotic Boat Arvind Menezes Pereira,David Caron & Gaurav Sukhatme Robotic Embedded Systems Lab,

  2. Precision On Demand: An Improvement in Probabilistic

    E-Print Network [OSTI]

    Precision On Demand: An Improvement in Probabilistic Hashing Igor Melatti, Robert Palmer approach Precision on Demand or POD). #12;This paper provides a scientific evaluation of the pros and cons time likely to increase by a factor of 1.8 or less. #12;Precision On Demand: An Improvement

  3. Precision On Demand: An Improvement in Probabilistic

    E-Print Network [OSTI]

    Precision On Demand: An Improvement in Probabilistic Hashing Igor Melatti, Robert Palmer approach Precision on Demand or POD). #12; This paper provides a scientific evaluation of the pros and cons time likely to increase by a factor of 1.8 or less. #12; Precision On Demand: An Improvement

  4. A lightweight method for improving coordination in distributed, high-variability product companies

    E-Print Network [OSTI]

    Hendrickson, Brian S. (Brian Scott)

    2012-01-01

    Product companies face new challenges as they continue to expand their international footprints. Whereas globalization initially sought savings by outsourcing production to low-cost regions, emerging markets now present ...

  5. Traveling-wave photodetectors with high power-bandwidth and gain-bandwidth product performance

    E-Print Network [OSTI]

    2004-01-01

    TRAVELING-WAVE PHOTODETECTORS WITH HIGH POWER–BANDWIDTH ANDTraveling-wave photodetectors for high-power, largeTRAVELING-WAVE PHOTODETECTORS WITH HIGH POWER–BANDWIDTH AND

  6. High Resolution Supply Chain Management Resolution of the polylemma of production by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    loops for Production Plan- ning and Control (PPC). By this HRSCM pursues the idea of enabling organiza enabled by today's planning approaches. These two chal- lenges constitute the polylemma of production and self-optimizing supply chains based on decentralized production control mechanisms must replace

  7. Hydrogen production by high-temperature steam gasification of biomass and coal

    SciTech Connect (OSTI)

    Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K. [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

    2009-04-15

    High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

  8. PUSHING THE LIMITS OF GROUND-BASED PHOTOMETRIC PRECISION: SUBMILLIMAGNITUDE TIME-SERIES PHOTOMETRY OF THE OPEN CLUSTER NGC 6791

    E-Print Network [OSTI]

    Gaudi, B. Scott

    PUSHING THE LIMITS OF GROUND-BASED PHOTOMETRIC PRECISION: SUBMILLIMAGNITUDE TIME-SERIES PHOTOMETRY of this study was to demonstrate the ability to obtain very high precision photometry for a large number to obtain high-precision (millimagnitude, or less than 1%) time-series, optical and infrared photometry

  9. System for precise position registration

    DOE Patents [OSTI]

    Sundelin, Ronald M.; Wang, Tong

    2005-11-22

    An apparatus for enabling accurate retaining of a precise position, such as for reacquisition of a microscopic spot or feature having a size of 0.1 mm or less, on broad-area surfaces after non-in situ processing. The apparatus includes a sample and sample holder. The sample holder includes a base and three support posts. Two of the support posts interact with a cylindrical hole and a U-groove in the sample to establish location of one point on the sample and a line through the sample. Simultaneous contact of the third support post with the surface of the sample defines a plane through the sample. All points of the sample are therefore uniquely defined by the sample and sample holder. The position registration system of the current invention provides accuracy, as measured in x, y repeatability, of at least 140 .mu.m.

  10. Improved InGaN epitaxy yield by precise temperature measurement :yearly report 1.

    SciTech Connect (OSTI)

    Koleske, Daniel David; Creighton, James Randall; Russell, Michael J.; Fischer, Arthur Joseph

    2006-08-01

    This Report summarizes the first year progress (October 1, 2004 to September 30, 2005) made under a NETL funded project entitled ''Improved InGaN Epitaxy Yield by Precise Temperature Measurement''. This Project addresses the production of efficient green LEDs, which are currently the least efficient of the primary colors. The Project Goals are to advance IR and UV-violet pyrometry to include real time corrections for surface emissivity on multiwafer MOCVD reactors. Increasing wafer yield would dramatically reduce high brightness LED costs and accelerate the commercial manufacture of inexpensive white light LEDs with very high color quality. This work draws upon and extends our previous research (funded by DOE) that developed emissivity correcting pyrometers (ECP) based on the high-temperature GaN opacity near 400 nm (the ultraviolet-violet range, or UVV), and the sapphire opacity in the mid-IR (MIR) near 7.5 microns.

  11. System size and energy dependence of high pT hadron production measured with PHENIX experiment at RHIC

    E-Print Network [OSTI]

    Takao Sakaguchi

    2007-03-16

    PHENIX has measured high transverse momentum (pT) identified hadrons in different collision species and energies in the last five RHIC runs. The systematic study of the high pT hadron production provides an idea on interaction of hard scattered partons and the matter created in relativistic heavy ion collision. The eta/pi0 ratio is measured in Au+Au collisions, which gives a hint on the system thermalization and particle production. A future measurement of hadron and photon measurement is discussed.

  12. Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems

    SciTech Connect (OSTI)

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-15

    We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasers during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  13. Precision Probes of a Leptophobic Z' Boson

    SciTech Connect (OSTI)

    Buckley, Matthew R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Ramsey-Musolf, Michael J. [University of Wisconsin, Madison, WI (US); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (US)

    2012-03-01

    Extensions of the Standard Model that contain leptophobic Z' gauge bosons are theoretically interesting but difficult to probe directly in high-energy hadron colliders. However, precision measurements of Standard Model neutral current processes can provide powerful indirect tests. We demonstrate that parity-violating deep inelastic scattering of polarized electrons off of deuterium offer a unique probe leptophobic Z' bosons with axial quark couplings and masses above 100 GeV. In addition to covering a wide range of previously uncharted parameter space, planned measurements of the deep inelastic parity-violating eD asymmetry would be capable of testing leptophobic Z' scenarios proposed to explain the CDF W plus dijet anomaly.

  14. Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production

    SciTech Connect (OSTI)

    Carl Marcel Stoots; Lee Shunn; James O'Brien

    2010-06-01

    The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

  15. Production of high brightness H- beam by charge exchange of hydrogen atom beam in sodium jet

    SciTech Connect (OSTI)

    Davydenko, V.; Zelenski, A.; Ivanov, A.; Kolmogorov, A.

    2010-11-16

    Production of H{sup -} beam for accelerators applications by charge exchange of high brightness hydrogen neutral beam in a sodium jet cell is experimentally studied in joint BNL-BINP experiment. In the experiment, a hydrogen-neutral beam with 3-6 keV energy, equivalent current up to 5 A and 200 microsecond pulse duration is used. The atomic beam is produced by charge exchange of a proton beam in a pulsed hydrogen target. Formation of the proton beam is performed in an ion source by four-electrode multiaperture ion-optical system. To achieve small beam emittance, the apertures in the ion-optical system have small enough size, and the extraction of ions is carried out from the surface of plasma emitter with a low transverse ion temperature of {approx}0.2 eV formed as a result of plasma jet expansion from the arc plasma generator. Developed for the BNL optically pumped polarized ion source, the sodium jet target with recirculation and aperture diameter of 2 cm is used in the experiment. At the first stage of the experiment H{sup -} beam with 36 mA current, 5 keV energy and {approx}0.15 cm {center_dot} mrad normalized emittance was obtained. To increase H{sup -} beam current ballistically focused hydrogen neutral beam will be applied. The effects of H{sup -} beam space-charge and sodium-jet stability will be studied to determine the basic limitations of this approach.

  16. Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017

    E-Print Network [OSTI]

    Gerber, Richard

    2014-01-01

    in the use of High Performance Computing (HPC) and in factNERSC is the primary high-performance computing facility forthree major High Performance Computing Centers: NERSC and

  17. LIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC SYSTEMS: ENERGY PAYBACK TIMES AND NET ENERGY PRODUCTION VALUE

    E-Print Network [OSTI]

    -344-3957, vmf5@columbia.edu 2 Center for Life Cycle Analysis, Columbia University, New York, NY 10027, USA 3 SunLIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC SYSTEMS: ENERGY PAYBACK TIMES AND NET ENERGY PRODUCTION VALUE Vasilis Fthenakis1,2 , Rick Betita2 , Mark Shields3 , Rob

  18. "Audacity or Precision": The Paradoxes of Henri Villat's Fluid Mechanics

    E-Print Network [OSTI]

    Aubin, David

    1 "Audacity or Precision": The Paradoxes of Henri Villat's Fluid Mechanics in Interwar France David researches on fluid mechanics. Most of his original work was done before the First Word War; it was highly on, he held the fluid mechanics chair established by the Air Ministry at the Sorbonne in Paris

  19. The design and small-scale fabrication of precision desktop lathe components

    E-Print Network [OSTI]

    Demers, Brian Philip

    2009-01-01

    An evaluation was carried out on the design and fabrication techniques of the components provided to students in MIT's 2.72 class. These components are used by the students in the production of a fully-functional precision ...

  20. Method and apparatus for precision laser micromachining

    DOE Patents [OSTI]

    Chang, Jim (San Ramon, CA); Warner, Bruce E. (Pleasanton, CA); Dragon, Ernest P. (Danville, CA)

    2000-05-02

    A method and apparatus for micromachining and microdrilling which results in a machined part of superior surface quality is provided. The system uses a near diffraction limited, high repetition rate, short pulse length, visible wavelength laser. The laser is combined with a high speed precision tilting mirror and suitable beam shaping optics, thus allowing a large amount of energy to be accurately positioned and scanned on the workpiece. As a result of this system, complicated, high resolution machining patterns can be achieved. A cover plate may be temporarily attached to the workpiece. Then as the workpiece material is vaporized during the machining process, the vapors condense on the cover plate rather than the surface of the workpiece. In order to eliminate cutting rate variations as the cutting direction is varied, a randomly polarized laser beam is utilized. A rotating half-wave plate is used to achieve the random polarization. In order to correctly locate the focus at the desired location within the workpiece, the position of the focus is first determined by monitoring the speckle size while varying the distance between the workpiece and the focussing optics. When the speckle size reaches a maximum, the focus is located at the first surface of the workpiece. After the location of the focus has been determined, it is repositioned to the desired location within the workpiece, thus optimizing the quality of the machined area.

  1. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01

    65688 PRECISION AND ENERGY USAGE FOR ADDITIVE MANUFACTURINGpart quality and energy usage for additive manufacturingfound in this study. Energy usage is quantified by measuring

  2. Sequential Linker Installation: Precise Placement of Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal-Organic Frameworks Previous Next List Yuan, Shuai; Lu, Weigang; Chen, Ying-Pin; Zhang,...

  3. Efficient design of precision medical robotics

    E-Print Network [OSTI]

    Hanumara, Nevan Clancy

    2012-01-01

    Medical robotics is increasingly demonstrating the potential to improve patient care through more precise interventions. However, taking inspiration from industrial robotics has often resulted in large, sometimes cumbersome ...

  4. Precision Manufacturing Process Monitoring with Acoustic Emission

    E-Print Network [OSTI]

    Lee, D. E.; Hwang, I.; Valente, C. M. O.; Oliviera, J. F.G.; Dornfeld, D. A.

    2006-01-01

    feedback in a fully automated manufacturing environment. 8.Conclusions As current manufacturing trends aim for smallerfor open architecture manufacturing of precision machining

  5. Precision Manufacturing Process Monitoring With Acoustic Emission

    E-Print Network [OSTI]

    Lee, D.E.; Huang, Inkil; Valente, Carlos M. O.; Oliveira, J. F.; Dornfeld, David

    2006-01-01

    feedback in a fully automated manufacturing environment. 8.Conclusions As current manufacturing trends aim for smallerfor open architecture manufacturing of precision machining

  6. Production of Virginia Peanuts in the Rolling Plains and Southern High Plains of Texas 

    E-Print Network [OSTI]

    Lemon, Robert G.; Lee, Thomas A.

    1995-08-01

    Cultural practices such as crop rotation, maintaining plant nutrition, irrigation management and disease management are crucial for the successful production of Virginia peanuts. This publications describes these and other ...

  7. SPECIAL TOPICS FALL 2015 Marketing High-Technology Products and Services

    E-Print Network [OSTI]

    and services have been catalysts for significant changes in business, society and GDP/capita. Imagine your life cost consumer products like the Nest to equipment with 7-figure price tags. This course surveys

  8. The Production of High Levels of Renewable Natural Gas from Biomass Using Steam Hydrogasification

    E-Print Network [OSTI]

    Thanmongkhon, Yoothana

    2014-01-01

    2012. 14. Pless, J. , Natural Gas Development and HydraulicProduction of Substituted Natural Gas from the Wet OrganicU.S.E.I.A), California Natural Gas Consumption. 2012. 116.

  9. The Production of High Levels of Renewable Natural Gas from Biomass Using Steam Hydrogasification

    E-Print Network [OSTI]

    Thanmongkhon, Yoothana

    2014-01-01

    6 Figure 1-5 Conventional oil and gas production from theat least 25-30% less CO 2 than oil and at least 40-50% lesscompared with coal and oil. It is the favorable fuel of

  10. High-p_T Pion Production in Heavy-Ion Collisions at RHIC energies

    E-Print Network [OSTI]

    G. G. Barnafoldi; P. Levai; G. Papp; G. Fai; Y. Zhang

    2003-01-15

    Perturbative QCD results on pion production are presented in proton-proton, proton-nucleus and nucleus-nucleus collisions from CERN SPS up to RHIC energy. A K_{jet}(s, p_T, Q) factor obtained from jet production is applied to perform next-to-leading order calculations. Using the intrinsic transverse momentum (k_T) we determined transverse momentum spectra for pions in wide energy region. We have investigated nuclear multiscattering and the Cronin effect at RHIC energies.

  11. Production of a beam of highly vibrationally excited CO using perturbations

    E-Print Network [OSTI]

    Bartels, Nils

    An intense molecular beam of CO (X[superscript 1]?[superscript +]) in high vibrational states (v = 17, 18) was produced by a new approach that we call PUMP – PUMP – PERTURB and DUMP. The basic idea is to access high ...

  12. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    SciTech Connect (OSTI)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  13. A linear merging methodology for high-resolution precipitation products using spatiotemporal regression

    SciTech Connect (OSTI)

    Turlapaty, Anish C. [Mississippi State University (MSU); Younan, Nicolas H. [Mississippi State University (MSU); Anantharaj, Valentine G [ORNL

    2012-01-01

    Currently, the only viable option for a global precipitation product is the merger of several precipitation products from different modalities. In this article, we develop a linear merging methodology based on spatiotemporal regression. Four highresolution precipitation products (HRPPs), obtained through methods including the Climate Prediction Center's Morphing (CMORPH), Geostationary Operational Environmental Satellite-Based Auto-Estimator (GOES-AE), GOES-Based Hydro-Estimator (GOES-HE) and Self-Calibrating Multivariate Precipitation Retrieval (SCAMPR) algorithms, are used in this study. The merged data are evaluated against the Arkansas Red Basin River Forecast Center's (ABRFC's) ground-based rainfall product. The evaluation is performed using the Heidke skill score (HSS) for four seasons, from summer 2007 to spring 2008, and for two different rainfall detection thresholds. It is shown that the merged data outperform all the other products in seven out of eight cases. A key innovation of this machine learning method is that only 6% of the validation data are used for the initial training. The sensitivity of the algorithm to location, distribution of training data, selection of input data sets and seasons is also analysed and presented.

  14. Precision Measurements at a Muon Collider

    E-Print Network [OSTI]

    S. Dawson

    1995-12-08

    We discuss the potential for making precision measurements of $M_W$ and $M_T$ at a muon collider and the motivations for each measurement. A comparison is made with the precision measurements expected at other facilities. The measurement of the top quark decay width is also discussed.

  15. Precision Constraints on Extra Fermion Generations

    E-Print Network [OSTI]

    Jens Erler; Paul Langacker

    2010-07-27

    There has been renewed interest in the possibility of additional fermion generations. At the same time there have been significant changes in the relevant electroweak precision constraints, in particular, in the interpretation of several of the low energy experiments. We summarize the various motivations for extra families and analyze them in view of the latest electroweak precision data.

  16. Heavy and superheavy elements production in high intensive fluxes of explosive process

    E-Print Network [OSTI]

    Lutostansky, Yu S; Panov, I V

    2015-01-01

    Mathematical model of heavy and superheavy nuclei production in intensive pulsed neutron fluxes of explosive process is developed. The pulse character of the process allows dividing it in time into two stages: very short rapid process of multiple neutron captures with higher temperature and very intensive neutron fluxes, and relatively slower process with lower temperature and neutron fluxes. The model was also extended for calculation of the transuranium yields in nuclear explosions takes into account the adiabatic character of the process, the probabilities of delayed fission, and the emission of delayed neutrons. Also the binary starting target isotopes compositions were included. Calculations of heavy transuranium and transfermium nuclei production were made for Mike, Par and Barbel experiments, performed in USA. It is shown that the production of transfermium neutron-rich nuclei and superheavy elements with A ~ 295 is only possible in case of binary mixture of starting isotopes with the significant addit...

  17. The distribution of linearly polarized gluons and elliptic azimuthal anisotropy in DIS dijet production at high energy

    E-Print Network [OSTI]

    Adrian Dumitru; Tuomas Lappi; Vladimir Skokov

    2015-08-18

    We determine the distribution of linearly polarized gluons of a dense target at small $x$ by solving the B-JIMWLK rapidity evolution equations. From these solutions we estimate the amplitude of $\\sim \\cos 2\\phi$ azimuthal asymmetries in DIS dijet production at high energies. We find sizeable long-range in rapidity azimuthal asymmetries with a magnitude in the range of $v_2=\\langle\\cos 2\\phi\\rangle \\sim 10\\%$.

  18. The distribution of linearly polarized gluons and elliptic azimuthal anisotropy in DIS dijet production at high energy

    E-Print Network [OSTI]

    Dumitru, Adrian; Skokov, Vladimir

    2015-01-01

    We determine the distribution of linearly polarized gluons of a dense target at small $x$ by solving the B-JIMWLK rapidity evolution equations. From these solutions we estimate the amplitude of $\\sim \\cos 2\\phi$ azimuthal asymmetries in DIS dijet production at high energies. We find sizeable long-range in rapidity azimuthal asymmetries with a magnitude in the range of $v_2=\\langle\\cos 2\\phi\\rangle \\sim 10\\%$.

  19. High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production

    Broader source: Energy.gov [DOE]

    Project objective: Develop and demonstrate high-temperature ESP motor windings for use in Enhanced Geothermal Systems and operation at 300?C.

  20. Performance and production requirements for the optical components in a high-average-power laser system

    SciTech Connect (OSTI)

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  1. Equation of state for high explosives detonation products with explicit polar and ionic species

    SciTech Connect (OSTI)

    Bastea, S; Glaesemann, K R; Fried, L E

    2006-06-28

    We introduce a new thermodynamic theory for detonation products that includes polar and ionic species. The new formalism extends the domain of validity of the previously developed EXP6 equation of state library and opens the possibility of new applications. We illustrate the scope of the new approach on PETN detonation properties and water ionization models.

  2. HIGH LEVEL PETRI NETS BASED APPROACH FOR ANALYSING CONCEPTUAL OBJECTS FOR PRODUCTION SYSTEMS SIMULATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    system, formal methods of design are needed. In this work, the selected modelling and verification tool In the development life cycle of manufacturing systems, the verification of analytical models is often addressed via a powerful framework to model and analyse production systems. Indeed, their characteristics, graphical

  3. Building America Top Innovations 2012: Affordable High Performance in Production Homes: Artistic Homes

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Artistic Homes, a successful New Mexico production builder, who went from code-minimum to under HERS 50 standard on every home, with optional PV upgrades to HERS 35 or true net zero on every home plan offered.

  4. Structure and Fine Structure in Multiparticle Production Data at High Energies

    E-Print Network [OSTI]

    Wit Busza

    2004-10-22

    A summary is given of data on the longitudinal rapidity and pseudorapidity distributions observed in $e^+e^-$, pp, pA and AA collisions at high energies. The remarkable simplicity and universality observed in the data and its relevance to the study of the high energy density system produced in heavy ion collisions is discussed.

  5. Precision engineering center. 1988 Annual report, Volume VI

    SciTech Connect (OSTI)

    Dow, T.; Fornaro, R.; Keltie, R.; Paesler, M.

    1988-12-01

    To reverse the downward trend in the balance of trade, American companies must concentrate on increasing research into new products, boosting productivity, and improving manufacturing processes. The Precision Engineering Center at North Carolina State University is a multidisciplinary research and graduate education program dedicated to providing the new technology necessary to respond to this challenge. One extremely demanding manufacturing area is the fabrication and assembly of optical systems. These systems are at the heart of such consumer products as cameras, lenses, copy machines, laser bar-code scanners, VCRs, and compact audio discs - products that the Japanese and other East Asian countries are building dominance. A second critical area is the fabrication of VLSI and ULSI circuits. The tolerances required to produce the next generation of components for such systems have created the need for new approaches - approaches that could either make or break America`s competitive position. This report contains individual reports on research projects grouped into three broad areas: measurement and actuation; real-time control; precision fabrication. Separate abstracts for these articles have been indexed into the energy database.

  6. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore »137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  7. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    J.J. Horkley; K.P E.M. Gantz; J.E. Davis; R.R. Lewis; J.P. Crow; C.A. Poole; T.S. Grimes; J.J. Giglio

    2015-03-01

    t Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure ‘‘spike’’ solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for ‘‘age’’ determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution,

  8. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  9. Lean Implementation Considerations in Factory Operations of Low Volume/High Complexity Production Systems

    E-Print Network [OSTI]

    Shields, Thomas J.

    The researchers of the Lean Aircraft Initiative developed a hypothesized lean implementation model seeking to provide its members guidance on implementing lean transitions in factory operations of low volume/high complexity ...

  10. Production of carbon monoxide-free hydrogen and helium from a high-purity source

    DOE Patents [OSTI]

    Golden, Timothy Christopher (Allentown, PA); Farris, Thomas Stephen (Bethlehem, PA)

    2008-11-18

    The invention provides vacuum swing adsorption processes that produce an essentially carbon monoxide-free hydrogen or helium gas stream from, respectively, a high-purity (e.g., pipeline grade) hydrogen or helium gas stream using one or two adsorber beds. By using physical adsorbents with high heats of nitrogen adsorption, intermediate heats of carbon monoxide adsorption, and low heats of hydrogen and helium adsorption, and by using vacuum purging and high feed stream pressures (e.g., pressures of as high as around 1,000 bar), pipeline grade hydrogen or helium can purified to produce essentially carbon monoxide -free hydrogen and helium, or carbon monoxide, nitrogen, and methane-free hydrogen and helium.

  11. Economic Effect on Agricultural Production of Alternative Energy Input Prices: Texas High Plains 

    E-Print Network [OSTI]

    Adams, B. M.; Lacewell, R. D.; Condra, G. D.

    1976-01-01

    The Arab oil embargo of 1973 awakened the world to the reality of energy shortages and higher fuel prices. Agriculture in the United States is highly mechanized and thus energy intensive. This study seeks to develop an evaluative capability...

  12. Fundamental Symmetries of the Early Universe and the Precision Frontier

    SciTech Connect (OSTI)

    Ramsey-Musolf, Michael (University of Wisconsin) [University of Wisconsin

    2011-03-02

    The quest to explain nature's fundamental interactions and how they shaped the evolution of the universe is one of the most compelling in physics. The standard model of particle physics provides a partial explanation, but we know that it must be part of a larger, more complete framework. Experiments hoping to uncover details of the 'new standard model' are being carried out at two frontiers: the high energy frontier and the high precision frontier. In this talk, I discuss the theoretical implications of some of the key up-coming experiments at the precision frontier. I focus in particular on what they may teach us about the origin of matter and the possible existence of new forces that were important at earlier times in the evolution of the cosmos. I will also comment on how they complement experiments at the energy frontier.

  13. A MEMS-based precision operational amplifier

    E-Print Network [OSTI]

    Paik, Song-Hee Cindy, 1980-

    2004-01-01

    Two main difficulties for amplifiers that attempt to make precision DC measurements are the inherent low-frequency noise of the amplifier and the leakage current of the amplifier input stage. This thesis presents a novel ...

  14. Precision Determination of Atmospheric Extinction at Optical...

    Office of Scientific and Technical Information (OSTI)

    PanSTARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or...

  15. Precision Electroweak Parameters and the Higgs Mass

    E-Print Network [OSTI]

    William J. Marciano

    2000-03-17

    The status of various precisely measured electroweak parameters is reviewed. Natural relations among them are shown to constrain the Higgs mass, m_H, via quantum loop effects to relatively low values. A comparison with direct Higgs searches is made.

  16. Cyclotrons as Drivers for Precision Neutrino Measurements

    E-Print Network [OSTI]

    Adelmann, A.

    As we enter the age of precision measurement in neutrino physics, improved flux sources are required. These must have a well defined flavor content with energies in ranges where backgrounds are low and cross-section ...

  17. Rubber bearings for precision positioning systems

    E-Print Network [OSTI]

    Barton Martinelli, Augusto E

    2005-01-01

    In this thesis we investigate the use of thin rubber sheets or laminates of metal and rubber sheets as bearings in precision positioning systems. Such bearings have the potential to replace more conventional flexures ...

  18. Laser frequency combs for precision astrophysical spectroscopy

    E-Print Network [OSTI]

    Li, Chih-Hao

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines resulting from the motion of the host star around the barycentre of an extrasolar system have recently achieved a precision of 60 ...

  19. Digital multimirror devices for precision laser micromachining

    E-Print Network [OSTI]

    DMD LIFT results 24 PMMA donors New 3D printing technology! BiTe semiconductor film New laser 3D printing facility...An ORC breakthrough 75 µm #12;Summary · DMDs are very useful for precise ablation

  20. High-Throughput Screen of Natural Product Libraries for Hsp90 Inhibitors

    E-Print Network [OSTI]

    Davenport, Jason; Blach, Maurie; Galam, Lakshmi; Girgis, Antwan; Hall, Jessica; Blagg, Brian S. J.; Matts, Robert L.

    2014-03-03

    with the report by Whitesell and co-workers that benzoquinone ansamycins, natural products isolated from the soil actinomycetes species Streptomyces hygroscopicus, were inhibitors of Hsp90 and not tyrosine kinases [1]. In 1997, the crystal structure of the Hsp90...) by Hsp90 [2]. Subsequently in 1998, radicicol, an antibiotic isolated from the mycoparasitic fungus Humicola fuscoatra, was found to bind similarly to the N-terminal domain of Hsp90 [3,4], and with the additional co-crystal structure in 1999, the road...

  1. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    DOE Patents [OSTI]

    Norman, Eric B. (Oakland, CA); Prussin, Stanley G. (Kensington, CA)

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  2. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  3. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, Ivar H. (Bangor, ME)

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  4. Pushing the precision limit of ground-based eclipse photometry

    E-Print Network [OSTI]

    M. Gillon; D. R. Anderson; B. -O. Demory; D. M. Wilson; C. Hellier; D. Queloz; C. Waelkens

    2008-06-30

    Until recently, it was considered by many that ground-based photometry could not reach the high cadence sub-mmag regime because of the presence of the atmosphere. Indeed, high frequency atmospheric noises (mainly scintillation) limit the precision that high SNR photometry can reach within small time bins. If one is ready to damage the sampling of his photometric time-series, binning the data (or using longer exposures) allows to get better errors, but the obtained precision will be finally limited by low frequency noises. To observe several times the same planetary eclipse and to fold the photometry with the orbital period is thus generally considered as the only option to get very well sampled and precise eclipse light curve from the ground. Nevertheless, we show here that reaching the sub-mmag sub-min regime for one eclipse is possible with a ground-based instrument. This has important implications for transiting planets characterization, secondary eclipses measurement and small planets detection from the ground.

  5. Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    E-Print Network [OSTI]

    The CDF Collaboration; T. Aaltonen; J. Adelman; B. Alvarez Gonzalez; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; G. Apollinari; A. Apresyan; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; A. Attal; A. Aurisano; F. Azfar; W. Badgett; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; P. Barria; P. Bartos; G. Bauer; P. -H. Beauchemin; F. Bedeschi; D. Beecher; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; D. Berge; A. Bhatti; M. Binkley; D. Bisello; I. Bizjak; R. E. Blair; C. Blocker; B. Blumenfeld; A. Bocci; A. Bodek; V. Boisvert; D. Bortoletto; J. Boudreau; A. Boveia; B. Brau; A. Bridgeman; L. Brigliadori; C. Bromberg; E. Brubaker; J. Budagov; H. S. Budd; S. Budd; K. Burkett; G. Busetto; P. Bussey; A. Buzatu; K. L. Byrum; S. Cabrera; C. Calancha; S. Camarda; M. Campanelli; M. Campbell; F. Canelli; A. Canepa; B. Carls; D. Carlsmith; R. Carosi; S. Carrillon; S. Carron; B. Casal; M. Casarsa; A. Castrocc; P. Catastini; D. Cauz; V. Cavaliere; M. Cavalli-Sforza; A. Cerri; L. Cerrito; S. H. Chang; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; F. Chlebana; K. Cho; D. Chokheli; J. P. Chou; K. Chungo; W. H. Chung; Y. S. Chung; T. Chwalek; C. I. Ciobanu; M. A. Ciocci; A. Clark; D. Clark; G. Compostella; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; F. Crescioli; C. Cuenca Almenar; J. Cuevas; R. Culbertson; J. C. Cully; D. Dagenhart; M. Datta; T. Davies; P. de Barbaro; S. De Cecco; A. Deisher; G. De Lorenzo; M. Dell'Orso; C. Deluca; L. Demortier; J. Deng; M. Deninno; M. d'Errico; A. Di Canto; G. P. di Giovanni; B. Di Ruzza; J. R. Dittmann; M. D'Onofrio; S. Donati; P. Dong; T. Dorigo; S. Dube; K. Ebina; A. Elagin; R. Erbacher; D. Errede; S. Errede; N. Ershaidat; R. Eusebi; H. C. Fang; S. Farrington; W. T. Fedorko; R. G. Feild; M. Feindt; J. P. Fernandez; C. Ferrazza; R. Field; G. Flanagans; R. Forrest; M. J. Frank; M. Franklin; J. C. Freeman; I. Furic; M. Gallinaro; J. Galyardt; F. Garberson; J. E. Garcia; A. F. Garfinkel; P. Garosi; H. Gerberich; D. Gerdes; A. Gessler; S. Giagu; V. Giakoumopoulou; P. Giannetti; K. Gibson; J. L. Gimmell; C. M. Ginsburg; N. Giokaris; M. Giordani; P. Giromini; M. Giunta; G. Giurgiu; V. Glagolev; D. Glenzinski; M. Gold; N. Goldschmidt; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. González; I. Gorelov; A. T. Goshaw; K. Goulianos; A. Gresele; S. Grinstein; C. Grosso-Pilcher; R. C. Group; U. Grundler; J. Guimaraes da Costa; Z. Gunay-Unalan; C. Haber; S. R. Hahn; E. Halkiadakis; B. -Y. Han; J. Y. Han; F. Happacher; K. Hara; D. Hare; M. Hare; R. F. Harr; M. Hartz; K. Hatakeyama; C. Hays; M. Heck; J. Heinrich; M. Herndon; J. Heuser; S. Hewamanage; M. Hickman; D. Hidas; C. S. Hill; D. Hirschbuehl; A. Hocker; S. Hou; M. Houlden; S. -C. Hsu; R. E. Hughes; M. Hurwitz; U. Husemann; M. Hussein; J. Huston; J. Incandela; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; M. K. Jha; S. Jindariani; W. Johnson; M. Jones; K. K. Joo; S. Y. Jun; J. E. Jung; T. R. Junk; T. Kamon; D. Kar; P. E. Karchin; Y. Kato; R. Kephart; W. Ketchum; J. Keung; V. Khotilovich; B. Kilminster; D. H. Kim; H. S. Kim; H. W. Kim; J. E. Kim; M. J. Kim; S. B. Kim; S. H. Kim; Y. K. Kim; N. Kimura; L. Kirsch; S. Klimenko; K. Kondo; D. J. Kong; J. Konigsberg; A. Korytov; A. V. Kotwal; M. Kreps; J. Kroll; D. Krop; N. Krumnack; M. Kruse; V. Krutelyov; T. Kuhr; N. P. Kulkarni; M. Kurata; S. Kwang; A. T. Laasanen; S. Lami; S. Lammel; M. Lancaster; R. L. Lander; K. Lannon; A. Lath; G. Latino; I. Lazzizzera; T. LeCompte; E. Lee; H. S. Lee; J. S. Lee; S. W. Lee; S. Leone; J. D. Lewis; C. -J. Lin; J. Linacre; M. Lindgren; E. Lipeles; A. Lister; D. O. Litvintsev; C. Liu; T. Liu; N. S. Lockyer; A. Loginov; L. Lovas; D. Lucchesi; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; D. MacQueen; R. Madrak; K. Maeshima; K. Makhoul; P. Maksimovic; S. Malde; S. Malik; G. Manca; A. Manousakis-Katsikakis; F. Margaroli; C. Marino; C. P. Marino; A. Martin; V. Martink; M. Martinez; R. Martinez-Ballarin; P. Mastrandrea; M. Mathis; M. E. Mattson; P. Mazzanti; K. S. McFarland; P. McIntyre; R. McNulty; A. Mehta; P. Mehtala; A. Menzione; C. Mesropian; T. Miao; D. Mietlicki; N. Miladinovic; R. Miller; C. Mills; M. Milnik; A. Mitra; G. Mitselmakher; H. Miyake; S. Moed; N. Moggi; M. N. Mondragon; C. S. Moon; R. Moore; M. J. Morello; J. Morlock; P. Movilla Fernandez; J. Mulmenstadt; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; K. Nakamura; Nakano; A. Napier; J. Nett; C. Neu; M. S. Neubauer; S. Neubauer; J. Nielseng; L. Nodulman; M. Norman; O. Norniella; E. Nurse; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; K. Osterberg; S. Pagan Griso; C. Pagliarone; E. Palencia; V. Papadimitriou; A. Papaikonomou; A. A. Paramanov; B. Parks; S. Pashapour; J. Patrick; G. Pauletta

    2010-03-16

    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \\eta-\\phi space; toward, away, and transverse, where \\phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.

  6. Transmutation of high-level radioactive waste and production of {sup 233}U using an accelerator-driven reactor

    SciTech Connect (OSTI)

    Takahashi, Hiroshi; Takashita, Hirofumi; Chen, Xinyi

    1994-08-01

    Reactor safety, the disposal of high-level nuclear waste, and nonproliferation of nuclear material for military purposes are the problems of greatest concern for nuclear energy. Technologies for accelerators developed in the field of high-energy physics can contribute to solving these problems. For reactor safety, especially for that of a Na-cooled fast reactor, the use of an accelerator, even a small one, can enhance the safety using a slightly subcritical reactor. There is growing concern about how we can deal with weapons-grade Pu, and about the large amount of Pu accumulating from the operation of commercial reactors. It has been suggested that this Pu could be incinerated, using the reactor and a proton accelerator. However, because Pu is a very valuable material with future potential for generating nuclear energy, we should consider transforming it into a proliferation-resistant material that cannot be used for making bombs, rather than simply eliminating the Pu. An accelerator-driven fast reactor (700 MWt), run in a subcritical condition, and fueled with MOX can generate {sup 233}U more safely and efficiently than can a critical reactor. We evaluate the production of {sup 233}U, {sup 239}Pu, and the transmutation of the long-lived fission products of {sup 99}Tc and {sup 129}I, which are loaded with YH{sub 1.7} between the fast core and blanket, by reducing the conversion factor of Pu to {sup 233}U. And we assessed the rates of radiation damage, hydrogen production, and helium production in a target window and in the surrounding vessel.

  7. Higher order QED in high mass e+ e- pairs production at RHIC

    E-Print Network [OSTI]

    Anthony J. Baltz; Joakim Nystrand

    2010-03-19

    Lowest order and higher order QED calculations have been carried out for the RHIC high mass e+ e- pairs observed by PHENIX with single ZDC triggers. The lowest order QED results for the experimental acceptance are about two standard deviations larger than the PHENIX data. Corresponding higher order QED calculations are within one standard deviation of the data.

  8. A facilities view of the low volume, high product mix fab

    SciTech Connect (OSTI)

    Keyser, R.

    1989-01-01

    Automation has been widely recognized as the next major step in semiconductor manufacturing and numerous manufacturers around the world have been spending large sums of money to develop integrated automation systems for microelectronic chip production. Automation is a manufacturing tool that can be used in many facilities both new and existing, but the power and effectiveness of any automation project can be enhanced by a facility that is designed to be automated. This paper is heavily based on experiences gained in the design, construction, and startup of Sandia's newest cleanroom known as the Microelectronics Development Laboratory (MDL). The MDL is a Class 1 facility of individual process bays organized around a central hallway. Chase areas separate the process bays, and whenever possible, equipment is mounted through the walls to allow maintenance to be done in the less clean chase areas. 1 fig.

  9. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    SciTech Connect (OSTI)

    Klaehn, John; Peterson, Eric; Orme, Christopher; Bhandari, Dhaval; Miller, Scott; Ku, Anthony; Polishchuk, Kimberly; Narang, Kristi; Singh, Surinder; Wei, Wei; Shisler, Roger; Wickersham, Paul; McEvoy, Kevin; Alberts, William; Howson, Paul; Barton, Thomas; Sethi, Vijay

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200°C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (? = 7-9) and H2/CO separation (? = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  10. Water and Associated Costs in the Production of Cotton and Grain Sorghum, Texas High Plains, 1955. 

    E-Print Network [OSTI]

    Magee, A. C.; Hughes, William F.

    1957-01-01

    vary widely; consequently, there is a wide range in the cost of machinery on High Plains farms. Most wholly irrigated farms are equipped with the amount and kinds of machinery required be- fore acreage-control programs reduced the cotton acreage.... Before acreage control, some 70 to 80 j~ercent of the irrigated lands in the area covered by this study commonly were planted to cotton. Irrigated farms with 100 percent of the cropland in cotton were' not unusual. Present machinery inventories...

  11. A proposal for testing subcritical vacuum pair production with high power lasers

    E-Print Network [OSTI]

    Gregori, G; Rajeev, P P; Chen, H; Clarke, R J; Huffman, T; Murphy, C D; Prozorkevich, A V; Roberts, C D; Röpke, G; Schmidt, S M; Smolyansky, S A; Wilks, S; Bingham, R; 10.1016/j.hedp.2009.11.001

    2010-01-01

    We present a proposal for testing the prediction of non-equilibrium quantum field theory below the Schwinger limit. The proposed experiments should be able to detect a measurable number of gamma rays resulting from the annihilation of pairs in the focal spot of two opposing high intensity laser beams. We discuss the dependence of the expected number of gamma rays with the laser parameters and compare with the estimated background level of gamma hits for realistic laser conditions.

  12. Universality of electron distributions in high-energy air showers - description of Cherenkov light production

    E-Print Network [OSTI]

    F. Nerling; J. Blümer; R. Engel; M. Risse

    2005-12-22

    The shower simulation code CORSIKA has been used to investigate the electron energy and angular distributions in high-energy showers. Based on the universality of both distributions, we develop an analytical description of Cherenkov light emission in extensive air showers, which provides the total number and angular distribution of photons. The parameterisation can be used e.g. to calculate the contribution of direct and scattered Cherenkov light to shower profiles measured with the air fluorescence technique.

  13. A proposal for testing subcritical vacuum pair production with high power lasers

    E-Print Network [OSTI]

    G. Gregori; D. B. Blaschke; P. P. Rajeev; H. Chen; R. J. Clarke; T. Huffman; C. D. Murphy; A. V. Prozorkevich; C. D. Roberts; G. Röpke; S. M. Schmidt; S. A. Smolyansky; S. Wilks; R. Bingham

    2010-05-18

    We present a proposal for testing the prediction of non-equilibrium quantum field theory below the Schwinger limit. The proposed experiments should be able to detect a measurable number of gamma rays resulting from the annihilation of pairs in the focal spot of two opposing high intensity laser beams. We discuss the dependence of the expected number of gamma rays with the laser parameters and compare with the estimated background level of gamma hits for realistic laser conditions.

  14. Precision cancer mouse models through genome editing with CRISPR-Cas9

    E-Print Network [OSTI]

    Mou, Haiwei

    The cancer genome is highly complex, with hundreds of point mutations, translocations, and chromosome gains and losses per tumor. To understand the effects of these alterations, precise models are needed. Traditional ...

  15. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOE Patents [OSTI]

    Cross, J.B.; Cremers, D.A.

    1986-01-10

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species is described. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  16. VOLUME 57, NUMBER 23 PHYSICAL REVIEW LETTERS 8 DECEMBER 1986 Intranuclear N-N Collision Model for the Production of High-Energy

    E-Print Network [OSTI]

    Bertsch George F.

    Physics, Michigan State University, East Lansing, Michigan 48824 (Received 1 October 1986) High-energy y rays for the Production of High-Energy Gamma Rays in Heavy-Ion Collisions B.A. Remington and M. Blann Lawrence Livermore and interpretation of high-energy (E,,&20 MeV) y rays resulting from collisions of energetic heavy ions. ' If these y

  17. High-power liquid-lithium jet target for neutron production

    E-Print Network [OSTI]

    S. Halfon; A. Arenshtam; D. Kijel; M. Paul; D. Berkovits; I. Eliyahu; G. Feinberg; M. Friedman; N. Hazenshprung; I. Mardor; A. Nagler; G. Shimel; M. Tessler; I. Silverman

    2013-11-30

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution and angular distribution. Liquid lithium is circulated through the target loop at ~200oC and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of > 4 kW/cm2 and volume power density of ~ 2 MW/cm3 at a lithium flow of ~4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91- 2.5 MeV, 1-2 mA) at SARAF.

  18. High-power liquid-lithium jet target for neutron production

    SciTech Connect (OSTI)

    Halfon, S.; Feinberg, G. [Soreq NRC, Yavne 81800 (Israel) [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Arenshtam, A.; Kijel, D.; Berkovits, D.; Eliyahu, I.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Silverman, I. [Soreq NRC, Yavne 81800 (Israel)] [Soreq NRC, Yavne 81800 (Israel); Paul, M.; Friedman, M.; Tessler, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)] [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2013-12-15

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ?200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ?2 MW/cm{sup 3} at a lithium flow of ?4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.

  19. High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡HighApproaches | 03.25.2015

  20. High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡HighApproaches | 03.25.2015DOE

  1. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  2. Scrap recycling and production of high quality steel grades in Europe

    SciTech Connect (OSTI)

    Marique, C.

    1996-12-31

    The possible deleterious effects of higher contents in tramp elements on steel properties must be well defined in order to keep them within acceptable limits. No industrial technique is presently available to remove tramp elements from steel melts. Only a strict control on the metallic input and on the scrap composition is feasible. In this matter, scrap preparation which aims at a better separation between iron and other nonferrous components, is getting more attention. A large multinational project has been initiated in Europe under the sponsorship of ECSC and of the Steel Industry to better identify the effects of residuals on steel properties and to examine potential techniques able to control tramp elements during steelmaking operations. The project has been supported and orientated by a preliminary study, reviewing the relevant published data on the tramp element influence for long and flat products. The present report is devoted to overview available information on the effects of tramp elements and to describe the targets and the content of the European megaproject on scrap recycling.

  3. Singlet-Catalyzed Electroweak Phase Transitions and Precision Higgs Studies

    E-Print Network [OSTI]

    Stefano Profumo; Michael J. Ramsey-Musolf; Carroll L. Wainwright; Peter Winslow

    2014-09-04

    We update the phenomenology of gauge singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. Considering the introduction of one real scalar singlet to the scalar potential, we analyze present constraints on the potential parameters from Higgs coupling measurements at the Large Hadron Collider (LHC) and electroweak precision observables for the kinematic regime in which no new scalar decay modes arise. We then show how future precision measurements of Higgs boson signal strengths and Higgs self-coupling could probe the scalar potential parameter space associated with a strong first-order electroweak phase transition. We illustrate using benchmark precision for several future collider options, including the High Luminosity LHC (HL-LHC), the International Linear Collider (ILC), TLEP, China Electron Positron Collider (CEPC), and a 100 TeV proton-proton collider, such as the Very High Energy LHC (VHE-LHC) or the Super proton-proton Collider (SPPC). For the regions of parameter space leading to a strong first order electroweak phase transition, we find that there exists considerable potential for observable deviations from purely Standard Model Higgs properties at these prospective future colliders.

  4. Precision Electroweak Measurements on the Z Presonance

    SciTech Connect (OSTI)

    Aleph,Delphi,L3,Opal,SLD , Collaborations

    2005-09-08

    The authors report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. the data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarized beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarized asymmetries. The mass and width of the Z boson, m{sub Z} and {Lambda}{sub Z}, and its couplings to fermions, for example the {rho} parameter and the effective electroweak mixing angle for leptons, are precisely measured: m{sub Z} = 91.1875 {+-} 0.0021 GeV; {Lambda}{sub Z} = 2.4952 {+-} 0.0023 GeV; {rho}{sub {ell}} = 1.0050 {+-} 0.0010; sin{sup 2} {theta}{sub eff}{sup lept} = 0.23153 {+-} 0.00016. The number of light neutrino species is determined to be 2.9840 {+-} 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model. At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its Standard Model expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m{sub t} = 173{sub -10}{sup +13} GeV, and the mass of the W boson, m{sub W} = 80.363 {+-} 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the Standard Model. Using in addition the direct measurements of m{sub t} and m{sub W}, the mass of the as yet unobserved Standard Model Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level.

  5. High-power liquid-lithium jet target for neutron production

    E-Print Network [OSTI]

    Halfon, S; Kijel, D; Paul, M; Berkovits, D; Eliyahu, I; Feinberg, G; Friedman, M; Hazenshprung, N; Mardor, I; Nagler, A; Shimel, G; Tessler, M; Silverman, I

    2013-01-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution and angular distribution. Liquid lithium is circulated through the target loop at ~200oC and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can diss...

  6. High energy product permanent magnet having improved intrinsic coercivity and method of making same

    DOE Patents [OSTI]

    Ramesh, Ramamoorthy (Berkeley, CA); Thomas, Gareth (Berkeley, CA)

    1990-01-01

    A high energy rare earth-ferromagnetic metal permanent magnet is disclosed which is characterized by improved intrinsic coercivity and is made by forming a particulate mixture of a permanent magnet alloy comprising one or more rare earth elements and one or more ferromagnetic metals and forming a second particulate mixture of a sintering alloy consisting essentially of 92-98 wt. % of one or more rare earth elements selected from the class consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and mixtures of two or more of such rare earth elements, and 2-8 wt. % of one or more alloying metals selected from the class consisting of Al, Nb, Zr, V, Ta, Mo, and mixtures of two or more of such metals. The permanent magnet alloy particles and sintering aid alloy are mixed together and magnetically oriented by immersing the mixture in an axially aligned magnetic field while cold pressing the mixture. The compressed mixture is then sintered at a temperature above the melting point of the sintering aid and below the melting point of the permanent magnet alloy to thereby coat the particle surfaces of the permanent magnetic alloy particles with the sintering aid while inhibiting migration of the rare earth element in the sintering aid into the permanent magnet alloy particles to thereby raise the intrinsic coercivity of the permanent magnet alloy without substantially lowering the high energy of the permanent magnet alloy.

  7. Possible Implication of a Single Nonextensive p_T Distribution for Hadron Production in High-Energy pp Collisions

    SciTech Connect (OSTI)

    Wong, Cheuk-Yin; Wilk, Grzegorz; Cirto, Leonardo J. L.; Tsallis, Constantino

    2015-01-01

    Multiparticle production processes in $pp$ collisions at the central rapidity region are usually considered to be divided into independent "soft" and "hard" components. The first is described by exponential (thermal-like) transverse momentum spectra in the low-$p_T$ region with a scale parameter $T$ associated with the temperature of the hadronizing system. The second is governed by a power-like distributions of transverse momenta with power index $n$ at high-$p_T$ associated with the hard scattering between partons. We show that the hard-scattering integral can be approximated as a nonextensive distribution of a quasi-power-law containing a scale parameter $T$ and a power index $n=1/(q -1)$, where $q$ is the nonextensivity parameter. We demonstrate that the whole region of transverse momenta presently measurable at LHC experiments at central rapidity (in which the observed cross sections varies by $14$ orders of magnitude down to the low $p_T$ region) can be adequately described by a single nonextensive distribution. These results suggest the dominance of the hard-scattering hadron-production process and the approximate validity of a ``no-hair" statistical-mechanical description of the $p_T$ spectra for the whole $p_T$ region at central rapidity for $pp$ collisions at high-energies.

  8. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

    SciTech Connect (OSTI)

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Du, Shixuan, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Gao, Hong-Jun [Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Lin, Xiao [University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049 (China); Berger, Reinhard; Feng, Xinliang, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Müllen, Klaus [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany)

    2014-07-14

    We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02?eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precise nitrogen-doped graphene nanoribbons.

  9. Precision Electroweak Measurements and Constraints on the Standard Model

    SciTech Connect (OSTI)

    Not Available

    2011-11-11

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2007 are new combinations of results on the W-boson mass and width and the mass of the top quark.

  10. Precision Electroweak Measurements and Constraints on the Standard Model

    SciTech Connect (OSTI)

    Collaboration, ALEPH; Collaboration, CDF; Collaboration, D0; Collaboration, DELPHI; Collaboration, L3; Collaboration, OPAL; Collaboration, SLD; Group, LEP Electroweak Working; Group, Tevatron Electroweak Working; groups, SLD electroweak heavy flavour

    2009-11-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2008 are new combinations of results on the W-boson mass and the mass of the top quark.

  11. Excited Heavy Quarkonium Production via Z^0 Decays at a High Luminosity Collider

    E-Print Network [OSTI]

    Qi-Li Liao; Yan Yu; Ya Deng; Guo-Ya Xie; Guang-Chuan Wang

    2015-06-26

    We present a systematic study of the production of the heavy quarkonium, i.e., $|(c\\bar{c})[n] \\rangle$ , $|(b\\bar{c})[n] \\rangle$ (or $|(c\\bar{b})[n] \\rangle$), and $|(b\\bar{b})[n] \\rangle$ quarkonium [$|(Q\\bar{Q'})[n]\\rangle$ quarkonium for short], through $Z^0$ boson semi-exclusive decays with new parameters \\cite{lx} for the heavy quarkonium under the framework of the NRQCD, where $[n]$ stands for $n^1S_0$, $n^3S_1$, $n^1P_0$, $n^3P_J$ ($n=1, \\cdots, 6$; $J=(0, 1, 2)$). "Improved trace technology" is adopted to derive the simplified analytic expressions at the amplitude level, which shall be useful for dealing with these decay channels. If all higher $|(Q\\bar{Q'})[n]\\rangle$ quarkonium states decay to the ground state $|(Q\\bar{Q'})[1^1S_0]\\rangle$ with $100\\%$ efficiency via electromagnetic or hadronic interactions, we obtain $\\Gamma{(Z^0\\to |(c\\bar{c})[1^1S_0]\\rangle)}=1476$ KeV, $\\Gamma{(Z^0\\to |(b\\bar{c})[1^1S_0]\\rangle)}=1485$ KeV, $\\Gamma{(Z^0\\to |(b\\bar{b})[1^1S_0]\\rangle)}=127.5$ KeV. At the LHC and ILC with the luminosity ${\\cal L}\\propto 10^{34}cm^{-2}s^{-1}$, sizable heavy quarkonium events can be produced through $Z^0$ boson decays, i.e., about $5.9~\\times10^{5}$ $(c\\bar{c})$, $6.0~\\times10^{5}$ $(b\\bar{c})$ (or $(c\\bar{b})$), $5.1~\\times10^{4}$ $(b\\bar{b})$ events per year can be obtained.

  12. Prompt Multi-Gluon Production in High Energy Collisions from Singular Yang-Mills Solutions

    E-Print Network [OSTI]

    Romuald A. Janik; Edward Shuryak; Ismail Zahed

    2002-06-03

    We study non-perturbative parton-parton scattering in the Landau method using singular O(3) symmetric solutions to the Euclidean Yang-Mills equations. These solutions combine instanton dynamics (tunneling) and overlap (transition) between incoming and vacuum fields. We derive a high-energy solution at small Euclidean times, and assess its susequent escape and decay into gluons in Minkowski space-time. We describe the spectrum of the {\\it outgoing} gluons and show that it is related through a particular rescaling to the Yang-Mills sphaleron explosion studied earlier. We assess the number of {\\it incoming} gluons in the same configuration, and argue that the observed scaling is in fact more general and describes the energy dependence of the spectra and multiplicities at {\\it all} energies. Applications to hadron-hadron and nucleus-nucleus collisions are discussed elsewhere.

  13. Time Structure of Particle Production in the Merit High-Power Target Experiment

    E-Print Network [OSTI]

    Efthymiopoulos, I; Palm, M; Lettry, J; Haug, F; Pereira, H; Pernegger, H; Steerenberg, R; Grudiev, A; Kirk, H G; Park, H; Tsang, T; Mokhov, N; Striganov, S; Carroll, A J; Graves, V B; Spampinato, P T; McDonald, K T; Bennett, J R J; Caretta, O; Loveridge, P

    2010-01-01

    The MERIT experiment is a proof-of-principle test of a target system for high power proton beam to be used as front-end for a neutrino factory complex or amuon collider. The experiment took data in autumn 2007 with the fast extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of about 30 × 1012 protons per pulse. We report results from the portion of the MERIT experiment in which separated beam pulses were delivered to a free mercury jet target with time intervals between pulses varying from 2 to 700 ?s. The analysis is based on the responses of particle detectors placed along side and downstream of the target.

  14. Quantifying Particle Coatings Using High-Precision Mass Measurements

    E-Print Network [OSTI]

    Knudsen, Scott Michael

    We present a general method to quantify coatings on microparticle surfaces based on the additional mass. Particle buoyant mass is determined in a solution with a density that is nearly equivalent to that of the core particle, ...

  15. Trapped Positrons for High-Precision Magnetic Moment Measurements

    E-Print Network [OSTI]

    Gabrielse, Gerald

    Hoogerheide to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor moments, a greatly improved test of lepton CPT symmetry, and an improved de- termination of the fine

  16. Optical Deformations in Solar Glass Filters for High Precision Astrometry

    E-Print Network [OSTI]

    Sigismondi, Costantino; Boscardin, Sérgio Calderari; Penna, Jucira Lousada; Reis-Neto, Eugênio

    2015-01-01

    Measuring the solar diameter at all position angles gives the complete figure of the Sun. Their asphericities have implications in classical physics and general relativity, and the behavior of the optical systems used in the direct measurements is to be known accurately. A solar filter is a plane-parallel glass with given absorption, and here we study the departures from the parallelism of the faces of a crystal slab 5 mm thick, because of static deformations. These deformations are rescaled to the filter's dimensions. Related to the Solar Disk Sextant experiment and to the Reflecting Heliometer of Rio de Janeiro a simplified model of the influences of the inclination between the external and the internal surfaces of a glass solar filter, is discussed.

  17. Low Voltage High Precision Spatial Light ModulatorsFinal Report

    SciTech Connect (OSTI)

    Papavasiliou, A P

    2005-02-09

    The goal of this project was to make LLNL a leader in Spatial Light Modulators (SLMs) by developing the technology that will be needed by the next generation of SLMs. We would use new lower voltage actuators and bond those actuators directly to controlling circuitry to break the fundamental limitations that constrain current SLM technology. This three-year project was underfunded in the first year and not funded in the second year. With the funding that was available, we produced actuators and designs for the controlling circuitry that would have been integrated in the second year. Spatial light modulators (SLMs) are arrays of tiny movable mirrors that modulate the wave-fronts of light. SLMs can correct aberrations in incoming light for adaptive optics or modulate light for beam control, optical communication and particle manipulation. MicroElectroMechanical Systems (MEMS) is a technology that utilizes the microfabrication tools developed by the semiconductor industry to fabricate a wide variety of tiny machines. The first generation of MEMS SLMs have improved the functionality of SLMs while drastically reducing per pixel cost making arrays on the order of 1000 pixels readily available. These MEMS SLMs however are limited by the nature of their designs to be very difficult to scale above 1000 pixels and have very limited positioning accuracy. By co-locating the MEMS mirrors with CMOS electronics, we will increase the scalability and positioning accuracy. To do this we will have to make substantial advances in SLM actuator design, and fabrication.

  18. High Precision Geophysics & Detailed Structural Exploration & Slim Well

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey, Pennsylvania:Hidden

  19. Novel magnets and superconductors studied by high precision magnetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressure | The Ames Laboratory Novel magnets

  20. Nuclear Structure Revealed by High-Precision Mass Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressureNavy Turns 50Security

  1. High Precision Measurement of the 19Ne Lifetime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptionsthroughputEnergy InnovationEnergy Storage

  2. The coyote universe extended: Precision emulation of the matter...

    Office of Scientific and Technical Information (OSTI)

    The coyote universe extended: Precision emulation of the matter power spectrum Citation Details In-Document Search Title: The coyote universe extended: Precision emulation of the...

  3. Precision Higgs Boson Physics and Implications for Beyond the...

    Office of Scientific and Technical Information (OSTI)

    Precision Higgs Boson Physics and Implications for Beyond the Standard Model Physics Theories Citation Details In-Document Search Title: Precision Higgs Boson Physics and...

  4. Precision Higgs Boson Physics and Implications for Beyond the...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Precision Higgs Boson Physics and Implications for Beyond the Standard Model Physics Theories Citation Details In-Document Search Title: Precision Higgs Boson...

  5. Precision Manufacturing of Imprint Rolls for the Roller Imprinting Process

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David A; Kim, Chang-Ju

    2008-01-01

    Fugl, J. ; “ ;Precision Manufacturing Methods of Inserts forD. E. ; Precision Manufacturing, 1 st Edition; Springer. [In: CIRP Annals – Manufacturing Technology; pp. 73-76. [

  6. Pyrolysis product distribution of a Victorian brown coal under high pressures

    SciTech Connect (OSTI)

    Sathe, C.; Li, C.Z.

    1999-07-01

    A Loy Yang brown coal sample was pyrolyzed in a wire-mesh reactor at pressures ranging from 100 kPa to 1000 kPa. Tar yield was found to be very sensitive to changes in heating rate, peak temperature, holding time and pressure. Tar yield decreased with increases in pressure at high heating rate. At low heating rate tar yield was not sensitive to changes in pressure. Char yields were found to be much less sensitive to changes in pressure and/or heating rate. UV absorption spectroscopy of the tar samples indicated that the yields of larger aromatic ring systems decreased with increasing pressure and/or decreasing heating rate. The effects of pressure are mainly due to the changes in the transportation of volatile precursors with pressure. Increases in pressure might have slowed down the bulk diffusion within meso- and macro-pores in char, which in turn have slowed down the Knudsen diffusion in the micro-pores due to the reduced concentration gradients for the Knudsen diffusion. During the extended stay within the char particle, volatile precursors were thermally cracked, leading to the retention of some larger aromatic ring systems as char and the release of other components as tar and gas.

  7. Experimental Demonstration of Advanced Palladium Membrane Separators for Central High Purity Hydrogen Production

    SciTech Connect (OSTI)

    Sean Emerson; Neal Magdefrau; Susanne Opalka; Ying She; Catherine Thibaud-Erkey; Thoman Vanderspurt; Rhonda Willigan

    2010-06-30

    The overall objectives for this project were to: (1) confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia; (2) develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m{sup 3}m{sup -2}atm{sup -0.5}h{sup -1} at 400 C and capable of operating at pressures of 12.1 MPa ({approx}120 atm, 1750 psia); and (3) construct and experimentally validate the performance of 0.1 kg/day H{sup 2} PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H{sub 2}S, NH{sub 3}, and HCl. This project successfully increased the technology readiness level of palladium-based metallic membranes for hydrogen separation from coal-biomass gasifier exhaust or similar hydrogen-containing gas streams. The reversible tolerance of palladium-copper (PdCu) alloys was demonstrated for H{sub 2}S concentrations varying from 20 ppmv up to 487 ppmv and NH{sub 3} concentrations up to 9 ppmv. In addition, atomistic modeling validated the resistance of PdCu alloys to carbon formation, irreversible sulfur corrosion, and chlorine attack. The experimental program highlighted two key issues which must be addressed as part of future experimental programs: (1) tube defects and (2) non-membrane materials of construction. Four out of five FCC PdCu separators developed leaks during the course of the experimental program because {approx}10% of the alloy tubes contained a single defect that resulted in a thin, weak point in the tube walls. These defects limited operation of the existing tubes to less than 220 psig. For commercial applications of a PdCu alloy hydrogen separator under high sulfur concentrations, it was determined that stainless steel 316 is not suitable for housing or supporting the device. Testing with sulfur concentrations of 487 {+-} 4 ppmv resulted in severe corrosion of the stainless steel components of the separators. The project identified an experimental methodology for quantifying the impact of gas contaminants on PdCu alloy membrane performance as well as an atomistic modeling approach to screen metal alloys for their resistance to irreversible sulfur corrosion. Initial mathematical descriptions of the effect of species such as CO and H{sub 2}S were developed, but require further experimental work to refine. At the end of the project, an improvement to the experimental approach for acquiring the necessary data for the permeability model was demonstrated in preliminary tests on an enhanced PdCu separator. All of the key DOE 2010 technical targets were met or exceeded except for the hydrogen flux. The highest flux observed for the project, 125 ft{sup 3}ft{sup -2}h{sup -1}, was obtained on a single tube separator with the aforementioned enhanced PdCu separator with a hydrogen feed pressure of 185 psig at 500 C.

  8. Production of high intensity {sup 48}Ca for the 88-Inch Cyclotron and other updates

    SciTech Connect (OSTI)

    Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M. Strohmeier, M.; Thullier, T.; Todd, D.; Xie, D.; Franzen, K. Y.

    2014-02-15

    Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity {sup 48}Ca{sup 11+} beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 e?A of {sup 48}Ca{sup 11+} beam current was impressive. The consumption of {sup 48}Ca in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 p?A of {sup 48}Ca{sup 11+}, with a VENUS output beam current of 219 e?A. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system.

  9. Generating Precise Dependencies for Large Software

    E-Print Network [OSTI]

    Cortes, Corinna

    Generating Precise Dependencies for Large Software Pei Wang, Jinqiu Yang, Lin Tan University-term software development, especially for large software with millions of lines of code. This paper designs/C++ software projects. The tool extracts both symbol- level and module-level dependencies of a software system

  10. Precision-Timed (PRET) Stephen A. Edwards

    E-Print Network [OSTI]

    2007. (Source: Reuters) Precision-Timed (PRET) Machines ­ p. 6/1 #12;Certification in Avionics · Rather { actfreq 1 do leftJet(leftMotor); actfreq 1 do rightJet(rightMotor); exitfreq 1 do point(goPoint); exitfreq

  11. A unique dosing system for the production of OH under high vacuum for the study of environmental heterogeneous reactions

    SciTech Connect (OSTI)

    Brown, Matthew A.; Johanek, Viktor; Hemminger, John C.

    2008-02-15

    A unique dosing system for the production of hydroxyl radicals under high vacuum for the study of environmental heterogeneous reactions is described. Hydroxyl radicals are produced by the photodissociation of a hydrogen peroxide aqueous gas mixture with 254 nm radiation according to the reaction H{sub 2}O{sub 2}+h{nu} (254 nm){yields}OH+OH. Under the conditions of the current design, 0.6% conversion of hydrogen peroxide is expected yielding a hydroxyl number density on the order of 10{sup 10} molecules/cm{sup 3}. The flux distribution of the dosing system is calculated using a Monte Carlo simulation method and compared with the experimentally determined results. The performance of this unique hydroxyl dosing system is demonstrated for the heterogeneous reaction with a solid surface of potassium iodide. Coupling of the hydroxyl radical dosing system to a quantitative surface analysis system should help provide molecular level insight into detailed reaction mechanisms.

  12. AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking

    SciTech Connect (OSTI)

    Wei-Kao Lu

    2002-09-15

    An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

  13. Synthesis of oxygenate products for high volume fuels applications. Quarterly technical progress report, November 1, 1994--January 31, 1995

    SciTech Connect (OSTI)

    1995-03-08

    The objective of this project is to develop high yield syntheses of oxygenate products that are liquid at room temperature using as starting materials dimethy ether (DME) or methanol. The identified products include: Dimethyl Carbonate (DMC), 1,1-Dimethoxyethane (DMOE), C{sub 2}{sup +} Alcohols/Ethers (C{sub 2}AE). The technical strategy is outlined below: (A) Synthesis of DMC via oxidative carbonylation of DME instead of methanol. Since this synthesis would not co-produce water as a byproduct, there is a potential for very high DME conversions in contrast to the low (ca 20%) conversions obtained in conventional plants. Technical emphasis will be placed on development of a supported copper catalyst with a capability for cleavage of DME into its chemisorbed organic moieties. (B) Synthesis of 1,1-dimethoxymethane (DMOE) from acetylene/CO/H{sub 2} process streams obtained from commercial methane oxidative pyrolysis processes. In the overall processing scheme the syngas would be converted to DME. The wet acetylene stream would be partially condensed to retain an equivalent of water and then condensed with DME to produce EMOE. (C) Direct conversion of DME or DME/methanol to ethanol/propanol or their methyl ethers. Under the influence of functionalized alcohol condensation catalysts developed exclusively at Amoco it should be possible to achieve direct conversion of dimethyl ether (or methanol) to ethanol/propanol and/or the methyl ethers of these alcohols. Although this reaction is not currently known, a combination of key catalyst components from identified systems should result in a DME conversion catalyst to C{sub 2}+ oxygenates. (D) Reaction of DME or acetylene with synthesis gas (CO/H{sub 2}) or methanol. A variety of catalysts will be tested for conversion of acetylene/CO/H{sub 2} or acetylene/methanol to propylene and conversion of DME/CO/H{sub 2} or DME/methanol to dimenthyoxymethane (DMM) and/or other oxygenates.

  14. Production Pathways and Separation Procedures for High-Diagnostic-Value Activation Species, Fission Products, and Actinides Required for Preparation of Realistic Synthetic Post-Detonation Nuclear Debris

    SciTech Connect (OSTI)

    Faye, S A; Shaughnessy, D A

    2015-08-19

    The objective of this project is to provide a comprehensive study on the production routes and chemical separation requirements for activation products, fission products, and actinides required for the creation of realistic post-detonation surrogate debris. Isotopes that have been prioritized by debris diagnosticians will be examined for their ability to be produced at existing irradiation sources, production rates, and availability of target materials, and chemical separation procedures required to rapidly remove the products from the bulk target matrix for subsequent addition into synthetic debris samples. The characteristics and implications of the irradiation facilities on the isotopes of interest will be addressed in addition to a summary of the isotopes that are already regularly produced.

  15. Interpretation of Angular Distributions of $Z$-boson Production at Colliders

    E-Print Network [OSTI]

    Peng, Jen-Chieh; McClellan, Randall Evan; Teryaev, Oleg

    2015-01-01

    High precision data of dilepton angular distributions in $\\gamma^*/Z$ production were reported recently by the CMS Collaboration covering a broad range of the dilepton transverse momentum, $q_T$, up to $\\sim 300$ GeV. Pronounced $q_T$ dependencies of the $\\lambda$ and $\

  16. SM EFT -connect UV models to precision observables Xiaochuan Lu

    E-Print Network [OSTI]

    Murayama, Hitoshi

    observables UV models Connect Models to Measurements How do the precision measurements shed light on physics observables UV models Connect Models to Measurements How do the precision measurements shed light on physics Berkeley 14 Precision observables UV models Connect Models to Measurements How do the precision

  17. PROSPECT - A Precision Reactor Oscillation and Spectrum Experiment at Short Baselines

    E-Print Network [OSTI]

    J. Ashenfelter; A. B. Balantekin; H. R. Band; G. Barclay; C. Bass; N. S. Bowden; C. D. Bryan; J. J. Cherwinka; R. Chu; T. Classen; D. Davee; D. Dean; G. Deichert; M. Diwan; M. J. Dolinski; J. Dolph; D. A. Dwyer; Y. Efremenko; S. Fan; A. Galindo-Uribarri; K. Gilje; A. Glenn; M. Green; K. Han; S. Hans; K. M. Heeger; B. Heffron; L. Hu; P. Huber; D. E. Jaffe; Y. Kamyshkov; S. Kettell; C. Lane; T. J. Langford; B. R. Littlejohn; D. Martinez; R. D. McKeown; M. P. Mendenhall; S. Morrell; P. Mueller; H. P. Mumm; J. Napolitano; J. S. Nico; D. Norcini; D. Pushin; X. Qian; E. Romero; R. Rosero; B. S. Seilhan; R. Sharma; P. T. Surukuchi; S. J. Thompson; R. L. Varner; B. Viren; W. Wang; B. White; C. White; J. Wilhelmi; C. Williams; R. E. Williams; T. Wise; H. Yao; M. Yeh; N. Zaitseva; C. Zhang; X. Zhang

    2015-01-27

    Current models of antineutrino production in nuclear reactors predict detection rates and spectra at odds with the existing body of direct reactor antineutrino measurements. High-resolution antineutrino detectors operated close to compact research reactor cores can produce new precision measurements useful in testing explanations for these observed discrepancies involving underlying nuclear or new physics. Absolute measurement of the 235U-produced antineutrino spectrum can provide additional constraints for evaluating the accuracy of current and future reactor models, while relative measurements of spectral distortion between differing baselines can be used to search for oscillations arising from the existence of eV-scale sterile neutrinos. Such a measurement can be performed in the United States at several highly-enriched uranium fueled research reactors using near-surface segmented liquid scintillator detectors. We describe here the conceptual design and physics potential of the PROSPECT experiment, a U.S.-based, multi-phase experiment with reactor-detector baselines of 7-20 meters capable of addressing these and other physics and detector development goals. Current R&D status and future plans for PROSPECT detector deployment and data-taking at the High Flux Isotope Reactor at Oak Ridge National Laboratory will be discussed.

  18. Precision electroweak studies using parity violation in electron scattering

    SciTech Connect (OSTI)

    Paschke, Kent D,

    2013-11-01

    The nature of new neutral-current interactions can be revealed at the low-energy precision frontier, where studies of parity-violation in electron scattering will complement the energy-frontier studies at the LHC. Measurements of the parity-violating observable APV - the cross-section asymmetry in the scattering of longitudinally polarized electrons from an unpolarized target - are sensitive to possible contact interactions from new physics at multi-TeV mass scales. The 12 GeV upgrade at JLab and a new, high-intensity beam at Mainz offer opportunities for significant improvements in measurements of electron-electron and electron-quark parity-violating interactions.

  19. Nuclear Chiral EFT in the Precision Era

    E-Print Network [OSTI]

    Epelbaum, Evgeny

    2015-01-01

    Chiral effective field theory has established itself as the method of choice to study nuclear forces and low-energy nuclear dynamics. I review the status and prospects of this approach and discuss ongoing efforts to advance the precision frontier for ab initio description of few-nucleon systems. Special emphasis is put on the precise determination of the two-nucleon force at fifth order in the chiral expansion, role of the chiral symmetry, the convergence pattern of the chiral expansion and the quantification of the theoretical uncertainties. The discussed topics are essential for ongoing studies towards elucidating the structure of the three-nucleon force which will be briefly addressed as well.

  20. Precision Energy Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology Jump to: navigation, search Name: Precision

  1. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

    1998-06-09

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

  2. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Kerns, John A. (Livermore, CA); Blaedel, Kenneth L. (Livermore, CA); Colella, Nicholas J. (Livermore, CA); Davis, Pete J. (Pleasanton, CA); Juntz, Robert S. (Hayward, CA)

    1998-01-01

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.

  3. Summary of the COSY-11 Measurements of Hyperon Production

    E-Print Network [OSTI]

    D. Grzonka

    2007-10-17

    The studies of hyperon production performed at COSY-11 are summarized. The results of the experiments in the reaction channels pp-->pK+Lambda, pp-->pK+Sigma0, and pp-->nK+Sigma+ are shown. Excitation functions fromthreshold up to about 90MeV excess energies have been evaluated with high precision for the Lambda and Sigma0 production. The Lambdap and Sigma0p final state interactions were extracted. The Sigma+ production was measured at 13 and 60 MeV excess energies.

  4. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  5. Relative cost and precision of hydroacoustic and net sampling at hydroelectric facilities

    SciTech Connect (OSTI)

    Wells, A.W.; Matousek, J.A.; Metzger, S.G. [Lawler, Matusky & Skelly Engineers, Pearl River, NY (United States)] [and others

    1995-12-31

    Estimating the number of fish passing through a hydroelectric facility is often an important aspect of hydroelectric project relicensing. The number of fish per unit volume, and ultimately the total number of fish entrained, is usually obtained from hydroacoustic methods or tailrace nets. Data collected at several small hydroelectric projects in Michigan gave us the opportunity to compare the sampling precision of these two methods. This comparison can be useful in formulating future sampling programs as the degree of sampling precision relates directly to the sampling effort and program cost. Individual hydroacoustic samples covered small volumes of water. This resulted in a high degree of variability among samples and a less precise estimate of total entrainment for a given number of samples. In contrast, net samples filtered greater volumes of water and had lower variability among samples. To examine the trade-off between precision and program cost, we computed the 95% confidence interval for the annual estimated entrainment and cost of the associated sampling program. The results suggested that the most cost-effective sampling method depends on the desired precision of the entrainment estimate. For low precision estimates, hydroacoustic sampling was most advantageous. Net sampling would be advantageous when precise entrainment estimates are required and when species composition must be obtained.

  6. Precision monitoring of relative beam intensity for Mu2e

    SciTech Connect (OSTI)

    Evans, N.J.; Kopp, S.E.; /Texas U.; Prebys, E.; /Fermilab

    2011-04-01

    For future experiments at the intensity frontier, precise and accurate knowledge of beam time structure will be critical to understanding backgrounds. The proposed Mu2e experiment will utilize {approx}200 ns (FW) bunches of 3 x 10{sup 7} protons at 8 GeV with a bunch-to-bunch period of 1695 ns. The out-of-bunch beam must be suppressed by a factor of 10{sup -10} relative to in-bunch beam and continuously monitored. I propose a Cerenkov-based particle telescope to measure secondary production from beam interactions in a several tens of microns thick foil. Correlating timing information with beam passage will allow the determination of relative beam intensity to arbitrary precision given a sufficiently long integration time. The goal is to verify out-of-bunch extinction to the level 10{sup -6} in the span of several seconds. This will allow near real-time monitoring of the initial extinction of the beam resonantly extracted from Fermilabs Debuncher before a system of AC dipoles and collimators, which will provide the final extinction. The effect on beam emittance is minimal, allowing the necessary continuous measurement. I will present the detector design and some concerns about bunch growth during the resonant extraction.

  7. Prospects for Precision Higgs Physics at Linear Colliders

    E-Print Network [OSTI]

    Frank Simon

    2012-11-30

    A linear e+e- collider provides excellent possibilities for precision measurements of the properties of the Higgs boson. At energies close to the Z-Higgs threshold, the Higgs boson can be studied in recoil against a Z boson, to obtain not only a precision mass measurement but also direct measurements of the branching ratios for most decay modes, including possible decay to invisible species. At higher energies, the Higgs boson coupling to top quarks and the Higgs boson self-coupling can also be measured. At energies approaching 1 TeV and above, the rising cross section for Higgs production in WW fusion allows the measurement of very small branching ratios, including the branching ratio to muon pairs. These experiments make it possible to determine the complete profile of the Higgs boson in a model-independent way. The prospects for these measurements are summarized, based on the results of detailed simulation studies performed within the frameworks of the CLIC conceptual design report and the ILC technical design report.

  8. Precision in multivariate optical computing Frederick G. Haibach and Michael L. Myrick

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    Precision in multivariate optical computing Frederick G. Haibach and Michael L. Myrick Multivariate, the instrument implements a multivariate regression vector whose dot product with the spectrum yields a single-signal-limited performance of MOC instrumentation. These two general expressions are applied to the traditional multivariate

  9. High-Throughput, High-Precision Hot Testing Tool for High-Brightness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diode Testing Lead Performer: KLA-Tencor Corporation - Milpitas, CA Partners: Ocean Optics - Dunedin, FL DOE Total Funding: 3,994,729 Cost Share: 4,626,422 Project Term: 815...

  10. Fission Product Impact Reduction via Protracted In-core Retention in Very High Temperature Reactor (VHTR) Transmutation Scenarios 

    E-Print Network [OSTI]

    Alajo, Ayodeji Babatunde

    2011-08-08

    ?.???.......................................................... 8 I.F Outline and Strategy ??....................................................................... 9 II FISSION PRODUCT VECTOR, SOURCE AND TREATMENT ????.. 12 II.A LWR Fission Product Inventories ??????..??????....... 13 II... Library JNDC Japanese Nuclear Data Committee KAERI Korea Atomic Energy Research Institute viii LANL Los Alamos National Laboratory LLFP Long Lived Fission Product LLW Low Level Waste LWR Light Water Reactor MCNP Monte Carlo N ? Particle MCNPX...

  11. The Use of High Pressure CO2-Facilitated pH Swings to Enhance in situ Product Recovery of

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    bioreactors (TPPBs), improved pH dependent partitioning of butyric acid was observed which achieved in situ product recovery (ISPR), alleviating end-product inhibition (EPI) during the production of butyric acid of butyric acid to produce a total of 213 g compared to 121 g generated in a control reactor. This recovery

  12. Fluid dynamic effects on precision cleaning with supercritical fluids

    SciTech Connect (OSTI)

    Phelps, M.R.; Hogan, M.O.; Silva, L.J.

    1994-06-01

    Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.

  13. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  14. Monitoring the Bulalo geothermal reservoir, Philippines, using precision gravity data

    SciTech Connect (OSTI)

    San Andres, R.B.; Pedersen, J.R.

    1993-10-01

    Precision gravity monitoring of the Bulalo geothermal field began in 1980 to estimate the natural mass recharge to the reservoir. Between 1980 and 1991, gravity decreases exceeding 2.5 {times} 10{sup {minus}6} N/kg (250 microgals) were observed in response to fluid withdrawals. A maximum rate of {minus}26 microgals per year was observed near the production center. Mass discharges predicted by recent reservoir simulation modeling generally match those inferred from the observed gravity data. According to simulation studies, no recharge occurred between 1980 and 1984. The mass recharge between 1984 and 1991 was estimated to be 30% of net fluid withdrawal during the same period, equivalent to an average rate of 175 kg/s (630 metric tons per hour).

  15. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect (OSTI)

    Ray, W. Harmon

    2002-06-05

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  16. Precise neutron inelastic cross section measurements

    SciTech Connect (OSTI)

    Negret, Alexandru [Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, 077125 Bucharest-Magurele (Romania)

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  17. A More Precise Higgs Boson Mass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Quigg, Chris

    2015-05-14

    To learn what distinguishes electromagnetism from the weak interactions was an early goal of experiments at CERN’s Large Hadron Collider (LHC). A big part of the answer was given in mid-2012, when the ATLAS and CMS Collaborations at the LHC announced the discovery of the Higgs boson in the study of proton–proton collisions. Now the discovery teams have pooled their data analyses to produce a measurement of the Higgs boson mass with 0.2% precision. The new value they discovered enables physicists to make more stringent tests of the electroweak theory and of the Higgs boson’s properties.

  18. Batch fabrication of precision miniature permanent magnets

    DOE Patents [OSTI]

    Christenson, Todd R. (Albuquerque, NM); Garino, Terry J. (Albuquerque, NM); Venturini, Eugene L. (Albuquerque, NM)

    2002-01-01

    A new class of processes for fabrication of precision miniature rare earth permanent magnets is disclosed. Such magnets typically have sizes in the range 0.1 to 10 millimeters, and dimensional tolerances as small as one micron. Very large magnetic fields can be produced by such magnets, lending to their potential application in MEMS and related electromechanical applications, and in miniature millimeter-wave vacuum tubes. This abstract contains simplifications, and is supplied only for purposes of searching, not to limit or alter the scope or meaning of any claims herein.

  19. Higgs triplets and limits from precision measurements

    SciTech Connect (OSTI)

    Chen, Mu-Chun; /Fermilab; Dawson, Sally; Krupovnickas, Tadas; /Brookhaven

    2006-04-01

    In this letter, they present the results on a global fit to precision electroweak data in a Higgs triplet model. In models with a triplet Higgs boson, a consistent renormalization scheme differs from that of the Standard Model and the global fit shows that a light Higgs boson with mass of 100-200 GeV is preferred. Triplet Higgs bosons arise in many extensions of the Standard Model, including the left-right model and the Little Higgs models. The result demonstrates the importance of the scalar loops when there is a large mass splitting between the heavy scalars. It also indicates the significance of the global fit.

  20. A precise determination of the faraday 

    E-Print Network [OSTI]

    Sommer, Helmut

    1950-01-01

    la Gorce in France. The precision attained in these studies was of the order of a few parts per 100,000. In 1908, the National Bureau of Standards began a study of the silver voltameter which lasted nearly ten years. A summary of this work with a... parts per million. on The effect of the trapping field has been discussed., and a correction of 20 parts per million per 0.1 volt of trapping voltage has already been applied to all values in Table III with the exception of the last six...

  1. Abstract The Accelerator Driven Systems (ADS) require high power beam (>10 MW) to irradiate the neutron production target. To mitigate the effect of the high power, and high intensity beam on the target we propose to reduce the intensity of the beam by un

    E-Print Network [OSTI]

    McDonald, Kirk

    the neutron production target. To mitigate the effect of the high power, and high intensity beam on the targetAbstract The Accelerator Driven Systems (ADS) require high power beam (>10 MW) to irradiate a High-Power Beam* M. Haj Tahar, F Meot, P. Pile, *N. Tsoupas Brookhaven National Laboratory Upton, NY

  2. Designer Sorghum Combining the High Digestibility and Waxy Grain Traits of Sorghum for Improved Nutrition Bioethanol Beer Feed and Food Products 

    E-Print Network [OSTI]

    Jampala, Babitha

    2012-07-16

    SORGHUM COMBINING THE HIGH DIGESTIBILITY AND WAXY GRAIN TRAITS IN SORGHUM FOR IMPROVED NUTRITION BIOETHANOL BEER FEED AND FOOD PRODUCTS A Dissertation by BABITHA JAMPALA Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2012 Major Subject: Plant Breeding DESIGNER SORGHUM COMBINING THE HIGH DIGESTIBILITY AND WAXY GRAIN TRAITS IN SORGHUM FOR IMPROVED NUTRITION BIOETHANOL BEER...

  3. Non-QCD contributions to top-pair production near threshold

    E-Print Network [OSTI]

    Martin Beneke; Andreas Maier; Jan Piclum; Thomas Rauh

    2015-11-03

    The threshold scan of top pair production at a future lepton collider allows to determine several Standard Model parameters with very high precision. The recent completion of the third-order QCD corrections to the inclusive top-pair production cross section demonstrated that strong dynamics are under control. We investigate effects from P-wave production and Higgs contributions at third order and from QED and the nonresonant production of the physical $W^+W^-b\\bar{b}$ final state at first order. We discuss the sensitivity of the cross section to the top mass, width and Yukawa coupling as well as to the strong coupling.

  4. J/psi production at high transverse momenta in p+p and Cu+Cu collisions at sqrt sNN = 200 GeV

    SciTech Connect (OSTI)

    STAR Collaboration; Abelev, B. I.

    2009-10-27

    The STAR collaboration at RHIC presents measurements of J/{psi} {yields} e{sup +}e{sup -} at mid-rapidity and high transverse momentum (p{sub T} > 5 GeV/c) in p+p and central Cu+Cu collisions at {radical}sNN = 200 GeV. The inclusive J/{psi} production cross section for Cu+Cu collisions is found to be consistent at high p{sub T} with the binary collision-scaled cross section for p+p collisions, in contrast to previous measurements at lower p{sub T}, where a suppression of J/{psi} production is observed relative to the expectation from binary scaling. Azimuthal correlations of J/{psi} with charged hadrons in p+p collisions provide an estimate of the contribution of B-meson decays to J/{psi} production of 13% {+-} 5%.

  5. J/psi production at high transverse momentum in p+p and Cu+Cu collisions at \\sNN=200GeV

    E-Print Network [OSTI]

    STAR Collaboration; B. I. Abelev

    2009-04-02

    The STAR collaboration at RHIC presents measurements of \\Jpsi$\\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \\pp and central \\cucu collisions at \\sNN = 200 GeV. The inclusive \\Jpsi production cross section for \\cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \\pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \\Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\\psi$ with charged hadrons in \\pp collisions provide an estimate of the contribution of $B$-meson decays to \\Jpsi production of $13% \\pm 5%$.

  6. Dell Precision Workstations Precision is the key element that separates greatness from

    E-Print Network [OSTI]

    Fiebig, Peter

    intelligently provides graphics performance when you need it and can help extend battery life when you don images. Beyond-Your-Expectations Service Rest assured that your Dell Precision mobile workstation hardware, images, applications, peripherals and documents with your system as it's built to help simplify

  7. B_c Meson Production Around the Z^0 Peak at a High Luminosity e^+ e^- Collider

    SciTech Connect (OSTI)

    Yang, Zhi; Wu, Xing-Gang; Chen, Gu; Liao, Qi-Li; Zhang, Jia-Wei; /Chongqing U.

    2012-05-22

    Considering the possibility to build an e{sup +}e{sup -} collider at the energies around the Z{sup 0}-boson resonance with a planned luminosity so high as L {proportional_to} 10{sup 34} {approx} 10{sup 36} cm{sup -2}s{sup -1} (super Z-factory), we make a detailed discussion on the (c{bar b})-quarkonium production through e{sup +}e{sup -} {yields} (c{bar b})[n] + b + {bar c} within the framework of non-relativistic QCD. Here [n] stands for the Fock-states |(c{sub b}){sub 1}[{sup 1}S{sub 0}]>, |(c{bar b})8[{sup 1}S{sub 0}]g>, |(c{bar b} ){sub 1}[{sup 3}S{sub 1}]>, |(c{bar b}){sub 8}[{sup 3}S{sub 1}]g>, |(c{bar b}){sub 1}[{sup 1}P{sub 1}]> and |(c{bar b}){sub 1}[{sup 3}P{sub J}]> (with J = (1, 2, 3)) respectively. To simplify the hard-scattering amplitude as much as possible and to derive analytic expressions for the purpose of future events simulation, we adopt the 'improved trace technology' to do our calculation, which deals with the hard scattering amplitude directly at the amplitude level other than the conventional way at the squared-amplitude level. Total cross-section uncertainties caused by the quark masses are predicted by taking m{sub c} = 1.50 {+-} 0.30 GeV and m{sub b} = 4.90 {+-} 0.40 GeV. If all higher (c{bar b})-quarkonium states decay to the ground state B{sub c} (|(c{bar b}){sub 1}[{sup 1}S{sub 0}]>) with 100% efficiency, we obtain {sigma}{sub e{sup +}+e{sup -}{yields}B{sub c}+b+{bar c}} = 5.190{sub -2.419}{sup +6.222} pb, which shows that about 10{sup 5} {approx} 10{sup 7} B{sub c} events per operation year can be accumulated in the super Z-factory. If taking the collider energy runs slightly off the Z{sup 0}-peak, i.e. {radical}S = (1.00 {+-} 0.05)m{sub Z}, the total cross-section shall be lowered by about one-order from its peak value. Such a super Z-factory shall provide another useful platform to study the properties of B{sub c} meson, or even the properties of its excited P-wave states, in addition to its production at the hadronic colliders Tevatron and LHC.

  8. Precision measurements in ion traps using slowly moving standing waves

    E-Print Network [OSTI]

    A. Walther; U. Poschinger; K. Singer; F. Schmidt-Kaler

    2011-05-09

    The present paper describes the experimental implementation of a measuring technique employing a slowly moving, near resonant, optical standing wave in the context of trapped ions. It is used to measure several figures of merit that are important for quantum computation in ion traps and which are otherwise not easily obtainable. Our technique is shown to offer high precision, and also in many cases using a much simpler setup than what is normally used. We demonstrate here measurements of i) the distance between two crystalline ions, ii) the Lamb-Dicke parameter, iii) temperature of the ion crystal, and iv) the interferometric stability of a Raman setup. The exact distance between two ions, in units of standing wave periods, is very important for motional entangling gates, and our method offers a practical way of calibrating this distance in the typical lab situation.

  9. Multiple-part-type systems in high volume manufacturing : long-term capacity planning & time-based production control

    E-Print Network [OSTI]

    Hua, Xia, M. Eng. Massachusetts Institute of Technology

    2008-01-01

    This project examines a production station that faces fluctuating demand with seasonal pattern. The cumulative capacity exceeds the cumulative demand in a one year period; however, its weekly capacity is not able to meet ...

  10. Implementation of scattering pinhole diagnostic for detection of fusion products on CR-39 at high particle fluence

    E-Print Network [OSTI]

    Orozco, David, S.B. Massachusetts Institute of Technology

    2014-01-01

    Many Inertial Confinement Fusion (ICF) experiments use solid-state nuclear track detector CR-39 as a means to detect different types of nuclear products. Until recently, it was difficult to use CR-39 in experiments with ...

  11. PRECISION CLEANING OF SEMICONDUCTOR SURFACES USING CARBON DIOXIDE-BASED FLUIDS

    SciTech Connect (OSTI)

    J. RUBIN; L. SIVILS; A. BUSNAINA

    1999-07-01

    The Los Alamos National Laboratory, on behalf of the Hewlett-Packard Company, is conducting tests of a closed-loop CO{sub 2}-based supercritical fluid process, known as Supercritical CO{sub 2} Resist Remover (SCORR). We have shown that this treatment process is effective in removing hard-baked, ion-implanted photoresists, and appears to be fully compatible with metallization systems. We are now performing experiments on production wafers to assess not only photoresist removal, but also residual surface contamination due to particulate and trace metals. Dense-phase (liquid or supercritical) CO{sub 2}, since it is non-polar, acts like an organic solvent and therefore has an inherently high volubility for organic compounds such as oils and greases. Also, dense CO{sub 2} has a low-viscosity and a low dielectric constant. Finally, CO{sub 2} in the liquid and supercritical fluid states can solubilize metal completing agents and surfactants. This combination of properties has interesting implications for the removal not only of organic films, but also trace metals and inorganic particulate. In this paper we discuss the possibility of using CO{sub 2} as a precision-cleaning solvent, with particular emphasis on semiconductor surfaces.

  12. Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL

    SciTech Connect (OSTI)

    Freels, James D; Jain, Prashant K; Hobbs, Randy W

    2012-01-01

    The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

  13. Radio Frequency Phototube, Optical Clock and Precise Measurements in Nuclear Physics

    E-Print Network [OSTI]

    Amur Margaryan

    2009-10-24

    Recently a new experimental program of novel systematic studies of light hypernuclei using pionic decay was established at JLab (Study of Light Hypernuclei by Pionic Decay at JLab, JLab Experiment PR-08-012). The highlights of the proposed program include high precision measurements of binding energies of hypernuclei by using a high resolution pion spectrometer, HpiS. The average values of binding energies will be determined within an accuracy of ~10 keV or better. Therefore, the crucial point of this program is an absolute calibration of the HpiS with accuracy 10E-4 or better. The merging of continuous wave laser-based precision optical-frequency metrology with mode-locked ultrafast lasers has led to precision control of the visible frequency spectrum produced by mode-locked lasers. Such a phase-controlled mode-locked laser forms the foundation of an optical clock or femtosecond optical frequency comb (OFC) generator, with a regular comb of sharp lines with well defined frequencies. Combination of this technique with a recently developed radio frequency (RF) phototube results in a new tool for precision time measurement. We are proposing a new time-of-flight (TOF) system based on an RF phototube and OFC technique. The proposed TOF system achieves 10 fs instability level and opens new possibilities for precise measurements in nuclear physics such as an absolute calibration of magnetic spectrometers within accuracy 10E-4 - 10E-5.

  14. The critical role of manufacturing-process innovation on product development excellence in high-technology companies

    E-Print Network [OSTI]

    Duarte, Carlos E. A., 1962-

    2004-01-01

    Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

  15. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slininger, Patricia J; Shea-Andersh, Maureen A; Thompson, Stephanie R; Dien, Bruce S; Kurtzman, Cletus P; Balan, Venkatesh; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Dale, Bruce E; Cotta, Michael A

    2015-12-01

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment.

  16. Title of dissertation: Precision Control of Intense Electron Beams in a Low-Energy Ring

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of dissertation: Precision Control of Intense Electron Beams in a Low-Energy Ring ELECTRON BEAMS IN A LOW-ENERGY RING by Chao Wu Dissertation submitted to the Faculty of the Graduate School of particle accelerators require beams with high intensity and low emittance in a stable fashion. An important

  17. AFTER@LHC: a precision machine to study the interface between particle and nuclear physics

    E-Print Network [OSTI]

    Lansberg, J P; Brodsky, S J; Chambert, V; Didelez, J P; Genolini, B; Ferreiro, E G; Fleuret, F; Hadjidakis, C; Lorce, C; Rakotozafindrabe, A; Rosier, P; Schienbein, I; Scomparin, E; Uggerhoj, U I

    2014-01-01

    We outline the opportunities to study with high precision the interface between nuclear and particle physics, which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.

  18. Design and construction of a precision tubular linear motor and controller 

    E-Print Network [OSTI]

    Murphy, Bryan Craig

    2004-09-30

    A design for a novel tubular high-precision direct-drive brushless linear motor has been developed. The novelty of the design lies in the orientation of the magnets in the mover. In conventional linear motors the magnets of the armature...

  19. AFTER@LHC: a precision machine to study the interface between particle and nuclear physics

    E-Print Network [OSTI]

    J. P. Lansberg; R. Arnaldi; S. J. Brodsky; V. Chambert; J. P. Didelez; B. Genolini; E. G. Ferreiro; F. Fleuret; C. Hadjidakis; C. Lorce; A. Rakotozafindrabe; P. Rosier; I. Schienbein; E. Scomparin; U. I. Uggerhoj

    2013-09-30

    We outline the opportunities to study with high precision the interface between nuclear and particle physics, which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.

  20. PPPL-3467 PPPL-3467 Precision Metrology of NSTX Surfaces Using Coherent

    E-Print Network [OSTI]

    . The home page for PPPL Reports and Publications is: http://www.pppl.gov/pub_report/ DOE and DOE Contractors) for precision metrology. The distance (range) between the 1.5 µm laser source and the target is measured of electron heating with 2 MW of High Harmonic Fast Wave RF heating (HHFW) have been obtained.[3] As expected